
Using Failure Detection and Consensus in the
General Omission Failure Model to Solve

Security Problems

Carole Delporte-Gallet1, Hugues Fauconnier1, and Felix C. Freiling2?

1 Laboratoire d’Informatique Algorithmique, Fondements et Applications (LIAFA),
University Paris VII, France

2 Laboratory for Dependable Distributed Systems,
University of Mannheim, Germany

University of Mannheim
Department for Mathematics and Computer Science

Technical Report TR 2006-16
September, 2006

Abstract. It has recently been shown that fair exchange, a security
problem in distributed systems, can be reduced to a fault tolerance prob-
lem, namely a special form of distributed consensus. The reduction uses
the concept of security modules which reduce the type and nature of ad-
versarial behavior to two standard fault-assumptions: message omission
and process crash. In this paper, we investigate the feasibility of solving
consensus in asynchronous systems in which crash and message omission
faults may occur. Due to the impossibility result of consensus in such
systems, following the lines of unreliable failure detectors of Chandra
and Toueg, we add to the system a distributed device that gives infor-
mation about the failure of other processes. Then we give an algorithm
using this device to solve the consensus problem. Finally, we show how
to implement such a device in a asynchronous untrusted environment
using security modules and some weak timing assumptions.

1 Introduction

In systems with electronic business transactions, fair exchange is a fundamental
problem. In fair exchange, the participating parties start with an item they want
to trade for another item. They possess an executable (i.e., machine-checkable)
description of the desired item and they know from which party to expect the de-
sired item and which party is expecting their own item. An algorithm that solves
fair exchange must ensure three properties: (1) every honest party eventually ei-
ther delivers its desired item or aborts the exchange (termination property).

? Work by Felix Freiling was performed in part while visiting LIAFA and supported
by the French Ministry of Research ACI project FRAGILE. A preliminary version
was presented at ICTAC 2005 which appears as LNCS 3722.

2

(2) If no party misbehaves and all items match their descriptions then the ex-
change should succeed (effectiveness property). (3) If the desired item of any
party does not match its description, then no party can obtain any (useful) in-
formation about any other item (fairness property). Fair exchange algorithms
should guarantee these properties for mutually untrusted parties, i.e., even in
the presence of arbitrary (malicious) misbehavior of a subset of participants.
Therefore, fair exchange is usually considered a problem in the area of security.

It has recently been shown [4] that fair exchange, a security problem, can be
reduced to a fault-tolerance problem, namely a special form of consensus. In the
consensus problem, a set of processes must reach agreement on a single value
out of a set of values, values which the individual processes have each proposed.
The reduction from fair exchange to consensus holds in a model where each
participating party is equipped with a tamper proof security module. Roughly
speaking, the security modules are certified pieces of hardware (like a smart
card) executing a well-known algorithm so they can establish confidential and
authenticated channels between each other. Security modules in principle allow
a vendor to execute an algorithm on a machine which is not in his posession
anymore. They therefore form the basis for trusted computing, a vision shared
by many key players in industry [21] to improve the security of computer system.
Today, products exist which implement such trusted devices (for example the
IBM 4758 Secure Coprocessor [10] or programmable Java Cards [13]). However,
since these devices can only communicate by exchanging messages through their
(untrusted) host parties, messages may be intercepted or dropped (see Fig. 1).
Overall, the security modules form a trusted subsystem within the overall (un-
trusted) system. The integrity and confidentiality of the algorithm running in
the trusted subsystem is protected by the shield of tamper proof hardware. The
integrity and confidentiality of data sent across the network is protected by stan-
dard cryptographic protocols. These mechanisms reduce the type and nature of
adversarial behavior in the trusted subsystem to message loss and process self-
destruction, two standard fault-assumptions known under the names of omission
and crash in the area of fault-tolerance. To summarize, problems from the area
of security motivate us to revisit the consensus problem in omission failure en-
vironments.

A central assumption which is used in the reduction of fair exchange to
consensus [4] is that the system be synchronous. A synchronous system has
known upper bounds on all important timing parameters of the system like
message delivery delay and relative process speeds. Synchronous systems are
rare in practice. More common are asynchronous systems, i.e., systems with no
or merely uncertain timing guarantees. This holds especially true for systems in
which smart cards are used as security modules. Smart cards do not possess any
device to reliably measure real-time since they are totally dependent on power
supply from their host. If we would like to implement fair exchange using smart
cards as security modules, we need an asynchronous consensus algorithm under
the assumption of crash and omission faults.

3

wired or wireless channel between hosts
secure channel (over physical channel)

security
module

untrusted party

security
module

untrusted party

Fig. 1. Untrusted parties and security modules.

The concept of omission faults, meaning that a process drops a message ei-
ther while sending (send omission) or while receiving it (receive omission), were
introduced by Hadzilacos [14] and later generalized by Perry and Toueg [20].
Under the assumption of omission faults, this paper investigates the feasibility
of solving consensus in totally asynchronous systems. Since a result by Fischer,
Lynch, and Paterson [11] states that solving consensus deterministically is im-
possible even if only crash faults can happen, we must strengthen the model so
that solutions are possible. We do this using the approach of unreliable failure de-
tectors pioneered by Chandra and Toueg [6]. In this approach, the asynchronous
model is augmented with a device that gives information about the failures of
other processes. Failure detectors have proven to be a very powerful abstraction
of timing assumptions that can express necessary and sufficient conditions for
the solvability of problems in the presence of failures. In practice, we want to
build a system that solves a certain problem (like consensus). So interesting for
practical purposes is the question: What type of failure detector is sufficient to
solve that problem? If such a failure detector is found, we only need to imple-
ment the failure detector in a system with security modules to get an algorithm
that works in practice, usually reducing the complexity of solving the overall
problem substantially. Interesting from a theoretical standpoint is the question:
What type of failure detector is necessary to solve a problem? Answers to this
question point to the minimum level of timing information which is needed to
solve that problem. If only less is available, the problem is impossible to solve.

