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Abstract

Fingerprinting is a popular technology for 802.11-
based positioning systems: Radio characteristics from
different access points are measured at various positions
and stored in a database. The database is copied to all
mobile devices, and when a position is needed, the de-
vices compares its currently measured radio characteris-
tics with the database entries. In this paper, we present
two on-demand fingerprint selection algorithms to avoid
the cumbersome and time-consuming approach of manu-
ally copying all fingerprints. Our algorithms only request
those fingerprints from the database that are currently re-
quired to compute a position. The two algorithms differ
in the way they shape the region for which fingerprints
are requested. On-demand selection also allows storage-
restricted mobile devices to utilize the positioning system.
We carefully evaluate our algorithms in a real-world ex-
periment. The results show that our algorithms do not
harm the position accuracy of the positioning system. In
addition, we analyze the space requirements of our al-
gorithms and show that the typical constraints of mobile
devices are met.

1 Introduction

In recent years, there have been considerable improve-
ments in down-sizing computer hardware and in increas-
ing the capacity of rechargeable batteries, as well as the
advent of wireless networks for the mass markets. These
technologies allow manufacturers to build mobile devices
that have a similar performance as desktop computers had
several years ago. The benefit of these mobile devices can
be leveraged by so-called location-based services: Appli-
cations that act differently depending on the location of
the device. Location-based services are currently a hot
topic in research, and are considered to be a promising

market.

Nowadays, the Global Positioning System (GPS) [9]
is the predominant positioning system. Whereas GPS
works well in many scenarios, it suffers from blocked ra-
dio signals caused by walls, ceilings, or skyscrapers cre-
ating shielded street canyons. To provide users with posi-
tioning information even in indoor environments, various
research groups proposed different positioning technolo-
gies (e.g., [7]).

One of the most promising technologies that could be
an equivalent to GPS for indoor applications are 802.11-
based positioning systems (e.g., [1], [4]). Nowadays,
802.11 hardware is readily available and installed nearly
everywhere where people live and work. 802.11 is a wire-
less local area network technology that is used to provide
Internet access to mobile users; however, it can be used
for positioning purposes at the same time [13]. Further-
more, more and more modern PDAs, cellphones and lap-
tops are capable to communicate with 802.11 infrastruc-
ture because they are shipped with built-in 802.11 net-
work technology.

The best positioning results can be achieved with
802.11-based positioning systems that utilize the so-
called fingerprinting approach. This approach consists of
a two stage mechanism: A training phase and a position
determination phase. During the training phase, specific
radio characteristics from nearby access points are gath-
ered at pre-defined reference spots in the operation area
and stored together with their physical coordinates in a
database: They are called fingerprints. In the position de-
termination phase, the user’s mobile device samples spe-
cific radio characteristics at its (unknown) position and
searches for similar patterns in the database. The closest
match is selected and its coordinate returned as a posi-
tion estimate. A wide range of radio characteristics can
be used for fingerprinting: For instance, nearly all posi-
tioning systems work with signal strength (e.g., [1]), oth-



ers additionally utilize signal to noise ratio (e.g., [3]), or
response rate (e.g., [15]).

Following Kjærgaard [14], most fingerprinting sys-
tems can be categorized as so-called infrastructure-based
and terminal-based systems. Infrastructure-based means
that fixed infrastructure such as 802.11 access points are
utilized to generate the radio characteristic in question.
Further, in terminal-based positioning systems, the user’s
mobile device is used to sample characteristic data and
to compute a position estimate. There are two good rea-
sons why terminal-based systems are prevailing: First,
terminal-based systems are easy to set up. In most cases,
a sensor to sample radio characteristics such as a 802.11
network card is already part of the user’s mobile de-
vice. To make use of this sensor, only additional software
needs to be installed. Furthermore, the infrastructure can
be used without any changes and without even knowing
that it is used in a completely new way. This makes
prototype installations as well as system-wide roll-outs
quickly realizable and cheap. Second, privacy concerns
remain a major barrier to adoption of location-based ser-
vices. If the data required to calculate a position estimate
is sampled and processed on the user’s device, the user is
in control of disclosing her position to whom, when and
with which level of granularity she wants.

