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1. Introduction

Let T > 0 be fixed and let u be a function on [0,T] x R. We are going to study the

differential equation

du 10%u du
—52? = 53—1172— + b(t, x)-— » (1,.1&)

ox
subject to the continuous initial condition
u(0,z) = uo(z), z€R. (1.1b)

We assume that the drift b in (1.1a) is locally Holder continuous of exponent o € (0,1],
and at most Holder growing of exponent 3 € (0,1), while ug is assumed to be of quadratic
exponential growth (the precise conditions are given in Section 2). Under these conditions
we show that (1.1a) has a fundamental solution (Theorem 2.3), and this gives rise to a
unique solution of (1.1) in the class of functions of quadratic exponential growth (Theorem
2.4). The interesting limiting case 8 = 1 (Lipschitz growth) cannot be treated by our
approach, for details see the remark that follows Lemma 3.2.

Remark. The connection of (1.1) with stochastic ordinary differential equations [F2] indi-
cates that these results had to be expected. Indeed these results are known under additional
differentiability conditions on b, see e.g. [Be],[E1],[E2]. But these conditions rule out a num-
ber of basic examples which arise naturally in the context of stochastic partial differential
equations (see the example given in Section 4). The case with (two-sided) unbounded, only
Hélder continuous drifts b has apparently not been treated in the literature.

* Supported by the Deutsche Forschungsgemeinschaft DFG.
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Let us now recall the basic idea of E. Lévi’s parametrix method [Le], which we employ
in the following. We do this in informal way, because we only want to motivate equation
(1.6) which is the starting point for us later. Assume that u solves (1.1a). We write this as

Su . :

with A = 182 and & := bd,u. Under suitable conditions on & and on u(s) := u(s,-) the
theory of strongly continuous semigroups shows that for ¢ > s > 0 we have

u(t) = ¥~ y(s) + /t et="AB(r)dr, o (1.3)

where et4 operates on functions by convolution with the “parametrix”

2

z_

Zy(z) := (2mt)"Te . (1.4)

Putting informally u(s,z) = 6y(z) - thé Dirac delta function at fixed y € R — the repre-

sentation (1.3) shows that the fundamental solution p(t, z,s,y) of (1.2) should satisfy

p(t,z,8,y) = Zi—s(z — y) + //]R Zt_r(a; — 2)®(r, 2)dzdr. (15)

Denoting L = 302 + b9, and applying L — J; to this equation shows that & (which also
depends on s and y) should satisfy the Volterra type equation

®(t,z,s,y) = D1(t,z,8,v) + // ®,(t,z,r, 2)0(r, 2, 8, y)dzdr, (1.6)
s/R ’
with singular integral kernel
(¢, 2, 5,y) = b(t, 2)0sZs—s(z — 1) o (1.7)

Subsequently we will show that (1.6) has a solution ® which defines a fundamental solution
by (1.5), and this in turn gives rise to the unique solution of (1.1).

Remark. For bounded coefficients the construction of a fundamental solution based on
the parametrix method relies heavily on this boundedness, see e.g. [F1], [KO], [E2]. We
will see that basically the same construction works for Holder growing drifts. In this sense
our approach is elementary. But there are some non obvious modifications in the proof
(they are discussed in an informal way at the beginning of Section 3). We stress that these
modifications, with only minor changes, also go through in the d-dimensional case, when
we add a Hélder growing potential, and when the second order term in (1.1a) is replaced
by a uniformly elliptic operator with bounded, Holder continuous coefficients, cf. Eq. (4.1)
and its discussion in Section 4. (The details of these generalizations will be given in [Kr].)
We restrict our discussion here to Eq. (1.1) which exhibits all the basic difficulties. This
makes the arguments more transparent, and keeps the technicalities at a minimum.
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- The paper is organized as follows. In Section 2 we give the basic definitions and state
the main results. Proofs and some more technical properties are postponed to Section 3. In
the final Section 4 we make some remarks on the extension of our results, and we discuss
their relation to stochastic parabolic differential equations.

2. Statement of results

Throughout this paper we fix a € (0,1], 8 € (0,1) and T > 0. For technical reasons it will .
sometimes be necessary to consider time points to € [0,T). A function f on [to,T] x R is
called locally Hélder continuous in = with ezponent o, uniformly with respect tot € (to, T,
if for each bounded set K C R there is a constant cx such that ' ‘

|f(t,z) — f(t,v)] < cklz —y|®, VtE€[to,T], Vz,y € K. (2.1a)
We say that f is globally Hélder bounded with ezponent g if
|7t 2)| < cp(|zlP +1), V€ [to,T), Vz €R, (2.1b)

with a suitable constant c;. For the rest of this paper we assume the following on (1.1):

(A) The drift b is a continuous function in [0, T} x R, which is locally Holder continuous in
£ with exponent ¢, uniformly with respect to ¢ € [0, T], and globally Holder bounded
with exponent 8. ' '

(B) wuo is a continuous function of quadratic ezponential growth (with parameter h > 0),
i.e. for some cg > 0 the estimate |ug(z)| < coe’nz holds for all z € R.

