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Abstract. Interaction systems are a formal model for component-based
systems, where components are combined via connectors to form more
complex systems. We compare interaction systems (IS) to the well-
studied model of 1-safe Petri nets (1SN ) by giving a translation map1:
1SN → IS and a translation map2: IS → 1SN, so that a 1-safe Petri net
(an interaction system) and its according interaction system (1-safe Petri
net) defined by the respective mapping are isomorphic up to some label
relation R. So in some sense both models share the same expressiveness.
Also, the encoding map1 is polynomial and can be used to reduce the
problems of reachability, deadlock and liveness in 1SN to the problems
of reachability, deadlock and liveness in IS, yielding PSPACE-hardness
for these questions.

1 Introduction

In [GS03], Gössler and Sifakis presented interaction systems, a model for com-
ponent-based concurrent systems. As typical for component-based systems, in-
teraction systems display two different layers of description: On the one hand the
components, which are used to describe the communicating units, together with
the ports over which they communicate. On the other hand the glue code, i.e.
the information about the way components may communicate with each other.
I/O-Automata [LT89] and interface automata [dAH01] can be considered as
subclasses of interaction systems, for the latter feature a more general notion of
communication. E.g. interaction systems allow different degrees of parallelism,
i.e. different interactions may involve different numbers of participants.
Interaction systems seem to be an appropriate model for a variety of different
types of systems. More details about interaction systems and their properties
can be found in [Sif04, Sif05, GGM+07b, GGM+07a, MMM07b, MMM07a]. A
framework for component-based modelling using interaction systems has been
implemented in the BIP-project [BBS06, GQ07, BS07] and applied to [BMP+07].
Furthermore, interaction systems have been used to model biochemical reactions
[MSW07] and they serve as a commom semantic framework for the SPEEDS-
project [BCSM07].
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The aim of this paper is to answer some relevant questions concerning the in-
herent complexity of properties of interaction systems. A first result, concerning
these matters is given in [Min07], where it is shown that the problems of local
and global deadlock are NP-hard. Here, we obtain stronger results by establish-
ing a relation between interaction systems and the well-studied model of 1-safe
Petri nets.
In [CEP93] important results about PSPACE-completeness of behavioral ques-
tions in 1-safe Petri nets have been established, which is the starting point of
our investigation. In particular, we consider the traditional Petri net token-game
semantics for Petri nets, which does not allow the concurrent performance of mul-
tiple transitions (even if their presets and postsets are disjoint). In other words,
we restrict ourselves to the intrinsic concurrency of the Petri net model, i.e. the
fact that a transition may already involve multiple places.
This decision is natural for our purpose of comparing the model of 1-safe nets
to the model of interaction systems, because in the latter’s semantics, we also
may concurrently perform multiple actions within an interaction but only one
interaction at a time.
The main part of this work consists of giving mappings from one model to the
other and isomorphism relations for the resulting pairs of nets and systems.
The mappings and isomorphism relations are then used to derive PSPACE-
hardness results for some important behavioral questions for interaction systems,
namely reachability, global deadlock and liveness.
The paper is organized as follows. Section 2 contains the basic definitions. Sec-
tions 3 and 4 give the respective translations between 1-safe Petri nets and
interaction systems. Section 5 contains a conclusion and a discussion of related
work.

2 Definitions

2.1 1-Safe Petri Nets

A Petri net [CEP93] is a fourtuple N = (P, T, F, M0) such that:

– P and T are finite disjoint sets. Their elements are called places and tran-
sitions, respectively.

– F ⊆ (P × T ) ∪ (T × P ). F is called the flow relation.
– M0 : P → N is called the initial marking of N . In general, a mapping

M : P → N is called a marking of N . By M we denote the set of all
markings of a net.

For places as well as transitions we define the notion of preset and postset:
For p ∈ P , preset(p) := {t ∈ T | (t, p) ∈ F}, postset(p) := {t ∈ T | (p, t) ∈ F}.
For t ∈ T , preset(t) := {p ∈ P | (p, t) ∈ F}, postset(t) := {p ∈ P | (t, p) ∈ F}.

For technical reasons we only consider nets in which every node has a nonempty
preset or a nonempty postset. We let + denote the union of multisets.