One major drawback of most fingerprinting systems,
especially the terminal-based ones, is that the fingerprint
database has to be copied on each mobile device that is
supposed to use the positioning system. So far, an ad-
ministrator manually copies the fingerprint database from
a central repository such as PlaceLab [17] onto the mo-
bile devices. We call this way of handling the fingerprint
data the administrator’s occupational therapy. While this
cumbersome and time-consuming approach is applicable
in lab settings, it leads to a lot of problems in large-scale
roll-outs and daily-use:

• Update of fingerprints: It might happen once in a
while that fingerprints taken from a building have
to be updated because the building has been re-
constructed or access points inside the building
have been relocated. Furthermore, fingerprints from
newly constructed buildings have to be added and
fingerprints from buildings that have been demol-
ished should be removed. If fingerprint data on mo-
bile devices are not updated, the position accuracy
at least decreases and in the worst case, no position-
ing is feasible for areas that are covered by stale or
missing fingerprints.

So far, no way exists to automatically update all mo-
bile devices that carry a fingerprint database.

• Limited storage capacities of mobile devices: High-
tower et al. [8] roughly estimate that a fingerprint
database containing all 802.11 access points in the
world would at least require a few dozen gigabytes
of memory. From a positioning system point of
view, a major restriction of mobile devices is their
storage capacities. If we compare storage capacities
of mobile devices, we see two major device classes:
Mobile devices in the smart-phone class, such as
PDAs, smartphones, and laptops usually provide at
least few hundred megabytes of fixed-disk storage
and about a few dozens megabytes of main mem-
ory. Tiny devices of the sensor node class typically
contain no fixed-disk storage and only a few hun-
dred kilobytes of main memory.
While it might be possible to store a world-wide
fingerprint database on devices of the smart-phone
class, nobody wants to allocate a large portion of the
fixed-disk storage for data that is never used. Even
worse, it is impossible to store a world-wide finger-
print database on a sensor node.

In this paper, we provide solutions for the problems
listed in the previous itemization. We present two novel
algorithms to select only fingerprints from a central
repository that are required to compute a mobile device’s
position. The fingerprints are dynamically selected based
on the access points within communication range of the
device. This keeps the fingerprint data on mobile devices
fresh and makes sure that always the latest available fin-
gerprints are used. Our novel on-demand fingerprint se-
lection algorithms are of common use which means every
positioning algorithm that relies on fingerprints can be
combined with our algorithms. Further, a major design
goal of these algorithms is to reflect the storage capabili-
ties of the aforementioned classes of mobile devices. The
performance of our algorithms in terms of their impact
on the positioning system, frequency of fingerprint data
queries, size of regions and space requirements are eval-
uated in a real-world testbed.

Looking at research work that has been done in the
area of 802.11-based positioning systems it can be seen
that besides work on the theoretical basis of position-
ing algorithms (e.g., [22]), a lot of experimental work
has been carried out (e.g., [1], [6], [17]). Additionally,
large testbeds up to a scale of cities have been set up to
research how 802.11-based positioning systems perform



in these environments (e.g., [16], [17], [18]). However,
best to our knowledge, we are the first who present dif-
ferent algorithms to select only the fingerprints that are
required to compute a position estimate while respecting
the storage capabilities of mobile devices. Although we
have already presented preliminary work as a demo [10],
here we present the complete algorithms together with
enhancements and also provide an in-depth experimental
evaluation. This work is another building block in mak-
ing 802.11-based positioning systems easily usable and
ready for productive usage.

The remainder of this paper is structured as follows:
We present our two novel on-demand fingerprint selec-
tion algorithms in the following section. In Section 3,
the experimental setup and research methodology are de-
scribed that are used to evaluate the on-demand finger-
print selection algorithms. Subsequently, the experimen-
tal results are presented in Section 4. Section 5 presents
the relevant related work. Finally, we conclude the paper
and discuss future work in Section 6.

