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Abstract

Banach’s fixed point theorem for contraction operators on Banach spaces is generalized to
inductive limits of Banach spaces. Within the framework of white noise analysis such spaces
and (generalize_d)" contraction operators arise naturally in the context of non-linear stochastic
integral equations. In order to apply the fixed point theorem we establish topological isomor-
phisms between spaces of continuous mappings with values in generalized random variables,
and those with values in U-functionals. As an application we prove that the Cauchy problem
for a class of non-linear stochastic heat equations is well-posed. The same method also ap-
plies to stochastic Volterra equations, stochastic reaction-diffusion equations and anticipating

stochastic differential equations.

1. Introduction

The present work is motivated by [BDP], where Cauchy problems for non-linear stochas-

tic equations such as heat equations, Volterra equations and others were investigated. A

solution of such a Cauchy problem is a random field ®(¢, z) with time parameter ¢ € [0,T]
and space parameter ¢ € R?. This random field defines the time evolution ¢t — &(t,")

which starts at some initial state ®¢ = ®(0,-). All examples discussed in [BDP] have the |

common feature that the solution ® satisfies a fixed point equation of the following type:

& =T, + K(). - (1.1)

Here, K denotes a non-linear integral operator and ¥ is a function of the initial state @q.
K and ¥, depend on the specific problem, for the case of heat equations, e.g., see (6.7)
and (5.8) in Section 5. '

There are Cauchy problems satisfying (1.1) for which K is a contraction operator on a
Banach space (cf. the monograph [DZ]). In this case it is not hard to prove that (1.1) has
exactly one solution ®, and that ® depends continuously on the initial data Dy, i.e. that
the mapping

is continuous. In other cases, e.g. when space-derivatives of ® are multiplied to noise
terms or when one allows for anticipating objects, the methods described in [DZ] do not
apply. In that case it is not clear if classical solutions (by this we mean LP—valued random
fields defined on Dy := [0,T] x R?) exist at all. There are examples (even for linear heat
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equations, cf. [BDPS]) where no classical solution exists, but generalized ones do. In such
situations white noise analysis (WNA) can provide a more appropriate framework because
one works - from the beginning - with classical as well as with generalized random objects,
such as Hida distributions (S)* or Kondratiev distributions (S)7%, 8 € (0,1], cf. [KS],

[KLS]. The solution ® of (1.1) obtained by the methods of WNA is then typically an
(8)~P—valued random field on Dr. Of course, one finally likes to find conditions such that
these solutions are classical random fields, e.g. L2-valued ones. This difficult regularity
question is excluded in the present paper. (Some results on this question — for linear heat
equations — are given in [DP).) Instead, we focus on the continuity of the mapping (1.2).

Although stochastic evolution equations have been studied extensively by the tech-
niques of WNA, cf. [HOUZ], the continuous dependence on initial data has not yet been
studied in detail. The main obstacles are that (S)~? carries an inductive limit topology
(which is not a metric topology), and that one cannot directly control the dependence of ®
on ®. In particular, the inductive limit structure seems not to combine well with continu-
ity questions for non-linear mappings (1.2). It is the main objective of the present paper to
develop a general method by which these obstacles can be overcome. As a concrete example
we consider a class of non-linear stochastic heat equations, and we interpret the associ-
ated integral equations (1.1) as fixed point problems on the space of bounded continuous
functions from Dy into (S)~#, denoted Cy(Dr, (S)?). We prove that the mapping (1.2)
from Cp(R%, (S)7P) to Cy(Dr,(S)~?) is continuous with respect to (natural) inductive
limit topologies on these spaces (see Theorem 5.3). Thereby we extend the existence and
uniqueness results for (1.1) obtained in [BDP], and our final conclusion is that the Cauchy
problems discussed in [BDP] actually are well-posed.

Our proof is based on two key observations: firstly, there is a generalization of Ba-
nachs fixed point theorem for the case of inductive limits of Banach spaces, and this in
turn implies well-posedness on an abstract level. Secondly, the S—transformation induces
a topological isomorphism from Cy(D7,(S)~?) onto the space Cy(Dr,U?) consisting of
bounded continuous functions with values in the U~functionals Z#. On this latter space
the analysis of (1.1) is tractable, and we can apply the generalized fixed point theorem
there. :
The paper is organized as follows: In Section 2 we generalize Banach’s fixed point
theorem. This part is independent of the white noise context, but is of course motivated
by it. Because of its generality, this part might also be useful in other contexts. Section
3 provides ‘the necessary facts about (S)~# and U? for later reference. In Section 4 we
introduce spaces of bounded functions with values in (S)7? or ## and we prove that the
S—transformation induces a topological isomorphism. Finally, we consider the non—linear
heat equation, introduced in [BDP], as an example for a well-posed Cauchy problem. It
is quite obvious that well-posedness also holds for the other examples discussed in [BDP],
because they are all based on Banach’s fixed point theorem in an appropriately chosen
space of U-functionals. .

Acknowledgement. It is a pleasure to thank J. Potthoff for valuable discussions on this
paper. '



2. A generalization of Banach’s fixed pdint theorem

In the context of WNA various inductive limits of Banach spaces (E,, || - ||,) arise, which

- have a special common feature: The index set J associated to E = U,esE, is a directed
system, i.e. there is a partial ordering < on J such that for any a, 8 € J there exists y € J
satisfying o < v and B < 7. Moreover, if @ < 3 then E, C Eg and |julla > [|ullg for
all u € E,. In this paper we will consider exclusively inductive limits F of this type, and

“we denote them simply by U,esE,, without mentioning the ordering properties explicitly.
Typical examples for index sets are given by J = N,N x Z etc., with the usual (partial)
ordering, cf. Section 5. For general properties of inductive limits we refer to [Ro].

