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1. Introd uction

(l.la)8u 182u 8u
8t = 2" 8x2 + b(t,x) 8x

subject to the continuous initial condition "

Let T > 0 be fixed and let u be a function on [0, T] x lR. We are going to study the
differential equation

u(O, x) = uo(x), x E lR. (1.1 b)

We assume that the drift b in (1.1a) is locally Hölder continuous of exponent a E (0,1],
and at most Hölder growing of exponent ß E (0,1), while Uo is assumed to be of quadratic
exponential growth (the precise conditions are given in Section 2). Under these conditions
we show that (l.la) "has a fundamental solution (Theorem 2.3), and this gives rise to a
unique solution of (1.1) in the class of functions of quadratic exponential growth (Theorem
2.4). The interesting limiting case ß = 1 (Lipschitz growth) cannot be treated by our
approach, for details see the remark that follows Lemma 3.2.

Remark. The connection of (1.1) with stochastic ordinary differential equations [F2] indi-
cates that these results had to be expected. Indeed these results are known under additional
differentiability conditionson b, see e.g. [Be],(El],[E2]. But these conditions rule out a num-
ber of basic examples which arise naturally in the context of stochastic partial differential
equations (see the example gi~n in Section 4). The case with (two-sided) unbounded, only
Hölder continuous drifts b has apparently not been treated in the literature.

* Supported by the Deutsche Forschungsgemeinschaft DFG.
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(1.2)

Let us now recall the basic idea of E. Levi's parametrix method [Le],which we employ
in the "following.We do this in informal way,:because we Only want to motivate equation
(1.6) which is the starting point for us later. Assume that u solves (1.1a). We write this as

8u '
8t =Au+~,

with A = ~8; and ~ := b8xu. Under suitable conditions on ~ and on u(s) := u(s,.) the
theory of strongly continuous semigroups shows that for t > s ~ 0 we have

u(t) = e(t-s)Au(s) + [ e(t-r)A<I>(r)dr,

where etA operates on functions by convolution with the "parametrix"

(1.3)

(1.4)

Putting informally u( s, x) = Oy(x) --"the Dirac delta function at fixed y E lR - the repre-
"seritation (1.3) shows that the fundamental solution p(t, x, s,y) of (1.2) should satisfy

p(t, x, s, y) = Zt-s(x - y) + 1.% Zt-r(x - z)<I>(r,z)dzdr. (1.5)

Denoting L = ~8; + b8x and applying L - 8t to this equation shows that ~ (which also
depends on sand y) should satisfy the Volterra type equation

~(t, x, s, y) = <Pl(t, X, s, y) +ltr <Pl(t, x, r, z)<P(r, z, s, y)dzdr, (1.6)" siJR
with singular integral kernel

(1.7)

Subsequently we will show that (1.6) has a solution <P which defines a fundamental solution
by (1.5), and this in turn gives rise to the unique solution of (1.1).

Remark. For bounded coefficients the construction of a fundamental solution based on
the parametrix method relies heavily on this boundedness, see e.g. [F1]' [KO], [E2]. We
will see that basically the same construction works for Hölder growing drifts. In this sense
our approach is elementary. But there are some non obvious modifications in the proof
(they are discussed in an informal way at the beginning of Section 3). We stress that these
modifications, with only minor changes, also go through in the d-dimensional case, when
we add a Hölder growing potential, and when the second order term in (1.1a) is replaced
by a uniformly elliptic operat.orwith bounded, Hölder continuous coefficients, cf. Eq. (4.1)
and its discussion in Section 4. (The details of these generalizationswill be given in [Kr].)
We restriet our discussion here to Eq. (1.1) which exhibits all the basic difficulties. This
makes the arguments more transparent, and keeps the technicalities at aminimum.
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, The paper 'is organized as follows. In Section 2 we give the basic definitions and state
the main results. Proofs and some more technical properties are postponed to Section 3. In
the final Section 4 we make some remarks on the extension of our results, and we discuss
their relation to stochastic parabolic differential equations.

2. Statement of results'

Throughout this paper ,we fix a E (0,1], ß E (0,1) and T > O. For technical reasons it will ,
sometimes be necessary to consider time points ta E [O,T). A function / on [ta, Tl x lR is
calledlocally Hölder continuous in x with exponent a, uniformly with respect to t E [ta, Tl,
if for each bounded set K c lR there is a constant CK such that

I/(t, x) - I(t, y)1 ~'cKlx - ylO, Vt E [ta, T], Vx, y E K.