Here, we concentrate on the sufficiency part of the question, i.e., we ask the
following questions:

– What type of failure detector is sufficient to solve consensus in asynchronous
systems in which crash and omission faults can occur?

– Under what realistic timing assumptions can such a failure detector be im-
plemented?

We make the following two contributions in this paper:

– We define a new type of failure detector, which we call Ω in analogy to
Chandra, Hadzilacos and Toueg [5], and give a protocol that solves consensus

4

in omission failure environments as long as a majority of processes remains
fault-free.

– We exhibit a set of weak timing assumptions in the spirit of earlier work
[1, 3] that allow to implement Ω. More precisely, we show that the existence
of some process with which every other process eventually can communicate
in a timely way is sufficient to implement Ω. We argue that such timing
assumptions can be made in practice.

Solving consensus in omission environments have been studied previously in
other work [7, 8, 12]. Unpublished work by Dolev et al. [7, 8] also follows the
failure detector approach to solve consensus. Their failure detector ♦S(om) is
different but rather close in power to our definition of Ω. In contrast to Dolev et
al. [7, 8], we focus on the implementability of that failure detector under weak
synchrony assumptions. To the best of our knowledge, our consensus algorithm
using Ω is also novel in this model.

Freiling et al. [12] study the question how randomization can be used to im-
prove the performance of consensus algorithms in omission environments. In con-
trast to our work, they assume a synchronous algorithm. Synchronous consensus
is also considered in work by Parvédy and Raynal [19] who give an algorithm
which is adapted in the original work by Avoine et al. [4] which presents the
reduction of fair exchange to a special form of consensus.

Concerning timeliness assumptions enabling to solve consensus, Dwork, Lynch
and Stockmeyer [9] proved that consensus is solvable if all correct processes are
eventually timely. Other work [2] obtained the same sufficient timeliness as-
sumptions as here. Note that in both cases, the authors consider the arbitrary
(or Byzantine [15]) failure model that is strictly stronger than omission faults.
So their algorithms are necessarily more inefficient that ours. Also, these solu-
tions do not use a modular approach with failure detectors. Overall, our results
allow to implement consensus, and hence fair exchange, more efficiently and in
a larger class of practical systems than before.

This paper is structured as follows: Section 2 introduces the system model
and the reduction of fair exchange to a consensus-like problem using security
modules. Section 3 specifies the new type of failure detector. Section 4 presents
the algorithm to solve consensus using the failure detector from Section 3. Sec-
tion 5 shows how to implement the failure detector under very weak synchrony
assumptions. Finally, Section 6 concludes the paper.

2 Definitions and Model

2.1 Untrusted System

Security problems like fair exchange are considered within a distributed system
which is modeled by a set of n parties that communicate using message passing
over a network of channels in a fully connected topology. The communication
primitives we assume are send and receive. Communication channels are reli-
able, i.e., every message sent is eventually received and every received message

5

was previously sent. Processes in this system can behave arbitrarily and do not
necessarily trust each other. Because of mutual distrust, we call this system the
untrusted system (see Fig. 2).

sec. mod.
A

sec. mod.
B

untrusted
system

party
C

party
A

party
B

C
sec. mod.

trusted
subsystem

Fig. 2. The untrusted system and the trusted subsystem.

We assume that the network is asynchronous, i.e., there is neither a bound on
the relative process speeds nor on the message delivery delays. This means that
while one party takes a single step within the execution of its local algorithm, any
other process can take an arbitrary (but finite) number of steps. Also, messages
can take an arbitrary (but finite) amount of time to travel from the source to
the destination.

2.2 Trusted Subsystem

We assume that every party contains a security module. A security module is
able to execute its own algorithm independent of its host party. We call the
entity executing the algorithm a process. Communcation between host party its
security module process is done via (synchronous) invocations of local library
routines.

The network of parties is reflected in the network of processes. The 1 : 1 cor-
respondence between security modules and parties results in a second distributed
system consisting of n processes Π = {p1, p2, . . . , pn} that communicate using
message passing over a network of channels in a fully connected topology. The
communication primitives we assume are also send and receive which are also
reliable. Due to the influence of their host parties, processes can be faulty, as we
explain shortly. The network of processes is also asynchronous.

6

2.3 Failure Assumption

There are three ways in which processes can fail: (1) Processes can crash, i.e.,
they stop to execute steps of their local algorithm. Crashed processes never
recover. (2) Processes can experience send omission failures, i.e., a message which
is sent by a process is never placed into the communication channel. (3) Processes
can experience receive omission failures, i.e., a message which arrives over the
communication channel is never actually received by the algorithm of the process.
Crash faults model, the usual hardware or operating system crashes, omission
faults model overruns of internal I/O buffers within the operating system.

The types of failures result in three distinct failure assumptions:

– the send omission model, in which processes can crash and experience only
send-omissions (and no receive omissions),

– the receive omission model (analogous to the send-omission model), and
– the send/receive omission model (sometimes also called general omission),

in which processes can crash and experience either send-omissions or receive
omissions.

A process p is correct if it does not make any failure at all, i.e., it never crashes
and experiences neither send nor receive omissions. Process p is crash-correct if
it never crashes. If process p crashes at some time we say it is crash-faulty.

