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Abstract

Interaction systems are a formal model for component-based systems.

It has been shown that in this formalism the question whether a compo-

nent is live is NP-hard. Therefore it is desirable to find sufficient criteria

that can be checked in polynomial time. In this report we present and

discuss two criteria for liveness. We also establish a new characterization

of liveness.

1 Introduction

We consider interaction systems, a model where components are combined via
connectors to form more complex systems [GS02, GS03b, GS05, BBS06, Sif04,
Sif05, GS03a]. Each single component i offers ports ai, bi, . . . ∈ Ai for coopera-
tion with other components. Each port in Ai represents an action of component
i. The behavior of a component is represented by a labeled transition system.
Components are glued together via connectors, where each connector connects
certain ports. In the global system obtained by gluing components together
deadlocks may arise where groups of components are waiting for each other
cyclically and will thus no longer participate in the progress of the global sys-
tem (cf. [Tan01]). If a system is deadlock-free it is always able to proceed.
Then one can ask the question whether a subset of components K ′ is live, i.e.
in every infinite sequence of transitions there are infinitely many interactions
that let a component from K ′ participate. In [MMMC06] it has been shown
that deciding liveness is NP-hard. Here we present and discuss two criteria that
ensure liveness and can be tested in polynomial time. In addition we give a new
characterization of liveness.

The report is organized as follows. Section 2 contains the basic definitions
and Section 3 contains the definitions concerning deadlock-freedom and live-
ness. Sections 4 and 5 constitute the main part of the report where the criteria
respectively the characterization are presented and the various proofs are given.
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2 Components, Connectors and Interaction Sys-

tems

We consider interaction systems, a model for component-based systems that was
proposed and discussed in detail in [GS02, GS03b, GS05, BBS06, Sif04, Sif05,
GS03a, GGMC+07b, GGMC+07a, MCMM07].

In this framework we consider a set of components K where we usually refer
to a component as i ∈ K. For every component i ∈ K a set Ai of actions or ports
is specified which the component can use to cooperate with other components.
This cooperation is determined by so-called connectors. A connector is a finite
nonempty set of ports that contains at most one port for every component in K.
Any nonempty subset of a connector constitutes an interaction of the system.
Any interaction models a step of the system where the ports contained in that
interaction are performed simultaneously.

Definition 1. A component system CS =
(

K, {Ai}i∈K

)

is a pair where K is
the set of components, Ai is the port set of component i, and any two port sets
are disjoint. Ports are also referred to as actions.

The union A =
⋃

i∈K

Ai of all port sets is the port set of K. A finite nonempty

subset c of A is called a connector or maximal interaction for CS, if it contains
at most one port of each component i ∈ K that is |c ∩ Ai| ≤ 1 for all i ∈ K. A
connector set is a set C of connectors for CS that covers all ports and contains
only maximal elements:

1.
⋃

c∈C

c = A

2. c ⊆ c′ ⇒ c = c′ for all c, c′ ∈ C.

If c is a connector, I (c) denotes the set of all nonempty subsets of c and is
called the set of interactions of c. For a set C of connectors

I (C) =
⋃

c∈C

I (c)

is the set of interactions of C.
For component i and interaction α, we put i (α) = Ai ∩ α. We say that

component i participates in α, if i (α) 6= ∅.

We give a small example to illustrate these concepts. We will extend this
example throughout the report whenever we encounter new notions.

Example 1. We consider a component system CS5 = (K5, {Ai}i∈K5
) consist-

ing of five components, where K5 := {1, 2, 3, 4, 5} and the port sets of the com-
ponents are given by A1 := {a1}, A2 := {b1, b2}, A3 := {d1, d2}, A4 := {e1, e2},
and A5 := {f1, f2}. In addition we fix a connector set as follows: C5 :=
{{a1, b1} , {a1, e1} , {f1, d1} , {e2, f2, a1} , {e2, f2, b2} , {e2, d2, b2} , {e2, d2, a1}}.

For example components 1 and 2 may perform their respective first actions
together whereas 4, 5, and 2 may perform their respective second actions to-
gether.

In the following, we always assume that K = {1, . . . , n} for some n ∈ N or
that K is countably infinite.
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An interaction model for a component system CS is defined by a connector
set C together with an arbitrary set Comp of interactions that are declared
to be complete. If an interaction is declared complete it can be performed
independently of the environment. In particular if we want an action of a single
component to be independent of the environment it should be declared to be
complete. Note that it is a design decision which interactions are chosen to be
complete. This choice is not restricted in any way and only depends on the
system one wishes to model1.