Definition. Let E = U, sE, be an inductive limit of Banach spaces. A map K : E — E is
called a strict contraction on E, if there ezists a € J such that for all v > o the following

conditions are satisfied:
(Cl) K maps E, into E,,.
(C2) There ezists ¢, € [0,1) such that for all u,v € E,

1K (1) — K@)l < collu— o],

Banach’s fixed point theorem can now be generalized as follows:

Theorem 2.1. Let K be a strict contraction on the inductive limit E = U,egE,. Then,
for each v € E, there ezists a unique solution u, of the fized point problem

u=uv+ K(u).
Moreover, the mapping h : v — u,. from E into E is continuous.

Proof: We start with existence and uniqueness. Let a € J be such that K is contractive
on E,, for all v > a. We shall distinguish between the restriction K|g, : £, — E and the
operator K, : E, — E, obtained from K|g, by restricting in addition the image space.
For fixed v € E choose 8 > a such that v € Eg. Then the operator K¥(u) := v+ K(u),
u € E, yields a contraction K3 on the subspace Ejz. By Banach’s fixed point theorem there
exists a unique u € FEg Wthh solves u = Kg(u). Now let @ € E be another solution of

u = K"(u). Then @ € Ej for some 3 € J. Choose v = ,3. Then u,@ € E., are fixed
points for the contraction operator K7 on the Banach space E, and thus u = u.

It remains to show that h: v — uv is continuous from F into E. A mapping h from E
into a topological space X is continuous if and only if h|g, is continuous for each v € J.
Fix v € J. If v = a we have u, € E, and we can estimate

luw — uslly = llv+ K (uy) — 9 — K(us)llv
<o = lly + 1K (uo) — K (us)lly

< lv =3, + culuy — Uy,
where ¢, € [0,1). With k, :=1— ¢, > 0 we obtain

lluw = uslly < &y Hlw = Bl
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This implies that h, : E, — E, is continuous. Since the embedding i, : F, — F is
continuous too, the same holds for the composition h|g, =i, o h,.

If v ¥ a choose U > v, a. The continuity of h|g, = h|g, o1, 5 follows from the one of
h|g, and the continuous embedding i, ; : E, — E;. [ |

The following elementary lemma is stated for later reference. It will be useful when we
study the relation between spaces of white noise distributions and U-functionals.

Lemma 2.2. Let S : UyesE, — UyerHyr be a linear mapping between inductive limits
of Banach spaces E, H and let o € J be fized. Assume that for every v = o there ezists
v € L and k, > 0 such that

(I1) S maps E, into H, and ,

(12) ||Sullyr < ku||u||, for allu € E,. (
Then S is continuous. In particular, if S is a linear isomorphism and also S™! satz';sﬁes
properties analogous to (I1) and (I12), then S is a topological isomorphism. '

Proof: S is continuous if and only if every restriction S| E- is continuous. For v > « this.
holds in view of (I1), (I2) and the continuity of H,» — H. For v ¥ « choose ¥ > V Q.
Then S|g, = S|E, © iv5 is continuous. [ ]

An application of this lemma when J and L do not coincide is given in Section 5. We
remark that the S-transformation from white noise analysis is an isomorphism of the type
described in Lemma 2.2, cf. [BT]. Also all other isomorphisms between inductive limits of
Banach spaces considered in this paper will have the property, that E, is ”shifted” into
H,:. For convenience we will therefore denote an isomorphism with the properties (I1,12)
stated in Lemma 2.2 as a shift isomorphism.

3. Topological aspects of white noise analysis :
t

In this section we fix notations and recall some facts from WNA. We also discuss some
more recent results from the literature, partly in slightly modified form, so that we obtain
a uniform representation. Since the modifications are straightforward and inessential, we
do not give proofs.

Let S(R*) denote the Schwartz space of real, rapidly decreasmg C°°—funct10ns and -
S*(R¥) its topological dual space. The harmeonic oscillator H : S(R) — S(R) is the
bijective operator H = —d?/dz? + 22 + 1. A family {|- |2, : p € No} of norms on S(R¥)
is defined by |€|2,p := |HPE|2, where H := H®* and |- |, is the norm in L?(RF). For all
p,n € Ny these norms satisfy ‘

J

1 ‘
l§[2,p = 9n |§|2,p+n (31)

We denote the complexified spaces by S¢ (]Rk), S&(RF¥), and we keep the same notation
for the corresponding norms. In this paper we work with the white noise probability space
(S*(RF), B, ). The o-algebra B is generated by the functions X¢, & € S(RF), which
are defined by the dual pairing with w € S*(R¥), i.e. by X¢(w) := (w, £). The white noise
probability measure p is such that the X, are Gaussian random variables, and such that the
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algebra P of polynomials generated by the set {X¢|¢ € S(RF)} is dense in L% (u) =: (L?).
For more details and proofs see [HKPS], pp. 1-7.

