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Abstract

Banach's fixed point theorem for contraction operators on Banach spaces is generalized to
inductive limits of Banach spaces. Within the framework of white noise analysis such spaces
and (generalized) contraction operators arise naturally in the context of non-linear stochastic
integral equations. In order to apply the fixed point theorem we establish topological isomor-
phisms between spaces of continuous mappings with values in generalized random variables,
and those with values in U-functionals. As an application we prove that the Cauchy problem
for a dass of non-linear stochastic heat equations is well-posed. The same method also ap-
plies to stochastic Volterra equations, stochastic reaction-diffusion equations and anticipating
stochastic differential equations.

1. Introduction

The present work is motivated by [BDP], where Cauchy problems for non-linear stochas-
tic equations such as heat equations, Volterra equations and others were investigated. A
solution of such a Cauchy problem is a random field <p(t, x) wjth time parameter t E [0,T]
and space parameter x EIRd. This random field defines the time evolution t I-t <p(t,.)
which starts at some initial state <Po = <p(0, .). All examples discussed in [BDP] have the
common feature that the solution <P satisfies a fixed point equation of the following type:

<P = Wo + K(<P). (1.1)

(1.2)

Here, K denotes a non-linear integral operator and Wo is a function of the initial state <Po.
K and Wo depend on the specific problem, for the case of heat equations, e.g., see (5.7)
and (5.8) in Section 5. -

There are Cauchy problems satisfying (1.1) for which K is a contraction operator on a
Banach space (cf. the monograph [DZ]). In this case it is not hard to prove that (1.1) has
exactly one solution <P, and that <P depe!1ds continuously on the initial data <Po, Le. that
the mapping

is continuous. In other cases, e.g. when space-derivatives of <P are multiplied to noise
terms or when one allows for anticipating objects, the methods described in [DZ] do not
apply. In that case it is not clear if c1assical solutions (by this we mean LP-valued random
fields defined on DT :- [0,T] x IRd) exist at all. There are examples (even for linear heat
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equations, cf. [BDPSJ) where no classical solution exists, but generalized ones do. Iri such
situations white noise analysis (WNA) can provide a more appropriate framework because
one worl~s - from the beginning - with classical as weIl as with generalized random objects,
such as Hida distributions (S)* or K0I?-dratiev distributions (S)-ß, ß E (0,1], cf. [KS]'
[KLS]. The solution 4? of (1.1) obtained by the methods of WNA is then typical1Y an
(S)-ß-valued random field on DT' Of course, one finally likes to find conditions suchthat
these solutions are c1assical random fields, e.g. L2-valued ones. This difficult reguHnity
question is excluded in the present paper. (Some results on this question - for linearheat
equations - are given in [DP].) Instead, we focus on the continuity of the mapping (1.2).

Although stoch~stic evolution equations have been studied extensively by the tech-
niques of WNA, cf. [H0UZ], the continuous dependence on initial data has not yet been
studied in detail. The main obstacles are that (S) -ß carries an inductive limit topoJogy
(which is not ametrie topology), and that one cannot direct1y control the dependenceof cI>
on 4?o. In particular, the inductive limit structure seems not to combine weHwith continu-
ity questions for non-linear mappings (1.2). It is the main objective of the present paper to
develop a general method by which these obstac1es can be overcome. As a concrete exainple
we consider a class of non-linear stochastic heat equations, and we interpret the associ-
ated integral equations (1.1) as fixed point problems on the space of bounded continuous
functions from DT into (S)-ß, denoted Cb(DT, (S)-ß). We prove that the mapping (1.2)
from Cb(lRd, (S)-ß) to Cb(DT,.(S)-ß) is continuous with respect to (natural) inductive
limit topologies on these spaces (see Theorem 5.3). Thereby we extend the existence and
uniqueness results for (1.1) obtained in [BDP], and our final conc1usion is thatthe Cauchy
problems discussed in [BDP] actually are well-posed .

.Our proof is based on two key observations: firstly, there is a generalization of Ba-
nachs fixed point theorem for the case of inductive limits of Banach spaces, and this in
turn implies well-posedness on an abstract level. Secondly, the 8-transformation induces
a topological isomorphism from Cb(DT, (S)-ß) onto the space Cb(DT, Uß) consisting of
bounded continuous functions with values in the U-functionals Uß. On this latter space
the analysis of (1.1) is tractable, and we can apply the generalized fixed point theorem
there.

Thepaper is organized as follows: In Section 2 we generalize Banach's fixed point
theorem. This part is independent of the white noise context, but is of course motivated
by it. Because of its generality, this part might also be useful in other contexts. Settion
3 provides .the necessary facts about (S)-ß andUß for later reference. In Section 4 we
introduce spaces of bounded Junctions with values in (S)-ß or Uß and we prove that the
8-transformation induces a topological isomorphism. Finally, we consider the non-linear
heat equation, introducedin [BDP], as an example for a well-posed Cauchy problem. It
is quite obvious that well-posedness also holds for the other examples discussed in [BDP],
because they are all based on Banach's fixed point theorem in an appropriately chosen
space of U-functionals.

Acknowledgement. It is a pleasure to thank J. Potthoff for valuable discussions on :this
paper.
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2. A generalization of Banach's fixe~ point theorem

In the context ofWNA various inductive limits of Banach spaces (Ev, 11. Ilv) arise, which
have a special common feature: The index set J associated to E = UvEJ Ev is a directed
system, i.e. there is a partial ordering -< on J such that for any 0'-, ß E J there exists 'Y E J
satisfying a -< 'Y and ß -< 'Y. Moreover, if a -< ß then Eo: c Eß and Ilullo: 2:: Ilullß for
all u E Eo:. In this paper we will consider exclusively inductive limits E of this type, and
, we denote them simply by UvEJEv, without mentioning the ordering properties explicitly.
Typical examples for index sets are given by J = :IN,:IN x ~ etc., with the usual (partial)
ordering, cf. Section 5. For general properties of inductive limits we refer to [Ro].