Our first result concerns Equation (1.6). Define the convolution type multiplication

t
frg(t,s,y) = / / F(t, .7 2)g(r, 2, 5, y)dadr
s/R )

for functions f,g on Ar := {(t,z,s,y) € R* : t,s € [0,T],¢t > s} which are such that the
(Lebesgue) integrals exist. Then we can write (1.6) as ® = @1 + @1 * &, and m iterations
of this equation give ® = ®; + &2+ .- + ®™ + &1™ + ®. The following key proposition
states that a solution @ to (1.6) can indeed be obtained by taking m to infinity.

Proposition 2.1. Assume the drift b satisfies (A). Then @p, := 1™ is well-defined for
all m > 2, and a pointwise solution of (1.6) is given by the Neumann series

[o0]
B(t,z,8,y) = Y Pm(t,z,59), (2:2)
m=1

which converges uniformly on compact sets K C Ar. ® has the following properties:
(a) Fiz (s,y) € [0,T) xR and s < to < T. Then ®(t,z, s,y) is locally Holder continuous
in z for every exponent & € (0, o), uniformly with respect to t € [to, T.
(b) Fiz (s,y) € [0,T) x R. Then ®(t,z,s,y) is continuous in (t,z) € (s,T] x R.
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(c) For any A* € (0,1) and any h >>O"th_“ei'e_37_éa:z'svts a constant C = Cx- p > 0 such that

_,\';éf-—y)ﬂ .
e -s 2
|®(t, 2,5, y)| < C’—-—t—_—s—ehy . (2.3)

~ In (2.3) we tacitly assume that this estimate holds on the full domain Ar. Subsequently
we will suppress this domain whenever there is no danger of confusion. We remark that the
properties (a,b,c) imply that the function p defined in (1.5) is sufficiently smooth, and that
one can interchange derivatives with the integral in (1.5). It is then not hard to conclude
that p is indeed a fundamental solution to (1.1a). In the following we say that a function
(t,z) = g(t,z) is CL? if g has continuous partial derivatives 02g, 8.9, Brg on its domain
of definition.

Definition 2.2. Let L = 302 + bd;. A fundamental solution of d;u = Lu is a function p
on Ar with the following two properties:

(F1) Fix (s,y) € [0,T) x R. Then p(-;+,s,y) is C2 and satisfies (L — 8;)p(t,z,s,y) = 0
for all (t,z) € (5,T] x R.

(F2) For every continuous function f of quadratic exponential growth and all z € R

Lim /R p(t, 2, 5,9)f (y)dy = f(2). (2.4)

We remark that property (2.4) is often required only for bounded functions f, but we need
this property for our unbounded initial conditions wuo.

Theorem 2.3. Let Z and ® be given by (1.4) and (2.2), and suppose that b satisfies ( ).
Then Equation (1.5) defines a fundamental solution p of Oyu = Lu.

As expected the fundamental solution p gives rise to the solution of the corresponding
Cauchy problem. Recall that a continuous function u on [0,T] x R is called a solution to
the Cauchy problem (1.1) if u is CY2 on (0, T] x R and satisfies (1.1a) on this domain, and
moreover (1.1b) holds.

Theorem 2.4. Assume that b satisfies (A) and that ug satisfies (B) with h < 5. Then

u(t,z) = /R p(t, 7,0, y)uo(y)dy, (t,z) € (0,T] x R, (2.5)

and u(0,z) = uo(z), z € R, is well-defined, and u is a solution to the Cauchy prob-
lem (1.1). This solution is unique in the class of functions which are of some quadratic
ezponential growth in x, uniformly with respect to t € [0,T].