The notion of generalized random variables is based on the Wiener-1t6 decomposition
of (L?) into a (Hilbert) sum of orthogonal subspaces Hn,

(Lz) = EB;7,.O=O,}-{""l"

This decomposition allows to associate with each monomial X, - Xg its orthogonal
projection : Xg, - - Xg, : into Hn. If Qo denotes the space of constants in (L?) and

Qn = spa,n[; ‘X'g1 . 'Xﬁn : l é1,...,&, € S(IRk)]a .n €N,

then the (algebraic) orthogonal decomposition P = @52 (Qn holds. One can now define a
linear, bijective operator ' : P — P by its action on monomlals

FFI:X§1"'X€n = :X’ﬁ51 ...XI‘:IEn

and a system of inner product norms on P, as follows: Let ® = Y0 / @, be the (ﬁniﬁe)
decomposition of ® € P into components ®, € @, and define

v o<
1215, =Y nPIT2 &3, peZ, Bel-1,1].
n=0 . .

It is then straightforward to show that || - |lg, > || - |lg,p+1 for all p € Z. We denote the
|| - ||g,p—completion of P by (-S)f, . In case p, 8 > 0 this completion can be identified with

a subspace of (L2). Moreover, the embedding operators ip41p : (S)g +1 < (8)B are of

Hilbert—Schmidt type. Since the dual space of (S)g is canonically isomorphic to (S):f, ,

one obtains for 8 € [0, 1]:
8P c- (8] c(S)s c@)c(S)’ ()-8 (3.2)

where we abbreviated (S)? := (\,cn(S)5 and (S)~F := UPGN(S):ﬁ. If one equips (S)?
with the projective limit topology then its dual ((S)?)* is canonically isomorphic to (5)77.
Henceforth we equip (S)~# with the inductive limit topology Tina. It is well-known that
Tind and the strong topology Tstrong ON (S)~* coincide, see Appendix 5 in [HKPS]. Finally
we mention that for 8 € [0,1] the operator I'; extends by continuity to a topological

isomorphism
Ig: (S)P — (8)P.

Example: Let 3 € [0,1), £ = & +i& € Sc(RF) and X¢ := X¢, + iX¢,. Then the series

Yoo ¢ XE : /n! converges in (S)# to an element denoted : eX¢ :. The continuity of I'z
implies that .
I‘ﬁ:eXf:=:eXff€:.



We remark that : eX¢ : = eX¢=206l3 and that £ := span[: eX¢ : | £ € Sc(IR¥)] is dense in
(L?). For 8 =1 the series : e*¢ : converges in (S)} if and only if |€|2, < 1. This implies

“that : eX¢ : is not in (S)!, unless when £ = 0.

Remarks. 1. The space (S)~° is the well-known space of Hida distributions, cf. [HKPS],
and the elements in (S)~? for 8 € (0,1] are called Kondratiev dlstrlbutlons The latter
were introduced in [KS] and [KLS]. The construction given in [KLS] applies for general
nuclear spaces N and therefore avoids the use of H. However, for the white noise case
N = S(RF) this construction simpliﬁes in the obvious manner, as described above. 2.
Usually the operator H = — Y% (82/8z% 4+ z?) +1, instead of H = H®* is used to define
the norms ||z, and ||-||gp o0 S (]R’“) and 73 respectwely Using the Hermlte basis in S (le)
one can show that the estimates |HP¢|y < [HPE|y < |[H®+tDP¢|, hold for all £ € SC(IR’“)
Similarly, (
1% ®all2 < 7% alle < 10572l !

for all ® € P. Therefore the spaces (S)? obtained by the two choices of operators coincide
as topological spaces, and the same holds for their duals (S)~#

A basic tool in white noise analysis is the S—transformation. For 8 € [0,1) it is defined
via the dual pairing (-, -) between (S)~? and (S)?,

S: (8) P = UP, SPB():=(d,: eXe ). (3.3)

We recall the definition of Z? in (3.3). For ﬂ € [0,1) the space UP consists of all functlons
u : Sg(RF) — C which satisfy:
(Ul) For all £,n € Sc(RF), the mappmg zZ u(E + zm) is entlre

~ (U2) There exist K;, K > 0 and p € Ny such that for all £ € Sg(IRF),

u(€)] < Ky exp{K|éy/ ).

The spacé UP can be topologized as follows. For p € Ny define
L{f = {uelP: |u|g, < o},

where

lulgp = sup Ju(¢)|exp{~[¢]3,, "}
£€Sc(R¥)

Then (U5, | - |,p) is a Banach space. (This follows from [BDP, Prop.3] as a simple special

case.) In view of (3.1) it is clear that Llﬁ cuf or1s [ulgp > lulgpi1 forallu € Z/{ﬁ and that
the constant K5 in (U2) can be absorbed into an appropriate norm: if n € Ny i 1s such that

221 > K1 # one finds exp{K2|§]2/(1 M < exp{|§]2/p(4l_nﬂ)} From this we obtain

uy cu c---c |J uf =ut. (3.4)
! pENg

We equip U with the inductive limit topology 7ing of the Banach spaces U¥.
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The S-transformation (3.3) is also defined for 8 = 1, but only for those £ € Sg(RF)
which satisfy |£|2, < 1, where p € Ny is the smallest index such that ® € (S):Il,. The
pairing (-,-) in (3.3) is then the one between (S):zl, and (S),, and U' is defined as follows:

Let U' := Holg(Sc(IR¥)) be the algebra-of germs of functions holomorphic at 0 €
Sc(IR¥). (For the notion of holomorphy in locally convex spaces we refer to [Di].) Each germ
@ € U! can be represented by a holomorphic function u defined on an open neighborhood
V C S¢(IRF) of zero. In particular, there exists p € Ng and J > 0 such that u is defined on

q Vp(0) := {€ € Sc(RF) : €]z, < 6}, (3.5)

and moreover that u is bounded on V,(6). Notice that when n € Ny is such that 27" < §
it follows from (3.1) that
Vpsn(1) C Vp(0). (3.6)