Definition. Let E = UvEJEv be an inductive limit of Banach spaces. A map K : E -t E is
called a strict contraction on E, if there exists a E J such that for all v >- a the following
conditions are satisfied:

(Cl) K maps Ev into Ev.
(C2) There exists Cv E [0,1) such that for allu, v E Ev

IIK(u) -.K(v)llv ::;cvllu - vllv.

Banach's fixed point theorem can now be generalized as follows:

Theorem 2.1. Let K be a strict contraction on the inductive limit E = UvEJEv. Then,
for each v E E, there exists a unique solution Uv of the fixed point problem

u = v + K(u).

Moreover, the mapping h : v ~ uv.from E into E is continuous.

Proof: We start with existence and uniqueness. Let a E J be such that K is contractive
on Ev, for all v >- a. We shall distinguish between the restriction KIEv : Ev -t E and the
operator Kv : Ev -t Ev obtained from KIEv by restricting in addition the image space.

For fixed v E E choose ß >- a such that v E Eß. Then the operator KV (u) := v +K (u),
u E E, yields a contraction K"ß on the subspace Eß. By Banach's fixed point theorem there
exists a unique u,E Eß which ~olves u = K"ß(u). Now let u E E be another solution of
u KV(u). Then u E EiJ for some ß E J. Choose 'Y >- ß, ß. Then u, u E E"( are fixed
points for the contraction .operator K~ on the Banach space E"( and thus u = u.

It remains to show that h : v ~ Uv is continuous from E into E. A mapping h from E
into a topological space X is continuous if and only if h IEv is continuous for each v E J.
Fix v E J. If v >- a we have Uv E Ev and we can estimate

Iluv - Uijllv =.llv + K(uv) - v - K(uij)llv
::; Ilv - vllv + IIK(uv) - K(uij)llv
:::; Ilv - vllv + cvlluv - Uijllv,

where Cv E [0, 1). VYi~hkv := 1 - Cv > 0 we obtain

Iluv - UijIIv ::; k;ll1v - vllv.
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This implies that hy : Ey -+ Ey is continuous. Since the embedding iy : Ey '---7 E is
continuous too, the same holds for the composition hlEI.I= iy 0 hy.

lf v >f a choose iI >- v, a. The continuity of hlEI.I ---'hlEv 0 iy,v follows from the one of
hlEv and the continuous embedding iy,v : Ey '---7 Ev. •

The following elementary lemma is stated for later reference. It will be useful when we
study the relation between spaces of white noise distributions and U-functionals.

Lemma 2.2. Let S : UyEJEy -+ Uy,ELHy' be a linear mapping between inductive limits
of Banach spaces E, Hand let a E J be fixed. Assume that for every v >- a there exists
v' E Land ky 2:: 0 such that

(11) S maps Ey into H y' and
(12) IISully' ~ kyllUlly for all u E Ey. \

Then 8 is continuous. In pariicular, if 8 ls a linear isomorphism and also 8-1 satisfies
I

properiies analogous to (11) and (12), then S is a topological isomorphism.

Proof: 8 is continuous if and only if every rest riet ion SIEI.I is continuous. For v >- a this
holds in view of (11), (12) and the continuity of Hy' '---7 H. For v >f a choose iI >- V,a.
Then SIEI.I = 81Ev 0 iy,v is continuous. ~ •

An application of this lemma when J and Ldo not coincide is given in Section 5. We
remark that the S-transformation from white noise analysis is an isomorphism of the ~ype
described in Lemma 2.2, cf. [BT]. Also all other isomorphisms between inductive limits of
Banach spaces considered in this paper will have the property, that Ey is "shifted" into
Hy" For convenience we will therefore denote an isomorphism with the properties (11,12)
stated in Lemma 2.2 as a shift isomorphism.

3. Topological aspects of white noise analysis
J

In this section we fix notations and recall some facts from WNA. We also discuss some
more recent results from the literature, partly in slightly modified form, so that we obtain
a uniform representation. Since the modifications are straightforward and inessential, we
do not give proo"rs.

Let S(IRk) denote the Schwartz space of real, rapidly de~reasing COO-functions and -
S* (IRk) its topological dual space. The harmonie oscillator H : S(IR) -+ S(IR) is the
bijective operator H = -d2/dx2 + x2 + 1. A family {I . 12,p : p E No} of norms on S(lRk)

is defined by 1~12,p := IHP~b, where H := HQ9k and I . 12 is the norm in L2(IRk). For all
p, n E No these norms satisfy

(y.1)

We denote the complexified spaces by Sc (IRk), Sc (IRk), and we keep the same notation
für the corresponding norms. In this paper we work with the white noise prob ability space
(S*(IRk), B, J.L). The O"-algebra B is generated by the functions Xc;, ~ E S(IRk), which
are defined by the dual pairing with w E S*(Rk), Le. by Xc;(w) := (w, ~). The white noise
probabilitymeasure J.L is such that the Xc; are Gaussian random variables, and such that .the
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algebra P of polynomials generated by the set {Xc;I~ E S(lRk)} is dense in L~(J.L) =: (L2).
For more details and proofs see [HKPS] , pp. 1-7.

The notion of generalized random variables is based on the Wiener-Itö decomposition
of (L2) into a (Hilbert) sum of orthogonal subspaces 1in,

This decomposition allows to associate with each monomial X6 ... XC;n its orthogonal
projection : X6 ... XC;n : into 1in. If Qo denotes the space of constants in (L2) and

then the (algebraic) orthogonal decomposition P = EB~=oQn holds. One can now define a
linear, bijective operator r iI :P ~ P by its action on monomials,

riI : X6 ... XC;n : = : X H6 ... X HC;n : ,

and a system of inner product -norms on P, as follows: Let <I>= I::~=o<I>n be the (finite)
decomposition of <I>E P into components <I>n E Qn, and define

00

11<I>11~,p:- L n!ßllr~<I>nll~,
n=O

pE71, ßE[-l,l].

r - .eXE, • = . eX HE, .H. .. ..

