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ABSTRACT

The complexity of modern industrial processes makes high dependability an essential
demand for reducing production loss, avoiding equipment damage, and increasing
human safety. A more dependable system is a system that has the ability to: 1) detect
faults as fast as possible; 2) diagnose them accurately; 3) recover the system to the
nominal performance as much as possible. Therefore, a robust Fault Detection and
Isolation (FDI) and a Fault Tolerant Control (FTC) system design have attained
increased attention during the last decades. This thesis focuses on the design of a robust
model-based FDI system and a performance recovery controller based on a new
performance index called Dynamic Safety Margin (DSM).

The DSM index is used to measure the distance between a predefined safety
boundary in the state space and the system state trajectory as it evolves. The DSM
concept, its computation methods, and its relationship to the state constraints are
addressed. The DSM can be used in different control system applications; some of them
are highlighted in this work.

Controller design based on DSM is especially useful for safety-critical systems to
maintain a predefined margin of safety during the transient and in the presence of large
disturbances. As a result, the application of DSM to controller design and adaptation is
discussed in particular for model predictive control (MPC) and PID controller.

Moreover, an FDI scheme based on the analysis of the DSM is proposed. Since it is
difficult to isolate different types of faults using a single model, a multi-model approach
is employed in this FDI scheme. The proposed FDI scheme is not restricted to a special
type of fault.

In some faulty situations, recovering the system performance to the nominal one
cannot be fulfilled. As a result, reducing the output performance is necessary in order to
increase the system availability. A framework of FTC system is proposed that combines
the proposed FDI and the controllers design based on DSM, in particular MPC, with
accepted degraded performance in order to generate a reliable FTC system.

The DSM concept and its applications are illustrated using simulation examples.
Finally, these applications are implemented in real-time for an experimental two-tank

system. The results demonstrate the fruitfulness of the introduced approaches.






ZUSAMMENFASSUNG

Die Komplexitit moderner Industrieanlagen macht hohe Verlésslichkeit zu einer
notwendigen Anforderung um Produktausfall, Beschddigung der Anlage und Sicherheit
zu gewihrleisten. Ein verldssliches System kann: 1) Fehler so schnell wie moglich
detektieren; 2) Die Ursache des Fehlers genau diagnostizieren; 3) Die Systemleistung so
nah wie moglich am Nominalverhalten wiederherstellen. Deswegen wuchs das Interesse
an robuster Fehlerdetektion und Isolierung (Fault Detection and Isolation FDI) und
fehlertoleranter Regelung (Fault Tolerant Control FTC) in den letzten Jahren erheblich.
In dieser Dissertation wird, basierend auf einem neuen Giitekriterium der ,,Dynamic
Safety Margin“ (DSM), der Entwurf eines robusten modellbasierten FDI-Systems und
eines Reglers zur Systemwiederherstellung entwickelt.

Das DSM-Giitekriterium wird benutzt um die Entfernung zwischen dem Rand
vordefinierten Sicherheitsgebietes im Zustandsraum und der sich entwickelnden
Systemtrajektorie zu bewerten. Es werden das DMS-Konzept, seine Berechnung und
die Beziehung zu den Zustandsbeschrinkungen behandelt. DSM kann fiir verschiedene
regelungstechnische Anwendungen eingesetzt werden. Einige dieser Anwendungen
werden in dieser Arbeit vorgestellt.

Ein Reglerentwurf mit Hilfe von DSM ist speziell niitzlich fiir sicherheitskritische
Systeme um einen vordefinierten Sicherheitsabstand sowohl wihrend des
Transientenverhaltens als auch wihrend grofer Stérungen einzuhalten. Aus diesem
Grund wird die Anwendung des DSM bei Reglerentwurf und Regleranpassung speziell
fiir modellbasierte pradiktive Regelung und PID-Regler betrachtet.

Zusitzlich wird ein FDI-Schema anhand der Analyse des DSMs vorgeschlagen. Da
es schwierig ist, verschiedene Fehler unter Verwendung eines einzelnen Modells zu
isolieren, wird ein Multi-Modell Ansatz in diesem Schema eingesetzt. Die Anwendung
des DSMs um Fehler zu entdecken und zu isolieren verringert die Anzahl der
Diagnosevariablen, die der gemessene Zustand oder Ausgangsvektoren der
anderen Methoden sind. Dazu ist das vorgeschlagene FDI-Schema nicht auf spezielle
Fehlertypen beschréinkt.

In einigen fehlerverursachten Situationen kann es unmoglich werden, die
Systemleistung vollstindig wiederherzustellen. Deswegen muss die Ausgangsleistung

verringert werden um die Verfligbarkeit des Systems zu steigern. Die beiden auf dem
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DSM basierenden Verfahren zur FDI und FTC, speziell die fiir den MPC, werden in
einem Framework kombiniert um ein zuverldssiges FTC-System mit einer akzeptablen
Leistungsminderung zu erhalten.

Das DSM-Konzept und seine Anwendungen werden anhand von
Simulationsbeispielen erklart. SchlieBlich werden diese Anwendungen in Echtzeit auf
einer Zwei-Tank-Laboranlage implementiert. Die Ergebnisse zeigen die

Leitungstahigkeit der eingefiihrten Ansétze auf.
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NOMENCLATURE

Some of the terminology used in this thesis is given below. Most of these

terminologies were made by the safe process technical committee of IFAC.

Active fault tolerant

control systems

Analytical

redundancy

Availability

Dependability

Dependable system

Disturbance

Error

Failure

Failure Modes

Fault

Fault Detection

Control systems where faults are explicitly detected and

accommodated through changing of the control laws

Use of more than one, not necessary identical, way to
determine a variable, where one way uses a mathematical

process model in analytical form

Probability that a system or equipment will operate

satisfactory and effectively at any point in time

Ability of the system to successfully and safely complete its

mission

A system that has a high reliability in terms of high
availability and where the consequences of a fault are limited
to the system it self, i.e. Local faults do not developed into

failure at plant level

An unknown and uncontrolled input acting on a system

A deviation between a measured or computed value of an

output variable and it’s true or theoretically correct one

A Permanent interruption of a systems ability to perform a

required function under a specified operating condition
The various ways in which failures occur

An unpermitted deviation of at least one characteristic
property or variable of the system from acceptable/normal/

standard condition

Determination of faults present in a system and time of

detection

XI



Fault Diagnosis

Fault Identification

Fault Isolation

Fault Tolerant System

Malfunction

Passive Fault

Tolerance

Quantitative Model

Reconfiguration

Reliability

Residual

Robustness

Safety

Symptom

Determination of kind, size, location, and time of detection of
a fault. Follows fault detection. Includes fault isolation and

1dentification

Determination of the size and time-variant behavior of a fault.

Usually, follows isolation

Determination of kind, location, and time of detection of a

fault. Follows fault detection. Follows fault detection

A system where a fault can be accommodated, so that a single
fault at subsystem level does not developed into a failure on a

system level

An intermittent irregularity in the fulfillment of a system’s

desired function

A fault tolerant system where faults are not explicitly detected
and accommodated, but the controller is designed to be

insensitive to a certain set of faults in the system

Uses of static and dynamic relations among system variables
and parameters in order to describe a system’s behavior in

quantitative mathematical terms

Ability of a system to modify its structure/parameters to

account for the detected fault in the system

Ability of a system to perform a recurred function under

stated conditions, within a given period of time
A fault indicator, based on a deviation between measurements

and model-equation-based computations

Ability of a system to maintain satisfactory performance in

the presence of parameter variations

Ability of a system not to cause danger to human operators,

equipment or the environment

A change of an observable quantity from normal behavior
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ABBREVIATION

AFTC
DSM
EA
EKF
ETA
FDE
FDI
FMEA
FTA
FTC
IMM
LMI
LP
LQR
LQT
MI
MIMO
MM
MMAE
MM-FDI
MPC
mp-QP
PCA
PFTC
QP
SISO
UIOo

Active Fault Tolerant Control
Dynamic Safety Margin
Eigenstructure Assignment
Extended Kalman Filter

Event Tree Analysis

Fault Detection and Estimators
Fault Detection and Isolation
Failure Mode Effect Analysis

Fault Tree Analysis

Fault Tolerant Control

Interacting Multiple-Model

Linear Matrix Inequalities

Linear Programming

Linear Quadratic Regulator

Linear Quadratic Tracking

Matrix Inequalities

Multi-Input Multi-Output

Multiple Model

Multiple Model Adaptive Estimator
Multiple Model- Fault Detection and Isolation
Model Predictive Control
multi-Parametric Quadratic Program
Principle Component Analysis
Passive Fault Tolerant Control
Quadratic Programming
Single-Input Single-Output
Unknown Input Observer
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CHAPTER 1

INTRODUCTION AND PROBLEM STATEMENT

1.1 Background and Motivation

Typical industrial processes are of large and complex nature, involving a huge number
of components. The complexity makes systems more vulnerable to faults. A fault
changes the behaviour of an industrial process such that the system does no longer
satisfy its purpose. It may arise due to component aging and wear, or human errors in
connection with installation, operation, and maintenance. It may also arise due to the
environmental conditions change that causes, for instance, a temperature increase,
which eventually stops a reaction or even destroys the reactor in chemical process. In
any case, a fault is the primary cause of changes in the system structure or parameters
that leads to a degraded system performance or even the loss of the system function.

In large systems, every component is designed to provide a certain function and the
overall system works satisfactorily only if all components provide the service they are
designed for. Therefore, a fault in a single component usually changes the performance
of the overall system.

A fault can be very costly in terms of production loss, equipment damage and human
safety. In order to maintain a high level of safety, performance and availability in
controlled processes it is important that the system errors, component faults and
abnormal system operation are detected promptly, and that the source and severity of
each malfunction is diagnosed so that the corrective action can be taken. The human
operator can correct some system “errors”, e.g., by closing down the part of the process
which has malfunctioned or by re-scheduling the feedback control or the set point
parameters. The complexity and fast response required in the system made the manual
supervision, to detect a fault, isolate its cause and accommodate the system to a new
condition, is hard. Therefore, it is necessary to move the more basic supervision to be
automated and become more autonomous.

As a consequence, attention has changed towards increased dependability, a

synonym for high degree of availability, reliability, and safety under changing operating



conditions. A more dependable system is the system that has the ability to tolerate faults
and prevents them to develop into failures at a subsystem or plant level. Furthermore, it
should be guaranteed that all essential faults are detected and all critical faults are
accommodated. Hence, modern technological systems rely on sophisticated control

functions to meet increased performance requirements.

1.1.1 Reliability and Dependability

The dependability of a system reflects the user's degree of trust in that system. It reflects
the extent of the user's confidence that it will operate as users expect and that it will not
'fail' in normal use. For critical systems, it is usually the case that the most important
system property is the dependability of the system [1]. Dependability is the ability of the
system to successfully and safely complete its mission. In particular, a dependable
system implies the ability of the system to:

e Deliver services when requested (Availability).

e Deliver services as specified (Reliability).

e Operate without catastrophic failure (Safety).

e Satisfy mission constraints on performance and time.

Reliability is one of the important properties of a dependable system. Reliability is

the probability of failure-free system operation over a specified time in a given
environment for a given purpose. Reliability studies evaluate frequency with which the

system is faulty, but they cannot say anything about the current fault status [2].

1.1.1.1 Reliability Achievement

The reliability of the system can be achieved by [1], [3]:

e Fault avoidance: Development techniques are used that either minimize
the possibility of errors or trap errors before they result in the
introduction of system faults.

e Fault detection and removal: Verification and validation techniques that
increase the probability of detecting and correcting errors before the
system goes into service are used.

e Fault tolerance: Run-time techniques that accommodate the diagnosed

faults and prevent them to develop into failure,



e Autonomous supervision and protection: Run-time techniques that

reconfigure the system in order to isolate faults.

1.1.2 Safety Critical Systems

Safety is a property of a system that reflects the system's ability to operate, normally or
abnormally, without danger of causing human injury or death and without damage to
the system's environment [1]. It describes the absence of danger. A safety system is a
part of the control equipment that protects a controlled system from permanent damage.
It enables a controlled shut-down, which brings the controlled system into a safe state [2].

A critical system is a system that failures can result in significant economic losses,
physical damage or threats to human life.

Critical systems can be classified into [1]:

o Safety-critical system: A system whose failure may result in injury, loss
of life or major environment damage. For example, a control system for
a chemical manufacturing plant and nuclear power plant.

e  Mission-critical system: A system whose failure may result in the failure
of some goal-directed activity. For example, a navigational system for a
spacecraft.

e Business-critical system: A system whose failure may result in the
failure of the business using that system. For example, customers
account system in a bank.

Safety and reliability are related but distinct. In general, reliability and availability are
necessary but not sufficient conditions for system safety.

Reliability is concerned with conformance to a given specification and delivery of
service. Whereas safety is concerned with ensuring that the system will not cause

damage, irrespective of whether or not it conforms to its specification.

1.1.2.1 Safety Achievement

The safety of system can be achieved by [1]:
e Hazard avoidance: The system is designed so that some classes of
hazard simply cannot arise.
e Hazard detection and removal: The system is designed so that hazards

are detected and removed before they result in an accident.



e Damage limitation: The system includes protection features, which
minimize the damage that may result from an accident.

Reliability and safety analysis can be performed by Fault Tree Analysis (FTA) [5],
Failure Mode Effect Analysis (FMEA) [6], Event Tree Analysis (ETA), Cause-
Consequence Analysis (CCA), Fault Hazard Analysis (FHA), etc. see for example [3],
and [4].

1.1.3 Down-time in the Process Industries

Down time in process industries causes significant economic losses. Moreover,
restarting the process takes a long time (hours or days), mainly in critical systems such
as petrochemical industries, power plants, etc. Therefore, the availability of the system
should be high. Contrarily, the downtime should be reduced. Availability is the
probability of a system to be operational and able to deliver the requested services when
needed. Contrary to reliability it also depends on the maintenance policies, which are

applied to the system components. Figure 1-1 explains the availability and down-time

[11, [5].

Failure
a@
w
4 . MDT: Mean down time
Repair MUT: Mean up time
MTBF: Mean time between Failure
L MUT MTBF Availability=MUT/MTBF
m ” I | | -
a - Lt ] »
U U U
P Down P Down P
> . -
Time
MDT

Figure 1-1: Availability and down-time

Here, it can be concluded that early fault detection, accurate fault diagnosis, and fault
tolerant capability enhance the overall system safety and availability besides reliability

of the monitored system, i.e. enhance the overall system dependability.



1.2 Model Based Fault Detection and Diagnosis

The complexity and sophistication of the new generation of engineered systems, along
with growing demands for their reliability, safety and low cost operation, is being met
by the use of more automated monitoring and Fault Detection and Isolation (FDI)
subsystems. The goal is to accurately isolate problems and restore the system to the
nominal operation by making control changes to bring system behavior back to desired
operating ranges or at least safe mode of operation. This defines the needs for fault
detection, isolation, and recovery.

A fault detection system compares expected behavior of the system with the actual
behavior. If the actual behavior deviates from the expected behavior, a symptom is
detected and the detection system generates an alarm. The diagnosis system is able to
determine the type, size and location of the fault, based on observed analytical
symptoms and heuristic symptoms, knowledge of faulty behaviors. This is called fault
isolation. Fault diagnosis methods broadly consist of statistical pattern recognition and
decision making, such as classification and fuzzy rule-based technique [7].

In general, fault detection methods can be grouped into: (a) model based, (b)
knowledge based, and (c) signal based. Further, model-based approaches are typically
grouped into quantitative and qualitative models. Quantitative models (differential
equations, state space methods, transfer functions, etc.) are used to generally utilize
results from the field of the control theory [7]. In qualitative models, the relation
between the variables to obtain the expected system behavior is expressed in terms of
qualitative functions centered around different units in the process such as causal
models and abstraction hierarchy [8], [9]. They are used, in particular, for large and
nonlinear systems. The analysis methods used in the qualitative model are FTA, FMEA,
ETA, structure analysis, etc. The formal approach uses qualitative reasoning and
qualitative modeling [7], [8].

Knowledge-based approaches are based on the use of artificial intelligence methods,
neural networks, fuzzy logic, and combination of these methods. These approaches
utilize deep understanding of process structure, process unit functions and qualitative
models of the process units under various faulty conditions. It is used when it is difficult
to obtain a model for the system in case of nonlinear and uncertain systems [10]-[12].
Recent developments in empirical modeling, such as the use of neural networks and

fuzzy, have broadened the scope of the quantitative modeling to include ‘data based



model’, in additional to the traditional models based on physical principle [13]-[15],
[11]. A class of model-free-based FDI approaches has also been developed. Various
algorithms have been implemented employing fuzzy logic [16], [17], [10], [11], and
artificial neural networks [18]-[20]. In many other techniques, different operating
conditions including normal and abnormal ones are treated as patterns. Neural networks
are then applied to analyze the online measurement data and map them to a known
pattern directly so that the current system condition is identified [18], [21], [13].

Signal processing methods, such as spectral analysis, the wavelet decomposition
[22], and Principle Component Analysis (PCA) [23], [24], which do not incorporate any
model, can be used for fault detection and diagnosis. Integration of fault detection
methods are used to detect system faults in some applications. A combination of self-
organized neural network (knowledge base) with wavelet analysis and statistical
analysis techniques is used in [25].

There is another classification of FDI in literature, which classifies the FDI methods
into only two main categories, model-based and signal-based approaches. Each of
which is grouped into quantitative and qualitative methods [9]. In signal-based methods,
quantitative methods use signal processing methods, such as spectral analysis, PCA, etc.
while qualitative methods use knowledge based method such as fuzzy and neural
classification, etc. The signal-based methods, whether quantitative or qualitative, do not
incorporate model. The fault detection method, which employs model based on artificial
intelligent (knowledge based), is classified under the qualitative model-based FDI
methods.

Any of the methods presented above has its own strength and field of application.
However, it is widely recognized that in many cases, the design of diagnosis systems for
complex plants calls for a wise combination of various techniques, see for example [26]
and [27]. The use of Finite State Automata (FSA) to describe a complex industrial plant
under diagnosis has been considered in [28]-[30], where the fault observer was derived
using the information provided by the sequence of events registered under working
conditions. The results of the method in [28] were in agreement with those provided by
a standard FMEA, but it has less effort for its developments than FMEA. Fault
diagnosis using stochastic FSA is introduced in [31]. A combination of model based

with signal processing in fault detection of a hybrid system was introduced in [32].



The block diagram of Figure 1-2 shows the classification of fault detection methods.
A comparison of various diagnostic methods based on the desirable characteristics is

explained in [9], [33], and [8].

Fault detection
methods

A 4 A 4 A 4

Model-based Knowledge-based Signal-based

| Quantitative | | Qualitative |

Figure 1-2: Classification of fault detection methods

1.2.1 Model-based Fault Detection Methods

In this section, a more detailed description of analytical model-based fault detection and
isolation is introduced. Increasing usage of explicit models in FDI has a large potential
due to the following advantages [34]:
e Higher FDI performance can be obtained, for example, more types of
faults can be detected and the detection time is shorter.
e FDI can be performed over a large operating range.
e FDI can be performed passively without disturbing the operation of the
process.
¢ Increased possibilities to perform isolation.
e Disturbances can be compensated, i.e. high diagnosis performance can
be obtained in spite of presence of disturbances.
e Reliance on hardware redundancy can be reduced, which means that the
cost and weight can be reduced.
The disadvantage of model-based FDI is, quite naturally, the need for a reliable
model and possibly a more complex design procedure.
The accuracy of the model is usually the major limiting factor of the performance of

a model based FDI system. Compared to model-based control, the quality of the model



is much more important in FDI. The reason is that the feedback, used in control, tends
to be forgiving with respect to model errors. Diagnosis should be compared to open-
loop control since no feedback is involved. All model errors propagate through the
diagnosis performance [34].

Model-based methods are normally performed in two steps: residual generation and
residual evaluation (decision-making). Residuals are generated by comparing the
expected behavior of the system with the measured behavior, where the expected
behavior is obtained from a model of the system. Figure 1-3 shows the basic structure of

model based fault detection and diagnosis.
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Figure 1-3: General scheme of process model-based fault detection and diagnosis [35]

The selection of model-based FDI method depends on the type of faults and available
information of the model. A fault is defined as an unpermitted deviation of at least one
characteristic property of a variable from acceptable behavior. Therefore, the fault is a
state that may lead to malfunction or failure of the system. The time dependency of
faults can be distinguished as abrupt fault (stepwise), incipient fault (drift-like) or
intermitted fault. With regard to the process models, the faults can be further classified
as additive or multiplicative faults. Additive faults appear, e.g., as offsets of sensors,

whereas multiplicative faults are parameter changes within a process [7], [13].



The residual generators of model-based FDI are classified into three main categories;
observer-based approaches, parity space approaches, and parameter estimation
approaches [7]-[9], [35], [36]. More details about residual generation methods are
described in Chapter 3. The principle of observer-based approaches is to estimate the
system variables (state or outputs) with Luenberger observer for the deterministic case
or a Kalman filter for the stochastic case, and use the estimate errors as residuals. The
observer based method can be applied if the process parameters are known. Fault
modeling is performed with additive faults at the input (additive actuator or process
faults) and at the output (sensor offset faults). The design of proper observer gain
design has suggested by various methods, such as Eigenstructure assignment [37]-[39],
unknown input observer [7], [40], [41], Kronecker canonical form [7], fault sensitive
filter [43], and frequency domain optimization approach [44]. Some recent
developments in the application of Kalman filter in FDI are found in [45], [46], and
[47]. A bank of observer or kalman filters with distinct properties, which is defined as a
class of multi-model FDI system, can be used in parallel to isolate faults [7], [48], [13].
Recently, a bank of Extended Kalman Filter (EKF) is used to detect and estimate the
faults based on the Multiple Model Adaptive Estimator (MMAE) is presented in [49]
and [50]. The number and nature of faults to be detected and isolated necessitate
different structures [51]-[53]. Methods of nonlinear observer design are addressed in
[54], and [55]. A recent approach to detect and isolate the fault by reconstructing the
fault value instead of generating the residuals using observer has been discussed in [56]
and the references therein.

In the parity space approaches, using the input-output model of the system, residuals
are computed as a difference of the measured outputs and estimated outputs and their
associated derivatives. The parity space approach has been developed in frequency
domain in [57] and in time domain in [58]. The residual then depends only on the
additive input faults and output faults. It is simpler to design and to implement than
output observer-based approaches and lead approximately to the same results [35]. The
primary residual signals could be reshaped using a transformation matrix to make the
residual insensitive to unknown disturbances and to increase fault identification ability;
this process is defined as a structure residual generation. A structure residuals
generation, based on parity approach in order to obtain good isolation patterns for the
residuals, is discussed in [10]. Fault detection in a hybrid system, using structure parity

residuals, is discussed in [59], [60]. A lower order parity vector means a simple online



realization but a poorer performance index, while a higher order vector brings a better
performance index but leads to higher computational load and a higher rate of
misdetection. Therefore, parity space fault detection based on stationary Wavelet
Transform (WT) is introduced in [61]. In that contribution, stationery WT is introduced
into the residual signal in order to ensure a good performance index of detection, a
satisfactory low misdetection rate, and a suitable response speed to faults with low order
parity vector and a simple online implementation form. A comparison between parity
space approach and a signal base PCA method is discussed in [62].

The concept of parameter estimation methods for FDI is that faults typically affect
the physical coefficient of the process. By continuously estimating the parameters of the
process model, residuals are computed as the parameters estimation error. To isolate
faults successfully, the mapping from the model coefficients to the process parameters
must exist and known. Different methods for parameter estimation in FDI have been
studied: least squares estimation, output error methods [63], [64], [65], [66], [67],
sliding mode estimation [68], neural network estimation [69] and extended Kalman
filters [70]. Moving horizon method for detecting and estimating parameter changes is
described in [71]. Parameter estimation methods usually need a process input excitation
and are especially suitable for the detection of the multiplicative faults. A fault detection
using parameter estimation employing fuzzy clustering to diagnosis the fault is
addressed in [64] and [65].

Several interesting approaches have been utilized to design and implement FDI
algorithms scattered in literature, such as, Linear Matrix Inequality (LMI) approach
[72], frequency domain approaches [73], H»/H ., approach [74], and geometric approach
for bilinear system [75].

A fault decision is taken, if the residual has changed sufficiently from the nominal
behavior. Several decision-making methods have been used, such as binary decision and

statistical decision.

1.2.2 Fault Diagnosis Methods

The task of fault diagnosis consists of the determination of the type of fault with as
many details as possible such as the fault size, location and time of detection. The
diagnostic procedure is based on the observed analytical and heuristic symptoms and

the heuristic knowledge of the process, as shown in Figure 1-3. The symptoms may be
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presented just as binary values [0,1] or as, e.g., fuzzy sets to consider gradual sizes [35].
The analytical symptoms in the model-based fault detection are the residuals. If the
relationship between the residuals and the faults are completely known due to the design
of residuals method, then the fault information can be extracted from the residuals
directly. For instance, unknown input observer [7] ,[40], fault sensitive filter [43], [50],
a bank of observer or kalman filters [7], [48], [50] and a bank of extended Kalman filter
to detect and estimate the faults [49], [50] in case of observer fault detection methods,
and structure residuals generation based on parity-space approach [10].

The relationship between the symptom and the faults may be unknown or partially
known. Therefore, classification and inference methods are used for fault diagnosis [7],

[35].

1.2.2.1 Classification Methods

Classification or pattern recognition methods can be used, if no further knowledge is
available for the relationships between features (residuals) and faults. The features are
determined experimentally for certain faults. The relation between features and faults is
therefore learned (or trained) experimentally and stored, forming an explicit knowledge
base. Faults can be concluded by comparing of the observed features with the nominal
feature.

The classification methods can be grouped as statistical or geometrical classification
[7], [35]. A further possibility is the use of neural networks because of their ability to
approximate non-linear relations and to determine flexible decision regions for faults in
continuous or discrete form [68], [18], [21]. By fuzzy clustering, the use of fuzzy

separation areas is possible [64], [65].

1.2.2.2  Inference Methods

Inference methods can be used if the basic relationships between faults and symptoms
are at least partially known. This prior knowledge can be represented in causal relations:
fault— events — symptoms. The establishment of these causalities follows the FTA, or
the ETA. To perform a diagnosis, this qualitative knowledge can now be expressed in
the form of rules: IF <condition> THEN <conclusion>. The condition part contains
facts in the form of symptoms as inputs, and the conclusion part includes events and
faults as a logical cause of the facts. If several symptoms indicate an event or fault, the

facts are associated by AND and OR connections. In this case, the symptoms and events
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are considered as binary variables, and the condition part of the rules can be calculated
by Boolean equations for parallel serial connection [35], [7]. Because of the continuous
natural of the faults and symptoms, this procedure has not proved to be successful. For
this reason, approximate reasoning and fuzzy logic are more appropriate for the
diagnosis of technical processes, see [35] and the references therein for more details.
The use of Transferable Belief Model (TBM) in fault diagnosis and its performance in

comparison to Boolean and fuzzy logic approaches are investigated in [76], and [77].