In the following we assume that all correct processes send infinitely often
messages to all processes.

Due to the omissions, some processes could be disconnected forever from cor-
rect processes. More precisely, we say that process p is in-connected, if infinitely
often it receives messages from some correct processes. By analogy, we say that
process p is out-connected, if an infinity of its messages are received by some
correct processes. A process is connected if it is in-connected and out-connected.
Note that a in-connected or out-connected or connected process is crash-correct
because it makes an infinity of steps.

Clearly, in the send-omission failure model every process is in-connected, and
in the receive omission failure model every process is out-connected. Transient
omissions refer to cases when a process regularly omits a message but equally reg-
ularly sends/receives a message over the channel. Such omissions can be masked
by piggybacking information about previous messages on every new message
sent over a channel. In the following we assume such a piggybacking mechanism
ensuring that if p receives an infinity of messages sent by q then p receives all
messages from q.

Then with this assumption, if p is in-connected then p receives all messages
from at least one correct process. In the same way, if p is out-connected at least
one correct process receives all messages from p.

2.4 Relations to Crash Model

Since omissions introduce asymmetry in the communication relation, it is also
an issue who can communicate with whom. For example, a process with receive

7

Code for p:
1 on receive (m, d) from q
2 if d = p ∧ m not delivered before then Receive m
3 else if d 6= p then send (m, d) to d

4 to Send(m) to d:
5 send (m, d) to all

Fig. 3. Send/Receive with relay.

omissions may receive messages from a correct process p but may fail to receive
messages from another correct process q. We can mask parts of this asymmetry
by using the relay algorithm of Figure 3 which defines new primitives Send
and Receive. These primitives ensure that if a process p is in-connected then it
receives infinitely often messages from all correct processes. Correspondingly, if
a process is out-connected, then infinitely many of its messages are received by
all correct processes. However note that the relay algorithm is costly concerning
the communication load (each message from p to q generates 2n− 1 messages).

In the following algorithms we avoid to use this relay algorithm. But it shows
that if all crash-correct processes are connected, then by piggybacking old mes-
sages and with the relay algorithm all omissions can be masked and the omission
models become equivalent to the crash failure model. Interesting cases arise if
not all crash-correct processes are always connected.

2.5 Consensus

We use the standard definition of Uniform Consensus in this paper. The problem
is defined using two primitives called propose and decide, both taking a binary
value v. An algorithm solving consensus must satisfy the following properties:

– (Termination) Every correct process eventually decides.
– (Uniform Agreement) No two processes decide differently.
– (Validity) The decided value must have been proposed.

2.6 From Fair Exchange to Consensus

We briefly sketch the basic idea of the reduction of fair exchange to consensus
[4].

The consensus problem used is called biased consensus and can be regarded
as uniform consensus with a veto right. The parties in the untrusted system
pass their exchange items to their security modules. Now the items are in the
trusted system and are exchanged using a simple broadcast protocol between
the processes. The processes can now receive the expected items and check then

8

against the specification (is the item as expected). The result of this check (1 or
0) is the input to a round of biased consensus. If any process found a mismatch
between the item and the specification, consensus will result in 0. This will cause
all processes to abort the exchange. Otherwise, the expected item item is released
to the corresponding party.

Note that the processes run a certified piece of code, so the host party cannot
interfere or reprogram the process. Also, communication between processes is
confidential so no secret information is leaked to the parties unless the exchange
succeeds. So the only method for a party to influence the trusted subsystem
is by crashing the process or removing messages from the channel. Since the
consensus protocol within the trusted subsystem tolerated crashes and omissions,
fair exchange will terminate.

3 Failure Detectors for Omission Failure Environments

In this section we revisit failure detectors in crash environments and give a
suitable definition for such a failure detector in omission failure environments.

The definition of failure detectors in the crash model are standard [6] and
the literature contains a lot of definitions of failure detectors for crash failures.
Among these, the failure detector Ω is particularly interesting: It has been proved
to be the weakest failure detector to solve the consensus problem in the crash
failure model with a majority of correct processes [5]. The output of Ω for each
process p is the identity of one process, the assumed leader for p, such that
eventually all correct processes have the same leader forever and this leader is a
correct process. Hence Ω implements an eventual leader election.

We now extend the definition of failure detector Ω to omission models. In
the omission model, the definition of Ω from the crash model would naively
translate to an eventual leader election of a correct process (i.e., neither does it
experience a crash nor any omission). This is generally too restrictive, because it
could be impossible to ensure that the chosen eventual leader does not experience
permanent omissions. In the same way it is too restrictive to force processes that
may receive no messages from correct processes to have the eventual common
leader. But, in the other hand, if some processes able to communicate to correct
processes have a wrong leader it could be a problem. Then a trade-off is to ensure
that all out-connected processes eventually have the good leader or know that
they do not have. So we consider the following definition:

Definition 1. Failure detector Ω for omission models is a failure detector that
outputs at each time for each process one process, called the leader, or ⊥ such
that there is a connected process l and a time after which, Ω outputs l for each
correct process p, and l or ⊥ for each out-connected process.

Note that in contrast to the definition of Ω in the crash model, our definition of Ω
allows the eventual leader process to be faulty: The leader may experience send
and receive omissions as long as it remains connected. We give implementations
of Ω in partial synchrony models with weak synchrony assumptions in Section 5.

9

In the following algorithms the output of the failure detector Ω for process
p is given by the value of local variable Leader.