Let N = (P, T, F, M0) be a Petri net. A transition t ∈ T is enabled under
a marking M if M(p) > 0 for every place p in the preset of t. Given a transition

t, we define a relation
t
→N as follows: M

t
→N M ′ if t is enabled under M and

M ′(p) = M(p)+F (t, p)−F (p, t), where F (x, y) is 1 if (x, y) ∈ F and 0 otherwise.
We say that the transition t is performed at M . We define the global transition
system (or global behavior) TN of N by TN = (M, T,→N , M0).
For M, M ′ ∈ M, we write M →*

N
M’ if there are (k ∈ N and) markings

M1, . . . , Mk ∈ M and transitions t1, . . . , tk+1 ∈ T that build a transition se-

quence M
t1→N M1 t2→N . . .

tk→N Mk tk+1

→ N M ′ in TN .

A marking M of a net N is called 1-safe, if for every place p of the net M(p) ≤ 1.
We identify a 1-safe marking with the set of places such that M(p) = 1. A net
N is called 1-safe if all its reachable markings are 1-safe. 1-safe nets are a well
studied computation model. The following questions are known to be PSPACE-
complete [CEP93].

The reachability problem for 1-safe nets consists of deciding, given a 1-safe
net N = (P, T, F, M0) and a marking M of N , whether M0 →∗

N M .

The liveness problem for 1-safe nets consists of deciding, given a 1-safe net
N = (P, T, F, M0) if every transition can always occur again. More precisely, if
for every reachable marking M and every transition t, there is M ′ ∈ M with
M →∗

N M ′ and M ′ enables t.

The deadlock problem for 1-safe nets consists of deciding, given a 1-safe net
N = (P, T, F, M0), if every reachable marking enables some transition. If this is
the case we call the net deadlock-free.

Example 1:

The 1-safe net N1 is given (by its graphical representation) in Figure 1. N1 is
deadlock free and even live and the set of reachable markings is {{p1, p2, p3},
{p3, p4, p5}, {p1, p6}}.

2.2 Interaction Systems

We review here interaction systems, a model for component-based systems that
was proposed and discussed in detail in [GS03, Sif05, GS05, BBS06, GGM+07b,
GGM+07a, MMM07a]. An interaction system is a tuple Sys = (K, {Ai}i∈K ,

C,Comp, {Ti}i∈K), where K is the set of components. W.l.o.g. we assume
K = {1, . . . , n}. Each component i ∈ K offers a finite set Ai of ports (also called
actions) for cooperation with other components. The port sets Ai are pairwise
disjoint. Cooperation is described by connectors and complete interactions. A
connector is a finite set of actions c ⊆

⋃
i∈K Ai, subject to the constraint

that for each component i at most one action ai ∈ Ai is in c. A connector c =



p1 p3

p4 p5

p2

t2 t3t1 t4

p6

Fig. 1. A 1-safe net N1

{ai1 , . . . , aik
} with aij

∈ Aij
describes that the components i1, . . . , ij cooperate

via these ports.
A connector set C is a finite set of connectors, s.t. every action of every
component occurs in at least one connector of C and no connector contains
any other connector. Sometimes not all components involved in a connector are
ready to perform their respective action. Still, we might want to allow those that
are ready to go on. For this we may designate certain subsets of connectors as
complete interactions. Let Comp be a designated set of complete interactions.
Comp has to be upwards-closed w.r.t. C, i.e.: ∀α ∈ Comp ∀c ∈ C ((α ⊂ α′ ⊆
c) ⇒ α′ ∈ Comp).
We call Int := C ∪ Comp the set of interactions1. (The distinction between
connectors and complete interactions is irrelevant for our encodings).
The local behavior of each component i is described by a transition system
Ti = (Qi, Ai,→i, q

0
i ), where Qi is the finite set of local states, →i⊆ Qi ×Ai ×Qi

the local transition relation and q0
i ∈ Qi is the local starting state.

Given an interaction α ∈ Int and a component i ∈ K we denote by i(α) := Ai∩α

the participation of i in α. For ease of notation, we identify a singleton set with
its element.
For qi ∈ Qi we define the set of enabled actions ea(qi) := {ai ∈ Ai | ∃q′i ∈ Qi,

s.t. qi
ai→i q′i}. We assume that the Ti’s are non-terminating, i.e. ∀i ∈ K ∀qi ∈

Qi ea(qi) 6= ∅.
The global behavior TSys = (Q, Int,→Sys, q

0) of Sys (henceforth also referred
to as global transition system) is obtained from the behaviors of the individual
components, given by the transition systems Ti, and the interactions Int in a
straightforward manner:

1 In the original nomenclature of [GS03], subsets of connectors in general are called
interactions. This more general notion of interaction is however only needed for the
purpose of composing interaction systems out of smaller interaction systems.