This implies that for each @ € U there exists a representative u defined on V, := V,(1),if p
is chosen large enough. These observations motivate the following definition: let L{I} be the
space of & € U*, for which there exists a representative u defined on V,. From V11 C V)
and the remarks given above we conclude that (3.4) also holds for 8 = 1. The uniqueness
theorem for holomorphic functions implies that there exists exactly one representative u of
€U, ! with V, as domain of definition. This fact combined with boundednes of u allows
us to define the following norm on U,:

@], := sup |u(é)]-
T geV,

From Vp+1 C V, we immediately obtain |i|;, > |@]1p+1, for all 4 € Uy. Henceforth

we equip U?! Wlth the inductive limit topology of the Banach spaces Lll p € Ng. The

1:1-correspondence of & € U, with a bounded holomorphic function u on Vp allows us to

simply identify these ob Jects For the remainder of the paper we make this identification.
Summarizing, we can write for all 8 € [0, 1]

lulg,p = sup {|u(é)] - wgp(£)};

cevs

if we introduce the weight functions wg, and the domains Vf:

lElz/(l B)

sp(€) =€ V8 = Sg(RF), for B €[0,1), - (3.7a)

and
wipé) =1, Vy:=Vp (3.7b)

With these preparations we can now state a fundamental result in WNA.

Theorem 3.1. For each 3 € [0, 1] the S-transformation (3.3) is a shift isomorphism from
(S)~# onto UP.




/

Remark. The main part of the proof of Theorem 3.1 is to show that S is a linear isomor-
phism, while the continuity of S and S~! essentially follows as a by-product of this proof,
cf. [PS], [KLPSW],[BT] and [KSWY]. In the proof one shows norm estimates of type (I12),
as stated in Lemma 2.2. We calculated the constants in these estimates explicitly for our

present needs. The result reads as follows:
Let 3€[0,1], p € Np and @ € (S)Z, A Then S® c U p+1, a,nd

|S®|g,p+1 < 2!|‘I>”—ﬂ,—p- (3.8a)
Let 8 €[0,1], p € No and u € U8. Then S~'u € (S)Z%, and
1S~ ull_p,—pr < 2|ulgp- (3.8b)

In case § € [0, 1) we have p' = p+ 4, and in case 8 = 1 we have p’ = p+ k + 1. (Recall
that k comes from S(IRF).) '

An immediate consequence of Theorem 3.1 is the following. Since uq, us € UP implies
that the pointwise defined product ui - ug is also in UP one can define the Wick product
for &, ¥ € (8)7F as follows:

Pol:=85"1S®- S\I/).

4. Isomorphisms between spaces of bounded continuous functions

This section contains the main technical part of the present paper. It provides some
insight in the spaces of bounded continuous functions with values in (S)~? and in UP. For
the remainder of this paper we make the convention that a statement holds for all 8 € [0, I]
if the domain for 3 is not explicitly given. o

The isomorphism property of the S—transformation implies that a set B C (S)~7 is
bounded in (S)~# if and only if S(B) is bounded in U7. In what follows it will be useful
that bounded sets in (S)~? and UP can be characterized in a simple way:

strongly bounded if and only if there exists p € No such that B is a bounded subset of E,.

Lemma 4.1. Let E stand for (S)_"6 or UP, and E, for (S)_g or L{f. Then B C E 1s

~ Proof: It is well-known that strongly bounded sets in the dual of a countably Banach sﬁace
are characterized as stated by the lemma, see e.g. [Co, Theorem 1.12]. It thus remains to
prove the claim for E = U? and E, = UP.

Let B C U® be bounded. Then S~(B) C (S)~# is bounded, i.e. there exists q € Ny
such that ||[S~!u||-g,—4 < ¢ for all u € B. From (3.8a) we obtain .

[ulg g+1 < 21S7 ull_p,_q < 2¢, for all u € B.

Thus B is bounded in U#, with p = ¢+ 1.
Conversely, let B C L{ﬁ be bounded. Then B ¢ UP is bounded too, because the em-
bedding %, : Z/lﬂ —UP is hnear and continuous. [ |
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Notice that the argument in the proof used for (S)~# does not apply for U#, because UP is
not a dual space. Instead, we had to use the S-transformation. In what follows we denote
by B(M, E) the space of bounded mappings f : M — E, i.e. those f for which f(M) is a
bounded subset of E. ’

Corollary 4.2. For 8 € [0,1) and any set M the followé’ng holds:
(a) ® € B(M,(S)™P) <= There ezists p € No and K, Ka > 0 such that

1S®(z)(€)] < K1 exp{K2|§|2/ (=B forallz € M. (4.1)

(b) Let &,V € B(M,(S)~P) and define ® o\Il(a:) = @(a:) o \Il( ), for all z € M. Then
doV e B(M,(S)™P).