Observe that the unbounded drift b in (1.1a) does not decrease the natural maximal exis-
tence interval [0, 7] for the solution u: For b = 0 the special solution [, Zi(z —y)e hy gy to

(1.1a) does not explode at t = T only if h < T, and under this condition also a solution -

to (1.1a) - with unbounded b - exists for all ¢ € [0, T).
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3. Proofs

The basic problem with the construction of a fundamental solution via & = > ®,, is the
convergence of the series Y ®,, given in (2.2). This is because the ®,, contain products
of the unbounded drift b, so the usual sup-norm estimates on these terms do not work.
The key idea to prove the convergence of Y ®., is to estimate the terms @, = @1 % Ppp—1
successively as follows. First fix A € (0,1) and recall the well-known estimates

: _Az((xxt—!‘,))2
. e -3
Ia,:Zt—s(x - y)‘ S cA,n (t )n+1ia n e NOa (31)
— 8 2

which hold for suitable constants c . Then fix € € (0,1) and notice that (3.1) and our
assumption |b(t, z)| < cp(|z|? + 1) imply that ®1(¢,z,s,y) = b(t, )0z Zs—s(z — y) satisfies
Az—y)?

AMz—y)? e_(l"e)‘b =)
2(t—=zx) -

|®1(t, 2, 5,9)| < ea1c(|z]? + l)efs (3.2)

t—s
,Clearly the product of the first two functions is bounded in z. More precisely we hé.ve the
following estimate which plays a key role in the present paper,

_eAe=y)? 20(t — p
e 2= s(lyl+(—@(—/\;ﬁ)“2> on Ar, (33)

and which follows by a simple extreme value consideration. Hence (3.2) yields

_(=e)Mz-w?
2(t—3s)

21(t,2,5,9)| < eal(] + HEN)P + 11 , (3.4

t—s
where ¢; = cx,1¢p depends on A but not on ¢, and k(e)) = (28L)1/2, Observe that we
replaced the growth estimate (3.2) for ®; in = by the same type of estimate (3.4) in y. The
point is now that this replacement successively applies to [®m| = |1 * ®,,_1|, but this
comes at the cost of a factor ¢ in the exponential. We will see in the proof of the following
lemma that such factors indeed show up successively, so instead of using a fixed €, we

better choose a sequence &, > 0 such that [[(1 — &,,) > 0 (which holds iff 3 em < 0).

Since the bound (3.3) blows up as &, goes to zero it is not obvious that }_ ®n converges,
but indeed it does, as we show in Lemma 3.2. We will frequently use the abbreviation

Fer(y) := (ly| + k(eN)? + 1,

Lemma 3.1. Lete, A € (0,1), déﬁne g1 := € and choose €, > 0 such thaty o0 _;€m <1, 50"
A= AT[So_, (1 —em) > 0. Suppose the conditions of Proposition 2.1. Then the functions

D, = BI™ are well-defined on Az, and there is a constant H = H(e, ) > 0 such that

A" (z—y)?
o™ e~ T
l@m(t,(ﬂ, Say)l < F(E)F;?n» (y) (t S)a-m , meg IN. ' (35)
2 - 2



Proof. We first show by induction, that ®, is well-defined and that there is a constant H
such that, with A, := A5, (1 - e,) we have

i Am.(i"y)z o
H™ e " 2(t=9) 2 S
@ t’ x? s? y S m —m 1/2F€;’Ai y * (3'6
l m( )l F(2) (t._‘s)32 z'|=I1( i) ( ) )

For m = 1 this estimate follows from (3.4), with H = cl(/\l /2)1/ 2. Now suppose (3.6) is
true for m > 1, then this estimate and (3.4) imply

t
|®m+ll§// |<I>1(t,x,r,z)||¢’m(r,z,s,y)|dzd1'

Hm —*éi”‘“fz Ay 9 |

C t—r e ) T—38 7-‘-

= / / o dzdrH< )P (). (37
(r—s)™= el _

Now Fix(2) < |2 + k(eA)P + 1 < ¢a(|2|P + 1), with ¢p := k(eA)? + 1. This estimate and
.(3.3), with € replaced by €41, applied to (3.7) gives _

/\1(2:-—-)2 Am-)’-l(:‘?ﬁz

cic H T 2(t=T1) 2(r—3) b 27r
il < 22 E ) [ [ o dedr [ (5 Fensw)

- (r—s) :

Now we use the elementary fact that for a,b € (—o0, %) and v > 0 we have

y(z—x2)2 v(z—y)z y(z—y)?