We say that I is globally Hölder bounded with exponent ß if

I/(t, x) I ~ cf(lxlß + 1), Vt E [ta, Tl, Vx E lR,

(2.1a)

(2.1b)

with a suitable constant Cf. For the rest of this paper we assume the following on (1.1):
(A) The drift b is a continuous function in [0,T] x lR, which is locally Hölder continuous in

x with exponent a, uniformly with respect to t E [0,T], and globally Hölder bounded
with exponent ß.

(B) Ua is a continuous function of quadratic exponential growth (with parameter h > 0),
Le. for some Ca ~ 0 the estimate IUa(x) I ~ caehx2 holds for all x E lR.

Our first result concerns Equation (1.6). Define the convolution type m~ltiplication

J * g(t, x, s, y):= 1.% J(t, x, r, z)g(r, z, s, y)dzdr

for functiorls I, 9 on ~T := {(t, x, s, y) E lR4 : t,s E [0,T], t > s} which are such that the
(Lebesgue) integrals exist. Then we can write (1.6) as <I>= <I>1 + <I>1 * <I>, and m iterations
of this equation give <I>= <I>1 + <I>i2 + ... + <I>im + <I>im * <I>. The following key proposition
states that a solution <I>to (1.6) can indeed be obtained by taking m to infinity.

Proposition 2.1. Assume the drift b satisfies (A). Then <I>m := <I>im is well-defined for
alt m ~ 2, and a pointwise solution of (1.6) is given by the Neumann series

00

<I>(t;x,s, y) := L <I>m(t,x, s, y),
m=l

(2.2)

which converges uniformly orL_~ompact sets K C ~T. <I>has the following properlies:
(a) Fix (s, y) E [0, T) x lR and s < ta < T.' Then <I>(t,x, s, y) is locally Hölder continuous

in x' for every exponent a E (0, a) " uniformly with respect to t E [ta, T] .
(b) Fix (s, y) E [0,T) x R. Then <I>(t,x, s, y) is continuous in (t, x) E (s, T] x IR.
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(c) For any)\* E (0,1) and any h > O'th'er~.exists a' constant 0 = O)..*,h > 0 such that

A*(:z:-y)2
e- 2(t-s) 2

I<l>(t, X, s, y) I ::; 0 . ehy•t-s
(2.3)

In (2.3) we tacitly assume that this estimate holds on the full domain ßT. Subsequently
we will suppress this domain whenever there is no danger ofconfusion. We remark that the
properties (a,b,c) imply that the function p defined in (1.5) is sufficiently smooth, and that
one can interchange derivatives with the integral in (1.5). It is then not hard to conc1ude
that p isindeed a fundamental solution to (1.1a). In the following we say that a function
(t, x) H g(t, x) is 01,2 if 9 has continuous partial derivatives 8;g, 8xg, 8tg on its domain
of definition.

Definition 2.2. Let L = ~8; + b8x~ A fundamental solution of 8tu = Lu is a function p
on ßT with the following two properties:

(F1) Fix (s, y) E [0,T) x lR. Then p(.;",s, y) is 01,2 and satisfies (L - 8t)p(t, x, s, y) = 0
.' for all (t, x) E (s, T] x lR.

(F2) For every continuous function f of quadratic exponential growth and all x E lR

lim r p(t, x, s, y)f(y)dy = j(x).
t.!.s JR (2.4)

We remark that property (2.4) is often required only for bounded functions f, but we need
this property for our unbounded initial conditions Uo.

Theorem 2.3. Let Z and <l>be given by (1.4) and (2.2), and suppose that b satisfies (A).
ThenEquati0T1: (1.5) defines a fundamental solution p 9f 8tu = Lu.

As expected the fundamental solution p gives rise to the solution of ~he corresponding
Cauchy problem. Recall that a continuous function u on [0,T] x lR is called a solutionto
the Cauchy problem (1.1) ifu is 01,2 on (0, T] x lR and satisfies (1.1a) on this domain; a'nd
moreover (1.1b) holds.

Theorem 2.4. Assume that b satisfies (A) and that Uo 'satisfies (B) with h < 2~. Then

u(t,x) := Lp(t,x,O,y)uo(y)dY, (t,x) E (O,T] x lR, (2.5)

and u(O, x) := uo(x), x E lR, is well-defined, and u 'is Cl solution to the Cauchy prob-
lem (1.1). This solution is unique in the dass of functions which are of some quadratic
exponential growth in x, uniformly with respect to t E [0, T].

Observe that the unbounded:.,drift b in (1.1a) does not decrease the natural maximal exis-
tence interval [0,T] for the solution u: For b = 0 the special solution IR Zt(x - y)ehy2 dy to
(1.1a) does not explode at t = T only if h < 2~' and under this condition also a solution
to (1.1a) - with unbounded b - exists for all t E [0,T].