1.2.3 Robustness in Fault Detection System

Usually, the parameters of the system vary with time, and the characteristics of the
disturbances and noises are unknown so that they can not be modeled accurately. Since
an accurate mathematical model of a physical process is not always available, there is
often a mismatch between the actual process and its mathematical model, even if no
fault in the process occurs. This constitutes a source of false alarm, which can corrupt
the performance of the fault detection and diagnosis system. The effect of modeling
uncertainties, disturbances, and noise is therefore the most crucial point in the model-
based FDI concept, and the solution to these problems is the key for its practical
applicability [78].

To overcome these difficulties, FDI system has to be made robust to such modeling
errors and disturbances. In the context of automatic control, the term robustness is used
to describe the insensitivity or invariance of the performance of control systems with
respect to disturbances, model-plant mismatches or parameter variations. Fault
diagnosis schemes, on the other hand, must of course also be robust to the mentioned
disturbances, but, in contrast to automatic control systems, they must not be robust to
actual faults. On the contrary, while generating robustness to disturbances, the designer
must maintain or even enhance the sensitivity of fault diagnosis schemes to faults. The
robustness as well as the sensitivity properties must moreover be independent of the
particular fault and disturbance mode [7], [13].

An FDI system, which is designed to provide both sensitivity to faults and robustness
to modeling errors and disturbances, is called a robust FDI scheme [42]. During the last
decades, much FDI research has focused on robust fault diagnosis of uncertain systems.
Adaptive threshold can be used to increase the robustness to modeling uncertainties

[79]. Surveys of adaptive threshold technique are provided in [37]. One of the most
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successful robust FDI approaches is the use of disturbance decoupling principle. This
can be done by using unknown input observers [7], [40], [13]. Nevertheless, in some
cases such as unstructured uncertainties or structured uncertainties, which does not enter
the system as an additive disturbance, perfect decoupling is not possible [80]. An
adaptive observer technique for robust FDI with independent effects on the system
outputs is introduced in [81]. A game-theoretic approach for robust FDI system is
introduced in [82] and [83]. An integrated design approach of FDI in time-frequency
based on WT is introduced in [84]. A robust FDI relies on H,, filters is suggested in
[73], [85]. Recently, FDI for an imprecise model of a system is performed by
partitioning the uncertainty space of the imprecise model into smaller subspace models
[86]. When new measurements become available, inconsistent subspace models are
refuted resulting in a smaller uncertainty space. When all subspace models are refuted,
then a fault has been detected. Robust FDI for nonlinear system is discussed in different
works, see for example [87] and [88]. Robust FDI problem is defined in details in
Chapter 3.

1.3 Fault Tolerant Control System and Performance Recovery

The reliability of systems can be increased by insuring that faults will not occur,
however, this objective is unrealistic and often unattainable because faults may arise not
only due to component aging and wear, but also as human errors in connection with
installation and maintenance. In addition, there are some faults that arise due to
uncontrollable external effects and sources such as surges, accidences, etc. Therefore, it
is necessary to design control systems that are able to tolerate possible faults in systems
to improve reliability and availability. This type of control system is often known as
Fault Tolerant Control (FTC) systems, which can be classified into two categories:

Active Fault Tolerant Control (AFTC) and Passive Fault Tolerant Control (PFTC) [89].

1.3.1 Definition of Fault Tolerant Control System

An FTC system is a control system that can accommodate system component faults and
is able to maintain stability and acceptable degree of performance when not only the
system is fault-free, but also when there are component malfunctions. FTC system

prevents faults in a subsystem from developing into failure at the system level [89].
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An FTC system may be called upon to improve system reliability, maintainability,
and survivability [90], [91], [2]. The objectives of an FTC system may be different for
different applications. An FTC system is said to improve reliability if it allows normal
completion of tasks, even after component faults. FTC system could improve
maintainability by increasing the time between maintenance actions and allowing the
use of simpler repair procedures [89].

Although FTC is a recent research topic in control theory, the idea of controlling a
system that deviates from its nominal operating conditions has been investigated by
many researchers. The methods for dealing with this problem usually stem from linear
quadratic, adaptive, or robust control [92]. The problems to be considered in FTC are
quite particular; first, the number of possible faults and consequently action; second, the
correct isolation of the faulty components; finally, the accommodation of the system

after fault to recover the system to the nominal behavior.

1.3.2 Types of Fault Tolerant Control Systems

The design techniques for FTC system can be classified into two approaches: PFTC
system and AFTC system [93], [2]. A particular approach, to be employed, depends on
the ability to determine the faults that a system may undergo at the design phase, the
behavior of fault-induced changes, and the type of redundancy being utilized in the

system. Figure 1-4 shows classification of FTC system approaches.

1.3.2.1 Passive Fault Tolerant Control System

In this approach, a system may tolerate only a limited number of faults, which are
assumed to be known prior to the design of the controller. Once the controller is
designed, it can compensate for the anticipated faults without any access of on-line fault
information. PFTC system treats the faults as if they were sources of modeling
uncertainty [93].

PFTC system has a very limited fault tolerance capability. When running on-line, a
passive controller is robust only to the presumed faults. Therefore, it is quite risky to
rely on PFTC system alone [93]. When redundant hardware components are available,
methods of PFTC are also called reliable control methods [94]-[96]. In general, PFTC
system has the following characteristics [89]:

e Robust for anticipated faults.
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e Utilize hardware redundancy (multiple actuators and sensors, etc.).
e More conservative.

Adaptive controller seems to be the most natural approach to accommodate faults;
the faults effects appear as model parameter changes, and they are identified online, and
the control law is reconfigured automatically based on new parameters [97],[98].
Robust control methods are used to compensate the effect of the fault in FTC system by
assuming the faults as model uncertainties [99], [100].

Designing an output feedback controller as a fault tolerant compensator to stabilize
the system, not only during its nominal operating but also in the case of sensors or
actuators would fail, have been discussed in [101]. In which, it is concluded that, such
compensator always exists, provided that the system is detectable from each output and

stablizable from each input.

Fault Tolerant control systems

T

Passive (PFTC) Active (AFTC)

O

On-line On-line
Controller selection Controller redesign

Figure 1-4: Classification of fault tolerant control systems [89]

1.3.2.2  Active Fault Tolerant Control System

In most conventional control systems, controllers are designed for fault-free systems
without considering the possibility of fault occurrence. In other case, the system to be
controlled may have a limited physical redundancy and it is not possible to increase or
change the hardware configuration due to cost or physical restrictions. In these cases, an
AFTC system could be designed using the available resources, and employing both
physical and analytical system redundancy to accommodate unanticipated faults. Figure

1-5 shows a general schematic diagram of an AFTC system.
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An AFTC system compensates for the effects of faults either by selecting a pre-
computed control law, or by synthesizing a new control law on-line in real-time. Both
approaches need a FDI algorithm to identify the fault-induced changes and to
reconfigure the control law on-line [89].

An AFTC system involves significant amount of on-line fault detection, real-time
decision making, and controller reconfiguration. It accepts a graceful degradation in
overall system performance in the case of faults [2], [102]-[103]. Generally, AFTC
system has the following characteristics [89]:

e Employs analytical redundancy in addition to the available hardware
redundancy.

e Utilizes FDI algorithm and reconfigurable controller.

e Accepts degraded performance in the presence of a fault.

e Reduces conservationist.

AFTC system is a complex interdisciplinary field that covers a wide range of
research areas, such as stochastic systems, applied statistics, risk analysis, reliability,
signal processing, control and dynamic modeling [89].

Despite reducing hardware redundancy by using AFTC, the hardware redundancy is
mandatory in some of catastrophic failures, which can not be accommodated using only
analytical redundancy.

Controller base Faults
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§ Actual § Actual §
inputs output:
p| Actuators —p| Process L—| Sensors
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= P FDI
<
>
Reconfiguration
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Figure 1-5: Schematic diagram for AFTC system
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1.3.3 Control System Reconfiguration

In AFTC system, controller reconfiguration is necessary to compensate for the effects of
the failed components. Reconfiguration mechanisms can be classified as on-line
controller selection and on-line controller calculation methods [89]. In the first
approach, controllers associated with presumed fault conditions are computed a priori in
the design phase and selected on-line based on the real-time information from FDI
algorithm. In the second approach, controllers are synthesized on-line and in real-time
after the occurrence of faults [104].

Control law re-scheduling, multiple models and interacting multiple models
approaches are examples of the on-line selection approach, [105]-[107], [108], [50].
This approach is highly dependent on prompt and correct operation of the FDI
algorithm. Any false, missed, or error in detection may lead to degraded performance or
even to a complete loss of stability of the closed-loop system. Therefore, methods have
been proposed to deal with FDI robustness and to design a stability guaranteed AFTC
system, see for example [109], [104], and [89].

The pseudo-Inverse method (PIM) is one of the on-line controller design methods.
The principle of PIM is to re-compute the controller gain matrix such that the
reconfigured system approximates the nominal system in some sense. A severe
drawback of this method is that the stability of the reconfigured system is not
guaranteed [110]. To overcome this stability problem, a modified PIM method was
proposed, in which the difference between the closed-loop matrices is minimized
subject to the stability constraints [111].

An Eigenstructure Assignment (EA) based algorithm was proposed in [112]. In this
approach, the post-fault eigenvectors are assigned in an optimal way such that
performance recovery of the original system is maximized. Extension to integrated FDI
and reconfiguration control design using EA algorithm has been developed in [108],
[109], and [113].

In [114] an FTC system is designed based on the on-line estimation of an eventual
fault and the addition of new control law to the nominal control law, in order to reduce
the fault effect once the fault is detected and isolated. The new control law is designed
where the closed loop system stability is achieved.

Another on-line reconfiguration method is the model-following approach. In this

approach, controller gains are calculated on-line either by enforcing system trajectories
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to follow the desired trajectories (explicit model following [115]), or by minimizing a
quadratic cost function of the actual and the modeled states (implicit model following
[116]). Model Predictive Control (MPC) has been employed in FTC [117]-[119], where
an adjustable objective function was optimized based on a simple linear model. Fault
tolerant control with re-configuring sliding-mode schemes is discussed in [120].

Feedback controller design for FTC based on Youla parameterization is suggested in
[121] and [122].

Control allocation, which manages the distribution of the control law requirements
among multiple actuators in some optimal manner in case of actuator fault, for
reconfiguration of the controller in particular for flight control application is addressed
using constrained linear and quadratic programming in [124], [123], and [50]

Stabilizing of AFTC systems with imperfect fault detection and diagnosis is recently
addressed in [104], [89], in which an algorithm that provides a necessary and sufficient
condition for exponential stabilization is derived.

AFTC system design schemes with explicit consideration of graceful performance
degradation using explicit model-following approach have been proposed in [102].
Recently, an Iterative Learning Observer (ILO) to estimate the state is used to
reconfigure the controller in order to compensate the effect of stuck actuator [125].

Feedback linearization is an established on-line reconfiguration technique applied to
non-linear system [126]-[127]. Here, an adaptive based on-line controller is modified
on-line by the output of parameter estimation algorithm. AFTC has been developed in
[128] based on adaptive tracking design that uses neural networks to approximate the
unknown fault function for a class of nonlinear system. Recently, an FTC is investigated
using an auto-tuning PID controller for nonlinear systems in [129], in which AFTC
scheme composing an auto-tuning PID controller based on an adaptive neural network
model is proposed. The model is trained on-line using the Extended Kalman Filter
(EKF) algorithm.

To overcome difficulties in existing on-line methods, and to integrate the FDI
scheme and on-line reconfiguration control law in a coherent manner without any pre-
assumption of the knowledge of the post-fault system, several integrate design
approaches have been proposed [108], [113]. An on-line reconfiguration method that
does not require the use of FDI algorithms is the hybrid adaptive linear quadratic
control proposed in [130]. Even though this design method does not need explicit fault

information, it has an on-line accommodation capability. Another on-line
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reconfiguration based on a model reference control with stabilized recursive least-
square algorithm for adaptation is introduced in [131], [91] without explicit FDI.
Recently, designing an FTC unit able to automatically offset the effect of faults,
without the need of an explicit FDI process and consequent explicit reconfiguration is
discussed in [132]. In [133], stable indirect and direct adaptive controllers are applied to
achieve fault tolerant engine control by using Takagi-Sugeno fuzzy systems to “learn”
the unknown dynamics caused by faults, and to accommodate faults by updating the

controller.

1.4 Problem Statement and Main Contribution

The problem of FDI has drawn increasing attention in a lot of work in the last decades.
The disturbance and model uncertainties are the main source of error in the performance
of FDI subsystem. For that reason, an FDI system must be insensitive to the model
uncertainty and system disturbances with respect to generated features (residuals) and
highly sensitive to faults, i.e. robust FDI system. Moreover, the controller should have
the capabilities, after fault occurrence, to recover performance close to the nominal
desired performance. In addition, it should have the ability to make the system well-
behaved in a stable monotonic way during a transient period between the fault
occurrence and the performance recovery, which is an important feature to increase

system dependability.

1.4.1 Problem Statement

The problem of FDI design and performance recovery can be defined as:

For a system model given in the form of
:{Ax(t) = g(0,x,u,f,d,v) wh
y(¢) = h(0,x,u,f,d,v)
where xeR" is the state vector of the system model, ueR” is the input vector, ye R’ is
the output vector, f € R’ is the unknown additive fault signal vector, d is the unknown
disturbance, v is the system noise, A is the time derivative operator in continuous
system and shift operator in discreet one, g: R"xR"xR'>R", h: R'xR"xR' >R, 0O

system parameters and O the set of system parameters in faulty and fault-free cases.
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It is required to first, develop a robust FDI method that can be used for early
detection and isolation of faults; second, design a fault-tolerant control system such that
the impact of the fault is minimized, and the system dependability (safety, reliability,

availability) is increased.

1.4.2 Main Contributions

A new performance index for the control system design, which is called “Dynamic Safety
Margin” (DSM), is introduced in [134]. This index measures how far the system state
trajectory is from a predefined safety boundary in the state space at any instance and
answers the following questions: Does the system operate in a safe mode all the time even
during the transient phase? If so, how far is the current state from a predefined safety
boundary? Hence, the DSM value can be taken as a measure for the quality of the controller
in this respect. As a result, the main contributions in this thesis concentrate on the DSM

concept and its applications.

1.4.2.1 DSM in Contrast to State Constraints

In fault-free situation, the system state remains inside a closed region during the time of
operation. This region is defined as a safe operation region. The instantaneous variation
of the system state with respect to the safe operation region boundary is indicated by
DSM. Therefore, the concept and the computation methods of DSM are discussed in
[134] and [136]. An important question might come in mind; what is the difference
between safe region boundary and individual state limits (constraints)? Operating the
system within state limits does not always mean that the system is fault-free. It is
necessary to distinguish between safety boundary, which is used to calculate DSM, and
individual state limits. Therefore, the relation between DSM and state constraints are

investigated in Chapter 2 and [136].

1.4.2.2 Relation to Dependability

The DSM index indicates the system mode of operation, whether it is safe or not. More-
over, its value explains how far the system state is away from the safe mode. Therefore, in
addition to using DSM as a quality measure to compare between different controllers per-
formance, it can be used as a measure of dependability. Since the dependability analysis
depends mainly on statistical models, it cannot reflect the system dynamics. On the

other side, the DSM reflects the system dynamics. This is one of the main advantages of
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using DSM as a dependability measure. Implementing DSM in different types of con-
troller design is also discussed in [134]. It is concluded that controller design based on
DSM permits to maintain a predefined margin of safety during transient and steady state
of safety-critical systems. Since the system failure occurs mostly during the transient
phase, designing a controller based on DSM to maintain a predefined margin of safety
during transient period is a formidable task. Moreover, it can help speeding up perform-

ance recovery in some faults, which increases the system dependability [134]-[135].

1.4.2.3  Applications of DSM in Fault-Detection and Performance Recovery

A robust FDI method, based on the analysis of DSM instead of traditional residuals, is
introduced in [135], [140], and [141]. One of advantages of dealing with DSM in FDI is
that DSM value can be considered as a reduction of data, i.e. measured state variables or
subset of them are transformed or projected to a single quantity (DSM).

Considering DSM in controller design is discussed in more details in [139]. In which,
two controllers, PID and MPC, design and adapting based on DSM is addressed. DSM
is taken as a performance index to adapt the PID controller parameters. Due to the
advantage of MPC to deal with system constraints (state and input), DSM is considered
as constraint in MPC design. The solution of MPC based on DSM is deduced.
Moreover, the feasibility problem of MPC based on DSM is addressed.

An FTC scheme based on DSM is proposed in [138] and [139], in order to recover
the system performance during the faulty period. The suggested FTC based on DSM is
suitable to be applied in either AFTC or PFTC, according to the available fault

information.

1.4.2.4 Practical Implementations and Experiments

The fruitfulness of DSM design and its applications in controller design, robust FDI,
and FTC are demonstrated through several real-time experiments in Chapter 5. The
experimental setup uses standard industrial components, which introduce more realism

and robustness into the experiments.

1.5 Outline of the Thesis

The summaries of the different chapters, given below, indicate the scope of the thesis.

The thesis consists of six chapters and the main contributions are in Chapter 2, 3, and 4.
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The chapters are devoted to a dynamic safety margin definition and application, robust
FDI system, and FTC. They are organized as follow:

Chapter 2 defines the DSM index, and explains the difference between state
constraints and DSM. DSM computation methods are discussed as well. Moreover, the
different applications of DSM especially in controller design and adaptation is
highlighted. Using DSM in first, switching between pre-designed controllers; second,
optimal control design as soft constraint; finally, adapting PID controller are tested in
illustrating examples, in order to maintain a predefined margin of safety during transient
period, steady state period, and in case of disturbance or fault.

Chapter 3 demonstrates the problem of robust FDI system. A robust FDI scheme
based on DSM is introduced. The advantage of using DSM in robust FDI, based on
multi-model fault isolation scheme, is also discussed. An illustration example is
introduced to show the applicability of the proposed FDI scheme.

Chapter 4 discusses the application of DSM in controller design and adaptation,
especially PID controller for SISO systems and MPC in case of MIMO systems. The
method of adapting PID controller parameters based on DSM is deduced and tested on
an illustration example. The solution of MPC based on DSM is discussed, and the
adapting algorithm in order to find a feasible is introduced as well. Moreover, a general
framework for FTC system based on DSM is introduced.

Chapter 5 illustrates the practical application of DSM in controller design (PID and
MPC), FDI, and FTC for an experimental setup. Different types of controller design
based on DSM are tested. Different types of faults such as actuator, sensor and internal
faults are tested to indicate the applicability of the proposed FDI scheme. The proposed
FTC scheme is tested for actuator fault considering AFTC and PFTC design. The
practical results demonstrate the usefulness of DSM and its application.

Chapter 6 concludes the work in this thesis, in addition to some suggestions for
possible future work as an extension of this work. It illustrates the reason and benefits
of using DSM in control system in particular, FDI and FTC system design in order to
enhance the overall system dependability. It is usual to find restriction conditions and
disadvantages for applying a new approach. For that reason, the restrictions of the
proposed approaches are discussed. Finally, open topics related to the analysis and

application of DSM are highlighted.
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CHAPTER 2

DYNAMIC SAFETY MARGIN DEFINITION AND
PRINCIPLES

2.1 Introduction

The main goal of control system design is to achieve a desired performance of the
controlled system, which can be specified e.g. according to the stability, rise and settling
times or a general norm of the controlled variable. The evaluation of the control system
depends mainly on a comparison between the desired performance and the actual
performance. The selection of a controller also depends on the available information
(quantitative or qualitative) about the controlled system. A quantitative controller is
based on the accurate model of the system (model-based), while the qualitative
controller depends on the information of the system behavior (knowledge-based) in case
that a system model is not available or it is difficult to obtain [142].

Physical constraints exist in many control problems in industry. These constraints
can be on inputs, due to actuator limitation, as well as on outputs and some intermediate
variables, and can be due to safety limitations, product quality requirements, and
efficiency consideration. For example, pressure in a chemical reactor must not be higher
than some limits; movements of a robot arm may have been restricted in a certain region
of space, and so on. Therefore, the system variables should satisfy the system
constraints in order to maintain safe operation.

In this chapter, a new performance index for the control system design is proposed,
which is called “Dynamic Safety Margin” (DSM) [134]. This index can also be
considered as an additional term in a more general cost functional. This index measures
the instantnous distance between the state trajectory and the boundry of a predefined
safe operation region in state space. The sign of this index is used to indicate wether the
sytem operates in the safe mode or not even if durng the transient phase. As a result, it
measures how far the current state is from the predefined safety boundary. Hence,
determining DSM can be taken as a measure for the quality of the controller in this

respect.
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Designing a controller based on DSM is important to maintain a predefined margin
of safety during transient and disturbance actions. Moreover, it can help speeding up
performance recovery in some cases of system faults. Here are some of DSM

applications that will be discussed in this chapter.

2.2 Dynamic Safety Margin

Briefly to explain the idea, let X be the state space in R" and consider that a subspace
®dcX, which defines the safe operation region for some crucial state variables xeR" in
the state subspace @ and m< n, can be specified by an inequality “@x) < 0” while
#x) >0 indicates unsafe operation (Figure 2-1)!, where ¢:R" —R. It will be further
assumed that the system is stable -in the sense of Lyapunov- with the safe region fully
contained in the stability region. Starting with the initial condition x,, the system
trajectory will evolve to the operating point x; traversing the state space with varying
distance to the safety boundary. DSM, in this case, is defined as the shortest distance,
At), between the system state of interest and a predefined boundary #x)=0 in this
subspace of the state variables. At the operating point dX¢)/d=0 and &.) reaches a
constant value, Jss, indicating the Stationary Safety Margin (SSM). Most industrial
designs are made to satisfy SSM of specified values. Figure 2-2 shows the idea of DSM

for a system described by two state variable x; and x,.

X>

Safety boundary

/ Unsafe operation region
#H.)>0

operation region

#H)<0

v

X1

Figure 2-1: DSM definition

! Figure 2-1 explains the idea of DSM for a system described by two state variable x; and x,. Safe
operation means that there is no fault or large disturbance.
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Most of the time the variables are dependent on one another and none of them
adequately defines the system safety by itself. Thus, it is necessary to distinguish
between safety boundary and individual state limits. Sometimes, some of the safety
boundaries are defined by the state limits. Figure 2-2 shows the difference between
variable limits and safety boundary. It is clear from the figure that all state variables
within thier amplitude limits, but some state vectors, for instance x,, do not satisfy

safety boundary constraints.

Safe operation region

K

Xo

X1 Safe limits of x;

Safe limits of x,

Figure 2-2: DSM and state limits

The boundary of the safe region is determined according to the available experience
about the process operation and safety limitation. The system should remain during time
of operation inside this region, which implies that the controller should make the
nominal system remains in this region despite the existence of disturbance and
uncertainties of the model used in the controller design. DSM is called dynamic,
because the magnitude of DSM varies with time as the system trajectory evolves in the
state space.

In general, the safe-operation region ®CX is defined by a set of inequalities
D ={g(x) <0 =1,....q}, @.1)
in addition, the subspaceV = {V|¢l (v)=0;i= 1,...,q}c O, veR", determines the
boundary state of ®. Therefore, DSM is given by

5(t)=s@t)-|v—x| (2.2)

min
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1 if xinside the safe operation region

where s(¢) = {

—1 if x outside the safe operation region
|| . ||min = shortest distance from x(¢) to ¢, ¢ is the number of defined inequalities and m is

the number of state variables relevant to safety.

2.2.1 DSM Computation

The boundary constraints of the safe region can be defined by a set of either piece-wise
linear or nonlinear functions. Therefore, the distance between the state vector and the

safety boundaries, in general, can be defined as the solution of the optimization problem

min | (x - )| (2.3)
subject to
ve {V|¢l.(v) =0;i= 1,...,q} (2.4)

where x is the current state, and (x-v) is the distance vector between x and v.

The solution of the optimization problem is the state vector v,. where
. 2
v, =arg mvln”(x - V)||2
Therefore, the minimum distance between x and safety boundaries ({#=0}) is given by

6 =[(x=v,), (2.5)

2.2.1.1 DSM computation for safety region defined by linear boundaries

In many cases, the safe operation region can be defined by a set of linear

inequalities {¢i = 0}. Furthermore, if the boundary function ¢, is nonlinear, it can be

subdivided into two or more linear constraints (piecewise linear approximation).

The distance between a linear safety boundary equation and a certain state vector x in
state space can be computed in different ways, for example linear algebra, vector
algebra, etc., besides the optimization method described before. Linear algebra is more
general and easier than an optimization method to obtain the solution. Therefore, the
solution using linear algebra is deduced in this section. The vector algebra solution and

the optimization method are proved in Appendix A as well, to insure the results.
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Let the number of state variables of interest be all state variables (m=n) in order to
generalize the algorithm. If the safe region is defined by ¢ linear inequalities in the

form of
g(x)=alv,—c; <0; i=12,...g (2.6)
then the boundary equations can be written in the form of

#lv,)=ajv,—c, =0 2.7)

where a;eR” is a constant vector and v; €V; ={vj] a;" . x; = ¢; }< R". Therefore, for any

state vector X, the following equation is valid

a}(vi —x):ci —a; X (2.8)
By taking the absolute value of both side of (2.8), it follows

‘a[T(v,- - x)( = ‘ci ~a, .x‘ (2.9)

According to Cauchy-Schwarz inequality theorem [143]

aT (v, ] < a5, ), 210

then

ol
||a l>

where H(Vz‘ _xmz is the distance between x and any state vector v; €V;. Therefore, the

(v, X)”z =

minimum distance, the distance between x and the projection of x on ¢(.), will be

RS W . £ .
;| = min(|(v; - X |
T
Hence, in general if x (¢) is the system state vector at time ¢ then
T .
L Ci—a; X(1) >0 1ff¢l_(x)<0
o0 Jad, {< 0 iff ¢.(x)>0 (2.12)

The result of (2.12) is the same result which is obtained in Appendix A.
The distance vector for all boundaries d(¢)=[d(?) , o%(?),..., 5C,(t)]T can be calculated

from
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d(t)=D,(c. - A x(t))

—d D (2.13)

where d(.)eRY, c.eR? ,d. € R!, D, € R and D;, € RT

1 L
0 0----- 0 - T
Jail, <l i
1 co ag
0 0----- . )
Dm = ”32”2 € = aAC =
1
Qeervnrvnnnns
Haquz - _ag_

d.=D;,c.,andD, =D;, A,

Definition 2.1: If @ is convex and the boundary constrains are linear, then the safe

region is a polytope [144], [145].

Theorem 2.1: If @ is a polytope, there are three possibilities of the component values of
d, 4, according to the current state position with respect to the safety boundaries:

1. All positive, i.e. x € @ . Then &.), DSM, is the minimum element in d(.) i.e.

O(t)=min d,;(t) (2.14)

1<i<q

2. Only one negative i.e. X ¢ ® and only one constraint of the safe boundary is
violated. Then, &.) is negative and can be calculated from (2.14), which is
equal to the component of d corresponding to the violated constraint.