Definition 2. Let C be a connector set for the component system CS and let
Comp ⊆ I (C) be an arbitrary subset of interactions.

IM := (C, Comp)

is an interaction model for CS. The elements of Comp are called complete
interactions.

Example (Example 1 continued). In the above example we do not want any in-
teraction to be available independently of the connectors that have been specified.
Therefore we choose Comp5 to be the empty set.

If for some reason the interactions {e2} and {f2, b2} for example should be
independent of other actions, we could set Comp := {{e2} , {f2, b2}}.

The notions presented so far are only concerned with the possible structure
of communication between the different components. We provide a further level
of description of the components that restricts the order in which a component
may perform the actions it provides. For every component i ∈ K a labeled
transition system Ti describing the behavior of that component is introduced.

Definition 3. Let CS =
(

K, {Ai}i∈K

)

be a component system and IM =
(C, Comp) an interaction model for CS. Let for each component i ∈ K a
transition system Ti =

(

Qi, Ai,→i, Q
0
i

)

be given where →i⊆ Qi × Ai × Qi and

Q0
i ⊆ Qi is a non-empty set of initial states2. We write qi

ai→i q′i instead of
(qi, ai, q

′
i) ∈→i.

The induced interaction system is given by

Sys := (CS, IM, T )

where the global behavior T =
(

Q, I (C) ,→, Q0
)

is obtained from the local
transition systems of the individual components in a straightforward manner:

1. Q :=
∏

i∈K Qi, the Cartesian product of the Qi which we consider to be
order independent. We denote states by tuples q := (q1, . . . , qj , . . .) and
call them (global) states.

2. Q0 :=
∏

i∈K Q0
i , the Cartesian product of the local initial states. We call

the elements of Q0 (global) initial states.

1A slightly more restrictive definition of Comp has been introduced in [GS05]. There
it is required that every superset in I (C) of a complete interaction should also be complete.
Formally this is realized by introducing a certain notion of closure of a set of sets and requiring
that the set of complete interactions is closed in this sense. For our results this requirement
is not relevant.

2There are versions of the framework that consider systems without designated initial states
and allow the system to be initialized in any global state (cf. [GGMC+07b]). This point of
view is a special case of our definition where Q0

i
= Qi for all i.
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3. →⊆ Q × I (C) × Q, the transition relation for Sys defined by

∀α ∈ I (C)∀q, q′ ∈ Q : q = (q1, . . . , qj , . . .)
α
→ q′ =

(

q′1, . . . , q
′
j , . . .

)

⇔

∀i ∈ K : qi

i(α)
→i q′i if i participates in α and q′i = qi otherwise.

A state qi ∈ Qi, respectively a global state q ∈ Q is called complete if there is
some interaction α ∈ C ∪ Comp and some q′i such that qi

α
→i q′i, respectively

some q′ such that q
α
→ q′. Otherwise it is called incomplete.

Note that a global state q is complete if qi is complete for some i. But q

may still be complete even if all qi are incomplete.

Example (Example 1 continued). The behavior of component i is given in Fig.
1 for i ∈ {1, . . . , 5}. For every component i we put Q0

i = Qi. The induced tran-

p1
1

p2
1

p2
2

p4
1

p4
2

p3
1

p3
2

p5
1

p5
2

a1

e2 d2 f2

e1 d1 f1b1 b2

Figure 1: The local behavior of the components of Example 1

sition system is called T (5). For example in the global state
(

p1
1, p

2
1, p

3
1, p

4
1, p

5
1

)

a transition labeled with {d1, f1} is enabled. Our example system Sys5 :=
(CS5, IM5, T (5)) is now completely specified. Note that no local state of any
component is complete because there is no connector of length one and no com-
plete interaction at all. As we will see in the next section all global states are
complete.

Remark 1. In what follows, we often mention Sys = (CS, IM, T ). It is un-
derstood that CS =

(

K, {Ai}i∈K

)

, IM = (C, Comp), Ti =
(

Qi, Ai,→i, Q
0
i

)

for
i ∈ K, and T are given as above. Usually we will display the local transition
systems graphically. If not explicitly stated otherwise the local initial states will
be marked by an ingoing arrow.

3 Properties of Interaction Systems

In this section we will define the property of liveness of a component. In order to
define liveness we need the notion of deadlock-freedom first. Deadlock-freedom
in interaction systems has been thoroughly studied in diverse works. We refer
the reader to [GGMC+07b, MCMM07].