—_ 2(t—r) e 2(r—23s) - 27r 1/2 ( )I‘( ) e_ 2(t—s) .
// (t—r)2 (r—s)P dzdr = (— ) - T(B—a-b) (t—s)etd-3/2’ (3.8)

Witha =1, b= 352, y = A1 and k(Ems1Am) < k(Em+1Am+1) we conclude

Ami(z=1)2
c1coH™I(1/2) e ;(lt . nff(
T(m+1/2) (- )=

|®mi1] < YY2E, 5,

In particular ®,, is well-defined. This proves (3.6) with H := ¢, max{()\l/2)1/2, cI'(1/2)}.
With k(e; ;) < k(€mA*), i < m, and (3.6) we finally derive our assertion (3.5). ||

Lemma 3.2. Assume the drift b satisfies (A). Then the series (2.2) converges uniformly
“in compact subsets of Ar, the limit ® satisfies the estimate (2.3), and ® = @1 + @1 * .

| Proof: Consider the m-dependent factors in (3.5) and use (|a| + [b])™ < 2™(|a|™ + [6]™)
and (la| + |6))% < |al? + |b]P to estimate

ad H™ z-:m (y) = mB CIH]_ B o
mz=1f( 2)(t—s)T ng % H +Z emA™)” + 17, (3.9)



where C; := T~Y/? and H, := 2T1/ 2H. We estimate the two series separately, and we
denote by Ci, Cs etc. suitable constants T(m/2) ~ (m)Y2(2r) /4m=1/4(1)(m-1)/2 gives

C H" mB < Cs 2H1) mB, 1/4
> Tegy o < X S

- (4Hy)™ 2\ V2 0 /o174 2\ M2
=2 (,f\; (W'y'mﬁ)) (Z ( o ) )

m=1
—_ (.o Halyl?? hlyl?
= C3ze < c(h)e™.

The last estlmate holds for every h> 0 and a suitable constant c(h) because B < 1. We

estimate the second term in (3.9) for the special sequence &, :=¢ - m®~ 5, where § > 0 is
chosen such that § —1/8 < —1 (so Y &m < 00). Then

— C,H" . C2(2H)™ 4ﬂT L1_ m
e ke 1 < 3 SO (G amb 40 + 2y

m=1

CsHE'  =m-5p)
—Z(mtl/z m!/* < oo,

e

with Hj := 4H;[(48T/A*)?/2 4+ 1]. Combining the inequalities for the two series in (3.9),
we eventually get, with a suitable constant C(h):

At (z-y)?
2(t—3s)

o .
. lé(t’ z,s, y)l < Z I(bm(t7 z,s, y)' < C(h)e—t_s_—ehyz' (310)
m=1

To summarize: ® is well-defined on Ar and (2.3) holds. Now let K C At be compact.
Then inf{t — s|(t,z,s,y) € K} > 0, so (3.9) implies the uniform convergence of > &, on
K. Finally notice that ®; * ® is well-defined because by (3.10) we can estimate ®1 * @ in
the same way as we estimated ®; * ®; in the proof of Lemma 3.1. Moreover, (3.10) shows
that Lebesgue’s dominated convergence theorem applies, so we can 1n’cerchange summation
and integration (i.e. convolution) to obtain :

L4

’ [e.0] o
B+ B ¥ D=0+ 8% Y =01+ ) D1%Pm =2 n

m=1 m=1

Recall from the proof that A\* = )\Hm_ (1 —em) withen =€ m3~% . This shows that
A* < X can be chosen arbitrary close to A, by the choice of a suitably small € > 0. Since
we can choose A € (0,1) as we like this implies that \* < 1 can get arbitrary close to 1, as
claimed in part (c) of Proposition 2.1.

i

 Remark. The estimate (3.9) is also valid if We put 8 = 1, and it is sharp for y = 0. But in
the limit 8 1 our choice of &, yields e, = =, and this: v1olates the condition > &, < 00,
i.e. we have []J(1 — &m) = 0. Therefore we have to choose another (summable) sequence
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 Em > 0 to mvestlgate ‘whether (3.9) converges. We write this Em as éﬂ and observe that
Z 9m < oo implies liminf 6, = 0. The root test applied to the second sum in (3.9) shows
that this sum must diverge. Therefore our method of estimation based on (3.3) does not
allow us to conclude that )" |®,,| converges in case 8 = 1. The situation does not change
if in (3.9) we use the slightly smaller bound (3.6) instead of (3.5).

Having established that @ is a well-defined solution of (1.6) the next step is to show
that p defined in (1.5) is sufficiently smooth. This smoothness will follows essentially from
two continuity properties of ®. We begin with the first one, the local Holder continuity,
as stated in part (a) of Proposition 2.1. In fact we will need a slightly stronger result
than this continuity for the Cauchy problem, in order to handle the unbounded domain of
integration in the y-variable:

Lemma 3.3. The function z — ®(t,z,s,y) is locally Holder continuous as follows: For
K,h>0,a&€ (0,a), \* € (0,A*), and v := o — & there is a constant C > 0 such that
A“(I—g)z _A..(:t,—y)2
2(t—s) + e 2(t—3s)
(i =)/

B(t, 2, 5,9) — B(t, 2", 5,9)| < Clz — /|5 e (3.11)

forallyeR, t>s>0 and |z|,|2’| < K.