3. Two or more are negative, i.e. more that one constraint is violated. In this case,
the minimum distance, from the state vector to the intersection of violated
constraints (vertex of polytope between the violated constraints), should be

compared with d, i.e.

o(t) = ?in{min(5y’5l’5j)}
o (2.15)
5_11. = min

‘Vli B XHz

where (/j)e{index of violated constraints}, & and ¢; are the distances to violated

constraints number / and j respectively, Jj is the distance to the intersection of the
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violated constraints / and j, vy € V;={x;l ¢i(x;)=0 v ¢(x;)=0 }is the intersection between

the two boundaries / and j (vertex).

Proof: Figure 2-3 describes the different possible situations of the state vector x with
respect to the convex safe region.

In Figure 2-3, ¢6,; and o,, are the minimum distances from the violated constraints
#:1(.) and ¢y(.) respectively.

Note that,

5a| > |§u1| and |5a| > |5u2| where ¢, is the actual minimum distance to the

safe region (DSM), which is the distance between the current state and the vertex

between ¢;(.) and @x(.) (vi2).

$1<0
$2<0

Figure 2-3: The relation between DSM and the minimum distance to the boundaries

For simplicity, (2.14) can also be used to calculate DSM if more than one constraint
is violated, which gives an approximate solution. In case of Figure 2-3, assume

that|s,,| >|0,4|, then the DSM value, calculated using (2.14), is |5,,| that is the closest

one to the actual value|s,| .

Example 2.1
The state space model of a separately exited DC motor (Figure 2-4) is given by

T s T
X:—_kt ix-"l 0 u
L L L
(2.16)
y=[t o]x
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wherex=[w I,]", u=[v, T,]", wis the motor speed (angular velocity), I, is the

armature current, fis the friction coefficient of the motor, J is the moment of inertia, &,
is the torque constant of the motor, L is the motor armature inductance, R is the motor
armature resistance, v; is the input voltage and 77 is uncontrollable input which represent
the load torque

At steady state the relation between armature current and motor speed will be
Ia :(OJf+T[)/kt

Taking into consideration that:
1. The safety variables are all the state variables (speed and current);
2. For simplicity, all motor parameters (R, L, f, k;, and J) are unity;
3. The maximum speed is 3 rad/s and armature current 3 A;

4. The load torque varies from 0 to 0.5 Nm.
In other words, @ (the safe operation region) is given by:

I, ~(fo+0.5)/k, <0
1, ~(fo+0.5)/k, <0
0<7,<4
0<w<4

(2.17)

This region is depicted in Figure 2-5. In this example, @ is defined in the first quadrant

L R
e’ m
+
w, T,
Vi

Figure 2-4: Separately excited DC motor

only for simplicity.
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A L (0fr0.5/k=0 1.~4

4 |

Current (A)

(@f)/k=0

v

Speed (rad/s)
Figure 2-5: Safe region of the DC motor in Example 2.1

The open loop response of this motor and DSM variations for a step input of 4v are
shown in Figure 2-6. Note that d1, d2, d3, and d4 are the minimum distances between
the motor trajectory and the safe region boundaries (b1, b2, b3, and b4). It is clear that

DSM at a time ¢ is the minimum value of {d1,...,d4}.

Current (A)

State variables

Speed
— ~ Current
[
9 10

(s) SB : Safety boundary
Tr : System trajectory

Figure 2-6: Open loop response of the DC motor

To maintain the system state within a predefined margin of safety, the value of DSM
must be considered in controller design. Implementing DSM in a controller can be

achieved by various methods.
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The safe region @ can be considered, as a controlled invariant set [144], [145] if

there is a controller, which assures that DSM is positive for the closed loop system.

Definition 2.2: The set ® <R"is said (robustly) controlled invariant for the system

Ax(1) = f (x(2),u(2), w(?)),
y(0) = g(x(2))

If for all x(0)e @ there is a continuous feedback control law
u(®) =y (y(1) or u(r) =y (x())

which assures the existence and uniqueness of the solution, x(f) € @, and then @ is
positively invariant for the closed loop system.

where x(f)e R" is the system state, u(z)e R" is the control input, y(z) € R’ is the output,
w(t) )e Wc R7is the external input (disturbance), W is assigned compact set, and A is
the derivative operator in continuous time and shift operator in discrete time case.

Hence, the invariance condition can be defined as

dist(x,®) = inf [x —x;[ =0
x; ed

this means that DSM > 0.

It is not possible in all cases to find a linear controller to a controlled invariant
polytope [144], [146], it is often necessary to consider non-linear control laws see for
example [146]-[149]. In the following section DSM applications and some ideas about

designing controller based on DSM are discussed

2.3 DSM Applications

DSM can be used in different applications, for example:

1. Controller design: DSM 1is an indication to system safety. Hence, controller
design based on DSM is important for a safety-critical system to maintain a
predefined margin of safety during transient and in the presence of large
disturbance or system uncertainties.

2. Controller evaluation and performance analysis: DSM can be used as
additional performance index to evaluate the controller behaviour and safety
performance of the system. Hence, it can be used as a quality measure for the

control system.
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3. Fault diagnosis and prognosis: According to the definition of safe region and
DSM, the analysis of DSM can help in fault diagnosis and prognosis.

4. Fault tolerant control and performance recovery: DSM index can also be used
in designing FTC system, in order to compensate the uncertainties in fault
information.

Using DSM in fault diagnosis and fault tolerant control will be addressed in Chapter
3 and Chapter 4 respectively. In the following, applying DSM to improve the system
performance during transient and in steady state, in the presence of a disturbance or
occurerance of “faults” without prior fault information, is explained.

The benefits of employing DSM will be clear in the response of the DC motor
(Example 2.1). The block diagram of the motor with PID controller, employing
analogical gates [151] for anti-reset wind-up, is shown in Figure 2-7. The input voltage
to the motor is limited to =5 v. The strategy for anti-rest wind-up is as follows:

e In linear control range, neither the magnitude nor the sign of the
integral-gain (K;) is changed.

e When commend-saturation occurs, the magnitude of the K; gain is
reduced first.

e As the difference between the saturated (x) and the unsaturated
command (u,) further increases, the sign of KI is made negative together
with further decrease of the magnitude.

The strategy of employing analogical gates for anti-reset wind-up is implemented
using a single analogical-gate, namely the XOR-gate (see Appendix B and [151] for

details) as follows:
K; =Kol —up )/ )@ (ufu, )] (2.18)

where K; and Kj, are the current and the initial integral-gain respectively. The
unsaturated and saturated control commands are u, and u respectively.

Figure 2-8 shows the motor speed response and DSM variation for step reference
speed of 2 rad/s and load torque 0.2 N.m, using PID controller with tuned parameter
K,=4, K=2 and K;=2. Note that, the response (transient and steady state) of the motor
speed is satisfactory, but the motor state trajectory traverses in the transient period
outside the safe operation region (DSM negative). In order to improve the DSM during

the transient period, a controller must be redesigned, or the PID controller parameter
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must be retuned. The method of tuning PID controller parameter based on DSM is

discussed in the Chapter 4.

Anti-reset Wind-up Network

/ A A

MK ]
e . ’
d > X, » it > | »| Controlled >
) " U, | u system
» KP

Figure 2-7: PID-controller with saturation employing analogical-gates for anti-reset

wind-up
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Figure 2-8: DC Motor response and DSM variation using fixed parameter PID-

controller

2.3.1 Effect of DSM Design during Transients and in the Presence of

Disturbances

Consider that the motor was suddenly exposed to a load torque disturbance from 0.2 to
0.5 Nm after 10s from the motor start. Three controllers including DSM action are

tested in this section.
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2.3.1.1 Multi-Controllers with Supervisor

DSM can be used as a control signal to switch between two different controllers. The
first one operates when DSM is positive (normal operation) and the other when DSM is
negative (unsafe operation). The first controller is designed to satisfy the nominal
performance, while the priority for designing the second controller is to improve DSM
rather than the desired output performance.

Figure 2-9 shows the block diagram of DC motor with two PID controllers (with
different parameters) and a supervisory controller to switch between them. If DSM is
positive, then the switch moves toward PID; and the input to the controller is the error.
Otherwise, it moves to PID, as shown in the supervisor automata in Figure 2-9b. The
input to the second controller (PID;) is the DSM.

Note that if &.)<0, then DSM is the distance between the current state and one of the

violated constraints according to the approximate solution (2.14) of Theorem 2.1,

therefore
T
5(]() — ci _ai (k)
Ja]
— ¢ _aila)(k)_aiZIa (k) (2 19)
Ja '

aq r—
= (@, (k) - (k)]
Jas]
where ¢; and a=[a;; a,-g]T are the parameters of the violated constraint number i and
@,(k) = (c; - ay1,(k)/ a,
DSM in (2.19) represents the error of the output speed with respect to a new

reference o, (k), which changes according to the current state and the violated constraint

used in (2.19), in order that the state trajectory traverses toward the safe region.
Therefore, the input to the second PID controller is DSM instead of the error between
the output and nominal reference.

Figure 2-10 shows the DC motor response using switching controller. Note that
DSM is improved in the transient period, and the disturbance effect is decreased but the
state trajectory is not smooth, and it eventually leaves the safe area. Hence, the state
trajectory can be smoothed either by readjusting the two different PID controllers or by
changing the switching criteria. Adjusting the two controllers gives a smooth response

as shown in Figure 2-11. However, the response is slower than that in Figure 2-10.
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a) Block diagram of switching controller
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b) Supervisor automata

Figure 2-9: Block diagram of DC motor with two controllers and supervisor
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Figure 2-10: DC motor response and DSM using switching controller with

PID1: Kp:4; K]ZI; KDZI.I
PID2: szz; K1=2; KD:2.0
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Figure 2-11: DC motor response and DSM using switching controller with

PID1: Kp=1; K~=1; Kp=1.1
PID2: Kp=2; K7~=2; Kp=2.0

2.3.1.2 Optimal Control

Optimal control can be used to improve system performance and DSM. In this case, the
control problem can be solved as a Linear Quadratic Tracking problem (LQT) [152] to
find the state feedback gains. The DSM can be added to LQT as inequality constraints

in state and the performance index is
J = Su(k) R u(k) + e(k)’ Q e(k)
k=0

subject to
x(k+1)=A x(k)+Bu(k)
y(k) = Cx(k)
x(k+1l)e®or
o(k+1)>0ie.d(k+1)=0
The optimal control problem with inequality constraints is an infinite horizon

optimization problem with infinite number of constraints. The solution of this type of
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problem is so difficult therefore MPC is preferred in this case (see Chapter 4). If @ is
convex and the safety boundaries are linear, then DSM constraints can be added as
additional term in the main objective function, i.e. DSM constraints are considered as
soft constraints to simplify the solution.

The new objective function will be, in this case

J= Y u(d) TR u(k) +e(k)T Q e(k) + d(k) " P d(k)
k=0

2 T T|Q 0]|e(k)
—]Eoll(k) R u(k) +[e(k) d(k)] [0 P} L(k)}

(2.20)

subject to

x(k +1) = A x(k) + B u(k)
y(k) = C x(k)

d(k+1)=D, -D_ x(k +1)
d(k) = [8) (k) 5 (k)= sq(k)]"
e(k) = y 4 (k) —y(k)

8(k) = min (5;(k))

1<i<gq

Here o(k) is the minimum distance to each boundary of the safe operation region @
(2.12); & k) 1s the DSM at instance k; i is number of inequality constrains; u is the
control signal vector; e is the error vector between the actual response and the desired

response; Q, P, and R are the weighting matrices; d(.) is calculated from (2.13).
The control law will be
u(k)=r(k)-K rx(k) (2.21)
where Kis the state feedback gain matrix and r is the reference inputs.

Figure 2-12 shows the DC motor response and DSM variations using the

optimization algorithm with the following parameters:

R =[2],Q =[11.5], P = diag[0.110.10.1, and K , =[0.457 0.5739],

Note that the DSM values are positive for the whole operation period, which means

that the motor operates safely.
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2.3.1.3  Adaptive Control

To maintain the system state within a predefined margin of safety, the value of DSM
can be taken as an index to adapt controller parameters. The controller parameters
should be adapted when the DSM is relatively positive small or negative, otherwise the

parameters have to be maintained without change.

2.3.1.3.1 Linear Adaptation

The adapted parameters can be defined as a linear function of the DSM, and calculated

from the following equation:

o0o(t) .
kit +At) = k; (1) + ;60 + ay, — i=1,2,...,.N (2.22)
where o' (7) is the DSM at any instance ¢, k; is the controller parameter number i, N is the
total number of controller parameters, and ¢; is the adaptation parameter.
The results of (2.22) may not guarantee that the adapted gains will maintain the state

in the safe region in all cases (positive DSM). Therefore, replacing o (.) in (2.22) by the

term%k(') with appropriate choice of ¢; could guarantee that DSM is positive. The new

1

adaptation equation will be

k(¢ +At)=k,(t)+a, %(') (2.23)

4

However, 3(.)/0k; in most cases, is nonlinear and not easy to compute. More details

about the parameters adaptation of the controller will be discussed in Chapter 4.

2.3.1.3.2 Fuzzy Adaptation

A Fuzzy controller [243] based on DSM can be used to calculate the incremental values
in the adapted parameters, where the relation between controller gains and DSM, in

most cases, is nonlinear and not easy to compute. The input variables of fuzzy controller

are function of DSM, e.g. ¢, agt() , etc., and the output is the incremental value in the

adapted parameters. The adapted parameter is calculated from the following equation

ki(t+ A1) =k (1) + F, ()

2.24
F,i(t)=M,(5(t)) (229
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where M, is the fuzzy function and F); is the incremental gain, which is equal to the
fuzzy output number i.

The fuzzy controller parameters (membership functions, number of variables and
their limits,...,etc.) are chosen based on the limits of controller gains.

In each method of adaptation, the adapted parameter value should be bounded in the
interval, k;e[ky, kin], which satisfies the stability condition of the system.

The complete block diagram of the adapted proportional gain of PID controller based
on DSM is shown in Figure 2-13. Figure 2-14 shows the DC motor response using
adapted proportional gain. It is clear that the transient and DSM are improved, and the
torque disturbance effect is reduced.

The different responses of the DC motor show that the system operates in safe mode
at the transient as well as at the steady state, either in a normal operation or in a
disturbance case, when DSM is considered in the controller design. Furthermore, DSM
can be used as an index to evaluate the different method of control design.

Note that the output response and DSM response of the controlled system change
according the priorities in the controller design. For example, if the priority to satisfy
DSM is higher than the output, then it is necessary to make DSM more positive even if
the output response will degrade, and vice versa.

Adapted PID controller based on DSM is tested in the next section to recover level

performance of one-tank system close to the nominal performance due to tank leakage.
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Figure 2-12: DC motor response and DSM using LQT controller
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Figure 2-13: PID-controller employing analogical-gates for anti-reset wind-up and

adapting proptotinal gain based on DSM
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Figure 2-14: DC motor response and DSM using adapted PID controller

2.3.2 Implementation of DSM for System Performance Recovery

The idea of controlling a system that deviates from the nominal operating conditions has
been investigated by many researchers. The methods of dealing with this problem
usually stem from linear quadratic, adaptive, or robust control [92],[153], [154], and
[161]. Most of the methods, used for performance recovery, depend on the diagnosis of
the plant and readjust the controller, see Chapter 1. Online controller adapting, based on
the value of DSM, helps in speeding up the performance recovery close to the nominal
performance before the diagnosis of the system has been completed, or the changes in
the model parameters are identified. The fault here is considered as unknown
disturbance or uncertainties. More investigation about DSM in performance recovery
and FTC is addressed in Chapter 4. The following example of a level process illustrates

the effect of DSM in speeding up the performance recovery.

Example 2.2
An experimental level process, shown in Figure 2-15, which will be explained in

Chapter 5, consists of one-tank system [134], [135], [155], [156]. The input flow is
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adjusted at 1 I/s and the level is controlled using the outflow valve. The discrete linear

model of the system at sampling rate 0.1 s is:

0.999741 -0.000694 —0.00010932
x(k+1)= x(k)+ u(k)
0 0.740818 0.25918177 (2.25)
y=[1 0]xth)

where x = [h v]T , h is the level in the tank (m) and v the valve limb movement (m).

Consider that
1. The variables relevant to system safety are the tank level rate (dh/df) and the
control signal (#) which simulate the valve opening (v);
2. the level rate (dh/dt) is bounded in the interval [-0.4,0.4] and bounded input
ve [— 0.5,0.5] (0.5 means that the valve is completely open and -0.5

completely close);
3. A valve bias of 20% closing may occur during operation.

then the safe operation region (®) is given by:
dh/dt+0.8v< 0
dh/dt +0.8 v-0.16> 0 (2.26)
-0.4 < dh/dt <0.4
055 v< 05

This region is shown in Figure 2-16

Input flow 11/s

A

Controlled

E Output flow

Figure 2-15: Schematic diagram of one-tank level process
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Figure 2-16: Safe region of the level process in Example 2.2

Note that firstly, the state vector x= [A; v]T, secondly, one of the safety variables is

dh/dt = f(x) not the state directly, where £:R"—%R is a nonlinear function of x,

P Lo, ~kvfpgh) (2.27)

dt A(h)

where A(h) is the cross section area of the tank, £ valve coefficient, and Q; is the input
flow.

Substituting from (2.27) into the constraint equations (2.26) gives the safety
boundary functions. Unfortunately, the boundary functions are nonlinear in this case.
Therefore, dh/dt is taken as an independent variable that can be easily computed from 4
in order to have linear constraints.

A simulated leakage in the tank about 0.2 1/s has occurred after 200 sec of Example
2.1. Figure 2-17 shows the level response using a fixed parameter PID controller. Note
that the controller is unable to recover the system performance. Replacing the PID
controller with adapted one according to (2.22) yields a response for the tank level as
shown in Figure 2-18. It is clear that the level performance is recovered faster and closer
to the nominal performance without fault (leakage) diagnosis.

Figure 2-19 shows the level response and DSM variation with adapted proportional
gain of PID controller with fuzzy adaptation. The fuzzy supervisor has one crisp input
(0) and one crisp output (incremental propotional gain). The domain of crisp input
varible (9) is divided into five input fuzzy variables: NH, NM, Z, PM, and PH.
Whereas, the doman of the output crisp (F);) variable are devided into three output

fuzzy variables: Z, H, and VH. Input/output membership functions are shown in Figure
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2-20, and fuzzy allocation matrix is shown in Table 2.1. The normalized input and
output signal of the fuzzy controller can help in generalizing the fuzzy supervisor for
more than one parameter adaptation. The DSM response can be improved by
considering the DSM rate of change in the fuzzy controller design and increasing the
number of fuzzy variables.

It is clear, from both examples, that the variables relevant to the safety are not
necessary to be the same controlled state (variables). For some proceses, they can be
chosen to be mathematical variables related to the controlled state as in Example 2.2 in

order to simplify the boundary equations. Therefore, the choice of the state variables

relevant to the safety is not unique.

Level rate (m/s)
DSM

| |
| |
l l
1 1
0 100 200 300 400

Level (m)
Contro signal

| |
l l
1 1
100 200 300 400

Figure 2-17: Level process response and DSM using PID controller
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Figure 2-18: Level process response and DSM using adaptive PID controller
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Figure 2-20: Membership function of normalized DSM and

incremental gain

Table 2-1: FAM of DSM and incremental gain
o NH NM Z PM PH

F,

yi

VH H H z zZ

Note: NH and NM are the abbreviations of negative high and negative medium respectively; PM
and PH are the abbreviations of positive medium and positive high respectively. Z, H and VH

denote zero, high, and very high respectively.

At this point, the differences between the DSM approach and other related
approaches can be discussed:

1. Most of the approaches related to safety state, for instance [157], define the safe
values of each state individually, while most of the time, the variables are de-
pendent on one another and none of them adequately defines the system safety
by itself. Therefore, DSM represents a general case as shown in Figure 2-2.

2. The distance between current states and safe states is defined as

D =0ifxe Xs and D>0 if xg¢ Xs
where x is the current state vector, and X, all safe state vectors [157]. This
means that system behaviour inside the safe region is not taken into considera-
tion. On the other hand, DSM has a positive value inside safe region and
negative otherwise. Therefore, the value of DSM indicates the safety state
more precisely.

3. The safe region can be defined, as a controlled invariant set [144], [158], [202]
for the system if there is a controller, which ensures a positive DSM for the

closed loop performance.
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4. One of the main differences between invariant set and safe region @ is that the
defined safe region for the system is assumed constant if the system structure
is changed, while invariant set should be defined for each structure.

5. The problem of finding a controller for a system with state and input con-
straints has been the subject of study of many authors; see for example [159]-
[160], [202], and [185]. Controller design based on DSM can be considered as
controller design for a system with state constraints. More investigation about
controller design for system with state constraints and DSM is discussed in

Chapter 4.

However, the main limitation of applying DSM is the determination of the safe
region. In some processes, it is not quite easy to determine the safe operation region.
Moreover, the mathematical formulation of the DSM is not easy to obtain for some
shapes of the safe operation regions. DSM computation and application for large-scale

system need excessive study.

2.4 Conclusions

In this chapter, a new definition (DSM) and its computation are presented. Some
applications of DSM are stated as well, which cover the applications of DSM in, first,
controller design; second, FDI design; third, FTC design. The advantages of controller
design based on DSM are discussed. DSM can be used to control the safety of the
system during transient and steady state operation, to decrease the disturbance effect,
and to help speeding up the performance recovery in case of some system faults.
Adaptive PID controller, LQT optimization, and switching controller based on DSM are
tested using simulation example. The variables of the system cannot describe safe
behaviour of the system individually. Thus, the relation between state boundary and
DSM is discussed. It is clear that DSM can be used to evaluate the performance of
different control design method as a safety index. Hence, DSM can be considered as a
quality measure of the controller performance. Because of occurring most of failures in
the transient phase, designing a controller to maintain a margin of safety at transient
period of the system is important. The difference between the DSM concept and the
related concepts are discussed as well.

The choice of the state variables relevant to the safety and the determination of the

associated safe operation region are not unique because they depend mainly on the
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operation experience of the process (knowledge based). For some processes, it is not
easy to find a mathematical formulation for the DSM due to the complicated shapes of
the safe operation regions. In this case, a knowledge-based model (fuzzy, neural,...,etc.)

can be used.
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CHAPTER 3

FAULT DETECTION AND DIAGNOSIS SYSTEM
USING DYNAMIC SAFETY MARGIN

3.1 Introduction

In order to meet the increasing requirements of modern society, industrial processes
become large and complex. The complexity makes the systems are vulnerable to faults.
Moreover, a fault in a single component may cause a malfunction of the whole system.
To achieve the increasing economic demands and safety restriction, high dependability
of such processes becomes an essential demand. It is difficult for humans to
troubleshoot such systems. Consequently, early fault detection and diagnosis are a vital
task. Thus, an extensive research has been done in the field of FDI design. The major
FDI methods stated in literature, see Chapterl, can be classified into three broad
categories; (a) Model based, (b)Knowledge based, and (c) signal based. Most of Model-
based FDI systems depend mainly on the analysis of so-called residuals [7]-[9], [36]
generated from the input and the output signals and applying dynamic process model.
Residual generation is based, e.g., on parameters estimation, parity equation or state
observers of the process. The generation of residuals is the first stage in FDI system.
Designing a residual generation system, which is insensitive to model parameter
variations and external disturbances, is a formidable task and called a robust FDI
system. In general, designing a robust FDI system is quite difficult. The robustness is
addressed, for linear and nonlinear systems; by different ways, see for example [73],
[87], [88], [78] and [153]. In this chapter, a robust FDI problem is explained, and the
existing approaches and their limitations are discussed. In addition, a new approach for
model-based FDI, which depends on the analysis of the DSM, is introduced. The idea of
“Multiple-Model” (MM) system is the basis for the fault diagnosis method used here.

3.2 Robust Fault Detection System

The fault is detected in Model-based FDI by comparing the actual process behavior with
the corresponding mathematical model behavior. Since an accurate mathematical model

of a physical process is not always available, there is often a mismatch between the
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actual process and its mathematical model, even if no fault in the process occurs. This
constitutes a source of false alarm, which can corrupt the performance of the fault
detection and diagnosis system. To overcome this difficulty, FDI system has to be made
robust to such modeling errors or disturbances. A system which is designed to provide
both sensitivity to fault and robustness to modeling error or disturbances is called a
robust FDI scheme [42], [13]. Fault, disturbance, and uncertainties modeling should be
described, to clarify robust FDI problem. Therefore, in this section, the effect of
disturbances and model uncertainties on the residual generation is introduced, moreover

the main limitations in the existing FDI methods.

3.2.1 Fault Modeling

A fault is defined as an unpermitted deviation of at least one characteristic property
or parameter of the system from the accepted behavior [7]. The fault is the state that
may lead to malfunction or a failure in the system. Faults can be classified based on
several criteria, such as the time characteristics of faults, physical locations in the
system and the effect of faults on the system performance [13]. The time dependency of
faults can be distinguished as abrupt fault (stepwise), incipient fault (drift-like) or
intermitted fault. When faults are classified according to their physical locations, three
main faults can be defined: actuator faults, sensor faults, and plant component faults.
Faults in an actuator range from loss off partial control effectiveness (stuck at a fixed
value) to a complete loss of control. Since an actuator is often considered as the
entrance to the system, actuator faults have severe consequences on the system
performance. Sensor faults include incorrect readings due to malfunction in sensor
circuit elements or transducers. Three types of sensor faults can be identified: dynamic
changes in transducer, gain reduction, and unknown bias. Plant component faults cause
changes in the dynamical relationship among the system variables. These faults are
caused by physical parameters changes in the system, such as resistance, inductance,
amplifier gain, etc. If faults are to be classified according to their induced effects on the
system performance, they can be classified into two types: additive and multiplicative
[8], [7]- Additive faults result in changes only in the mean value of the system output
signal, which include sensor bias fault (input and output) and actuators faults. Whereas,
multiplicative faults results in changes in variance, correlations of the system output

signal, as well as changes in the spectral characteristics and dynamics of the system
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which include process components (system parameters) faults and dynamic change in
the transducer or gain reduction of the sensor [13].
The system model with faults for a discrete linear time invariant (LTI) system,

shown in Figure 3-1, can be represented in the following form:
x(k+1)=(A+A (b)) +(B+B , (k) u(k) + R £, (k) o)
y(k) = (C+C, (k) +R 1, '

fu(k) £,(%)

! |

B(k) IR, G0 Ry

l x(k) i %
u(k) — B 7! »(C y(k)

Af(k)

>
7\

Figure 3-1: State space and fault modeling

Equation (3.1) can be written as

x(k+1) = Ax(k) + Bu(k) + A ,(k)x(k) + B , (k)u(k) + R f, (k)

(3.2)
y(k) = Cx(k) +C ; (k)x(k) + R f,

where X is the state vector, u is the input vector, y is the output vector, f, is the input or
state variable fault and f, the output faults, which represent the additive faults; Ay By,
and C; are fault parameters, which represent the multiplicative faults; A, B, and C are
the nominal system parameters; R, and R, are distribution fault matrix with appropriate
dimensions.

Different approaches for fault detection using mathematical model have been
developed in the last 30 years, see, e.g., [7], [10], [53], [63]-[67],[78], and [162]. The
task consists of the detection of fault in the processes, actuators, and sensors by using
the dependencies between different measurable signals. Mathematical process models

express these dependencies.
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The basic idea of model-based FDI, as mentioned in Chapter 1, is to generate
analytical redundancy with the help of a mathematical model of the diagnosed system.
The fault-indicating signal, called usually “residual”, is generated by comparing the

measured output or the state with the estimated ones.