For a system under consideration it is desirable that a situation where all
components need some other component to proceed which in turn does not
offer the action needed never occurs. Such a situation would result in a setting
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where groups of components are waiting for each other cyclically such that no
interaction will ever be performed again. This kind of event is called a global
deadlock of the system and as mentioned above we want to avoid such deadlocks.
The references mentioned above give sufficient criteria for deadlock-freedom of
an interaction system that (in some cases) can be tested in polynomial time.
It has been shown in [Min06] that deciding deadlock-freedom in component
systems is NP-hard which justifies the search for such criteria.

From now on we will assume that the local transition systems have the
property that every state offers at least one action. This means that a deadlock
can only be caused by cyclic waiting conditions as above and not because of the
nonexistence of actions in the states at hand. This is not a strong restriction as
the general case can be reduced to this case by introducing idle actions.

Definition 4. Let Sys be an interaction system.

1. Let q ∈ Q. q is reachable in Sys if there is a sequence q0 α0→ q1 α1→ . . .
αn−1

→ q

such that q0 ∈ Q0 and αi ∈ C ∪ Comp for all 0 ≤ i ≤ n − 1.

2. Sys is called deadlock-free if for every reachable state q there exists α ∈
C ∪ Comp and q′ ∈ Q such that q

α
→ q′.

A deadlock-free system may always proceed with some maximal or complete
interaction. Deadlock-freedom of a system is equivalent to the fact that every
global state of the system is complete.

Example (Example 1 continued). In Sys5 every state is reachable because the
system may be initialized in any state. Sys5 is deadlock-free. This can be seen
by distinguishing several cases. If components 2 or 4 are in their first state it
is always possible to perform the connector {a1, b1} or {a1, e1}. Therefore it
suffices to consider the global states in which these two components are in their
second state. Then if at least one of components 3 or 5 is in the second state
one of the four connectors containing three elements is possible. If this is not
the case 3 and 5 are in their first state and {f1, d1} is possible. Therefore every
global state offers some maximal interaction and there is no deadlock.

The definition of deadlock-freedom leads to the notion of a run which simply
is an infinite thread of execution of the system.

Definition 5. Let Sys be a deadlock-free interaction system and let q ∈ Q be a
reachable state. A run of Sys is an infinite sequence

σ = q
α0→ q1 α1→ q2 . . .

with ql ∈ Q and αl ∈ C ∪ Comp for all l ∈ N.
Let i ∈ K be a component and let σ be a run of Sys. If there exists l such

that i participates in αl we say that i participates in σ.

Now we can say when a set of components is live. Basically a component is
live if for any point of time no matter how the system behaves the component
will eventually participate in some interaction which means that the component
participates infinitely many often in every run of the system. From now on we
identify singleton sets with their element if it is convenient to do so.
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Definition 6. Let Sys be a deadlock-free interaction system and let K ′ ⊆ K be
a nonempty set of components. We say that K ′ is live in Sys if for every run σ

of Sys there exists a natural number n ∈ N such that there is some i ∈ K ′ with
i (αn) 6= ∅.

We say that K ′ is strongly live in Sys if every component i ∈ K ′ is live in
Sys.

For a single component the notions of liveness and strong liveness coincide.
Moreover if i is live in Sys then any set of components containing i is also live
whereas the converse does not hold: even if K ′ is live in Sys there does not
need to be any i ∈ K ′ that is live. Finally note that for K ′ = K liveness follows
from deadlock-freedom.

Definition 3 introduced transitions for every α ∈ I (C) even though for the
notions presented above only the maximal and complete interactions are rele-
vant. The extra information about the interactions in I (C) is not needed in
this work and it could be omitted. The reason we include those transitions into
the global transition system is because they are needed to define a composition
operator that allows to build complex systems from smaller subsystems. Defi-
nitions and results concerning this operator are presented in [GGMC+07b]. We
want to stick with this general definition of an interaction system even though
we do not need all the information.

Example (Example 1 continued). Component 1 is live in our example-system.
We will consider the different global states and argue why for every state only
finitely many steps can be performed before 1 participates in an interaction.
If 2 is in its first state the only connector that does not involve 1 and might
be available is {f1, d1}. After the execution of this connector an interaction
involving 1 must be performed. If 2 is not in its first state it is possible to
perform an interaction not involving 1 but this interaction (unless it is {f1, d1}
which can only be performed once) will force 2 to move to the first state which
is the case covered by the argumentation above.