– Q =
∏

i∈K Qi, the Cartesian product of the Qi, which we consider to be
order independent. We denote states by tuples (q1, . . . , qn) and call them
global states.

– the relation →Sys ⊆ Q × Int × Q, defined by

∀α ∈ Int ∀q, q′ ∈ Q q = (q1, . . . , qn)
α
→Sys q′ = (q′1, . . . , q

′
n) iff

∀i ∈ K (qi

i(α)
→i q′i if i(α) 6= ∅ and q′i = qi otherwise).

– q0 = (q0
1 , . . . , q0

n) is the starting state for Sys.

Less formally, a transition labeled by α may take place in the global transition
system when each component i participating in α is ready to perform i(α).

Example 2:

Let Sys1 = {{1, 2, 3}, {Ai}1≤i≤3, C, Comp, {Ti}1≤i≤3), where A1 = {a1, b1}, A2 =
{a2, b2}, A3 = {a3, b3, d3}, C = {{a1, a2, a3}, {b1, b2, b3}, {d3}}, Comp = {{b1, b2}}
and the local transition systems Ti are given in Figure 2.

T1:

q1
0

T2: T3:

q1
1 b1

a1a1

q2
0

q2
1

a2b2

q3
0

q3
1 q3

2

b3

a3

a3

d3

Fig. 2. The Ti’s for Sys1

For the following definitions let Sys be an interaction system:

Let →*
Sys denote the reflexive and transitive closure of →Sys.

Given a state q ∈ Q we denote by reachability of q the question, whether
q is reachable in TSys, i.e. whether q0 →∗

Sys q.

The question whether Sys contains a global deadlock (henceforth simply re-
ferred to as a deadlock) is the question whether there is a reachable global state
q such that q 6→.

We say a component i ∈ K is live2 in Sys, if for any reachable global state
there is some q′ ∈ Q with q →∗

Sys q′ such that there exist α ∈ Int and q′′ ∈ Q

with q′
α
→Sys q′′, where i participates in α.

If a component i ∈ K is live in Sys then at each reachable global state a clever

2 Note that this notion of liveness does not coincide with the one defined in [MMM07a].



scheduler can continue in such a way that eventually an interaction may be
performed in which i participates.

2.3 Isomorphism up to a Label Relation R

We define a notion of isomorphism, namely isomorphism up to a label relation R,
which we use to establish a relation between transition systems that use different
label sets L1 and L2. R then defines which labels in L1 we want to correspond
to which labels in L2.

Let Ti = (Qi, Li,→i, q
0
i ), i ∈ {1, 2} be two labeled transition systems. Given

a label relation R ⊆ (L1 × L2), that relates labels of L1 to labels of L2, we
say that T1 and T2 are isomorphic up to R iff there exists a bijective function
f : Q1 → Q2, such that f(q0

1) = q0
2 and ∀q1 ∈ Q1, q2 ∈ Q2 the following two

propositions hold:

1) q1
l1→1 q′1 ⇒ ∃l2 ∈ L2, s.t. (l1, l2) ∈ R ∧ f(q1)

l2→2 f(q′1).

2) q2
l2→2 q′2 ⇒ ∃l1 ∈ L1, s.t. (l1, l2) ∈ R ∧ f−1(q2)

l1→1 f−1(q′2).

We say an interaction system and a 1-safe net are isomorphic up to a label
relation R iff this holds for their respective global transition systems.

3 Translating 1-Safe Nets to Interaction Systems

Let N = (P, T, F, M0) be a 1-safe net. We give a translation map1 from 1-safe
Petri nets to interaction systems as follows. We introduce a component p̂ for
each place p ∈ P . The transition system Tp̂ has only two states, one state s1

p̂ to

reflect the fact that p contains a token, one state s0
p̂ to reflect that it doesn’t.