3.2.2 Residual Generation Methods

The generation of symptoms (residual) is the main issue in model-based fault detection.
Varieties of methods are available in literature for residual generation. Observer-based
approaches, parity space approaches and parameter estimation approaches are the most
popular approaches to produce residuals [7], [10], [8], [78]. The use of these approaches
differs according to the fault types and the system model.

3.2.2.1 Observer-Based Approaches

The basic idea behind the observer or filter-based techniques is to estimate the output or
state of the system from the measured using, Luenberger observers in a deterministic
system or Kalman filters in a noisy environment. The output or state estimate error (or
its weighted value) is therefore used as a residual. The advantage of the using observer
is its flexibility in the selection of its gains, a matter that leads to a rich variety of FDI
schemes [40],[42], [54], [41]. Fault modeling is then performed with additive faults for
the input (additive actuator or process faults) and the output (sensor faults).
Consider a discrete LTI model for the process under consideration
x(k +1) = Ax(k) + Bu(k)

33
y(k) = Cx(k) )

where u(k)eR’" is the input vector, x(k)eR" is the state vector and y(k)eR" is the output
vector and assume that all matrices A, B and C of the system are perfectly known.
According to Figure 3-2, the following equations hold if there are no disturbances,

noises, and parameters changes.
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u(k) x(k +1) = Ax (k) + Bu (k) y(k)
y(k) = Cx(k)

Figure 3-2: Process and state observer

ex(k+1):(A—HC)ex(k)+Rafa(k)—HRyfy(k) (3.4)
and the output error e(k) becomes
e(k)=Ce, (k) +R f (k) (3.5)

and the residual
r(k) = We(k) (3.6)

When a sudden and permanent fault f(k) occurs, the state estimation error will deviate
from zero.

e (k) and e(k) show dynamic behaviours, which are different for R.f, and R,f,. Both
e,(k) or e(k) can be taken as residuals.

For the generation of residual with special properties, the design of the observer
feedback matrix H is of interest [78], [37]-[39].

Limiting conditions are the stability and sensitivity against disturbance. If the signals
are affected by noise, the Kalman filter must be used instead of classical observers,
assuming the noises are Gaussian white noise [13], [8].

If the faults appear as changes As, By, or C;of the parameters, the process behavior

becomes

x(k+1)=(A+A (k) (k) + (B+B (k) (k)

(3.7
¥(0) = (C+C (k)
while the state e,(k) and the output estimate e(k) errors are
e, (k+1)=(A—HC)e, (k) + A yx(k)+B pu(k) - HC ;x(k) 58)

e(k) = Ce . (k) +C ;x(k)
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The changes A;, B;, and C; are then multiplicative faults [7], [13]. In this case, the
changes in the residuals depend on the parameter changes, as well as input and state
variable changes. Hence, the influence of the parameter changes on the residuals is not
straightforward as in the case of additive faults.

Special observers were designed and summarized in [162], [35], [78], [13], and [7].

1. Dedicated observers for MIMO process

e Observer, excited by one output: one observer is driven by one sensor
output. The outputs y are reconstructed and compared with measured
outputs y. This allows the detection of single sensor faults [8], [152];

e Bank of observer, excited by all outputs: Several state observers are
designed for a finite fault signal, and detected by hypothesis test [8];

e Bank of observers, excited by single outputs: Several observers for
single sensor outputs are used. The estimated output y is compared with
the measured output y. This allows the detection of multiple sensor
faults [8], [163] (Dedicated observer scheme);

e Bank of observers, excited by all outputs except one: As before, but
each observer is excited by all outputs, except one sensor output which
is supervised [53].

2. Fault Detection filter (fault sensitive filter) for MIMO processes

The feedback H of the state observer is chosen, so that particular fault signal f, changes
in a definite direction and signal f, in a definite plane. With directional residual vectors,
the fault isolation problem consists of determining which of the known fault signature
directions the residual vector lies the closest one. More work in this area is found in
[41], [43], and [65].

Another possibility is the use of output observer (or unknown input observer), Figure
3-3, if the reconstruction of x(k) is not of interest. A linear transformation then leads to

a new state variable z(k).
z(k) =Tx(k) (3.9)
The state-space representation of the observer becomes

a(k +1) = F2(k) + Ju(k) + Gy(k) (3.10)
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u(k) o X(k+1) = Ax(k) + Bu(k) >
y(k) = ex(i) v
G |e v
W,
3 = Z(k)y W, _,é_,r(k)
3k +1)
F |«

Figure 3-3: Process and output observer

The residual can be designed such that they are independent of the unknown input,

for example disturbance, and of the state x(k) and u by special selection of W, and W;,.

r(k) = W,2(k) + W, y(k) (3.11)

subject to structural conditions:
TA -FT =GC
W.T-W C=0
J=TB (3.12)
W, #0
F be stable
In this way, the residual is dependent only on fault signals f, and f; [7], [10], [41].

However, all process model matrices must be known precisely.

3.2.2.2  Fault Detection with Parity Equations

The basic idea of parity relations approach is to provide a proper check of the parity
(consistency) of the measurements acquired from the monitored system.
A straightforward model-based method of fault detection is to take a model

A(2) A(2)

G, (z2)=——— and to run it in parallel to the process described by G ,(z) =——, thereby
B(z) B(z2)
forming an error vector r(z)
r(z)=| A2 _AG ) (3.13)
B(z) B(z)
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If G,=G,,, then the output error for additive input and output faults becomes
r(z)=G,f,(2)+1f,(2) (3.14)

Another possibility to generate a polynomial error or equation error is as shown in Figure

3-5[13].

r(z) = A(2)y(z) - B(z)u(z)

(3.15)
=B(2)f,(2) + A(2)f , (2).
u(k) | A@z) yiky u(k) | A(z) yky
B(z) . B(z) ]
" B *B() aCl)kMz) “
r(k)
(a) Output error (b) Equation error

Figure 3-4: Parity equation methods [13]
The residuals then depend only on the additive input faults f, and output faults f,.
Moreover, for the generation of specific characteristics of the parity vector r(z), and for
obtaining fault detection and isolation properties, the residual can be filtered according

to matrix G/(z) to compute the vector r(z) [7], [10], [8]:

r;(z) =G r(z) (3.16)

The same procedure can be applied for multivariable processes by using the state
space model, as shown in [8] for discrete time system.

x(k +1) = Ax(k) + Bu(k)

3.17
y(k)  =Cx(k) G

By substituting the second of (3.17) in the first one and delaying several times, the

following system is obtained:

y(k) C 0 0 0 --[uk)
y(k+1)| |CA <)+ CB 0 0 -|uk+] 3.18)

y(k+1)| | CAZ CAB CB 0 - |u(k+2)
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Y, (k) = Tx(k) + QU , (k)

In order to remove the non-measurable states x(k), and to obtain a parity vector

useful for FDI, a weighting matrix W is used, such that
WT=0. (3.19)
This lead to the residuals

r(k)= WY, - WQU , (k) (3.20)

The design of the matrix W gives some freedom to generate a structured set of
residuals in order to obtain a good isolation pattern. The parity space approach is
suitable for the detection of additive faults. In addition, it is simpler to design and to
implement than output observer-based approaches and lead approximately to the same
results.

A comparison between observer-based and parity space techniques is gevin in [164].
3.2.2.3 Fault Detection with Parameter Estimation

In most practical cases, the process parameters are not known at all, or they are not
known exactly enough. Therefore, they can be determined with parameter estimation
methods, by measuring the input and output signals, u(k) and y(k), if the basic structure
of the model is known [67], [7], [13], [8].

This approach is based on the assumption that the faults are reflected in the physical
system parameters, and the basic idea is that the parameters of the actual process are
estimated on-line using well-known parameter estimation methods. Two approaches for
modelling the input-output behaviour of the system are used: minimization of equation
error and output error.

The discrete-time model of order » for an SISO process is written in the vector form

y(t)=""0 (3.21)
T. . B(Z)
where 0=[q,...a,,b...0,] is the parameter vector of the transfer functlonﬂ
z
and¥ = [y(t -D...y@—n)u(t-1)...u(t- n)]T is the discrete-time data vector.
The equation error e(?) is introduced as
e(t)=y(t)-1'0 (3.22)
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The least-squares (LS) estimate of the parameters (é) is obtained from the
minimization of the sum of squared error and
A N-1 72
0= arg(mjn > Hy(t) - OH j
o =0 2 (3.23)
Tw | 'w’
IR

As described in e.g., [7] and [66], the least-squares estimate can be also expressed in

recursive form (RLS) with respect to the estimates at the instant #, with =0,1,2....

0 +1)=000)+ yO[yt+1)—PT (¢t +1)0(1)] (3.24)
where
~ 1
70 = W (¢ + DP@)P(t+1)+1 POFC+1) (3.25)

P+ 1) = |1 - 7% (¢t + D P(r)

The results are thus compared with the parameters of the reference model; obtained
initially under fault free assumptions. Any discrepancy can indicate that a fault may

have occurred. The symptoms are the deviation of the process parameter, AO:

AO=0-0 (3.26)

o

where 0, is the nominal parameter, and 0 is the estimated parameters.
As the process parameters 0= f(p)depend on physically defined process

coefficients p (like stiffness, resistance, etc.), the determination of the changes Ap
allows usually a deeper insight and makes fault diagnosis easier [8], [7]. Parameter
estimation methods usually need a process input excitation, and they are especially

suitable for the detection of the multiplicative faults.

3.2.3 Disturbance, Noise and Uncertainties Modeling

The disturbance and noise of the system can be represented in the system model, in
most cases, as additional unknown inputs with a specific distribution, while the
uncertainties can be represented as unknown parameters. Therefore, the system model
with disturbance, noise, and parameter uncertainties can be represent in a discrete linear

model as:
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x(k +1) = (A + AA(k))x(k) + (B + AB(k) Ju(k) + E d , (k) + v,

y(k) = (C+ACK))x(k)+E d (k) +v, (3.27)

where AA, AB, and AC are the parameters uncertainties, v, and vy are the state and
output noise respectively, d, and d, are the disturbance component in the state and
output respectively, and E, and E, are the distribution matrices of disturbance with the

appropriate dimension, which is assumed to be known.

3.2.4 Problem Formulation

In order to summarize the robustness problem, the complete state space model with
faults, disturbances, uncertainties, and noise is represented by combining (3.1) and

(3.27) as

x(k +1) = Ax(k) + Bu(k) + (A , (k) + AA (k) Jx(k)
+ (B, (k) + AB(k) Ju(k) + R £, (k) + Ed, (k) + v, (3.28)
y(k) = Cx(k) + (C; (k) + AC() (k) + R £, +E d, (k) + v,

Equation (3.28) can be written in general form for different types of systems, weither
linear or nonlinear, as

x(k+1)=g(0,x,u,f,d,v)

(3.29)
y = h(0,x,u,f,d,v)

where 0=0, U 0y U A0, 6 is the nominal parameter space, 0, is the faulty parameter
space, and A0 is the uncertainty parameter space of the system; f=f;, fy]T eWis the total
additive fault vector, d=[d, d,]' €%’ is the total disturbance vector, and v=[v, v,]'eR"™ is the
total noise vector; g R'xR"xWxRXR"™R" and h: R"xR" xR xRIxR" " —>R". For
the system (3.28),

00={A,B,C,E,E,}, 0,={A;B;C;R,, R/}, and AB={AA, AB, AC}.

It is required to design a FDI system, which is sensitive to system faults and less
sensitive to system disturbances, uncertainties, and noise with respect to the detected
features.

It is clear that the uncertainties in the model parameters seem to be as nonlinear
terms in the system model (3.28), and that is one of the difficulties of the robust FDI

system.

61



By neglecting the noise in (3.28), the discrete transfer matrix description between the

output y(k) and the input u(k) of the system (3.28) is then
y(z) = (G ,(2)+AG, (2)(z)+G ,(z)d(z) + G, (2)f(2) (3.30)

where f(z)=[f.(z) f,(z)]" is the total additive fault vector, d(z)=[d.(z) d,(z)]" is the total
disturbance vector, AG,(z) is used to describe modelling errors, whilst both AG, and
AG, represent modelling uncertainty.

According to residual generator, general structure described in [8], [37] and [108],

r(2)=H.(2) u(z)*H,(2) y(2) (3.31)

In case of no fault and uncertainties, the design of H, and H, must satisfy the

constraints condition
H.(2)+ H)(z) G,=0 (3.32)
The residual vector in case of fault and uncertainties has to be written as

r(z)=H,(2)G ;(2)f(z2)+ H ,(2)G,(2)d(z) + H ,(2)AG , (z)u(z) (3.33)

Both faults and modeling uncertainties (disturbance and modeling error) affect the
residual, and hence discrimination between these two effects is difficult. The principle
of disturbance de-coupling for robust residual generation requires that the residual

generator satisfy

H,(2)G () =0 (3.34)

in order to achieve total de-coupling between residual r(z) and disturbance d(z).

During the last decades, many FDI researches have focused on robust fault diagnosis
of an uncertain system. Adaptive threshold can be used to increase the robustness to
modeling uncertainties [79], [8]. Surveys of adaptive threshold technique are provided
in [37]. This method represents a passive approach since no effort is made to design
robust residual. One of the most successful robust FDI approaches is the use of
disturbance decoupling principle. This can be done by using unknown input observers
[7], [165], [41], [167], optimal (robust) parity relations [58], [7], [166] or alternatively
EA approach [7], [34], [37], [35]. However, the complete elimination of disturbance
effect may be not possible due to the lack of degree of freedom [13]. In addition, in
some cases, such as unstructured uncertainties or structured uncertainties, which do not

enter the system as an additive disturbance, perfect decoupling is not possible [80].
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Moreover, it may be problematic, in some cases, because the fault effect may also be
eliminated. Hence, an appropriate criterion for robust residual design should take into
accounts both modeling error and faults. There is a trade-off between sensitivity to
faults and robustness to modeling uncertainty, and hence robust residual generation can
be considered as a multi-objective optimization problem [78]. It consists of the
maximization of fault effects and the minimization of uncertainty effects. Despite the
extensively study of decoupling method in robust FDI system, their effectiveness
regarding real problems has not been fully demonstrated. The described method of
disturbance decoupling methods cannot be directly applied to the system with other
uncertainties such as modeling error [13]. Different robust FDI techniques are scattered
in the literature, see for example [81]-[88].

Although the analytical redundancy method for residual generation has been
recognised as an effective technique for detecting and isolating faults, the critical

problem of unavoidable modelling uncertainty has not been fully solved [13].

3.3 Multi-Model Fault Detection and Isolation System

Since failures in systems may cause structure change, the system cannot be modeled
well by a single model. Moreover, accurate fault identification in favor of complete
isolation cannot usually be achieved using a single model. One of the most effective
approaches for such problems is based on the use of Multiple Models (MMs). It runs a
bank of filters in parallel, each based on a model matching to a particular mode (i.e.
structure or behavior pattern) of the system. Since a system subject to failures is a
typical hybrid system [168], MM algorithms for FDI have been developed for different
names, such as multiple hypothesis test detector [162], structure hypothesis test [34] and
Multiple Model Adaptive Estimator (MMAE) algorithm [169], [170], [49], [50]. In
addition, a so-called dedicated observer scheme, which uses a bank of observers for FDI
of deterministic system, was devised in [163] and a generalized dedicated observer to
enhance the robustness of FDI was given in [53]. A neural network bank-based FDI
approach was developed in [171]. Only filter-based approaches are considered in the
above approaches to estimate system state. The above filter-based approaches are based
on the “non-interacting” MM method originally proposed by Magill [172]: the single-
model based filters are running in parallel with out mutual interacting (i.e. each filter

operates independently at all time). An Interacting Multiple-Model (IMM) estimator for
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FDI was introduced in [108]. The IMM differs from non-interacting MM algorithm in
that the single-model based filters interact with each other in highly cost-effective
fashion, and thus leads to significantly improved performance.

Figure 3-5 shows the general diagram for MM-based FDI approaches. The system is
described by a set of model M={M,, M, M,}, and each model is designed to
distinguish one fault mode of the fault mode set.

All fault detection and estimators (FDE) are driven by the system input u and the
measurements y, and they operate in parallel to generate an individual residual for each
one. All residuals and possibly all measurements are treated in the residual evaluation
logic. The resulting faults are reflected in the alarm signal in the decision statements S=
{ai, ay...a;}; a;€ {0,1}.

The task of the diagnosis system is to generate a diagnosis statement S, which
contains information about which fault models that can explain the behavior of the

process.

Faults Disturbance

u(k) &' M’ yk)

Process T
| 40 Q
FDE based on B
Model, 3 S
L E
FDE based on ! A
= 15}
Model, 8
Iy
FDE based on >
Model,

Figure 3-5: General block diagram of the MM fault detection scheme

For each actuator fault, an FDE unit can be an UIO as in the case of Generalized
Observer Scheme (GOS) [7], [35]. The number of observers is equal to the number of
the control inputs. The i-th observer is sensitive to all faults instead of i-th fault.

For a linear system with an additive actuator faults, the model can be defined as
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x(k +1) = Ax(k) + Blu(k) + f, (k)] = Ax(k) + b, [u,(k) + £,, (k)]
i=1

(3.35)
y(k) = ex(k)
The i-th model of actuator fault number i (i=1,2...m) has the form

"(k+1)= AX' (k) + Bu(k) +b, f,;(k
X (k-+1) = AX'(0)+ Bulk) +b, /() 536
y' (k) = ex'(k)

and the corresponding observer

2 (k+1)=F'z' (k) + J'u(k) + G'y(k

(k+1) (k) (k)+ G y(k) (3.37)

r' (k) = Wiz(k) + Wy (k)
where x'(k) is the state of the model i, the triple (A, B, C) is the system matrix, b; is the
i-th column of B, Z(k)eR" denotes the observer state vector, r' (k) e R” is the residual
vector and F', J, G', W! and W; are matrices to be designed with appropriate
dimensions which satisfy

T'A-F'T' =G'C

W.T -W;C=0

J =TB' (3.38)

W %0

F' be stable

If the linear transformation T' is chosen as [214]
T' =1,-b,(Cb,)"C

then the solution of (3.38) will be

F' =T'A-K'C,

G' =K' +F'b,(Cb,)",

J =TB' (3.39)
W! =-C,

Wi =L, —(Cb,)(Cb,)" ]

where K’ is selected such that F' is asymptotically stable and (Cb;)"is the pseudo inverse

of matrix Ch;.
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This selection makes the estimation error, as well as then the residual of the i-th UIO
become independent of the i-th system input. However, the i-th input fault changes all
the other UIO residuals.

For sensor faults, a set of dynamic observers as in the case of Dedicated Observer
Scheme (DOS) [163] is designed. The i-th observer is designed where the estimated
output error and then the residual of the i-th observer is dependent on the i-th sensor

fault only.

3.4 Dynamic Safety Margin in Fault Diagnosis System

According to the previous discussion about robust FDI systems in section 3.2, we can
conclude that:
1. The complete elimination of disturbances effect may not be possible;
2. Modelling uncertainties is difficult and has not been fully solved;
3. Most of the methods in literature try to reduce the effect of either disturbance or
uncertainties, but not both;
4. The effectiveness of the existing robust FDI regarding real problems has not
been fully demonstrated. In general, the robust FDI problem has not been fully
solved.

This section explains how DSM can be helpful in designing a robust FDI system.

Assumption 3.1: Based on the definition of DSM in Chapter 2, the state variables of
the diagnosed system (x) and the associated estimated state from the nominal model (X)
must satisfy {x,%}e® in normal operation, even if there exist bounded uncertainties,
disturbances and/or noise, i.e. fault-free case.

where ®CR"={¢g(x) <0 |i=1...q} is a compact set which contains the entire safe state
variable.

According to the definition of DSM, it is positive in normal operation with probable
parameters variation (uncertainties in system model) and/or disturbance. Otherwise,
DSM is negative if the system suffers from a large variation in the parameters or a large
disturbance, which simulate different types of faults (additive and/or multiplicative).

The following example explains that.
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Example 3.1
Consider a system having two state variables (x=[x;, x;]), and the nominal relation

between the two variables is
x1(t)-a x,(t)=b (3.40)

where a and b are the nominal values of the system parameters.
If the probable change in the system parameter a is Aa<€[-a1, o] and the parameter b

is constant, then the safe operation region can be defined as

—x () +(a—a) x, () <-b

(3.41)
X () +(a+a,) x,(t)<b

and 6 (DSM) satisfies 0> 0 <> Aae[-a, &2 ];
Aag[-o, an] v Ifault—6<0

Any probable parameter variations or disturbances can be handled by the same way
i.e. additional constrains can be added to increase the sensitivity of DSM to faults.
Meanwhile, for larger systems the safe region is not readily obtained by this way.

For linear system with bounded disturbance and uncertainties the safe operation
region can be considered as an invariant set, as stated in Chapter 2, and the methods of
determine the invariant set , see for example [144], [148], [150], [158][148], [202], can
be applied to construct the safe operation region.

If it is difficult to construct the safe operation region due to the less information
about the system operation, using fuzzy or neural clustering is a helpful tool to

determine the boundary of the safe region.

Theorem 3.1: Based on the state space model of (3.28), if there is no fault and x(k)e®,

9 (x,)=0,i= 1,2,...q} the following conditions are satistied

then for any x,€00 = {x »

(8(k) > 0)A(S(k+1)>0) and
\xp - x(k)” > sup [(A+AAGK)-1)x(k)+ (B +AB(K)u(k) + Ed(k)|

AA,AB.d

(3.42)

inf
Xp

On the other hand, if the fault exists, then there are two recursive instants £ and

k+1such that

ianx o= x(k)H <[xCk +1)—x(k)| (3.43)
Xp
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where 0O is the boundary state set of @, and x(k) is the current state vector.

Proof: Based on the Assumption 3.1 and taking into consideration that all state variables
are measurable, then the maximum effect of modelling uncertainties and disturbances

together without faults should maintain x(k+1/)e®, which implies

(8(k)>0)A(5(k +1)>0) (first condition of (3.42))

and
x(k+1)=(A+ AA(k))x(k)+ (B+ AB(k))u(k) + Ed(k) € (3.44)
The difference between the current state and the next state is

x(k +1) = x(k) = (A + AA (k) )x(k) + (B + AB(k) Ju(k) + Ed (k) — x(k)

= (A + AA (k) —T)x(k) + (B + AB(k) Ju(k) + Ed(k) (345)

The value of this difference varies due to the variation of the system parameters and
current disturbance. Therefore, the maximum distance between the current and next
state is

[x(k+D-x(k)| = sup (A + AA (k) - T)x(k) + (B + AB(k) Ju(k) + Ed(k)|  (3.46)
AA,AB,d

Consequently, the maximum effect of the combined disturbance and modeling

uncertainties makes x(k +1) tends to 0® i.e.

(3.47)

max

infx , = (k)| > [x(k + 1) - x()|
Xp

Hence, from (3.46) and (3.47) the second condition of (3.42) is satisfied, which
means that the distance between the state vectors from instant & to k+1 should be
smaller than the minimum distance between the current state and 0®.

If there is a fault, then the state trajectory traverses outside the safety boundary.
Therefore, there are two recursive instances k and k+1 where x(k)e® and x(k+1)g® i.c.
there is an xp,eX, that lies on the line between x(k) and x(k+7). This implies that the
distance between x(k) and x, is smaller than the distance between x(k) and x(k+1)
(second part of Theorem 3.1 (3.43)).

Thus, the sign of DSM is sensitive to faults. Moreover, the value of DSM itself is
an indication of the hazards of faults. Hazards mean how much the fault can lead to a

component failure or the damage of the process.
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3.4.1 Fault Isolation

It is not always sufficient to indicate that a fault occurred, but it is more important to
know which fault or faults have occurred (fault isolation), fault size, location, etc...

The suggested method for fault isolation depends on the generation of DSM from a
set of models M= {My, M,, M,}, based on the idea of MM-FDI method discussed
before, for the system under consideration (analytical redundancy of DSM) and the
comparison of the generated DSM with the actual value calculated from the measured
state. Each of these models simulates one fault of the faults set, which should be
isolated in addition to the nominal fault free model as shown in Figure 3-6.

The discrete model of each faulty model is described in general as

M, {xi(k +1) = g;(0;(k), x; (k),u(k),t; (k) (3.48)

yi = h;(0;(K),x; (K),u(k),f; (k))

where x; e R" is the state vector of the system model i, ue R" is the input vector, y;e R’
is output vector; ficFeR' is unknown additive fault signal vector, g;: R"xR"xR'—>R",
hi: *R”x‘)%mx‘ﬁlaiﬁp, 0; — 0 is the system parameters for faulty model i, i€ {0,1,...,z}, and
z 1s the number of anticipated faults in addition to fault free case, i=0, nominal model.

In case of LTI system

g = Ax; (k) +Bu(k) + R, f; (k)

(3.49)
h, = Cx(k)+Du(k) + R f, (k)

and ei: {Ai, Bi; Ci7 Di, Rai; Rsia}
The fault isolation system is activated when &t)<0 and/or d&Xt)/dt <0. dXt)/dt <0

means that the state trajectory moves in the direction of unsafe operation.
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Figure 3-6: MM fault detection based on DSM

3.4.1.1 Fault Modes

Different faults can be classified into different fault modes. For example, consider a
system containing a water tank and leakages exist in the bottom of this tank. All such
leakages, regardless of their area, belong to the same fault mode “water tank bottom
leakage" [34].

The classification of different faults into fault modes corresponds to a partition of the
fault-parameter space 6 and additive fault space F. This means that each fault mode i is
associated with a subset 6; — 0 and f; = F. One of the fault modes corresponds to the
fault-free case. This fault mode will be denoted “no fault" or M,. Further, all sets 0; and

f; are pair wise disjoint and

0={J0,and F= |JT, (3.50)

ieQ) ieQ)
where Q is used to denote the set of all fault modes.
Let ¥ =0UFis the total fault mode data, X,=0, UFis the fault mode i/ data, and

2=z,
ieQ

If fault mode i exists in the system, then Z; € Z. The fact that all sets X; are pair wise

disjoint means that only one fault mode can exist at the same time.
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For notational convenience to each fault mode, an abbreviation is associated, e.g. “no
fault" is abbreviated M. All these are is illustrated in Figure 3-7, which shows how the
whole set X has been divided into five subsets corresponding to fault modes My, M;, M,,

M3, and M,.

20: 90 U FO

X,=0,UF,

=0, UK,

Figure 3-7: Parameter space and fault space divided into

convex subspace
Example 3.2

Consider a SISO system represented in state space form (3.3), and assume that there are
three different faults, which have to be detected and isolated; actuator fault, internal
(leakage) fault and level sensor fault. Each of the actuator and the sensor fault has two
types of faults, either bias or draft. Therefore, there are five modes of faults in addition
to the fault-free case (3.3).