4 Solving Consensus

We now show that the failure detector Ω introduced in the previous section is suf-
ficient to solve consensus with a majority of correct processes in the send/receive
omission model. Figure 4 depicts our consensus algorithm. It employs the well-
known rotating coordinator paradigm, i.e., processes run through asynchronous
rounds (counted using the variable r in task 1) and in every such round one
process C is chosen as the coordinator. The processes start with v being their
proposal value of consensus and spawn three concurrent tasks. In task 0, the
coordinator is urged (by using COORD messages) to “impose” its value on all
processes by sending ONE messages (task 1). Processes then evaluate the value
they receive from the coordinator (stored in estfromC). Unless it comes from
the leader (referred to by Ω), a ⊥ value is stored. In the second part of the algo-
rithm, all processes broadcast their received value to all other processes (TWO
messages). If such messages are received from a majority of processes, the non-
⊥ value given in the messages is the decided value and an appropriate decision
message is broadcast to all. Task 2 just ensures that eventually all processes who
receive the decision message actually do decide.

Proposition 1. Algorithm of Figure 4 implements consensus for a majority of
correct processes in the send/receive omission model augmented with Ω.

In the proofs of algorithms, by convention, given a variable x of process p, xτ
p

denotes the value of x in p at time τ ; when time τ is clear we omit it.
To prove the proposition, we first state the two following lemmas:

Lemma 1. If p and q end the first part (lines 13 to 18) of a round r, then:

(1) if estFromCp = x for some x 6= ⊥ then estFromCq ∈ {⊥, x},

If p and q end line 21 of a round r, then:

(2) if Lp = {x} for some x 6= ⊥ then Lq = {x} or Lq = {x,⊥},
(3) if Lp = {⊥, x} for some x 6= ⊥ then Lq = {x} or Lq = {x,⊥} or Lq = {⊥}.

Proof. (1): Notice first that for any process q, vq is always a value proposed by
some process and obviously vq 6= ⊥.

If estFromCp = x for some x 6= ⊥ then p has received one message (ONE, x,
r) from the coordinator p1+r mod n. By the algorithm, the coordinator p1+r mod n

sends only one message (ONE, ∗, r) per round to all processes. Either the coor-
dinator is not the leader for q (p1+r mod n 6= Leaderq) and then estFromCq = ⊥,
or the coordinator is the leader for q and q waits for the message ONE, and
then estFromCq = x.

(2) and (3): If Lp = {⊥, x} or Lp = {x} then at least one process, say u,
ends the first part (lines 13 to 18) of round r, and EstFromCu = x. By (1), at

10

Code for p:
1 Initialization:
2 r := 0 /* round number */
3 v := 〈proposed value〉
4 start Task 0 and Task 1 and Task 2
Task 0:
5 upon receive(COORD, ∗, k) for the first time
6 let (COORD, w, k) be such a message
7 send(ONE, w, k) to all other processes

8 upon receive(ONE, ∗, k) for the first time
9 let (ONE, w, k) be such a message
10 send(ONE, w, k) to all
Task 1:
11 loop forever
12 C := 1 + r mod n /* coordinator */
13 send(COORD, v, r) to pC

14 wait until (receive (ONE, ∗, r) from pC) or ((pC 6= Leader) and (Leader 6= ⊥))
15 if (ONE, w, r) is received then
16 estfromC := w
17 else
18 estFromC := ⊥

19 send(TWO, estFromC, r) to all
20 wait until receive(TWO, ∗, r) from a majority of processes
21 let L = {w | (TWO, w, r) is received }
22 if L = {rec} for some rec 6= ⊥ then
23 send (DECIDE, rec) to all
24 decide(rec)
25 halt
26 else
27 if L = {rec,⊥} for some rec 6= ⊥ then
28 v := rec
29 r := r + 1

Task 2:
30 upon received(DECIDE, k) from q
31 send(DECIDE, k) to all
32 decide(k)
33 halt

Fig. 4. Consensus algorithm for the send/receive omission model using Ω.

most two values, ⊥ and x, could be sent by processes to all processes in line 19.
And hence for any process q that ends round r either Lq = {x} or Lq = {⊥, x}
or Lq = {⊥}. This concludes the proof of (3).

For (2), it remains to prove that if Lp = {x} then Lq 6= {⊥}. As processes
wait for a majority of processes, p and q get message from at least one common
process s. By the algorithm s sends at most one message (TWO, ∗, ∗) per round.

11

Then s sends message (TWO, y, r) with either y = ⊥ or y = x. As p and q have
waited for this message, this excludes the case Lp = {x} and Lq = {⊥}. ut

Lemma 2. If every process begins some round r, with its variable v equal to the
same value d then all processes ending this round either decide d or have their
variable v equal to d at the end of this round.

Now we show that the algorithm satisfies the properties of consensus.

Lemma 3. The algorithm ensures the agreement property.

Proof. Consider the first time a process, say p, sends a message (DECIDE, d)
for some d. By an easy induction, this sending occurs in task 1, say in round r.
In this round, after line 21, Lp is {d}. Let q be any other process ending round
r, by Lemma 1, in this round Lq is either {d} and q decides in round r, or {d,⊥}
and q ends the round r with v = d.

By Lemma 2 and an easy induction, in every round r′ ≥ r, every process
either decides d or ends the round with v = d. Hence, all processes which decide
in task 1, decide d. If a process decides in task 2, by an easy induction, this
decision is issued from a process which has decided in task 1. This proves the
agreement property. ut

Lemma 4. The algorithm ensures the validity property.