Proof: (a) ® € B(M, (S)~?) implies that S®(M) is bounded in P. Thus there exists ¢ > 0
such that

sup |S®(z)(¢ )Iexp{—l£|§/(1—ﬂ)} <¢ forallz e M,
£€Sc(RY)

and some p € Ny. Now (4.1) follows with K; = c, Kz = 1. Conversely assume (4 1). From

(3.1) we obtain

1S3(2) ()] < K1exp{|€[s/57},  forallz e M,

and some n € Ny. Therefore S®(M) is bounded in Llf +n Which implies @ € B(M, (S)~P).
To prove (b) observe that (4.1) holds for ®, ¥ with constants p, K; and K> indexed by ®
and ¥. With p = max{ps,pw} we can estimate

1S(®(x) o U(2))(€)] = |S®(2)(€) - ST(z)(€)]
< K2KY exp{(K3 + KDY n

Remarks. 1. The estimate (4.1) arises frequently as a technical condition in the context
of integration or differentiation w.r.t. z € M, when M = R". It also arises in the context
of limits of sequences (®,)nen in (S)77?, i.e. when M = N, cf. [PS], [KLS], [DPVW]. We
find it worth mentioning that this somewhat clumsy condition on ® just states that ® is
a strongly bounded function. 2. Part (b) of the corollary is sometimes useful when one
considers stochastic differential equations, because the noise terms (and maybe also other
terms) are typically multiplied in the Wick sense.

For the application in Section 5 we have to consider spaces Cy(M, E) of bounded contin-
uous functions on M C R™ with values in some. topological vector space E. When (E, || -|)
is a Banach space and (M, d) a metric space we define the norm

[ flleo := sup [[f(@)ll, f € Co(M,E).
€M




Then (Cy(M, E), | - ||oo) is a Banach space, too. In particular we can topologize the space
Cy(M, (S):f,) with the norm || - |~ —p,c0, and Cy(M,UF) with the norm | - |g .00

We denote by C¥(M,(S)™P) and C§(M,(S)™?) the spaces of weakly, respectively
strongly continuous bounded functions on M. In view of Tweax 7# Tstrong ON€ would expect
CP¥ (M, (S)™P) # C5 (M, (S)~P). The following lemma states however that these spaces ac-

tually coincide. Because of the continuous embedding (S) — (8)~# we will subsequently
identify the space Cy(M, (S)=7) with a subspace of Cb(M, (8)7A).

Lemma 4.3. Let M be a metric space. Then

Cy (M, (8)P) = Gy (M, (5)") = | Co(M,(5)2}).

pENp

Proof. Let ® € Upen,Co(M, (8):5). Then the mapping z — ®(z) from M into (S):g is

continuous and bounded for an appropriate p. Since the embedding (S):p — (S)7? is
continuous with respect to Tgtrong We obtain ® € Cf(M, (S)™P). From Tweax C Tstrong We
find C§(M,(S)™P) ¢ C¥(M,(S)~P). Since the strongly bounded sets coincide with the

weakly bounded sets, see [Co, Theorem 1.14], we finally obtain

U G 5)2p) C Ci(M,(8)7F) € Gy (M, (8) ™). (4.2)
pENg

Assume conversely ® € C¥(M, (S)~P). Then ®(M) is strongly bounded. In view of Lemma
4.1 there exists p € Ny such that ®(M) C (8):5 is bounded. Let ¢ € (S)? and consider

(®(2), 90) p-p = L5 ®(@),T570)2 = (8(z),T57¢).
From F;fp(p € (S)? and ® € C¥(M, (S)?) we now obtain that

(B(2n), 0)-p.—p = (B(z), 0)_g—p, if Tn - (4.3)

Since (S)? is dense in (8):5 and (M) is bounded in (S):f, it follows that (4.3) extends

to all ¢ € (S):g . This shows that ®(x,) is a weakly convergent sequence in (8):5 . But
weakly convergent sequences are mapped to strongly convergent sequences by compact

operators (see [RS]). Since the embedding (S)=° < (.S):ﬂ_1 is Hilbert—Schmitt, it is in

—-p

particular compact and thus ®(z,) converges to ®(z) Wlth respect to || - ||-g,~p—1—noOrm.
This shows that ® € Cp(M, (S )_5_1) and thus

Cy' (M c U Ch(M, (S)ZD).

pENo
In view of (4.2) this concludes the proof. ' | [
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In the following we simply write Cy(M, (S)~P) for both topologies on (S)~#. Because
of Co(M, (S)25) C Cy(M,(S)Z5_,), and Co(M, (S)™P) = Upen, Co(M, (S)Z5) we equip
Cy(M, (S)~P) with the inductive limit topology of the spaces Cy(M, (S):g ).

We next investigate the space Cy(M,UP) in more detail. First consider u € B(M,UP).
This function u is by definition continuous in € M iff for each € > 0 there exists 6 > 0
such that d(z,z) < § implies L

() = (@) 5., = sup {|u(@)(E) = u(@)(O)up(©) < e

£€V

Thus » is continuous if and only if the family of functions u¢(z) := u(z)(§)wg,p(€) (Wwith
family parameter £) is equicontinuous. For convenience we denote this by saying that u is
p-equicontinuous. Of course, p-equicontinuity is a property which is harder to verify than
continuity for every fized £. This motivates the definition of the following spaces:

For p € Ny let L{f (M) be the space of all mappings v : M — Llf which satisfy the
following boundednes and (pointwise) continuity condition:

(B) lulg,pco = supgenr [u(z)]g,p < 00

(C) For each £ € V? the map z — u(z)(¢) is continuous on M.
Notice that the definition of |-|g,p,c0 0n the space UB (M) coincides with the one for |-|g,p,c0
on the space Cy(M, L{g). .