2 On-Demand Fingerprint Selection Algo-
rithms

As 802.11-based positioning systems rely on 802.11, it
can be generally assumed that a broadband Internet con-
nection is offered by these networks [2]. Most location-
based services such as a friend-finder application or an
asset tracking system make only sense if data can be ex-
changed between these kinds of applications. We utilize
this fact and connect mobile devices to the fingerprint
repository by means of 802.11 networks. This allows
a mobile device to query the repository for fingerprints
covering its current region. We define the region of a
mobile device as an area wherein it is located and that is
encircled by the access points within its communication
range.

Our two novel on-demand fingerprint selection algo-
rithms differently shape the size of a mobile device’s re-
gion. Generally speaking, the footprint of fingerprints
covering a region depends on its size. So, by differently
shaping the size of a device’s region, the storage capa-
bilities of the aforementioned device classes can be met.
Furthermore, the size of the region in general defines the
area wherein a mobile device can move around without
triggering a fingerprint data query. The following sec-
tions introduce the novel on-demand selection algorithms
and discuss how they work.

2.1 Union of Access Points

The advances in miniaturization of memory technol-
ogy allow to build mobile devices categorized as laptop
class devices that offer plenty of storage. For these de-
vices, a on-demand fingerprint selection approach should
not try to minimize the footprint of stored fingerprints,
because these devices can easily handle larger sets of
data. Instead, in such a scenario, the prime reason for a
fingerprint selection algorithm is to keep the data on mo-
bile devices up-to-date. To achieve this goal, all finger-
prints that contain any of the access points within com-
munication range of the user’s device are selected. The
region of a mobile device is therefore shaped by the union
of the coverage areas of all access points within its com-
munication range (see Figure 1(a)). Hence, we call this
algorithm the Union of Access Points (UAP) approach.

We describe the algorithm in more detail: After a mo-
bile device sampled its proximity for access points, it
queries the repository by providing the sample results.
The repository replies with the fingerprints of each ref-
erence spot that contains at least one fingerprint corre-
sponding to any of the access points listed by the mobile
device. If the mobile device moves out of the communi-
cation range of an access point, the fingerprints of this
particular access point are removed. In case unrecog-
nized access points come into communication range, the
mobile device requests fingerprints for all access points
it is aware of. If one of the access points is unknown by
the repository (e.g., it has lately been deployed), it is just
omitted while constructing the union.

2.2 Intersection of Access Points

Considering sensor nodes leads to the Intersection of
Access Points (IAP) algorithm. Mobile devices of the
class of sensor nodes are in general extremely limited in
terms of storage. In this case, the footprint of fingerprints
stored on a mobile device should be as small as possible.
Given only the access points in communication range of
a mobile device and the access points’ coverage areas,
the intersection of these areas defines the smallest area
wherein the mobile device can be located. So, we shape
the region of a mobile device by intersecting the cover-
age areas of the access points within its communication
range (see Figure 1(b)).

The IAP algorithm utilizes this fact: A mobile device
scans for access points in communication range and re-
ports the access points to the repository. The repository
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(a) The mobile device’s region according to the Union of
Access Points approach.
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(b) The Intersection of Access Points algorithm is used
to calculate the region of the mobile device.

Figure 1. These figures exemplify how a mobile device’s region is shaped by the two fingerprint section
algorithms. The figures show the same scenario: Three access points and their coverage areas are
plotted in red, green, and yellow, respectively. The gray and blue squares depict reference spots where
fingerprints are sampled. The blue squares are framed by an orange line and represent the reference
spots used to select fingerprints according to the on-demand selection algorithm in question.

computes the intersection of the access points’ coverage
areas. Only for the reference spots inside this intersec-
tion, the fingerprints of the reported access points are
transferred to the mobile device. Each time a mobile de-
vice moves out of the coverage area of a known access
point or into the coverage area of an unrecognized access
point, the procedure is repeated. In case an access point
is unknown by the repository, its presence is ignored.