It is then straight forward to show that 11. IIß,p ~ 11: IIß,p+l for all p E 7l. We denote the
11. IIß,p-completion of P by (S)~. In case p, ß ~ 0 this completion can be identified with
a subspace of (L2). Moreover, the embedding operators ip+1,p : (S):+1 y (S)~ are of
Hilbert-Schmidt type. Since the dual space of (S)~ is canonically isomorphie to (S)=~,
one obtains for ß E [0,1]:

where we abbreviated (S)ß := npEJN(ß)~ and (S)-ß := UPEJN(S)=~. If one equips (S)ß
with the projective limit topology then its dual ((S)ß) * is canonieally isomorphie to (S) -ß.
Henceforth we equip (S)-ß with the inductive limit topologY'rind. It is well-:-known that
rind and the strong topology Tstrongon (S)-ß coincide, see Appendix 5 in [HKPS]. Finally
we mention that for ß E [0, 1] the operator riI extends by continuity to a topological
isomorphism

Example: Let ß E [0, 1), ~ = ~1 + i~2 E Sc(lRk) and Xc; := X6 + iX6. Then the series
L~=o : X~ : In! converges in (S)ß to an element denoted : eX{ :. The continuity of rH
implies that
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We remark that : eXe : = eXe-~lel~, and that £ := span[: eXe : I ~ E Sc(lRk)] is dense in
(L2). For ß = 1 the series : eXe : converges in (S)~ if and only if 1~12,p< 1. Tp.is implies
, that : eXe : is not in (S)l, unless when ~ = O. .

Remarks. 1. The space (S) -0 is the well-known space of Hida distributions, cf. [HKPS],
and the elements in (S)-ß for ß E (0,1] are called Kondratiev distributions. The latter
were introduced in [KS] and [KLS]. The constru'ction given in [KLS] applies for general
nuclear spaces N and therefore avoids the use of H. However, for the white noise case
N '= S(lRk) this construction simplifies in the obvious manner, as! described above. 2.

A k -
Vsually the operator H = - I:i= 1(a2 / aXT +x;) + 1, instead of H = H0k

, is used to define
the norms 1.12,pand 11.IIß,pon S(lRk) andP, respectively. Vsing the Hermite basis in S(lRk)

one can show that the estimates lilp~12 :::; IHP~12 :::; lil(k+1)p~12 hold for all ~ E Sc (lRk).
Similarly, ,

Ilrir<I>nl12:::;Ilr~<I>nI12:::;Ilr~+1)P<I>nI12'

for all <I>E P. Therefore the spaces (S)ß obtained by the two choices of operators coincide
as topological spaces, and the same holds for their duals (S)-ß.
A basic tool in white noise analysis is the S-transformation. For ß E [0,1) it is defined

via the dual pairing (-, .) ,between (S)-ß and (S)ß,

S: (S)-ß -+ Uß, S<I>(~) :=(<I>,: eXe :). (3.3)

We recall the definition of Uß in (3.3). For ß E [0, 1) the space Uß consists of all funct,ions
u :Sc(lRk) -+ <Cwhich satisfy: .
(VI) For all ~, ry E Sc(lRk), the mapping z ~ u(~ '+ zry) is entire.
(V2) There exist K1, K2 > 0 and p E lNo such that for all ~ E Sc(lRk),

lu(~)1 :::;K1 exp{K21~1;:;1-ß)}.

The space Uß can be topologized as 'follows. For p E lNo define

ut := {u E uß : lulß,p < oo},

where
luIß,p:= sup lu(~)1 exp{ _1~1;:;l-ß)}.

eESe(lRk)

Then(Ug, I . Iß,p) is a Banach space. (This follows from [BDP, Prop.3] as a simple special
case.) In view of (3.1) it is clear that ut c u:+1, lulß,p ~ luIß,p+1 for all u E ut, and that
the constant K2 in (V2) can be absorbed into an appropriate norm: if n E lNo is such that
22n ~ K~-ß one finds exp{K21~1;:;1-ß)} :::;exp{I~I;:;~~ß)}. From this we obtain

ug c Ur c ... c U ut = Uß.
pElNo

We equip Uß with the inductive limit topology Tind of the Banach spaces ug.
6
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The S-transformation (3.3) is also defined for ß = 1, but only for those ~ E Sc(lRk)
which satisfy 1~12,p < 1, where p E No is the smallest index such that <PE (S)=~. The
pairing (-, .) in (3.3) is then the one between (S) =~and (S)~, and U1 is defined as follows:

Let U1 := Holo(Sc(IRk)) be the algebra.of germs of functions holomorphic at 0 E
Sc(Rk). (For the notion ofholomorphy in locally convex spaces we refer to [Di].) Each germ
u E U1 can be represented by a holomorphic function u defined on an open neighborhood
V C Sc (Rk) of zero. In particular, there exists p E No and lS > 0 such that u is defined on

(3.5)

and moreover that u is bou'nded on Vp(lS). Notice that when n E No is such that 2-n S; lS
it follows from (3.1) that

(3.6)

This implies that for each u E U1 there exists a representative u definedon Vp := Vp(l), if p
is chosen large enough. These observations motivate the following definition: let U£ be the
space of u E Ur, for which there exists a representative u defined on Vp.From Vp+l C Vp
and the remarksgiven above we conclude that (3.4) also,holds for ß = 1. The uniqueness
theorem for holomorphic functions implies that there exists exactly one representative U of
u E U£ with Vp as domain of definition. This fact combined with boundednes of U allows
us to define the following norm on U£:

luir,p := sup lu(~)I.
eEVp

From Vp+1 C Vp we immediately obtain lu!r,p 2: luir,p+l, for all u E U£. Henceforth
we equip U1 with the inductive limit topology ofthe Banach spaces ut, p E No. The
l:l-correspondence of u E U£ witha bounded holomorphic function u on Vp allows us to
simply identify these objects. For the remainder of the paper we make this identification.

Summarizing, we can write for all ß E [0, 1]

lulß,p = sup {Iu(~) I . wß,p(~)},
eEvg

if we introduce the weight functions wß,p and the domains vt:
I 1
2/(1-ß)

wß,p(~) := e- e 2,p '. Vff:= Sc(Rk), für ß E [0,1),

and
V1.- Vp.- p.