Remark. For 8 € [0,1) one can identify the space of mappings L{f (M) with a space of
functions u : M x Sg(R¥) — C via

u(z,§) = u(z)(§), | (4.4)

where u must satisfy (B), (C) and (Ul). For 8 = 1 we remark that a bounded function
u : Vp — C is holomorphic if and only if the following holds (see [Di, Section 2.2]):

(U1%) For all £, n € V, there exists an open set V¢ , around zero in C such that the function

f(z) := u(€ + 2n) is holomorphic in V¢ ..

This characterization implies that the domain of holomorphy V¢, of f can always be
extended to the natural domain of £, i.e. to O¢p, := {2z € C : |{ + 29]2,p < 1}. Therefore
one can identify U, (M) via (4.4) with the space of functions u : M X V; — C which
satisfy (B), (C) and (Ul ). This is the point of view adopted in [BDP]. (To be precise, in

[BDP] the spaces Z/I (M) instead of UB (M) are considered; these spaces are discussed in
Section 5.) By a trivial modification of the proof given for Prop.3 in [BDP] it follows that
UE(M), |- 1p,p,00 ) is a Banach space. '

In view of (3.4) it is clear that Uﬁ(M) C UI‘?H(M) for all p € Ny, and that |u]|gp,c0 >
lulg p+1,00 for all u € UF (M). We put the inductive limit topology 7ina on the space

= |J ub(m

pENg
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The following theorem is basic for our applications.

Theorem 4.4. Let M be a metric space. Then the composition S : ® — So ® is a shaft
isomorphism from Cy(M, (S)™?) onto UB(M). ,

Proof: Let ® € Cy(M,;(S)~?). Since S : (§)™® — UP is linear and continuous we have
So® € Cy(M,UP). Moreover, '
Co(M,UP) C UP (M), : (4.5)

- because p-equicontinuity implies continuity for fixed ¢. Thus S o ® € UP(M). Lemma 4.3 .

shows that ® € Cy(M, (S):g ) for some p € No. The estimate (3.8a) yields

sup |S®(z)lgpr1 < 2 sup [|B(z)||-p,—p < 0.
TeM TEM

This shows |S®|g p+1.00 < 2[®||_g,—p.co, and we obtain with Lemma 2.2 that & — So @
defines a continuous mapping from Cy(M, (S)~#) into UP (M). Injectivity of S follows from
the injectivity of S. '

Now let u € UP(M). Then we have |u(z)]|g, < ¢ < oo for all z € M and some ¢ > 0,

p € Ny. Using the estimate (3.8b) we obtain

1S~ ul|—g,—pr,00 < 2]ulg,p,0 < 26, (4.6)

where p’ is chosen appropriately. This shows that S~!(u(M)) is bounded in (S) :g, . We
also have by assumption that z — wu(z)(§) is continuous for each £. As in the proof of
Lemma 4.3 we conclude from

w(@)(€) = (S~ u(z),: eX¢ ) = (S Tul(@),: e e ) _p

that z — S~ lu(zx) is strongly continuous from M into (S):g,_l. (This time we use that

span[: eX¢ ;€ € Vf,] is dense in (5)—5,.) Thus $~1u € Cy(M, (S)~P). Again, injectivity.

of §1 follows from the one of S~1. The estimate (4.6) and Lemma 2.2 imply that S~! is
continuous. ‘ - n

Corollary 4.5. Let M be a metric space, then
U ey = | Cu(,uf) = Cy(M,UP).

pENg PENO
The topology Ting defined by the spaces Llf (M) coincides with Ting defined by the spaces
Cy(M, L[f). In particular, S is a shift isomorphism from Cy(M, (S)~P) onto Cyp(M,UP).

Proof. We first show the equality

U won = cumup). | (4.7)

pENg pENg
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. c ”: Let u € Zz[f(M) From the proof’of Theorem 4.4 we find that ® := S~ lu ¢
Cy(M,(S)ZF,_,), and (3.8a) yields

|w(@)lg 42 = 15B(@)|pp+2 < 2(12(@)||-p,-r+1) S ¢, forallz € M.
Similarly, we obtain
|u(Z) — u(z)|gp+2 < 2||2(Z) — (2)||-g,—(pr+1), forallz,z e M.

This implies u € Cp(M, Z/{f, +2)-
" > 7:Let u € Cp(M, L{f ). Then the defining condition (B) for Z/lg (M) is obviously satisfied,
and (C) follows from (4.5), thus u € U2 (M). '

We next show that the inductive limit topologies on Ublg (M) and on |JCy(M,UP)
coincide: The embedding i : Z/lf(M ) <> Upen, Co(M, L{f) is continuous, because of .

liulg pr+2,00 = [Ulgpr+2,00 < lulg,p,00-

The embedding i : Cp(M, b{f) < UP(M) is continuous, because

biulg,p,c0 = lulg,p,00-

Lemma 2.2 now implies the equality of the inductive limit topologies.
Finally, we show the non—obvious part of the equality

U Co(d1,uf) = Co(M,UP).
pENo

For u € Cy(M,UP) the set u(M) is bounded, thus S~!(u(M)) is bounded. Moreover,
S~lowu: M — (S)~# is continuous, thus S o u € Cyp(M, (§)~#). With Theorem 4.4 we
obtain u € UP (M), and (4.7) concludes the proof. _ ||