Proof: It suffices to prove (3.11) for each term of & = ®; + ®; * ® separately.

Hilder continuity for ®;: Abbreviate ®1(z) := ®1(t, z, s, y). We distinguish two cases,
the first case is |z — 2| > t —s. This gives (t—s)=/2 < |z — 2|17 = |z —2'|%|z — 2’| @
with 1 — a > 0. So (3.4) yields

— A (z—y)? A" (z—y)?
C, (t - S) 5 Fox- (y) e 2(t—s) G e T 2(i=s)
P < - < Colr — 2 |CFo» (y) ————.
[®:(2)] < (i = 5)0-/2 > < Cole —2'["Fex- () TSE=

Interchanging = with z’ and adding the two estimates yields

*(p—y)2 A (2 —-y)2
, G e A2((t~e;y)) + e 2 2((:-;;)
‘@1(33) - (I)l(x )‘ < 031-7: -z I FEA‘ (y) (t _ 8)3;_7 (3'12)

Now Foy-(y) < c(h)eh?"2 (for any h > 0) gives (3.11). Next we consider the second case,
|z — 2'|? < t — 5. Here we write ®1(z) — ®1(z’) as the sum of the two terms

®y1(z,2") = [b(t,z) — b(t,2')]0: Zs—s(z — y)
B o(x, ') 1= b(t,2') [0z Ze—s(z — y) — Op Zes (&' — ),

and estimate them separately. The Holder continuity of b, (3.1) and |z — z'|2 < t — s give
an estimate for @ ;: .- .

AMz—y)? _Mz—y)?

2(t—s) na € 2(t—s)

— < Cylz — 2’| —
(t—s)7

|B1.1(z,7)| < Calz — 27| S t

(3.13)




To estimate <I>12 observe that —(z — y)? < —%\'—(x’ y) + == x- (:c z)2 holds for
all real z,2’,y,2. For z € (:r; ) and jz—2'|? < t-s this 1mphes exp{—A z(t yz)}
Cs exp{—\* ﬁ___l_} Using this, the mean value theorem and (3'1) (for n = 2) we find

2(t—
. e =s
.|a:th—s(m - y) - 8:2:’Zt-—s($, - y)l < Cs|$ - xll (t _ 3)3/2 *

b(t,z’) is bounded because |z’| < K, and with |z — 2|2 < t—s the former estimate implies.

. el 2 = 2

) ’ ’ ’ e_A ((t s!;) a —A 2(“_:;)
|®1.2(z, 2')| < Cslb(t, z)||z— = |—————3/2 < Cplz — 2| ————=. (3.14)

(t—s) (t—s)7

Combining (3.13) and (3. 14)‘implies (3.11), so the two cases show that @, satisfies (3.11).

Hélder continuity for <I>1 * O: Replacmg h by h/2 in (3.10) and combining this with
(3.12) yields

|<I>1 *<I>(m) ®, Bz )| < // |®1(t, z,7,2) — B1(t, 2’ r,z)ll@(r 2z, 8 y)|dzdr
<Gl 2R (Bt 3) + T (o), (3.15)

with the abbreviation

A% (z—2)2 A (z—y)?
T T2(t=r) e 2(r—9) .
U(t, ) Fek- - — dzdr.
( — r) = r—38

We apply (3.3) with an €* € (0,1) such that (1 —&*)A* = A** and use (3.8) to obtain

_,\ (z=2)2  _(1—e)A*(z-y)?
|%(t,7)| < CoF. )// A A B— P
z 9Fe-x(y zar
i R (t—r)5" r—s
A" (z—y)?

2(t—3s)

e
< CroFe-x-(y)

where in the last estimate we made us of (¢ — s)*/2 < T'/2. Since we can replace z by z’
in this estimate (3.15) yields

A**(z-y)? A** (2! —y)?

e 2(t—s) + e_ 2(t—s)

A 2
By % B(z) — 1 * &(z')| < Culz — 2'|*e™ 2 Fox-(v) B :

.

and this finally gives (3.11). : |




Lemma 3.4. Fiz (s,y) E[O,T) x R. Then ®(t,z,s,y) is continuous in (t,z) € (s,T] x R.