4



3. Proofs
- -

The basic problem with the construction of a fundamental solution via <P= L: <Pm is the
convergence of the series L: <Pm given in (2.2). This is because the <Pm contain products
of the unbounded drift b, so the usual sup-norm estimates on these terms do not work.
The key idea to prove the convergence of I:<Pm is to estimate the terms <Pm = <PI * <Pm-I
successively as follows.First fix A.E (O~ 1) and recall the well-known estimates

A(x-y)2
. . e- 2(t-s)

18;Zt-s(x - y)1 ::; c.;\,n n+l' n E lNo,
(t - S)-2

(3.1)

which hold for suitable constants c"\,n' Then fix c E (0,1) and notice that (3.1) and our
assumption Ib(t, x)1 ::; cb(lxlß + 1) imply that <P1(t, x, S, y) = b(t, x)8xZt-s(x - y) satisfies

(1 ) A(x-yJ2
A(x-y)2 e - -e: 2(t-s)

1<P1(t, X, s, y)1 ::; c.,\,lcb(lxlß + l)e-e: 2(t-x) t- s . (3.2)

Clearly the product of the first two functions is bounded in X. More precisely we have the
/following estimate which plays a key role in the present paper,

and which followsby a simple extreme value consideration. Hence (3.2) yields

(1-e)A(x-y)2

1<P1(t, x, s, y)1 ::; ct[(lyl + k(cA))ß + l]_e _2_(t_-S_) -

t-s

(3.3)

(3.4)

where Cl = C"\,lCb depends on A but not on c, and k(cA) := (2~[)1/2. Observe that we
replaced the growth estimate (3.2) for <P1 in x by the same type of estimate (3.4) in y. The
point is now that this replacement successively applies to I<pml =1<p1 * <Pm-li, but this
comes at the cost of a factor c in the exponential. We will see in the proof of the following
lemma that such factors indeed show up successively, so instead of using a fixed c, we
better choose a sequence cm > Ö such that Il(l - cm) >.0 (which holds iff L:cm < (0) ..
Since the bound (3.3) blows up as Cm goes to zero it is not obvious that L: <Pm converges,
but indeed it does, as we show in Lemma 3.2. We will frequently use the abbreviation

Fe:.,\(Y) := (lyl + k(cA))ß + 1.

Lemma 3.1. Letc,A E (0,1), definec1 := c and choos€€m > 0 such thatL::=l cm < 1, so .
.,\* := A Il:=l(1 - cm) > O. Suppose the conditions of Proposition 2.1. Then the functions .
<Pm = <pim are well-defined on 1lT, and there is a constant H = H(c, A) > 0 such that

.-":_R _

A * (x_y)2
Hm e- 2(t-s)

\<pm(t, x, S, y)\ ::; r(m) F;:.,\* (y) ~ '
"2 (t-s) :.1

5
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Proof. We first show by induction, that cI>mis well-defined and that there is a constant H
such that, with Am := AIlj=l (1 - Cj ),we have

, ).m(x-y)2 m
Hm e 2(t-s) rr 21r 1/2

lcI>m(t,x,s,y)1 ~ r(m) ( )!!=E!. (T) Fe,>..,(y).
2 t - S 2 i=1 A~

(3.6)

For m = 1 this estimate follows from (3.4), with H = Cl(A1/2)1/2. Now suppose (3.6) is
true for m ~ 1, then this estimate and (3.4) imply

(3.7)

Now Fc.x(z) ~ Izlß + k(cA)ß + 1 .:::;c2(lzlß + 1), with C2 := k(cA)ß + 1. This estimate and
/(3.3), with c replaced by cm+1, applied to (3.7) gives

Now we use the elementary fact that for a, b E (-00, ~) and "y > 0 we have

--,(x_%)2 -y(z_y)2 --,(x_y)2

11 e- 2(t-r) e 2(r-s) 21r / r(~- a)f( ~ - b) e- 2(t-s). ------dzdr = (_)1 2 2 2 _
s lR (t - r)a (r - s)b "y r(3 - a - b) (t - s)a+b-3/2.

In particular cI>mis well-defined. This proves (3.6) with H := Cl maX{(A1/2)1/2, c2r(1/2)}.
With k(ciAi) < k(cmA*), i :::;m, and (3.6) we finally derive our assertion (3.5).- •

Lemma 3.2. Assume the drift b satisfies (A). Then the series (2.2) converges uniformly
. in compact subsets of ßT, the limit cI>satisfies the estimate (2.3), and <P= <P1+ <P1* <P.