1. The actuator bias fault model is defined as

X (k+1)= Ay x, (k) + b, (u(k) + £, (k)

(3.51)
y=¢; x(k)
0,={A1, by, ¢;}, fi=[£, 0 0]"
where A=A, b;=b, and ¢,;=c¢, and £, is the additive actuator bias.
2. The actuator draft fault model is defined as
X>(k+1)=A5 xou(k)+b, (o u(k
2 (k+1) = Ay xpu(k)+by (o u(k)) (3.52)

y = ¢ xpu(k)
0,={As, b, €2, o}, £=[0 0 0"

where A,=A, b,=b, and ¢,=¢, and « is the actuator draft.
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3. The leakage fault model can be represented by two different methods; one of
them can be represented as unknown parameters in A matrix (multiplicative fault).
The other method, which is described here, represents the leakage fault as an

additional signal in the state model.
X;(k+1)=Ax5(k)+ by u(k)+ b, f(k)
y=¢;%;(k) (3.53)
0:={As, b3, ¢3,b,), :=[0 £; 0]

where As;=A, bs;=b, and c3;=¢, b, is leakage fault distribution matrix with
appropriate dimension, f;is the additive signal represent internal leakage.

4. The sensor bias fault model is
X, (k+D)=A, x,(k)+b, u(k)
y=c¢4 X4(k)+ £ (3.54)
04={As, by, cs), £:=[0 0 £i]"

where As=A, bs=b, and c4=¢, f;is the additive signal represent sensor fault.

5. The sensor draft fault model is

Xs(k+1)=A;5 x,(k)+ by u(k)

(3.55)
y= asc5 XS(k)s

05={As, bs, ¢s. a), fs=[0 0 0]"

where As=A, bs=b, and ¢s=¢, o is the sensor draft.

3.4.1.2 Fault Estimation

One possibility to simulate the fault value by generating a set of models for the same
fault type, each of which for a certain partial value of fault [48]. For example, the fault

in a sensor 7 can be modelled as
Yilk)= yoik)+a (3.56)

where a€{0,a,a,... yimax} € I’ represents a partial value sensor bias, yimax is the max
input limit of sensor 7, and ¢ is the number of partial values of sensor fault; y,; is the
measured output signal and y; is the actual output signal of the sensor number i.

For each value of a there is a corresponding fault model. The number of models for

bias fault mode is equal to g. The magnitude (size) of fault can be determined by the
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probability-weighted sum of the fault magnitudes of the corresponding partial fault
models [48]. However, the main disadvantage of this approach is that the number of
model increases proportionally with the resolution of fault discrimination.

Another method of fault isolation is by estimating the fault magnitude from the
measured data; see for example [34].

The suggested method is based on the estimation of the fault values from the input-
output data, and using these estimation parameters to determine the estimated state of
the faulty model. For each faulty model the unknown fault parameter y; €X; which
simulates unknown multiplicative or unknown additive faults. y; can be estimated from

. N-
in

1
i g( m zo||<y<k—z>—y,-<k—z>||§J (357)

71621 =

where N is the estimation time.

The main disadvantage of this method is that the minimization problem (3.47) is not
easy to solve, especially in case of multiplicative parameters.

Estimating the fault value from available redundant equations of the system model is
considered a special case of estimation principle.

The following example describes how the unknown parameters can be estimated for

a linear model with actuator fault.

Example 3.3

A state space model of a linear system with actuator faults can be defined as

x(k +1) = Ax(k) + Blu(k) +f, (k)] = Ax(k) + gjb,- [u; (k) + f, (k)]
i=1

(3.58)
y(k) = ex(k)
For a single actuator fault mode, the fault model will be

X, (k+1)=Ax;(k)+Bu(k)+b,f, . (k

i(k+1) i(k)+Bu(k)+b, 1, (k) (3.59)
yi (k) = ex; (k)

and the estimate actuator fault, ]A”m- , according to (3.47) is given by

A . 2
fui = arg(n}ln(”Y ~C,x(k—N)-C,U~-C, fa,-||2j (3.60)
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where Y=[y(k) y(k+1) ... y(k+N)|", U=[u(k) u(k+1) ... u(k+N-1)]", C, and C, matrices

with appropriate dimension obtained from (3.48)
Special case

If the additive fault dynamics can be represented in state space form as
Jai(k+1)=0a; foi(k)+ p; (3.61)

then the fault can be considered as an additional state variable, and it can be estimated

using a state estimator as follows:

X
The new state vectorz = { }, the input vectoru , = {

ai

" } , and the model

i

Y e e L "
skt =1o o [+ g g ek (3.62)
y:[C O]Zi

where ¢; and f; are assumed to be constant, for instance, &; =1 and £=0 in case of bias
fault. The new state space model has to be observable in order to estimate the state and

fault value.

The estimated faulty model state, X,, and the fault, fai , are obtained using the state

observer

. A b, B 0 .
zl-(k+1){0 a}z(k){o Juﬁ(k)JrL(y—y)

l

(3.63)
y=[C o]

where z; = { A } , Yy is the estimated output, and L is the observer gain matrix.

ai

N P

This procedure was implemented using EKF for constant sensor and actuator fault, i.e.
;=1 and =0, in [49], [50]. The fault can also be reconstructed using the idea in [56].
3.4.1.3 Fault Isolation Algorithm

The estimated fault parameters for each fault model are used to estimate the DSM of
each model. The estimated value of DSM is compared with the DSM of the actual

system, as shown in Figure 3-6.
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It is clear, as in Figure 3-6, that the difference signal, ;, between the actual DSM and
the estimated one can be considered as a residual. The fault isolation logic is obtained
from the analysis of the residual vector reR". The following algorithm is one of the
simplest methods to isolate fault number ‘i’ from the other faults.

1. Compute DSM for the actual system and the different faulty model di(k)=h(xi(k));

i=0,1,2,...,z

2. Compute

riky= &k)- 6(K); i=1,2,....2 (3.64)

1 ko+N
T,-:W > | k); =12,z (3.65)

k=kq

3. Construct the decision logic statement
S={a1, az, ...,a,}; a;ie {0,1} (3.66)

where a= 1 <> T, =minT,, i.e. fi (fault number i) exists; otherwise a=0, A(.) is the
J

1

DSM computation function, &.) is the DSM of the actual system, J(.) is the DSM of
fault model number i, z is the number of faults in addition to the fault free case, and N is
the number of diagnostic samples (diagnostic time and isolation).

The logic statement contains at most one element equal “1” which is corresponding

7282 D
1 1

to the existing fault “i”, and the others are “0”, i.e. fault occurs if the average value
of { 7| * has the minimum value among the others.
There are some limitations in applying this algorithm:
1. A false signal may be obtained if the diagnostic time is small with respect to the
fault reaction time, or if there are more than one fault occurring at the same time.
Using threshold can help solving these problems, and the decision statement

elements can be calculated as
a=1 < Ti<Ty(i), i.e. f;exists; otherwise a;=0
and Tth(l) < dnax (367)

where T, €R” is the threshold vector, Ty(i) is the threshold value corresponding
to the fault number “i”, and Onax 1s the maximum positive value of DSM in the
safe operation mode. In general, T;(i) can be constant or time varying. For

simplicity, in most cases all Ty (i)’s are constant and equal for all fault models.
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2. If a particular fault exists and more than one fault mode can achieve the fault
z
isolation condition (7i<77(i)) i.e. X a; >1, then this problem can be reduced if the
i=l
magnitudes of the estimated fault parameters are considered in the isolation logic.
Thus, some definitions and related conditions of fault delectability and isolability are

defined in the following section.

3.4.2 Detectability and Isolability

Definition 3.2 (Fault Detectability): The fault is detectable if and only if the effect of
the fault on the system state causes ((7) <0) v ((t) <0), other wise the fault cannot be
detected.

where &) is the DSM computed from the measured state and oJy(¢) is the DSM
computed from the estimated state of nominal model (fault-free model).

Definition 3.3 (Fault Isolability): the fault i is isolable from fault j if and only if
lim(5(r) - 6,(1)) < T,, (i) A 1im(5(2) - 5,()) = T, (/)
t— t— -

where O (f) is the actual DSM and &(¢) and ¢ (¢) are the estimated DSM from fault
model i and j respectively.

Definition 3.4 (Missed Detection): Assume that a fault i is exist, then the fault detection
represents a missed detection if X#)>0 Ady(7)>O0.

Definition 3.4 (Missed Isolation): Assume that a fault i is present. Then the diagnosis
statement S represents a missed isolation if S(7)=1.

Definition 3.5 (False Alarm): Assume that no faults exist, i.e. 0)=6y A f;=0. Then the
diagnosis statement S represents a false alarm if S(0)=1.

Definition 3.6 (Complete Isolable): A Fault i is completely isolable from the fault set z
if and only if lim(8(t)— 5,(1)) < Ty, A 9, 7; [€ 2.
t—o

where 6, is the estimated parameter of fault mode i, and f;is the estimated additive

fault.

3.4.3 Robustness of Detection and Isolation System

The robust fault detection, as discussed before, means that the detection system should

give an alarm signal in case of fault and avoid false alarm in case of system disturbance

76



and parameter variation. Using DSM as an indication to fault satisfies a good robustness
of the monitored system because of the value of DSM is sensitive to fault based on the
assumption that the system should operate in the safe region in fault-free case, in spite
of the existence of disturbance or uncertainties in the system parameters. Moreover,
most of the control systems try to maintain the desired system performance in normal,
disturbed and/or uncertain case (robust controller) which means that the controller in
fault-free case tries to maintain DSM positive. Adaptive threshold for FDI method is
one of the robust fault detection methods. The DSM value can be considered as an
adaptive threshold where the DSM is the distance between the system state and the
nearest state lying on the safety boundary, which is the maximum system state in fault
free case. The maximum state value that the system can reach is not fixed, but it varies
according to the boundary function and current state position. This approach has a high
robustness where it can give positive alarm, i.e. fault indication in most fault cases,
while it gives a false alarm in limited cases e.g. a) if the fault effect is less than the
effect of probable model uncertainties and/or disturbance; b) If there are simultaneous
faults having an opposite effects.

Robust fault isolation means that the fault isolation data should represent the actual
system fault. MM fault isolation method is one of the most appropriate robust fault
isolation methods. The main advantage of the suggested method is that the fault type
and its estimated value are obtained in one-step. Moreover, it is not restricted to a
special type of faults i.e. the fault can be modeled by any way as an additional signal or

parameter variation.

The advantage of using DSM in FDI instead of the outputs are:
e The number of variables used in diagnosis using DSM is less (i.e. the
measured output date are reduced to a single variable).
e The value of At) and dXt)/dt is more sensitive to the system variation.
e Slow faults (e.g. equipment weakling) are very hard to detect from the
output and DSM helps in the diagnosis and prognosis of such types of
faults.

3.4.4 Simulation Example

Consider the tank system in Example 2.2, the linearized nominal model is
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x(k +1) = A x(k) + b u(k)

b ex(h) (3.68)

and the safe region is defined as
dh/dt +0.8 v; <0
dh/dt +0.8 v;-0.16 > 0
-0.4< dh/dt<0.4 (3.69)
-0.5< v;<0.5

2.75<h<3.25

0.999741 -0.000694 —0.00010932
where A= , b= )

0 0.740818 02soigi7y |l O x= {ﬂ s the
level in the tank (m) and v; the valve limb movement (m).

Assume there are three different faults that should be detected and isolated; actuator
bias fault € [0,1], internal (leakage) fault in (I/s) € [-0.5,0.5] and level sensor bias fault
€ [-0.35,0.35]. Therefore, there are three modes of faults in addition to the faulty free
case (3.65). The parameters of each fault mode are obtained as in Example 3.2. In case

of leakage fault, the system model as in (3.53) where b,=[1 0]".

The estimated state of the fault-free model is obtained using a state observer as

shown in Figure 3-2, where H =[1.4 —200]T and W is not considered here because

the purpose is to estimate the state.

Figure 3-8 shows the level response and normalized DSM variation in case of
actuator bias fault of 30% of the actuator limit after 200s. The DSM value is positive
before the fault and negative after fault. Figure 3-9 shows the estimated fault value for
each fault model. Note that the DSM value generated from the actuator fault model,
sensor fault model, and actual DSM are coincident, but the value of estimated sensor
fault is out of limits and increases with the time. Therefore, according to Definition 3.6
the actuator fault is completely isolable from the other faults. Figure 3-10 and Figure
3-12 show the system response and DSM variation for leakage fault of 0.25 1/s and
sensor fault 0.05m respectively. Figure 3-11 and Figure 3-13 show the estimated fault
values in leakage and sensor fault respectively. Table 3-1 summaries the results of the

three fault scenarios.
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Figure 3-14 shows the response in case of actuator bias fault 30% after 200s in
addition to additive disturbance with frequency 0.1Hz and amplitude 0.0001. Figure
3-15 shows the estimated fault values. It is clear that DSM value is positive in case of
disturbance while it is negative in case of faults occur. Moreover, the effect of

disturbance i is reflected on the estimated fault value.

Table 3-1: Summary of fault results

fa /i /s To h h T
fa=03 0.3 0.16 ramp >Ti | <Ty | >Tiw | <Ty
f1=-025 0.37 -0.25 | ramp >Tn | >Tw | <Tp | <Tn
fi =—0.05 0.02 0 -0.05 >Tiw | >Tw | >Tiw | <Ty

Note: f,, fi, and f; are the actuator, leakage and sensor faults respectively; fa, fa and J}a are the

estimated ones. 7; is the integral error between actual DSM and the computed one from each faulty

model (3.37), i€ {0,1,2,3} is the fault mode, and 7,,=0.1 is a threshold error with integration step N=10.

3.5 Conclusions

In this chapter, the robust FDI problem is defined, and the existing techniques to design
a robust FDI system and their limitations are discussed. Design FDI system based on
DSM is introduced. The main advantage of the proposed approach of using DSM in FDI
is the reduction of the number of diagnostic variables. In addition, DSM and its
derivative are more sensitive to system parameter variation, i.e. DSM in FDI introduces
robust fault-detection schemes. The simulation results demonstrate the advantage of this

approach.
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Tr: state trajectory; SB: Safety boundary; 6, &, &, o, , and o, are the DSM’s of the actual system,
nominal model, internal fault model, actuator fault model, and sensor fault model respectively.
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CHAPTER 4

PERFORMANCE RECOVERY USING DYNAMIC
SAFETY MARGIN

4.1 Introduction

The system performance deviates from the desired one due to different reasons, for
instance, faults, disturbance, etc. Therefore, the performance recovery of a controlled
system is an important task in order to enhance system dependability. It is addressed by
different techniques, in particular, adaptive control and robust control. Designing a
controller based on DSM is important to maintain a predefined margin of safety during
transient and steady state in normal or due to disturbance actions. Moreover, it can help
speeding up performance recovery in some cases of system faults. Hence, the controller
design based on DSM is the main focus of this chapter. PID controller is one of the most
popular controllers, particularly, for SISO systems. Hence, adapting PID controller
parameters based on DSM is highlighted in Section 4.2 as an example of controller design
based on DSM. For MIMO systems, MPC is successfully used in process control due to
its ability to handle explicitly hard constraints on control and states. Therefore, it has
been widely applied in petrochemical and related industries. MPC design based on
DSM is addressed as another example for controller design based on DSM for SISO and
MIMO systems as well.

An FTC system is a performance recovery system due to faults. As stated in [2], [104],
and Chapter 2, it is a control system that can accommodate components faults, and it is to
maintain stability and acceptable degree of performance not only when the system is
fault-free but also when component malfunctions are present. FTC prevents faults,
which occur in a subsystem, from developing into failures at the system level. Hence,
the application of MPC in FTC can be very useful, particularly because most of the
processes have control and state constraints, which specify the actuator limits and safety
requirements of the components. A frame work of FTC system using MPC based on

DSM is introduced in Section 4.4.
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4.2 Controller Design Based on Dynamic Safety Margin

To maintain the system states within a predefined margin of safety, the value of DSM
has to be considered in controller design. The controller design based on DSM has the
advantage that the system will be maintained within the safe region not only during the
normal operation (transient and steady state) but also in case of fault or disturbance. The
inclusion of DSM into the controller design can be achieved by various methods; some
of them are introduced in Chapter 2. In this section, the inclusion of DSM in controller
design, especially FTC to recover the system performance in faulty system, is
addressed. The DSM value can be used as a performance index to adapt the parameters
of a certain controller, select a controller among different pre-designed controllers, or to

combine both methods of controller selection and tuning.

4.2.1 Single Controller Tuning

Adaptive control is one of the control techniques used to improve the system
performance by adapting the controller parameters based on the deviation of the system
performance from the desired one in case of disturbance or modeling error in the
system. An adaptive controller, as stated in [173], is a controller with adjustable
parameters and mechanism for adjusting the parameters (see Figure 4-1). Model
Reference Adaptive System (MRAS) (direct adaptive control) and Self-tuning
Regulators (STR) (indirect adaptive control) are the most common approaches for
parameter adjustments [173]. Adaptive controller seems to be the most natural
approach to accommodate faults; the faults effects appear as model parameter changes,
and they are identified online, and the control law is reconfigured automatically based
on new parameters [97]-[98]. The controller acts as PFTC where no information about

the fault is introduced.

A A

o Parameter

adjustment
Controller
. arameters
Set point vbP Output
Controller » Plant >

Input

Figure 4-1: Block diagram of the adaptive system [173]
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DSM can be used as a performance index, instead of output error in MRAS
technique, to tune the controller parameters in order to maintain the safety requirements
in addition to the output performance. A brief description about controller adapting
based on DSM is introduced in Chapter 2, more details are discussed here.

Based on the MIT rule [173], the controller parameters can be updated by using the

following equation:

ki(k+1)=ki(k)+ai£5(k+l) 4.1)

1

where k; is the controller parameter number i, ¢; 1s the adaptation parameter, and Xk) is
the discrete-time form of DSM. The performance index & can also be used instead of &
in (4.1)

This equation can be applied either for 6> 0 or 5<0. In case of &> 0, applying (4.1)
moves the system state far away from the safety boundary. Contrarily, the system state
is led to the safety boundary when 6<0. Since the adaptaition paratmter, ¢;, varies based
on the sign of &, using the absolute value of d'in (4.1) is not necessary.

Note that, &.) is a nonlinear and non-differentiable function (2.14) and it depends on d

(.), which is the distance vector from safe region boundaries. Therefore, 05(k +1)/0k; can

be replaced with a function fi( 05 (k +1)/ok; ) i.e.

k(k+1)=k((k)+a; fi(id(k +1)) 4.2)

4
If d has only one element negative, i.e. only one constraint of @ is violated, then

0 0
—o(k+1)=—29,,(k+1 43
ak,.( ) akim( ) (4.3)
where 9, is the distance between the current state and the violated constraint me {1,2...q},
and g is the total number of constraints.

If more than one violated constraint are violated, then the infinity norm

o e
—o(k+1)= Hﬁk,- d,(k+1) (4.4)

ok,

[ee]

is used. It corresponds to the maximum effect of 4; on violated constraints. d,cd is the

distances vector between the current state and violated constraints v<q.
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Adaptation Algorithm: The parameters can be adapted according to the following

procedure:
1. Calculate d(k)

2. If d(k) > 0 then fix the parameters at the nominal values which satisfy the output

performance.
3. If d(k)<0 then adapt the parameters according to (4.4).

4. If ki(k+1) within the range which satisfy system stability then update the

parameters.

5. If one of the adapted parameters is out of the stability range, then it shall be

fixed at the closest allowable gain to the calculated one.

4.2.2 Multi-Controller Selection

The system parameters variation and disturbances are not identified in the previous
method (single controller tuning based on DSM). Thus, a single controller may not
recover the system performance and safety requirements, especially in case of system
fault or large disturbance. Recover the system performance can be achieved by
reconfigure the controller. Reconfiguration mechanisms can be classified as on-line
controller selection and on-line controller calculation methods based on DSM.
Controller selection methods, assumed fault conditions are computed a priori in the
design phase and initiated on-line, based on the real-time information from the
diagnosis or supervisor system. On-line controller design methods are synthesized on-
line after the abnormal behaviors are diagnosed. The real-time information, which is
obtained from the diagnosis system, and DSM are used to design a new controller. The
priority to select a certain pre-computed control law depends on the estimation of the
system impairment status and DSM. This approach is highly dependent on prompt and
correct operation of the diagnosis system. Any false, missed, or error in diagnosis may
lead to a degraded performance or even a complete loss of the stability of the closed

loop system.

4.2.3 Multi-Controller Selection and Tuning

In most cases, the information of the diagnosis system may not be sufficiently accurate.

Therefore, the selected controller may need to be adapted on-line to compensate the
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missed information. A combination between both of the above methods can be used to
compensate inaccurate information about the diagnosed system i.e. after a fault has been
detected a new controller is selected or redesigned on-line. Moreover, this controller is
tuned based on the value of DSM in order to achieve the required output and safety

performance.
4.3 Examples of Controller Design Based on DSM

4.3.1 PID Controller Tuning for SISO Systems

The PID controller is one of the popular controllers used in more than 80% of industrial
SISO process. It has dominated industrial control for half a century, and there has been
a great deal of research interest into the implementation of the advanced controllers. The
reason is that the PID control has a simple structure, which is easy to be understood by
field engineers, and it is robust to disturbance and system uncertainty [129]]. A tutorial
given by Hang et al. [174] outlined the recent development in PID parameters
adjustment based on relay feedback test. Some other techniques have also been used in
developing auto-tuning PID controllers, such as the gain and phase margin based
method [175]; the stable auto-tuning PID method designed using the Lyapiunov method
[176], etc.

Methods based on online parameter estimation have also been proposed for the
automatic tuning of PID regulators. Some authors proposed auto-tuning regulators
based on pole placement or Linear Quadratic Gaussian (LQG) design methods. Auto-
tuning of PID using adaptive parameter estimation method is proposed in [177].
Another method for auto-tuning is to use expert (neural network, fuzzy, etc.) system to

tune the controller see for example [129], [178].

In this section, a mathematical formula to adapt PID controller parameters based on
DSM for a system defined by state space model is deduced, in order to satisfy the output

performance and safety requirements.

The control signal u€R at any instant &, using a discrete PID controller, is defined as

e(k)—e(k-1)

k
u(k) = Kpe(k)+K; > e())+Kp T

J=1

4.5)
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where Kp, K;, and Kp are the controller proportional, integral, and derivative gains
respectively.

It is required to adapt the PID controller parameters (Kp, K;, and Kp) to achieve the
safety requirements (d(k+1) > 0) in addition to the output performance. Hence, the
incremental values of the parameters should depend on DSM.

Consider that the safe operation region is a polytope, then the distance vector d(.) based

on (2.13) is defined as
dk+1)=d.-D,x(k+1) (4.6)

Substituting by the state space model and control input equation of PID controller then

d(k+1)=d, — D, (Ax(k) + b(K ,e(k) + K, Zk:e( N+K,

J=1

e(k) —e(k —1)
f)) 4.7

Refereeing to the single controller tuning method described in the previous section, then
d,(k+1)=d) -D)x(k +1)

where D’ eR™'cD, eR™ and d) eR™'cd. eR?™'. The variation of d(k+1) with

respect to PID parameters are given by:

0 .Y
%dv(k"'l)— D (be(k))
0 k
Tdv(kﬂ) =-Dy (b Xe())) (4.8)
I j=1
0 v elk)—e(k—1)
_6kD d,(k+1)= D”(b—T )

and the updated parameters are

kp(k+1) = kp(k)-+ o p|(-Dibe(i)]

k
(-Dg (b Ye()))

J=1

kp(k+1)=k;(k)+o; (4.9)

o0

e(k)—e(k—1)
T

kp(k+1)=kp(k)+oap )

(-Dy (b

o0

The initial values of the controller parameters are designed in order to satisfy the output

performance in normal operation.
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Example 4.1

Consider the DC motor model in Example 2.1, and assume that there exists a sudden
load torque disturbance 0.5 N.m after 15 s. Figure 4-2 shows the system response and
state trajectory using fixed PID controller parameters where Kp, K;, and Kp are 4, 2, and
2 respectively. The output response of the fixed PID controller in Figure 4-2c¢ is
accepted with respect to the transient and the steady state because the settling time is
less 5 s, and the steady state error is almost zero. However, the state trajectory lies
outside the safe boundaries at the transient (Figure 4-2a) i.e. DSM <0. By decreasing the
PID controller gain, the DSM response may be improved. On the other side, the reaction
time (rise and settling time) will increase. Figure 4-3 shows the motor response and
DSM variation using PID controller where Kp, K;, and Kp are 1.15, 1, and 1
respectively. Note that the DSM is positive in transient and steady state response;
contrarily, the motor reached the steady state after 10 s, while the motor reached steady
state after 5 s in Figure 4-2. Therefore, to obtain a fast response in addition to
maintaining positive DSM in transient and steady-state period, the PID controller

parameters have to be adapted based on DSM.

Figure 4-4 shows the motor response using adapted PID controller parameters based
on (4.9) where the nominal controller parameters Kp, K;, and Kp are 4, 2, and 2
respectively (parameters of Figure 4-2); the adaptation parameters ap, o and ap are 0.9,
0.001, and 0.05 respectively. Comparing the response of Figure 4-2 with Figure 4-4, it
is clear that the controller in Figure 4-4 tries to pull the state trajectory in the direction
of the safe region and the output response is almost similar to Figure 4-2. Changing the
nominal controller parameters or adaptation factors could enhance DSM response.
Figure 4-5 shows the motor response using adapted PID controller based on DSM
where nominal parameters Kp, K;, and Kp are 1.15, 1, and 1 respectively (parameters of
Figure 4-3) and the same adaptation parameters. It is clear that the response in Figure
4-5 is the best among the previous responses, because the settling time is less than 5 s
and the DSM is almost positive in the transient period. Despite using the same
parameters in both responses of Figure 4-5 and Figure 4-3, the system response in

Figure 4-5 is faster with acceptable DSM.
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4.3.2 Predictive Controller Design Based on DSM for SISO and MIMO Systems

Model predictive Control (MPC) or receding horizon control (RHC) is a form of control
in which the current control action is obtained by solving on-line, at each sampling instance,
a finite horizon optimal control problem, using the current state of the plant as the initial
state. The internal model is used to obtain prediction of system behavior over the finite
horizon [179]-[182]. The optimization yields an optimal control sequence, but only the
first control of the sequence is applied to the plant and in the next sampling time, the
complete calculation is repeated (receding horizon principle). This is the main difference
from conventional control, which uses a pre-computed control law.

LQR (Linear Quadratic Regulator) and EA (Eigen Assessment) are among the most
popular controller design techniques for MIMO systems. Each one has its own advantages
and disadvantages [102], [89]. Most of the process operates at control and state constraints.
It is not easy to handle control and state constraints using EA controller design. LQR is
an infinite horizon optimization problem and therefore LQR design with control and
state constraints is hard.

Since MPC is formulated as an optimization problem, inequality constraints can
naturally be added to the controller [182]. It naturally handles the control of
multivariable plant and takes into account the information on constraints arising from
equipment limitations, safety requirements, etc. In its usual form, it does this by
combining linear dynamic models with linear inequalities, which seems to be a very
powerful combination, since the linear model keeps the dynamic simple, while the
inequalities can be used to represent important nonlinearities, as well as constraints. The
usual formulation of MPC using a quadratic or linear cost function combined with a
linear model and linear inequalities leads to a quadratic programming (QP) or linear
programming (LP) optimization problem [181], [183]. The ability to handle explicitly
hard constraints on control and states may be viewed as one of the major factors of the
success of MPC in process control. Therefore, it has been widely applied in process
industries. Although constraints improve the appeal of MPC as an advanced control
strategy, they make the controller implementation difficult.

