
Multi-Cue Pedestrian Recognition

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Dipl.-Inf. Stefan Munder

aus Potsdam

Mannheim, 2007

Dekan: Professor Dr. Matthias Krause, Universität Mannheim
Referent: Professor Dr. Christoph Schnörr, Universität Mannheim
Korreferent: Professor Dr. Dariu M. Gavrila, Universität Amsterdam

Tag der mündlichen Prüfung: 21. Juni 2007

Abstract

This thesis addresses the problem of detecting complex, deformable objects in an arbi-
trary, cluttered environment in sequences of video images. Often, no single best tech-
nique exists for such a challenging problem, as different approaches possess different
characteristics with regard to detection accuracy, processing speed, or the kind of errors
made. Therefore, multi-cue approaches are pursued in this thesis. By combining multi-
ple detection methods, each utilizing a different aspect of the video images, we seek to
gain detection accuracy, robustness, and computational efficiency.

The first part of this thesis deals with texture classification. In a comparative study,
various combinations of feature extraction and classification methods, some of which
novel, are examined with respect to classification performance and processing speed,
and the relation to the training sample size is analyzed.

The integration of shape matching and texture classification is investigated. A pose-
specific mixture-of-experts architecture is proposed, where shape matching yields a prob-
abilistic assignment of a texture pattern to a set of distinct pose clusters, each handled
by a specialized texture classifier, the local expert. The reduced appearance variability
that each local expert needs to cope with leads to improved classification performance.
A slight further performance gain could be achieved by shape normalization.

The second multi-cue approach deals with cascade systems that employ a sequence
of fast-to-complex system modules in order to gain computational efficiency. Three
optimization techniques are examined that adjust system parameters so as to optimize
the three performance measures detection rate, false positive rate, and processing cost.
A combined application of two techniques, a novel fast sequential optimization scheme
based on ROC (receiver operating characteristics) frontier following, followed by an
iterative gradient descent optimization method, is found to work best.

The third method investigated is a Bayesian combination of multiple visual cues.
An integrated object detection and tracking framework based on particle filtering is
presented. A novel object representation combines mixture models of shape and texture,
the former based on a generative point distribution model, the latter on discriminative
texture classifiers. The associated observation density function integrates the three visual
cues shape, texture, and depth.

All methods are extensively evaluated on the problem of detecting pedestrians in
urban environment from within a moving vehicle. Large data sets consisting of tens of
thousands of video images have been recorded in order to obtain statistically meaningful
results.

iii

Zusammenfassung

Diese Dissertation befasst sich mit dem Problem, komplexe, deformierbare Objekte in
beliebig strukturierter Umgebung aus Videobildern zu detektieren. Für solche her-
ausfordernden Problemstellungen gibt es in der Regel nicht nur eine einzelne beste
Lösung, sondern es existieren verschiedene Ansätze mit unterschiedlichen Charakteris-
tiken bezüglich Detektionsgüte, Verarbeitungsgeschwindigkeit oder der Art der auftrete-
nen Fehler. Daher werden in dieser Arbeit Multimerkmalsansätze verfolgt. Durch
die Kombination mehrerer Methoden, die jeweils unterschiedliche Aspekte der Video-
bilder ausnutzen, wird eine erhöhte Detektionsgüte, Robustheit, und Recheneffizienz
angestrebt.

Der erste Teil dieser Arbeit beschäftigt sich mit der Texturklassifikation. In einer Ver-
gleichsstudie werden verschiedene Kombinationen von Merkmalsextraktion und Klassi-
fikationsmethode, von denen einige neuartig sind, bezüglich Klassifikationsleistung und
Rechenaufwand untersucht, sowie die Relation zur Größe der Lernstichprobe analysiert.

Die Integration von Formenabgleich (Shape Matching) und Texturklassifikation ist
anschließend Gegenstand der Untersuchungen. Es wird eine posenspezifische Mixture-
of-Experts-Architektur vorgeschlagen, bei der durch Formenabgleich eine probabilisti-
sche Zuordnung von Texturmustern zu bestimmten Posenklassen vorgenommen wird, die
dann jeweils durch einen spezialisierten Texturklassifikator, dem sogenannten lokalen
Experten, gehandhabt werden. Da jeder Experte nur noch mit einer reduzierten Er-
scheinungsvielfalt zurechtkommen muss, verbessert sich die Klassifikationsleistung. Eine
weitere Leistungssteigerung konnte durch Formnormalisierung erreicht werden.

Der zweite hier untersuchte Multimerkmalsansatz setzt auf Kaskadensysteme, die
zwecks Recheneffizienz aus einer Sequenz von zunächst einfachen und dann schrittweise
immer komplexeren Systemmodulen bestehen. Drei Optimierungstechniken werden in
dieser Arbeit analysiert, die Systemparameter so justieren, dass die drei Leistungs-
maße Detektionsrate, Fehlalarmrate und Rechenaufwand optimiert werden. Eine kom-
binierte Anwendung zweier Techniken, ein neuartiges, schnelles sequentielles Optimie-
rungsschema basierend auf der Verfolgung von ROC-Fronten gefolgt von einer iterativen
Gradientenabstiegsmethode, stellte sich als am erfolgreichsten heraus.

Der dritte untersuchte Ansatz ist die Bayes’sche Kombination mehrerer visueller Merk-
male. Vorgestellt wird ein integriertes Objektdetektions- und Tracking-Framework basie-
rend auf Partikelfiltern. Eine neuartige Objektrepräsentation kombiniert Mischmodelle
für Form und Textur, ersteres basierend auf einem generativen Punktverteilungsmodell,
zweiteres basierend auf diskriminativen Texturklassifikatoren. Die zugehörige Beobach-
tungsdichtefunktion integriert die drei visuellen Merkmale Form, Textur und Tiefe.

Alle Methoden werden auf das Problem, Fußgänger in innerstädtischer Umgebung
aus einem fahrenden Fahrzeug heraus zu detektieren, angewandt und ausführlich be-
wertet. Um statistisch aussagekräftige Ergebnisse zu erhalten, werden große Datensätze
bestehend aus zehntausenden Videobildern eingesetzt.

iv

Acknowledgments

First of all, I would like to express my gratitude to Professor Dariu M. Gavrila who
gave me the opportunity to work on the exciting field of pedestrian recognition, who
taught me how to conduct scientific research, and who guided me through the process
of writing my dissertation. Without his continued input of ideas, inspiring discussions,
and technical support, this work would not have been possible.

I would like to thank Professor Christoph Schnörr for supervising my dissertation,
for patiently supporting my work and for providing me with the necessary scientific
background.

I am grateful to all colleagues, fellow students, and friends at DaimlerChrysler Re-
search for providing a friendly and inspiring atmosphere. In particular, many thanks
go to Jan Giebel for his introductory support. I have benefitted a lot from his pre-
ceding work. Secondly, I want to thank Markus Enzweiler for our close and fruitful
collaboration, for his support on data preparation and software implementation, and
for proofreading this thesis. I am also grateful to Ulrich Kreßel for providing all the
computing equipment to conduct my work.

Finally, I wish to thank my parents who always supported me in what I was doing.

v

vi

Contents

Abstract . iii

Zusammenfassung . iv

Acknowledgments . v

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Outline . 2

1.3 Thesis Contribution . 3

2 Related Work 5

2.1 ROI Generation . 5

2.2 Generative vs. Discriminative Pedestrian Models 6

2.3 Pedestrian Classification . 7

2.4 Pedestrian Tracking . 10

2.5 System Optimization . 11

3 Texture Classification 15

3.1 Feature Extraction . 16

3.1.1 PCA Coefficients . 16

3.1.2 Haar Wavelets . 17

3.1.3 Local Receptive Fields . 17

3.2 Classification Methods . 18

3.3 Methods for Increasing the Training Sample Size 19

3.3.1 Bootstrapping . 19

3.3.2 Cascade . 19

3.3.3 Boosted Cascade of Haar-like Features 19

3.4 Benchmark Data Set . 20

3.4.1 Data Sets . 20

3.4.2 Test Procedure . 21

3.5 Experimental Results . 22

3.5.1 Combinations of Feature Extraction and Classification Methods . 22

3.5.2 Increasing the Training Sample Size 25

3.5.3 Summary . 28

vii

Contents

4 Integration of Shape and Texture 29
4.1 Shape Representation . 31

4.1.1 Exemplar-based Shape Representation 32
4.1.2 Multi Point Distribution Model (MPDM) 32

4.2 Pose-Specific Mixture of Experts . 34
4.2.1 Shape-Based Gating Function . 35
4.2.2 Expert Training and Combination 36
4.2.3 Implementation Details . 36

4.3 Shape Normalization . 37
4.4 Experiments . 39

4.4.1 Data Sets . 40
4.4.2 Pose Clustering . 41
4.4.3 Cluster Association . 43
4.4.4 Validation of Design Choices . 45
4.4.5 Shape Normalization . 45
4.4.6 Results . 47

5 Cascade Optimization 49
5.1 Problem Formulation . 50
5.2 Sequential ROC Optimization . 53

5.2.1 Sequential Optimization Algorithm 53
5.2.2 Discussion . 55

5.3 Generic Optimization Techniques . 57
5.4 Independent Optimization . 59
5.5 Cascade Classification Experiments . 60

5.5.1 Synthetic Data Sets . 60
5.5.2 Real Example . 62

5.6 Pedestrian Recognition Application . 65
5.6.1 PROTECTOR System Modules 65
5.6.2 Test Methodology and Data Sets 69
5.6.3 Parameter Optimization Experiments 69
5.6.4 System Evaluation . 71

6 Bayesian Detection and Tracking 75
6.1 Particle Filtering Framework . 76
6.2 Multi-Cue Object Representation . 78

6.2.1 Shape Cue . 79
6.2.2 Texture Cue . 80
6.2.3 Depth Cue . 81
6.2.4 Cue Integration . 81

6.3 Application System . 82
6.3.1 Target Object Detector . 83

viii

Contents

6.3.2 Proposal Density . 83
6.3.3 Track Initialization and Termination 84

6.4 Experiments . 84
6.4.1 Model Generation . 84
6.4.2 System Evaluation . 87

7 Conclusion 91
7.1 Summary . 91
7.2 Future Work . 93

Bibliography 95

ix

Contents

x

1 Introduction

1.1 Motivation

Detecting a class of objects in video images is a fundamental topic in computer vision
research. At the core, we are faced with the pattern recognition problem of discriminat-
ing patterns of the target class from the vast space of “everything else”. In this thesis,
we are specifically interested in those cases, where (a) the target object is deformable
and of variable appearance, (b) no prior object model (such as a CAD drawing) is avail-
able, but where a representation of the target class needs to be learned from training
data, and where (c) the target object is located in a dynamic, cluttered environment,
so that simple segmentation techniques such as background subtraction are not appli-
cable. The list of typical properties that such an object detector is required to possess
include detection accuracy, i.e. a high detection rate at low false positives, robustness
to environmental conditions such as global illumination, and computational efficiency.

In general, there is no single best technique that serves all of these purposes, since
different approaches exhibit different characteristics. Therefore, multi-cue approaches
that combine multiple detection methods, each utilizing a different aspect of the input
image, are pursued in this thesis. Such combinations of multiple visual cues have the
potential of higher accuracy and robustness than single cue approaches, since errors
in one cue, caused for example by a certain background or lighting condition, may be
compensated for by the others.

A particularly interesting combination is that of shape and texture, as these two vi-
sual cues represent two fairly independent constituents of object appearance. Shape
describes the pose and articulation of an object projected to the image plane, while tex-
ture is determined by the object’s surface structure and the lighting conditions. Utilizing
shape for object detection is attractive because its observation is largely independent of
unwanted appearance variations due to lighting and background. But suppressed tex-
ture details might make the difference between target and non-target objects. On the
other hand, utilizing the richer texture cue requires more complex representations. One
topic of this thesis is, hence, to investigate how prior shape knowledge, given by a shape
matching step, can be utilized to simplify the texture classification problem.

Computational efficiency is an important aspect, as object detectors are often required
to run in real-time. In a multi-cue system consisting of multiple system modules, com-
putational efficiency is attained by not running all modules in parallel but sequentially.
Fast modules are applied first to prune out the search space, so that the more powerful

1

1 Introduction

but computationally costly modules can be applied to the remaining candidates only.
This approach is referred to as a cascade architecture. Whereas traditional training
algorithms deal with the optimization of single modules, the problem of how to adjust
each module so as to optimize the overall system performance is addressed in this thesis.

Summarizing, the goal of this thesis is to gain object detection accuracy, robustness,
and computational efficiency by the integration of multiple visual cues.

The target application of this work is the detection of pedestrians in urban environ-
ment from a moving vehicle, which serves as the testbed for the experiments throughout
this thesis. This application combines the difficulties of a complex appearance variation
of the target object due to varying clothing, pose, and articulation, varying lighting
conditions, and a changeable, cluttered background. But the techniques presented here
apply to the detection of humans in other scenarios as well, e.g. for in surveillance
applications, advanced human-machine interfaces, or sports activity analysis, and could
conceivably also be applied to the recognition of other objects such as faces, hand ges-
ture, or vehicles viewed from an arbitrary angle.

1.2 Thesis Outline

This thesis first examines methods on pedestrian classification (Chapter 3). A selection
of feature extraction and pattern classification methods is made that covers the majority
of previous techniques. Experiments are made on a common large public data set to
yield useful insight into the problem at hand, and to analyze the pros and cons of the
underlying methodical components.

The integration of the two particular visual cues shape and texture is analyzed in
Chapter 4, with the goal of simplifying the texture classification task by utilizing explicit
prior shape knowledge. A shape matching technique is first applied to an input image
to provide information about object pose and contour. The outcome triggers a weighted
combination of pose-specific texture classifiers, after optionally shape-normalizing the
input pattern.

In Chapter 5, the issue of computational efficiency is addressed by considering a
cascade of system modules, each utilizing a different visual cue. The problem to be
solved is how to adjust parameters of each system module so as to optimize overall
system performance, taking detection rate, false positive rate, and processing costs into
account. Three optimization techniques are discussed and evaluated experimentally
based on synthetic and real-world data.

Multi-cue integration based on a Bayesian framework for object tracking using par-
ticle filtering is examined in Chapter 6. A joint object representation and associated
observation density function integrating the three visual cues shape, texture, and depth
are proposed. The decision about the presence of a target object is based on a sequence
of observations instead of a single one, which is shown to improve detection performance.

2

1.3 Thesis Contribution

1.3 Thesis Contribution

The original contribution of this thesis is as follows.

• A thorough comparative study of texture-based pedestrian classification techniques
is presented. Different combinations of feature extraction and pattern classifica-
tion methods, some of which novel, are examined experimentally, and the relation
between classification performance and training sample size is studied. Statisti-
cally meaningful results are obtained by analyzing performance mean and variance
over varying training and test data sets. (Chapter 3)

• A two-step approach for integrating explicit prior shape knowledge into texture
classification is presented. First, the shape matching outcome activates a weighted
combination of texture classifiers, each attuned to a particular body pose. Sec-
ondly, shape normalization eliminates shape variation within each pose cluster
from the input patterns. (Chapter 4)

• The optimization of a complex cascade detection system is addressed. Three opti-
mization techniques are discussed, including a new sequential optimization scheme
that makes use of the cascade architecture to successively compute optimal param-
eters combinations. Novel is the consideration of the three optimization objectives
detection rate, false positive rate, and processing cost, as well as a thorough exper-
imental analysis of all methods based on synthetic and real-world data. (Chapter
5)

• The joint shape-texture object representation is integrated into a Bayesian tracking
framework based on particle filtering. Combining a generative shape model for
accurate shape matching and a discriminative texture classifier is shown to enable
a tracker to simultaneously infer object class and configuration. (Chapter 6)

• A system for real-time pedestrian detection from a moving vehicle is presented
with leading edge performance. Extensive experiments were performed both of-
fline, using large data sets recorded in urban environment under different lighting
conditions, capture times and locations, and online, integrated in a demonstrator
vehicle.

The work on this thesis has lead to the following publications:

• D. M. Gavrila, J. Giebel, and S. Munder. Vision-based pedestrian detection: the
PROTECTOR+ system. In Proc. of the IEEE Intelligent Vehicle Symposium,
pages 13–18, Parma, Italy, 2004.

• S. Munder and D. M. Gavrila. An experimental study on pedestrian classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):1863–
1868, 2006.

3

1 Introduction

• D. M. Gavrila and S. Munder. Multi-cue pedestrian detection and tracking from
a moving vehicle. International Journal of Computer Vision, 73(1):41–59, 2007.

• S. Munder, C. Schnörr, and D. M. Gavrila. Pedestrian detection and tracking using
a mixture of view-based shape-texture models. Submitted to IEEE Transactions
on Intelligent Transportation Systems, 2007.

4

2 Related Work

The complexity of pedestrian appearance, combined with a cluttered background, has
lead most authors to pursue learning-based detection approaches where a representation
of the pedestrian class is learned from a set of example images instead of hand-crafting
pedestrian models. Such representations either involve explicit, generative models that
describe how pedestrians appear in an image given some configuration parameters (see
Section 2.2), or involve discriminative models that describe the decision boundary be-
tween pedestrian and non-pedestrian images (see Section 2.3). In a pedestrian detection
system on board a vehicle, application of these models is typically restricted to certain
regions of interest (ROIs) in order to enhance processing speed. Standard background
subtraction, as frequently used in surveillance applications, is unsuitable because of the
moving camera. A number of viable alternatives for ROI generation exist as summarized
in Section 2.1.

A separate field of research is that of pedestrian tracking, which basically involves
inserting a pedestrian model into a framework of generic object tracking. Techniques
previously used range from very simple models (e.g. a cylinder moving with constant
velocity) attached to a pedestrian detection module to sophisticated applications that in-
tegrate detection and tracking of multiple pedestrians using complex appearance models.
An overview is given in Section 2.4.

The combination of multiple system modules, e.g., modules for ROI generation, clas-
sification, and tracking, requires some adjustments to be made on each module so as to
optimize overall system performance. A large body of literature exists on the generic
optimization of non-convex, non-smooth objective functions, but due to the inherent
complexity, serious attempts so simultaneously optimize all components of object recog-
nition systems are surprisingly rare, see Section 2.5.

2.1 ROI Generation

Powerful but computationally expensive classifiers require a pre-processing step to reduce
the number of image locations at which the classifier is applied, in order to reach an
acceptable processing speed.

This can be done by detecting objects that stick out of the ground plane. One way
to detect those objects is by stereo vision. For example, Zhao and Thorpe [105] obtain
potential pedestrian regions by clustering in disparity space. A refinement of the fore-
ground region is obtained by iteratively applying disparity pixel clustering and object

5

2 Related Work

classification. Broggi et al.[10] and Grubb et al.[39] consider the x- and y-projections of
the disparity space following the V-disparity technique [57]. Alternatively, optical flow
techniques were used if only monocular images are available. This approach typically
involves detecting independently moving objects by comparing the observed optical flow
field with the assumed camera motion [21, 75, 92]. Some authors combined stereo vision
and optical flow techniques to achieve more accurate object segmentation [26].

Within a tracking framework, possible positions of once detected pedestrians in subse-
quent video frames can be restricted by the dynamical models of pedestrian and camera
motion.

2.2 Generative vs. Discriminative Pedestrian Models

For representing a class of objects, two types of visual models can roughly be distin-
guished: Generative (explicit) models, which describe how objects look like and often
allow to synthesize new object views, and discriminative models that describe the deci-
sion boundary between objects of the target class and non-target objects.

Regarding generative pedestrian models, shape models, either in 2D or 3D, are at-
tractive because appearance variations that arise from varying lighting or clothing are
eliminated, and because efficient matching techniques exist. While building 3D mod-
els requires elaborate equipment or user interaction [31], 2D models can be directly
learned from examples images. For instance, the manifold of 2D outer contours of
pedestrians has been represented by a set of example shapes [37, 93, 88]. Such models
are particularly suited for object detection due to their specificity, i.e., no false object
shapes are included in the model, but need to handle a large number of examples. Ef-
ficient coarse-to-fine matching strategies are typically employed, often in combination
with distance-transformed images [37, 93, 87]. Gaps in the shape model can be filled
by using parametric representations of deformable contours [14, 41, 35, 5]. But since
simple models (e.g. a single Gaussian [14]) are too unspecific for the given problem,
more complex models (e.g. mixture of Gaussians [41]) require large training sets as
well. A possible drawback of parametric shape models is their need for usually itera-
tive parameter estimation procedures for model matching as, for example, the Dynamic
Programming-based, snake-like Active Contours technique by Cootes et al.[14], so that
these models are better suited for tracking applications where matching starts with a
good initial shape hypothesis [38]. Statistical field models have recently been proposed
for representing object shape. For example, a two-layer field representation has been
presented [102] consisting of a Markov field in the hidden layer that captures the shape
prior, and an observation layer that represents the conditional likelihood of associated
image observations. This approach is particularly suited for handling partial occlusions,
since shapes are represented by a locally connected field model instead of a centralized
shape vector.

Irrespective of the particular representation, a weak point of purely contour-based

6

2.3 Pedestrian Classification

approaches is their susceptibility to background clutter, i.e., random background struc-
ture may lead to similar shape observations as the object class. Besides probabilistic
approaches for handling this uncertainty, authors have built richer representations by
incorporating texture models. Compound linear models of shape and texture have been
proposed by multiple authors [15, 48, 24], see [62] for an overview. Linear texture models
are typically built by warping the example images to a common reference shape using
point correspondences given by the shape model, and by using PCA (principal compo-
nent analysis) to obtain a compact representation. However, the associated assumption
of a normal (Gaussian) distribution of the combined shape-texture representation is too
rough and does not adequately represent the pedestrian class. Alternatives are avail-
able, such as kernel-based densities or mixtures of Gaussians, see [16] for a discussion.
A second drawback is the fitting of these models to an input image, which requires the
combined estimation of shape and texture parameters by means of iterative, gradient
descent-like methods, and is, hence, time consuming. As a way out, separate models of
shape and texture have been built, and their observations have been combined in a joint
observation density function (e.g. [85, 45]).

Due to these difficulties, we refrain from using generative texture models in this work.
Instead, efficient and effective pattern classification techniques are employed that directly
model the decision boundary between pedestrian and non-pedestrian images, see next
section. Motion is another visual cue that has been used to represent pedestrians. In
particular, models of the typical gait pattern have been built [23, 106]. However, these
are restricted to pedestrians walking parallel to the image plane, and are therefore not
considered in this thesis.

Increased accuracy and robustness has been reported by the combination of multi-
ple complementary visual cues, where failures of one cue are compensated by the others
[84, 86, 85], and by using component-based approaches [84, 104, 78, 101] that decompose
the complex object appearance into simpler models of body parts. Another approach
for reducing the high complexity of pedestrian appearance involves pose clustering. For
example, Zhang et al.[104] and Wu & Nevatia [101] manually categorize training exam-
ples by viewing angle (left, right, frontal, and back views), and build separate object
models for each viewing direction. Heap and Hogg [41] proposed a “Hierarchical PDM”
approach to 2D shape modeling, where a set of locally linear shape models is found by a
k-means clustering of the training data. An adaptation of this approach in [38] has been
used for our shape model in Section 4.1.2, which also forms the basis of the proposed
mixture of pose-specific texture classifiers in Section 4.2.

2.3 Pedestrian Classification

Insightful surveys on statistical pattern recognition were given by Jain et al.[47] and
Duda et al.[20]. With regard to pedestrian classification, many different combinations of
feature extraction and actual classification techniques were applied in the literature, see

7

2 Related Work

Table 2.1 for an overview. One line of research involves neural networks. For example,
Wöhler and Anlauf [100] train a feed-forward neural network with local receptive fields
directly on (size normalized) pedestrian images. Zhao and Thorpe [105] apply a fully
connected feed-forward neural network to high-pass filtered images. Another line of
research has involved over-complete sets of Haar wavelet features in combination with
a Support Vector Machine (SVM). This approach was pioneered by Papageorgiou and
Poggio [72] and later adapted by Elzein et al.[21] and others.