Proof. In the algorithm, all the processes send the values they have just received
and by an easy induction they never insert in the algorithm a value of their own.

ut

Lemma 5. The algorithm ensures the termination property.

Proof. If there is no correct process, termination is trivial. If any correct process
decides by task 2 or task 1 then clearly all correct processes decide.

Assume that no correct process decides, then we prove that all correct pro-
cesses participate to an unbounded number of rounds. For this, assume the
contrary and let r0 be the minimal round number in which at least one correct
process is blocked forever. Let p be such a process in round r0:

– p cannot be blocked in Line 14: if the current coordinator pC is not crash-
correct or is not connected, there is a time after which it cannot be leader and
then p cannot be blocked. Note that the ONE-message of the coordinator
could be lost due to a send omission, but we assume that pC sends infinitely
many messages (e.g., by using a repeated send operation of that message).
Otherwise it would not be a connected process. If the current coordinator
is connected, by an easy induction it receives COORD message from one
correct process then p will eventually receive a ONE message (directly or
after one relay) from the coordinator.

– p cannot be blocked in Line 20: by an easy induction all correct processes
will reach round r and send a TWO message for this round. As there is a
majority of correct processes, p will receive a majority of TWO messages.

12

By the property of the eventual leader election, there is a time τ after which
all correct processes have the same leader pl and this leader is connected and
all out-connected processes have pl or ⊥ as leader. There is a time τ ′ such that
after time τ ′ no correct process receives any messages from processes that are
not out-connected. Let time τ0 be max(τ, τ ′). Consider R the set of rounds in
which correct processes are at time τ0. Let r0 be the first round number such
that pl is the coordinator for r0 and r0 is greater than all elements of R. If they
do not decide before all correct processes will be in round r0 at some time. All
out-connected processes in round r0 wait until receiving ONE message from pl

for round r0 because either they do not suspect pl or Leader = ⊥. As pl is
correct it sends ONE message for this round and all out-connected processes
in round r0 adopt for estFromC the value sent by pl. As there is at least a
majority of correct processes all out-connected processes in round r0 receives
TWO messages for round r0 from at least a majority of processes. Moreover, in
round r0 no messages from processes that are not out-connected are received,
then all the TWO messages for round r0 received by out-connected processes
in round r0 contain the same value proposed by pl and L set is reduced to one
element which is different from ⊥ then all correct processes decide. ut

This concludes the proof of the proposition.

Remark: It is possible to weaken the assumption that we have a piggyback-
ing mechanism ensuring that every processes receiving an infinity of messages
receives all messages.

For this, every process piggybacks in all its messages only its last COORD,
ONE, TWO and DECIDE messages. Then a process waiting in Line 14 for a
(ONE, ∗, r) message stops waiting and go to the next instruction (Line 15) if it
receives or has already received at least one (ONE, ∗, k) message with k > r.

5 Implementing Failure Detectors

In this section we give algorithms to implement eventual leader election in the
case of send and send/receive omissions. All these algorithms make some addi-
tional assumptions [2, 6, 17], that are needed if we want to implement consensus
deterministically [11]. We also assume that all processes are able to measure
time.3 Note that the weak forms of synchrony used in this section can be jus-
tified for a smart card setting in practice: Smart cards have a possibility to
measure the passing of time by counting the number of invokations at their in-
terface. Furthermore, it is reasonable to assume that there exists at least one
honest party to which communication is at least eventually timely.

3 In fact they can measure time with a very low accuracy: it is sufficient that (1) the
time interval measure is not decreasing, (2) for each finite time interval I there is an
integer n such that the measure for I is always less than n, and (3) if the measure
of interval time I is less than n then I is a finite time interval.

13

5.1 Partially Synchronous Models and Eventual Leader Election

In the omission models, messages from p to q are not received by q only due
to send omissions from p or receive omission from q. Hence all communication
links are assumed to be reliable. There is no duplication of messages and every
received message has been sent before.

Concerning timeliness, a communication link (p, q) is eventually timely if
there is a ∆ and time τ0 after which every message sent at time τ by p to q is
received by time τ +∆. Following previous work [1, 3], we define eventual sources
and bisources:

Definition 2. Process p is an eventual source if and only if (1) p is a correct
process and (2) for all correct processes q, communication link (p, q) is eventually
timely. Process p is an eventual bisource if and only if (1) p is a source and (2)
for all correct processes q, communication link (q, p) is eventually timely.

Note that if we have at least one eventual bisource in the system, the system
is eventually rather synchronous: If all messages are broadcast and relayed one
time, as eventually all links from correct processes to the eventual bisource and
all the links from this eventual bisource to every correct process are eventually
timely, there is a time after which all messages sent by correct processes are
received in a timely way by all correct processes. Nevertheless, note that in the
partially synchronous model of Dwork, Lynch and Stockmeyer [9], it is assumed
that eventually all links between processes are timely. This assumption is strictly
stronger than the existence of an eventual bisource in the system. Having an
eventual bisource does not exclude that the communication delay between two
processes is unbounded if one of these processes is faulty but crash-correct. For
example, the communication delays from (faulty but crash-correct process) p to
(correct process) q are unbounded, if p makes infinitely often send omissions to
all processes but q, the communication from p to q (or every other processes to
which q could relay messages from p) is not timely.

5.2 Eventual Leader Election

In this section, when we consider send-omission models we assume that there is at
least one eventual source and when we consider send/receive or receive-omission
models, we assume that there is at least one eventual bisource.

In order to choose a leader, in the presented here algorithms every process
monitors the timeliness of the communication links. For this each process sends
“ping” messages regularly and verifies that the messages arrive within a bounded
delay. If this is not the case, the origin of the message is suspected to be faulty.