4 Criteria for Liveness

In [MMMC06] we showed that deciding liveness in interaction systems is NP-
hard. This motivates the search for sufficient criteria that can be checked in
polynomial time. We present and discuss two criteria that can both be tested
in polynomial time.

In this section we always assume that Sys is a deadlock-free interaction
system with a finite set of components K and finite port sets Ai.

Definition 7. Let Sys be an interaction system as above and let j ∈ K be an
arbitrary component.

1. Let A′
j ⊆ Aj be a subset of actions of j. A′

j is inevitable in Tj if only
finitely many transitions labeled with aj ∈ Aj\A′

j can be performed in Tj

before some action from A′
j must be performed.

2. Let Λ ⊆ I (C) be an arbitrary nonempty set of interactions and let j ∈ K

be a component. We define

Λ [j] := Aj ∩
⋃

α∈Λ

α
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the set of ports of j that participate in one of the interactions of Λ.

We will now give the definitions that are needed for the graph.

Definition 8. Let K̃ ⊆ K be an arbitrary subset of components. Let

excl
(

K̃
)

:=
{

α ∈ C ∪ Comp|∀i ∈ K̃ : i (α) = ∅
}

denote the set of maximal or complete interactions that do not allow any com-
ponent from K̃ to participate.

We define the graph Glive as follows.

Definition 9. Set
Glive := (K, E0)

where we have (i, j) ∈ E0 if and only if Aj\excl (i) [j] is inevitable in Tj.

Informally an edge from i to j in the graph has the meaning that j can only
proceed finitely many times before i also has to participate in a (global) step.

Definition 10. Let Sys be an interaction system as above and let i ∈ K be a
component.

Let Reach0 (i) := {j ∈ K|j is reachable from i in Glive} denote the set of
components that can be reached from i in Glive.

We inductively define the following subsets of K.

R0 (i) := Reach0 (i)

and
Rn+1 (i) := Rn (i)∪

{j ∈ K\Rn (i) |∀α ∈ C ∪ Comp (j (α) 6= ∅ ⇒ ∃k ∈ Rn (i) : k (α) 6= ∅)} .

The first condition is given in the following statement.

Proposition 1. Let Sys be a deadlock-free interaction system and let k ∈ K.
If K =

⋃

n≥0

Rn (k) then k is live in Sys.

For the proof we need the following auxiliary lemma:

Lemma 1. Let σ = q0
α0→ q1

α1→ q2 . . . be a run. If there is a path k0 → k1 →
. . . → kl in Glive and kl participates infinitely often in σ then k0 participates
infinitely often in σ.

Proof. We will perform an induction on the length l of the path.
Start of induction: l = 1. Then there is an edge k0 → k1. As k1 participates
infinitely often in transitions of σ and as the set of actions of k1 that need
cooperation of k0 is inevitable in Tk1

we conclude that k0 participates infinitely
often in transitions of σ.
Induction step: l → l + 1. Let k0 → k1 → . . . → kl → kl+1 be a path of length
l + 1 and let kl+1 participate infinitely often in σ then by induction assumption
k1 participates infinitely often in σ and as above we conclude that k0 participates
infinitely often.
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Now we can give the proof of Proposition 1:

Proof. Let σ = q0
α0→ q1

α1→ q2 . . . be a run. We have to show that σ encompasses
an infinite number of transitions where k participates. As K is finite and σ

infinite there must be some component k̂ that participates in infinitely many
transitions of σ.

1. k̂ = k, then we are done.

2. k̂ 6= k then we now that k̂ ∈
⋃

Ri(k).

case 1: if k̂ ∈ R0(k) then by the above lemma and the definition of R0(k)
we conclude that k participates infinitely often in σ.

case 2: let k̂ ∈ Ri(k) for some i > 0. Then we show by induction on i that
k participates infinitely often in σ.

Start of induction i = 1: if k̂ ∈ R1(k) then for all α ∈ C ∪ Comp with

k̂(α) 6= ∅ ∃j ∈ R0(k) with j(α) 6= ∅. As k̂ participates infinitely often in σ

and as there are only finitely many elements in C ∪ Comp there must be
some α with k̂(α) 6= ∅ which occurs infinitely often in σ. By definition of
R1(k) ∃j ∈ R0(k) with j(α) 6= ∅. Hence j participates infinitely often in
σ. As j ∈ R0(k) case 1 above implies that k participates infinitely often
in σ.

Induction step i → i + 1: let k̂ ∈ Ri+1(k). As before there is an α ∈

C∪Comp with k̂(α) 6= ∅ and α occurs infinitely often in σ. Some j ∈ Ri(k)
participates in this α, hence j participates infinitely often in σ and by
induction assumption k participates infinitely often in σ.