Instead of shifting all the work to a single powerful, hence computationally expensive
classifier, Viola et al.[98] proposed an efficient detector cascade, where simpler detectors
are placed earlier in the cascade and more complex later. At each stage, AdaBoost
[27] adds simple appearance filters (similar to Haar wavelets) to the classifier until a
user-defined performance target is reached. Originally developed for the face detection
domain, this approach was later applied to pedestrian detection [99].

Apart from reducing processing costs, techniques for combining multiple classifiers
have also been used to simplify the classification problem. One such line of research
pursues multi-class approaches where the target class is separated into a number of
simpler sub-classes or clusters. Multiple classifiers are generated, each one to distinguish
only one sub-class from the non-target class. Online, all classifiers are applied to a
test pattern in parallel, and the final decision is given by the sub-class of the highest
classification score. Examples include the work of Grubb et al.[39] who employed two
SVM classifiers, one for front/back views and one for side views, or Nakajima et al.[67],
who trained SVMs for four different poses. Shimizu and Poggio [83] estimate the walking
direction of pedestrians by employing 16 competing classifiers, each trained for a certain
angular range. A different combination strategy was pursued by Shashua et al.[82]. After
manually dividing the training set into 9 clusters of particular pose and illumination and
creating relatively simple classifiers on each cluster, AdaBoost combines the multiple
discriminant values into a final decision.

Common to these approaches is the fixed combination rule where the final classification
result is determined exclusively by the outputs of the component classifiers. In contrast,
the mixture-of-experts architecture, first introduced by Hampshire and Waibel [40] and
later made popular by Jacobs et al.[46, 49], employs a dynamic combination rule by
means of a dedicated gating network that assigns an input pattern to one of the local
experts. This gating network is generated either prior to [40], in parallel with [46, 49],
or subsequent to [55] to the training of the local experts. Though the mixture-of-experts
approach proved beneficial for many applications (e.g., speech recognition), we are not
aware of previous applications in the pedestrian classification domain.

An alternate way of reducing the complexity of pedestrian appearances are component-
based approaches. Shashua et al.[82], for instance, extract a feature vector from each
of 9 fixed sub-regions. Other approaches try to directly identify certain body parts.
Mohan et al.[64], for example, extend the work of [72] to four component classifiers for
detecting heads, legs, and left/right arms separately. Individual results are combined by
a second classifier, after ensuring proper geometrical constraints. Mikolajczyk et al.[63]

8

2.3 Pedestrian Classification

Table 2.1: Overview of previous work on pedestrian classification.

Authors Features Classifier Training Set
(ped. /
non-ped.)

Test Set (ped.
/ non-ped.)

Det. Rate /
False Pos. Rate

Zhao & Thorpe,
2000 [105]

edge pixels neural network 1012 / 4306 ex. 8400 ex. (total) 85.2% / 3.1%

Wöhler &
Anlauf, 1999
[100]

local receptive
fields

neural network
(SVM)

3926 / 4426 ex. 1000 / 1337 ex. 85.8% / 1.6%

Papageorgiou &
Poggio, 2000
[72]

Haar wavelets SVM
(quadratic)

924 ex. / - 123 ex. /
50 img.

70% / 0.15,
70% / 3

Mohan et al.,
2001 [64]

Haar wavelets SVM 866 / 9315 ex. 123 /
796,904 ex.

90% / 0.08

Elzein et al.,
2003 [21]

Haar wavelets SVM 600 ex. / - 39 ex. / - 69% / 1.06

Viola, Jones &
Snow, 2005 [99]

Haar wavelets AdaBoost
Cascade

2250 ex. / - 2 × 2000 img. 80% / 0.5

Shashua et al.,
2004 [82]

edge
orientation
hist.

Linear weak
learner,
AdaBoost

≈ 27,100 ex.
each

≈ 7,600 ex.
each

93.5% / 8%

Mikolajczyk et
al., 2004 [63]

edge directions AdaBoost
cascade

200...300 /
100K ex.

400 ex. /
200 img.

87% / 0.55

Grubb et al.,
2004 [39]

edge SVM

Gavrila &
Giebel, 2002
[33]

edge chamfer
matching

2661 ex. / 0 2101 ex. / - 80% / 5

Szarvas et al.,
2005 [91]

local receptive
fields

neural network,
SVM

3,699 / 30K ex. 1,655 / 30K ex. 90% / 1.2%

Bertozzi et al.,
2004 [6]

symmetry thresholding - / - 1897 ex. / - 83% / 0.46

Dalal & Triggs,
2005 [18]

histogram of
oriented
gradients

SVM (linear or
Gaussian K.)

2478 ex. /
1218 img.

1132 ex. /
453 img.

89% / 0.01%

Leibe et al.,
2005 [58]

Implicit Shape Model + chamfer
matching + MDL verification

210...420 ex. /
-

595 ex. /
209 img.

71.3% / 0.82

“ex.” denotes the number of example windows in a data set, “img.” denotes the number of video
images from which non-pedestrian examples have been extracted. The corresponding false positive
rate is either given as the percentage of non-pedestrian examples incorrectly classified, or as the

absolute (average) number of false positives per image.

9

2 Related Work

train a cascade of AdaBoost classifiers, similar to [99], for each of 7 body parts, and
probabilistically assemble the component results considering position and classification
confidence.

Apart from differences in feature extraction and classification methods, we can char-
acterize previous work by the amount and type of image data utilized. For instance,
Papageorgiou and Poggio [72] used 924 frontal and rear views of pedestrians for training
(plus several thousands of negative examples), and demonstrated performance on 123
pedestrian test examples. Viola et al.[99] deployed a training set of 2250 pedestrian
examples. The data sets of Shashua et al.[82] consists of 54,282 training and 15,244 test
examples, about equally distributed between positive and negative examples. “Boot-
strapping” [90] (cf. Section 3.3.1) was used by some authors to increase the number of
negative training examples, e.g. [105].

There are some striking differences in the reported classification performance on the
above data sets. The variation in the number of false classifications at a particular correct
classification rate can exceed one order of magnitude across multiple sequences of the
same study [99], and can run as high as several orders of magnitude when considering
multiple studies (e.g. [105, 82] vs. [72]). These large performance variations are mainly
the result of the (limited) size of the data sets used and their composition, in particular
with respect to the negative examples. Data sets which draw the negative examples
randomly from images containing large uniform image regions (e.g. sky, pavement) lead
to much better classification performance than data sets where the negative examples
are generated by some pre-filtering method and contain pedestrian look-a-like vertical
structures.

This lack of comparability has motivated our experimental study in Chapter 3. By
evaluating different combinations of feature extraction and classification methods of a
common large, public data set, our aim is to establish a clearer picture of what underlying
methodical components are particularly worthwhile.

2.4 Pedestrian Tracking

See Table 2.2 for an overview of previous work on pedestrian tracking. Particle filtering
has evolved as the standard tool for pedestrian tracking because of its ability to estimate
complex multi-modal posterior pdfs that arise in cluttered environments. Following the
seminal work of Isard and Blake [43] who re-introduced particle filtering to computer
vision, many extensions have been proposed regarding mixed discrete/continuous state
spaces [41], improved sampling strategies [44, 19], and the integration of multiple visual
cues [44, 61, 86]. An excellent overview of particle filter variants is given in [1].

In many early papers on pedestrian tracking, track initialization is performed manually
in an initial video frame or given by some known prior distribution. This is impractical in
most applications, where typically pedestrians randomly enter or leave the field of view.
From a theoretical point of view, the straightforward solution is to construct a joint

10

2.5 System Optimization

state space of variable dimension and to infer the number of objects in parallel with
each object’s configuration. However, means for reducing the computational burden
of the increased state dimension need to be found, such as the grid-based observation
model with pre-computed likelihood values in [45], or the use of the Metropolis-Hastings
algorithm for sampling in [51].

If complex object representations or complex observation models are involved, au-
thors have generally refrained from joint state spaces but rather ran multiple (single
target) tracker instances in parallel. Some heuristics are then typically used to handle
track initialization and termination, and to implement target interactions. For example,
Kang and Kim [50] perform object detection by a dedicated particle filter with uni-
form prior distribution, and proposed a competition rule to handle multiple proximate
tracks. Other authors [44, 70] employ an independent object detector process for track
initialization. Its output is also incorporated into the proposal distribution of the par-
ticle filter, in order to “guide” particle sampling towards the more likely image regions,
which speeds up computation and increases robustness to gross object motions. Al-
though good practical results were obtained with these multi-tracker approaches, object
detection performance is clearly limited by the initialization heuristic, since the decision
about the presence of a target object is solely made by the detector process. In contrast,
joint particle filters make inference about the presence (or the number) of target objects
from a sequence of observations in sound probabilistic (Bayesian) manner, but suffer
from their exponential complexity.

The tracking framework employed in Chapter 6 represents a combination of both
approaches. While we follow a multi-target approach to infer object class by the particle
filter, the number of targets per particle filter is limited to one in order to cope with our
high dimensional state space. Multiple particle filters are used to track multiple targets.

2.5 System Optimization

A large body of literature exists for the optimization of non-convex, non-smooth objec-
tive functions. But most such approaches are impractical for the given problem because
of its lack of a closed-form mathematical representation of the overall system perfor-
mance with respect to parameter values of individual system components. Empirical
system performance is measured on large sample sets, which is relatively costly. Re-
cently, a particular constrained optimization technique has been proposed by Vanden
Berghen [3] that suits the given problem. This method is employed in Section 5.3; a
short description is given there. Alternatively, authors have either tried to model sys-
tem behavior by functions for which established analysis techniques exist, e.g. Bayesian
networks [80], or developed specialized solutions for the particular problem at hand.
Within this work, we aim to exploit the cascade coupling of system modules.

Cascaded classifiers [99] have recently received increasing interest due to their com-
putational efficiency, and a number of publications addressed their optimization. For

11

2 Related Work

Table 2.2: Overview of previous work on the visual tracking of pedestrians (humans)

Authors Object Model Visual Cues Tracking

Shape Texture Motion Others? Approach

Deutscher et al.,
2000, [19]

3D assembly of
cylinders

edge
pixels

BG
subtr.

“Annealed” PF

MacCormick and
Blake 2000, [60]

2D shape edge
pixels

PF

Isard and Mac-
Cormick, 2001
[45]

3D generalized
cylinder

Mexican
hat filter

color PF

Soto and Khosla,
2001 [85]

2D appearance edge
pixels

color his-
togram

stereo PF

Toyama and
Blake, 2002 [93]

2D shape
exemplars

edge
pixels

PF

Fablet and Black,
2002 [23]

2D appearance optical
flow

PF

Sidenbladh and
Black, 2003 [84]

3D assembly of
truncated cones

edge,
ridge

intensity
diff.

PF

Spengler and
Schiele, 2003 [86]

2D appearance skin color BG
subtr.

Kalman or PF

Zhao and
Nevatia, 2004
[106]

3D shape and
locomotion

optical
flow

BG
subtr.

Kalman

Ning et al., 2004
[68]

3D shape and
motion

edge
pixels

BG
subtr.

PF

Roth et al., 2004
[79]

2D appearance gradient
pixels

PF

Okuma et al.,
2004 [70]

2D appearance color his-
togram

“Mixture” PF

Kang and Kim,
2005 [50]

2D shape (SOM) edge
pixels

PF

Ramanan et al.,
2005 [78]

component-based
2D shape

edge
pixels

color
classifier

MAP search by
DP

Wu and Yu, 2006
[102]

2D shape
(Markov field)

edge
pixels

PF

Wu and Nevatia,
2006 [101]

2D component
appearance

“Edgelets” data association
or meanshift

This thesis,

Chapter 5

2D shape
exemplar and
texture mixture

edge
pixels

texture
classifier

stereo data association
and α-β filter

This thesis,

Chapter 6

mixture of 2D
shape (PDM) and
texture

edge
pixels

texture
classifier

stereo PF

BG subtr.: background subtraction; PF: particle filtering; PDM: Point Distribution Models [14],
SOM: Self-Organizing Map, DP: Dynamic Programming. Object models denoted “appearance” use

learned filter responses of the used visual cues to represent the target class.
12

2.5 System Optimization

example, Sun et al. [89] and Luo [59] observed that the overall cascade performance is
optimal if the slope of the log-scale ROC curve is equal for all nodes, given that the
individual cascade nodes are statistically independent. No such assumption is made
by Huo and Chen [42], who recently proposed a ROC “frontier-following” heuristic to
successively adjust the thresholds of a classifier cascade. The idea of analyzing the op-
timal front of ROC points was first utilized by Provost and Fawcett [77] in the context
of classifier comparison. They showed that, for any misclassification costs, the optimal
classifiers are located on the ROC convex hull. Here, we extend both ideas [42, 77]
by developing a technique to sequentially optimize a cascade of complex system mod-
ules, each controlled by a number of parameters, with respect to ROC performance and
processing time (see Section 5.2).

13

2 Related Work

14

3 Texture Classification

The capability of discriminating image patterns of the target object class from those of
the non-target (background) class is one of the key components of every object recogni-
tion system. The pedestrian recognition application is particularly challenging because
of the great variability of both the target and the non-target class. Advances in machine
learning theory coupled with improvement in computer technology (processing speed,
storage) increasingly favor techniques that do not rely on manually crafted models, but
which, instead, use learning approaches with the corresponding large training sets to
distinguish whether an image region contains an object or not.

Many interesting pedestrian classification approaches have been proposed in the liter-
ature; an overview was given in Section 2.3. However, the amount of training and test
data used in these publications, and their distribution in terms of capture times and
locations, differ substantially. This prohibits a meaningful quantitative performance
comparison and offers little insight in the relative merits of the underlying methodi-
cal components. This chapter provides a thorough experimental study of pedestrian
classification techniques on a large, common data set.

The actual pattern classification step is typically preceded by a feature extraction
step, which serves two purposes. The first aim is to suppress irrelevant components of
texture variation such as noise or global illumination variations that do not possess dis-
crimination information. Secondly, the transformation into a higher dimensional feature
space allows the use of simple classification rules. In this chapter, multiple combinations
of feature extraction and classification techniques, some of which novel, are examined
empirically.

Another important factor in pattern classification is the size of the training set. While

Figure 3.1: Illustrating example of principle components obtained on the training data
set introduced in Section 3.4.1. First 10 principal components (according to
maximum eigenvalue) are shown.

15

3 Texture Classification

−1 1−1 1 −1

1−1 1

−1

1 −11

Figure 3.2: Haar wavelets of three different orientations – vertical, horizontal, and diag-
onal – as utilized by Papageorgiou and Poggio [72]

it is well-known that classification performance scales with the training sample size,
theoretical studies exist for generalized or simplified problems only, e.g. [96], and are
often not directly applicable to real-world problems. Here, we empirically study the
correlation of classification performance with training sample size and investigate two
techniques for the automatic generation of new training examples.

3.1 Feature Extraction

Based on the variety of techniques listed in Section 2.3, this section provides a description
of the feature extraction techniques selected for experimental evaluation. We distinguish
global and local features and further differentiate between adaptive and non-adaptive
features among the latter. These categories are exemplified by PCA coefficients, local
receptive fields (LRF), and Haar wavelets below. Associated parameters are subject to
optimization via cross-validation on the training set (see Section 3.4.2).

3.1.1 PCA Coefficients

The probably best known (linear) feature extraction method is principal component
analysis (PCA) [47]. It effectively reduces dimensionality by identifying the most ex-
pressive features, i.e., the eigenvectors with the largest eigenvalues, while those with
small eigenvalues are assumed to contain noise and are cut off accordingly. PCA coeffi-
cients can be regarded as global features as each coefficient describes a certain property
of the full input pattern, whereas local details are smoothed out by the dimensionality
reduction (see Figure 3.1).

Two approaches exist in the literature: The “Eigenobjects” (most notably “Eigen-
faces”) approach computes principal components on the target class only in order to
extract typical features of the target objects. Alternatively, the principal components
can be computed from all training examples to obtain a compact representation of the
overall appearance variability. In preliminary experiments, we found both approaches
to perform equally well, so that the second one is used here.

The number of principal components to remain is typically user-defined. We con-
sider values that capture 80, 90, 95, or 100 percent of the variance during parameter
optimization.

16

3.1 Feature Extraction

3.1.2 Haar Wavelets

The most popular features for pedestrian classification found in the literature are Haar
wavelets, or extensions thereof, e.g., [72, 99]. Their use is motivated by the fact that they
encode local image features, i.e., intensity differences, at multiple scales, thus allowing
for a balance between compactness and expressivity.

We adopt the over-complete dictionary of Haar wavelets by Papageorgiou and Poggio
[72], where “over-completeness” arises from wavelets of three different orientations (see
Figure 3.2) shifted by 1/4 of the size of the support of each wavelet in both directions.
Domain knowledge about the target class is incorporated by using only two medium
scales of wavelets. Wavelets of the finest scale are assumed to represent noise and are,
hence, discarded, as well as very coarse scale wavelets which have support as large as
the object itself. Given our input images of size 18× 36, we selected wavelets of scales
4 × 4 and 8 × 8, from which we obtained 15 × 33 and 6 × 15 features, respectively, for
each orientation; hence, a total of 1,755 features. Furthermore, the signs of the coeffi-
cients, i.e., of the intensity differences, are considered irrelevant: only their magnitude
is encoded in the feature vectors.

In addition, we pursue the approach by Viola and Jones [99], who build a cascade of
AdaBoost classifiers, based on a much greater dictionary of features (see Section 3.3.3).

3.1.3 Local Receptive Fields

Instead of manually crafting a set of features, multilayer perceptrons provide an adaptive
approach for feature extraction by means of their hidden layer, so that the features are
tuned to the data during training [47]. Feed-forward neural networks with local receptive
fields (NN/LRF), introduced by Fukushima et al. [28] and later applied to pedestrian
classification by Wöhler and Anlauf [100], are a particularly attractive approach for
classifying 2D images. In contrast to standard multilayer perceptrons, neurons in the
hidden layer are only connected to a restricted local region of the input image, referred
to as their local receptive fields (see Figure 3.3). The hidden layer is divided into a
number of branches, with all neurons within one branch sharing the same set of weights.
Each branch encodes some local image feature. Local connectivity and weight-sharing
effectively reduce the number of weights to be determined during the training stage,
thus allowing for relative small training sets for the (high) dimension involved.

We further investigate the concept of LRFs by extracting the output of the hidden layer
of a (once trained) NN/LRF as features subject to classification by generic classification
methods (other than neural networks). Preliminary experiments have shown receptive
fields of size 5× 5 to be optimal, shifted at a step size of 2 pixels over the input image
of size 18 × 36. The number of branches is varied within the values of {8,16,24,32,48}
during parameter optimization.

17

3 Texture Classification

BN Branches of

Output Layer
Full Connectivity

Hidden Layer

Local Receptive Fields

Input Layer
(Input Image)

Figure 3.3: Architecture of a neural network with local receptive fields as employed by
Wöhler and Anlauf [100]

3.2 Classification Methods

We now turn our attention to suitable methods for classification. We focused our se-
lection on pattern classifiers that directly construct the decision boundary, rather than
density estimation approaches [47] (e.g., Bayes Decision Theory or Parzen Classifier),
given that the latter seem less suited for modeling the non-target class, which is, in a
sense, not a real class but comprises the vast feature space of “everything else”.

The generation of the LRF features inherently involves the training of a neural net-
work. We consequently apply a feed-forward neural network to PCA and Haar wavelet
features as well. The architecture chosen here is the simple but most common form
of a (fully connected) three-layer network, where the number of hidden units Nhidden is
adjusted via cross-validation.

Support Vector Machines (SVM) [97] have evolved as a standard tool for a broad range
of classification tasks, including pedestrian classification [72, 64]. A possible advantage is
the direct optimization of the margin of the decision boundary, hence, the classification
error, opposed to the minimization of some artificial error term as, e.g., mean squared
error for neural networks. The complexity of the decision boundary is determined by
the kernel function. For our experiments, two different kernel functions are examined:

• polynomial: K(x, y) = (xTy + 1)d,

• radial basis function (RBF): K(x, y) = exp(−γ‖x− y‖2).

Parameters d and γ of the kernel function and the error penalty term C of the SVM
optimization objective (cf. Eq. (24) in [17]) are determined via cross-validation. Ex-
periments are based on the LIBSVM implementation found in [11]. Note that the com-
bination of Haar wavelet features and quadratic SVM closely resembles the system by
Papageorgiou and Poggio [72].

Finally, a k-nearest neighbor classifier (k-NN) serves as a baseline classifier as it is able
to handle arbitrary distributions without parameter adaptation, except for the number

18

3.3 Methods for Increasing the Training Sample Size

k.

3.3 Methods for Increasing the Training Sample Size

Classification performance, in general, is known to scale with the training sample size
[47]. We quantify this effect empirically in Section 3.5.2 with respect to our training
sets, feature extraction, and classification methods. Yet, the acquisition of additional
training examples is often limited by possibility and expense. For the problem at hand,
for instance, pedestrian examples are obtained from manual labeling. On the other hand,
non-pedestrian patterns, randomly extracted by some preprocessing module from a set
of images not containing any pedestrians, come almost for free. We, hence, study two
techniques known from the literature on how to iteratively select and utilize additional
non-target examples based on an initial classifier, denoted as bootstrapping and cascade.

3.3.1 Bootstrapping

Sung and Poggio [90] employ a bootstrapping strategy to incrementally construct a train-
ing set of relevant non-target examples: False positives of an existing classifier are col-
lected from a set of randomly extracted non-target patterns and added to the training
set. A new classifier is then trained on the so-augmented training set, replacing the old
one. This procedure is repeated until no further performance gain can be achieved.

3.3.2 Cascade

Viola et al. [99] employ a cascade strategy for combining multiple classifiers, where test
patterns are successively classified by each stage of the cascade until the outcome of one
stage is “non-pedestrian”. Consequently, a test pattern is only assigned to the pedestrian
class if all classifiers agree on that decision. The cascade is constructed iteratively: For
each stage of the cascade, a new training set is generated by collecting false positives of
the existing cascade out of a set of randomly extracted non-pedestrian examples, plus
the original set of pedestrian examples. The classifier obtained from this new training
set is then appended to the cascade.

3.3.3 Boosted Cascade of Haar-like Features

In addition to applying the cascade approach to the feature-classifier combinations de-
scribed above, we also evaluate the cascade system of Viola and Jones [99] for compar-
ison. Their system is based on a rich dictionary of simple appearance filters, similar
to Haar wavelets. For each stage of the cascade, AdaBoost [27] iteratively constructs a
weighted linear combination of simple classifiers, each made by thresholding one feature
value. Iterations are stopped when a certain user-defined performance target is reached

19

3 Texture Classification

Figure 3.4: Pedestrian and non-pedestrian samples from the benchmark data set (upper
versus lower row, respectively).

and the training process continues with the next stage of the cascade. Our experiments
are conducted using the implementation found in the Intel Open Source Computer Vi-
sion Library [71], with the target performance for each stage set to 50 percent false
positive rate at a detection rate of 99.5 percent.

3.4 Benchmark Data Set

3.4.1 Data Sets

Figure 3.4 shows a few examples of pedestrian and non-pedestrian samples of the bench-
mark data set. Pedestrian examples were obtained from manually labeling (and extract-
ing) the rectangular positions of pedestrians in video images, in a rather tedious and
time consuming process. Images were recorded at various (day) times and locations
with no particular constraints on pedestrian pose or clothing, except that pedestrians
are standing in upright position and are fully visible. In order to make maximum use of
these (valuable) labels, pedestrians images were mirrored and the bounding boxes were
shifted randomly by a few pixels in horizontal and vertical directions. The latter is to
account for small errors in ROI localization within an application system. Six pedestrian
examples are thus obtained from each label.

As non-pedestrian examples, we extracted patterns representative of typical prepro-
cessing steps within a pedestrian classification application from video images known not
to contain any pedestrians. Examples of such preprocessing are background subtraction
for surveillance applications or stereo-based object detection for in-vehicle applications.
For our case of static, monocular images, we chose a shape-based pedestrian detector

20

3.4 Benchmark Data Set

Table 3.1: DaimlerChrysler pedestrian benchmark data set.

Training Sets Test Sets
Number of Data Sets 3 2
Pedestrian Labels Per Set 800 800
Pedestrian Examples Per Set 4800 4800
Non-Pedestrian Examples Per Set 5000 5000
Additional Non-Ped Images ≥ 1200

“Pedestrian Labels” denotes the number of pedestrians manually labeled, whereas “Pedestrian

Examples” denotes the number of pedestrian examples in each data set derived from the

pedestrian labels by mirroring and shifting.