With these preparations we can now state a fundamental result in WNA.

(3.7a)

(3.7b)

Theorem 3.1. For each ß E [0,1] the S-transjormation (3.3) is a shift isomorphism jrom
(S)-ß onto Uß.
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Remark. The main part of the proof of Theorem 3.1 is to show that S is a linear isomor-
phism, while the continuity of Sand S-l essentially follows as a by-product of this p'roof,
cf. [PS], [KLPSW], [BT] and [KSWY]. In the proof one shows norm estimates of type (12),
as stated in Lemma 2.2. We calculated the constants in these estimates explicitly for our
present needs. The result reads as follows:

Let ß E [0,1], p E ]No and <P E (S)=:. Then S<P E u:+1, and

IS<PIß,p+1 ~ 211<pII-ß,-p'

Let ß E [0,1], p E ]No and u E ug. Then S-lu E (S)=:" and

IIS-1ull-ß,-p' ~ 2IuIß,p,

(3.8a)

(S.8b)

In case ß E [0,1) we have p' = p + 4, and in case ß= 1 we have p' = p + k + 1. (Recall
that k comes from S (lR k). )

An immediate consequence of Theorem 3.1 is the following. Since U1, U2 E Uß implies
that the pointwise defined product U1 . U2 is also in Uß one can define the Wiek, produet
for <P, '11 E (S)-ß as follows:

<P 0 '11 := S-l(S<p . SW).

4. Isomorphisms between, spaces of bounded continuous functions

This section contains the main technical part of the present paper. It provides some
insight in the spaces of bounded continuous fUl).ctionswith values in (S) -ß and in Uß. For
the remainder of this paper we make the convention that a statement holds for all ß E [0,1]
if the domain for ß is not explicitly given.

The isomorphism property of the S-transformation implies that a set B C (S)-ß is
bounded in (S) -ß if and only if S(B) is bounded in Uß. In what follows it will be useful
that bounded sets in (S) -ß and Uß can be characterized in a simple way:

Lemma 4.1. Let E stand for (S) "':'ßor Uß, and Ep for (S) =: or Uff. Then B c E is
strongly bounded if and only if there exists p E ]No sueh that B is a bounded subset ofEp'

Proof It is well-known that ströngly bounded sets in the dual of a countably Banach space
are characterized as stated by the lemma, see e.g. [Co, Theorem 1.12]. It thus remains to
prove the claim for E = Uß and Ep = Uff. .

Let B C Uß be bounded. Then S-l(B) c (S)-ß is bounded, i.e. there exists q E']No
such that IIS-1ull_ß,_q ~ c for all u EB. From (3.8a) we obtain

luIß,q+1 ~ 21IS-1UII-ß,-q ~ 2c, for allu E B.

Thus B is bounded in Uff, with p = q + 1.
Conversely, let B C Uff be bounded. Then B C Uß is bounded too, because the em-

bedding ip : Uff y Uß is linear and continuous. •
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Notiee that the argument in the proof used for (S)-ß does not apply for Uß, because Uß is
not a dual space. Instead, we had to use the S-transformation. In what follows we denote
by B(M, E) the space of bounded mappings f : M ~ E, i.e. those f for which f(M) is a
bounded subset of E.

Corollary 4.2. For ß E [0,1) and any set M the following holds:
(a) <l? E B(M, (S)-ß) ~ There exists p E No and K1, K2 ~. 0 such that

IS<l?'(x)(~)1 ::; K1 exp{K21~1~:~1-ß)}, for all x E M. (4.1)

(b) Let <l?, 'lJ E B(M, (S)-ß) and define <l? 0 'lJ(x) :- <l?(x) 0 w(x), for all x E ]'J. Then
<l? 0 'lJ E B(M, (S)-ß).

Proof (a) <l? E B(M, (S)-ß) implies that S<l?(M) is bounded in Uß. Thus there exists c > 0
such that

sup IS<l?(x)(~)1 exp{ _1~1~:~l-ß)} ::; c, for all x E M,
eESe(lRk) .

and some p E No. Now (4.1) follows with K1 = C, K2 - 1. Conversely ass urne (4.1). From
(3.1) we obtain

IS<l?(x)(~)1 ::; K1 exp{I~I~:~~~ß)}, for all x E M,

and some n E No. Therefore S<l?(M) is bounded in U:+n whieh implies <l? E B(M, (S)-ß).
To prove (b) observe that (4.1) holds for <l?, 'lJ with constants p, K1 and K2 indexed by <l?
and W. With p = max{p4>, P'I!} we can estimate .

IS(<l?(x) 0 'lJ(x))(~)1 = IS<l?(x)(~) . S'lJ(x)(~)1
::; K{ Kr exp{(Ki + Ki)I~I~:~l-ß)}. •

Remarks. 1. The estimate (4.1) arises frequently as a technieal condition in the context
of integration or differentiation W.r.t. x E M, when M = Rn. It also arises in the context
of limits of sequences (<l?n)nElN in (S)-ß, i.e. when M = N, cf. [PS], [KLS]' [DPVW]. We
find it worth mentioning that this somewhat clumsy condition on <l? just states that <l? is
a strongly bounded function. 2. Part (b) of the corollary is sometimes useflil when one
considers stochastic differential equations, be~ause the noise terms (and maybe also other
terms) are typieally multiplied in the Wiek sense.

For the applieation in Section 5 we have to consider spaces Cb(M, E) of bounded contin-
uous functions on M c Rn with values in some. topological vector space E. When (E, 11 . 11)
is a Banach space and (M, d) ametrie space we define the norm

Ilflloo := sup Ilf(x)ll, f E Cb(M, E).
xEM
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Then (Cb (M, E), 11 . 1100) is a Banach space, too. In particular we can topologize the space
Cb(M, (S)=:) with the norm 11 .II-ß,-p,oo, andCb(M, ut) with the norm I. Iß,p,~' '

We denote by C;:(M, (S)-ß) and Cg(M, (S)-ß) the spaces of weakly, respectively
strongly continuous bounded functions on M. In view of Tweak =I- Tstrong one would expect
C;:(M, (S)-ß) =I- Cg(M, (S)-ß). The following lemma states however that these spaces ac-
tually coincide. Because of the continuous embedding (S) =~y (S) -ß we will subsequently
identify the space Cb(M, (S)=:) with a subspace üf Cb(M, (S)-ß).