3 Experimental Setup and Measurement
Methodology

In this section, we describe the experimental setup and
the measurement methodology.

3.1 Local Test Environment

We deployed our 802.11-based positioning system on
the second floor of our office building on the campus of
the University of Mannheim. The operation area is nearly
57 meters in width and 32 meters in length; approxi-
mately 221 square meters are covered. The floor plan
of the operation area is shown in Figure 2.

3.2 Hardware and Software Setup

Initially, the test environment was covered by twelve
access points. Seven of them are administered by the
computer center of our university. The other five are in-
stalled in nearby buildings and offices. We additionally
installed thirteen access points. Our data shows that most

of the access points cover only parts of the operation area.
In fact, only two access point cover the operation area
completely. One of these access points is the one marked
in the middle of the storage room in the horizontal hall-
way in the right part of the building. This access point is
located in a suspended ceiling on top of this room. The
position of the second access point is in an office one
floor below of our operation area. The positions of the
access points that are located on the same floor and inside
the same building parts as our operation area are marked
by orange circles in Figure 2.

As a client, we used a Lucent Orinoco Silver PCMCIA
network card supporting 802.11b. This card was plugged
into an IBM Thinkpad R51 running Linux kernel 2.6.13
and Wireless Tools 28pre. To collect signal strength sam-
ples, we implemented our own set of tools [11].

3.3 Data Collection

The grid of reference spots in the operation area in-
cludes 130 spots with a spacing of 1.5 meters (see the
blue marks in Figure 2). During the training phase,
we collected 110 signal strength samples at each refer-
ence spot. For the position determination phase, we ran-
domly selected 46 spots. Again, we collected 110 signal
strength samples for each positioning spot. In Figure 2,
the positioning spots are marked by purple dots. We spent
over ten hours to collect all the data.



Figure 2. Floor plan of the local test environment.

3.4 Metrics

The metric that is of most interest for all positioning
systems is the position error. As we consider a two-
dimensional operation area, the position error is defined
as the Euclidean distance between the real physical po-
sition and the estimated position. In most cases, our
on-demand fingerprint selection algorithms select only a
subset of the available fingerprints and hence reduce the
data on which positioning algorithms operate to compute
a position estimate. So, we are interested in the impact of
the fingerprint selection algorithm on the position accu-
racy.

Metrics of relevance for fingerprint selection algo-
rithms are the frequency of fingerprint data queries, the
size of regions and the space requirements. We de-
fine the former metric as the number of fingerprint data
queries per radio characteristic measurement. The fre-
quency should be small because each query means that
the 802.11 network is utilized to transfer the query from
the mobile device to the repository and fingerprints vice
versa.

The size of a region defines the area in which a mobile
device can move around while positioning itself utilizing
the fingerprints is stores. The size of a region is defined
by the number of reference spots it contains.

The space requirements are measured in terms of fin-
gerprints. We keep this metric abstract because the exact
size of a fingerprint depends on the selected positioning

algorithm. Different algorithms aggregate raw measure-
ment data differently to a fingerprint [14].

3.5 Experiments

To analyze our on-demand fingerprint selection algo-
rithms we utilize the data we have collected as described
in Section 3.3. We define a basic experiment that is used
as a basis for the subsequent studies. If a study of a cer-
tain on-demand fingerprint selection algorithm requires
an extension of the basic experiment, the changes are de-
scribed in the corresponding section.

The basic experiment is defined as follows: As our
positioning algorithm we utilize the algorithm proposed
by [16]. This algorithm is probabilistic, and Youssef et al.
proved in [21] that this class of algorithms is superior to
other classes in terms of position accuracy. For each ref-
erence spot, 20 samples are randomly selected out of the
110 samples. In the position determination phase, only
one signal strength measurement is selected out of the
110 samples taken at each positioning spot. These num-
bers are derived from the recommendations stated in [12].
This experiment is repeated 1000 times to achieve statis-
tically stable results.

4 Experimental Results

In this section, we present our evaluation results.