[37] that matches a given set of pedestrian shape templates to distance transformed edge
images. We included those patterns as negative samples to our classification training
set, where the shape detector resulted in a match with the associated pixel-averaged
chamfer-2-3 distance [7] to one of the given pedestrian shape templates below 2.5 (this
corresponds to a maximum average per-pixel deviation of roughly 1.25 pixel) (see bot-
tom row in Figure 3.4). Given the bounding box locations of interest in video images,
examples were cut out after adding a border of 2 pixels to preserve contour information
and scaled to common size 18×36, which was found optimal in preliminary experiments.

We split the resulting data base into five fully disjoint sets, three for training and two
for testing (see Table 3.1), which allows for a variation of training and test sets during
the experiments. Examples recorded at the same time and location are kept within the
same set, so that, e.g., a pedestrian captured in a sequence of images does not show up
in multiple data sets. This ensures truly independent training and test sets, but also
implies that examples within a single data set are not independent – a fact taken into
account in the test procedure below.

3.4.2 Test Procedure

Classification performance is evaluated by means of ROC curves, which quantify the
trade-off between detection rate (the percentage of positive examples correctly classified)
and the false positive rate (the percentage of negative examples incorrectly classified).

In order to compare the performance of two classifiers, we need a confidence interval
to decide whether performance differences are significant or represent noise. Although
the variance of test results obtained from a finite sample size has well been studied in the
literature, this theory fails here because of (unknown) dependencies amongst the test
examples. In fact, much larger performance variations have been observed in practice
than one would expect from test samples of size 4,800 and 5,000 (see Table 3.1).

Consequently, we decided to empirically determine the ROC variance by varying train-

21

3 Texture Classification

ing and test sets. While this is commonly done via cross-validation, we prefer not to
interchange training and test data and to use a partition of the training data for pa-
rameter tuning. Parameters to be specified prior to training and testing of a classifier
have been introduced above for each feature extraction and classification method. Cross-
validation over the three training sets is used to determine optimal settings for these
parameters.

Performance is then analyzed on the test sets as follows: For each experiment, three
different classifiers are generated, each by selecting two out of the three training sets.
Testing all three classifiers on both test sets yields six different ROC curves, i.e., six
different detection rates for each possible number of false positives. (ROC points are
interpolated where necessary.) When taken as six independent tests which follow a
normal distribution, a confidence interval of the true mean detection rate is given by the
t distribution as

ȳ ± t(α/2,N−1)
s√
N
≈ ȳ ± 1.05s, (3.1)

where ȳ and s denote the estimated mean and standard deviation, respectively, 1−α =
0.95 is the desired confidence interval, and N = 6 is the number of tests. Hence,
the estimated standard deviation of the detection rate approximately represents a 95
percent confidence interval. Although this analysis is somewhat optimistic as it assumes
independency of the individual ROC curves, it still provides a reasonable indicator for
performance comparison.

3.5 Experimental Results

This section provides comparative experimental results of the techniques described in
Sections 3.1, 3.2, and 3.3. In a first batch of experiments, we apply each classification
method to each type of features, whenever appropriate, in order to allow for a separate
investigation into the effectiveness of features and classifiers. The benefit of increased
training sample sizes is then evaluated in a second batch of experiments, based on the
best two feature-classifier combinations identified so far.

3.5.1 Combinations of Feature Extraction and Classification

Methods

All experiments in this section are conducted using two (out of three) training sets for
training and the remaining one for validation. After parameters have been optimized
via cross-validation (see Table 3.2), an evaluation of the mean and variance of ROC
performance is done on the two test sets as described above.

Individual results for each feature type are given in Figures 3.5(A), 3.5(B), and 3.5(C).
Figure 3.5(D) provides a comparison of the different feature types by selecting the best
performing classifier for each feature. Two observations can be made: First, global

22

3.5 Experimental Results

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

PCA Features

Quadratic SVM
RBF SVM
k−NN (k=5)
Feed−Forward Neural Network

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Haar Wavelet Features

Quadratic SVM
Rbf SVM
k−NN (k=125)
Feed−Forward Neural Network

(A) (B)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Local Receptive Fields

Quadratic SVM
Rbf SVM
k−NN (k=25)
NN with LRF

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Feature Comparison

LRF Features, Quadratic SVM
Haar Wavelets, Quadratic SVM
PCA, Rbf SVM

(C) (D)

Figure 3.5: A comparison of different feature extraction and classification methods. Per-
formance of different classifiers on (A) PCA coefficients, (B) Haar wavelet
and (C) LRF features. (D) A performance comparison of the best classifiers
for each feature type.

23

3 Texture Classification

Table 3.2: List of the parameter settings that have been found optimal for each feature-
classifier combination via cross-validation.

PCA Features

Polynomial SVM 95%, d = 2, C = 1
RBF SVM 90%, γ = 10−2, C = 10
k-NN 90%, k = 5
Neural Network 90%, Nhidden = 20

Percentages denote the fraction of variance to
be captured, see Section 3.1.1.

Haar Wavelet Features

Polynomial SVM d = 2, C = 1
RBF SVM γ = 10−3, C = 100
k-NN k = 125
Neural Network Nhidden = 40

Local Receptive Fields

Polynomial SVM NB = 16, d = 2, C = 1
RBF SVM NB = 16, γ = 10−3, C = 100
k-NN NB = 16, k = 25
Neural Network NB = 16

Table 3.3: Number of support vectors and processing time for SVMs on each of the three
feature types, obtained from the first two training data sets. Numbers are
given for the best parameter setting and SVM kernel function found.

Feature Type Feature Kernel Type Number of Processing Time
Dimension Support Vectors Per Example

PCA (90%) 61 RBF 4,704 3.7 ms
Haar Wavelets 1,755 quadratic 7,042 41 ms
LRF (NB = 16) 1,792 quadratic 5,160 33 ms

features, represented by PCA coefficients, are inferior to local features (Haar wavelets,
LRFs). The reason for this may lie in the fact that sometimes very small details such
as hands, feet, or the form of the head make the difference between pedestrians and
other objects. Such details are smoothed out by PCA dimensionality reduction. Second,
adaptive features (LRFs), which have been tuned to the data during the training process,
outperform non-adaptive ones (Haar wavelets).

Regarding classifiers, SVMs generally perform best. This holds even for LRF features
that have been generated by a neural network. However, SVMs require the largest
processing time of the classifiers tested due to the high number of support vectors (see
Table 3.3). On LRF features, the training process yielded 5,160 support vectors on
average, leading to a processing time of about 33 ms per example. For comparison, the
neural network with LRFs only takes about 1 ms per example (both implementations
in C/C++ on a 3.2GHz Pentium IV PC).

24

3.5 Experimental Results

3.5.2 Increasing the Training Sample Size

The two best classification techniques identified above, quadratic SVM on local receptive
fields and quadratic SVM on Haar wavelet features, are employed for these experiments.
We first evaluate the benefit of manually increasing the training sample size from an
auxiliary data set. The number of training examples is doubled two times, so that the
training sets consist of 3,200 and 6,400 pedestrian and 20,000 and 40,000 non-pedestrian
examples, respectively. Again, classifier parameters are first optimized via threefold
cross-validation and the mean and variance of ROC performance is evaluated on three
different training and two different test sets. Resulting ROC curves are given in Figure
3.6(A,B) for both classifiers. An additional experiment of doubling the training sample
size three times has been performed with the neural network with local receptive fields,
see Figure 3.6(C), where the same effect has been observed.

Interestingly enough, classification errors are reduced by approximately a factor of
two whenever the training sample size is doubled; no saturation effects are yet observed.
Notice, furthermore, that the performance differences caused by increasing the number of
training examples exceed the differences between different feature extraction methods.
The relative performance difference between the feature types remains the same, i.e.,
LRFs maintain their superiority.

We now evaluate to what extent the benefit of additional training examples can be
achieved by the automatic extraction of new non-pedestrian patterns by means of boot-
strapping and cascade. Both techniques are applied iteratively, generating 10,000 new
non-pedestrian examples in each iteration, which equals the number used for the initial
classifier. In all combinations considered, the maximum performance was reached af-
ter the third iteration. Results are given in Fig 3.7. Though both approaches quickly
reached their limits, a consistent performance improvement was achieved. A comparison
of both strategies reveals a small advantage of the bootstrapping approach. This ben-
efit is, however, paid with higher computational costs, as incrementally more complex
training sets imply incrementally more complex classifiers.

Results of the AdaBoost cascade system by Viola and Jones are given in Figure 3.8(A).
The performance of the initial cascade stages is limited by the user-defined training
termination criterion (set to 50 percent false positive rate at a detection rate of 99.5
percent). The entire eight-stage cascade, however, achieves about the same performance
as the cascaded SVM applied to Haar wavelet features, see Figure 3.8(B). Although
adding more stages to the cascade further reduces the training set error, performance on
the validation and test sets was observed to run into saturation. The main advantage of
this approach, though, is processing speed. In our implementation, the cascade of eight
AdaBoost classifiers runs, on average, at 0.4ms per test sample, whereas the 4 stage
SVM cascade requires a significantly higher 250ms on average (both implementations in
C/C++ on a 3.2GHz Pentium IV PC).

25

3 Texture Classification

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Increasing Training Sample Sizes For SVM On LRFs

1600 Pedestrian Examples
3200 Pedestrian Examples
6400 Pedestrian Examples

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Increasing Training Sample Sizes For SVM On Haar Wavelets

1600 Pedestrian Examples
3200 Pedestrian Examples
6400 Pedestrian Examples

(A) (B)

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Increasing Training Sample Sizes For NN/LRF

1600 Pedestrian Examples
3200 Pedestrian Examples
6400 Pedestrian Examples
12800 Pedestrian Examples

Training Number of LRF
Sample Size Branches NB

1600 16
3200 16
6400 24

12800 48

(C) (D)

Figure 3.6: Performance gain by increasing training sample sizes for (A) quadratic SVM
on local receptive fields (LRF), (B) quadratic SVM on Haar wavelet features,
and (C) neural network with local receptive fields. Table (D) shows what
numbers of LRF branches NB have been found optimal for each training
sample size (for both, NN and SVM on LRFs). Remaining parameters are
unchanged.

26

3.5 Experimental Results

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Generation of Negative Training Examples For SVM On LRFs

Initial Classifier
Bootstrapping Strategy
Cascade Strategy

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Generation of Negative Examples For SVM On Haar Wavelets

Initial Classifier
Bootstrapping Strategy
Cascade Strategy

(A) (B)

Figure 3.7: A comparison of the bootstrapping versus the cascade strategy for (A)
quadratic SVM on LRFs, and (B) quadratic SVM on Haar wavelet features.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Cascade of AdaBoost Classifiers

Stage 1 (Initial Classifier)
4 Stage Cascade
8 Stage Cascade

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Cascade Classifiers

SVM on Haar W., 4 stages
AdaBoost on Haar W., 8 stages
SVM on LRF, 4 stages

(A) (B)

Figure 3.8: (A) ROC performance of the AdaBoost cascade by Viola and Jones [99]. (B)
Comparison of the three cascade results.

27

3 Texture Classification

3.5.3 Summary

The experimental examination of different combinations of feature extraction and classi-
fication techniques has revealed superiority of local features over global ones. Among the
latter, adaptive features (local receptive fields) outperformed non-adaptive ones (Haar
wavelets). Regarding classification methods, SVMs outperformed the other classifiers
tested, except for the AdaBoost cascade approach, which achieved comparable perfor-
mance at much lower computational costs.

What choice to make for a practical real-time application depends on the number
of ROIs to process. While for pure sliding window-based applications, the AdaBoost
cascade will be the method of choice, local receptive fields in combination with a neural
network or even an SVM are attractive for post-processing the output of a faster detector.

The greatest performance gain was achieved by increasing the training sample size.
Here, the automatic generation of non-pedestrian examples resulted in a performance
gain that, after few iterations, ran into saturation. Not so for the addition of target
examples at the quantities considered. The obvious consequence is to diligently continue
collecting more training (target) samples, but this is time consuming. Thus, techniques
for extending and designing the training set using interactive learning techniques seem
an especially worthwhile direction of further research.

28

4 Integration of Shape and Texture

Texture-based classification methods have been shown to provide effective discrimination
between patterns of the target (i.e. pedestrian) class and the non-target class. Yet
challenges remain due to the high complexity of appearance variation of both, target
and non-target patterns, in conjunction with a high dimensionality. The goal of this
chapter is to examine how texture classification benefits from explicit prior knowledge
about object appearance variation.

The appearance variance of pedestrians arises from three different sources: Pedestrian
foreground texture varies with clothing and illumination, shape variation is induced
by body articulation and different viewpoints, and there is a variable background. No
prior knowledge about the foreground and background texture distributions applicable
to pattern classification is available (see Sections 2.2 and 2.3). The utilization of these
cues is left to a generic pattern classifier that learns a discrimination function directly
from a training set.

The variability of pedestrian shapes, however, is subject to physiological and appli-
cation-specific constraints. These constraints allow to build explicit representations of
pedestrian shape as reported in Section 2.2. Matching the shape representation to an
input image then provides shape knowledge that can be used to reduce the intra-class
appearance variability, and, hence, to simplify the classification problem. This is done
in two steps: First, clusters of distinct body pose, defined by viewpoint and articulation,
are identified and one specialized texture classifier is generated for each pose cluster.
Online, a probabilistic assignment of (unknown) input patterns to the pose-specific ex-
perts is derived from the shape matching results. The better an image fits to the shape
of a particular pose cluster, the higher the cluster membership probability. This resem-
bles a pose-specific mixture-of-experts architecture that combines pose-specific texture
classifiers (the local experts) with shape matching for expert selection.

In a second step, a parametric representation of the shapes within each cluster is used
to perform shape normalization by warping input images to the reference shape of the
associated pose cluster. As a result, shape variability is eliminated from the texture
patterns, which is supposed to simplify the classification problem.

The resulting architecture implements a mixture model of shape and texture by inte-
grating a generative, explicit shape model into discriminative texture classification. An
overview is shown in Figure 4.1. This model is particularly attractive for application
within a multi-cue recognition system that combines shape matching for object localiza-
tion and texture classification for object discrimination, so that the shape-based gating
function comes at no extra cost. Two such examples are presented in Chapters 5 and 6.

29

4 Integration of Shape and Texture

Hierarchical
Shape Matching

Classifier K

f1 (x) (x)Kf

normalize ROI
Extract and

Classifier 1

F(x)

Chamfer Distances

B
es

t M
at

ch
in

g
Sh

ap
es

P(C |x)
1

P(C |x)
K

Weighting

+

Shape
Normalization

Shape
Normalization

Figure 4.1: Overview of the proposed pose-specific mixture-of-experts architecture inte-
grating shape and texture: Shape matching is applied to an input image to
determine shape information (left). For each pose cluster, the best matching
shape instance along with a measure of the matching quality is determined.
In an optional pre-processing step, the matching shape instances are used to
perform shape normalization, i.e. to warp the input pattern to a reference
shape; separately for each pose cluster. The resulting texture pattern is then
processed by a mixture of patterns classifiers, each specialized to one pose
cluster. The final result is obtained by a linear combination of the classifiers’
outputs, where the mixture coefficients are derived from the shape matching
results.

30

4.1 Shape Representation

This chapter focuses on utilizing shape matching for texture classification. Below, the
underlying shape representations are introduced first before the two integration steps
are presented. This chapter is complemented by a thorough experimental analysis of the
proposed approach.

4.1 Shape Representation

The purpose of this section is to introduce the two different representations of object
shape utilized within this thesis, and to provide brief descriptions of the acquisition and
application of these representations. Motivations for our choice were the fact that both
representations can be learned from 2D example images, and that efficient matching
techniques exist.

In this work, the shape of a target object is described by a list of 2D contour points,

C = {(u1, v1), . . . , (un, vn)} , (4.1)

or, equivalently, by the binary image I(C) of contour points. In order to compare two
shapes, we make use of a multi-feature distance transform as proposed in [37], with
feature types given by discretized edge orientations. Given a shape C and a feature
image I, the multi-feature chamfer distance is defined as

Dchamfer(C, I) =
∑

m∈M

1

|Cm|
∑

c∈Cm

dIm
(c) , (4.2)

where M is the set of feature types, the index m denotes the subset of features of type m,
and dI(c) denotes the distance between contour point c and the closest feature in image
I. For the latter, we make use of the chamfer-2-3 metric [7]. A symmetric distance
functions of two shapes C1 and C2 is then derived as

D(C1, C2) =
1

2

{

Dchamfer(C1, I(C2)) +Dchamfer(C2, I(C1))
}

. (4.3)

Advantages of this choice of a distance function are the gradual measure of shape dissim-
ilarity, and the avoidance of explicit feature point correspondences. See [37] for further
details.

The distribution of pedestrian contours is complex due to object deformations, unre-
stricted viewpoints, and self-occlusion. Of the many approaches developed in the past,
two representations of object shape are of particular interest for this work and discussed
below. Both are learned from a training set of object shapes, C = {C1, . . . , CN}, obtained
from manual labeling of contour pixels.

31

4 Integration of Shape and Texture

4.1.1 Exemplar-based Shape Representation

The first approach is to directly use the training set as an exemplar-based representation
of the shape distribution. Together with the above distance function, this parameter-free
representation evades an explicit, error-prone shape registration.

In order to handle large data sets efficiently, Gavrila and Philomin [37] proposed
to organize the shape set in a hierarchical tree structure. Offline, this hierarchy is
constructed automatically in a bottom-up, level-by-level fashion using clustering. For
each level, the intra-cluster variance

E =
K

∑

k=1

min
P∈Ck

max
C∈Ck

Dchamfer(C,P) (4.4)

is minimized by means of simulated annealing [52]. At its top level, this hierarchy
provides a partitioning of the training set into disjoint clusters, C = C1∪ . . .∪CK , where,
ideally, each cluster represents a certain pedestrian body pose. Online, matching the
shape hierarchy to a given input pattern involves a tree traversal process which can be
done in an efficient coarse-to-fine manner [37].

4.1.2 Multi Point Distribution Model (MPDM)

The second representation is adopted from Gavrila et al.[35] and provides a dynamic,
parametric shape model based on Point Distribution Models (PDMs) [14]. Opposed
to the exemplar-based representation above, this one allows to synthesize new shape
examples from the model.

Clustering. For this to work, shapes need to be registered into a common vector space
by establishing point correspondences. But two arbitrary 2D contours do not necessarily
possess physically corresponding points due to differing viewpoints and/or self-occlusion,
so that one global vector space does not adequately describe the shape manifold. In-
stead, the training set is first partitioned into K pose clusters of common viewpoint and
articulation. Automatic techniques are available, e.g. [35, 5], but we decided to do this
first step manually to take texture information into account that are not available from
the list of contour points; e.g., to distinguish front and back views of pedestrians. As
above, let C = C1 ∪ . . . ∪ CK denote the K disjoint pose clusters. An example of such
manually defined clusters is shown in Figure 4.5.

Registration. Point correspondences within each pose cluster are then obtained in a
semi-automatic process, as described in [35]. Roughly, the procedure for registering two
shapes is:

1. Align center points and heights of both shapes by translation and scaling.

32

4.1 Shape Representation

2. Determine interest points of extreme curvature on both shapes.

3. Compute the correspondence of minimum average Euclidean distance between the
interest points using Dynamic Programming.

This fully automatic algorithm is followed by a manual refinement step to correct obvi-
ous registration errors. For each cluster k, the training example with minimum average
distance to other cluster elements is taken as the cluster prototype, denoted by Cp

k . A
common vector space is then established by the registration of all example shapes of
cluster k to that prototype. Its dimension dk equals twice the number of correspon-
dence points. Let s ∈ R

dk denote a shape vector of correspondence points obtained by
registration.

Linear subspace model. In order to obtain a compact representation of the shape
variations within each cluster, the Active Shape approach of Cootes et al.[14] is adopted.
Dimensionality of each local vector space is first reduced using principal component
analysis (PCA), where the number of eigenvectors to retain is chosen such that a user-
supplied fraction of the total variance is explained. (We use 95% throughout this thesis.)
A Mahalanobis threshold is then determined that covers a user-supplied fraction of
the training examples. (We use 75%). Examples outside the resulting hyperellipsoid
are considered outliers, while a (truncated) normal distribution is assumed within the
hyperellipsoid.

Formally, let Ak denote the matrix of selected eigenvectors in its columns, and let
Λk denote the diagonal matrix of corresponding eigenvalues. A shape s in cluster k is
represented by the pair (k,b), with

b = AT
k (s− s̄) (4.5)

being the vector of PCA coefficients; s̄ is the cluster mean1. The prior shape distribution
is given by

p(k,b) ∝ P (k)

{

N(b; 0,Λk) if bT Λ−1
k b ≤M2

0 otherwise
(4.6)

where M is the Mahalanobis threshold.

MPDM Matching. Matching the MPDM shape representation to an input image in-
volves to first select the shape cluster k, and then to adapt the coefficient b to fit the
input image. If no prior information about the shape cluster is available, shape fitting
is performed in parallel for all clusters, and the best match is selected afterwards.

Matching one local subspace model to an input image is done by a snake-like algo-
rithm [14]. Starting with the cluster mean shape, the following two steps are performed
iteratively:

1Note that the cluster mean might be different from the cluster prototype in this context.

33

4 Integration of Shape and Texture

• Project the current shape parameters to the input image and adapt the list of con-
tour points by means of Dynamic Programming to minimize the chamfer distance
(4.2) between the projected shape and the input image.

• Project the adapted list of contour points to the local subspace and apply the
Mahalanobis threshold M .

This procedure either terminates after a fixed number of iterations, or when no further
reduction of the chamfer distance between the projected shape and the input image can
be achieved.

4.2 Pose-Specific Mixture of Experts

Mixture-of-experts architectures [46] pursue a divide-and-conquer strategy. The classifi-
cation problem is divided into a number of simpler subproblems, and each is handled by
a specialized classifier, called the local expert. Compared to a single global classifier, a
performance gain is attained if each local expert outperforms the global classifier within
its local subregion. The association of input patterns to the local experts is done by
a gating function which is either learned jointly with the experts [46, 49] or obtained
separately from a clustering of the training data set [40, 55].

Though intuitively promising, dividing the training set into smaller subsets might
also have unfavorable consequences to the classification performance due to over-fitting,
especially in high-dimensional input spaces where training sets naturally become sparse.
In general, dividing the input space increases the variance of classification error. The
solution proposed in the literature [46, 49] is to use “soft” splits of the data, such as
modeling probabilistic cluster associations, thus allowing subregions to overlap. This
alleviates the effects of reduced training sample sizes of the local experts, and results
in a weighted linear combination of the experts’ outputs, which is known to reduce the
variance of classification error [94, 29].

Regarding the pedestrian recognition application, natural clusters of distinct appear-
ance are given by viewpoint (e.g., frontal or back views vs. side views) and articula-
tion (e.g., feet closed vs. knees closed), which generate distinctive object silhouettes.
This motivates our pose-specific mixture-of-experts approach with a shape-based gating
function and texture-based local experts. By relying on different image cues, the gating
function effectively introduces additional knowledge (shape) to texture classification.

The mixture architecture also exhibits a strong relation to the concept of classifier
fusion. Additive combinations of classifiers (“sum rule”) have been shown to outperform
single classifiers, given that the component classifiers are sufficiently diverse [73, 53, 95,
56]. Whereas in previous works on classifier fusion, diversity is created by using different
classification models, different initializations (in conjunction with neural networks), or
random splits of the training data, mixture-of-experts architectures inherently ensure
diversity by creating distinct training sets.

34

4.2 Pose-Specific Mixture of Experts

4.2.1 Shape-Based Gating Function

Both shape representations introduced in Subsections 4.1.1 and 4.1.2 above are based
on a partitioning of the training set. Instead of generating a clustering anew, the shape
clusters are re-used so that a pose clustering of the texture patterns can be derived
from shape matching. One could simply use the partitioning of the training set and
train a separate classifier for each subset. However, the variation of camera viewpoint
and human articulation is continuous, so that ambiguities in cluster associations arise.
Furthermore, errors in shape matching occur due to missing edge features or background
clutter. Both problems are handled by modeling cluster associations probabilistically,
i.e., by determining the posterior probability that a texture pattern x belongs to a certain
pose cluster, given the shape matching results.