The control law of a predictive controller, for a system defined by the state-space
model, is obtained by minimizing the 2-norm measure of predicted performance [119],

[181] given by
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J= i:% | JéGi+ k|k)Hél_ ; ]\?gluu(i ; k|k)H§i (4.10)

subject to
x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k)+ Du(k)
x(k +ilk) € X

U, Suk+i)<u,,,

4.11)

with respect to the control sequence u

where
u=[u(k)ulk+1)..u(k+ N, —1)]T e RNe;
&k +ilk) =y q (k +i)— 9k +ilk)

lefi, =e"Qe, élk-+ik)e ™ is the predicted error between the desired and predicted

response. xeR" is the system state vector; yqeR" is the reference output vector. X(k + 1)|k

is the prediction of x(k+i) made at instance k, X; < X is the set of state vectors which
satisfy all state constraints. A, B, C and D system parameter matrices of adequate
dimensions, Q; are the error weighting matrices, R; are the input weighting matrices. N, N;
and N, are the maximum, minimum, and control horizons, respectively. Notice that Q,

R, N, Ny, and N, are free design parameters.

The MPC control law is based on the following idea: At time k&, compute the optimal
solution u = {uz,...,uz N, _1} to problem (4), apply u(k)=u, as input to the system,
and repeat the optimization at time k+1 based on the new state x(k+1).

In most cases, X, is a polytope defined by a set of linear inequalities in the

formafxécl., i=1,...,q, where a;,eR", c;eR, and ¢ is the number of constraints.

Therefore the state constraints can be written as
Dx(k +ik) <e, (4.12)

where D.=[a; ... aq]T and ¢.=[c;.. .cq]T
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4.3.2.1 Model Predictive Control with DSM constraints

The design of MPC based on DSM can be handled by replacing X; with the safe

operation region®. The state constraints can be written in the form

S(k +ik) 20 ord(k +ilk) > 0 (4.13)

where $(k+i|k) €N and a(k+i|k) e R? are the prediction of DSM and the distance

vector between the predicted state and the boundaries of @, made at instance £,
respectively.
Assuming that @ is a polytope, then the distance vector d(.) is obtained from (2.3),
which is deduced in Chapter 2

Consider the system model with input constraints and DSM constraints (4.13) then the

objective function according to (4.10) is

J=u"Mu+2Hu +c¢, (4.14)
subject to
d;, -D  x(k) 2 Dpu
t b (4.15)
u . <utk+i)<u
—min nd —max
where

M=Cp'Q,Cp+R,;
H :(X—Cax(k))TQtCB ;

¢, = (y ~Coux(k) T Q,(y - C yx(k));

yd(k+N1)
Yy k+Ny+1) m.(N-Ny+1)
y=| eN ;
_yd(k+N)
Uin Wypax
u,,; u
u . = n?ln EiRr'N” ‘u _ n?ax eer'N”
>min : =max
Wpin W,nax
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andCpg =Cp+Dy ;

1

eR

i SRr.Nu X r.Nu ;

m(N—Ny+)xm.(N~Ny+1)

N-N;+1
Equ( 1 )Xn; dt

. 9%m.(N—Nl +1)xn

c SJ%q(N—N1+l);

CANl_

B

caMip

calN-1p

. fRm(N—Nl +D)xr.N,,

E

CB 0 0
' 0
caV Nup
B 0 0
...... DaB ()
N-N.
............... DaA uB

97

. 9%q(N—Nl +D)xr.N,,

E



(V) r(N,~N)) ]
—_ —_——
0O --- 0 D 0
m(N, = Np)
0 0 0 D
D =
u
0 0 0 0
m(N =N, +1)
_0 0 0 0 ]

The minimization of (4.14) is known as a Quadratic Programming (QP) problem.
Since the problem depends on the current state x(k), the implementation of MPC
requires the on-line solution of a QP at each time step. Although efficient QP solvers
([180]-[182], [184]) based on active set methods and interior point methods [124],
[123], [181] are available, computing the input wu(k) demands significant on-line
computation effort. For this reason, the application of MPC has been limited to “slow”
and/or “small” processes. If all the constraints are inactive, the solution of the predictive
controller is exactly the same as in the unconstrained case (see Appendix C). But if the
constraints become active then the controller becomes nonlinear. The constrained
predictive control law is a linear time invariant control law, in case that the set of active
constraints is fixed. In practice the set of active constraints changes, so the control law
seems as consisting of a number of linear controllers with the same structures and
switching between them [181].

A new idea to design a piecewise-linear controller for MPC with constraints is
introduced in [185] and [186]. The idea is that for small problems, in which the state-
space is divided up into a manageably small number of (convex) pieces, one could pre-
compute (off-line) the control law that should be applied in each piece, and then the
MPC algorithm would consist simply of reading the appropriate gain matrix from a
look-up table, depending on the current state estimate. This idea is not feasible for
application in which the number of constraints is large. The approach taken by [185]
and [186] is based on the observation that in the MPC problem, the inequality
constraints (4.15) depends on the current state x(k), which can be thought as a set of
parameters of the QP problem. Therefore, the problem in (4.14) is defined as a multi-
parametric quadratic program (mp-QP) [185], [181].

The solution of mp-QP described in [185] is a Piecewise Affine (PWA). The

complexity of the polyhedral partition tends to increase rapidly with the number of
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constraints, and the dimension of state vector. This has led to approximate algorithms
for solving mp-QP problems being investigated in [187], and [188], with significant
reduction in complexity. Moreover, it has led to the investigation of efficient
implementation of piecewise linear function evaluation [189]. Several properties of the
geometry of the polyhedral partition and its relation to the combinations of active
constraints at the optimum of the quadratic program of the approach in [185] are
analyzed in [190].

A major problem, which can occur with constrained MPC, is that the optimization
problem may be infeasible. Standard QP solvers just stop in such case [181], [182]. This
can happen because an unexpected large disturbance or fault has occurred. Therefore,
there is really no way in which the plant can be kept within specified constraints. Some
times also it can happen because the real plant behaves differently from the internal
model. The predictive controller may then attribute differences between the plant and
the model behaviors to large disturbances or fault. If these keep growing, then it can
eventually decide, erroneously, that it does not have enough control authority to keep
the plant within constraints. There are many ways in which the predictive control
problem can become infeasible, and most of them are difficult to anticipate [181].

Thus, it is essential to have a strategy for dealing with the possibility of infeasibility.
Various possibilities exist, ranging from ah hoc measures such as outputting the same
control signal as in the previous case, or (better) the control signal computed u(k+2] k)
in the previous step, to sophisticated strategies of ‘constraints managements’, in which
one tries to relax the least-important constraints in an attempt to regain feasibility [181].
Typically, some of the constraints, such as physical limitations, must be enforced at all
times, while other constraints can be relaxed in order to transform the optimization
problem into a feasible one in the case of infeasibility.

There exist techniques which transform an infeasible MPC into a feasible one
without being able to explicitly differentiate between the relative importance’s among
the constraints, see e.g. [191] and [192]. However, the constraints are often not equally
important, e.g. a safety constraint is usually more important than a product quality
constraint. One way to explicitly express this difference in importance is to give the
constraints different priorities. When the on-line optimization problem becomes
infeasible, the lowest prioritized constraints are dropped [191]. In the research literature,

there are some algorithms and methods to solve infeasible MPC based on the relaxation
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of constraints with different priorities, see for example [193]-[198], [184], [185], and
[199].

The work in [193] discusses issues related to the problems of infeasibility in
constrained predictive control, and proposes several strategies to solve such problems,
including strategies that involve priority levels. The most rigorous approach it proposes
for infeasibility handling is to satisfy as many of the highest prioritized constraints as
possible, and then compute a feasible relaxation of the other constraints by treating
them as soft constraints, that is, a term is added to the cost function in the original MPC
optimization problem that penalizes the violations of these constraints.

An approach is presented in [194] and [195] for solving infeasible MPC problems
considering that the constraints have different priorities,. In this approach, integer
variables are introduced in order to handle the priorities in an optimal fashion. The
minimization of the size of the violation of the constraints is performed according to
their prioritization by solving a sequence of mixed integer optimization problems. In
[196], another algorithm to minimize a sequence of LP (or QP) problems in addition to
the original MPC optimization is presented. An important difference between the
algorithms presented in [193]-[196] and the other approaches mentioned above which
also take prioritization into account, is that the algorithms in [193]-[196] minimize the
violations of those constraints which can not be fulfilled.

A modification of the [196] approach is presented in [197], [198], and [185]. In the
case when all constraints have different priorities, it reduces the sequence of LP problems to
a single LP problem by selecting the weights (or, cost vector) in this LP problem. It solves
only a single LP in addition to the standard QP problem on-line in order to find the
feasible solution of MPC with constraints.

The approach, which is introduced [198], divides the problem into a multi-objective
framework that can handle a large class of prioritized objectives and constraints in an
optimal fashion. The internal model, objectives and their relative can be changed on-line
without the need for redesigning the controller off-line. However, this increase in
flexibility also demands an increase in the amount of on-line computation power that is
required.

If there is an uncertain input in the system, which can be considered as the additive fault

information in this case, Min-Max predictive controller design can be used [200]-[202].
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Example 4.2
Consider an MIMO system of magnetic tape drive system explained in [203] is given by

0 0 -10 0 0 0
) 0 0 0 10 0 0
X= X+
3.315 -3.315 -0.5882 -0.5882 8533 0
|3.315 -3.315 -0.5882 -0.5882 0 8.533
(4.16)
0.5 05 0 0
y= X
-2.113 2.113 0.372 0.375
A brief description of the system is introduced in Appendix D.
Consider that, the system has the following linear boundary constrains
. $=[-2.112.1130.3720.375]x < 2.5
2. ¢$=[-2.112.1130.372 0.375]x > 1.75 (4.17)

3. #=[050500]x<1.5
4. #=[050500]x=>0.5

The distance vector from these boundaries is given from
d(k)=d.-D, x(k)=0

and the control input constraints are

o],

-0.697 0.697  0.12276  0.12276 0.825
0.697 -0.697 -0.12276 -0.12276 —-0.5775
where D, = ,d, =
-0.707  0.707 0 0 1.7121
0.707  -0.707 0 0 -0.5707

O0(k)=mind;(k), &k) is the DSM at sampling instance k, g=4 (number of

1<i<q

constraints) and d,(k) is the variable number 7 in d(k).

Figure 4-6 shows the system response and DSM variation using MPC without

DSM constraints for a command input vector r=[1 2]" and the system is affected by
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a constant input disturbances ([-0.3 -0.2]") after 1.5 s. The controller has the

following parameters:

20 0 10 0 .
Q; = and R; = ; Ni=1 and N,=N,=5; the desired reference
0 20 0 10

outputs are chosen where

-Tk/0.15
1-e

y, (k)= { }, where the sampling time 7=0.05.

2.(1 _ o Tr/0l )
In this case, the control law is (see Appendix C)

uk)=[1, :0:0]K,y-K x(k)] (4.18)
K, - [R, +CBTQtCBTCBTQ,

-1
K, :[R, +CBTQtCB] [CBTQtCa}

The system response is acceptable in the transient and steady state, since that the 1%
settling time is less than 1 sec for each output, and steady state errors are very small.
However, the system behavior is not accepted in case of disturbance, DSM is negative
and the steady state errors are 10% and 25% for the first and the second output
respectively. Figure 4-7 shows the system response using MPC with DSM constraints;
quadprog function in Matlab toolbox is used in the simulation in order to solve the
quadratic optimization with hard constraints (4.14). The controller parameters are taken
as in the previous response (Figure 4-6). The response is very bad since the steady state
errors are 50% and 25% for the first and the second output respectively. The DSM is
negative as well, not only due to disturbance but also in the normal case. The reason for
that is the infeasibility of the solution of MPC with DSM constraints. Thus, to improve

the responses the infeasibility problem should be solved.

Based on the previous discussion about the infeasibility solution, it is clear that
changing the parameters of the controller can solve the infeasibility of MPC with
constraints. Figure 4-8 shows the MPC with DSM constraints with new controller

parameters as follow:

20 O 0.1 O
Q, = andR; = 0 01 ; Ni=1 and N,=N,= 3.
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Input current (A)

Outputs

Figure 4-8: Tape-Response with DSM as hard constraints

The responses of the outputs and DSM (Figure 4-8) are improved, not only in normal

operation but also in disturbance case.

According to the discussion about constrained MPC and the previous example
(Example 4.2), it is clear that the computation burden to find a feasible solution is high
in addition to the complexity of the algorithms. Therefore, in the following section two
different methods are suggested to find a feasible solution and to reduce the on-line

computation methods.

4.3.2.1.1 Softening the DSM constraints

Softening constraints is one systematic strategy for dealing with the infeasibility. That is
to allow the constraints to be crossed occasionally, but only if really necessary, rather
than regarding them as ‘hard’ boundaries that can never be crossed [181].

The strategy to soften constraints is to add new variables, so-called ‘slack variables’,
which are defined in such a way that they are non-zero only if the constraints are
violated. Then their non-zero values are very heavily penalized in the cost function, so

that the optimizer has a strong incentive to keep at zero if possible [181].
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Here, the distance vector d is taken as the slack variables. The 2-norm, 1-norm or oo-
norm of d(-) can be introduced as additional term in the main objective function (4.10).
The objective function of the predictive controller in this case can be rewritten in the

following form
S le, kol + S fuG+p)P 4.19
J=3 Hed(z+k|k)Hé+ > JuG+b)|, (4.19)
ile ! i=0 '

subject to (4.15),

where ¢ ){Z(()J coma g, :le P?},and (4.20)
P, =P, diag{(l—sign(c?j (k). l)e_dj(k)} s j=1-q- (4.21)

P; is the weighting matrix for d, and it depends on the elements of d (dj); if & is
negative then the corresponding matrix P; is increased and it is zero otherwise. P, is a
constant weighting matrix. The number of free-design parameters, in this case, is
increased by Pj,. In this case, hard constraints are restricted to control inputs. The
solution of the problem given in the form of (4.14) can be obtained by using either
direct (one-shoot) optimization or dynamic programming [205], [206]. A brief

description about the two methods is given in the following section.

a) One-shot Optimization
The control problem, which is formulated as the optimization of (4.19), will now be
solved using one-shoot optimization method. Substituting (4.20) and (4.21) in (4.19)

then the performance index can be written as

J=£H{Q’ O}F}+uRtuj (4.22)
al o gt

wheree, dand Q;are defined in the previous section,
P, e RIV4N = ;

The solution of (4.22) is deduced in Appendix C, and therefore the control law is
defined as
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u=[K,y+Kyd, —K x(b)] (4.23)
where

-1
K, :[Rt +C3'Q,Cyp +DbTPtDb} C;'Q,

1
K, :[Rt +Cp'Q,Cp +DbTPtDb} D, P,

K, :[Rt +CBTQZCB +DbTPtDb} [CBTQtCa +DbTP,DA}

The first component inu, namely u(k), is the control vector applied to the system.

This control vector can be obtained from (4.23) as

u(k) = [Ir :0:-~0][Kyz+Kddt —Kxx(k)J
= [KyX +K,d; —Kxx(k)] (4.24)

The MPC structure with DSM as soften constraints is shown in Figure 4-9.

Despite the simplicity of the direct optimization algorithm, it needs much memory
space because the matrices usually have large dimensions. Moreover, the problem could

be numerically unstable when the horizons are very large. The derivation of (4.19) is

explained in Appendix C.
I
Ky
y(k)
y K, u) » Plant >
K«
h 4 4
State
estimator

Figure 4-9: Block diagram of MPC with soften constraints
b) Dynamic programming

The solution of the control problem by applying dynamic programming is given by the
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affine control law [205] but without integral action in the form of
K,(j)=KW -Du, (0)-[M + BT Prj) Alx(h)] (4.25)

where u,, represents the control vector due to the reference output (y,) and u, the control

action based on the state feedback
K(V-1)=[R+B"P(N-1,B]",
where R = Rj +D'Q N - ;D P(N-1) is calculated by solving the Riccati Difference
Equation (RDE)
P(j+1)=Q+ A" ()A-[M+B PGA] K,()) forj=1,...N-2
and a specific P(0) = ET Q NE . K| is calculated from

K,()=K()M+B" p(j)A]

where M=D'Q,,C and Q=C Q,,C. The matrices Cand D are obtained from

E:[C ]Em(m+q)xn andﬁzﬁ)}eﬂ%"”q.

a

The matrices Q,,and R | are defined as

3 - Qy_; VI<j<N-NI-1
7o VN-N<j<N-1

ol V1<j<N-N, -1
R.:
J " |Ry_; YN-N,<j<N-1

The control vector u,,(k) is given by

u,, (k) =D} Qy;w(k)+B p(N -1)

k
where w(k) = l:zr( /

C

} eRM+d ; P(N-1) is obtained from

p(i+1)=[C-DK, ()] Q,[wik + N - + )]+ [A - BK, ()] p())

and p(0) =|C-DK, (/)] Qu[w(k+N)].
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The solution is feasible if the control law calculated in (4.25) satisfies the constraints of
control signal u(i+k). Otherwise, the objective function parameters should be adapted and
the optimization problem has to be solved again until the control constraints are satisfied.

The advantage of using dynamic programming optimization instead of direct
optimization is that the matrices dimensions are smaller. However, the number of
calculation steps is increased.

The main advantage of using softening DSM constraints is that the control law has a
fixed structure as in the case of no constraints (Figure 4-9), while its parameters change

according to the distance vector (d)

4.3.2.1.2 Adapting weight method

As shown in Example 4.2, changing the weight matrices could be used to find a feasible
solution. Therefore, a suggested method that adapts the MPC parameters in order to find a
feasible solution and use a fixed controller structure is introduced in this section. The
suggested method to find an optimal solution of the objective function (4.15) subject to
(4.14) 1s based on solving the problem without constraints and tuning the weight matrices Q
and R in order to satisfy the constraints.

The control law without constraints using direct optimization is in the form of (4.18).

By incorporating (4.18) in (4.15) then the condition for feasible solution will be:

d, +D,%(k) 2D, (K,y-K, (k) (4.26)

The problem here is to solve Matrix Inequality (MI) (4.26) to find the weighting
matrices Q, and R,. However, equation (4.26) is not easy to be solved because it is a
nonlinear MI. Therefore, (4.26) can be satisfied by tuning Q, and R, around its nominal
value using adaptive algorithm introduced in Section 4.2. Unfortunately, the rate of
changes of DSM with respect to Q; and R, is difficult to obtain. Hence, the adaptive
algorithm of Section 4.2 can not be easily applied in some cases. Consequently, a

simplified algorithm is proposed in the following:

1. Determine Q, and R,, which satisfy the desired performance at nominal

situation.
2. Let Q; (j))= Q. and R/())= Ry,; where j is the iteration number.
3. Calculate the control vector (4.18) based on Q) and R()).
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4. Check MI (4.26). if Q, (j) and R(j) do not satisfy (4.23), then calculate the new
weights based on the following equations:

Q/(HN=Q;(j—D+0a;AQ

| | (427)
R,(j))=R,(j -1+ AR

5. Repeat step 3 and 4 until (4.26) satisfied or at least x(k+1) moves in the direction
of @; where Q; (/))>0 and Ry(j) >0
6. The values of Q, and R,, which satisfy (4.26) are the optimal weights of (4.14)

that satisfy a feasible solution.

where a;€R and a, €R are the adaptation parameters. AQ and AR are the incremental

weight matrices for Q and R respectively.

The values (AQ, AR) €{(AQ;, AR))}, where AQ; and AR, are the incremental weight
matrices, which reduce the distance between the current state and the maximum violated
constraint number 7 at instance &, ie {1,2,...,¢q} and ¢ is the number of constraints. These

matrices (AQ;, AR)) are designed off-line for each constraint individually.

The adaptation equation (2.27) can be replaced with

Qi () =diag[p1, P>, .., fn] QuG-1)

R; ()= diagly, 15, -, yu] RG-1) (4.28)

In order to avoid negative gain matrices in addition to a more simplification in the
algorithm
where >0, [ €{1,...,m}and m is the number of outputs; 3> 0, p €{1,...,r,}and r is the
number of input; Q, and R, are the weight matrices at prediction horizon number i. £ and
7» are chosen based on the violated constraints. /4 and y, can be determined off-line for
each constraint, and they are selected one line from the set of pre-designed values.

Although the DC motor is a simple example and a SISO system, it illustrates the
effectiveness of each controller design method. It is a good example to compare
between the different methods of MPC solution discussed above, since it is required to
maintain DSM positive not only at steady state but also at transient in addition to obtain
a faster response. Therefore, the introduced methods in this section are implemented on

DC motor example.
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Example 4.3
Consider the example of DC motor in Example 4.1, and the reference output is

computed using a reference model, a first order system, in the form of

Y(s) = R(s) (4.29)

1+0.5s

where Y(s) and R(s) are the Laplace transform of the output and the input respectively,
and s is the Laplace operator, Figure 4-10 shows the state trajectories and responses
using MPC without constraints for 2 units a step input. The parameters of the controller
are chosen as Q=70, R=0.01, N;=1, N,=6, and N= 10.

The response of MPC controller without considering DSM (Figure 4-10c¢) is accepted
w.r.t. the error and rise-time but the state trajectory lies outside the safe boundaries at
transient (Figure 4-10a) i.e. DSM is negative. The response is almost the same as in
case of fixed parameters PID (Figure 4-2). To improve DSM at transient time, the
controller should be redesigned according to DSM.

Figure 4-11 shows the response using a predictive controller with DSM as hard con-
straint. The controller parameters are chosen as =30, R=0.01, N,=1, N,=6, and N= 10.
It is the best response among the other responses but the computation effort is high. In
addition, the feasibility solution methods discussed before are not considered. The
controller parameters are chosen manually, which produce a feasible solution in the
whole operation time (transient and steady state).

Figure 4-12 shows the response using MPC with softening the constraints of DSM
(Section 4.3.2.1.1). The DSM is improved. The controller parameters are
Py=diag(300,300,0,0,0,0), Q=[70], R~=[0.01], N=10, N;=1, and N,=6.

Figure 4-13 shows the response using MPC with adapted weight based on DSM
(Section 4.3.2.1.2). The DSM is improved but the response is faster than the previous
response. The controller parameters are, Q=[70], R~[0.01], N=10, N;=1, N,=6,
£=0.95, and y~=1.4.
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4.4 Frame Work of Fault Detection and Performance Recovery

System

An FTC system is a performance recovery controller due to faults. Design techniques
for FTC system can be classified as passive and active (PFTC and AFTC) [102], [103],
[89]. A PFTC system may tolerate only a limited number of faults, which are assumed to
be known prior to the design of the controller. Once the controller is designed, it can
compensate for anticipated faults without any access of on-line fault information. PFTC
systems treat the faults as if they were sources of modeling uncertainty. AFTC either
compensates the effect of faults by selecting a pre-computed control law, or by
synthesizing a new control law in real-time. Both methods need a fault detection and
identification (FDI) algorithm to identify the fault-induced changes and to reconfigure the
control low on-line [89]. To design fault tolerant control (FTC) system, one of the
important issues to consider is whether to recover the original system performance or to
accept some degree of performance degradation after the occurrence of a fault [102],
[198]. The philosophy of recovering the pre-fault system performance is unrealistic for
some faults. In practice, because of a faulty part, the degree of the capability of other
system components could be significantly reduced. If the design objective is still to
maintain the original system performance, the remaining parts may be forced to work
beyond the nominal duty to compensate for the handicaps caused by the fault. This
situation is highly undesirable in practice due to the physical limitation of the other parts.
The consequence of the so-designed FTC system may lead to a worse behavior and still
cause further damage. Therefore, trade-off between achievable performance and safety re-
quirements of the operation should be carefully considered in FTC system design not only
at steady state but also during transient (dynamic response) [102].

It is known that the information about the fault obtained from FDI, in many cases, is
not sufficiently accurate. Moreover, the uncertainties exist in faulty models. Therefore,
considering DSM constraints in the recovery controller, particularly in MPC, is useful in
order to compensate the unavailable fault information and model uncertainties ([134]-
[141]). Thus, the design of an FTC system that achieves an acceptable performance in case
of system faults without violating the safety requirements of the overall system is the
focus of the work presented here.

The idea of using MPC in FTC is firstly discussed in [103] and implemented on a
simulation model of EL AL Flight 1862 in [119]. Both references point out that MPC
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provides suitable implementation architecture for fault tolerant control. The representation
of both faults and control objective is relatively natural and straightforward in MPC. Some
faults can be represented by modifying the constraints in MPC problem definition. Other
faults can be represented by modifying the internal model used by MPC [119], [181]. In
addition, MPC has a good degree of fault tolerant to some faults; especially actuator faults,
under a certain conditions, even if the faults are not detected (PFTC).

The degraded accepted performance can be handled in MPC by changing the
objective function or using multi-objective function. According to the definition of
DSM, MPC based on DSM constraints satisfies the safety requirements of the system
and the accepted degraded performance. In addition, a control system, whose design is
based on DSM, can compensate faults when it is difficult or just not possible to find an
FDI system that provides full and exact information about the fault. Moreover, not all
faults can be anticipated. In such situation, a DSM based FTC system could be very
useful to overcome this problem, because controllers based on DSM can maintain a
safety operation with acceptable degraded performance even in some cases of
unanticipated faults. On the other hand, the proposed FTC system can be applied to

active as well as passive FTC.

In the proposed FTC design, three controllers are configured and used for the

following scenarios:

e Under normal operating conditions, a nominal controller is designed to
guarantee the system’s stability and performance in the presence of the
modeling uncertainty or disturbance.

e When a fault occurs, the nominal controller should guarantee the system
signal boundary by checking DSM until the fault is detected.

e After a fault is detected (DSM < 0), the nominal controller is replaced
by MPC controller based on DSM using the nominal system model to
compensate the effect of the fault. This controller may recover some
control performances.

e If the fault is isolated, then the MPC with DSM is reconfigured again
using fault information by selecting the suitable faulty model to improve

the control performances.
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Remark 1: In the case of PFTC, no FDI system is used. The controller is reconfigured
according to the value of DSM. i.e., there are two control configurations; nominal

controller and MPC based on DSM using the nominal model.

Remark 2: It is possible that, in some cases, the fault that has occurred cannot be
isolated, for instance a fault whose functional structure is completely unknown a priori
(i.e., does not belong to the fault set). Then, two controller configurations is used as in

case of Remark 1.

The switching between the three types of controllers could cause a severe effect on the
controlled system. Therefore, a smooth transition from one controller to another is
mandatory. Different methods can be employed to smooth the transition such as gradual
changing of the input see Section 4.4.1.2, and control input signals fusion using for

example fuzzy logic or analogical gate circuit [151].