Note that in the following algorithms there is no need to have a piggybacking
mechanism ensuring that if p receives an infinity of message from q it receives
all messages of q. Intuitively this follows from the fact that all correct processes
send an infinity of messages to all other processes and that only the last received
message is needed by the algorithms.

14

Eventual Leader Election in the Send Omission Model. The algorithm in
Figure 5 implements Ω for the case of send omission faults under the assumption
that there is one eventual source.

In the algorithm, Timer[q] is a special variable that is decremented at each
clock tick. When Timer[q] achieves a value equal to zero, we say that Timer[q]
expires. The principles of the algorithm are rather simple. Each process main-
tains a variable δ that is the assumed communication delay. This variable is
incremented each time a communication of a process exceeds the assumed com-
munication delay. Each process sends periodically (every η clock ticks) a message
to all other processes and maintains a vector V counting the number of times
each process p exceeds the assumed communication delay δ. This vector is piggy-
backed in each message and each process updates its own vector V accordingly
to the received vector (by taking the maximum of the two vectors). In this way,
each vector V will evaluate the number of times a process exceeds the assumed
communication delay. The leader will be the process having the minimal value
in V (in case there is more than one such process, the process with the smallest
identity is chosen).

Intuitively, if a process p makes an infinite number of send omissions to some
out-connected process, then eventually, the V [p] of every out-connected process
will be unbounded. However, if V [p] is bounded by b for some out-connected
process, then it will be bounded by b for every out-connected process. Then
eventually all the V [p] of out-connected processes will be equal. Assuming that
V [p] is bounded for at least one process, choosing as leader the minimal p with
the smallest value in vector V , ensures then that every out-connected process
eventually chooses p forever.

Then if s is an eventual source, it is straightforward to verify that V [p] is
bounded for every crash-correct process ensuring that every crash-correct process
eventually chooses forever the same leader.

Note that this leader is not necessarily a correct process: if p makes infinitely
often send omissions to some process q that is not out-connected, it is possible
that p is chosen as leader by all correct processes. In this case, the leader for q
could be different from the one for p. However, if there is at least one eventual
source in the system, this algorithm implements failure detector Ω:

Proposition 2. In the algorithm of Figure 5, if there is at least one eventual
source in the system then there is a crash-correct process l and a time after
which every out-connected process gets process l as leader. Moreover, all correct
processes receive infinitely often messages from l proving that l is connected.

By an easy induction we get:

Lemma 6. If p is out-connected and q is crash-correct, then for all τ there exists
τ ′ ≥ τ such that V τ

p ≤ V τ ′

q .

Consider limτ→∞ V τ
p [q], as V τ

p [q] is a non decreasing sequence of integers,
either limτ→∞ V τ

p [q] = k for some integer k or limτ→∞ V τ
p [q] = ∞. In the first

15

Initialization:
1 δ := 1
2 for all q : V [q] := 0
3 for all q : Timer[q] := δ

Task 1:
4 each η clock ticks
5 send V to all

Task 2:
6 on receive X from q
7 for all r : V [r] := max{V [r], X[r]}
8 set Timer[q] to δ

Task 3:
9 on Timer[q] expired
10 V [q] := V [q] + 1
11 δ := δ + 1
12 set Timer[q] to δ

Task 4:
13 forever do
14 Leader := min r such that V [r] := min{V [q]|q ∈ Π}

Fig. 5. Implementation of Ω in a system with at least one eventual source and a
majority of correct processes in the send-omission model.

case we say that V [q] converges to k for process p, and in the second case that
V [q] does not converge for process p.

If p is crash-faulty or is not out-connected, for every correct process q,
Timerq[p] will expire infinitely often and then Vq[p] will be incremented infinitely
often:

Lemma 7. If p is crash-faulty or is not out-connected then for all crash-correct
q, limτ→∞ V τ

q [p] = ∞.

Lemma 8. If V [p] converges to k for some integer k and for some out-connected
process q, then V [p] converges to k for all out-connected processes r.

Let q out-connected such that limτ→∞ V τ
q [p] = k and r be a crash-correct

out-connected process. By Lemma 6 it is impossible that limτ→∞ V τ
r [p] = ∞.

Then V [p] converges to some k′ for process r and then k ≤ k′. Conversely
exchanging r and q we get in the same way k′ ≤ k, proving the lemma.

Now consider an eventual source s, by definition there is a time τ0 after which
all messages sent by s arrive by some ∆, as each time Timerq[s] expires, δq is
incremented, there is a time τ1 > τ0 after which δq ≥ ∆ or Timerq[s] never
expires. Proving that Vq[s] is bounded for all process q. By the previous Lemma,
we get:

16

Lemma 9. If s is an eventual source then V [s] converges to k for some integer
k and for all out-connected processes.

Hence, for at least one process q, limτ→∞ V τ
p [q] = k for all process p. By

Lemma 7 and Lemma 8, let M be the max of all k such V [r] converges to k
for some r and p, there is a time τ0 after which for all out-connected p we have
Vp[r] = k if V [r] converges to k and Vp[r] > M if V [r] does not converge. Then
all out-connected processes get the same leader forever. By Lemma 7, this leader
is out-connected.

Eventual Leader Election for Send/Receive Omission Models. For the
algorithm of Figure 6, we assume that at least a majority of processes are correct
and that there is at least one eventual bisource. The principles of this algorithm
are similar to the previous one: each process approximates in δ a bound on
the communication delay. The main difference here is that processes maintain
an array M to count the number of times messages from p to q exceeded the
assumed bound. Moreover in order to ensure that the leader is in-connected it
penalizes itself if it sees that it does not receive messages in a timely way from
a majority of processes.