Let Cj, j = 1, . . . , K, denote the pose clusters given by the shape model. Matching
the shape model to texture pattern x involves to compute, for each shape cluster Cj, the
best matching shape instance t∗j(x) and residual chamfer distance dj(x):

dj(x) = min
t∈Cj

Dchamfer(t, Ix) , (4.7)

where Ix denotes the feature image obtained from x. We represent the cluster-conditional
density by an exponential function,

p(dj(x) | Cj) ≈ αje
−αjdj(x) , (4.8)

and model the posterior P (Cj |x) given the cluster distances as observations. Assuming
equal prior probabilities, the latter is given by Bayes law, 2

P (Cj |x) ≈ αje
−αjdj(x)

∑K
k=1 αke−αkdk(x)

def
= wj(x) . (4.9)

Let wj(x) denote the cluster posterior approximations which are subsequently used as
the pose expert weights. Parameters αj are determined on the training set by maximizing
the likelihood

L(αj | Cj) =
∏

x∈Cj

p(dj(x) | Cj) . (4.10)

Substituting Eq. (4.8) and solving for αj yields

1

αj

=
1

|Cj|
∑

x∈Cj

dj(x) . (4.11)

2Strictly, this is an approximation of the posterior since the observation dj depends on the state
hypothesis Cj .

35

4 Integration of Shape and Texture

4.2.2 Expert Training and Combination

Each pose expert is aimed to discriminate texture patterns of the target class from those
of the non-target class, given it belongs to the particular pose cluster of that expert.
More specifically, we wish expert fj to approximate the cluster-conditional posterior

fj(x) ≈ P (O | Cj,x) , (4.12)

where O denotes the object class. This is achieved by training expert fj on the modified
distribution wj of the training set, either by using a weighted training set or by resam-
pling the training set. Then, the final target class posterior is the weighted average of
the pose experts, i.e.,

P (O |x) =
K

∑

j=1

P (Cj |x)P (O | Cj,x) (4.13)

≈
K

∑

j=1

wj(x)fj(x)
def
= F (x) . (4.14)

Figure 4.1 illustrates this architecture.

4.2.3 Implementation Details

A few design considerations have critical impact to the classification outcome, and are
discussed below.

Number of clusters. The definition of the pose clusters used here is given by the shape
clustering of the shape model. However, shape clustering methods, manual or automatic,
tend to generate a large number of clusters with low intra-class variance, suitable for
representation by simple models such as the linear PDM model described in Section
4.1.2. But this choice may be inappropriate for generating texture classifiers, as too
small training sample sizes remaining in each cluster degrade classification performance.
Hence, the number of clusters K used for generating the shape models is manually set
to a small number, and the optimum is found empirically. For the experiments below,
K is varied within the range 3 to 12.

Expert complexity. Intuitively, one could assume that simpler classifiers can be used
for the pose experts compared to a single classifier approach due to the reduced com-
plexity of each pose cluster, but this assumption is misleading. Previous studies of the
bias-variance trade-off, e.g. [94, 29], have pointed out that classifier combination via
averaging requires component classifiers to have low bias and low correlations, since er-
ror variance is reduced by their combination. Consequently, the pose experts should be
highly specialized to their pose cluster (low error bias but high variance), which can be

36

4.3 Shape Normalization

Figure 4.2: Illustration of shape normalization [22]: Correspondence points (red dots) are
determined along the contours of the source (left) and target shape (right).
The correspondence points of the source shape are triangulated using the
Delaunay algorithm. A transformation of the triangle is then established by
shifting the correspondence points to their new location.

achieved by increasing the complexity of the component classifiers, i.e., by increasing the
number of free parameters to adjust during the training process. We account for this by
initially choosing each expert’s complexity equal to that of the optimal single classifier,
followed by experimental tuning.

Weight approximation. Determination of the weights w(x) is rather time-consuming
as it requires the computation of the chamfer distance of a previously unseen texture
pattern to all shape templates (Eqs. (4.7) and (4.9)). If online processing employs hier-
archical chamfer matching as described in [37], only the best matching shape template is
given as output. Hence, we speed up online processing by pre-computing a fixed weight
vector ŵ(i) for each shape cluster Ci. Online, cluster index i is given by the best match-
ing shape template. The best approximation of the true weight vector of Eq. (4.9) is
given by its expectation over the set Di of training examples that have the best matching
shape template t∗ in cluster Ci:

P (Cj | t∗ ∈ Ci) ≈ EDi
[wj(x)]

def
= ŵ

(i)
j , (4.15)

where
Di = {x ∈ D|i = arg min

i′=1...K
di′(x)} . (4.16)

4.3 Shape Normalization

Matching the shape mixture models to an input pattern yields two kinds of information,
the pose cluster association and the local contour deformation within each pose cluster.
While cluster associations were used in the mixture-of-experts architecture above, object
contour information is to be utilized now for shape-normalizing the foreground region
and for masking out background pixels.

37

4 Integration of Shape and Texture

Figure 4.3: Examples of shape normalization and background masking. Top row shows
a few example of the training set that are all (manually) assigned to the
same pose cluster (“Right”/“Knees Apart”). Warps to the cluster reference
shape are shown in the second row, the third row shows the same examples
with background pixels removed (excluding a margin of 2 pixels around the
object contour). Contour labels are superimposed on the examples images
for visualization purposes.

38

4.4 Experiments

Contour point correspondences, as available in the MPDM shape model, provide an
explicit representation of local contour deformation. By using these correspondence
points as support points for image warping, all input patterns (target and non-target)
can be warped to a common reference shape. Shape variability is thus eliminated from
the input space, i.e., patterns are shape-normalized, which effectively reduces appearance
complexity to be handled by the texture classifiers and potentially leads to improved
classification performance.

Various image warping techniques are available from the literature. Here, we employ a
piecewise affine warp based on Delaunay triangulation [2] and bilinear interpolation. See
Figure 4.2 for an illustration, and Figure 4.3 for examples. Details of the algorithm are
given in [22]. Shape normalization is done locally within each pose cluster, since contour
point correspondences are not defined between pose clusters by our shape models.

Secondly, the object contour obtained from shape matching separates foreground and
background pixels. In most applications, background clutter increases appearance com-
plexity without providing additional information about the object class. Removing back-
ground pixels from the input patterns is, hence, supposed to be beneficial to classification
performance. In conjunction with shape normalization, the foreground mask and thus
the input dimension is fixed, so that background masking is applicable with any texture
classification method. For the experiments below, a small margin (e.g., 2 pixels) is added
to the foreground region in order to preserve edge information along the object contour.

If probabilistic cluster associations are involved, then shape normalization and back-
ground masking are performedK times for each input pattern, once for each pose cluster.
Each warping process transforms the best matching shape of one pose cluster to the cor-
responding cluster reference shape. An illustration of the resulting architecture is given
in Figure 4.1. The effect of shape normalization and background masking is evaluated
experimentally in the next section.

An interesting alternative to shape normalization was proposed by Enzweiler [22]. In-
stead of eliminating shape variation from the input patterns, the given prior knowledge
about shape variation is represented by a virtual training set in that virtual samples
are generated from the combined shape-texture model. This works by sampling shape
and texture independently from the (existing) training set, and by warping the selected
texture pattern to the new shape. A selective sampling method based on Active Learn-
ing [12] guides the sample generation process towards the more informative examples.
Though this approach requires more complex local experts compared to shape normal-
ization, it is potentially more robust since shape matching errors are avoided and texture
warping is only applied to the training set where accurate contour labels are available.

4.4 Experiments

This section evaluates the benefit of the mixture-of-experts approach in comparison
to a single texture classifier, and experimentally verifies the assumptions made above.

39

4 Integration of Shape and Texture

Figure 4.4: Example results of automatic shape clustering. Cluster prototype shapes of
the 5 pose clusters are shown on the left, and examples of best-matching
texture patterns (“hard partitioning”) are shown to the right. Although
most cluster associations are correct, errors frequently occur either from
shape matching failures (e.g., rightmost examples in rows 3 and 5), or from
association ambiguities where examples fall in-between two clusters (e.g., 4th
and 5th example in row 3).

Following the results of the previous chapter, a neural network with local receptive fields
was selected as the pattern classifier for all experiments in this chapter. The number of
LRF branches NB was set to 24 unless otherwise stated.

4.4.1 Data Sets

Experiments are conducted on a large real-world pedestrian data set. Video images were
recorded at various times and locations in order to capture a great variety of pedestrian
appearances. Pedestrians were required to be fully visible or have only minor occlusion
such as one arm or foot. The data were split into a training set and a fully disjoint test
set. In the training set, pedestrian contours were manually labeled, and the positions
of certain body parts were marked to obtain point correspondences. Pedestrians in the

40

4.4 Experiments

Front Back Left Right

Legs Closed

Knees Closed

Knees Apart

Figure 4.5: For manual clustering, 12 pose clusters of distinct viewing direction and leg
position were defined, and each pedestrian training example is manually as-
signed to one of these clusters. Merging front and back views yields 9 clusters,
further merging leg articulations “Knees Closed” and “Knees Apart” leads
to 6 cluster. In addition, 3 different pose clusters are obtained by only con-
sidering leg articulation. Contour labels are superimposed on the examples
images for visualization purposes.

test set are only labeled by their bounding box position.

Examples have been mirrored and shifted by a few pixels in both directions to increase
the number of pedestrian examples, and to account for small localization errors. In order
to obtain meaningful non-pedestrian patterns from sets of images without pedestrians,
shape template matching was applied at random positions, and only matches below a
threshold of 2.5 pixels were extracted. See Table 4.1 for statistics of the resulting training
and test data sets.

4.4.2 Pose Clustering

The first processing step involves the generation of the pose clusters. Two approaches,
automatic shape clustering as employed for the exemplar-based shape representation
and manual clustering as proposed for the MPDM model, are pursued and compared
experimentally w.r.t. their benefit to texture classification performance.

Automatic shape clustering by means of simulated annealing (see Section 4.1.1) op-
erates directly on the contour labels of the training set. The number of clusters K was

41

4 Integration of Shape and Texture

Table 4.1: Training and test data set statistics.

Training Sets Test Sets
Pedestrian Labels 6,522 3,375
Pedestrian Examples 61,640 58,362
Non-Pedestrian Examples 45,853 48,455

“Pedestrian Labels” denotes the number of pedestrians manually labeled, whereas “Pedestrian

Examples” denotes the number of pedestrian examples in each data set derived from the

pedestrian labels by mirroring and shifting.

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25

C
or

re
ct

 P
os

iti
ve

s

False Positives

Single Classifier (No Clustering)
3 Clusters
4 Clusters
5 Clusters

10 Clusters
0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25

C
or

re
ct

 P
os

iti
ve

s

False Positives

Single Classifier (No Clustering)
3 Clusters
6 Clusters
9 Clusters

12 Clusters

(A) (B)

Figure 4.6: ROC results of different pose clusterings. (A) Automatic shape clustering
with K=3, 4, 5, or 10 clusters. (B) Manual clustering with K=3, 6, 9, or 12
clusters. Performance of a single classifier approach is given for comparison.

varied within the values of {3, 4, 5, 10}. Example clustering results are shown in Figure
4.4. For the manual clustering approach, 12 pose clusters have been defined as shown
in Figure 4.5. The number of clusters was varied by merging pose clusters, yielding 9,
6, or 3 pose clusters.

ROC results obtained with the proposed pose-specific mixture-of-experts approach
using probabilistic cluster assignments are shown in Figure 4.6. The ROC performance
of a single classifier approach is given for comparison. Remarkably, all mixture-of-experts
variants improve upon the single classifier approach. Best results are obtained with
K = 5 and K = 6 for automatic and manual clustering, respectively. The perhaps
surprising result is that both clustering variants perform almost identically. Performance
variations for different numbers of clusters are similar, and the best ROC results of each
variant nearly coincide. This effect is examined in further experiments below.

42

4.4 Experiments

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3

C
or

re
ct

 P
os

iti
ve

s

False Positives

Single Classifier (No Clustering)
Training Data Partitioning, Expert Selection

Training Data Partitioning, Expert Weighting
Training Data Weighting, Expert Selection

Training Data Weighting, Expert Weighting
0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3

C
or

re
ct

 P
os

iti
ve

s

False Positives

Single Classifier (No Clustering)
Training Data Partitioning, Expert Selection

Training Data Partitioning, Expert Weighting
Training Data Weighting, Expert Selection

Training Data Weighting, Expert Weighting

(A) (B)

Figure 4.7: Cluster Association Experiments: Experimental comparison of probabilistic
clustering vs. hard cluster assignments applied individually to training data
and test data. (A) Automatic shape clustering approach, K=5. (B) Manual
clustering approach, K=6.

4.4.3 Cluster Association

The assumption of the necessity of probabilistic cluster assignments is to be validated
by replacing the cluster membership weights by a hard partitioning. For the pedestrian
training set, a hard partitioning is given by the pose clustering, i.e., the training set
of expert k consists of the texture patterns corresponding to shape cluster Ck. For the
non-pedestrian training data, and for all test data, samples are assigned to the cluster
of maximum posterior probability.

Figure 4.7 shows ROC results for both pose clustering variants (automatic and man-
ual). “Expert Selection” refers to the hard partitioning of the test set, “Expert Weight-
ing” denotes probabilistic assignments. Except in the case of manual training data
clustering, all hard partitioning variants show degraded performance compared to their
probabilistic counterparts. Partitioning of training data even deteriorates performance
below that of a single classifier approach (green and blue curve vs. red curve in subfig-
ure A). However, no performance degradation is observed if (nearly) error-free cluster
assignments are obtained manually (blue vs. cyan curve in subfigure B). Obviously,
probabilistic cluster assignments effectively compensate for errors in shape matching or
shape clustering, the latter being particularly interfering in conjunction with reduced
training sample sizes. Another positive effect of the probabilistic combination of the
experts is a performance gain by a reduction of error variance, i.e., errors of one expert
can be compensated for by the others, as will be shown below.

43

4 Integration of Shape and Texture

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25

C
or

re
ct

 P
os

iti
ve

s

False Positives

Single Classifier, 24 RFs
5 Experts, 16 RFs each
5 Experts, 24 RFs each
5 Experts, 36 RFs each

Figure 4.8: Variation of expert complexity and comparison to best performing single
classifier.

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25

C
or

re
ct

 P
os

iti
ve

s

False Positives

Single Classifier (No Clustering)
True Cluster Posterior wj = P(Cj|x)

Approximation wj = P(Cj|t*∈ Ci)
Simple Averaging

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25

C
or

re
ct

 P
os

iti
ve

s

False Positives

Single Classifier (No Clustering)
Pose-Specific Mixture-of-Experts

Pose Clustering / Simple Averaging
Simple Committee of CV Classifiers

(A) (B)

Figure 4.9: Experiments with clustering techniques and cluster association. (A) Approx-
imation of expert weighting vs. true weights and simple averaging. (B) Pose
clustering (blue and green) vs. a committee of cross-validation experts, each
trained on 4/5 of the original training set (magenta). Experiments conducted
with 5 experts and automatic shape clustering.

44

4.4 Experiments

4.4.4 Validation of Design Choices

An important issue in creating a mixture-of-experts architecture involves the complex-
ity of the local experts. For the neural networks with local receptive fields used here,
classifier complexity is mainly defined by the number of receptive field branches. Figure
4.8 shows ROC performance for three different numbers used in the experts in compar-
ison to the best performing single classifier (24 receptive field branches). Adaptation of
expert complexity to the reduced appearance variance of each pose cluster, i.e., reducing
expert complexity, clearly degrades performance. Instead, optimal mixture performance
is achieved with experts of relatively high complexity that result in low error bias but
high error variance, the latter being reduced by the averaging expert combination.

The effect of approximating the expert weighting is analyzed in Figure 4.9(A). Sur-
prisingly, replacing the true weighting of Eq. (4.9) with the approximation of Eq. (4.15)
results in no performance difference. Even simple averaging of the expert results per-
forms only slightly inferior to the mixture approach.

Finally, the concept of pose-specific experts is validated experimentally by a compar-
ison to a simple committee of classifiers [73] which was trained on random subsets of
the training data and uses simple averaging to combine the individual results. We chose
to use 5 experts, each trained on 4/5 of the original training data in a cross-validation
manner. ROC results in Figure 4.9(B) show that this simple committee does not reach
the performance obtained by pose clustering, even if a simple averaging of the experts
is used for the latter. However, a slight performance gain over the single classifier is
achieved.

4.4.5 Shape Normalization

Shape normalization requires accurate point correspondences between the shapes of a
pose cluster. Experiments are therefore based on the MPDM shape model that was built
from a manual clustering of the training set and manually labeled body part positions.
The number of pose clusters was set to 12.

Figure 4.10 shows ROC results with and without background masking, and a compar-
ison to a mixture-of-experts architecture without shape normalization. No performance
gain could be achieved without background masking. Presumably, inaccuracies in shape
normalization due to errors in shape matching spoiled the benefit of a reduced shape vari-
ability. Masking out the background region proves beneficial to the ROC performance
and outperforms the corresponding mixture-of-experts architecture without shape nor-
malization by about 10–20%. However, this performance gain was paid by the additional
processing cost for shape normalization of about 10ms per example and pose cluster on
a 3.2GHz Pentium PC, compared to about 2ms consumed by the NN/LRF classifier.

45

4 Integration of Shape and Texture

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25

C
or

re
ct

 P
os

iti
ve

s

False Positives

Single Classifier (No Shape Norm.)
Mixture-of-Experts (No Shape Norm.)

MoE + Shape Normalization, No Masking
MoE + Shape Normalization, BG Masking

Figure 4.10: ROC results of shape normalization experiments, compared to mixture and
single classifier approaches without shape normalization. A manual parti-
tioning of the training examples into K=12 clusters was used.

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25

C
or

re
ct

 P
os

iti
ve

s

False Positives

Single Classifier (No Shape Norm.)
MoE (Automatic Clustering, K=5)

MoE (Manual Clustering, K=6)
MoE with Shape Normalization

Figure 4.11: Summary of shape-texture integration results. The shape normalization
variant involves manual pose clustering with K = 12 clusters.

46

4.4 Experiments

4.4.6 Results

Figure 4.11 summarizes the results of this Chapter obtained by integrating shape infor-
mation into texture classification. ROC results of three mixture-of-experts approaches
are shown in comparison to that of a single global classifier: mixture-of-experts with
manual and automatic pose clustering, and mixtures-of-experts in combination with
shape normalization (manual clustering, K = 12). All three approaches significantly
improve upon the single global classifier, with a slight advantage of the shape normal-
ization approach. For fixed detection rates, the number of false positives was reduced
by about 30–40% by the mixture-of-experts approaches, and by a further 10–20% when
using shape normalization.

Combining the above results, we notice two main aspects of the performance gain
attained from shape information. The first one is the creation of diverse experts via
pose clustering that underlies our mixture-of-experts approaches. In contrast, the exact
choice of the combination rule appears to be less important, see Figure 4.9. The second
one is the usage of contour information for masking out background pixels.

The drawback is increased processing cost. In addition to replacing a single classifier
by K experts, each of about the same processing costs as the single classifier, shape
matching and (optionally) shape normalization must be performed for each input pat-
tern. An application of the proposed approach is, hence, most appealing for detection
systems that precede texture classification by a shape matching step for object localiza-
tion. Two such examples are described in the following two chapters.

47

4 Integration of Shape and Texture

48

5 Cascade Optimization

Many object recognition applications require computationally efficient algorithms, either
because real-time processing is required or because of limited computing resources. Such
demands are typically accomplished by cascade-like architectures that aim to prune
out irrelevant image regions early in the processing chain, and to apply powerful but
computationally expensive classifiers to a small number of regions of interest (ROIs) only.
While early approaches have consisted of a simple 2-stage cascade of ROI generation and
ROI classification, more complex systems with a higher number of cascade stages have
been developed recently. Those cascade systems may either be homogenous such as
the popular cascade of AdaBoost classifiers by Viola and Jones [99], or may consist of
complementary system modules such as the multi-cue system proposed by Gavrila and
Munder [36].

Assume that the individual modules have already been generated separately, e.g., by
learning a classification rule on a training set or by hand-crafting a detection algorithm.
We here turn to the problem on how to adjust the parameters of the system modules
so as to optimize the overall system performance. Module parameters typically involve
thresholds applied to some decision function that control the percentage of ROIs passed
to the next cascade stage, but other parameters might affect system performance as well.

Three performance measures are considered for system optimization. Beside the in-
evitable trade-off between detection rate and false positive rate, processing time is of
interest as well. Ignoring the latter could lead to an optimization outcome where all
work is shifted to the single most powerful but computationally most expensive module,
so that the resulting system would be impractically slow. By integrating a processing
time constraint into the optimization process, efficient pruning of the search space by
the early (usually fast) cascade stages is ensured.

We distinguish two problem variants. First, a classification problem is considered
where a cascade classifier assigns an input pattern to either the target or the the non-
target class. This decision is compared to the true class label. Secondly, we consider
the somewhat broader problem of object detection which involves classification and
localization. A cascade detector is fed with an input image and yields a set of predicted
target object positions, e.g., by shifting a classifier over the input image. Performance
evaluation then involves matching the set of system detections to the set of true objects
positions (the “ground truth”).

After formalizing the optimization problem, two parameter optimization approaches
are presented below and reasons for their combined use are given. In addition, an earlier
approach based on the assumption of module independence is shortly reviewed. The

49

5 Cascade Optimization

Target
Class
O

?

--

? ?

--

Input
Pattern

x

q q q -

Non-Target Class N

q1

Parameters
q2

Parameters
qn

Parameters

Module 1 Module 2 Module n

Figure 5.1: A general cascade architecture. Vectors qi may include thresholds and other
module parameters.

methods are first evaluated using synthetic data sets, before we present a complex real-
world cascade system and apply our optimization techniques.

5.1 Problem Formulation

Given a cascade system as shown in Figure 5.1, let n denote the number of modules under
consideration, qi a parameter vector of module i chosen from the set Qi of admissible
parameter settings. Let q1:i = (q1, . . . ,qi) and Q1:i = Q1× . . .×Qi respectively denote
the concatenated parameter vector and parameter set of the first i cascade modules.
Finally, let F1:i(q1:i), H1:i(q1:i), and C1:i(q1:i) denote the three performance metrics false
positive rate, detection (or hit) rate, and processing cost, respectively, obtained when
the first i system modules are considered with parameter setting q1:i. The performance
of the overall system is specified by i = n.

The optimization objective now is to find the parameter setting q⋆
1:n ∈ Q1:n that opti-

mizes system performance. In order for the optimization problem to become tractable,
the multi-objective problem is first turned into a single-objective problem by select-
ing one performance measure as the optimization objective and fixating the other two
as optimization constraints. With regard to our prospective application, we choose to
minimize the false positive rate given a user-defined minimum detection rate H⋆ and
maximum processing cost C⋆. Formally, we seek to find q⋆

1:n such that

F1:n(q⋆
1:n) = min

q1:n∈Q1:n

F1:n(q1:n) subject to

{

H1:n(q1:n) ≥ H⋆ ,
C1:n(q1:n) ≤ C⋆ .

(5.1)

Equations of the three performance measures differ for the two problem variants, as
follows.