Corollary 1. Let Sys be a deadlock-free interaction system and let i ∈ K. If
K = Reach0 (i) then i is live in Sys.

Definition 11. Let E0 be defined as above and define En+1 inductively as fol-
lows.

En+1 := {(i, j) |Aj\excl (Reachn (i)) [j] is inevitable in Tj}

where Reachn (i) := {j|j is reachable from i in (K,
⋃n

m=0 Em)}.
Define E :=

⋃∞
m=0 Em and G := (K, E).

The second criterion is as follows.

Proposition 2. Let K ′ ⊆ K be a set of components. If all components in
K\K ′ are reachable from K ′ in G then K ′ is live in Sys.

Proof. First we prove the following two facts by induction over l ∈ N.

1. (i, j) ∈ El implies that j can only participate finitely many times in any
run σ of Sys before i has to participate.

2. j ∈ Reachl (i) implies that j can only participate finitely many times in
any run σ of Sys before i has to participate.
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For l = 0 both statements follow from Corollary 1.
Therefore let both statements be true for l and consider (i, j) ∈ El+1 as

well as a run σ. Assume that j participates infinitely many often in σ. From
the definition of El+1 we know that Aj\excl

(

Reachl (i)
)

[j] is inevitable in Tj.
Because j participates infinitely many often in σ this means that j has to
perform infinitely many often some action from Aj\excl

(

Reachl (i)
)

[j]. But

excl
(

Reachl (i)
)

[j] is the set of actions of j that occur in some connector not

involving any component from Reachl (i). Therefore Aj\excl
(

Reachl (i)
)

[j]
is the set of actions of j that only occur in connectors also involving compo-
nents from Reachl (i). Because K is finite this means that there must be some
j ∈ Reachl (i) that participates infinitely many often in σ. From the induction
hypothesis and j ∈ Reachl (i) we conclude that i participates in σ.

Next we consider i and j such that j ∈ Reachl+1 (i). We show that the
second statement is true by induction over the length of a path visiting only

edges from
l+1
⋃

m=0
Em. If i → j is such a path of length one the claim follows

from the first part of the proof. Now let p = i → . . . → k → j be a path of

length s + 1 that only visits edges from
l+1
⋃

m=0
Em and let σ be a run of Sys. If

j participates infinitely many often we conclude that k participates infinitely

many often also because k → j ∈
l+1
⋃

m=0
→m and because of the first part of the

proof. k is reachable from i over a path of length s. Therefore by induction we
conclude that i has to participate in σ.

The proof of the proposition is straightforward now. Let j be reachable from
i in G over a path p. This path visits only finitely many edges which means

that there exists n0 ∈ N such that all edges along p lie in
n0
⋃

m=0
Em. The second

fact of the proof above implies that for any run σ the component j can only
participate finitely many times before i also has to participate.

Then it is clear that K ′ is live in Sys if all components in K\K ′ are reach-
able from K ′ in G. Indeed, if K ′ = K liveness follows from deadlock-freedom.
Otherwise for any run there must be some component j that participates in-
finitely many often because K is finite. j is reachable from some component in
K ′ and the above argument yields that K ′ participates.

It is not hard to see that every stage of the construction of the edges causes
cost polynomial in |K|, |C ∪ Comp| and the sum of the sizes of the local tran-
sition systems. Once no new edges are added the construction can be stopped.
Note that this is the case after at most |K|2 stages because this is the maximal
number of edges that G can have. This argument shows that the criterion can
indeed be tested in polynomial time.

The second criterion covers a larger class of interaction systems than the
first one.

Proposition 3. Let Sys be an interaction system as above and let i ∈ K be
live in Sys.

An interaction system that satisfies the conditions of Proposition 1 also sat-
isfies the condition of Proposition 2 but not viceversa.
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Proof. First we will show that j ∈ Rn (i) implies j ∈ Reachn (i) by induction
on n ≥ 0.

For j ∈ R0 (i) nothing has to be done because R0 (i) = Reach0 (i)
Let j be in Rn+1 (i). Then we know by definition of Rn (i) that whenever

j participates in a maximal or complete interaction α there is some k ∈ Rn (i)
that also participates in α. From the induction hypothesis we conclude that
each such k is in Reachn (i). This means that whenever j participates in some
α ∈ C ∪Comp some component from Reachn (i) also participates and therefore
excl (Reachn (i)) [j] = ∅. Then Aj\excl (Reachn (i)) [j] = Aj and it is clear
that this set of actions is inevitable in Tj . Therefore (i, j) is added to En+1 and
j ∈ Reachn (i).