As processes may make receive omissions, the value of M [p, q] does not nec-
essarily mean that q has made M [p, q] send omissions, and so the choice of the
leader is more intricate. For this, for each process q, we consider all the sets
containing a majority of processes and for each such set the maximum value of
M [p, q], then the estimate for q is the minimum of these values.

Each process maintains two variables leader and Leader, the first one is used
to find Leader, the output of Ω. In fact, eventually all correct processes have
the same process id in leader, but some processes that are not in-connected may
have a different process id in leader. A process that is its own leader considers
itself as Leader if it communicates in a timely way with a majority of processes,
moreover a process chooses p as Leader if (1) it communicates in a timely way
with p (2) leader is p and (3) p considers itself as Leader and if there is no such
process Leader is ⊥. By this way all out-connected processes eventually output
the same leader l or ⊥ and all correct processes eventually output l.

If there is at least one bisource in the system, this algorithm implements Ω:

Proposition 3. In the Algorithm of Figure 6, if there is at least one eventual
bisource there is a connected process l and a time after which every connected
process gets l as leader. Moreover if p is crash correct and not in-connected then
eventually p has ⊥ or l as leader.

In the following we say that p consider q as leader if the value of variable leader
of p is q, and we say that p consider q as Leader if the value of variable Leader
of p is q.

As not connected out-connected processes are not in-connected, this propo-
sition proves that Algorithm of Figure 6 implements Ω.

As infinitely many messages from correct processes achieve in-connected pro-
cesses and as infinitely many messages from out-connected processes achieve at

17

Process p:
Initialization:
1 δ := 1
2 IamLeader := False
3 for all q : Timer[q] := δ
4 for all q, r : M [q, r] := 0
5 GoodInputs := ∅

Task 1:
6 each η clock ticks
7 if (|GoodInput| ≤ n/2) then
8 for all q : M [q, p] := M [q, p] + 1
9 IamLeader := False
10 else if leader = p then IamLeader := True
11 send (M, IamLeader) to all

Task 2:
12 on receive A, b from q
13 for all x, y : M [x, y] := max{M [x, y], A[x, y]}
14 if leader = q then
15 if b then Leader = q
16 else Leader = ⊥
17 add q to GoodInputs
18 set Timer[q] to δ

Task 3:
19 on Timer[q] expired
20 remove q from GoodInputs
21 if q = leader then Leader = ⊥
22 M [p, q] := M [p, q] + 1
23 δ := δ + 1
24 set Timer[q] to δ

Task 4:
25 forever do
26 for all r do
27 V [r] := min{max{M [q, r]|q ∈ L} such that |L| = bn

2
c + 1}

28 leader := min r such that V [r] := min{V [q]|q ∈ Π}

Fig. 6. Implementation of Ω in a system with at least one eventual bisource and a
majority of correct processes.

least one correct process, eventually information from out-connected processes
reaches all in-connected and crash-correct processes:

Lemma 10. If p is out-connected and q is in-connected, then for all τ , there is
a time τ ′ such that Mτ

p ≤ Mτ ′

q .

18

If p is not in-connected and crash-correct, there is a time τ after which p does
not receive any message from any correct process, as there is a majority of correct
processes after time τ +η strictly less than n/2 processes belong to GoodInputsp,
and at each η, p increments for all q M [q, p] and then limτ→∞Mp[q, p] = ∞ for
all q. Then by Lemma 10:

Lemma 11. If p is crash-correct and not in-connected then for all in-connected
processes q and for all r limτ→∞Mτ

q [r, p] = ∞.

If p is crash-faulty or not out-connected, there is a time after which no mes-
sages from p are received by correct processes and then for every correct process
q T imer[p] expires infinitely often, and Mq[q, p] is incremented infinitely often
and limτ→∞Mτ

q [q, p] = ∞. By Lemma 10:

Lemma 12. If p is crash-faulty or not out-connected then for all in-connected
q: limτ→∞Mτ

q [q, p] = ∞.

As at least a majority of processes is correct, any subset of more than n/2
processes contains at least one correct process, then if p is crash-faulty or not
out-connected or not in-connected by the previous lemmas, max{Mτ

q [r, p]|r ∈
L s.t. |L| = bn

2 c+ 1} is unbounded for every in-connected process q:

Lemma 13. If p is crash-faulty or not out-connected or not in-connected then
limτ→∞ V τ

q [p] = ∞ for every in-connected process q.

By lemma 10:

Lemma 14. If limτ→∞ V τ
q [p] = k for some out-connected q, then limτ→∞ V τ

r [p] =
k for all in-connected process r.

Now let s be an eventual bisource, then there a ∆ and a time τ after which,
(1) every message sent by a correct process to s and (2) every message sent by
s to any correct process p is received within ∆. Then as δs is incremented each
time a timer expires, there is a time τs > τ after which every correct process
are in GoodInputss, as there is a majority of correct processes, after time τs

|GoodInputss| > n/2 and s will not increment Ms[p, s] for any p. In the same
way, there is a time τ ′ > τs after which no messages from s will exceed δp for
any correct process p and then Mp[p, s] will not increase. Then:

Lemma 15. If s is an eventual bisource then for all in-connected process p,
limτ→∞ V τ

p [s] < ∞.