Cascade Classification Problem

A cascade classifier involves a sequence of decision functions di : R
k ×Qi → {0, 1} that

each assign an input pattern x ∈ R
k to either the target class O if di(x;qi) = 1, or

50

5.1 Problem Formulation

to the non-target class N otherwise, subject to the parameter setting qi. The overall
classification result is class O if all cascade stages agree to that decision, and class N
otherwise:

Assign x to class

{

O
N

}

if D1:n(x;q1:n) =

{

1
0

}

, (5.2)

where D1:n(x;q1:n) =
∏n

i=1 di(x;qi).
The false positive rate and the detection rate for the cascade classification problem1

are then given by

F cl
1:n(q1:n) = Pr[D1:n(x;q1:n) = 1 | N] , (5.3)

Hcl
1:n(q1:n) = Pr[D1:n(x;q1:n) = 1 | O] . (5.4)

For modeling the processing time constraint, we assume that the processing cost for
one evaluation of decision function di(x;qi) depends on the parameter setting qi but is
independent of input pattern x. Let ci(qi) denote this processing cost. Decision function
di is only evaluated if the outcome of the preceding cascade stages D1:i−1(x;q1:i−1) =
∏i−1

i=1 di(x;qi) equals 1. Hence, the expected processing cost of cascade stage i is given
by

Ccl
i (q1:i) = E[D1:i−1(x;q1:i−1) ci(qi)]

= Pr[D1:i−1(x;q1:i−1) = 1] ci(qi) .
(5.5)

Summation yields the processing cost of the entire cascade classifier:

Ccl
1:n(q1:n) = c1(q1) +

n
∑

i=2

Ccl
i (q1:i) . (5.6)

In practice, these performance measures will be replaced by their empirical estimates
obtained on a training sample S,

F cl
1:n(q1:n) =

1

|SN |
∑

x∈SN

D1:n(x;q1:n) , (5.7)

Hcl
1:n(q1:n) =

1

|SO|
∑

x∈SO

D1:n(x;q1:n) , (5.8)

Ccl
1:n(q1:n) =

1

|S|
∑

x∈S

(

c1(q1) +
n

∑

i=2

D1:i−1(x;q1:i−1)ci(qi)
)

, (5.9)

where SO and SN denote the training subsets of target and non-target examples, respec-
tively, and |S| is the cardinality of the finite set S.

1Performance measures of the cascade classification problem are indicated by superscript cl, and those
of the cascade detection problem introduced in the next paragraph by det. The superscript is
dropped in descriptions that apply to both of the two problem variants.

51

5 Cascade Optimization

Cascade Detection Problem

A cascade detector aims to detect and localize a set of target objects in video images.
Let G denote the set of true objects appearing in these images, and let Z(q) denote
the set of object detections emitted by the cascade detector for parameter setting q.
A user-defined indicator function M specifies whether entries from ground truth and
system output match, i.e., whether a system output object z ∈ Z(q) is a valid detection
of the ground truth object g ∈ G.

M(g, z) =

{

1 if g and z match,

0 otherwise.
(5.10)

The false positive rate is then given by the number of system output objects without
a matching ground truth object:2

F det
1:n (q1:n) =

∣

∣

∣

{

z ∈ Z(q1:n) :
∑

g∈G

M(g, z) = 0
}∣

∣

∣
. (5.11)

The subscript 1 : n specifies entities that refer to the full cascade of modules 1, . . . , n,
as above. Analogously, the detection rate specifies the number of ground truth objects
that have a matching system object:

Hdet
1:n(q1:n) =

∣

∣

∣

{

g ∈ G :
∑

z∈Z(q1:n)

M(g, z) > 0
}∣

∣

∣ . (5.12)

As above, the processing time of each cascade module is modeled as a linear function
of the number of input objects, and accumulated to yield the overall processing cost:

Cdet
1:n(q1:n) =

∣

∣Z0

∣

∣ c1(q1) +
n

∑

i=2

∣

∣Z1:i−1(q1:i−1)
∣

∣ ci(qi) , (5.13)

where Z0 denotes the set of ROIs to be processed by the first cascade stage.

Remarks

Many (cascade) detectors are based on a sliding window approach, i.e., a (cascade)
classifier is shifted over the input images. In that case, the only difference between
the two problem formulations is the definition of the detection rate. The detection
problem allows n-to-m associations between ground truth and system objects, whereas
the classification problem does not. However, our formulation of the detection problem
is more general in that it applies to sophisticated coarse-to-fine search strategies as well.

Unless otherwise stated, the optimization approaches considered below apply to both
problem formulations, by “plugging-in” the respective performance measure equations
into the optimization algorithm.

2The false positive rate is commonly given per frame. This factor is constant w.r.t. to the system
parameters and therefore neglected here. The same applies to the detection rate and processing
time.

52

5.2 Sequential ROC Optimization

5.2 Sequential ROC Optimization

The trade-off between detection rate and false positive rate is typically depicted in
ROC space. Varying parameter settings over a discrete, finite set Q leads to a cloud
of ROC points, as illustrated in Figure 5.2. After filtering this set of ROC points to
meet additional optimization constraints, optimal ROC points are given by its frontier
or Pareto optimal [9] subset. Each ROC point along the frontier represents an optimal
false positive rate and corresponding parameter setting for a particular choice of the
desired detection rate. However, an exhaustive search over all parameter settings Q is
practically infeasible even for moderate numbers of parameters, discrete settings, and
training sample sizes.

The idea of our sequential ROC optimization method is to tackle the high cardinality
of the parameter space by successively integrating the cascade modules into the optimiza-
tion process. Given an optimal frontier subset of ROC points for a cascade of modules
1 . . . i − 1, we include module i and seek for the optimal subset of ROC points for a
cascade of module 1 . . . i. This search can be simplified if each of the new optimal ROC
points of interest is also optimal if only cascade modules 1 . . . i−1 are considered, i.e., if
none of the previously discarded non-optimal parameter settings for modules 1 . . . i− 1
can lead to an optimal ROC point for modules 1 . . . i. Then, the search space can be
restricted to the preceding optimal parameter set and a variation of the parameters of
the currently considered module i.

The final optimization result is then given by searching the overall optimal ROC subset
for the point of minimum false positive rate that meets the detection rate constraint.
The processing time constraint is incorporated analogously by extending the ROC space
to a three-dimensional objective space.

In the subsections below, the sequential optimization approach is formalized and im-
plementation details are given, experimental evaluations are given in Sections 5.5 and
5.6.

5.2.1 Sequential Optimization Algorithm

Consider a discrete, finite set of parameter settings Q. Each setting q ∈ Q leads to a
point (F (q), H(q)) in ROC space plus associated processing cost C(q). We aim to find
the subset Q⋆ ⊂ Q of parameter settings that yield the dominating or Pareto optimal
[9] ROC points along the frontier, i.e., those that are not dominated by another ROC
point in terms of all three performance measures. Formally, this subset is defined as

Q⋆ def
= {q ∈ Q | ∀q′∈QF (q′) ≥ F (q) ∨H(q′) ≤ H(q) ∨ C(q′) ≥ C(q)} . (5.14)

We say that Q⋆ is the optimal subset of Q, and all elements of Q⋆ are called optimal.
In order to restrict the parameter search space Q, we need to make the following

recursive assumption: Each parameter vector q1:i ∈ Q⋆
1:i optimal for a cascade of modules

53

5 Cascade Optimization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0001 0.001 0.01 0.1 1 10 100

D
et

ec
tio

n
R

at
e

False Positive Rate (Per Frame)

All ROC Points
Subset of Optimal ROC Points

Figure 5.2: Illustration of an optimal subset of ROC points: A cloud of ROC points has
been computed, one for each possible parameter setting, as shown by red the
crosses. The subset of optimal ROC points along the frontier is depicted by
the green curve.

54

5.2 Sequential ROC Optimization

Given the sets of feasible parameter settings Q1, . . . ,Qn, the minimum detection rate
H⋆, and the maximum processing cost C⋆.

Initialize Q′
1:1 = Q1.

For i = 1, . . . , n:

• For each parameter setting q1:i ∈ Q′
1:i, compute the false positive rate F1:i(q1:i),

the detection rate H1:i(q1:i), and the processing cost C1:i(q1:i).

• Determine the subset of optimal parameter vectors:

Q⋆
1:i = {q ∈ Q′

1:i | ∀q′∈Q′
1:i
F1:i(q

′) ≥ F1:i(q) ∨ H1:i(q
′) ≤ H1:i(q)

∨ C1:i(q
′) ≥ C1:i(q)} .

• Let Q′
1:i+1 = Q⋆

1:i ×Qi+1.

• Continue with i← i+ 1

Determine the final optimization result q⋆
1:n that satisfies

F1:n(q⋆
1:n) = min

q1:n∈Q
⋆
1:n

F1:n(q1:n) subject to

{

H1:n(q1:n) ≥ H⋆

C1:n(q1:n) ≤ C⋆

by a search over the optimal subset Q⋆
1:n.

Figure 5.3: Sequential optimization procedure

1, . . . , i is also optimal if only modules 1, . . . , i− 1 are considered. That is,

q1:i = (q1:i−1,qi) ∈ Q⋆
1:i ⇒ q1:i−1 ∈ Q⋆

1:i−1 , (5.15)

for i = 2, . . . , n.
Consequently, the overall optimal subset Q⋆

1:n can be found by successively computing
Q⋆

1:1, Q⋆
1:2, . . . , Q⋆

1:n, where in each step, the parameter search space Q′
1:i is restricted to

contain the preceding solution:

Q′
1:i = Q⋆

1:i−1 ×Qi ,
Q⋆

1:i = {q ∈ Q′
1:i | ∀q′∈Q′

1:i
F1:i(q

′) ≥ F1:i(q) ∨H1:i(q
′) ≤ H1:i(q) ∨ C1:i(q

′) ≥ C1:i(q)} .
(5.16)

The resulting sequential optimization algorithm is listed in Figure 5.3.

5.2.2 Discussion

It is easy to show that the sequentiality assumption in Eq. (5.15) is met for a cascade
classifier of independent cascade modules if the processing cost constraint is dropped.

55

5 Cascade Optimization

Module independence is given if the output di(x;qi) of module i does not depend on the
output of the other modules so that

F cl
1:n(q1:n) = Pr[D1:n(x;q1:n) = 1 | N]

=
n

∏

i=1

Pr[di(x;qi) = 1 | N]
def
=

n
∏

i=1

fi(qi) , (5.17)

and accordingly

Hcl
1:n(q1:n) =

n
∏

i=1

Pr[di(x;qi) = 1 | O]
def
=

n
∏

i=1

hi(qi) . (5.18)

Then,

q1:i = (q1:i−1,qi) ∈ Q⋆
1:i

⇒ ∀q′
1:i−1

∈Q1:i−1
: F cl

1:i(q
′
1:i−1,qi) ≥ F cl

1:i(q1:i−1,qi) ∨Hcl
1:i(q

′
1:i−1,qi) ≤ Hcl

1:i(q1:i−1,qi)

⇒ ∀q′
1:i−1

∈Q1:i−1
: F cl

1:i−1(q
′
1:i−1) ≥ F cl

1:i−1(q1:i−1) ∨Hcl
1:i−1(q

′
1:i−1) ≤ Hcl

1:i−1(q1:i−1)

⇒ q1:i−1 ∈ Q⋆
1:i−1 .

In other words, the sequential optimization procedure of Eq. (5.16) applied to a cascade
classification problem without a processing cost constraint is provably optimal if the
cascade nodes are independent. For many practical applications, cascade nodes are
correlated so that this procedure is no longer guaranteed to find the global optimum.
However, there is experimental evidence that often, the solution such found is close to
optimal. Examples are given in Sections 5.5 and 5.6. An optimization approach that
directly builds upon the independence assumption is discussed in Section 5.4.

The sequential optimization approach provides a major speed-up compared to a brute-
force search over the set of all possible parameter settings. If each of the n modules has
K discrete combinations of parameter values, K = |Qi|, then a brute-force search is
of complexity O(Kn). If we assume that the size of the optimal subsets Q⋆

1:i is of the
same order O(K), then the computational complexity of the sequential optimization
procedure is only O((n − 1)K2). Since typically, K ≫ n, a speed-up is achieved for
n ≥ 3. Furthermore, the complexity is linear in n, so that this optimization approach is
applicable to large-scale cascade systems consisting of a large number of modules.

The sequential optimization procedure is particularly suitable for optimizing threshold
parameters, i.e., if qi represents a vector of thresholds to be applied to the output of
module i. In that case, performance measures for varying values of qi (but for a fixed
setting q1:i−1) can be calculated by a single evaluation of the cascade system by means
of logging the output values of module i and applying the thresholds qi offline. This
further speeds up the optimization procedure.

Module parameters are typically continuous, not discrete, though often, reasonable
upper and lower bounds can be given. The sequential optimization procedure can then

56

5.3 Generic Optimization Techniques

only be applied after a discretization of the parameter ranges, which leads to a trade-off
between the resolution of the discretization and the required computing resources. A
discussion of this issue is skipped here. Instead, we propose a two-step approach of first
applying the sequential optimization to a coarse discretization of the parameter ranges,
and then applying the generic optimization proposed in Section 5.3.

5.3 Generic Optimization Techniques

Constrained non-linear optimization techniques are a large active field of research, and
many different approaches were proposed in the past. Yet the problem at hand is
challenging due to a number of unfavorable properties:

• Both the objective function and the constraint functions are non-convex and non-
smooth.

• Since the probability density functions in Eqs. (5.3)-(5.6) are unknown, empirical
estimations based on a finite sample set are used instead. These estimates are
piecewise constant “step functions”.

• For the same reason, derivatives of the objective function and the constraint func-
tions are not available, and numerical approximations are difficult because of the
finite sample size effects.

• Evaluations of the objective function and the constraint functions are relatively
costly because it takes a run of the full cascade system over a potentially large
data set.

For these reasons, simple gradient-descent methods fail on the given problem. Recently,
however, a constrained non-linear optimization technique named “CONDOR”3 [3] was
proposed that fits into the problem profile. A detailed description is given in [3]; below,
a rough sketch of the optimization method is given that motivates its use for the problem
at hand.

The CONDOR optimization technique belongs to the iterative gradient-descent family
of optimization methods. Let xk denote the current point at iteration k (in our case,
the best parameter setting q1:n found so far), the starting point x1 being provided by
the user. For each iteration, the following steps are performed.

1. Construct a local quadratic model of the objective function F around the current
point xk from a few function evaluations:

F (xk + δ) ≈ Qk(δ) = F (xk) + gT
k δ +

1

2
δTBkδ , (5.19)

3CONDOR stands for “COnstrained, Non-linear, Direct, parallel Optimization using trust Region
method for high-computing load function”

57

5 Cascade Optimization

where gk and Bk denote the current approximations of the gradient and the Hessian
of the objective function, respectively. The sample points are drawn from region
of radius ρk around the current point. An initial radius is given by the user, which
is then successively narrowed down (step 3). The number of function evaluations
is minimized by reusing previous sampling. Following a heuristic by Powell [76],
the validity of the current local model is assessed. New sampling points are only
generated if this assessment is negative.

2. Compute an update xk+1 = xk + δk that goes to the minimum of the current local
model, i.e., that minimizes Qk(δk). Since Qk represents a local model of F , the
update step δk is restricted to that local area called the trust region [13]. The
current trust region is defined by the dynamically adapted maximum radius ∆k

and minimum radius ρk/2, so that the objective of this step is to find δk such that

Qk(δk) = min
δ
Qk(δ) subject to

1

2
ρk < ‖δk‖2 < ∆k , (5.20)

and subject to the user-defined constraint functions (in our case, minimum detec-
tion rate and maximum processing cost). The solution to this subproblem is found
by Sequential Quadratic Programming [69].

3. Update the sampling radius ρk and the trust region radius ∆k. The update heuris-
tic for ∆k is based on a “degree of agreement” τk between the objective function
F and its local model Qk:

τk =
F (xk)− F (xk + δk)

Qk(0)−Qk(δk)
.

At a high level of agreement (e.g., τk > 0.9), ∆k is increased; if the agreement is
poor (e.g., τk < 0.01), ∆k is decreased. In the latter case, the update δk is dropped
and xk+1 = xk.

The adaptation heuristic for ρ is based on the update step δk. If the step becomes
small, ‖δk‖2 < ρk, then ρ is decreased. If ρ reaches the user-defined minimum ρend,
iterations are terminated.

This algorithm is, under some weak assumptions, guaranteed to find a local minimum,
but not necessarily the global one. Two parameters mainly guide the algorithm towards
the global minimum: the starting point x1, and the initial sampling radius ρstart. For
our application, the result of the sequential optimization procedure, obtained at a coarse
discretization of the parameter range, is used as the starting point.

The most appealing feature of the CONDOR algorithm is the computation of the local
model in step 1. The need for an explicit formulation of the gradient of the objective
function is eliminated as the gradient and the Hessian are approximated from a few
sampling points drawn from an adapted radius ρ, while at the same time, the number

58

5.4 Independent Optimization

of necessary function evaluations is minimized. The termination radius ρend is chosen
large enough to avoid finite data set (step function) problems.

A MATLAB implementation [4] of the CONDOR algorithm is used for the experiments
below.

5.4 Independent Optimization

For a cascade classification problem with independent nodes, Luo [59] presented an op-
timization approach that directly builds upon the independence property. Reformulate
problem (5.1) by considering the logarithm of F and H:

min
q1:n∈Q1:n

logF1:n(q1:n) subject to logH1:n(q1:n) ≥ logH⋆ . (5.21)

The processing time constraint is not taken into account here. The constrained problem
(5.21) is tackled by taking its Lagrange dual function

g(λ) = min
q1:n

logF1:n(q1:n)− λH1:n(q1:n) + λH⋆ . (5.22)

Substituting the independence properties of Eqs. (5.17) and (5.18) into the above yields

g(λ) =
n

∑

i=1

gi(λ) + λ logH⋆ , with gi(λ) = min
qi

log fi(qi)− λ log hi(qi) . (5.23)

The elements gi are independent and can be computed separately by minimization with
respect to qi. Given that the minimum exists at point qi = q⋆

i , the derivate must be
zero,

∂

∂qi

(log fi(q
⋆
i)− λ log hi(q

⋆
i)) = 0 ,

which yields the optimality condition

λ =

∂
∂qi

log fi(q
⋆
i)

∂
∂qi

log hi(q⋆
i)
. (5.24)

Eq. (5.24) represents a necessary condition for the optimality of q⋆
1:n. For a given

λ, q⋆
1:n can be found by separately computing optimal parameters q⋆

1, . . . ,q
⋆
n using Eq.

(5.24). This transforms the original, multi-dimensional problem in Eq. (5.1) into the
one-dimensional one of finding λ such that F is minimized with respect to the H⋆

constraint. The solution to the latter problem is left open here; constrained line-search
techniques may apply. For the experiments below, we vary λ within a suitable, discrete,
finite subset of (0,∞), which yields a system ROC curve. The final result is given by
the ROC point with minimum false positive rate F that still meets the detection rate
constraint H⋆.

59

5 Cascade Optimization

5.5 Cascade Classification Experiments

This section provides an experimental analysis of the efficacy of each of the three cas-
cade optimization techniques described in Sections 5.2 to 5.4 on cascade classification
problems. The first batch of experiments operates on synthetic data that simulate the
output of three component classifiers. Relative performance of the classifiers and their
correlation can be adjusted exactly, and their effect to the optimization results can be
analyzed. Then, we evaluate how the synthetic results can be carried over to a “real”
example.

5.5.1 Synthetic Data Sets

We simulate a cascade of three classifiers. For an input pattern, the output gi of each
classifier is supposed to consist of some nominal target value y perturbed by random
noise ei, i.e., gi = y + ei, for i = 1, . . . , 3. Let y = 1 for the object class, and y = 0 for
the non-object class. We model the error term ei to be zero-mean Gaussian noise, and
allow for a correlation between the classifiers:

e = (e1, e2, e3)
T ∼ N(0,Σ) ,

where the covariance matrix is furthermore allowed to differ for the object and non-
object class.4 For each experiment, a data set of 25,000 examples per class is drawn
from that model.

The parameters qi to be optimized are the thresholds on the output functions gi,
one for each classifier. No processing time constraint is considered here. All three
optimization techniques described above are applied. For the sequential optimization
technique, 90 discrete values within the range [−4, 5] are considered for each threshold.
The independent optimization technique requires the derivatives of the false positive
rate and the detection rate, which are obtained numerically from individual ROC curves.
The value λ was varied in the range [e−1, e2.5]. Both methods yield a full ROC curve, as
plotted in Figure 5.4 (green and magenta curve, respectively). The result of sequential
optimization is used as the starting point for the generic optimization method CONDOR,
which was run for a number of different minimum detection rates (blue points). For
comparison, an exhaustive search over the parameters was performed using the same
discretization as for the sequential optimization method (red curve). This curve acts as
“ground truth”, although the results may not be optimal due to the discretization.

4In Figure 5.4, the covariance matrix chosen is given as variances σi and correlation coefficients ρij ,
i.e.

Σ =

σ1

σ2

σ3

1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

σ1

σ2

σ3

 ,

for the target class O and the non-target class N.

60

5.5 Cascade Classification Experiments

(A) Independent Errors

O: σ1=1.2, σ2=1.0, σ3=0.5

ρ12=ρ13=ρ23=0

N: σ1=1.0, σ2=1.2, σ3=1.5

ρ12=ρ13=ρ23=0

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Exhaustive Search
Sequential Optimization
Generic Optimization
Independent Optimization

(B) Equal Positive Correlations

O: σ1=1.2, σ2=1.0, σ3=0.8

ρ12=ρ13=ρ23=0.7

N: σ1=1.2, σ2=1.0, σ3=0.8

ρ12=ρ13=ρ23=0.7

0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

False Positive Rate

D
et

ec
tio

n
R

at
e

Exhaustive Search
Sequential Optimization
Generic Optimization
Independent Optimization

(C) Random Positive Correlations

O: σ1=1.0, σ2=1.0, σ3=0.5

ρ12=0, ρ13=0, ρ23=0.9

N: σ1=1.0, σ2=1.0, σ3=1.5

ρ12=0, ρ13=0, ρ23=0.9

0 0.05 0.1 0.15 0.2 0.25
0.5

0.55

0.6

0.65

0.7

0.75

0.8

False Positive Rate

D
et

ec
tio

n
R

at
e

Exhaustive Search
Sequential Optimization
Generic Optimization
Independent Optimization

Figure 5.4: Results of cascade optimization on synthetic data sets. See text for details.
Note that in subfigures (A) and (B), the red and green curves coincide, which
makes the red one invisible.

61

5 Cascade Optimization

The first experiment shown in Figure 5.4A assumes independent cascade nodes. Here,
both the sequential optimization technique and the independent optimization approach
are supposed to yield optimal results, which is verified by the experiment. All four
results are identical; remaining differences are due to the discretization.

The next two experiments examine the more common case of positively correlated
classifiers. Figure 5.4B shows results for a moderate equal error correlation. The inde-
pendent optimization method fails here, since the prerequisite of this method is violated.
However, the sequential optimization approach still yields correct results, i.e., the ROC
curve coincides with that of an exhaustive search. Consequently, the generic optimiza-
tion, which uses the sequential outcome as a starting point, leads to the same result.

The third experiment is especially designed to trap the sequential optimization ap-
proach in a local minimum. The first two classifiers are made independent with equal
error variance, so that optimal parameters for a cascade of these two nodes only have
q1 = q2. The third classifier is made independent of the first one, but to replace classifier
two by a lower error variance and high correlation (ρ23 = 0.9). Since the second classifier
is redundant, overall optimal result are given by q2 → −∞. Results are shown in Figure
5.4C. Although the ROC curve of the sequential optimization method deviates from the
optimal one (that of the exhaustive search), it still significantly outperforms the inde-
pendent optimization approach. Starting from the non-optimal sequential results, the
generic optimization approach by the CONDOR method is able to find optimal param-
eters settings. Differences in the results of the generic optimization and the exhaustive
search are caused by the parameter discretization.

5.5.2 Real Example

The second batch of experiments analyzes the optimization techniques on a “real” cas-
cade classifier. We selected the cascade of SVM classifiers on LRF (local receptive fields)
features as generated in Section 3.5.2. The first two (of three) training data sets were
used for the training of the SVM classifiers, the remaining one serves as the optimization
training set. Parameters subject to optimization are the thresholds on the SVM output,
one for each cascade node.

Figure 5.5A shows ROC results for each of the optimization techniques as obtained
on the optimization training set. The ROC results obtained from an exhaustive search
over a very coarse discretization of the parameter range are given for comparison. The
sequential optimization method performs slightly better than the exhaustive search. We
conclude that the results are optimal, and that the differences are caused by a more
fine-grained discretization used for sequential optimization. Consequently, no further
performance gain could be achieved by a subsequent CONDOR optimization step. The
independent optimization technique does not yield correct results since the classifiers
show some correlation, see Figure 5.6.