Lemma 4.3. Let M be ametrie space. Then

C;:(M, (S)-ß) = Cg(M, (S)-ß) = U Cb(M, (S)=~) .
. pENo

Proof Let <I>E UpENoCb(M, (S)=~). Then .the mapping x H <I>(x) from M into (S)=~ is
continuous and bounded for an appropriate p. Since the embedding (S) =~y (S):-ß is
continuous with respect to Tstrong we obtain <I>E Cg(M, (S)-ß). From TweakC Tstrong we
find Cg(M, (S)-ß) C CW(M, (S)-ß). Since the strongly bounded sets coincide with the
weakly bounded sets, see [Co, Theorem 1.14), we finally obtain

U Cb(M, (S)=~) C Cg(M, (S)-ß) C C;:(M, (S)-ß).
pENo'

(4.2)

Assurne conversely <I>E C;:(M, (S)-ß). Then<I>(M) is strongly bounded. In view ofLemma
4.1 there exists p E No such that <I>(M)c (S)=~ is bounded. Let cp E (S)ß and consid.er

From ri/pcp E (S)ß and<I> E C;:(M, (S)-ß) we now obtain that
, ,

(<I>(xn), cp)~ß,-p -+ (<I>(x),cp)-ß,-p, if Xn -+ x. (4.3)

Since (S)ß is dense in (S)=: and <I>(M)is bounded in (S)=: it follows that (4.3) extends.
to all cp E (S)=~. This shows that <I>(xn) is a weakly convergent sequence in (S)=:. But
weakly convergent sequences are mapped to strongly convergent sequences by compact
operators (see [RS]). Since the embedding (S)=~ y (S)=:_1 is Hilbert-Schmitt, it is in
particular compact and thus <I>(xn) converges to <I>(x)with respect to 11 . II-ß,-p-1-norm.
This shows that <I>E Cb(M, (S)=:_1) and thus

C;:(M, (S)-ß) c U Cb(M, (S)=~).
pENo

In view of (4.2) this concludes the proof.

10
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In the following we simply writeCb(M, (S)-ß) for both topologies on (S)-ß. Because
of Cb(M, (S)=:) c Cb(M, (S)=:_l)' and Cb(M, (S)--Cß)~ UpElNoCb(M, (S)=~) we equip
Cb(M, (S)-ß) with the inductiv~ limit topology of the spaces Cb(M,(S)=:).

We next investigate the space Cb(M, Uß) in more detail. First consider u E B(M, ut).
This function u is by definition continuous in x E M iff for each € > 0 there exists 8 > 0
'such that d(x, x) ::; 8 implies .

lu(x) - u(x)Iß,p = sup {Iu(x)(~) - u(x)(~)lwß,p(~)} ::; €.

~EV:

Thus u is continuous if and only if the family of functions u~(x) :-u(x)(~)wß,p(~) (with
family parameter ~) is equicontinuous. For convenience we denote this by saying that u is
p-equicontinuous. Of course, p-equicontinuity is a property which is harder to verify than
continuity for every fixed ~. This motivates the definition of the following spaces:

For p E No let Ut(M) be the space of all mappings u : M -t ut which satisfy the
following boundednes and (pointwise) continuity condition:

(B) luIß,p,oo:= sUPxEM lu(x) Iß,p < 00.

(C) For each ~ E vt the map XH u(x)(~) is continuous on M.

Notice that the definition of 1.Iß,p,ooon the spaceUt (M) coincides with the one for 1.Iß,p,oo

on the space Cb(M, ut).

Remark. For ß E [0,1) one can identify the space of mappings Ut(M) with aspace of
functions u :M x Sc (R k) -t <C via

u(x,~) u(x)(~), (4.4)

where u must satisfy (B), (C) and (UI). For ß = 1 we remark that a bounded function
u : Vp -t <C is holomorphic if and only if the following holds (see [Di, Section 2.2]):
(UI') For all~, 17 E Vp there exists an open set ~,7] around zero in <C such that the function

f(z) := u(~ + Zl7) is holomorphic in ~,7J.

This characterization implies that the domain of holomorphy ~,7] of f can always be
extended to the natural domain of f, i.e. to O~,7] := {z E <C : I~+ Zl7l2,p < I}. Therefore
one can identify U; (M) via (4.4) with the space of functions u : M x V; -t <C which
satisfy (B), (C) and (UI'). This is the pointof view adopted in [BDP]. (To be precise, in
[BDP] the spaces U:l(M) instead of Ut(M) are considered; these spaces are discussed in
Section 5.) By a trivial modification of the proof given for Prop~3 in [BDP] it follows that
(ut (M), I . Iß,p,oo) is a Banach space. / ,

In view of (3.4) it is clear that Ut(M) C U:+1(M) for all p E No, and that luIß,p,oo ~
luIß,p+1,oo for all u E Ut(M). We put the inductive limit topology Tind on the space

Uß(M):= U Ut(M).
pElNo
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The following theorem is basic for our applications.

Theorem 4.4. Let M be ametrie space. Then the composition S : ~ I---t 8 0 ~ is a shift
isomorphism from Cb(M, (S)-ß) onto Uß(M).