Hence, consider the set S of processes q such that for all in-connected pro-
cesses p limτ→∞ V τ

p [q] < ∞. From Lemma 13, S contains only connected pro-
cesses. By the previous lemma, if there is at least one bisource this set is not
empty. By Lemma 14, for every q ∈ S all the limτ→∞ V τ

p [q] for in-connected p
are equal to, say kq. Let q0 be the process belonging to S with minimal identity
such that kq is minimal. It is easy to verify that eventually all in-connected pro-
cesses will chose q0 as leader. As q0 is itself connected all in-connected processes
choose q as Leader.

19

Consider any process p that is not in-connected, there is a time after which
|GoodInputsp| ≤ n/2:

– If p considers itself as leader its Leader is ⊥.
– If p considers some other process q as leader then q considers itself as Leader

and in this case |GoodInputsq| > n/2 and q is in-connected and then q is q0,
or q does not consider itself as Leader and p has ⊥ as Leader.

This concludes the proof.

6 Conclusion

In this paper we studied consensus in models where processes can crash and ex-
perience message omissions. This model was motivated from the area of security
problems where omission models can be used to model security problems with
smart cards. In this paper we were mainly interested in proving the feasibility of
solving consensus in such models, i.e., finding solutions, we were not interested
in their efficiency. Hence, most of the algorithms presented here can probably
be improved to ensure better performance. For example, in the case of send-
omissions and implementation of Ω by algorithm of Figure 5, this algorithm
could be improved: In task 0, there is no need to relay the messages ONE be-
cause with send-omissions the eventual chosen leader is not only in-connected
but already receives infinitely many messages from correct processes.

One interesting open problem is to define the weakest failure detector to solve
consensus with omission models, i.e., asking the rather fundamental question
on what failure detector is necessary. In particular it is not proved that really
the existence of an eventual bisource is needed for receive (and send/receive)
omissions models. This would also give a lower bound on the implementability
of deterministic fair exchange.

The Ω implementation in the send omission model assumes only that there is
at least one eventual source in the system, whereas for the receive or send-receive
omission model we assume here that there is at least one eventual bisource. We
conjecture that in the receive and send-receive omission models an eventual
source is not enough.

Another line of future work is to make our “paper and pencil mathematics
style” proofs more rigorous and verify them using machine-assisted tools. Previ-
ous and ongoing work in the area of fault-tolerant systems is very encouraging
[16, 18].

Acknowledgments

Thanks to Mahir Kilic for pointing out a prior weakness in the proof of Lemma
5.

20

References

1. M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Stable leader elec-
tion (extended abstract). In Proceedings of the 15th International Symposium on
Distributed Computing, LNCS 2180, pages 108–122. Springer-Verlag, 2001.

2. M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Communication-
efficient leader election and consensus with limited link synchrony. In PODC:
23th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
pages 328–337, St. Johns, Newfoundland, Canada, 2004.

3. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. On implementing
Omega with weak reliability and synchrony assumptions. In 22th ACM Symposium
on Principles of Distributed Computing, pages 306–314, 2003.

4. G. Avoine, F. C. Gärtner, R. Guerraoui, and M. Vukolic. Gracefully degrading fair
exchange with security modules. In In Proceedings of the 5th European Dependable
Computing Conference(EDCC), pages 55–71, Apr. 2005.

5. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, July 1996.

6. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, Mar. 1996.

7. D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omission
failure environments. Technical Report TR96-1608, Cornell University, Computer
Science Department, Sept. 1996.

8. D. Dolev, R. Friedmann, I. Keidar, and D. Malkhi. Failure detectors in omission
failure environments (brief announcement). In Proceedings of the 16th Annual
ACM Symposium on Principles of Distributed Computing (PODC97), 1997.

9. C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, Apr. 1988.

10. J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith,
and S. Weingart. Building the IBM 4758 secure coprocessor. IEEE Computer,
34(10):57–66, Oct. 2001.

11. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

12. F. C. Freiling, M. Herlihy, and L. D. Penso. Optimal randomized fair exchange with
secret shared coins. In Proceedings of 9th International Conference on Principles
of Distributed Systems (OPODIS), Dec. 2005.

13. S. B. Guthery. Java Card: Internet computing on a smart card. IEEE Internet
Computing, 1(1):57–59, 1997.

14. V. Hadzilacos. Issues of Fault Tolerance in Concurrent Computations. PhD thesis,
Harvard University, 1984. also published as Technical Report TR11-84.

15. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

16. Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing and
scheduling. ACM Transactions on Programming Languages and Systems, 21(1):46–
89, 1999.

17. A. Mostéfaoui, E. Mourgaya, and M. Raynal. Asynchronous implementation of
failure detectors. In Dependable Systems and Networks (DSN), pages 351–360.
IEEE Computer Society, 2003.

18. U. Nestmann and R. Fuzzati. Unreliable failure detectors via operational semantics.
In Advances in Computing Science - ASIAN 2003 Programming Languages and
Distributed Computation, 8th Asian Computing Science Conference, volume 2896

21

of Lecture Notes in Computer Science, pages 54–71, Mumbai, India, Dec. 2003.
Springer-Verlag.

19. P. R. Parvédy and M. Raynal. Uniform agreement despite process omission fail-
ures. In 17th International Parallel and Distributed Processing Symposium (IPDPS
2003). IEEE Computer Society, Apr. 2003. Appears also as IRISA Technical Re-
port Number PI-1490, November 2002.

20. K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering, 12(3):477–482,
Mar. 1986.

21. Trusted Computing Group. Trusted computing group homepage. Internet: https:
//www.trustedcomputinggroup.org/, 2003.