The parameter settings obtained on the optimization training set were subsequently
applied to an independent test set. ROC curves shown in Figure 5.5B confirm that the

62

5.5 Cascade Classification Experiments

0 0.01 0.02 0.03 0.04 0.05
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Exhaustive Search
Sequential Optimization
Independent Optimization
Generic Optimization (CONDOR)

0 0.01 0.02 0.03 0.04 0.05
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Exhaustive Search
Sequential Optimization
Independent Optimization
Generic Optimization (CONDOR)

(A) (B)

Figure 5.5: Parameter optimization applied to the cascade classifier obtained in Section
3.5.2. The 4-stage SVM on LRFs trained on the first training data set was
selected. Optimization was performed on the validation set (A), and resulting
thresholds were applied to the test set (B).

O :

1 0.627 0.526 0.577

1 0.582 0.686

1 0.548

1

N :

1 0.450 0.151 0.029

1 0.253 0.424

1 0.263

1

Figure 5.6: Correlation matrix between the outputs of the four SVM nodes of the cascade
classifier used in Figure 5.5, obtained separately for the target class (left)
and the non-target class (right). The SVM classifiers show a considerable
amount of (positive) correlation, especially on examples of the target class.
The reason is the generation of the training data sets. A new set of non-
target training examples was created for each classifier, while the same set
of target training examples was shared among the SVM classifiers.

63

5 Cascade Optimization

optimization outcomes generalize; qualitative results on the training and test sets are
the same.

Concluding from the results of both experiments, we observe that the independent op-
timization approach is sensitive to its prerequisite. Results are degraded as soon as
the independence condition is violated. The sequential optimization approach shows
a certain amount of robustness to correlations between the cascade nodes. Although
optimal results cannot be guaranteed, the outcome is often close to optimal. In cases
where the sequential optimization approach is non-optimal, a subsequent application of
a generic constrained optimization technique such as CONDOR was observed to lead to
the correct results. We therefore propose the combined application of both optimization
techniques if computationally viable.

64

5.6 Pedestrian Recognition Application

5.6 Pedestrian Recognition Application

We now turn to a real-world application for the detection and tracking of pedestrians
from a moving vehicle, called the PROTECTOR system. This application is challenging
from a machine vision perspective, since it combines the difficulties of a complex object
appearance variability and changeable cluttered background with real-time constraints.
The PROTECTOR system involves a cascade of modules, each utilizing complemen-
tary visual criteria to successively narrow down the image search space. Four detection
modules are considered: sparse stereo-based ROI generation, shape-based detection,
texture-based classification, and dense stereo-based object verification. These are com-
plemented by a tracking module.

5.6.1 PROTECTOR System Modules

This section gives short descriptions of the system modules, and lists the parameters
considered for optimization. See Figure 5.7. We then apply the cascade optimization
techniques to the PROTECTOR system and provide extensive experimental results.

Figure 5.7: Overview of the PROTECTOR system modules. Modules shaded grey de-
pend on stereo imaging. Parameters selected for optimization are listed under
the corresponding module.

Sparse Stereo-based ROI Generation

Processing starts with the computation of a disparity map using stereo. First step is
the rectification of the left and right camera image using an optimized implementation
of Bouguet’s method [8]. This improves the epipolar alignment and reduces the effects

65

5 Cascade Optimization

of lens distortion away from the optical center. In order to allow real-time processing,
we use a feature-based, multi-resolution stereo algorithm developed by [25]; alternate
choices would have been possible. The outcome is a relatively sparse disparity map that
is subsequently multiplexed into a number of discrete depth ranges.

The resulting binary images are scanned with windows related to minimum and maxi-
mum extents of pedestrians, taking into account the ground plane location at a particular
depth range and appropriate pitch angle tolerances. The locations where the number of
depth features exceeds a percentage of the window area are added to the ROI list for
the subsequent shape detection module. The two parameters, pitch angle tolerance ψ
and feature density threshold δ control the amount of ROIs passed onto the next stage;
they are subject to optimization in the next Section.

Shape-based Detection

This module follows a template matching approach to shape-based pedestrian detection,
as described in [37], that builds upon the exemplar-based, hierarchical shape representa-
tion introduced in Section 4.1.1. Pedestrians are represented by a set of training shapes
which ideally cover the set of object appearances due to transformations (i.e. scale)
and intra-class variance (i.e. different pedestrians, different poses). Offline, a template
hierarchy is constructed automatically in a bottom-up, level-by-level fashion using clus-
tering. Previous experiments have shown that a three-level hierarchy is suitable for
capturing the pedestrian shape distribution, with number of templates nodes decreasing
an order of magnitude at successive levels towards the root [37].

Online, matching involves a depth-first traversal of the template tree structure, start-
ing at the root. Each node corresponds to matching a (prototype) template with the
image at particular interest locations (i.e. at various template translations). For the loca-
tions where the (template size-normalized) chamfer distance measure between template
and image is below a user-supplied distance threshold Dl, one computes new interest
locations for the children nodes (generated by sampling the local neighborhood on a
finer grid of image locations) and adds the children nodes to the list of nodes to be pro-
cessed. For locations where the distance measure is above this threshold, search does not
propagate to the sub-tree; it is this pruning capability that brings large efficiency gains.
Following [37], a single distance threshold Dl applies for each level of the hierarchy. An
additional parameter El governs the edge density that is extracted from the original
image at that level, which is the basis for the underlying distance map. The resulting
six parameters D1, . . . , D3 and E1, . . . , E3 are subject to optimization in Section 5.6.3.

Texture-based Pedestrian Classification

Whereas the preceding module uses shape contours to refine and filter the position
and pose of candidate pedestrians, the current pattern classification module utilizes the
richer set of intensity features to make the distinction pedestrian versus non-pedestrian.

66

5.6 Pedestrian Recognition Application

Figure 5.8: Stereo Verification: The shape template masks out background pixels for a
dense cross-correlation between both stereo images within a certain disparity
search range. A threshold is enforced on both height and spread of the
resulting correlation function.

From the many combinations of feature extraction and classification methods evaluated
in Section 3, we selected the neural network with local receptive fields as a reasonable
compromise between classification performance and processing speed.

Furthermore, we employ the mixture-of-experts architecture introduced in Section 4.2.
K pedestrian pose clusters are given by the top-level of the shape template hierarchy
constructed above, and one component classifier was generated for each pose cluster.
Online, a weighted average of the outputs of each component classifier is computed,
where the mixture coefficients are derived from the shape matching results. For efficiency
reasons, we use the weight approximation of Eq. (4.15).

ROIs for which the classification result exceeds the user-supplied threshold C are
passed to the next system module; the threshold is determined automatically by the
cascade optimization step. The number of clusters K was set to 5, which was found
optimal in previous experiments.

Dense Stereo-based Pedestrian Verification

The aim at this stage is to filter out false detections which contain an appreciable amount
of background. For this, the pedestrian shape template which generated the candidate
solution is applied as a mask for a dense cross-correlation with the other stereo image.
See Figure 5.8. Cross-correlation is performed within the particular disparity range as
determined by the estimated pedestrian depth (i.e. flat world assumption). A second-
order polynomial is fitted on the correlation values obtained over this one-dimensional
search range. A detection is accepted only if three conditions are met: the maximum
of the polynomial is above a threshold H, the normalized “spread” of the polynomial
(a measure of localization confidence) is below a threshold W , and the deviation of the
position of the correlation maximum is below a threshold X.

A second verification step compares the average disparity within the pedestrian mask

67

5 Cascade Optimization

Figure 5.9: Stereo Verification: Examples of removal of background-corrupted detections
(accepted solutions shown red, rejected green).

with that in a local neighborhood. The disparity difference is compared to a user-
supplied threshold S. For objects that stand out from a more distant background,
this disparity difference is positive, while negative values or values near zero indicate
false detections caused by background clutter. All four parameters are subject to the
optimization step below.

For some intuition in the above, see Figure 5.9. The candidate solutions shown in color
may have passed the stereo, shape and texture module in the cascade. Based on the
ground plane constraint, however, they are estimated at 10-15m in front of the camera.
When cross-correlating with the other stereo image with the corresponding disparities,
matching will not produce a high score, since the contained background pixels match
best at markedly lower disparity values (i.e. larger distances).

Tracking

Tracking allows us to overcome gaps in detection, to suppress spurious measurements
and to obtain trajectory information. Mainly because of computational cost and be-
cause shape variations are handled by the detection modules, our tracker is simplified to
involve 2.5-D bounding box position (x, y), extent (w, h), and depth (z), as well as their
derivatives. The depth of a bounding box is determined from stereo vision using the
shape template to mask out background pixels. We use a straightforward α-β tracker
to estimate the object state parameters.

To deal with non-trivial data associations (i.e. single-measurement multiple-track as-
signments or vice versa) in an optimal fashion, we use the classical Hungarian method
[54]. It operates on a cost matrix, which is built from the similarity between the pre-
diction of the tracks and the associated measurements. As similarity measure, we use a
weighted linear combination of Euclidean distance between object centroids and pairwise
shape dissimilarity (the chamfer distance).

A new track is started whenever a new object appears in m successive frames and
no active track fits to it. It ends, if the object corresponding to an active track has
not been detected in n successive frames. The two associated parameters, m and n are
determined automatically by the optimization step.

68

5.6 Pedestrian Recognition Application

Run1 Run2
Duration 27 min 24 min
Total images 21053 17390
Images containing pedestrians 1021 855
Pedestrian instances: all / risky 733 / 112 694 / 89
Pedestrian trajectories: all / risky 45 / 17 50 / 10

Table 5.1: Statistics of the two video sequences recorded in urban environment. Pedes-
trians directly in front of the car (maximum lateral offset from the vehicle
medial axis of 1.5m) are considered “risky”.

5.6.2 Test Methodology and Data Sets

In order to obtain meaningful results, experiments with the PROTECTOR system are
conducted on very large data sets taken in urban traffic environment. Two video se-
quences (Run1 and Run2) were recorded on the same route through suburbia and inner
city of Aachen, Germany. On the route, ten pedestrian “actors” awaited the system,
either standing or crossing at various walking speeds, according to a pre-defined chore-
ography (for both runs the same). In addition, there were the “normal” pedestrians
which happened to be on the road. The vehicle driver was requested to maintain 30
km/h, traffic conditions permitting. Statistics for both sequences are shown in Table
5.1. Sequence Run1 was used to perform the parameter optimization experiments below,
system evaluation as described in the next Section was done on Run2. None of these
sequences was used for the training process of a system module (as shape or texture
pattern examples).

A matching criterion is required to define whether entities from ground truth and
system output match. Considering application-specific tolerances and inaccuracies in
measuring ground truth positions, we specify localization tolerances as a percentage of
distance, 10% in lateral and 30% in longitudinal direction. A sensor coverage area was
defined at 10m to 25m in front of the car, and 4m to each side. The pedestrian recognition
capability is only required within this area, and considered optional outside in the sense
that the system is not rewarded/penalized for correct/false/missing detections.

5.6.3 Parameter Optimization Experiments

Parameters of the PROTECTOR system subject to optimization are listed in Figure 5.7.
Threshold parameters that apply to the same ROIs are grouped to speed up computation.
For one such parameter group, only a single run over the training images is necessary
per prior parameter setting to record the module outputs on which the thresholds are
subsequently applied. These groups are

• parameters ψ and δ of the ROI generation module,

69

5 Cascade Optimization

10
−2

10
−1

10
0

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

False Positive Rate (Per Frame)

D
et

ec
tio

n
R

at
e

Exhaustive Search
Sequential Optimization
Generic Constrained Opt. (CONDOR)

Figure 5.10: Comparison of optimization techniques applied to a subsystem of the PRO-
TECTOR system. Three parameters from three system modules were se-
lected for optimization, see text. ROC curves of the sequential optimization
methods and exhaustive search coincide.

• the final chamfer distance threshold D3, the texture classification output threshold
C, and all parameters of the dense stereo-based verification module, and

• parameters m and n of the tracking module.

Before turning to the optimization of the full PROTECTOR system, we first evaluate
the efficacy of the different cascade optimization techniques on a “real-world” detection
problem. For reasons of computational complexity, this is done on subsystems only.

The first experiment involves to compare the sequential and the generic optimiza-
tion technique with approximate ground truth obtained by an exhaustive search with a
coarse discretization of the parameter ranges. We restricted optimization to only three
parameters of the same group and their respective system modules: the chamfer distance
threshold D3 on the leaf level of the shape-based detection module, the output thresh-
old C of the texture classifier, and the correlation threshold H of the dense stereo-based
verification module.

ROC results shown in Figure 5.10 conform to those of the classification experiments
of Section 5.5.2. ROC curves of the sequential optimization technique and the exhaus-

70

5.6 Pedestrian Recognition Application

tive search coincide, i.e., the sequential optimization technique performs optimally. A
subsequent generic optimization step yields a negligible reduction of the false positive
rate. Resulting parameter settings differ from those found by exhaustive search only by
the amount of discretization.

Differences between the optimization techniques appear with regard to their computa-
tional complexity. 100 discrete values per parameter were considered for the techniques
that require discretization, so that a search over 106 different parameter settings was
necessary for the exhaustive search. For the sequential optimization, 104 different set-
tings were tried in the first step (first two parameters) with a result of 285 ROC points,
so that the second step involved a search over 285 × 100 parameter settings, hence a
total of only 38,500. In the CONDOR method, the average number of evaluations of
the objective function per ROC point was 22, which confirms the effectiveness of the
local function approximation approach used, plus a higher number of evaluations of the
constraint function.

In a second experiment, the comparison to an exhaustive search is dropped and the
two optimization techniques are applied to all PROTECTOR detection modules, i.e.,
all but the final tracking module. Optimization was performed without a processing
time constraint, and by restricting the average processing time per frame to a maximum
of 100ms. For computational reasons, six discrete parameter settings were chosen for
parameters ψ, δ, E1, E2, E3, D1, D2. Since the remaining parameters belong to the same
group, only six (computationally costly) passes over the training images were necessary.
For these remaining parameters, 100 discrete values were chosen for the sequential op-
timization method. Results are shown in Figure 5.11. The maximum performance gain
achieved by the subsequent generic optimization step (CONDOR) was 12%. Although
this is non-negligible, it indicates that the sequential optimization technique yields useful
results in real-world applications.

Finally, we applied the sequential optimization technique to the full PROTECTOR
system, in order to obtain a overall optimized system. Figure 5.12 shows the successive
improvements of the ROC curve obtained after each optimization step. A subsequent
generic optimization step by the CONDOR method has been dropped for computational
reasons.

5.6.4 System Evaluation

We considered two variants of the PROTECTOR system for evaluation, one optimized
without a processing time constraint, and one with a maximum processing time of 100ms
(per frame). The desired detection rate was set to 60%. The system such obtained was
tested on the second video sequence, results are shown in Table 5.2.

Further insight into the system is gained by considering performance on the trajec-
tory level in addition to a frame-by-frame evaluation. Trajectories from ground truth
and system output are compared by requiring that a certain percentage of their en-
tries match. The exact choice is application-dependent, we distinguish two types of

71

5 Cascade Optimization

(A)

10
−2

10
−1

10
0

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

False Positives Per Frame

D
et

ec
tio

n
R

at
e

Sequential Optimization
Generic Constrained Opt. (CONDOR)

(B)

10
−2

10
−1

10
0

0.4

0.45

0.5

0.55

0.6

0.65

False Positives Per Frame

D
et

ec
tio

n
R

at
e

Sequential Optimization
Generic Constrained Opt. (CONDOR)

Figure 5.11: Optimization techniques applied to the PROTECTOR detection modules
(i.e., all but the final tracking module). (A) Without a processing time
constraint. (B) Processing time constraint C⋆ = 100ms.

72

5.6 Pedestrian Recognition Application

(A)

10
−3

10
−2

10
−1

10
0

10
1

10
2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

False Positive Rate (Per Frame)

D
et

ec
tio

n
R

at
e

Shape−based Detection
Texture Classification
Dense Stereo Verification
Tracking

(B)

10
−3

10
−2

10
−1

10
0

10
1

10
2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

False Positive Rate (Per Frame)

D
et

ec
tio

n
R

at
e

Shape−based Detection
Texture Classification
Dense Stereo Verification
Tracking

Figure 5.12: Parameter optimization of the full PROTECTOR system using the sequen-
tial optimization method. ROC results obtained after each system module
are shown. (A) Optimization without a processing time constraint. (B)
Processing time constraint C⋆ = 100ms.

73

5 Cascade Optimization

Table 5.2: System evaluation results obtained on the test sequence Run2: “F” denotes
frame-level performance, “A”/“B” denote class-A/class-B trajectory perfor-
mance, respectively. False positive rates (FPR) are given per 103 frames for
frame-level performance, and per driving minute for trajectory performance.

No Proc. Time Constraint Max Proc. Time 100ms
F A B F A B

Detection Rate (all) 61.0% 62.0% 78.0% 58.8% 64.0% 78.0%
FPR (per 103fr / min) (all) 23 3.6 3.5 27 5.2 5.1
Detection Rate (risky) 80.9% 90.0% 100% 75.3% 80.0% 100%
FPR (per 103fr / min) (risky) 0.69 0.33 0.33 1.0 0.38 0.38
Avg. Proc. Time Per Frame 162ms 101ms

trajectories: “class-A” trajectories that have at least 50% of their entries matched, and
“class-B” trajectories that have at least one entry matched. Thus, all class-A trajecto-
ries are also class-B trajectories, but the former pose stronger detection demands that
might be necessary in some applications.

A separate evaluation was made for pedestrians directly in front of the car, i.e., which
are in particular risk, by restricting the sensor coverage area to a maximum lateral
offset from the vehicle medial axis of 1.5m (instead of 4m). Performance significantly
increases when only those “risky” pedestrians are considered. For the (generous) class-B
performance measure, an ideal detection rate of 100% is achieved.

Comparing both variants, we notice that enforcing the processing time constraint in-
creases the false positive rate by 15% - 45%, but achieves a speed-up of almost 40%. The
reason for this is that the processing time constraint enforces very strict parameters for
the first two system modules (ROI generation and shape-based detection) to reduce the
number of ROIs, while rather relaxed parameter settings are chosen for the subsequent
modules in order to reach the desired detection rate.

74

6 Bayesian Detection and Tracking

While object detection and tracking frameworks have been extensively studied in the
literature in isolation, this chapter aims to gain robustness by a tight integration of
detection and tracking, and by the use of multiple visual cues. So far, only the recog-
nition of static pedestrian patterns has been considered in this work, while temporal
aspects were neglected. But the appearance alteration rate of pedestrians in successive
video frames is limited by physical constraints. These are exploited by making decisions
about the object class based on multiple successive observations, obtained using a sound
Bayesian framework for object tracking, instead of a single one. A second source of
robustness is the use of multiple complementary visual cues, where temporary failures
of one cue may be compensated by the others.

A spatio-temporal object representation is created that combines mixture models of
shape and texture, both learned from training data. The associated observation density
function integrates the three visual cues shape, texture, and depth. Object shape is used,
since it is distinctive yet sidesteps appearance variations due to texture, and because
efficient matching techniques exist [37]. We make use of the spatio-temporal shape model
proposed by Giebel et al.[38], which consists of the MPDM representation (cf. Section
4.1.2) for modeling 2D object silhouettes, and models temporal shape changes by means
of a Markov transition matrix. This shape model is generative in that it allows to
synthesize shape hypotheses from the transition prior. It furthermore provides accurate
segmentation of an object’s foreground region by matching the shape hypothesis to image
data using an active contour algorithm.

The object model is complemented by a texture component that represents the vari-
ation of shape-normalized object (foreground) pixel intensities. Although pedestrian
appearance variation is significantly reduced by shape normalization, the distribution of
pedestrian texture is still very complex due to the great diversity of clothing and lighting
conditions. Although generative texture models have been developed in the past (e.g.,
linear models based on PCA), we refrain from this approach. Instead, we make use of
a generic texture classifier to find the decision boundary between object and non-object
texture patterns, that has demonstrated its discrimination efficacy in the experiments
of the previous chapters. Within a Bayesian tracking framework, this discrimination ca-
pability allows inference not only about object configuration (i.e., position, shape, etc.),
but also about the object class (target object vs. background clutter), thus enabling the
tracker to recognize false initializations and object disappearance.

We furthermore model 3D object kinematics (position and velocity), which allows to
incorporate available real-world knowledge, and for which we obtain direct observations

75

6 Bayesian Detection and Tracking

by means of stereo imaging (depth cue).
The multi-cue object model is applied within a Bayesian framework for pedestrian

detection and tracking based on particle filtering. Due to the cluttered environment of
our prospective application, and due to the use of highly non-linear observations, we are
faced with a non-Gaussian, multi-modal posterior probability density function for which
a particle-based representation is a natural choice. An independently operating object
detection module provides object hypotheses from single image frames, which are used
to initialize new tracks and which serve as an additional source of information in the
proposal distribution of existing tracks.

This work differs from a previous multi-cue pedestrian tracking framework [38] in
that the object representation combines shape and texture models, and in the state
vector consisting of object class and configuration, which integrates object detection
and tracking in the particle filtering framework. Furthermore, the texture observation
is based on a pattern classifier, and the assumption of independent shape and texture
observations is dropped.

6.1 Particle Filtering Framework

This section gives a brief derivation of the particle filtering framework for our particular
state space. We make use of a standard SIR (sequential importance resampling [1])
particle filter that has been successfully employed in similar applications (e.g., [45]). A
critical design choice involves the handling of the variable number of objects (pedestrians)
that occur in the field of view. From a theoretical point of view, the straightforward
solution is to construct a joint state space of variable dimension and to infer the number
of objects in parallel with the object configurations. However, the computational burden
of such an approach is high unless sophisticated techniques (such as [45, 51]) are being
used. An alternative approach is to run multiple trackers in parallel, one for each target
object, guided by some supervisor process for track initialization and termination. In
this work, we follow the second approach.

Consequently, the state X of each tracker either represents the presence of a target
object, denoted by O, with object configuration x, or the absence of an object, denoted
by N. The latter state arises from false initializations or the disappearance of objects
from the field of view.

Filtering denotes the recursive computation of the posterior probability p(Xt | Z1:t) of
state Xt at time index t given the series of image observations Z1:t = (Z1, . . . ,Zt). Fol-
lowing a Bayesian approach, inference of the object state is based on the pdf (probability
density function) of temporal state transition and on the state-conditional observation
density.

The transition pdf of object configuration p(xt |xt−1) is defined by our object repre-
sentation (see below). Here, we need to specify the transition of object class (Ot, Nt),
i.e., the appearance and disappearance of objects. An illustration is given in Figure 6.1.

76

6.1 Particle Filtering Framework

&%
'$

&%
'$

&%
'$

&%
'$

-

-

P
P

P
P

P
P

P
P

P
P

P
P

P
PPq

�
�

�
�

�
�

�
�

�
�

�
�

�
��1

Nt−1 N

Ot−1

xt−1

O
xt

1− pe

ps(xt−1)p(xt |xt−1)

1− ps(xt−1)

pepn(x
t)

Figure 6.1: Transition PDF

• ps(xt−1) = p(Ot | Ot−1,xt−1) represents the probability that an object remains
within the detection area given its previous position (“Stay”),

• pe = p(Ot | Nt−1) denotes the probability of the event that a new object enters the
detection area, and

• pn(xt) = p(xt | Ot,Nt−1) describes where new objects enter the detection area.

These functions are application-specific and need to be provided the user. The desired
posterior is then obtained using Bayes rule as (cf. Eq. (4) in [1])

p(Xt | Z1:t) ∝ p(Zt | Xt) p(Xt | Z1:t−1) , (6.1)

where the transition prior p(Xt | Z1:t−1) is given by the Chapman-Kolmogorov equation
(cf. Eq. (3) in [1])

p(Ot,xt | Z1:t−1) = pn(xt) pe p(Nt−1 | Z1:t−1)

+

∫

p(xt |xt−1) ps(xt−1) p(Ot−1,xt−1 | Z1:t−1) dxt−1 , (6.2)

p(Nt | Z1:t−1) = (1− pe) p(Nt−1 | Z1:t−1)

+

∫

(1− ps(xt−1)) p(Ot−1,xt−1 | Z1:t−1) dxt−1 . (6.3)

In particle filtering, the posterior is approximated by a set of weighted samples or
particles. For representing our hybrid state space, we dedicate one special particle with
index 0 and weight w

(0)
t to the case Nt, while the remaining Ns particles {(x(i)

t , w
(i)
t) :

i = 1, . . . , Ns} represent (Ot,xt). Formally,

p(Nt | Z1:t) ≈ w
(0)
t

p(Ot,xt | Z1:t) ≈
∑Ns

i=1w
(i)
t δ(xt − x

(i)
t) .