In this approach, the fault is isolated using the algorithm introduced in Chapter 3,
the reconfigurable controller is designed using MPC based on DSM and a new faulty
model selected according to FDI algorithm information. Figure 4-14 shows the general
structure for the proposed reconfigurable control scheme, which includes a set of
reference models, MPC using safe region constraints, a Multi-Model FDI system

employing parameters and state estimation, and a supervisor.
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Figure 4-14: Overall structure of the proposed FTC system

4.4.1 Multi-Reference Model and Command Control Block

As mentioned above, it is necessary to reduce the overall system performance to an
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acceptable degraded performance in some fault situation. Moreover, in some faulty
situation, the system cannot be able to follow the command input and therefore, it
should be changed in order to maintain an adequate system operation. The change of the
performance can be achieved by modifying the objective function of MPC [204], [119]
or by selecting a pre-designed reference model [102]. A combination of both methods is
proposed here. The objective function is changed according to the DSM value in order
to find a feasible solution of a constrained MPC. A degraded reference model can be
used to reduce the effort to find a feasible solution for constrained MPC. The multi-
reference and command control block (see Figure 3) is dedicated to select an acceptable
degraded performance in case of a specified fault. In case of a specified fault, a new
command input is selected in order to maintain the system availability. The design of
degraded reference model and command input for actuator faults is addressed in [102].
This method can be generalized in most of the faulty case. This block is activated

according to the information received from the supervisor.

4.4.1.1 Degraded Reference Model Design

Assume that the desired closed loop reference model of the system with no fault is

represented by

(1) = A, x(1) + Bx(t) } (4.30)

¥(0) = C,x(k) + D,r(1)
The corresponding transfer function matrix of the desired reference model is then:

T.(s)=C,(sI-A,)"'B, +D,. (4.31)
Assume that the eignvalues of the closed-loop system are represented as

T, =diaglly 25 - 2y}

After a fault has occurred, it is expected that the closed-loop system eignvalues of the
degraded reference model will move towards the imaginary boundary of s-plane to reflect

the loss of dynamic performance of the system as will as the reduction in stability margin.

Suppose that the eignvalues of the degraded reference model are represented as
r,=s7'r, (4.32)

where
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Y =diaglfy By - Bu|. B 2LV i=l-n
The transfer function matrix of the reference model of the degraded system then becomes

T ;(s)=Cy(s1-A,) ‘B, +Dy (4.34)
Assume that A, is diagonal then

Ag=37'T,

It is important to note that the desired and degraded reference models should have steady-

state gain for the purpose of commend input tracing. Therefore,

gi_r)l(l)(Cd(sI—Ad)_le +D, )= li_r)%(cr(sI—Ar)‘lBr +D,) (4.35)
and

Cy(Ay)'By+Dy =C.(A,)'B, +D, (4.36)
If it is assumed that C,~C, and D/~=D,, then

B, =x7'r,A;'B, (4.37)
Hence the degraded reference model can be represented as

(1) = Agx(1) + Bd“(f)} (4.38)

¥(6) = Cgx(t) + D gu(?)

4.4.1.2 Command Input Control

In some faulty situations, the system cannot follow the command input and therefore, it
should be changed in order to maintain system availability. A set of different command
input for different fault mode can be previously designed and selected on line based on
the detected fault. To avoid the transient effect due to the switching between the pre-
fault and post fault command input, it is important to change the command input
gradually (smooth change). Thus, based on smooth command input switching described
in [102], the following modified command input r,, will be generated based on the

selected command input r as
_T(k—kD)
Fp (F) =y (k=D +(1- e (k) ~t(k=1),  k2kp (439)

where

117



gy =" “ED nd w0 <1y and 750
r(k)= rf(k) k>kp and £(0< u<1) and 7 >

are design parameters to provide smooth switching between r, and ry; r, and ry are the

command inputs before and after the fault detection. For large £, r,, - r /. In fact, the

command input r,,(k) is an interpolation between r(k) and r,,(k-1).
Special case

In some situations, it is difficult to find controller parameters, which can track the command
input and achieve and the safety performance in addition to the stability. If the highest
priority is given to the safety i.e. DSM should be positive, then the DSM index is used to
determine the new command input as follows:

When the DSM is negative, at each instant there exists at least one constraint from the
constraints set of safe region is violated. In this case, DSM is the distance between the

current state and the nearest boundary constraint to the current state, i.e.
50| = 5,60 = i, ~xCb

Assume that the violated constraint number i€ {1,2,...,q} is taken as the reference target

to the system, and assume that D=0, then the new command will be
r.(k)=Cv,, (4.40)

where
Vip = arg(rrvli.n”(x —V; )||§] (4.41)

subject to
V; € {V|¢l~(V) = O}

and ¢;1s the nearest violated boundary constraint.

For a SISO system and linear safety constraints, the command input can be
calculated by another way without solving (4.41). The DSM can be defined for the

violated constraint 7 according to (2.12) as
5,(k)=¢,; —a] x(k) (4.42)

each vector a;; can be written as
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ro_
a, =c+c

then
0; (k) = cy; — (e +¢;5)x(k)
=1~ (k)
Therefore,
re (k) = c; —e;x(k) (4.43)

where r,.(k) is the new reference which depends on the current state of the system, y is the
output, af eR” and c;;€R. Equation (4.43) is used in Example 2.1 Section 2.3.1.1

where the DSM is selected as the error between the desired and output of the system.
It is clear that the reference is changed or adapted based on the system state location with
respect to the safe region until the state reaches the safe region.

Figure 4-15 shows the block diagram of command input selection and adjusting based

on DSM.

|
Switching | DSM computation and
L signal’ new command
: A
A 4 Xor X
| ' 5| controller [y{system >’
rq —»

a) Block diagram of system with different command input

b) Supervisor automata

Figure 4-15: Block diagram of command input selection based on DSM
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4.4.2 MPC Employing DSM Block

In the previous section, we discussed the MPC with constraints and showed how DSM can
be introduced in MPC. In most faulty systems, the information from FDI is not accurate or
sufficient to complete the fault description. Hence, an MPC complemented with DSM will
insure a safety operation of the system and can compensate the missed information about
the fault and uncertainties in the faulty model. The DSM index is used to specify the
priority of the constraints that can be relaxed in order to find a feasible solution and to

change the objective function parameters (weights).

4.4.3 Multi-model FDI and State and/or Parameter Estimation

The fault diagnosis and isolation subsystem described in Chapter 3 is activated when &) <
0 and/or dXf)/dt < 0. d&Xt)/dt < 0 means that the state trajectory moves in the direction of
unsafe operation. In general, faults can be divided into two types: additive faults, which
can be simulated as an unknown external signal, and multiplicative faults, which represent
the change in the parameters of the system. In both cases, it is necessary to estimate the
unknown external input or the new system parameters, according to the fault type, in
order to obtain information about the fault. Therefore, parameters and state estimation are
considered as a subsection of the FDI system. The outputs of this block are the estimated
state and faulty model parameters, which are submitted to MPC block. Status information is

also an output that is sent to the supervisory block.

4.4.4 Supervisory Block

Based on the results of FDI block, the fault information is positive or negative. Positive
information means that one of the faulty models can describe the fault. Negative
information signifies that it is difficult to represent the fault by one model of the set.
Thus, positive information is treated according to the scenario of fault recovery
described before, and the reference model and command signal can be selected easily
according to the history of the system operation and the operation experience.
Contrarily, negative information is not easy to be handled, and therefore the supervisory
controller should select the command input as well as the reference model and/or
reconfigure the system in order to maintain the system availability. The supervisor
receives the data y from FDI block, which contain the fault type, the output performance

index and the DSM value. It sends the signal v to FDI in order to select the new model,
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which has to be used by the MPC. The DSM value plays an important role in
supervisory control. It can be considered as a safety index for the recovery control
performance, which is described by MPC. It is used in adapting the command input
signal and in configuring the reference models. The MPC recovery controller uses the
nominal plant model, in case of negative fault information, considering the fault as
uncertainties or disturbance in the system until a fault is diagnosed. MPC with DSM
constraints can recover the performance to a certain accepted degraded performance.
Min-Max MPC [200], [201] can be used in case of unknown fault if it can be considered

as an additional unknown input with known bound.

4.5 Conclusions

Designing MPC and adapting PID controlled parameters based on DSM are introduced
in this chapter. DSM index is also used in adapting the weights of the objective function
of MPC, in order to find a feasible solution and satisfy the safety requirements for a
predefined performance. The controller design based on DSM improves safety-
assessment especially for safety-critical systems. Simulation results demonstrate the
advantage of adapting PID and MPC design based on DSM, which maintains a margin
of safety during transient state. FTC scheme based on DSM is introduced; MPC using
DSM is discussed in the application of FTC system as well. A degraded performance
has to be accepted in some faulty situation in order to increase the system availability.
The accepted regarded performance can be achieved by changing either the command
input or the model of the reference output or changing both. Therefore, multi-reference

and multi-command selections are employed in the proposed FTC system.
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CHAPTER 5

REAL-TIME IMPLEMENTATION AND
EXPERIMENTS

5.1 Introduction

In the previous chapters, the idea of DSM and its applications were addressed. The
algorithms of these applications, particularly DSM in FDI, FTC and performance
recovery, are implemented on a laboratory process in order to evaluate the efficacy of
DSM and its applications. Therefore, this chapter is devoted to describe the plant and
the real-time realization of the DSM applications at the laboratory process. These tasks
are implemented in real-time using host/target configuration. Today it is very common
to use two computers in a host/target configuration to implement real time systems. The
host is a computer not necessary with real-time requirements, in which the developed
environment, data visualization and control panel in the form of Graphic User Interface
(GUI) reside. The real time system runs in the target, which can be an embedded system
based on a board with DSP (Digital Signal Processing), Micro-controller, or a second
PC.

The separation between host and target is not necessary for small systems since hard
real-time PC operating systems such as QNX, LynxOS, and RT-Linux have solved the
problem of deterministic response time of real-times tasks, which exist together with
non-real tasks on the same computers [156]. However, if the project has spread, then
host/target architecture is more flexibility and modular in addition to reduction in the
computation burden. An additional advantage is that the real-time system still works

when the host crashes, the matter that increases the reliability of the system [156].

5.2 Plant Description and Real-Time Architecture

The process control laboratory plant uses standard industrial components, which
introduce more realism and robustness into the experiments with control application
[156]. Figure 5-1 shows an overview of the set-up. The plant consists essentially of two
tanks of 100 1, a sump of 300 1, a pump (11kW), a heat exchanger, three control valves,

seven on/off valves, six temperature sensors, three level sensors, 3 pressure sensors, and
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one flow rate sensor. All these components are industrial ones. Valves are actuated by
compressed air and all signals sensor/actuator and the computer systems are transmitted
by using 4-20 mA standards. The plant works as follows: water is pumped from the
sump and it circulates around the plant following a selected (by on/off valves) path to
come back to the sump closing the loop. The pump works at a constant rotational speed
and the flow rate is controlled by means of an electric modulating valve.
Manual/automatic valves are used to change parameters and select different operating
points. Figure 5-2 shows a photo of the manual operation panel, and Figure 5-3 shows
the schematic diagram of the plant.

Two additional distinctive features make the plant very interesting [156]:

(a) Water temperature increases very fast because the pump dissipates about 1 kW
power in the water closed loop. Thus, a heat exchange unit is necessary to avoid
the system ending in thermal runaway.

(b) The two tanks are interconnected each other on the same stream in which the
outlet flows are derived, therefore the dynamic model consists not only of
differential equations but also of two implicit algebraic equations.

The hybrid characteristics of the plant are analyzed in [156] as follows:
1. Different physical modes: physical systems are normally modeled dynamically by a

smooth state-space function noted by
X(1) = f(x(2),u(2),2), (5.1)

where the vector field f is obtained by using principles of conservation of mass,
energy and momentum. These systems are usually referred as modes. However,
differential equations (i.e. continuous-valued state trajectories) should be frequently
supplemented by algebraic implicit equations as well as by discrete equations.
Equation (5.1) can be valid only within limitations. In this case, the mixture is given

by differential equations and inequalities.
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Figure 5-1: overview of laboratory plant

Figure 5-2: Manual operation panel
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Figure 5-3: Schematic diagram of the two-tank system

Such system is obtained with the laboratory plant by opening and closing the
interconnected valve. In addition, different equations are obtained depending on the
water level due to the geometry of the tanks.

2. Discontinuous inputs: Switches and relays are also found in control systems and they
can naturally be modeled as hybrid systems. This is the case of binary valves, which
can be found in the plant actuators at the tank inlet flows, for changing the plant
configuration and to enable/disable the cooling subsystem.

3. Discontinuous outputs: these outputs are given by discrete sensors. They are not
explicitly implemented in this plant. However, discrete level indicators in the tanks
as well as temperature indicators can be simulated easily using data from analog
Sensors.

4. Discontinuous control: on/off control can be used in this plant to control water level
in the tanks if valves on the water inlet stream are used or to control flow
temperature. This can be manipulated by three different valves such that a discrete
controller based on an automaton can be implemented.

The process has the ability to be controlled either manually using on/off switches and
proportional analog tuner or automatically using PC control program. Manual on/off

switches are used to test the on/off valves or to change the flow distribution to avoid
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over flow in case of fault in the system. Moreover, proportional analog tuners are used
to test and regulate the control valves. Therefore, the signals (discrete or continuous) to
each valve (on/off or proportional) are from either manual consol or from PC; the
selection between them is specified manually using manual/automatic switch.

The PC based control system configuration, in this setup, is configured to satisfy
real-time system requirements. The control tasks of the process are achieved using
host/target configuration system supported by RT-Lab software. The host is a computer
without real time requirment.

RT-LAB is an industrial-grade software package for engineers who use mathematical
block diagrams for simulation, control, and related applications. The software use
popular programming tools MATLAB/Simulink and MATRIXx/SystemBuild, and
works with viewers such as Lab VIEW and Altia, and programming languages
including Visual Basic and C++.

RT-LAB allows the user to readily convert Simulink or SystemBuild models to real-
time simulations, via Real-Time Workshop (RTW) or Autocode, and run them over one
or more PC processors. This is used particularly for Hardware-in-the-Loop (HIL) and
rapid control prototyping applications. RT-LAB transparently handles synchronization,
user interaction, and real-world interfacing using I/O boards and data exchanges for

seamless distributed execution.

5.2.1 Hardware Configuration

RT-LAB software runs on a hardware configuration consisting of command station
(host node), compilation node, target nodes, the communication links (real-time and

Ethernet), and the I/O boards.

5.2.1.1 The Command Station

The command station is a PC workstation that operates under Windows, and serves as
the user interface. The command station allows users to:

e edit and modify models;

e see model data;

e run the original model under its simulation software (Simulink,
SystemBuild, etc.);

e generate and separate code;
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e control the simulator's Go/Stop sequences.

5.2.1.2 Target nodes

The target nodes are real-time processing and communication computers that use
commercial processors interconnected by an Ethernet adapter. These computers can also
include a real-time communication interface like FireWire or cLAN (depending on the
selected OS), as well as I/O boards for accessing external equipment.

The system may have a single target or multiple target configurations according to

the size of the controlled process

5.2.1.2.1 Single target configuration

This configuration, as shown in Figure 5-4, is typically used for rapid control
prototyping, in which a single computer runs the plant simulation or control logic. One
or more hosts may connect to the target via an Ethernet link. The target can either run
QNX or RedHawk Linux for applications where real-time performance is required or

for fast simulations, or Windows XP as a simulation accelerator.

RT-LAE Hardware in

RT-LAB Target-PC
Command Station

HIL 1/O
Interfaces

Figure 5-4: Single target Configuration

5.2.1.2.2 Distributed target configuration

The distributed configuration, as shown in Figure 5-5, allows for complex models to be
distributed over a cluster of PCs running in parallel. The target nodes in the cluster
communicate between each other with low latency protocols such as FireWire,
SignalWire or InfiniBand, fast enough to provide reliable communication for real-time
applications. The real-time cluster is linked to one or more host stations through a

TCP/IP network. The user can build and expand the PC-cluster as needed, then redeploy
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the PCs for other applications when the simulation is done. RT-LAB can accommodate
up to 64 nodes running in parallel.

RT-LAB
PC-Cluster Target

RT-LAB
Command Station

Real Time Hardware in
Metwork (Firebyine) the Loco (HIL -

HILVO ©
Interface_s

Ethernet (TCP/IP)

Figure 5-5: Distributed target Configuration

The real-time target nodes perform:
e Real-time execution of the model’s simulation;

e Real-time communication between the nodes and 1/Os;

Initialization of the I/O systems;

Acquisition of the model’s internal variables and external outputs

through I/O modules;

Implementation of user-performed online parameters modification;

Recording data on local hard drive, if desired;

Supervision of the execution of the model’s simulation, and
communication with other nodes.
5.2.1.3 Compilation Node

The compilation node, which is one of the target nodes, is used to:
e compile C code;
e Jload the code onto each target node;

e debug the user’s source code (S-function, User Code Block, etc.).

5.2.1.4 Communication

Different types of communication links are employed for the hardware configurations of

RT-LAB. The command station and target node(s) communicate with each other using
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Ethernet communication links. Both analog and digital I/O boards allow the connection
between the target nodes and the external equipement for applications such as HIL. The
communication between the target nodes and the synchronization between them and the

I/O boards are performed using FireWire (IEEE P-1394) or cLAN interfaces.

Single target configuration (Figure 5-4) is sufficient for the application of the
described laboratory process. The command node and target node are commercial PC’s
with different operating system. A PCI-626 1/O card (from Sensory Company Inc.) is
used which satisfies all I/O requirements. Moreover, it is supported by QNX real-time
operating system. In this configuration the only communication link used is between the
target and command station using Ethernet communication. I/O board is attached

directly to the target node without external communication link.

5.2.2 Software Configuration

Software: Integration with Matlab/simulink and Real-Time Workshop (RTW). RTW
generates C codes directly from the Simulink model and construct a file that can be
excuted in real time computer (target).

For more details see [209], [155], and [156].

RT-LAB software is configured on the Command Station. Simulations can be run
entirely on the command station computer, but they are typically run on one or more
target nodes. For real-time simulation, the preferred operating system for the target
nodes is QNX.

The starting point for any simulation is a mathematical model of the system
components that are to be simulated. Users design and validate a model by analyzing
the system to be modeled, and implementing the model in the dynamic simulation
software. RT-LAB 1is designed to automate the execution of simulations for models
made with offline dynamic simulation software, like Simulink or SystemBuild, in a real-
time multiprocessing environment. RT-LAB is fully scalable, allowing users to separate
mathematical models into blocks to be run in parallel on a cluster of machines, without
subtly changing the model’s behavior, introducing real-time glitches, or causing
deadlocks.

Using block diagrams for programming simplifies the entry of parameters, and
guarantees complete and exact documentation of the system being modeled. Once the

model is validated, the user separates it into subsystems and inserts appropriate
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communication blocks. Each subsystem will be executed by target nodes in RT-Lab’s
distributed system.

When the C coding and compilation are complete, RT-LAB automatically distributes
its calculations among the target nodes, and provides an interface so users can execute
the simulation and manipulate the model’s parameters. The result is high-performance
simulation that can run in parallel and in real-time.

Users can interact with RT-LAB during a simulation by using the console, a
command terminal operating under Windows (NT, 2000, or Xp). Communication
between the console and the target nodes is performed through a TCP/IP connection.
This allows users to save any signal from the model, for viewing or for offline analysis.
It is also possible to use the console to modify the model’s parameters while the
simulation is running.

For the above configuration of RT-Lab, the software in the command station
(console) is Windows XP, and the simulation software is Matlab-Simulink to program
the simulation and control tasks. The simulation program is coded into C code in the
consol unit and transferred to the target node, which has QNX operating system [208].
The target unit compiles and executes the C code file in parallel with the simulation
program in the console. The data is transferred on-line between the target and console
throw communication Ethernet. In the consol station, the program is written in two main
blocks (Consol-Master) as shown in Figure 5-6. The Consol block contains the
supervisor control commands, such as manual/automatic switch, operating points, etc.,
and these commands can be changed and transferred to the target not on-line during the
run of the program. In Master block, all control task programs are grouped, such as FDI,
FTC, etc., and it cannot be activated on-line. The arrows between the two blocks

represent the on-line data transfer.
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Figure 5-6: Consol-Master connection

5.3 Experimental Results

Practical implementation of the FDI and the FTC based on DSM is carried out on the
laboratory setup described before. Therefore, many experiments have been tested in the

laboratory process, which are grouped into two categories: 1) fault detection results; 2)

performance recovery and controller adjusting.

The experimental setup has a hybrid characteristic due to the combination of discrete
and continuous actuators. The complete hybrid model of the two-tank system without

considering the heat-exchange unit, as shown in Figure 5-3, has been derived in [156] as

follow:

dh _ 1
dt  A(hy)

(G191 — q1(0))

1
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dhy _ 1 (5.q0 -

a = Ay P2 ) (53)
where

4,(t) = Ciypgh +(F, = R) (5.4)

q2(t) = C3\ pghy + (P, = Py) (5.5)

The outflow rates are given by

Qo1 () = C o1 K 1+ pgH + (P = P, )uy (¢) (5.6)
Qo2 (t) = CyoK,n/ pgH +(Py — P, )us (1) (5.7)
O, =019;1 + 0247 +03¢;3 (5.8)

qi1,qi2, and q;3 are the input flow to the tank number 1, 2 and the sump tank respectively;
h;and h; are the levels in the first and second tank respectively; u; and u, are the input
signals to the control valves of each tank; k,; and k,, are constant factors of the valves;
C; and C, are the overall conductance of each tank; C,; and C,, are the conductance of
the control valve 1 and 2; H is the height of the pipeline; 0;, d; and 03 are discrete
signals € {0,1}that represent the state of each discrete valve feeding each tank, 0 means
that the valve is closed and contrarily 1 is open; Q, is the total input flow controlled by
the flow valve.

The flow rates must satisfy mass balance equations, i.e.

91 =910 t q12 and g3 =q2, —q12 (5.9)
where
q12 = S12 sgn(P, — Py)Cpp4|A - P (5.10)

C)2 1s the conductance of the inter-connected valve; 0;,1s the discrete signal € {0,1} that

represent the state of each interconnected valve

Introducing (5.3)-(5.6) and (5.9) in (5.8) implicit equations

Ci\pgh + (P — P,) — C\ K1+ pgH + (P — P, )uy () — 81 sgn(B —P)Cip4/|A - Py =0
(5.11)
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Cy\Jpghy +(Py = B,) = Cyp K0 pgH +(Py — P, Jus (£) + 81 sgn(B —Py))cypy||A —P| =0
(5.12)

are obtained, which have to be solved for P, and P;.
Since the distances between the outlet pipelines and the corresponding tank are small
with respect to the distance between the two tanks, the outlet pipeline of each tank may

be considered as it is direct connected to the tank. Therefore, the model of the two-tank

system could be approximated as follows:

dh 1 ; /
71‘1 B A(h )(51‘11'1 — C, K pg(hy + H)u, = 6,518 (hy — h,)C,, §g|h1 B h2|)
1

dh 1
7; =m(52q1'2 —C 1K 2+ Pg(hy + H)u, +6,,sig(h, _hz)clzv 5g|h1 _h2|)
2

(5.13)

In our experiments, the setup is set as one-tank or two-tank configuration. The input
flow (Qy) is set to 1 I/sec by controlling the flow value (u,) either manual or automatic.
In one-tank configuration, the discrete signals & . & and Jj, are set to zero, while ¢ is
set to one, i.e. Oy =¢q1=1 1/s and ¢,=0. The level is controlled through the outflow
control valve (). The system is nonlinear and the discrete linearized state space model
at the operating point (#;=0.3m, ©;=50%) of one-tank is shown in Table 5-1. The
discrete linear model is a second order that represents the dynamic of the tank and the
valve movements.

In two tank configuration, the discrete signals &, and & are set to zero, while ¢ and
o1 are set to one, i.e. Oy =¢q1=1 l/s and ¢, is calculated from (5.1). The linearized
discrete model of two tank system about the operating point (4;=h,=0.3m, ©#;=35% and
u;=10%) is shown in Table 5-2. The control input is u;, and the input u, represents the
load disturbance or leakage. The controlled variable, in this case, is 4;, while &, is

floating.

Table 5-1: Linear state-space model of the one-tank system

A B
{0.999741 —6.94e—4} |:—1.0932€—5:|
0 0.740818 0.25918177
C D
o o] [o]

134



Table 5-2: Linear state-space model of the two-tank system

A B
0.9748 0.0019 -0.0146 -0.0004
-0.1616 -0.2104 0.5555 -0.0105
-2.4323 -1.1408 0.2307 -0.0173
C D
[1 0 0] [0]

5.3.1 Fault Detection and Isolation Results

The robust FDI algorithm, which is described in Chapter 3, is implemented on two-tank
system configurations for different types of faults, especially control actuator, leakage
and sensor faults. The parameters of the identified system model have uncertainties due
to two reasons:

1. The input flow rate (Q;) is not fixed at 1 /s, but it varies within the interval [0.92,
1.05] because of the high rate of the pump (11Kw), which makes any small
variation in the flow control valve increase the flow rate with bigger amount.

2. The cross section areas of both tanks are not constant due to the geometry of the
tank, since they depend on the level height, i.e. 4=f(hi); i {1,2}.

There is also a disturbance due to the opening of uncontrolled valve of the right tank
(u2) within [0,10%], which represents the load disturbance.

Thus, the system has uncertainties in the model parameters and uncontrolled input
disturbance together. The uncertainties are not completely known.

Hence, the FDI system should have the capability to detect different faults and
isolate them correctly.

Before applying the FDI algorithm, the safe region of the system operation should be
determined. Based on the experimental measurements of the system operation the safe
operation region is defined as follow:

1. one-tank system operation
dhy/dt+ 0.8 v; - 0.08 <0;
dhydt+0.75 vi+0.14 > 0;

- 0.4 < dhy/dt < 0.4; (5.14)
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-0.5< v; < 05,
0.25<h<0.35

2. two-tank system operation
The safe operation region is defined by the same constraints of the one-tank

configuration, in addition to the following constraint:
0.<(h1-h2)<0.05.

where the valve opening is normalized within [-0.5, 0.5] i.e. 0.5 means fully opened and -

0.5 completely closed. The level rate change (dh;/dt ) is in [mm/s].

Note that, firstly the state vector is x= [h; h v,~]T in case of two tank system and
x=[n v ]T in case of one tank system; secondary one of the safety variables is dh/dt,
which is not the state directly, where dh/dt =(x) and fiR"—R is a nonlinear function of
x, therefore dh/dt is taken as an independent variable, which can be easily computed from

h; in order to have linear constraints.

The three fault mode parameters are defined as in Example 3.2. In case of leakage

fault, the system model as in (3.53) where b,=[1 0 0]".

5.3.1.1 Actuator fault results

The actuator fault can be either bias or draft fault as discussed in Chapter 3. Actuator
bias fault is tested in the following experiments.

Consider that an actuator bias fault of 30% opening within the time interval [700s,
1100s] after the system operation. An adapted PID controller is used to control the level
of the left tank at 0.3 m. In this experiment, we assume that the fault set is the actuator
fault, leakage fault, and fault free.

Figure 5-7 shows the response, and the normalized DSM variation due to the actuator
fault bias. Figure 5-8 shows the estimated leakage and actuator fault. Figure 5-9 shows
the DSM variation of the actual system compared with DSM of the fault-free, the actuator

bias fault, and internal leakage fault models.