4.1 Position Accuracy

We combine the basic experiment with our on-demand
fingerprint selection algorithms to see if they interfere
with the positioning algorithm, and what the conse-
quences are. Figure 3 depicts the cumulative distribution
function (cdf) of the position error for the plain basic ex-
periment as well as the combinations with our selection
algorithms.
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Figure 3. Cumulative distribution function of the
position error.

The figure shows the the cdfs of the position error for
all three experiments are practically equal. The average
position error for the plain basic experiment is 2.86 me-
ters, UAP shows the same value. The reason for this is
that UAP selects all fingerprints from the reference spots
covered by any of the access points visible to the mo-
bile device. This is what basically happens in the basic
experiment. Although the complete fingerprint database
is available on the mobile device, only the fingerprints
that contain any of the access points the mobile device
is aware of can be used by the positioning algorithm for
further processing. So, the fingerprints used by the po-
sitioning algorithm to calculate a position estimate are
identical and hence the cdfs are equal. The very small
differences come from statistical variations.

The IAP approach shows a slightly worse average po-
sition error of 2.97 meters. The reason for this is that
sometimes the real position of the user is outside the in-
tersection, and in fact closer to a reference spot that is
also outside the intersection than to any reference spot
of the intersection. The positioning algorithm applied to
IAP has to choose one the reference spots of the intersec-
tion which means the position error is a little bit larger
than what can be achieved in the other experiments. A
similar fact causes the large long tail of IAP compared to
the other cdfs. In very rare occasions, the radio charac-

teristics sampled outside the intersection do not match
a nearby reference spot and hence the algorithm gets
confused and wrongly selects a reference spot far away.
However, the difference in the average position errors is
only 0.09 meters which corresponds to about three per-
cent.

Even although we see minor differences in the cdfs of
the experiments, we conclude that the impact of the fin-
gerprint selection algorithm on the position error is neg-
ligibly small.

4.2 Frequency of Fingerprint Data Queries

During our experiments we realized that sometimes
the set of access points a mobile device samples changes
over time, though the device remains at a single spot.
The reasons for this are manifold: A measurement packet
gets lost due to packet collisions or a noise source such
as a microwave increasing the noise level so that a re-
ceiver cannot clearly hear the packet. Another reason is
that structural changes in the environment (e.g., a door is
closed) worsen radio propagation.

For both algorithms a fingerprint data query is exe-
cuted if the set of access points changes in two consecu-
tive measurements. We counted how often the same set
of access points can be found in two consecutive mea-
surements. We found that on average only 2.28 consecu-
tive measurements contain an equal set of access points.
In other words, on the average, 106.72 consecutive mea-
surements show different sets of access points. This cor-
responds to a frequency of 0.98 fingerprint data queries
per radio characteristic measurement. To reduce the high
frequency of queries we came up with the following ap-
proach: The access points from the n-latest measure-
ments are grouped together and compared with the set
of access points obtained from the n measurements taken
before. Only if the two sets of access points differ, a fin-
gerprint data query is performed. This enhancement is
dubbed n-Group (n-G).

Table 1 lists the number of inequalities that occur if
each set of access points is created by combining n mea-
surements. The average number of inequalities goes
down from 106.72 to 5.57 which corresponds roughly to
five percent if ten measurements are used to build each
set of access points. This means that on average during
110 signal strength measurements, six fingerprint data
queries are performed. From the highest number of ob-
served values we see that if n = 2, positioning spots exist



where the theoretical maximum number of inequalities1

is reached. The theoretical maximum number is never
reached again for values greater than two, however, it is
often pretty close (e.g., only one or two occurrences are
left).

Number of inequalities Frequency
n average max min average max worst case
1 106.72 109 99 0.98 1.0 1.0
2 48.13 54 34 0.44 0.50 0.50
3 27.54 35 12 0.25 0.32 0.33
4 18.11 25 3 0.17 0.23 0.25
5 13.37 20 3 0.12 0.18 0.20
10 5.57 10 1 0.05 0.09 0.10

Table 1. The number of inequalities and the fin-
gerprint data query frequency for different val-
ues of n.