The transitions t adjacent to p define the transition relation of Tp̂, where we
distinguish three cases:

a) t ∈ (preset(p) \ postset(p)). When such a transition is performed in N , this
means that p is empty before the performance of t and contains a token after-
wards. Thus, we introduce an edge from s0

p̂ to s1
p̂ labeled by a(t,p).

b) t ∈ (postset(p) \ preset(p)). Inverse to a), i.e. we introduce an edge from s1
p̂ to

s0
p̂ labeled by a(p,t).

c) t ∈ (preset(p)∩postset(p)). This means there has to be a token in p to perform
t and there will still be one there afterwards. In this case, we introduce a loop
at s1

p̂ labeled by a(t,p,t).

For an example of a place with pre- and postset resp. its corresponding compo-
nent, see Figure 3 (a) resp. (b). (Note that only edges adjacent to p are depicted.)
Now we define a connector c(t) for each transition t. For the places adjacent to
t again we distinguish three cases:



a) p ∈ (preset(t) \ postset(t)). This means that in order to perform t, there
has to be a token in p, and there will be no token in p after performing t. Thus
we include the action a(p,t) in c(t) which already occurs in the component p̂ in
such a way that this fact is perfectly reflected.
b) p ∈ (postset(t) \ preset(t)). Inverse to a), i.e. we include the action a(t,p) in
c(t).
c) p ∈ (preset(t) ∩ postset(t)). This means that in order to perform t, there has
to be a token in p, and there still be a token in p after performing t. Thus we
include the action a(t,p,t) in c(t) which already occurs in the component p̂ in the
corresponding way.

For an example of a transition with pre- and postset resp. its corresponding
connector, see Figure 4 (a) resp. (b). (Note that only edges adjacent to t are
depicted.)

Formal definition of map1:

map1(N) = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, where

K := {p̂ | p ∈ P}

For p̂ ∈ K : Ain
p̂ := {a(t,p) | ∃t ∈ T , s.t. p ∈ (preset(t) \ postset(t))},

Aout
p̂ := {a(p,t) | ∃t ∈ T , s.t. p ∈ (postset(t) \ pretset(t))},

Ainout
p̂ := {a(t,p,t) | ∃t ∈ T , s.t. p ∈ (preset(t) ∩ postset(t))}, and

Ap̂ := Ain
p̂ ∪ Aout

p̂ ∪ Ainout
p̂ .

T p̂ := ({s0
p̂, s

1
p̂}, Ap̂,→p̂, q

p̂
s ), where Ap̂ has already been given,

→p̂ := {(s0
p̂, a(t,p), s

1
p̂) | a(t,p) ∈ Ain

p̂ }
∪ {(s1

p̂, a(p,t), s
0
p̂) | a(p,t) ∈ Aout

p̂ }
∪ {(s1

p̂, a(t,p,t), s
1
p̂) | a(t,p,t) ∈ Ainout

p̂ }
q0
p̂ := s0

p̂ if M0(p) = 0 and q0
p̂ := s1

p̂ if M0(p) = 1.

In order to define a connector for a transition we now relate the actions in⋃
i∈K Ai to the transitions in the way described above.

For t ∈ T : Ain
t := {a(p,t) | p ∈ (preset(t) \ postset(t))},

Aout
t := {a(t,p) | p ∈ (postset(t) \ pretset(t))},

Ainout
t := {a(t,p,t) | p ∈ (preset(t) ∩ postset(t))}
c(t) := Ain

t ∪ Aout
t ∪ Ainout

t

C := {c(t) | t ∈ T }
Comp := ∅

It remains to prove that C is indeed a connector set.
We observe that {Asup

t | t ∈ T, sup ∈ {in, out, inout}} is a disjoint decomposition
of

⋃
i∈K Ai. This is due to the fact that the A

sup
t ’s are defined following the

definition of the A
sup
p̂ ’s. C is just a coarser decomposition obtained from the one

above by merging some of the disjoint subsets. So each action occurs exactly



p

t1 t2 t3

t4 t5

s0
p̂

s1
p̂

a(p,t4) a(t1,p)a(p,t5) a(t2,p) a(t3,p)

(a) (b)

t6

a(t6,p,t6)

Fig. 3. A place with ingoing and outgoing transitions and its corresponding component

t

p1 p2 p3

p4

c(t) = {a(p1,t), a(p2,t), a(t,p3,t), a(t,p4)}

(b)(a)

Fig. 4. A transition with its pre- and postset and its corresponding connector

once in a connector, i.e. it occurs in at least one connector and no connector can
be a subset of another connector.
Also, as Comp = ∅ we have upwards-closedness of Comp w.r.t. C.
Example 1 continued:

Let N1 = (P, T, F, M0) be the 1-safe net from Example 1. The corresponding in-
teraction system is map1(N1) = {{1, . . . , 6}, {Ai}1≤i≤6, C, ∅, {Ti}1≤i≤6}, where
C = {{ a(p4,t1), a(p5,t1), a(t1,p1), a(t1,p2)}, {a(p1,t2), a(p2,t2), a(t2,p4), a(t2,p5),

a(p3,t2,p3)}, {a(p2,t3), a(p3,t3), a(t3,p6)}, {a(p6,t4), a(t4,p3), a(t4,p2)}}
and the Ti’s (and implicitely the Ai’s) are given in Figure 5.

s0
p̂1

s1
p̂1

a(t1,p1)a(p1,t2)

s0
p̂2

s1
p̂2

a(t1,p2)a(p2,t2)

s0
p̂3

s1
p̂3

a(t4,p3)a(p3,t3)

s0
p̂4

s1
p̂4

a(t2,p4)a(p4,t1)

s0
p̂5

s1
p̂5

a(t2,p5)a(p5,t1)

s0
p̂6

s1
p̂6

a(t3,p6)a(p6,t4)

a(p3,t2,p3)

a(t4,p2)a(p2,t3)

T1 : T2 : T3 :

T4 : T5 : T6 :

Fig. 5. The Ti’s for map1(N1)



Let q be a global state of map1(N). Then q(p̂) denotes the projection of q to p̂.

Theorem 1. Let N be a 1-safe net and Sys = map1(N). With R := {(c, t) ∈
(Int × T ) | c = c(t)} and with the bijection f : Q → M, defined by f(q) = {p ∈
P | q(p̂) = s1

p̂} we have defined an isomorphism up to R for Sys and N .

Let Sys be an interaction system. We consider questions for typical properties
and prove them PSPACE-hard using Theorem 1 (and, of course, building on the
evident fact that map1 can be determined in polynomial time):

Corollary 1. The question, whether some state q can be reached in Sys is

PSPACE-hard.

We know that the reachability question for 1-safe nets, i.e. the question whether
some marking M is reachable in N is PSPACE-hard [CEP93].
By Theorem 1 we know that this question can be answered by answering instead
the reachability question for M ’s corresponding global state f−1(M) in Sys.

Corollary 2. The question, whether Sys is free of global deadlock is PSPACE-

hard.

We know that the question of deadlock for 1-safe nets, i.e. the question whether
there is a reachable marking M in N where no transition is enabled is PSPACE-
hard [CEP93]. By Theorem 1 we may conclude that this is the case iff there is
a reachable global state in map1(N), where no interaction is enabled.

Corollary 3. The question, whether a component i ∈ K is live is PSPACE-

hard.

We know that the question of liveness for 1-safe nets, i.e. the question whether
every transition can always occur again is PSPACE-hard [CEP93].
As liveness in 1-safe nets concerns transitions, which are translated to interac-
tions, and, in contrast, liveness in interaction systems concerns components, we
introduce a place pt for each transition t, such that the place’s corresponding
component p̂t will be live iff t can always occur again. This can be done by
employing a (polynomial) preencoding mappre on N before applying map1.
More formally, let mappre(N) = (P ∪ {pt | t ∈ T }, T, F ∪ {(pt, t), (t, pt) | t ∈
T }, M0 ∪ {pt | t ∈ T }).
Now N is live iff every p̂t (t ∈ T ) is live in map1(mappre(N)).

4 Translating Interaction Systems to 1-Safe Nets

In this section, we present the encoding map2 from interaction systems to 1-safe
nets. Our interest in such a translation is mainly of theoretic nature, i.e. we
want to gain more understanding of the properties of these two models. Still, as
interaction models are a relatively young model, for which so far not many tools
have been developed, there is some practical benefit: One could translate a sys-
tem into a net and apply Petri net tools in order to investigate some behavioral



questions of the system.
Let Sys = (K, {Ai}i∈K , C,Comp, {Ti}i∈K) be an interaction system. We intro-
duce a place q̂i for each local state qi ∈ Qi of a component i ∈ K. A global
state of Sys is a tuple of the present local states of the components, so for every
reachable state in N , there will always be exactly one place q̂i for each i ∈ K

that contains a token. This reflects that qi is the present state of component i.
It remains to translate the glue code given by the interactions Int to the notion
of transition. An action ai in Ai may occur multiple times in the local transition
system Ti of component i. Thus the performance of an interaction α may cause
differnet state changes in Sys.
As a consequence we are going to map an interaction α not to a single transition
but to a set of transitions T (α). Each transition in T (α) represents one of these
possible global state changes and will shift the tokens in N according to the local
state changes that are caused for the components that participate in α.
More formally, we define the mapping map2 from interaction systems to 1-safe
nets as follows:
map2(Sys) = (P, T, F, M0), where
P =

⋃
i∈K{q̂i | qi ∈ Qi}.