Based on the FDI method described in Chapter 3, DSM signals of both fault-free
model and actual system are negative. Therefore, the fault is detectable. The fault is
detected after 20 s. The estimated actuator and leakage faults are within the allowable

range. However, the integral error between the actual DSM and the estimated from the
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actuator fault model is the smallest one among the other errors of the fault set (leakage
fault and the fault-free case), in addition to the threshold value. Thus, the isolated fault is
the actuator fault and the estimated value is about 0.25. The error between the estimated

actuator fault and the actual one is due to the uncertainties in the model and the

nonlinearities.
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Figure 5-7: Level response and DSM variation in case of

actuator fault
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Figure 5-9: DSM variation for different fault modes

The same experiment is repeated, but the desired level height is 0.2 m instead of 0.3

m; the same model of the two-tank system is used in order to check the robustness of fault
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detection where the parameters of the model, in this case, differ from the model at 0.3 m
operating point. Figure 5-10, Figure 5-11 and Figure 5-12 show the response, estimated
faults and DSM variation for different fault mode respectively due to actuator bias fault
20 % closing after 900s. The fault is also detected after 20 s and isolated after 25 s. The

estimated leakage fault is positive, which means that its value is out of the allowable

range.

a) Level response of left tank

0.35
0.3
= 02
[ //
2 01
0
0 500 ] 1000 1500
Time (s)
b) Control signal
0.5
§ Jﬂﬂw\/‘
€
Q 0 P
© / Lw_/f
-0.5
0 500 1000 1500
Time (s)

a) DSM variation

DSM
e
IS

0 500 1000 1500
Time (s)

Figure 5-10: Level response and DSM variation in case of actuator fault at 0.2m

level
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a) Estimated actuator fault x 107 b) Estimated Leakage fault
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Figure 5-11: estimated actuator and leakage fault in case of

actuator fault at 0.2m level
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actuator fault at 0.2m level
5.3.1.2 Leakage fault results

Figure 5-13 shows the response and DSM variation due to the internal leakage simulated
by opening the leakage valve 30% after 700s. Figure 5-14 shows the estimated leakage
and actuator fault in case of leakage fault. Figure 5-15 shows the DSM variation of the
actual system with respect to the other models of actuator bias, fault-free, and internal

leakage. The fault is also detectable, and it is detected after 20 s and isolated after 25 s.
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Table 5-3 summarize the experimental results of the two faults (actuator and leakage)
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Table 5-3 Actuator and leakage fault results

J}a J}I TO Tl T2
ABF: 7, =03 0.25 0.0001 > Th <T, >T i
LF: /, = —0.0001 0.26 -.00015 > Ty, > Ty <T,

where ABEF is the abbreviation of actuator bias fault and LF is leakage fault, f,, and f;, are the actuator
and leakage fault respectively; f , and j} 7 are the estimated ones. T; is the integral error between actual

DSM and the computed one from each faulty model, i€{0,1,2} is the fault mode, and 7,,=0.1 is a
threshold error with integration step N=100.

5.3.1.3 Sensor fault results

Consider that a sensor bias fault about 0.05 exists within the time interval [850s, 1100s]
in the level sensor of the left tank. An adapted PID controller is used to control the level
of the left tank at 0.3 m. In this experiment, we assume that the fault set is the actuator
fault, leakage fault, sensor fault and fault free.

Figure 5-16 shows the response and DSM variation due to a bias in the level sensor of
the left tank after 800s. In this experiment, a load disturbance about 10% opining of the
uy exists from the starting time of the experiments in addition to the input flow
disturbance (Q;), a matter that lead to a change in the model parameters. Figure 5-17
shows the estimated sensor, actuator and leakage faults. Figure 5-18 shows the DSM
variation of the actual system and sensor, actuator and internal leakage models. The fault
is also detected after 10 s and isolated after 20 s. Table 5-4 summarize the senor fault

results

Table 5-4: Sensor fault result

| i | 4 | b | 0B |

Sensor fault 0.1 | -0.0001 0.08 >Tu, >Tu, >T, <Tu,

bias=0.05

where f, fiand f;, are the actuator, leakage and sensor fault respectively; f P f” 7 and f’ ; are the estimated

ones; Ty, T;, T, and T; are the integral error between actual DSM and the computed one from nominal,
actuator, leakage, and sensor fault models respectively, i.e. 4 fault mode; 7,,=0.1 is a threshold error with

integration step N=100.
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5.3.2 Performance Recovery and Safety Control Results

Different controllers design based on DSM, which are discussed in the previous
Chapter, are implemented in order to recover the output performance and to maintain
the system state inside the safe operation region due to the existence of large
disturbance or fault. These methods are implemented practically on the experimental
set-up explained before in order to demonstrate the fruitfulness of this design. The

experiments are grouped into two groups: 1) performance recovery and safety margin

control due to unknown disturbance; 2) FTC system (passive and active).

5.3.2.1 Performance Recovery for Disturbed System

Adapted PID and MPC based on DSM are tested, which are explained in Chapter 4.

5.3.2.1.1 Adapted PID controller parameters based on DSM

In this experiment, the plant is configured (Figure 5-3) where the level in the left tank (/)

was selected as controlled variable and the control signal u is applied to the left control
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valve. On the right tank, the valve was selected at a variable opening to simulate different
load disturbance (output flow) of the left tank. The interconnecting valve is commanded
according to the following criteria: the valve becomes off, before the level in the left tank
reaches the desired value and then on after that (Figure 5-19). At the first instance, the
plant behaves as a one-tank system until the level of the left tank reaches a certain steady
state limit and two-tank system after the interconnected valve is opened. Figure 5-19

shows the hybrid automaton of this experiment.

dh |
dt

= 0 &t>500sec & h>0.28m

Valve opened

/\

One-Tank
System

Two-Tank
System

h1<0. 15m
Valve closed

Figure 5-19: Hybrid automaton of two-tank system

Figure 5-20 shows the real time response, control signal and DSM variation using
fixed PID controller parameters (Kp=4, K~0.08, Kp=0.1), and the disturbance valve was
opened with the sequence 0%, 10%, 30%, 50% and 40% respectively, as shown in Figure
5-20a.

Figure 5-21 shows the real-time response and control signal using linear adapted
proportional gain of the PID controller as in (2.22) with the same disturbances as Figure
5-20, where ¢;;=2 and ¢;,=0. Comparing the two responses (fixed PID parameters and
adapted proportional PID), it is clear that in case of one-tank or two-tank system, the
system response using adapted PID controller based on safety boundary is better than
fixed PID, for either a normal or a disturbed system. The results insure that considering
DSM in adapting controller parameters improves system performance.

Figure 5-22 shows real time response using fuzzy adaptation as in (2.24) for the same
disturbance sequence as in Figure 5-21. The fuzzy supervisor has one input (deviation
from the safe boundary), one output (incremental proportional gain) with input/output
membership function shown in Figure 2.20, and Fuzzy allocation matrix shown in Table
2-1. Normalized input and output signal of fuzzy controller can help to generalize the

fuzzy supervisor for more than one parameter adaptation.
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The level responses of Figure 5-21 and Figure 5-22 have not changed with leakage

10% and 30%, but it began to change with 50% leakage with small rate and recovered at
40% leakage.

It is clear that adapting controller parameters, based on DSM, improves the system

output performance and can help in safety control of safety critical system.
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5.3.2.1.2 Predictive control based on DSM

The MPC design without constraints and with DSM constraints, either soft or hard, are
discussed in Chapter 4. The algorithms of MPC without constraints and with DSM
constraints as hard constraints are tested in real-time operation. In the current experiment,
the interconnecting valve is fully opened, the disturbance valve (control valve of 2™
tank) was adjusted to simulate a different load discharge disturbance and the control
valve, of the first tank, is used to adjust the level in both tanks. The two-tank system is
fed at constant flow 1 /s in the first tank. The discrete linear model of the system at

sampling rate equals to 10 Hz is given in Table 5-2.

Figure 5-23 shows the real-time results without considering DSM in predictive
controller for the actual two-tank system when the leakage valve is opened 10% after
500 sec, 30 after 650 sec, and 50% after 800 sec, in order to regulate the level of the left
tank at a set point of 0.3 m. The MPC controller parameters are Q; = [30], R; = [0.001];
N=10, N;=1, and Nu=5. Figure 5-24 shows the real-time results of DSM in predictive
controller as hard constraints for the same faults. It is clear from Figure 5-24 that in case
of fault, the controller has the ability to operate the system within the safety limit until

the fault is repaired or isolated.
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Figure 5-24: Predictive control with DSM

5.3.2.2 FTC Results

The FTC algorithm, discussed in Chapter 4, is implemented in real-time operation on an
experimental laboratory process. A model predictive controller is used with and without

DSM to regulate the level of the left tank at the set point of 0.3 m in case of actuator fault.

5.3.2.2.1 PFTC result

In this experiment, it is assumed that there is no FDI algorithm, or there is no information
about the fault (Remark I Chapter 4). MPC with and without DSM constraints are used to
recover the output performance and improve DSM.

Figure 5-25 shows real-time implementation of the FTC algorithm for the two-tank
system in case of bias fault 30% in the control valve after 500 s until 1500 s (fault
scenario). MPC without DSM is used as a nominal controller from the beginning until a
fault occurs with the following parameters: Q; = [50], R; = [0.01], ie {1, 2,...,N}, N=5,
je{l,2,....Nu}, Nu=5, and N;=1. After fault, the MPC with DSM constraint as soft

constraints, which discussed in Chapter 4 Section 4.3.2.1.1, is used with the following
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parameters Q; = [30], R; = [0.01], Py = diag(10,10,10,10,10,10), N=5, N;=1, and Nu=5.
As shown in Figure 5-25, the DSM (Figure 5-25b) is negative after the fault. According to
FTC algorithm another MPC with DSM constraints is used until the fault is identified. It
is assumed that there is no FDI subsystem; therefore, the second controller (MPC with
constraints) has been used alone to recover the performance. It is clear that the output
performance (Figure 5-25a) has improved using the second controller and the DSM value
as well.

Figure 5-26 shows the real-time results in case of repeated 20% actuator bias fault
between "350:500s" and "700:920s". The nominal controller has been used from the start
time (+=0) until the second fault (#>700), i.e. the nominal controller has been used to
recover the performance in the first fault. MPC with constraints is used to recover the
second fault after DSM<O0 as in Figure 5-26. It is clear that MPC with DSM constraints

has improved the system performance, and the safety margin is better than nominal MPC.

5.3.2.2.2 AFTC result

In this experiment, the information obtained from FDI subsystem is used to reconfigure
the controller in order to improve the output performance and DSM. Figure 5-27 shows
real-time implementation of the FTC algorithm for the two-tank system in case of bias
fault 20% in the control valve after 320s until 480s (fault scenario). Three controllers
are used: MPC without DSM in normal operation until DSM<0 (0:370s), MPC with
DSM constraints when DSM<0 until fault diagnosis (370:400s), and MPC with DSM
using faulty model (actuator fault model) after fault diagnosis (after 400s). It is clear
that the output and the safety performance are better than Figure 5-25 and Figure 5-26
using two controllers only; the recovery time is shorter, the steady state error is smaller
and the DSM is better than the previous results for the same fault. The parameters of

MPC with DSM constraints are chosen as
Q;=[50], Ri=[0.01], Po = diag(10,10,10,10,10,10), N=5, N,=1, and Nu=5
in the second controller configuration, while they are
Q;=[30], Ri=1[0.01], Py = diag(5,5,1,1,1,1), N=5, N;=1, and Nu=5

in the third controller configuration.
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5.4 Conclusions

In this Chapter, an experimental laboratory process consisting of two-tank system is
introduced. The hardware and software required to implement the control tasks of the
process are explained. Several experiments have been tested on the process in order to
show the applications of DSM. These experiments are classified as: a) a robust FDI based
on DSM results; b) controller design based on DSM especially PID and MPC; ¢) FTC
based on DSM. The theoretical background of the applications is discussed in previous
chapters.

Three types of faults are tested; actuator fault, internal leakage fault and sensor fault. A
discrete linearized model of the system is identified experimentally. The experimental
setup model parameters are time variant due to the non-linearties of the system model and
input flow variation, in addition to the existence of load disturbance. The practical FDI
results demonstrate the advantage and robustness of this approach. The main advantage of

the proposed approach of using DSM in FDI is the reduction in the number of diagnostic
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variables. Moreover, it is not restricted to a special type of faults or models. In addition,
DSM and its derivative is more sensitive to system parameter variation i.e. DSM in FDI
introduces robust fault-detection schemes.

Two types of controller design based on DSM are tested, PID and MPC. Adapting
the controller parameter based on DSM improves the system response, mainly the
system that is exposed to non-considerable and non-measurable disturbance, whether
the system model is well known or there is uncertainity in the system parameters.
Adapting PID controller based on DSM, linear and fuzzy adaptation, has been
implemented on an experimental hybrid plant. The main advantage of this adaptation
method is that the exact model of the system is less important, and we do not need to
identify the system parameter each time to reconfigure the controller. MPC without
DSM and with DSM as hard constraints are implemented. Using predictive controller
based on DSM gives better response than PID one, but the algorithm is complex and the
computation time is considerably high. The controller design based on DSM improves
safety-assessment of safety-critical systems

MPC based on DSM in the application of FTC system is implemented on a two-tank
process. PFTC (one or two controller configuration) and AFTC (three controller
configuration) based on DSM results demonstrate the advantage of the proposed FTC.
MPC based on DSM can compensate the effect of disturbance and uncertainties of the

isolated fault result.
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CHAPTER 6

CONCLUSIONS AND DISCUSSION

The FDI and FTC systems are important topics in the modern control system design.
During the last 3 decades, excessive work has been exerted in the field of FDI and FTC
systems. A robust FDI system and reliable FTC system are necessary to increase the
overall system dependability. A more dependable system is the system that has the
ability to tolerate faults and prevents them from developing into failures at a subsystem
or plant level.

Designing a robust FDI system and a performance recovery controller based on a
new performance index called DSM are the main aspects of this work in order to design
a reliable FTC system.

In Chapter 1, a comprehensive overview and literature survey of FDI and FTC
systems have been presented. Furthermore, the main difficulties in designing FDI and
FTC systems have been discussed.

The DSM definition and computation have been introduced in Chapter 2. Its
computation methods for safe region defined by linear boundaries have been deduced
too. Furthermore, its applications and limitations have been stated. Advantages of
controller design based on DSM have been discussed as well. DSM index can be used
as a new quality measure to compare between different controller design methods. A
controller design based on DSM maintains a predefined margin of safety not only at
steady state but also during transient operation. It also decreases the disturbance effect,
and help speeding up performance recovery in case of some system faults.

The uncertainties in the system model parameters and the disturbances are the main
difficulties in designing a FDI system, which affect the behaviour of FDI system.
Therefore, the FDI system has to be robust to such modelling error and disturbance. The
robustness of FDI system has been discussed in Chapter 3, and the existing techniques
to design a robust FDI system and their limitations have been discussed. Since each
robust FDI scheme has limitations and is applied in a special application, a robust FDI
problem has not been fully solved. Thus, design a FDI system based on DSM is
introduced in Chapter 3. The main advantage of the proposed approach of using DSM

in FDI is the reduction of the number of diagnosis variables. In addition, DSM and its
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derivative are more sensitive to system parameter variation than the measured signal
output or residual, i.e. using DSM in FDI introduces robust fault-detection schemes.
The proposed FDI scheme does not restrict to a special type of faults, but it can be
applied for different type of faults whether additive or multiplicative.

The controller design based on DSM improves safety-assessment of safety-critical
systems. Since PID controller is one of most popular and robust controller in particular
for SISO systems, and MPC is an effective controller for the MIMO systems due to its
ability to deal with hard constraints, the MPC design and the PID controlled parameters
adaptation based on DSM are introduced in Chapter 4. The MPC using DSM has been
discussed in the application of FTC system as well. Adapting the weights of MPC
objective function based on DSM index has been highlighted too, in order to find a
feasible solution and satisfy the safety requirements for a predefined performance. Finally, a
general frame work of FTC system design based on DSM has been introduced and
discussed. The proposed FTC scheme employs the introduced FDI scheme in addition to
the controllers design based on DSM, in particular MPC with DSM. In some faulty
situation, recovering the system performance to the nominal one can not be achieved. As a
result, reducing the output performance is necessary in order to increase the system
availability. Thus, the selection of degraded reference model and command input have been
discussed and included in the proposed FTC scheme. The combination of controller design
and FDI based on DSM with accepted degraded performance generates a reliable FTC
system, which enhance the overall system dependability.

DSM applications in FDI, controller adaptation and design, and FTC system, which
have been introduced in Chapter 3 and Chapter 4, have been implemented in real-time on
an experimental laboratory process in Chapter 5. Different fault simulations have been
tested in real time; actuator fault, internal leakage fault and sensor fault. The practical FDI
results demonstrate the advantage and robustness of this approach. Two types of
controller design based on DSM has been tested, PID and MPC, as well. The MPC
based on DSM in the application of FTC system either PFTC or AFTC design have been
implemented. The results of the real-time implementation demonstrate the advantages and
show the applicability of the proposed shames.

The key issue of the DSM application is the determination of the safe region. The
better specified safe region is, the more powerful benefits can be obtained, such as
robust FDI system, robust controller and dependable FTC. The choice of the state

variables relevant to the safety is not unique because it depends on the operation
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experience of the process (knowledge based). The safe operation region can be
considered as an invariant set and can be constructed by the same procedures if the
disturbance and uncertainties belong to compact sets.

However, in some processes, it is quite difficult to determine the safe operation
region. Moreover, the mathematical formulation of the DSM is not easy to obtain for
some safety regions such as non-convex region and/or nonlinear boundaries; a
knowledge-based model (fuzzy, neural, etc.) can be used in this case. Thus, more
investigation about safety region construction and DSM computation will be the focus
of future work.

The applicability and DSM computation for large-scale system, and using DSM in

fault prognosis are important topics, which will be covered as well.

159






APPENDIX A

DSM Computation

A.1 Vector Algebra Method

Let the number of state variables of interest are all state variable (m=n) to generalize the

algorithm. Consider the safe region is defined by ¢ linear inequalities in the form
d(x)=a;. x-¢c; <0; i=1,2,000,qg (A.1)
Then the boundary equation can be written in the form
#(x)=a . x;-¢;=0 (A.2)

where a;"e®R” is constant vector, and, x; €{ x |@#(x)=0}, and (x-x;) is the distance

vector between x and x;.

Consider three dimension state vector (n=3), and let x;;, X;» tWwo vector on the

boundary ¢ (FigureAl) then

¢ (X))~ ¢ (xi)=a;" (Xi/- Xi2)=0
This indicates that a, is the orthogonal vector on the boundary (a;/ L ¢(x))

E = i s the direction of orthogonal vector on the boundary as shown in Figure A1l

Ja.]

X2

X1

Figure Al: boundary surface
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The minimum distance between any state vector (X) in state space and the boundary
must be the norm of a vector in the direction of iB, start from x and terminate at state

vector on the boundary (x;).

d=lx, 1],
(X - %) if x satisfy the constrain ¢(x) <0
B:i: ”Xi'X”z (A.3)
”ai ”2 _ %) if x does not satisfy the constrain ¢(x) < 0
[x: -,
Multiply both side of (A.3) by a,’ and replace ||xl. - x||2 by d;then
al'T X; _aiT .X‘
d .=
’ Jail,
Substitute from (A.2)
_¢;—a;" x |>0iff x satisfy the constrain ¢(x) <0 (A4)
i= ”31'” ) < 0iff x satisfy does not the constrain ¢(x) < 0 '

The absolute value of the result of equation (A.4) gives the minimum distance
between the boundary and any state vector in state space and the sign indicates the

satisfaction of the constrain.

In general if x (7) is the system state vector at any time ¢ then .(¢) = C’,ﬂa—,”X(f)
ai 2
A.2 Optimization Method
. 2
min ||(x — Xl.)”2 (A.5)
subject to
$#(x)=a;" x;-¢; =0 (A.6)
using Lagrange principle the objective function will be
min (“(x - x,.)”z + i(aiT.xi —-¢; )) (A.7)

X;,

Taking the derivative with respect to x; and A, it leads to the equations
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2.0 0 a [ Oq—x)]
ud 0 2 apy || (% = x;2)
X |_| : : :
a_J .
oA 090 2 a, | (x,—x,)
L 41 w 0L 4]
1 1 7
Hence, x—x; =M ¢, =——a, (¢; —a,X)
il
(2 0 0 a, " [ 0
0 2 D oap 0
whereM ™' =| : €, = :
0 0 2 a, 0
L %1 @, 0] (¢

the solution of optimization problem.

It is sufficient to compute the last raw of M, where all component of ¢, are zero

instead of the last element. Therefore,

_ 0 _
0
— : =0 (A.8)
0
_(Ci - aix)_
(A.9)
(X —x;1)
(X = x;5) .
, X—X; = . ,and x; 1S
_ aix)_ (xn - xin)

i 2n_1a,1_
-1
—-X; = n_11 7| XX g .alz € = lzaiT(Ci_aix) (A.10)
27 Jal; 1 o[
L 2n_1a"’1_
T
Distance vector d; =|(x-x;,)|, then ¢,(t) = %
ail|,
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APPENDIX B

Analogical Exclusion-XOR Gate

The Boolean gates are used when the inputs are limited within two values, 0 and 1. If all
the four Quadrants of the input space are considered i.e. each input variable €[-max,
+max], then the Boolean gates are no longer suitable. Quantization of the input space
could be used to solve this difficulty. On the other side, the number of input space is
increasing proportionally with the resolution required. The analogical gates are a
generalisation of the Boolean gates when the four Quadrant of the input space are

considered [151].

Analogical XOR gate, which is used in this thesis to behave as the anti-windup

circuit for PID controller, is explained here.
The functionality description of analogical XOR:

Refereeing to Figure B.1, The output is identically zero if both inputs equal in

magnitude. If one input is zero, the output is equal to the present non-vanishing input.

Sy

Figure B1: Analogical XOR

V)

)=t

z=x oy = sig(x + y)|x[¢ (=[] -~

ax? +bxy]

¢(xy)= e‘{zwz

X

where a=1.02889, b=0.3574 and x,ye #

Basic Characteristics:
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xXoy=yox
c(xay)=cx+cy, c eR

x ax=0

x 2 0=0

x -x=0

min(x,y) < x 2x< max(x,y)
0 (x2 )/ 8 x| xo0 =0

0 (xay)/ 8yl =0

Anti-rest wind-up Network for PID controller

The Strategy for anti-rest wind-up is as follows:

a) In linear control range, neither the magnitude nor the sign of the integeral-gain
(K7) 1s changed.

b) When commend-saturation occurs, the magnitude of the K; gain is reduced first.

c) As the difference between the saturated (#) and the unsaturated command (u,)
further increases, the sign of K; is made negative together with further decrease
of the magnitude.

This strategy can be implemented using a single XOR analogical-gate,
K1 =K o[ ((u-tto)/t10 ) (/1)
where the first input x=((u-u,)/u,) and the second one y=u/u,

If the controller under normal operation (unsaturated) then x=0 otherwise x is
negative. Negative x means that the command input is saturated; y is always positive.

Therefore, the value of integral action ,Kj, is controlled based on x.
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APPENDIX C

MPC Solution Using One Shot Optimization
1. MPC without DSM Constraints
The objective function of MPC in (4.10)

N o 2 Nl 2
J=32 |G+ ko, + 2 o+ ki) C.1
Considering the state space model of the system, this equation can be written in the
form of
J = gTMg +2Hu +c, C2
The problem here is that minimize equation C. 2 with respect to the control sequence

u with out considering the state and control constraints.

where
M=c,7QC,+R ;
B t B t’
T
H=(-C x(k)" QC ; C.3
B
(v _ T _ :
c.=(y-C x(kn"Q, (y-C x(k);
Note that all the matrices, used here, are defined in Chapter 4 Section 4.3.2

The control sequence is deduced using one shot optimization as fallow:

According to the optimality principle, Z—J =0 at the optimal control sequence (u")
u

then

2Mu+2H" =0 c4
1.e.
u =-M"'H" C5

Substituting M and H from C.3 then

.= _[CBTQtCB * Rt} {(X B Cax(k))T Q.cC B}

1
_ T T _
u= [CB QtCB—’_Rt} C BQZ‘(X Cax(k)) C.6
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And the current input vector is

u(k) =[1,:0:-0 Ky - K ,x(k)] C.7

-1
K, :[R, +CBTQ,CB] c;'Q,

*

-1
K, =[Rt +CBTQtCB} [CBTtha}

2. MPC with DSM constraint as soft constraint
The objective function of MPC with softening DSM constraint (4.22)

J=[F}{Q’ O}F}rURtuJ C.38
alo p "

can also be written in the form
J=uMu+2Hu+c, C.9
where

"t o T T C. 10
M _|:R1+CB QCp+D, PtDb]

H =(y- Cax(k))T Q,Cp+(d, - Dax(k))T PD,;
¢r=(y—~C x(0) Q,(y~C x(k)+(d, - D x(k) PD,:

And the optimal sequence is obtained as C.5

* s—1__ T
u' =-M"H

Substituting from C. 10 and C. 11 into C. 9, then
u' =K,y +K,d, K x(b)]
Where
-1
_ T T T
K, = [RI+CB Qle +Db PtDb} C, Q,

-1
—_ T T T
Kd_[Rt+CB QtCB+Db PtDb} Db P,

-1
_ T T T T
Kx—[R,+CB QtCB+Db PtDb] {CB QtC”+Db PtDa
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APPENDIX D

Magnetic-Tape-Drive system

The Magnetic-tape-Drive system is a MIMO system shown in Fig.4.6. There is an
independently controllable drive motor on each end of the tape; therefore, it is possible
to control the tape position over the read head, x3, as well as the tension in the tape. The
tape is modeled to be a linear spring with small amount of viscous damping. The goal of
the control system is to enable commanding the tape to specific position over the read
head while maintaining a specified tension in the tape at all times. The desired
specifications are that the tape position must be adjusted if the tape head is moved 1mm
with 1% settling time of 2.50 sec and overshoot less than 20%. The tape tension, T,
should be controlled to 2 N with constraint that 0 < 7, < 4. The current is limited to 1A

at each drive motor.

The equation of motion of the system [203] is

X x
X1 3 2

- - -

Figure C1: Schematic diagram of magnetic tape drive

JO, =-T.r+K i,
JO,=-T.r+K,i,,
T, :k(xz _x1)+b(x1 _xz):

X, :(x2 +x1)/2,

(D.1)
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where i) and i, are the current into drive motors 1, 2, respectively, 7. tension in tape

(N), 6, & angular position of motor, » assembly, xjand x, position of tape over read

head (mm),
J=0.006375 kg.m2, motor and capstan inertia,
r=0.1 m, radias,
Kn=0.544 N.m/A, motor torque constant,
k=2.113 N/m, tape spring constant

b=0.375 N sec/m, tape damping constant.
Equation (4.16) is the system state space model where the state vector x=[x; x, @,

a»]", input vector u=[i i»]" and the output vector y=[x3 T.]" is
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