We calculate the fingerprint data query frequency
based on the number of inequalities. The worst case col-
umn corresponds to the theoretical maximum number of
inequality. While the average frequency is pretty close
to the worst case frequency for n = 2, it still shows an
average frequency of 0.05 which is only one half of the
worst case value if a group size of ten is applied.

Grouping together access points of n measurements
before checking if a fingerprint update is required also
delays this decision. Especially, for the IAP algorithm
we expect stale fingerprint data to negatively impact the
position accuracy. A delay for this algorithm implies that
the region for which fingerprints are available is not per-
fectly shaped according to the access points the mobile
device is aware of. If the currently used region is larger
than the intersection that would be build by the access
points being part of the latest measurement, the algorithm
has to choose from more reference spots and therefore
can erroneously select a far away one. In case the cur-
rently used region is smaller than it should be according
to the latest measurements, the algorithm can not select
a nearby reference spot because it might not be part of
the region. To analyze how n-G impacts IAP and UAP,
we extended the basic experiment. Our results show that
n-G+UAP is only slightly influenced — the average posi-
tion error varies between 2.86 and 2.89 meters for n = 1
and 10, respectively — and hence we do not show its fig-
ures. However, n-G+IAP shows interesting results, and
therefore the cdfs for different values of n are depicted in
Figure 4.

1inequalitytheoretical
max = b#measurements−1

n
c, whereas the num-

ber of measurements is abbreviated by #measurements.
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Figure 4. n-G+IAP: Position error for different
values of n.

The graphs shout that our expectations are met: The
position error increases with the increase of n. The curve
representing n = 1 is always on top of the other graphs.
Furthermore, the graph for n = 10 is always below. This
yields an average position error of 2.97 and 3.43 meters
for n = 1 and 10, respectively. Or in other words, by
grouping together ten measurements before deciding if a
new fingerprint data query is required, the position accu-
racy degrades by nearly 0.5 meters.

The results show that for n-G+IAP small values of
n should be used whereas for n-G+UAP larger values can
be applied without decreasing the positioning accuracy.

4.3 Size of Regions

Our fingerprint selection algorithms shape the region
of a mobile device by differently combining coverage ar-
eas of access points in proximity of the device. The re-
gion of a mobile device defines the area in which the de-
vice can move around and position itself by utilizing the
fingerprints it stores. In this section, we analyze the size
of the regions generated by our algorithms. During the
execution of our basic experiment, we counted the num-
ber of reference spots comprised by a region. Table 2
lists the average number, the maximum number and the
minimum number of reference spots we observed.

Size of regions
Algorithm average max min
UAP 129.82 130 120
IAP 11.47 23 3

Table 2. Size of regions.

The figures show that UAP covers nearly all reference
spots of our operation area whereas IAP always selects
only a small subset. On the average, 11.47 reference
spots are selected and the maximum number is 23. These



numbers show that storage-restricted devices can benefit
from the IAP approach.

The space requirements of our on-demand fingerprint
selection algorithms depend on the size of the regions
they produce. To get a deeper insight into this topic, the
following section provides an analysis of the space re-
quirements.

4.4 Space Requirements

In this section, the space requirements of fingerprint
updates for our on-demand fingerprint selection algo-
rithms are analyzed. Our algorithms replace the finger-
prints stored on the mobile device with data requested
from the repository. So, by analyzing the space require-
ments of updates we also get the storage requirements
needed to store fingerprints on the mobile device.

The analysis is based on the following parameters:
I is the set of access points visible to the mobile de-
vice; RAP is the set of reference spots covered by access
point AP ; FR is the total number of fingerprints at ref-
erence spot R; FR,AP ∈ {0, 1} tells whether there is a
fingerprint for access point AP at reference spot R. For
each of the on-demand fingerprint selection algorithms
the space assessments are listed in Table 3.

Algorithm Space
UAP

∑
r∈(

⋃
i∈I

Ri)
Fr

IAP
∑

i∈I

∑
r∈(

⋂
i∈I

Ri)
Fr,i

Table 3. Theoretical space assessment.