Proof: Since ® = ) &, is uniformly convergent on compacts of Ar it suffices to prove the
continuity of the functions @,,(-,,s,y). Clearly ®; is continuous on Ap. We use this to
prove that ®,,,.; = ®; x ®,, is continuous in the fixed point (¢,z). Let 0 < § < (¢ — s)/4.
For |t —t'| < § and z,z’ € R we then have '

: : t—5 '
' .'|@m+1(t')$’37 y) -@m+l(t’a$,737y)( = | / / <I>1(t,a:,r, z)(I)m(ra z,s,y)dzdr
] R :

¢
+/ /@1(t,m,r,z)@m(r,z,s,y)dzdr
t—s JR
(3.16)

. ’
- / / o,(t, 2,1, 2)®n(r, 2, 8, y)dzdr
s R

tl
- / / &, (t, 2,1, 2)Pn(r, 2, s, y)dzdr|.
L JHU-6JR

We are going to estimate the four terms, denoted |A; + A2 — A3 — A4/, on the right hand
side separately. The same arguments leading to the estimate that follows (3.7) show that

_A (z=2)2  _ AT(z=w)?
2(t—7) e 2(r—s)
|As| < CLE™TL, —dzdr
— £ +1A 3—m
t—5 (r—s)7=7
m+1 A <r-~)2
F€m+1/\, T2t V3.
< —7"0 " = ———dzdr = Cy(y)Vd
3) t—5

(In the second line we used t — ¢ — s > t—g—s) A trivial modification of this estimation
yields |A4] < Ca(y)V4. (Note that Ca(y) only depends on y, but not on (¥, z’), as long as
|t —t'| < §.) So for any given £ > 0 we can choose § € (0,%72) such that |A — A4 < €/2.
With this fixed § we are now left to estimate the term |A1 As| in (3.16). We assume

t' <t (the case t' > t is treated similarly): - ‘

t'—§
|A1—A3| < / / |[<I>1(t,a:,r,z)—<I>1(t’,x’,r,z)]@m(r,z,s,y)ldzd'r
38 R
pt—6
-I-/ J |®1(t, z,7,2)Pm(r, 2, 5,y)|dzdr. (3.17)
t'—6/R

Estimate the first integral in (3.17) by replacing ¢’ — § by ¢t — 6, and observe that the
integrand goes to 0 as (¢',z’) — (t,z). Moreover, in view of (3.4) this integrand is uniformly
dominated by cFex(2)|®m(r, 2, 5,y)| whenever ¢’ is such that |t —t'| < /2, and z,2’ € R.
Thus the dominated convergencé theorem implies that the first term in (3.17) goes to 0, as
(¢, x") — (t, ), and the convergence of the second term to 0 is trivial. Thus |A; — A3| < e/2
for all (t/,z’) sufficiently close to (¢,z). In view of our former estimate [A; — A4| < &/2
this proves the lemma. : [ |
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Observe that Proposition 2.1 follows from Lemma 3.1 to Lemma 3.4. We are now
going to prove that the function p defined in (1.5) is a fundamental solution to (1.1a). We -
need the following well-known result which summarizes some facts about so-called volume
potentials. For proofs we refer to [F1, pp. 7-13].

Lemma 3.5. Let 0 < tg < T and f € C([to,T] x R) be locally Hélder continuous in z,
uniformly with respect to t € [to, T). Moreover assume |f(t,z)| < ce® with h < TRy
Then the volume potential of f, '

| Vit z) = /t:/n Zy-r(z — 2) f(r, 2)dzdr

is continuous on [to, T] X R and C%? on (to,T] x R. The 8, and 82 derivatives of V¢ can
be calculated by interchanging them with the above integral. Moreover,

¢
O Ve(t,z) = f(t,z)+ ft /]R 0:Zy_r(z — 2) f(r, 2)dzdr.

Proof of Theorem 2.3: First we are going to show, that p(t,z, s, y) given by (1.5) satisfies

“for fixed (s, y) the equation (L — 8;)p = 0. Choose tg € (s,t) and notice that the properties
(a,b,c) stated in Proposition 2.1 are exactly such that the function f (t,z) = ®(t,z,s,¥),
defined on [to, T] x R, satisfies the conditions of Lemma 3.5. Thus the volume potential

tp '
Va(t,z) := f/ Zy_r(z — 2)®(r, 2,8, y)dzdr
t/ R

is C12, ahd the assertion of Lemma 3.5 shows that
, t ~ ,
(L-0,)Vs(t,z) = // (L — 84) Zs—r(z — 2)®(r, 2, 8,y)d2zdr — ®(¢,z,3,Y)- (3.18)
: J Lo R