Now it is clear that K =
⋃

n≥0

Rn (i) implies that K\ {i} is reachable from i

in G. For the remainder of the proof we refer to the following example.

Example (Example 1 continued). We have already explained why the exam-
ple introduced above is deadlock-free and why component 1 is live in this system.
Now we will argue that Proposition 1 cannot be used to show this whereas Propo-
sition 2 is sufficient.

Glive for this system is given by Figure 2 where all edges are in E0.

1

2

4

3

5

Figure 2: Glive for Example 1

Components 3, 4 and 5 are not reachable from 1 therefore Corollary 1 can-
not be applied. But it is also not possible to fall back to Proposition 1 to prove
liveness of 1. We have Reach0 (1) = R0 (1) = {1, 2}. Computing R1 (1) we ad-
ditionally get {4} because every connector involving 4 also involves some action
of either 1 or 2. For all other n we get Rn (1)∩{3, 5} = ∅ because the connector
{g1, e1} does not involve any component from Reach (1)∪R1 (1). Therefore the
condition is not fulfilled.

Proposition 2 can be used to prove liveness of 1. (1, 4) will be added to E1.

Then every component is reachable from 1 in
(

K,
⋃1

m=0 Em

)

and therefore also

in G and liveness of 1 follows from the proposition.
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5 Characterizing Liveness of a Set of Compo-

nents

In this section we consider a not necessarily finite deadlock-free interaction sys-
tem. We present the characterization of all subsets K ′ ⊆ K that are live.

Definition 12. Let Sys be a deadlock-free interaction system and let K ′ ⊆ K

be a non-empty subset of components. We define

K̄ ′ := {k ∈ K|∃α ∈ excl (K ′) : k (α) 6= ∅} .

Further we define the following labeled transition system

T̄ :=
(

Q̄, excl (K ′) ,→
)

where Q̄ :=
∏

k∈K̄′ Qk and →⊆ Q̄ × excl (K ′) × Q̄ is the transition relation
which is defined as follows for any two states p̄, q̄ ∈ Q̄ and any interaction
α ∈ excl (K ′):

p̄
α
→ q̄ ⇔ ∃p, q ∈ Q :

(

p
α
→ q ∧ ∀i ∈ K̄ ′ : (pi = p̄i ∧ qi = q̄i)

)

Proposition 4. Let Sys be deadlock-free and let K ′ ⊆ K.
K ′ is live in Sys if and only if T̄ neither contains any cycle visiting a state

q̄ for which there exists q′ ∈
∏

i∈K\K̄′ Qi such that (q̄, q′) is reachable in Sys

nor any infinite path starting in such a state.

Proof. If T̄ contains a cycle visiting a state q̄ as above this cycle also exists in
the global system. This is because all interactions used to label the transitions
of T̄ are in excl (K ′) ⊆ C ∪ Comp.

In detail let
q̄

α0→ q1 α1→ . . .
αn→ q̄

constitute the cycle in T̄ where αl ∈ excl (K ′). Choose a state q′ ∈
∏

i∈K\K̄′

Qi

such that (q̄, q′) is reachable in Sys. Then

(q̄, q′)
α0→

(

q1, q′
) α1→ . . .

αn→ (q̄, q′)
α0→

(

q1, q′
) α1→ . . .

yields a run in Sys which does not involve any component from K ′, and K ′ is
not live. The case where T̄ contains an infinite path starting in a state as above
is treated analogously.

For the other direction we assume that in T̄ there is neither any cycle nor
any infinite path as described above. We want to show that K ′ is live in Sys.
Assume that this is not the case. Then there must be a run

σ = q0 α0→ q1 α1→ . . .

in Sys such that q0 is reachable and no αl involves any component from K ′.
This means that every αl is in excl (K ′). By deleting all local states ql

i where
i ∈ K\K̄ ′ we get an infinite sequence σ̄ in T̄ . Note that all q̄l on σ̄ have the
property described in the proposition. Either all states on σ̄ are pairwise distinct
or σ̄ contains a cycle. In both cases we obtain a contradiction.
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[GS03a] Gregor Gössler and Joseph Sifakis. Component-Based Construc-
tion of Deadlock-Free Systems. In proceedings of FSTTCS 2003,
Mumbai, India, volume 2914 of LNCS, pages 420–433, December
2003.
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