The worst case space requirements are equal for both
fingerprint selection algorithms, however, this only oc-
curs in pathological network conditions: All access
points cover the same reference spots. This is why we
are more interested in the average space requirements.

The positioning algorithm we selected for our ex-
periments requires fingerprints that contain two his-
tograms: A signal strength histogram and a frequency
histogram [16]. To store such a signal strength histogram,
102 integers are required because our 802.11 network
card is able to sample signal strength values in the range
of 0 to 102 dBm. For the frequency histogram, ten in-
teger are sufficient because our data shows that no ac-
cess points is measured more than ten times during one
sample. Together with two floating-point numbers for the
two-dimensional coordinate and the MAC address of the
access point, such a fingerprint can be represented by us-
ing 126 bytes (= 102 + 10 + (4 ∗ 2) + 6).

To get an impression how much data has to be trans-
ferred and stored on a mobile device, we utilize the ba-
sic experiment and count the number of fingerprints re-
quested. The average number, the maximum number and
the minimum number of fingerprints for each of the two
on-demand fingerprint selection algorithms are given in
Table 4. The digits in brackets list the storage utilization
in terms of kilobytes round up to the next integer.

Space
Algorithm average max min
UAP 1987.95 (251) 1993 (252) 1940 (245)
IAP 94.73 (12) 168 (22) 20 (3)

Table 4. Empirical measured space require-
ments.

These figures show that IAP requires at most 21 kilo-
bytes of data which makes this algorithm highly attrac-
tive for memory-restricted devices such as sensor nodes
containing only a few hundred kilobytes of memory. As
IAP covers on average only 11.47 reference spots an in-
crease of the operation area would not result in higher
storage demands. In contrast, in many cases UAP se-
lects the 1993 fingerprints covering our operation area.
The reason for this is that at any location on our opera-
tion area, access points are reachable that jointly cover it
completely. If we had a larger operation area, UAP would
select far more data.

4.5 Discussion

In this paper, we show results for our novel on-demand
fingerprint selection algorithms by combining them with
one positioning algorithm. We have also repeated our
experiments with the K-Nearest-Neighbors-P-Unknown
algorithm [5] and the outcome shows the same trend as
what we present here. So, due to page restrictions we
omit an in-depth discussion of the second positioning al-
gorithm results.

Our fingerprint selection algorithms automatically up-
date the fingerprints stored on a mobile device if it moves
around and triggers a fingerprint data query. To keep fin-
gerprints on motionless devices up-to-date, we suggest to
apply a timer to the data. Each time a fingerprint query is
asked the timer is restarted. If the timer expires, a query
is executed to get the latest version of the data.

To speed-up replies to fingerprint queries, the cen-
tral repository could pre-calculate the intersections and
unions of coverage areas of access points contained in the
fingerprint data. This only needs to be done once and can



be stored in a look-up table. To find the fingerprints for a
given list of access points, it is just a matter of searching
the look-up table.

5 Related Work

In this paper, we consider only terminal-based po-
sitioning systems, however, network-based approaches
such as described in [1] and [20] also face the problem
that a fingerprint database has to be commonly created
and shared between different owners of access points.
The problem arises from the fact that network-based ap-
proaches sample mobile devices at the access points. So,
in case an operation area such as a shopping mall is cov-
ered by overlapping access points that are owned by dif-
ferent parties, access to these access points and the cor-
responding fingerprint databases has to be granted to the
owners. However, the authors simplify the scenario to
avoid the problem of fingerprint data distribution. They
just assume that all access points covering an operation
area are under the control of a single entity. Our fin-
gerprint selection algorithms would need a few modifica-
tions to be usable for network-based positioning systems.
We are not going to describe these changes here because
they are out of scope of this paper.