Remark. The equality (4.7) is somewhat unexpected. It implies that every bounded func-
tion f : M — UP which is continuous for fixed § is automatically p-equicontinuous,
for an appropriate p. (More precisely, the proof of Corollary 4.5 shows that Llf (M) C
Cy(M, Ufr_,_z), where p’ is given after (3.8b).) We did not find a proof of this last statement
which avoids the use of the S—transformation. The crucial point is the observation made
in the proof of Lemma 4.3: A weakly continuous function with values in (S)~# is auto-
matically strongly continuous, because the embeddings (8):5 — (S):g_l are compact
operators. This type of argument is not available for U-functionals. Instead, we had to go
back and forth with the S-transformation to prove (4.7).
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5. Application to non-linear stochastic heat equations

In order to solve the fixed point equatlon z = y + Kz in a Banach space (E, || - ||) 1t
is sometimes possible to introduce a ”weighted” norm || - ||, on E such that K becomes
a contraction operator with respect to this new norm. The most well-known example are
ordinary differential equations (transformed to integral equations) which can be solved
by Picard iteration on the Banach space (C([0,T]),]| - |loc)- In this case an appropriate
weighted norm reads '

Ifllw = sup |f()e™™], (5.1)
te[0,T] i

where ¢ > 0 is some properly chosen constant, cf. [Mo,Wa]. In [BDP] a similar method has
been worked out for so—called Banach spaces of U—functionals. These spaces are closely
related to the 2P (M) from the previous section, for the choice M = Dr = [0, T x. R4

The spaces L{ﬁ (D7), | € N, introduced in [BDP] differ from the 22 (D7) essentially by a
time dependent weight factor similar to (5.1), cf. (3.7):

_ 2/(1-8) ‘
wp pi(t, €) 1= e HEHOFDEL LY 1 pB(6) = Sg(RF), for B € [0,1)

and
wip(t, €) =", VI(S) = V,(0).

P

With these notations the spaces Z/lﬁ ,(DT) can be defined as follows. Let L{ 1(Dr) be the

space of all mappings u : DT — Uﬁ which satisfy the following boundednes and continuity
conditions:

(B’) u(t, ) is defined on VE(9) for all (¢,z) € Dr, and

lulgps:=  sup |u(t,z)(€)wspilt, €)] < co.
DT><V{>i (6) ,

(C’) For each £ € VP(8) the map (t,z) — u(t, z) (f) is continuous on Dr.

Remarks. 1. L{f’ ,(Dr) was defined in [BDP] as a space of complex valued functions on

Dy x Vf(é). With the identification u(t,z)(§) = u(t, z,&) the spaces obtained by these
different definitions coincide. See also the remark in Section 4 which follows the definition
- of UB(M). 2. The parameters | € N and § € (0,1] were introduced in [BDP] in order
to obtain contraction operators by an appropriate choice of [ and 4. Since we do not use
different values of ¢ for the definition of 73,4 (as in the following lemma) we suppressed §

in the notation of L{ﬁ (DT)
Notice that Ny x IN is a directed system with respect to the usual partial ordering

(p) < (@,1) = p<yp, IV,
and that U2 (Dr) C UL ,(Dr) and |- |gpr > |- [gpr 0
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Lemma 5.1. Let 8 € [0, 1], then

U uwn = U wion - (52)

pENp pGlNo,lelN

The topology Tina on UP(Dr), defined by {L{ﬂ(DT) p € No}, coincides with the topology
defined by {Us (Dr) : p € Ny, € N}. |

Tind’
Proof. We first show that the defining conditions (B,C) and (B’,C’) follow from each other
for appropriate parameter values.

Case 8 € [0,1): Since the conditions (C) and (C’) coincide in this case it suffices to
consider (B) and (B’). Let p € Ng,/ € Nand u € Uf(DT). A simple calculation gives

|U|B,p‘,l < lulg,ps (5-3)

from which we obtain (B’). Now let p € Nyg,/ € N and u € Z’/{ﬂ l(DT) Then the estimate

lulgp < €T lulpps (5.4)

is easily verified with p’ = p +n, Where n € IN is such that I(1 +T)[§]2/(1 A < |f|2/;9rnﬁ)'

Thus (B) is satisfied (with p replaced by p').

Case B = 1: Let p € No,l € N and u € Uy (Dr). Since V(8) C Vp(1) the estimate (5.3)
also holds for 8 = 1, which implies (B’). (C’) is an 1mmedla.te consequence of (C) and of
Vu(8) € Vy(1). Now let p € No,! € N and u € U, ,(Dr). From (3.6) and (B’) we find
that (5.4) holds with p’ = p+ n, where n € N is Such that Vpn(1) C Vp(6). Thus (B’) is
satisfied (with p replaced by p’). '

From (5.3) we find L{E(DT) C U (Dr) for all p € No,I € N, and (5.4) implies
Z/{'6 ,(Dr) C Z/{ﬂ (Dr). Since the spaces L{ﬂ(DT) and L{B (D) form increasing chains w.r.t.
the1r partial ordenngs we arrive at (5.2). In view of Lemma 2.2 the estimates (5.3) and (5.4)
imply that the identity mapping on U4#(Dr) is continuous with respect to both inductive
limit topologies. , [ ]

Remark. Although 7ing = Tjq we will keep the notation 7i74 in the following. The point
is that the notion of a contraction operator depends on the defining norms of the inductive
limit topology (the index w denotes the weighted norms). Notice that the situation for
(5.1) is similar: the norms || - ||cc and || - [l generate the same topology on C([0,1]), but
only w.r.t. || - ||, one obtains a contraction operator (for the Picard iteration).