(6.4)

At each time step t, a new particle set is drawn from a proposal distribution qt. Here,
we draw exactly one particle of state Nt, and Ns particles of state Ot with object

77

6 Bayesian Detection and Tracking

configuration xt sampled from the proposal qt(xt), i.e.

qt(Nt) = 1
Ns+1

∝ 1
Ns

qt(Ot,xt) = Ns

Ns+1
qt(xt) ∝ qt(xt) .

(6.5)

Particles are then weighted to represent the posterior,

w
(i)
t =

p(Nt | Z1:t)
qt(Nt)

∝ p(Zt | Nt) p(Nt | Z1:t−1)Ns for i = 0 ,

p(Ot,x
(i)
t | Z1:t)

qt(Ot,x
(i)
t)

∝ p(Zt | Ot,x
(i)
t) p(Ot,x

(i)
t | Z1:t−1)

qt(xt)
for i = 1, . . . , Ns ,

(6.6)
where the transition priors given in Eqs. (6.2) and (6.3) are now approximated by the
particle set:

p(Ot,xt | Z1:t−1) ≈ pn(xt) pew
(0)
t−1 +

Ns
∑

j=1

p(xt |x(j)
t−1) ps(x

(j)
t−1)w

(j)
t−1 (6.7)

p(Nt | Z1:t−1) ≈ (1− pe)w
(0)
t−1 +

Ns
∑

j=1

(1− ps(x
(j)
t−1))w

(j)
t−1 (6.8)

Proportionalities in the above equations are resolved by normalizing the particle weights
to sum to one.

The choice of a good proposal density is a crucial design step in the implementation of
a particle filter [1]. The most convenient and most frequent choice is to use the transition
prior p(Xt | Z1:t−1) as approximated in Eqs. (6.7) and (6.8), because this greatly simplifies
the particle weight computation in Eq. (6.6). But this choice is not necessarily optimal,
as it may lead to many “wasted” particles with negligible weight, in particular in cases
of noisy state prediction (widespread transition prior) and peaked observation densities.
It is hence desirable to incorporate the current measurements into the proposal density
in order to have particles generated close to the posterior distribution [44, 1]. Since
sampling from p(Xt | Zt) is computationally expensive, the output of the independent
target detector is used as an approximation, and the proposal density is then designed
as a mixture of both sources of information; details are given in Section 6.3.

6.2 Multi-Cue Object Representation

This section details the proposed multi-cue object representation, their temporal tran-
sition, and their observation in video images. Three different visual cues are considered:
shape, texture, and depth. Object shape is represented by its 2D contour, texture de-
notes the pixel intensity pattern within the object’s contour after shape normalization,
and depth refers to direct 3D measurements obtained from stereo imaging.

78

6.2 Multi-Cue Object Representation

All three visual cues are represented in the object state xt = (ut, kt,bt,vt), which
consists of object position and velocity in 3D, ut, pose cluster index kt, shape model
parameters bt, and texture vt, at time index t. For modeling the transition pdf (proba-
bility density function), we assume independence of the position component and use the
decomposition

p(xt |xt−1) = p(ut, kt,bt,vt |ut−1, kt−1,bt−1,vt−1)
= p(ut |ut−1) p(kt,bt | kt−1,bt−1) p(vt | kt, kt−1,bt,bt−1,vt−1) .

(6.9)

Details of each component transition pdf are given below along with the description of
the respective visual cue.

6.2.1 Shape Cue

For shape representation, we make use of the Multi Point Distribution Model (MPDM)
described in Section 4.1.2, a mixture of locally linear subspace models learned from
training data. Each mixture component represents a distinct pose cluster. Shapes are
represented by a pair (k,b), where k is the pose cluster index and coefficient vector b

describes the local variation within cluster k. The prior shape distribution is given by
Eq. (4.6).

Shape Transition. The temporal transition of an object’s shape is decomposed into
pose cluster switching and shape changes within each cluster. The former is handled by
a discrete first-order Markov process, where entry Ti,j of the transition matrix describes
the probability of switching from cluster kt−1 = i to kt = j. A Gaussian random walk is
assumed for shape changes within the same cluster (kt−1 = kt), while the shape prior is
used in the case of a cluster switch. More precisely, if (kt,bt) is the shape state at time
t, then

p(kt,bt | kt−1,bt−1) = Tkt−1,kt
·
{

gkt
(bt |bt−1) if kt = kt−1

p(bt | kt) if kt 6= kt−1 ,
(6.10)

where gkt
is a Gaussian random walk and p(bt | kt) is the normal shape prior, both

subject to the Mahalanobis threshold M prescribed above.

Shape Observation. The chamfer distance (4.2) is used to measure the similarity
between a shape instantiation and an observed input image. Shape instantiation involves
to project the shape representation (k,b) and 3D object position u to the image plane
to obtain the list of contour points C. As image features, the position and direction of
edge pixels found in input image I are used as proposed in [30]. The resulting shape
observation

zshape(I,x) = Dchamfer(C, I) (6.11)

is incorporated into the joint observation density function in subsection 6.2.4.

79

6 Bayesian Detection and Tracking

6.2.2 Texture Cue

The texture cue represents the variation of the intensity pattern across the image region
of target objects. Much like in the Active Appearance Models by Cootes et al.[15],
appearance variations that arise from differing shapes are eliminated by normalizing
each object image for shape. See Section 4.3 for details. Let VI(u, k,b) denote the
texture vector such obtained from image I at position u (projected to the image plane)
with shape parameters (k,b).

Texture Observation. We make use of a generic pattern classifier to find the decision
boundary between object and non-object texture patterns. In chapter 3, we found
a neural network with local receptive fields [100] particularly suitable for the task of
pedestrian classification. One such neural network hk is trained for each pose cluster
k = 1, . . . , K. Texture observation, given an input image and an hypothesized object
configuration x = (u, k,b,v), then involves to feed the shape-normalized image patch
VI(u, k,b) into the neural network corresponding to pose cluster k to yield the texture
observation

ztexture(I,x) = hk(VI(u, k,b)). (6.12)

This observation value is integrated into the joint observation density function below.

Texture Transition. The shape-normalized texture pattern of a pedestrian is assumed
to remain constant over time, plus some unknown random noise. The transition pdf
is therefore modeled by cross-correlating the two consecutive texture state vectors vt−1

and vt. If there is no pose cluster switch, i.e., kt−1 = kt, then the shape-normalized
texture vectors vt−1 and vt have pixel-wise correspondence and we define

p(vt |vt−1, kt−1 = kt) ∝ exp
(

− α1ZNCC(vt−1,vt)− α0

)

. (6.13)

ZNCC denotes the zero-mean normalized cross-correlation given by

ZNCC(a,b) =
(a− ā1) · (b− b̄1)

√

(a− ā1)2(b− b̄1)2
, (6.14)

where ā is the mean of vector a. In the case of a pose cluster switch, kt−1 6= kt, we
observe that texture transformations occur mainly in horizontal image direction, while
the vertical intensity distribution remains approximately constant. This is exploited by
matching the vertical profile of the two texture patterns given by a projection to the
image y axis and resampling to some fixed length. We thus have

p(vt |vt−1, kt−1 6= kt) ∝ exp
(

− β1ZNCC(Hkt−1
(vt−1), Hkt

(vt))− β0

)

, (6.15)

where H is the vertical profile operator. The pdf parameters α0, . . . , β1 are learned from
training data.

80

6.2 Multi-Cue Object Representation

6.2.3 Depth Cue

The depth cue represents the 3D position and velocity of target objects, the former
observed by means of stereo imaging. Modeling object position in 3D space rather than
2D image space simplifies the dynamical model (we assume constant velocities), and
allows to incorporate scene constraints such as the assumptions of pedestrians standing
with at least one foot on the ground. Thus, u = (ux, uy, uz, uvx, uvy, uvz).

Depth Observation We make use of a feature-based, multi-resolution stereo algorithm
developed by Franke [25]; alternative choices would have been possible. The outcome
is a relatively sparse depth map that provides depth estimations along vertical image
edges. Depth measurements are assumed normally distributed around the true depth,
so we compute the mean difference as the depth observation value

zdepth(I,x) = ZI(u, k,b)− uz , (6.16)

where ZI(u, k,b) denotes the mean of depth measurements within the image region
given by (u, k,b) projected to the image plane. zdepth(I,x) is integrated into the joint
observation density function below.

Dynamics The dynamics of the position and velocity component u of the state vector
is modeled as a first-order auto-regressive process by

ut =

(

I3 I3∆t
0 I3

)

ut−1 + eu∆t , eu ∼ N(0,Σu) , (6.17)

where Σu is the user-defined process noise, ∆t the time interval, and I3 denotes the 3×3
identity matrix.

6.2.4 Cue Integration

Having introduced the individual cues above, we now turn to their integration to model
the (joint) density function p(Zt | Xt) of observing image features Zt given the true state
Xt, by using the above cues z = (zshape, ztexture, zdepth). The state of interest Xt to be
inferred from the video sequences is the presence and positions of pedestrians. Recall
that we assume that either no target object is present at time t, or exactly one at position
xt, which is denoted by Xt = Nt and Xt = (Ot,xt), respectively. (Multiple objects are
handled by multiple trackers, one for each object, see Section 6.3.)

Roughly, input image It is expected to contain only non-object features in the case
Xt = Nt, whereas in the state Xt = (Ot,xt), object features are expected within the
image region given by xt, and non-object features elsewhere. This decomposition is real-
ized by making a simplifying assumption: Projecting object state xt to the image plane
subdivides the image into a foreground and a background region. Although not strictly

81

6 Bayesian Detection and Tracking

true, we assume that features extracted from these regions are statistically indepen-
dent, and that these features obey a common foreground (FG) or a common background
(BG) distribution, respectively. With this assumption at hand, we follow the reasoning
of Sidenbladh and Black [84] and other authors [45, 81] to get

p(Zt | Xt) ∝

p(z(It,xt) |FG)
p(z(It,xt) |BG)

for Xt = (Ot,xt)

1 for Xt = Nt ,
(6.18)

with the proportionality factor being p(Zt | Nt).

In order to find a parametric model of the above likelihood ratio, we notice that:

• The distribution of Chamfer distances zshape is approximated by an exponential
distribution [74, 93].

• The neural network output ztexture is approximately normally distributed about the
class means.

• Both cues, shape and (shape-normalized) texture, represent complementary image
features, so dependencies are relatively weak.

This motivates the use of a quadratic function to approximate the log of the likelihood
ratio

log
p(z |FG)

p(z |BG)
≈ zTRz + rTz + r0 , (6.19)

which covers multivariate normal distributions and univariate exponential distributions
as special cases. Non-zero off-diagonal elements of matrix R represent statistical depen-
dencies between the respective cues.

In our application, we further assume independence of the depth cue, i.e. that the
deviation of observed depth values from the true depth in Eq. (6.16) is independent of
object shape and texture, by setting the respective entries in R to zero. The foreground
depth distribution is assumed normal with zero mean and a variance parameter deter-
mined from training data, while the background distribution is assumed uniform within
the observation area. The remaining parameters are jointly learned by means of a least
squares fit of the model (6.19) to the joint histogram observed on training data.

6.3 Application System

After having introduced the tracking framework and our object representation, we now
describe how these are employed in our pedestrian detection and tracking system, and
give details of application-specific components.

82

6.3 Application System

6.3.1 Target Object Detector

An independently operating target object detector is used to provide track initializations,
and to guide the sampling process. Here, we make use of the computationally efficient
PROTECTOR system as described in Section 5.6, with the tracking module removed.

The output of the target detector is a list of 3D positions of potential pedestrians.
Deviations from the true positions are assumed to obey a normal distribution, with
parameters learned from a training set. In order to use the list of detections in the
proposal density of a particle filter, detections are associated to (possibly multiple)
existing trackers, by means of a maximum distance to the mean track position. For
each tracker, a detector density gt(ut) is built as a mixture of Gaussians from the list
of associated detections. (gt is left unspecified if this list is empty.) Detections not
associated to any track are used to initialize new trackers, see below.

6.3.2 Proposal Density

The proposal density qt(xt) of our particle filter needs to possess two properties: First,
both sampling from the proposal and evaluation of the density needs to be computation-
ally efficient. Second, two sources of information, the transition prior and the detector
density are to be incorporated into the proposal density by means of a mixture den-
sity. Given the decomposition of the transition prior in Eq. (6.9), sampling is done
incrementally for each of the state vector components position, shape, and texture:

• Pdfs of the position component ut are given as a Gaussian or mixture of Gaussians
(Eq. (6.17) and definition of gt above), for which efficient sampling and evaluation
is possible. Therefore,

qt(ut) = ρgt(ut) + (1− ρ)p(ut | Ot,Z1:t−1) , (6.20)

where the mixing coefficient ρ is set to 0 if gt is undefined (i.e. no associated
detections), otherwise, we choose ρ = 0.5. The component transition prior in the
second term,

p(ut | Ot,Z1:t−1) =
p(Ot,ut | Z1:t−1)

1− p(Nt | Z1:t−1)

is obtained from Eqs. (6.7) and (6.8) by replacing xt with ut.

• The transition pdf of the shape component (6.10) is composed of a discrete first-
order Markov process and a Gaussian random walk and allows efficient sampling
and evaluation, so we let

qt(kt,bt) = p(kt,bt | Ot,Z1:t−1) , (6.21)

where the RHS is computed analogously to the position transition prior above.

83

6 Bayesian Detection and Tracking

• The transition pdf of the texture component (6.13),(6.15) based on cross-correlation
is easily evaluated, but does not permit direct sampling. Instead, the texture com-
ponent of particles is always sampled directly from the input image given the
particle’s position and shape:

vt |ut, kt,bt = VIt
(ut, k,bt) . (6.22)

The joint proposal density is then composed of the above parts as

qt
(

xt = (ut, kt,bt,vt)
)

=

{

qt(ut)qt(kt,bt) if vt = VIt
(ut, kt,bt) ,

0 otherwise.
(6.23)

In order to explore the high-dimensional state space with only a limited number of
particles, we employ a particle optimization step as proposed in [41]. After each new
sample is drawn from the proposal density, an active contour algorithm is used to refine
the shape and to obtain an accurate segmentation of the foreground region, which is
crucial for subsequent texture observations.

6.3.3 Track Initialization and Termination

New tracks are initialized if a detection made by the target object detector is not associ-
ated to an existing track. In order to suppress spurious detections, tracks start hidden,
i.e., their output is suppressed. A track becomes visible if the probability of not tracking
a target object, p(Nt | Z1:t), falls below a threshold θvisible, while we switch back to hid-
den if p(Nt | Z1:t) > θhidden. Tracks are terminated if p(Nt | Z1:t) exceeds the user-defined
threshold θterm. For the experiments below, we chose θvisible = 0.5, θhidden = 0.7, and
θterm = 0.9.

To avoid that multiple trackers “jump” onto the same target, the track with higher
non-target posterior is discarded if the mean object positions of two tracks coincide
(subject to some user-defined tolerances).

6.4 Experiments

6.4.1 Model Generation

The shape-texture mixture model generated in Chapter 4.4 is reused here. Generation
of the shape model is based on a training set of 6,522 pedestrian examples. Manually,
contour pixels were labeled, and the training set was clustered into 12 pose clusters
as shown in Figure 4.5. The pose-specific texture classifiers employed here are the
background-masked neural networks with local receptive fields studied in Section 4.4.5,
trained on the same training set plus a set of 7,000 video images without pedestrians,
after shape normalization was applied. Notice that, opposed to the mixture-of-experts

84

6.4 Experiments

Figure 6.2: Visualization of the pose cluster transition matrix. The size of the squares
represents the transition probability from a pose cluster of row i to a pose
cluster of column j. Example images from each cluster are given for visual-
ization purposes.

Figure 6.3: Example of a synthesized trajectory from the spatio-temporal shape model.
Starting from the mean shape of cluster 11 (leftmost example), random sam-
ples were drawn from the shape transition pdf (6.10). Greyscale changes
represent shape cluster switches.

85

6 Bayesian Detection and Tracking

1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

Observation (Chamfer Distance)

Lo
g

of
 L

ik
el

ih
oo

d
R

at
io

Histogram
Quadratic Approximation

−5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Observation (Classifier Output)

Lo
g

of
 L

ik
el

ih
oo

d
R

at
io

Histogram
Quadratic Approximation

Figure 6.4: Quadratic approximation of the log of the likelihood ratio, shown for the
marginal distributions of zshape (left), and ztexture (right). The ragged bor-
ders of both histograms plots arise from sparsely populated histogram bins,
whereas the more densely populated regions around the graph centers are
well approximated by the quadratic function.

architecture in Chapter 4, no mixture weights are to be learned here since the cluster
selection is given by the hypothesized object state.

The pose cluster transition matrix has been obtained from the same pedestrian train-
ing set, see Figure 6.2 for an illustration. This matrix exhibits a clear block-diagonal
structure where each block corresponds to a certain viewing direction. That is because
changes of leg articulation are more likely to occur than changes in the viewing direc-
tion, i.e., pedestrians tend to walk straight on. Figure 6.3 illustrates the resulting shape
transition pdf.

The next step involves to learn the joint observation density function that integrates
the three visual cues shape, texture, and depth. The latter is assumed to follow an in-
dependent Gaussian distribution with parameters obtained from previous experiments.
Parameters of the log likelihood ratio (6.19) for the shape and texture cue are learned
from an additional training set independent from the above, in order to avoid distortions
due to classifier over-fitting. Figure 6.4 shows a verification of the quadratic approxi-
mation by a comparison to the log likelihood ratio obtained from histogramming. Dis-
regarding the ragged borders of the histogram results that arise from sparse data, the
quadratic approximation is shown to fit the data very well. Whereas Figure 6.4 shows to
separate results for shape and texture for visualization purposes, a joint approximation
is used in the application system below.

86

6.4 Experiments

Table 6.1: Experimental results comparing the proposed multi-cue detection and track-
ing approach to the performance of the detection module alone and to that
of the PROTECTOR system of Section 5.6. See text for details.

Detector Only PROTECTOR This Approach
F A B F A B F A B

Detection Rate 49.3% 55.1% 83.7% 61.0% 62.0% 78.0% 61.4% 65.3% 77.6%
Tracking Rate (63.3%) (70.0%) (100%) 76.1% 80.0% 95.0% 77.6% 85.0% 92.5%
FPR (per 14.2 23.2 3.6 3.5 16.1 2.0 2.0
103fr, min)

Columns “F” show frame-level performance, “A” and “B” denote class-A and class-B trajec-
tory performance, respectively. “FPR” denotes the number of false positives and is given per
103 frames for frame-level performance, and per driving minute for trajectory-level perfor-
mance. “Tracking Rate” denotes the rate of object detection after the first track initialization.
Numbers for the detector only are given for reference; see text for details.

6.4.2 System Evaluation

We tested the resulting detection and tracking system on the same 24min video sequences
that was used in Section 5.6.4, applying the same evaluation criteria. Performance
evaluation results are listed in Table 6.1 (column “This Approach”), in comparison to
that of the detector module alone and that of the PROTECTOR system (Section 5.6).
Slightly different parameter setting were used for the target detector in this chapter and
the PROTECTOR system. For the latter, the ROC point at 60% detection rate was
chosen, whereas here, we adjusted the detector towards fewer false positives.

At an approximately equal detection rate, the Bayesian multi-cue approach proposed
here has a significantly reduced false positive rate at both, the frame-level and the
trajectory level (by about 30% and 44%, respectively). This result confirms the efficacy
of the integrated detection and tracking approach, where a Bayesian decision about the
object class is based on multiple successive observations. In opposite, the α-β tracker of
the PROTECTOR system merely concatenates single-frame results. Compared to the
detector module alone, the slight increase in the frame-level false positive rate (14.2 vs.
16.1 per 103 frames) seems to be contradictory to these results. This increase is caused
by a few false positive tracks that are erroneously continued over a couple of frames.
However, notice that a far greater increase is necessary for the PROTECTOR system
to achieve the same detection rate.

A second evaluation examines the tracking capabilities of both systems by only consid-
ering those ground truth pedestrians that follow the first track initialization made by the
detector module. That is, along each ground truth trajectory, the pedestrian instances
prior to the first matching detection are ignored, and ground truth trajectories without
any matching detection are not considered at all. See row “Tracking Rate” in Table

87

6 Bayesian Detection and Tracking

5890 5891 5892 5893

Figure 6.5: Typical example of false positives of the detector process (red boxes in top
subimages) that lead to false tracks in the PROTECTOR system (middle
subimages). The multi-cue tracker correctly identifies these initialization
“non-pedestrian” (black contours in bottom subimages).

6.1. Numbers for the detector represent the baseline performance obtained without any
tracking capabilities. By definition, its class-B tracking rate is 100%. The proposed
multi-cue tracker achieves a class-B tracking rate of 92.5%, i.e., 92.5% of the at least
once detected true trajectories lead to a correct track, while 7.5% are erroneously dis-
carded. The α-β tracker of the PROTECTOR system achieves a slightly better 95.0%
here, but falls short on the class-A criterion (80% vs. 85%). This results corresponds
to the observation that, once initialized, the multi-cue tracker is able to correctly keep
track of a pedestrian, whereas the α-β tracker often loses track and needs reinitialization
by the detector process.

Figures 6.5 and 6.6 show results of a few example frames of the test sequence. Top
subimages show the output of the detector module (red boxes), middle subimages the
output of the PROTECTOR system after α-β tracking. The maximum a-posteriori
output (i.e., the particle with maximum weight) of the proposed multi-cue tracking is
given in the bottom subimages. Red contours denote visible tracks which are classified
as tracking a target object, while black contours denote hidden tracks that are more
likely not tracking a target object. In Figure 6.6, the detector module only provides
sporadic detections of the two pedestrians, so that the α-β tracker loses track. In
contrast, the multi-cue tracking correctly detects and tracks the two pedestrians after a
few initialization frames. Figure 6.5 shows an example of false positives of the detector
process that leads to a false track initialization. In contrast to the α-β tracker, the
multi-cue tracker correctly classifies this track as “non-pedestrian”.

With 500 particles used per track, overall processing time was about 15s per frame

88

6.4 Experiments

5787 5791 5795 5799

5803 5807 5811 5815

Figure 6.6: Example results obtained on the test sequence. In each row, the top sub-
images show results of the detector module alone, middle subimages show
the PROTECTOR system output, and bottom subimages show results of
the multi-cue tracker. Tracks classified as visible are shown by red contours,
i.e. they denote the actual system output, while hidden tracks are shown in
black. Frame numbers are given below each image.

89

6 Bayesian Detection and Tracking

and track on a 3.2GHz Pentium IV PC. Shape normalization, i.e. the warping of the
texture patterns to the cluster mean shape, turned out to be the bottleneck of the current
implementation that consumes the large majority of processing time.

90

7 Conclusion

7.1 Summary

This thesis investigated what combinations of visual cues, feature extraction techniques,
and decision making rules perform best for detecting and tracking deformable objects
in complex environments.

Texture classification. In the first part of this thesis, an in-depth experimental study
on pedestrian classification was conducted. Multiple combinations of feature extraction
and pattern classification were examined with respect to their ROC performance and
efficiency on a large data set with ground truth. Local features were found superior
to global features, here represented by PCA coefficients. Among the former, adaptive
features (local receptive fields) outperformed non-adaptive ones (Haar wavelets). SVMs
generally performed best regardless of the feature type, except for Haar wavelet features
were an AdaBoost cascade approach achieved comparable performance at much lower
computational costs.

The greatest performance gain was, however, achieved by (manually) increasing the
training sample size. Since the acquisition of target training examples by manual labeling
is expensive, two methods for the automatic generation of non-target examples were
examined. Although a significant performance gain could be achieved, these methods
ran into saturation after a few iterations.

Shape-texture integration. The integration of the two visual cues shape and texture
was investigated, aimed at determining how texture classification benefits from explicit
prior shape knowledge.