For α = {ai1 , ai2 , . . . , aik
} ∈ Int, we introduce a set of transitions T (α) :=

{{(qi1 , ai1 , q
′
i1

), . . . , (qik
, aik

, q′ik
)} | ∀1 ≤ j ≤ k(qij

, aij
, q′ij

) ∈→ij
}.

Then we define T =
⋃

α∈Int T (α).
For each α and each transition t = {(qi1 , ai1 , q

′
i1

), . . . , (qik
, aik

, q′ik
)} in T (α) we

introduce arcs as follows:
F (t) = {(q̂i1 , t), . . . , (q̂ik

, t)} ∪ {(t, q̂′i1), . . . , (t, q̂
′
ik

)}
F (α) =

⋃
t∈T (α) F (t).

F =
⋃

α∈Int F (α).
M0 = {q̂i ∈ P | qi = q0

i }.
This means that in the initital marking exactly those places that correspond to
the local starting states of the components contain a token.

Remark: Let Ti be the local labeled transition system of component i and
let ai ∈ Ai be an action of i. We denote the number of occurences of ai

in Ti by occ(ai). Note that for one interaction α = {ai1 , . . . , aik
} there are

(occ(ai1 ) · . . . · occ(aik
)) instances of α. This means we might have exponentially

(in n) many instances for a single interaction α, which will result in an expo-
nential blowup in our mapping from interaction systems to 1-safe nets. (See,
e.g. Example 2, where we would gain occ(a1) · occ(a2) · occ(a3) = 2 · 1 · 2 = 4
transitions of the interaction {a1, a2, a3} in T ({a1, a2, a3}).)

Theorem 2. Let Sys be an interaction system and N = map2(Sys). With R :=
{(α, t) ∈ (Int × T ) | t ∈ T (α)} and with the bijection f : Q → M, defined by

f(q1, . . . , qn) = {q̂1, . . . , q̂n} we have defined an isomorphism up to R for Sys

and N .

Remark: One application of our translation of interaction systems to Petri nets
is to answer behavioral questions for an interaction system Sys by translating
it to a 1-safe net and answering the (corresponding) question there. Also the



translation preserves component identity, i.e. a component i is represented in
map2(Sys) exactly by the places {q̂i | qi ∈ Qi}.

5 Conclusion & Related Work

Interaction systems are a model for component-based systems. The increasing
relevance of interaction systems demands a profound theoretical basis for this
model. In this paper we study complexity results for interaction systems. We do
so by establishing a relation between the model of interaction systems and the
well-studied model of 1-safe Petri nets for which complexity results have been
investigated in [CEP93]. We show that anything described by a 1-safe net can
easily be described by an interaction system without a blowup in notation. Sim-
ilarly, interaction systems can be translated into 1-safe nets. However, it seems
unavoidable to have a (worst case) exponential blowup for this translation.
The results with the greatest impact are that the problems of deadlock-freeness
and reachability are PSPACE-hard for interaction systems. These are the first
PSPACE-hardness results concerning interaction systems and they partially out-
run the complexity results given in [Min07]. The established results provide an
essential basis for future work: Given these “master”-reductions we may extend
the PSPACE-hardness results (by polynomial reductions) to almost all behav-
ioral questions for interaction systems.
Furthermore these results suggest that there is no polynomial time algorithm for
solving the questions of deadlock, reachability or liveness in interaction systems
and thus provide further motivation for approaches to establish desired proper-
ties: e.g. finding sufficient conditions for deadlock-freeness and other properties
of interaction systems such as the ones given in [MMM07a] and [GGM+07a] that
can be tested in polynomial time or methods making use of compositionality. The
model of interaction systems is particularly suited for applying these approaches
because they exploit local information about components, whose identities are
preserved when composing the interaction system. In contrast to this Petri nets
lack compositionality and the identity of a component is lost when a composite
system is modeled by a Petri net.
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