We are now prepared to consider non-linear stochastic heat equations. Let A be a uni-
formly elliptic, second order differential operator on Dr. In [BDP] the following stochastic
‘Cauchy problem was studied:

9 _ A = F(3)+ VG(@)oN

ot (5.5)

q’lt:O ZI(I)().
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We will not restate here all the conditions on A, on the non-linearities F, G and on the

noise N = (Ny,..., Ny), for details we refer to [BDP, Sec.2.2]. The only property which is
essential for the present paper is the fact that a solution of (5.5) must satisfy the following
integral equation:

Here ¥, is expressed by a (weak) integral over ®; and the heat kernel g of A,

Wo(t, ) '::/d Do(y)q(t, z;0,y)dy, t >0, X
R

| (5.7)
\IJ()(O, .’E) = @0(1‘)
The non-linear integral operator K reads
t .
K@)(t5) = [ [ altais,0){F(@) - G(®) o TN}, )dyds
0, ' I | (5.8)

t .
- [ Vet Nis,) 0 @) (s, )duds.
0

Remark. (5.6) is an immediate consequence of the concept of a mild solution: Instead of
(5.5) one requires the weaker condition that an associated integral equation is satisfied.
An integration by parts in this integral equation then leads to (5.6), see [BDP].

Our aim is to prove that (5.5) is well-posed in the mild sense. (The precise meaning of
this is'‘given in Theorem 5.3). We first consider ¥ as a (linear) function of ®. '

Lemma 5.2. Let & € Cy(R4, (S)7P) and ¥ be given by (5.7). Then (t,z) — Yo(t, ) is
an element in Cy(Dr, (S)7P). Moreover, ®y — ¥y is continuous from Cy(R?, (S)‘ﬂ) to
Cy(Dr, (5)77). |

Proof: Froni Lemma 4.3 we obtain that there exists p € Ng such that ®y € Cp(R%, (S ):g ).
In particular there exists ¢ > 0 such that '

1@o(y)l|_p,p < for all y € R
Since [paq(t,;0,y)dy = 1 this estimate and (5.7) implies

[%0(t,2)l|-p,-p < sup 120}l <, for all (t,) € Dr. (5.9)
ye

By definition we have SU(0,z)(§) = SPo(z)(£), and

STo(t,)(8) = [ SPo(y)(Ealt,:0,9)dy, ¢>0. (5.10)
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Since 5@y € UP(RR?) it follows from (5.10) and from standard fact about the heat kear-
nel, that (¢t,z) — SUy(¢,z)(€) is continuous on Dp for each . The boundednes of ¥y,
expressed by (5.9), then implies that SU, € UP(Dr). Theorem 4.4 now shows that
¥y € Cy(Dr,(S)"?). Finally (5.9) gives ||¥o|l-g,-p.cc < [|Poll-,—p,c0, S0 Lemma 2.2
yields the continuity of the map ®¢ — Py. : |

We next show that K maps Cy(Dr, (S)™?) to itself. In [BDP] it has been proved that the

functions
f)(t,z,€) := S(F(t,z, 8 u(t, z,))(E),

9(u)(t, 2,8) = S(G(t, 2, S~ u(t, z,))(§),
n(t,z,€) = SN(t,z)(£)

are such that K :UP(M) — UB(M) defined by

Ro)toone) = [ [ at,z5,5){Fw) - g(u) - Vn}(s,5,€)dyds
L/; (5.11)

t
_./f Vya(t, z;s,y)9(u)(s, v, €)dyds
0 R4

is a contraction operator on Z/{ﬁ (D), for all p > po, I > lo, and for a fixed value of 4.

It follows from Theorem 4.4 that the mapping S~1(Ku) : (t,z) — S~ (Ku)(t,z,-)} is
an element in Cy(Dr, (S)™?). Moreover, since the S~!-transformation (for (¢,z) fixed)
* commutes with the integrals and with V in (5.11) it follows that S~(Ku) coincides with
the r.h.s. of (5.8). We conclude that K maps Cy(Dr, (S)™7) into itself and that

K=80KoS™1 - (5.12)

Theorem 5.3. The Cauchy problem (5.5) is well-posed in the mild sense, i.e. for every

By € Co(RE, (S)™P) a unique solution ® € Cy(Dr, (S)7P) of (5.6) ezists, and the mapping

®g — O is continuous.

Proof: Let v € UP (D) and consider the equation
u=v+ K(u). (5.13)

Since K is a contraction operator on (UP(Dr),%,) we obtain from Theorem 2.1 that
(5.13) has a unique solution which depends continuously on v. (5.12) and (5.13) imply

Sty =S 1v + K(Sw).

Since §~! is a topological isomorphism from U#(Dr) onto Cyp(Dz,UP) we find that for
each ¥ € Cy(Dr, (S)") the equation

& =U+K(®)

17




has a unique solution &g € Cy(Dr,(S)~P). Moreover, ¥ + ®y is a continuous map
on Cy(Dr,(S)™P). Since ¥y, given by (5.7), depends continuously on & (Lemma 5.2) it
follows that (5.6) has a unique solution which depends continuously on ®o. n

Remark. The Cauchy problems and -integral equations (e.g. the Volterra equation) dis-
cussed in [BDP] have all been treated by Banach’s fixed point theorem. The major differ-
ence to (5.5) on the technical level is that one has to modify the definition of the spaces

, Llf, (Dr) in an inessential way (essentially one has to replace D7 by other subsets of R™).
It is therefore straightforward to adapt the results of the present paper to the needs of
these examples. In particular Theorem 5.3 will hold ~ in slightly modified form - for these
applications. ’
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