A simple application of Lebesgue’s dominated convergence theorem shows that we also
have N

to ' to ‘ . :
(£-0) [ [ Zurlo =200,z 5,y)dzdr = | (€ =8)2-r(a - 005,25, v)azdr,
s JR s JR ’

and thus we can replace to by s in (3.18). Now (L —8;)Zi—r(z—2) = b(t, )0z Zs—r(z—y) =
®1(t, z, s, y), so with (1.5) and the r.h.s. of (3.18) (to replaced by s) we find

(L—at)p=@1+®1*<1>—¢>=0

So property (F1) of a fundamental solution holds. To infer (F2) we use that Zs_s(z —y)
is a fundamental solution to 8;u = 302. Hence

lim [ p(t,z,s,y)f(y)dy = lim / Zy—s(z —y)f(y)dy
t.LS R tJ,S R

——

t . _
+ hm/Rl/S '/]RZt_,.(:r—z)@(r, z,8,y) f(y)dzdrdy

tls
=: f(z) + 1tl¢m I(t,z,s) L (3.19)
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Recall that |f (y)[ < cexp{hy2} for a suitable h > 0. Using property (c) of Proposition 2.1
for this h and also (3.8) we find :

Mz=2)2% A (z-y)?

_ I TE =) e 2(r—s) 2hy2
//thrx 2)®(r,z,8,9)f y)|dzdr<C’1// G- s e“" dzdr
A" (x—y)
< Cope™ "mimo g2hy’, (3.20)
This shows that in (3.1»9) we have lim, 1o I(t,z,8) = 0, so (F2) is indeed satisfied. u

Corollary 3.6. Under the assumptions of Theorem 2.3 for every h > 0 there is a c(h) >0
such that

- z—y 2
eV < ol e (321
Ip(t, z, s, 9)| < cf )me . 21)
Proof: From the definition (1.5) of p we have
plt.5,0, 0] < Zemsle =)l + [ [ [Zimrlo = D00z s p)ldedr. (322

The second term can be estimated as in (3.20) with f(y) =1 < ey’ for all b > 0, i.e. we
can choose h > 0 in (3.20) arbitrary small. By (2.3) and A > A* (3.22) implies (3.21). ®|

Remark. The estimate (3.21) will be convenient for us in the following but it is not
optimal. Recall that we derived the factor exp hy? in (3.21) from a factor expcly|?” in the
proof of Lemma 3.2 with a suitable (but not arbitrary small) ¢ > 0.

Proof of Theorem 2 4: By assumption |ug(y)| < ced¥’ with & < 3. Write § =: E_T with
A < 1, and choose A\* € (A, 1). In view of (3.21) the function u in (2 5) is well-defined on
(0,T] x R. By the definition of p in (1.5) and with (3.1) we can write it as

u(t, z) = /R Zu(w - y)uo(y)dy + /R /0 /R Zums(z = 2)0(r,2,0,y)uoly)dzdrdy.

In view of (3.10) also d(r,z) := [ ®(r,2,0,y)uo(y)dy is well-defined and it is simple to
check that we can apply Fubini to obtain ‘

u(t,x)z/RZt(:r—y)uo(y)dy +-[)/E{Zt_r(xfz)ﬁ(r, z)dzdr. (3.23)

Using |uo(y)| < ce®”’ | and the estimate (2.3) we get

)\'(z—y)2 -

e_ 2% Syg 66$2
e’ dy < 02;75,

o)l <0 [

(3.24)




with § > & so close to 6 that § < % Clearly 4(t, a:) is continuous in (0, T xR. Furthermg.)vré', .
the local Hélder continuity (3.11) of @ implies Co Cree D

Iﬂ(t, IB) - ﬁ(ta$')| S/]R. |@(t7$a 0, y) - (P(t,g;" Ovy)l ) IUO(y)Idy

e_— Aam(:c_y)2 +e_ A#‘(;:_y)Z :
<C _ & dy?
>~ L3 /]R I.’L‘ z I +(3=7)/2 —¢€ dy

< C4|.’E - x,|d7

for any t > to > 0 and |z|,|2']| £ K . So d(t,z) is also locally Holder continuous in z,
uniformly w.r.t. t € [to, T]. With Lemma 3.5 we conclude '

¢ t ‘

(L—) / / Zy (2= 2)i(r, 2)dzdr = / / (L—8))Zs_r (v—2)i(r, 2)dzdr—a(t, z). (3.25)
to R T to R .