Proof. Let cI>E Cb(M; (S)-ß). Since 8 : (S)-ß -+ Uß is linear and continuous we have
8 0 ~ E Cb(M,Uß). Moreover,

(4.5)

because p-equicontinuity implies continuity for fixed ~. Thus 80 cI>E Uß(M). Lemma 4.3 .
shows that cI>E Cb(M, (S)=~) for some p E ]No. The estimate (3.8a)' yields .

sup 18cI>(x)Iß,p+1 ::; 2 sup 11cI>(x)II-ß,-p < 00.
xEM xEM

This shows 18cI>Iß,p+1,oo ::; 211cI>II-ß,-p,oo, and we obtain with Lemma 2.2 that cI>I---t 80 cI>
defines a continuous mapping from Cb(M, (S)-ß) into Uß(M). Injectivity of 8 followsJrom
the injectivity of 8.

Now let u E Uß(M). Then we have lu(x)Iß,p ::; c < 00 for all x E M and some c ~ 0,
P E ]No. Using the estimate (3.8b) we obtain

A 1
IIS- ull-ß,-p',oo ::; 2IuIß,p,oo ::; 2c, (4.6)

where p' is chosen appropriately. This shows that 8~1(u(M)) is bounded in (Sr=:,.' We
also have by assumption that x I---t u( x) (~) is continuous for each ~. As in the proof of
Lemma 4.3 we conclude from

u(x)(~) = (8-1u(x),: eX~ :) = (S-1u(X),: eXH2P'f, :)-ß,-p'

that x I---t 8-1u( x) is strongly continuous from M into (S)=:' -1. (This time we use that
span[: eX~ :,~ E V:J is dense in (S)=:,.) Thus 8-1u E Cb(M, (S)-ß). Again, injectivity.
of 8-1 follows from the one of 8-1. The estimate (4.6) and Lemma 2.2 imply that 8...c..1is
continuous. •

Corollary 4.5. Let M be ametrie space, then

U Uff(M) = U qb(M,Uff) = Cb(M,Uß).
pElNo pElNo

The topology Tind defined by the spaces ug (M) coincides with Tind defined by the spaces
Cb(M,Ug). In particular, 8 is a shift isomorphism from Cb(M, (S)-ß) onto Cb(M,U~).

Proof. We first show the equality

U Uff(M) = U Cb(M,Uff).
pElNo pElNo
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" C ": Let u E Ut(M). From the proof of Theorem 4.4 we find that ~ .- S-lu E

Cb(M, (S)=:'_l)' and (3.8a) yields

lu(x)lß,p'+2 = 18<I>(x)Iß,p'+2 :::;211<I>(x)II-ß,-(P'+1) :::;c, for all x E M.

Similarly, we 0btain

lu(x) - u(x)Iß,p'+2 :::;211<I>(x)- <I>(x)II-ß,-(p'+l), for all x, x E M.

This implies u E Cb(M, U:+2).
" ~ ": Let u E Cb(M,Ut). Then the defining condition (B) for Ut(M) is obviously satisfied,
and (C) follows from (4.5), thus u E Ut(M).

We next show that the inductive limit topologies on UUt(M) and on UCb(M,Ut)
coincide: The embedding i : Ut(M) Y UpEJNoCb(M,Ut) is continuous, because of

liuIß,p'+2,oo = luIß,p'+2,oo :::;luIß,p,oo.

The embedding i: Cb(M,Ut) y Uß(M) is continuous, because

liuIß,p,oo = luIß,p,oo.

Lemma 2.2 now implies the equality of the inductivelimit topologies.
Finally, we show the non-obvious part of the equality

U Cb(M,Ug) = Cb(M,Uß).
pEJNo

For u E Cb(M,Uß) the set u(M) is bounded, thus 8-1(u(M)) is bounded. Moreover,
8-1 0 u : M -+ (S)-ß is continuous, thus 8-1 0 u E Cb(M, (S)-ß). With Theorem 4.4 we
obtain u E Uß(M), and (4.7) concludes the proof. •

Remark. The equality (4.7) is somewhat unexpected. It implies that every bounded func-
tion f : M -+Uß which iscontinuous for fixed ~ is automatically p-equicontinuous,
for an appropfiate p. (More precisely, the proof of Corollary 4.5 shows that ut (M) C

Cb(M,U:+2), where pi is given after (3.8b).) We did not find a proof,ofthislast statement
which avoids theuse of the 8-transformation. The crucial point is the observation made
in the proof of Lemma 4.3: A weakly continuous function with values in (S)-ß is auto-
matically strongly continuous, because the embeddings (S)=~ y (S)=~_l are compact
operators. This type of argument is not available for U-functionals. Instead, we had to go
back and forth with the 8-transformation to prove (4.7) .

13



(5.1)

5. Application to non-linear stochastic heat equations

In order to solve the fixed point equation x - y + K x in a Banach space (E, 11 .11) it
is sometimes possible to introduce a"weighted" norm 11 . Ilw on E such that K becomes
a contraction operator with respect to this new norm. The most well-known example are
ordinary differential equations (transformed to integral equations)which -can be solved
by Picard iteration on the Banach space (0([0, T]), 11 . 1100).In this case an appropriate
weighted norm reads

Ilfllw:=: sup If(t)e-tcl,
tE[O,T]

where c > 0 is some properly chosen constant, cf. [Mo,Wa]. In [BDP] a similar method has
been worked out for so-called Banach spaces of U-functionals. These spaces are closely
related to the Ut(M) from the previous section, for the choice M = DT = [0, T] x:lRd.
The spaces U:l(DT), l E ]N, introduced in [BDP] differ from the ut (DT) essentially py a
time dependent weight factor similar to (5.1), cf. (3.7):

and
Wl,p,l(t,~):= e-tl, V;(o) :. Vp(o).

With these notations the spaces U:l (DT) can be defined as follows. Let U:l (DT) be the
space of all mappings u :DT -t Uß which satisfy the following boundednes and continuity
conditions:
(B') u(t, x) is defined on vg(o) for all (t, x) E DT, and

luIß,p,l:= sup lu(t,x)(~)Wß,p,l(t,~)1 < 00.

DT xv: (<5)

(C') For each ~ E vg(o) the map (t, x) H u(t, x)(~) is continuous on DT.