The basic idea behind the PlaceLab research
project [17] is beacon location to achieve a pervasive po-
sitioning system. The researchers of PlaceLab exploit the
fact that many public available wireless network tech-
nologies regularly emit beacons. For instance, 802.11
access points broadcast beacons to maintain the network
and GSM towers broadcast their existence to make it eas-
ier for cell-phones to find them. A large portion of their
research work deals with 802.11-based positioning sys-
tems. In [8], the authors slightly touch the question how
the fingerprint database can be distributed to a large set
of mobile devices. However, they do not provide a so-
lution for this problem and proceed with other research
topics. In another paper [18], the authors discuss how the
initial effort of collecting fingerprints can be reduced by
bootstrapping a fingerprint database from seed data and
keep it valid while fingerprints are added and removed.
In contrast to our work, we do not try to reduce the initial
workload, instead we are providing mechanism to keep
the fingerprint data on mobile devices up-to-date and the
footprint of this data small.

In [22], the authors propose clustering of the finger-
print database in order to reduce the computational re-
quirements of the positioning algorithm. The traditional

way was to compute a result for each reference spot being
part of the fingerprint database, even it was not covered
by any of the access points sampled by the mobile de-
vice. The approach suggested by Youssef et al. clusters
the fingerprint database in such a way that only reference
spots are selected that are covered by the access points
the sample of the mobile device contains. As their re-
sults show, this reduces the computational requirements
a lot. However, this approach does not consider solutions
to the administrator’s occupational therapy. In particular,
Youssef et al. do not consider different algorithms for se-
lecting variable parts of the fingerprint database in order
to reflect storage capabilities of different device classes.
A positive side-effect of our system is that the computa-
tional requirements are also reduced in a similar way as
proposed by Youssef et al.

Compared to our approach, Lorincz et al. [19] came up
with the idea of an infrastructure-less positioning system
for sensor networks. In their approach, there is no infras-
tructure that stores the fingerprint database. Instead, this
task is accomplished by so-called beacon nodes. These
nodes carry the fingerprint data of their proximity. Fur-
ther, the authors describe two methods how position esti-
mates can be computed: A terminal-based and a network-
based approach. In the former approach, the mobile de-
vice requests, comparable to our UAP algorithm, finger-
print data from beacon nodes within its communication
range. Based on this data the device estimates its po-
sition. If the latter approach is applied, the mobile de-
vice send its signal strength measurements to surround-
ing beacon nodes and asks them to compute a position
estimate based on their local fingerprint data. While the
system proposed by Lorincz et al. bears a resemblance to
our approach, they only consider infrastructure-less sce-
narios. Further, they provide only one way of getting the
fingerprint data on the mobile device neglecting to take
into account the restricted storage capabilities of sensor
nodes. In addition, they do not consider updates and re-
movals of fingerprints in their system.

6 Conclusions and Future Work

We presented our novel on-demand fingerprint se-
lection algorithms to avoid the cumbersome and time-
consuming task of manually copying fingerprint data
from a single repository to all mobile devices. Our al-
gorithms dynamically select only those fingerprints from
the repository that are required to compute a position es-
timate; this also makes sure that the latest fingerprints



are always available. To take the different storage ca-
pabilities of two classes of mobile devices into account,
we presented two fingerprint selection algorithms that use
different shapes for the region wherein the mobile device
is located. Our empirical study shows that the position
accuracy is not harmed by our fingerprint selection algo-
rithms.

Furthermore, we investigated the frequency of finger-
print data queries and presented improvements to our ba-
sic algorithms to reduce the frequency of queries. Our
investigation shows that the region in which the mobile
device is located are differently shaped. We also showed
that the space requirements of our fingerprint selection al-
gorithms meet the constraints of the corresponding class
of mobile devices.

In a direct extension of this work, we plan to apply our
fingerprint selection approaches to tracking systems. The
difference with tracking is that users move while signal
strength measurements are taken. So, we want to investi-
gate the impact of our fingerprint selection algorithms on
the position accuracy of tracking systems. Furthermore,
we are working on a scalable system architecture, com-
parable to the DNS system, to get rid of the single point
of failure of the central repository. Finally, we plan to test
the general applicability of our fingerprint selection algo-
rithms for other sensor technologies such as Bluetooth.
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