(3.1) combined with (3.24) implies that the functions (r,2) = 0% Zy—p(z — 2)0(r, 2) (With

n = 0,1,2) are integrable on (0,%9] X R (because ¢ > %), and they are dominated by

-integrable functions, locally uniform w.r.t. (2, z). Thus Lebesgue’s theorem implies that

to to
(L — 0%) /0 /]RZt_r(rL' — 2)(r, 2)dzdr = /0 /]R(L - 6¢)Zt_r(x — 2)4(r, z)dzdr. (326) -
Combining (3.25) and (3.26) yields |
(L - 0u(t,9) = [ (L-00Zi(z - puo(u)dy
R .
+ A/}R(L - 3t)Zt_r(x — 2)4(r, 2)dzdr — 4(t, x)
= /]R[él(ta z, 0, y) + ®1 * @(t3 z, 07 y) - Q(t, z, 07 y)]UO(y)dy =0.

To summarize, u is C*2 on (0,T] x R and d;u = Lu. It is well-known that the first
term on the r.h.s. of (3.23) together with the boundary values ug(z) defines a continuous
function on [0, T] x R. Moreover, the estimate (3.20) implies (with I introduced in (3.19)
and f = ug) that |I(¢,z,0)| < Cst/2¢h®” with a suitable h > 0. This shows that the second
term in (3.23) goes to 0 as (¢, z) goes to a boundary point (0, zo), which implies that u is
indeed continuous on all of [0, 7] x R. That u is of quadratic exponential growth for any
parameter § > & follows from (3.21) and condition (B):

_Atz-y)?
e 2t 5,2 .F2
i’LL(t,iL‘)' < /l;‘p(tvmvo’y)HU’O(y)ldy < Cl/;},__m_—eay dy < CQ 667; .

-

It therefore remains to show uniqueness of u, which can be done by the maximum
principle. Indeed, the uniqueness assertion of Corollary 4.2 in Section 6 of [F2] applies
without modification to our situation. ' |
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4. Remarks on extensions and on stoél;ast-ié“PDE’s.

Informal discussion of ertensions. Recall that our proofs are mainly based on two es-
timates. The first one is (3.1) for the parametrix, and the second one is (3.3) which
implies the estimate (3.4) for the singular integral kernel ®;. The first estimate gener-
alizes to d dimensions for the parametrix Z(t,z, s,y) which is associated to the operator
A= %Z:Fl a;5(t, £)0yi0yi, provided A is uniformly elliptic and has bounded, Hélder
continuous coefficients a;;, see e.g. [F1]. The second estimate (3.3) easily extends to d di-
mensions. Therefore it is quite clear that our proofs go through for these extensions. When
we add a Hoélder continuous, Holder growing potential to our equation, i.e.

a—u—-ly{:a--(t x)—qz—u——i—ib-(t :c)—(?i-%c(t x)u | (4.1)
ot _2“:1 B e S ’ '

we have to estimate the term c(t,z)Z(¢, z, s, y) similarly as we did for b(¢, )0, Z:—s(x — v).

Clearly this additional estimate is easier than the previous one because Z is less singular

than 0;Z. This indicates that our results can be extended to equations (4.1) with co-

- efficients having the before mentioned properties. The technical details will be given in
(Kr].

Connection to stochastic partial differential equations. Our motivation for this work orig-
inated from Cauchy problems of type (1.1) where the drift b is not an ordinary function,
but is a continuous random field on [0,T] x R. This means that the continuous function
(t,z) — b(t,z,w) depends on an additional “random parameter” w. It is natural to con-
sider (1.1) for each fixed w separately, and this essentially reduces the stochastic problem
to a non-stochastic one.

Example. Let (B}, B?);>¢ be a two-dimensional normal Brownian motion and define the
time independent field b(z,w) := Bl(w) for z > 0 and b(z,w) := B2 (w) for z < 0.
The sample functions of this field are nowhere differentiable but they are locally Hélder
continuous for every exponent a € (0, %) Moreover they are two-sided unbounded and
for B > 1 they satisfy the global Holder type growth condition |b(z,w)| < c(w)(|z|® + 1).
Notice that this example meets all the requirements that we made in this paper.

Equations of type (1.1a) (in 3-dim. space with random b) arise in the theory of advection-
diffusion phenomena and in turbulent diffusion, see e.g. [Ba],[CC],{CF],[HM], and references
given there. A related example comes from the filtering theory of diffusion processes: the
so-called robust Zakai equation is a parabolic differential equation with random coefficients
[Da]. The right side of (1.1a) defines a so-called random operator and such operators also
appear in stochastic partial differential equations with additional singular noise terms.
Since such equations are frequently investigated in the mild sense [DZ],[DP], the existence
of a fundamental solution is of basic interest in that context. Two recent examples with
random fundamental solutions are discussed in [LN] and [ALN].

-
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