Remarks. 1.U:l (DT) was defined in [BDP] as aspace of complex valued functions on
DT x vg (0). With the identification u(t, x) (~) - u(t, x,~) the spaces obtained by these
different definitions coincide. See also the remark in Section 4 which follows the definition
of Ut(M). 2. The parameters l E ]N and 0 E (0,1] were introduced in [BDP] in order
to obtain contraction operators by an appropriate choice of land o. Since we do not use
different values of 0 for the definition of rind (as in the following lemma) we suppressed 0
in the notation of U:l (DT ) .
Notice that No x N is a directed system with respect to the usual partial ordering

(p, l) -< (p', l') ~ p::; p', l ::; l',

14
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Lemma 5.1. Let ß E [0,1], then

U U:(DT)
pEINo

U U:I(DT).
pEINo ,lEIN

(5.2)

The topology Tind on Uß (DT ), defined by {ut (DT) : pEIN o}, coincides with the topology

Ti~d; defined by {U:I (DT) : p E INo, lEIN}.

Proof. We first show that the defining conditions (B,C) and (B' ,C') follow from each other
for appropriate parameter values.

Case ß E [0, 1): Since the conditions (C) and (C') coincide in this case it suffices to
consider (B) and (B'). Let p E INo,l E IN and u E Ut(DT). A simple calculation gives

(5.3)

from which we obtain (B'). Now let p E INo, lEIN and u E U:I(DT). Then the estimate

(5.4)

is easily verified with p' = p + n,where nEIN is such that l(l + T) 1~1;:~l-ß) ::; I~I~:~~~ß).
Thus (B) is satisfied (with p replaced by p').

Caseß = 1: Let p E INo, lEIN and u E U;(DT). Since Vp(6) C Vp(l) the estimate (5.3)
also holds for ß = 1, which implies (B'). (C') is an immediate consequence of (C) and of
Vp(6) C Vp(l). Now let p E INo, 1 EIN and u E U;,I(DT). From (3.6) and (B') we find
that (5.4) holds, with p' = p + n, where nEIN is such that Vp+n(l) C Vp(6). Thus (B') is
satisfied (with p replaced by p').

From (5.3) we find ut (DT) C U:I (DT) for all p E INo, lEIN, and (5.4) implies

U:I (DT) C U; (DT ). Since the spaces ut (DT) and U:I (DT) form increasing chains w.r. t.
their partial orderings we arrive at (5.2). In view ofLemma 2.2 the estimates (5.3) and (5.4)
imply that the identity mapping on Uß (DT) is continuous with respect to both inductive
limit topologies. -

Remark. Although Tind ..... Ti~d we will keep the notation Ti~d in the following. The point
is that the notion of a contraction operator depends on the defining norms of the inductive
limit topology (the index w denotes the weightednorms). Notice that the situation for
(5.1) is similar: the norms 11.1100 and 11. Ilw generate thesame topology on C([O, 1]), but
only w.r.t. 11 . Ilw one obtains a contraction operator (for the Picard iteration).

We are now prepared to consider non-linear stochastic heat equations. Let A be a uni-
formly elliptic, secondorder differential operator on DT. In [BDP] the following stochastic
.Cauchy problem was studied:

i

! '",

8 <I>at - A<I> = F(<I» + VG(<I» 0 N

<I>lt=o = <I>o.

15
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We will not restate here all the conditions on A, on the non-linearities F, G and on the .;
noise N = (N1, ... , Nd), for details we refer to [BDP, Sec.2.2]. The only property which is
essential for the present paper is the fact that a solution of (5.5) must satisfy the following
integral equation:

<I>= Wo + K(<I».

Here Wo is expressed by a (weak) integral over <I>o and the he at kernel q of A,

wo(t, x) :- r <I>o(y)q(t, x; 0, y)dy, t > 0,
j.[{,d

wo(O,x) := <I>o(x).

The non-linear integral operator K reads

K(<I»(t,x) = rt r q(t,x; s,y){F(<I» - G(<I» 0 V'N}(s,y)dydsJo J JRd

_ rt r V'yq(t,x;s,y).N(s,y)oG(<I»(s,y)dyds.Jo J JRd

(5.6)

(5.7)

~5.8)

Remark. (5.6) is an immediate consequence of the concept of a mild solution: Instead of
(5.5) one requires the weaker condition that an associated integral equation is satisfied.
An integration by parts in this integral equation then leads to (5.6), see [BDP].

Our aim is to prove that (5.5) is well-posed in the mild sense. (The precise meaniI;lg of
this is'given in Theorem 5.3). We first consider Wo as a (linear) function of <I>o.

Lemma 5.2. Let <I>o E Cb(lRd, (S)-ß) and Wo be given by (5.7). Then (t, x) H wo(t, x) is
an element in Cb(DT, (S)-ß). Moreover, <I>oH Wo is continuous from Cb(Rd, (S)-ß) to
Cb(DT, (S)-ß). .

Proof: From Lemma 4.3 we obtain that there exists p E No such that <I>oE Cb(lRd, (S)=:).
In particular there exists c > ° such that

lI<I>o(y)II-ß,-p ::; c, for all y E lRd.

Since ,JIRd q(t, x; 0, y)dy = 1 this estimate and (5.7) implies

Ilwo(t,x)II-ß,-p::; sup II<I>o(y)II-ß,-p ~ c, for all (t,x) E DT. (5.9)
yEIRd

By definition we have SWo(O,x)(~) = S<I>o(x)(~), and

Swo(t, x)(~) = r S<I>o(y)(~)q(t, x; 0, y)dy, t > 0.
JIRd
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, .• Since S<1>o E Uß (lRd) it follows from (5.10) and from standard fact about the heat kear-
nel, that (t, x) H Sw 0 (t, x) (~) is continuous on DT for each ~. The boundednes of Wo,
expressed by (5.9), then implies that SWo E Uß(DT). Theorem 4.4 now shows that
Wo E Cb(DT, (S)-ß). Finally (5.9) gives Ilwoll-ß,-p,oo < lI<1>oll-ß,-p,oo, so Lemma 2.2
yields the continuity of the map <1>0H Wo. •