In a first step, a mixture-of-experts approach was pursued. One specialized texture
classifier, the local expert, was learned per pose cluster, and their outcomes were com-
bined by a weighted average with weights derived from shape matching. The use of
shape information during both, the training and the recall stage, was shown to outper-
form related classifier combination methods without explicit shape knowledge (random
data splits and simple averaging). By deriving probabilistic cluster assignments, errors
in shape matching and automatic shape clustering could be compensated for. From the
two clustering approaches tested, a convenient automatic shape clustering based on the
chamfer distance was as good as a tedious manual clustering. Experiments on a large

91

7 Conclusion

pedestrian dataset revealed an overall reduction of the false positive rate of 30–40% com-
pared to a single texture classifier without shape knowledge, at equal detection rates.
Computation costs, though, increase proportionally with the number of clusters.

In a second step, remaining intra-cluster shape variability was eliminated via shape
normalization. Based on a parametric (linear) model of contour point variation, all input
images were warped to a common cluster prototype shape prior to texture classification.
Furthermore, the resulting pixel-wise correspondence among the texture patches allowed
to mask out background pixels. This has led to an additional performance gain of 10–
20% in the experiments. However, the additional processing cost for image warping
and the susceptibility to shape matching errors impairs practical applications of this
technique.

Cascade optimization. If computational efficiency is an issue, cascade architectures
consisting of a sequence of successively more complex system modules become attractive.
While there is a large body of literature on how to generate individual system modules
based on different visual cues, feature extraction, or classification methods, surprisingly
few approaches exist for the optimization of a generic complex cascade system. Three
optimization techniques were described in this thesis, including a novel sequential opti-
mization method, which adjust module parameters to optimize for the three performance
measures detection rate, false positive rate, and processing cost. Although none of these
methods guarantees an optimal outcome, experimental results on synthetic and real-
world data sets have shown that (close-to) optimal parameter settings can be obtained
by a combination of the sequential optimization method with a subsequent iterative
post-processing by a generic optimization technique, given the latter is computationally
feasible.

Bayesian detection and tracking. The last part of this thesis dealt with object detec-
tion based on a sequence of observations instead of single static images. Building upon
previous work in [38], a joint object representation and associated observation density
function was described that integrates the three visual cues shape, texture, and depth.
Shape was represented by a set of linear subspace models called Multi Point Distribution
Models (MPDM). The texture cue was composed of a static representation by means
of a texture classifier, and a dynamic texture component observed via cross-correlation.
Direct depth observations were given by stereo imaging. This combination of a gener-
ative shape model for exact localization and a discriminative texture classifier allowed
a particle filter-based tracker to make simultaneous inference of object class and con-
figuration. Large-scale experiments showed a performance gain of 30–44% (in terms of
reduction of the false positive rate at equal detection rate) compared to the non-Bayesian
cascade system. However, this gain was paid with a large increase of the processing cost
by about a factor of 100.

92

7.2 Future Work

The proposed methods were applied to the problem of recognizing pedestrians in urban
environment from within a moving vehicle. Large-scale experiments involving thousands
of video images proved that the achieved pedestrian detection performance is on the
leading edge (cf. Tables 2.1 and 6.1).

7.2 Future Work

There are several ways to extend the current work. One obvious consequence from the
texture classification study (Chapter 3) is the need for more (target) training examples.
One could diligently continue labeling images, but this is time consuming and expensive.
Techniques that generate virtual target examples from an existing training set seem
appealing. For this, a generative texture model of the target class is required, which, in
general, is difficult to obtain. But opposed to those texture models that are to be used
for model matching and parameter estimation, the texture model required here does not
need to be comprehensive. It suffices to model only those components of the texture
variation for which prior knowledge or explicit models exist, e.g., global illumination
changes and local shape variation, while a representation of the remaining variation
components, such as textile patterns of the clothes, is left to the original training set,
to be learned by the texture classifier. A successful early example of such a method can
be found in [22], further advancement and integration with the pose-specific mixture-of-
experts techniques of this thesis seems to be a worthwhile direction of future research.

In terms of classification methods, a combination of the best-performing features, local
receptive fields, and the computationally efficient AdaBoost classifier could be investi-
gated, trying to achieve the same good classification performance at lower computational
cost.

Regarding cascade systems, future work could investigate probabilistic / Bayesian
techniques for combining module outputs, as previously developed for homogeneous cas-
cade systems [103, 32, 88]. The modules in the current system emit binary outputs:
A ROI is either classified as containing a target object and passed to the next cascade
stage, or otherwise discarded. All information about the confidence in that decision is
lost, whereas on the other hand, the performance gain of the Bayesian tracking approach
(Chapter 6) is partly achieved by the joint probabilistic object model. Inferring a class
posterior probability from all available information, i.e., by integrating the results of the
previous system modules, supposedly leads to a more accurate decision. The compu-
tational efficiency of a cascade architecture is maintained by thresholding the posterior
values after each cascade stage, and the proposed cascade optimization techniques are
then applied to these thresholds.

The proposed Bayesian tracking system mainly suffers from slow processing speed. A
tight coupling of particle sampling with the hierarchical shape matching employed in
the independent object detection module, aimed at guiding shape sampling towards the
matched shapes, could be investigated.

93

7 Conclusion

Considering the pedestrian protection application, can this system be employed in
a production vehicle? What performance is necessary certainly depends on the exact
application scenario. If used within some visibility enhancement system that highlights
pedestrians for drivers’ notice, one or two false highlightings may be acceptable within
a one hour drive, whereas the same frequency of false emergency brakings is not. Given
the progress made within in this thesis together with expected further advances by the
directions described above, vision-based pedestrian detection systems may soon reach a
performance level viable for commercial applications.

94

Bibliography

[1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for on-line non-linear/non-gaussian bayesian tracking. IEEE Transactions
on Signal Processing, 50(2):174–188, February 2002. (page 10, 76, 77, 78)

[2] C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa. The quickhull algorithm for
convex hulls. ACM Trans. on Mathematical Software, 22(4):469–483, 1996. (page

39)

[3] F. Vanden Berghen. CONDOR: a constrained, non-linear, derivative-free parallel
optimizer for continuous, high computing load, noisy objective functions. PhD
thesis, IRIDIA, Faculté des Science Appliquées, Université Libre de Bruxelles,
2004. (page 11, 57)

[4] F. Vanden Berghen. CONDOR Optimizer. http://www.applied-mathematics.net/,
2006. (page 59)

[5] M. Bergtholdt, D. Cremers, and C. Schnörr. Variational segmentation with shape
priors. In N. Paragios, Y. Chen, and O. Faugeras, editors, Mathematical Models
in Computer Vision: The Handbook. Springer, 2005. (page 6, 32)

[6] M. Bertozzi, A. Broggi, A. Fascioli, A. Tibaldi, R. Chapuis, and F. Chausse.
Pedestrian localization and tracking system with kalman filtering. In Proc. of the
IEEE Intelligent Vehicle Symposium, pages 584–589, Parma, Italy, 2004. (page 9)

[7] G. Borgefors. Distance transformations in digital images. Computer Vision,
Graphics, and Image Processing, 34(3):344–371, 1986. (page 21, 31)

[8] J.-Y. Bouguet. Camera calibration toolbox for Matlab. In
http://www.vision.caltech.edu/bouguetj/calib doc/, 2000. (page 65)

[9] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004. (page 53)

[10] A. Broggi, A. Fascoli, I. Fedriga, A. Tibaldi, and M. Del Rose. Stereo-based
preprocessing for human shape localization in unstructured environments. In Proc.
of the IEEE Intelligent Vehicle Symposium, pages 410–415, Ohio, U.S.A., 2003.
(page 6)

95

Bibliography

[11] C.-C. Chang and C.-J. Lin. LIBSVM – A Library for Support Vector Machines.
http://www.csie.ntu.edu.tw/ cjlin/libsvm/, 2004. (page 18)

[12] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning.
Machine Learning, 15:201–221, 1994. (page 39)

[13] A.R. Conn, N.I.M. Gould, and P. L. Toint. Trust-Region Methods. SIAM/MPS
Series on Optimization. SIAM, Philadelphia, 2000. (page 58)

[14] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models - their
training and applications. Computer Vision and Image Understanding, 61(1):38–
59, 1995. (page 6, 12, 32, 33)

[15] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001.
(page 7, 80)

[16] T. F. Cootes and C. J. Taylor. Statistical models of appearance for computer
vision. Technical report, Imaging Science and Biomedical Engineering, University
of Manchester, Manchester, U.K., 2004. (page 7)

[17] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, 1995. (page 18)

[18] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 2, pages 886–893, San Diego, CA, USA, 2005. (page 9)

[19] J. Deutscher, A. Blake, and I. D. Reid. Articulated body motion capture by
annealed particle filtering. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 2, pages 126–133, 2000. (page 10, 12)

[20] R. Duda, P. Hart, and D. Stork. Pattern Classification, second edition. John Wiley
and Sons, New York, 2001. (page 7)

[21] H. Elzein, S. Lakshmanan, and P. Watta. A motion and shape-based pedestrian
detection algorithm. In Proc. of the IEEE Intelligent Vehicle Symposium, pages
500–504, Ohio, U.S.A., 2003. (page 6, 8, 9)

[22] M. Enzweiler. Resampling techniques for pedestrian classification. Master’s thesis,
University of Ulm, Faculty of Computer Science, 2005. (page 37, 39, 93)

[23] R. Fablet and M. Black. Automatic detection and tracking of human motion with
a view-based representation. In ECCV, pages 476–491, 2002. (page 7, 12)

96

Bibliography

[24] L. Fan, K.K. Sung, and T.K. Ng. Pedestrian registration in static images with un-
constrained background. Pattern Recognition, 36(4):1019–1029, April 2003. (page

7)

[25] U. Franke. Real-time stereo vision for urban traffic scene understanding. In Proc.
of the IEEE Intelligent Vehicle Symposium, Detroit, USA, 2000. (page 66, 81)

[26] U. Franke and S. Heinrich. Fast obstacle detection for urban traffic situations.
IEEE Transactions on Intelligent Transportation Systems, 3(3):173–181, 2002.
(page 6)

[27] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In European Conference on Computational
Learning Theory, pages 23–37, 1995. (page 8, 19)

[28] K. Fukushima, S. Miyake, and T. Ito. Neocognitron: A neural network model for
a mechanism of visual pattern recognition. IEEE Trans. on Systems, Man, and
Cybernetics, 13:826–834, 1983. (page 17)

[29] G. Fumera and F. Roli. A theoretical and experimental analysis of linear com-
biners for multiple classifier systems. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(6):942–956, 2005. (page 34, 36)

[30] D. M. Gavrila. Multi-feature hierarchical template matching using distance trans-
forms. In Proc. of the International Conference on Pattern Recognition, pages
439–444, Brisbane, 1998. (page 79)

[31] D. M. Gavrila. The visual analysis of human movement: A survey. Computer
Vision and Image Understanding, 73(1):82–98, 1999. (page 6)

[32] D. M. Gavrila. A Bayesian, exemplar-based approach to hierarchical shape match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 2007.
(page 93)

[33] D. M. Gavrila and J. Giebel. Shape-based pedestrian detection and tracking. In
Proc. of the IEEE Intelligent Vehicle Symposium, Versailles, France, 2002. (page 9)

[34] D. M. Gavrila, J. Giebel, and S. Munder. Vision-based pedestrian detection: the
PROTECTOR+ system. In Proc. of the IEEE Intelligent Vehicle Symposium,
pages 13–18, Parma, Italy, 2004. (page -)

[35] D. M. Gavrila, J. Giebel, and H. Neumann. Learning shape models from examples.
In Proc. of the Deutsche Arbeitsgemeinschaft für Mustererkennung, pages 369–376,
Munich, Germany, 2001. (page 6, 32)

97

Bibliography

[36] D. M. Gavrila and S. Munder. Multi-cue pedestrian detection and tracking from
a moving vehicle. International Journal of Computer Vision, 73(1):41–59, 2007.
(page 49)

[37] D. M. Gavrila and V. Philomin. Real-time object detection for “smart” vehicles.
In Proc. of the International Conference on Computer Vision (ICCV’99), pages
87–93, Kerkyra, Greece, 1999. (page 6, 21, 31, 32, 37, 66, 75)

[38] J. Giebel, D. M. Gavrila, and C. Schnörr. A Bayesian framework for multi-cue
3d object tracking. In Proc. of the European Conference on Computer Vision
(ECCV’04), Prague, Czech Republic, May 11-14 2004. Springer-Verlag. (page 6, 7,

75, 76, 92)

[39] G. Grubb, A. Zelinsky, L. Nilsson, and M. Ribbe. 3d vision sensing for improved
pedestrian safety. In Proc. of the IEEE Intelligent Vehicle Symposium, pages 19–
24, Parma, Italy, 2004. (page 6, 8, 9)

[40] J. B. Hampshire and A. Waibel. The meta-pi network - building distributed knowl-
edge representations for robust multisource pattern-recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 14(7):751–769, 1992. (page 8,

34)

[41] T. Heap and D. Hogg. Wormholes in shape space: Tracking through discontinuous
changes in shape. In Proc. of the International Conference on Computer Vision,
pages 344–349, Bombay, India, 1998. (page 6, 7, 10, 84)

[42] X. Huo and J. Chen. Building a cascade detector and applications in automatic
target recognition. Applied Optics: Information Processing, 43(2):293–303, 2004.
(page 13)

[43] M. Isard and A. Blake. Condensation - conditional density propagation for visual
tracking. International Journal of Computer Vision, 29(1):5–28, 1998. (page 10)

[44] M. Isard and A. Blake. Icondensation: Unifying low-level and high-level tracking
in a stochastic framework. In Proc. of the European Conference on Computer
Vision, volume 1, pages 893–908, 1998. (page 10, 11, 78)

[45] M. Isard and J. MacCormick. BraMBLE: a bayesian multiple-blob tracker. In
Proc. of the International Conference on Computer Vision, volume II, pages 34–
41, 2001. (page 7, 11, 12, 76, 82)

[46] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. (page 8, 34)

98

Bibliography

[47] A. Jain, R. Duin, and J. Mao. Statistical pattern recognition: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000. (page

7, 16, 17, 18, 19)

[48] M. J. Jones and T. Poggio. Multidimensional morphable models. In Proc. of the
International Conference on Computer Vision, pages 683–688, 1998. (page 7)

[49] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6(2):181–214, 1994. (page 8, 34)

[50] H.-G. Kang and D. Kim. Real-time multiple people tracking using competitive
condensation. Pattern Recognition, 38(7):1045–1058, 2005. (page 11, 12)

[51] Z. Khan, T. Balch, and F. Dellaert. MCMC-based particle filtering for tracking
a variable number of interacting targets. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(11):1805–1819, 2005. (page 11, 76)

[52] S. Kirkpatrick, Jr. C.D. Gelatt, and M.P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983. (page 32)

[53] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–239, 1998.
(page 34)

[54] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistic Quarterly, 2:83–97, 1955. (page 68)

[55] L. Kuncheva, J. C. Bezdek, and R. P. W. Duin. Decision templates for multiple
classifier fusion: an experimental comparison. Pattern Recognition, 34(2):299–314,
2001. (page 8, 34)

[56] L. I. Kuncheva. A theoretical study on six classifier fusion strategies. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(2):281–286, 2002.
(page 34)

[57] R. Labayrade, D. Aubert, and J.-P Tarel. Real time obstacle detection on non
flat road geometry through ‘v-disparity’ representation. In Proc. of the IEEE
Intelligent Vehicle Symposium, Versailles, France, 2002. (page 6)

[58] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 878–885, San Diego, CA, USA, 2005. (page 9)

[59] H. Luo. Optimization design of cascaded classifiers. In Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR’05), pages 480–485,
San Diego, CA, USA, 2005. (page 13, 59)

99

Bibliography

[60] J. MacCormick and A. Blake. A probabilistic exclusion principle for tracking
multiple objects. International Journal of Computer Vision, 39(1):57–71, 2000.
(page 12)

[61] J. MacCormick and M. Isard. Partitioned sampling, articulated objects, and
interface-quality hand tracking. In Proc. of the European Conference on Computer
Vision (ECCV’00), volume II, pages 3–19, Dublin, Ireland, June 2000. Springer-
Verlag. (page 10)

[62] I. Matthews and S. Baker. Active appearance models revisited. International
Journal of Computer Vision, 60(2):135–164, 2004. (page 7)

[63] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a prob-
abilistic assembly of robust part detectors. In Proc. of the European Conference
on Computer Vision (ECCV’04), volume I, pages 69–82, Prague, Czech Republic,
May 11-14 2004. Springer-Verlag. (page 8, 9)

[64] A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detection in
images by components. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(4):349–361, 2001. (page 8, 9, 18)

[65] S. Munder and D. M. Gavrila. An experimental study on pedestrian classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):1863–
1868, 2006. (page -)

[66] S. Munder, C. Schnörr, and D. M. Gavrila. Pedestrian detection and tracking using
a mixture of view-based shape-texture models. Submitted to IEEE Transactions
on Intelligent Transportation Systems, 2007. (page -)

[67] C. Nakajima, M. Pontil, B. Heisele, and T. Poggio. Full-body recognition system.
Pattern Recognition, 36:1997–2006, 2003. (page 8)

[68] H. Ning, T. Tan, L. Wang, and W. Hu. People tracking based on motion model and
motion constraints with automatic initialization. Pattern Recognition, 37:1423–
1440, 2004. (page 12)

[69] J. Nocedal and S. Wright. Numerical Optimization. Springer Verlag, 2nd edition,
2006. (page 58)

[70] K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe. A boosted particle
filter: Multitarget detection and tracking. In Proc. of the European Conference
on Computer Vision (ECCV’04), volume I, pages 28–39, Prague, Czech Republic,
May 11-14 2004. Springer-Verlag. (page 11, 12)

[71] Intel open source computer vision library, 2004.
http://www.intel.com/research/mrl/research/opencv/. (page 20)

100

Bibliography

[72] C. Papageorgiou and T. Poggio. A trainable system for object detection. In-
ternational Journal of Computer Vision, 38(1):15–33, 2000. (page 8, 9, 10, 16, 17,

18)

[73] M. P. Perrone and L. N. Cooper. When networks disagree: Ensemble methods
for hybrid neural networks. In Neural Networks for Speech and Image Processing,
pages 126–142. Chapman-Hall, 1993. (page 34, 45)

[74] V. Philomin, R. Duraiswami, and L. S. Davis. Quasi-random sampling for con-
densation. In Proc. of the European Conference on Computer Vision (ECCV’00),
pages 134–149, Dublin, Ireland, June 2000. Springer-Verlag. (page 82)

[75] R. Polana and R.C. Nelson. Detecting activities. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2–7, New York, 1993. (page 6)

[76] M.J.D. Powell. UOBYQA: Unconstraint optimization by quadratic approxima-
tion. Technical Report DAMTP2000/14, Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, England, 2000. (page 58)

[77] F. Provost and T. Fawcett. Robust classification for imprecise environments. Ma-
chine Learning, 42(3):203–231, 2001. (page 13)

[78] D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike a pose: Tracking people by
finding stylized poses. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 271–278, San Diego, CA, USA,
2005. (page 7, 12)

[79] S. Roth, L. Sigal, and M. J. Black. Gibbs likelihoods for bayesian tracking. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition, volume I,
pages 886–893, June 2004. (page 12)

[80] S. Sarkar and S. Chavali. Modeling parameter space behavior of vision systems
using bayesian networks. Computer Vision and Image Understanding, 79:185–223,
2000. (page 11)

[81] H. Schneiderman and T. Kanade. Object detection using the statistics of parts.
International Journal of Computer Vision, 56(3):151–177, 2004. (page 82)

[82] A. Shashua, Y. Gdalyaha, and G. Hayun. Pedestrian detection for driving assis-
tance systems: Single-frame classification and system level performance. In Proc.
of the IEEE Intelligent Vehicle Symposium, Parma, Italy, 2004. (page 8, 9, 10)

[83] H. Shimizu and T. Poggio. Direction estimation of pedestrian from multiple still
images. In Proc. of the IEEE Intelligent Vehicle Symposium, pages 596–600,
Parma, Italy, 2004. (page 8)

101

Bibliography

[84] H. Sidenbladh and M. J. Black. Learning the statistics of people in images and
video. International Journal of Computer Vision, 54(1/2/3):183–209, 2003. (page

7, 12, 82)

[85] A. Soto and P. Khosla. Probabilistic adaptive agent based system for dynamic
state estimation using multiple visual cues. In 10th Int’l Symposium of Robotics
Research (ISRR 2001)., Lorne, Victoria, Australia, November 9-12 2001. (page 7,

12)

[86] M. Spengler and B. Schiele. Towards robust multi-cue integration for visual track-
ing. Machine Vision and Applications, 14(1):50–58, 2003. (page 7, 10, 12)

[87] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla. Filtering using
a tree-based estimator. In Proc. of the International Conference on Computer
Vision (ICCV’03), volume II, pages 1063–1070, Nice, France, October 2003. (page

6)

[88] B. Stenger, A. Thayananthan, P.H.S. Torr, and R. Cipolla. Model-based hand
tracking using a hierarchical Bayesian filter. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 28(9):1372–1384, 2006. (page 6, 93)

[89] J. Sun, J. M. Rehg, and A. Bobick. Automatic cascade training with pertur-
bation bias. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 276–283, 2004. (page 13)

[90] K. K. Sung and T. Poggio. Example based learning for view-based human face
detection. Technical Report CBCL-112, MIT Artificial Intelligence Laboratory,
January 1995. (page 10, 19)

[91] M. Szarvas, A. Yoshizawa, M. Yamamoto, and J. Ogata. Pedestrian detection with
convolutional neural networks. In Proc. of the IEEE Intelligent Vehicle Symposium,
2005. (page 9)

[92] W. Thompson and T.-C. Pong. Detecting moving objects. International Journal
of Computer Vision, 4:39–57, 1990. (page 6)

[93] K. Toyama and A. Blake. Probabilistic tracking with exemplars in a metric space.
International Journal of Computer Vision, 48(1):9–19, 2002. (page 6, 12, 82)

[94] K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined
neural classifiers. Pattern Recognition, 29(2):341–348, 1996. (page 34, 36)

[95] K. Tumer and J. Ghosh. Linear and order statistics combiners for pattern classi-
fication. In A. J. C. Sharkey, editor, Combining Artificial Neural Nets: Ensemble
and Modular Multi-Net Systems, pages 127–162. Springer-Verlag, London, 1999.
(page 34)

102

Bibliography

[96] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New
York, 1995. (page 16)

[97] V. N. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.
(page 18)

[98] P. Viola and M. Jones. Rapid object detection using a boosted cascade of sim-
ple features. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’01), volume 1, pages 511–518, Kauai, Hawaii, 2001. (page 8)

[99] P. A. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of
motion and appearance. International Journal of Computer Vision, 63(2):153–161,
2005. (page 8, 9, 10, 11, 17, 19, 27, 49)

[100] C. Wöhler and J. Anlauf. An adaptable time-delay neural-network algorithm for
image sequence analysis. IEEE Transactions on Neural Networks, 10(6):1531–
1536, 1999. (page 8, 9, 17, 18, 80)

[101] B. Wu and R. Nevatia. Tracking of multiple, partially occluded humans based on
static body part detection. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’06), pages 951–958, New York, NY, USA, 2006.
(page 7, 12)

[102] Y. Wu and T. Yu. A field model for human detection and tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 28(5):753–765, 2006. (page

6, 12)

[103] R. Xiao, L. Zhu, and H.-J. Zhang. Boosting chain learning for object detection. In
Proc. of the International Conference on Computer Vision (ICCV’03), volume 1,
page 709, Nice, France, October 2003. (page 93)

[104] J. Zhang, R. Collins, and Y. Liu. Bayesian body localization using mixture of
nonlinear shape models. In Proc. of the International Conference on Computer
Vision (ICCV’05), pages 725–732, October 2005. (page 7)

[105] L. Zhao and C. Thorpe. Stereo- and neural network-based pedestrian detection.
IEEE Transactions on Intelligent Transportation Systems, 1(3), 2000. (page 5, 8, 9,

10)

[106] T. Zhao and R. Nevatia. Tracking multiple humans in complex situations. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(9):1208–1221,
September 2004. (page 7, 12)

103