(5.11)

j( u) (t, x,~) := S(F(t, x, S-lU(t, x, .))(~),

g(u)(t, x,~) := S(G(t, x, S-lu(t, x, .))(~)"
n(t, x,~) := SN(t, x)(~)

are such that K :Uß(M) -+ Uß(M) defined' by

(Ku)(t,x,~):= rt r q(t,x;s,y){j(u)- g(u). Vn}(s,y,~)dydsJo J JRd
_ rt { t'yq(t,x;s,y)g(u)(s,y,~)dydsJo J JRd

We next show that K maps Cb(DT, (S)-ß) to itself. In [BDP] it has been proved that the
functions

is a contraction operator on U:l (DT ), for all p ~ Po, l ~ lo, and for a fixed value of 8.
It follows from Theorem 4.4 that the mapping S-l(Ku) : (t,x) H S-l{(Ku)(t,x, .)} is
an element in Cb(DT, (S)-ß). Moreover, since the S-l-transformation (for (t, x) fixed)

. commutes with the integrals and with V in (5.11) it follows that S-l(Ku) coincides with
the r.h.s. of (5.8). We conclude that K maps Cb(DT, (S)-ß) into itself and that

K = SoK oS-I. (5.12)

Theorem 5.3. The Cauchy problem (5.5) is well-posed in the mild sense, i.e. jor every
<Po E Cb(lRd, (S)-ß) a unique solution <1>E Cb(DT, (S)-ß) of (5.6) exists, and the mapping .
<1>0H <1>is continuous.

Proof: Let v E Uß (DT) and consider the equation

u - v + K(u). (5.13)

Since K is a contraction operator on (Uß (DT), Ti~d) we obtain from Theorem 2.1 that
(5.13) has a unique solution which depends continuously on v. (5.12) and (5.13) imply

S-lu = S-lV + K(S-lU).

Since S-l is a topological isomorphism from Uß(DT) onto Cb(DT,Uß) we find that for
each W E Cb(DT, (S)-ß) the equation

17
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has a unique solution <P'l1 E Cb(DT, (S)-ß). Moreo\;er, W t---+ <P'l1 is a continuous map ~
on Cb(DT, (S)-ß). Since wo, given by (5.7), depends continuously on <Po (Lemma 5.2) it
follows that (5.6) has a unique solution whichdepends continuously on <Po. •

Remark. The Cauchy problems and -integral equations (e.g. the Volterra equation) dis-
cussed in [BDP] have all been treated by Banach's fixed point theorem. Themajor ciiffer-
ence to (5.5) on the technicallevel is that one has to modify the definition of the spaces
Uß1(DT) in an inessential way (essentially one has to replace DT by other subsets o(IRn).p,
It is therefore straightforward to adapt the results of the present paper to the needs of
these examples. In particular Theorem 5.3 will hold - in slightly modified form - for these
applica tions.

References

[BDP] F .E. Benth, T. Deck and J. Pott hoff, A white noise approach to a class of nonlinear
stochastic heat equations, J. Funct.Anal. 146 (1997), 382-415.

[BDPS] F.E. Benth, T. Deck, J. Potthoff ?1ndL. Streit, Nonlinear evolution equations with
gradient coupled noise, Lett. Math. Phys. 43 (1998), 267-278.

[BT] F. E. Benth and M. Timpel, Topological Aspects 0/ the Characterization 0/ Hida
Distributions- ARemark, Stochastics and Stochastics Reports 51 (1994), 293"'"299.

[Co] F. Constantinescu, Distributionen und ihre Anwendungen in der Physik, Teubner
1974. '

[DP] T. Deck and J. Pott hoff, On a cl~ss 0/ stochastic partial differential equations related
to turbulent transport, to appear in Prob. Theorie and Rel. Fields.

[DPVW] T. Deck, J. Potthoff, G. Vage and H. Watanabe, Stability 0/ solutions of PDE'Swith
random drift and viscosity limit. to appear in Appl. Math. Optim.

[Di] S. Dineen, Complex Analysis in Locally Convex Spaces, Mathematical Studies 57,
North Holland, Amsterdam, 1981.

[DZ] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclo-
pedia of Mathematics and its Applications 44, Cambridge Univ. Press 1992.

[HKPS] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit, White Noise - An Infinite Dimen-
sional Calculus. Dordrecht, Kluwer (1993).

[H0UZ] H. Holden, B. 0ksendal, J. Uboe and T. Zhang, Stochastic Partial differential Equa-
tions - A Modeling, White Noise Functional Approach, Birkhäuser, 1996.

[KLPSW] Y. Kondratiev, P. Leukert, J. Potthoff, L. Streit and W. Westerkamp, Generalized
functionals in Gaussian spaces: The characterization theorem revisited, J. Funct.
Anal. 141 (1996), 301-318.

[KSWY] Y. Kondratiev, L. Streit, W. Westerkamp and J. Yan, Generalized Functions in
Infinite Dimensional Analysis, lIAS Reports No. 199p-002, Kyoto, 1995.

[KLS] Y. Kondratiev, P. Leukert and L. Streit, Wick Calculus in Gaussian Analysis, Acta
Appl. Math. 44, 269-294 (1996).

[KS] Y. Kondratiev and L. Streit, Spaces of white noise distributions: Constructions,
Descriptions, Applications, LRep. Math. Phys. 33 (1993), 341-366.

18

l . ..



..•'

•

[Mo] D. Morgenstern, Beiträge zur nichtlinearen Funktionalanalysis, Dissertation, Tech-
nische Universität Berlin, 1952.

[PS] J. Pott hoff and L. Streit: A Characterization 0/ Hida Distributions, J. Funct. Anal.
101, pp. 212-229 (1991).

[Ro] A. and W. Robertson, Topological Vector Spaces, Cambridge Univ. Press 1973.
[RS] M. Reed and B. Simon, Methods 0/ Modern Mathematical Physics I, Functional

analysis, Academic Press 1980.
[Wa] W. Walter, Gewöhnliche Differentialgleichungen, Springer 1972 .

(

19



}'I

~ I

{. I


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022