Proof: Consider the m-dependent factors in (3.5) and use (lai + Ibl)m:::; 2m(lalm + Iblm)
and (lai + Ibl)ß :::; lalß + Iblß toestimate- .,

~ Hm F~A*(Y) < ~ C1Hii Imß ~ C1Hi[ ( . *)ß ]m
LJ f(m) ( _ ) 1-;= - LJ f(m) y + LJ r(m) k cmA + 1 ,
m=l 2 t s m=l 2 m=l 2

6
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where G1 := 1'-1/2 and H1 :=. 21;1/2H. 'We estimate the two series separately, and we
denote by G1,G2 etc. suitable constants. r(m)2) ,,>'(m!)1/2(27l")1/4m-1/4(~)(m-1)/2 gives -

~ G1H!! I Imß < ~ G2(2H1)m I Imß1/4
LJ r(!!!) Y - LJ (m!)1/2 Y m
m=l 2 m=l - -

.. ~ C2(~1 O~)l;~lylmßr)1/2(~1 (~~4)2) 1/2
=.C3~H2IyI2ß ~ c(h)ehlyI2. -

The last estimate holds for every h> 0 and a suitable constant c( h) beeause ß < 1. We
estimate the second term in (3.9) for the special sequence Cm := C .m8-!, where 8 > 0 is
chosen such that 8 -l/ß < -1 (so Lcm< (0). Then

-I

..' ..'"

with H3 := 4H1[(4ßTI)..*)ß/2 + 1]. Combining the inequalities for the two series in (3.9),
we eventually get, with a suitable constant C(h):

00 _ >.. * (x_y)2
~ e 2(t-s) h 2

I<p(t, x, s, y)1 ~ LJ I<pm(t, x, s,y)1 ~ C(h) t _ s e Y •

m=1

(3.10)

To summarize: <Pis well-defined on ßT and (2.3) holds. Now let K C ßT be compact.
Then inf{t - sl(t, x, s, y) E K} > 0, so (3.9) implies theuniform convergence of L:<Pmon
K. Finally notice that <P1* <Pis well-defined because by (3.10) we can estimate <P1* <Pin
the same way as we estimated <P1* <P1in the proof of Lemma 3.1. Moreover, (3.10) shows
that Lebesgue's dominated convergence theoremapplies, so we can interchange summation
and integration (Le. convolution) to obtain

00 00

<P1+ <P1* <P= <P1+ <P1* ~ <Pm= <P1+ ~ <P1* <Pm-= <P.
m=1 m=l

•
Recall from the proof that )..* = )..I1:=1 (1 - cm) withcm = c . m8-*. This shows that
)..* < )..can be chosen arbitrary close to ).., by the choice of a suitably small c > O. Since
we can choose )..E (0,1) as we like this implies that A* < 1 can get arbitrary close to 1, as
claimed in part (c) of Proposition 2.1.

Remark. The estimate (3.9) is also valid if we put ß = 1, and it is sharp for y = O. But in
the limit ß /' 1our choice of cm yields Cm= ~, and thisviolates the condition LCm < 00,

i.e. we have I1(1 - cm) = O. Therefore we have to choose another (summable) sequence
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cm> '9 to inv~stigate whether(3.9) converges. We write this Cmask and observe that'
I:~ < 00 implies lim inf 8m = O.The root test applied to th~ sec~ndmsumin (3.9) shows
that this sum must diverge. Therefore our method of estimation based on (3.3) d.oes not
allow us to conclude that I: l<1>ml converges incase ß = 1. The situation does not change
if in (3.9) we use the slightly smaller bound (3.6) instead of (3.5). ..

Having established that <1> is a well-defined solution of (1.6) the next step is to show
that p defined in (1.5) is sufficiently smooth. This smoothness will follows essentially from
two continuity properties .of <1>. We begin wi~h the first one, the local Hölder continuity,
as stated in part (a) of Proposition 2.1. In fact we will need a slightly stronger result
than this continuity for the Cauchyproblem, in order to handle the unbqunded domain of
integration in the y-variable:

Lemma 3.3. The function x 1---1- ~(t, x, s, y) is locally Hölder continuous as follows: For
K, h > 0, & E (0, a), .,\** E (0, .-\*), and'Y := a - & there is a constant C > 0 such that

, ..., A e
I~(t, x, s, y) - <1>(t,x , s, y)1 :S .Clx- x IQ

for all y E lR, t > s ~ 0' and lxi, Ix'l :S K.

A ** (x_y)2 A ** (x' _y)2
2(t-s) + e 2{t-s)

(t - s)(3-/)/2
(3.11)

Proof: It suffices to prove (3.11) for each term of ~ = ~1 + <1>1 * ~ separately.
Hölder continuity for ~1: Abbreviate ~1(X) := ~1 (t, x, s, y). We distinguish two cases,

the first case is Ix-x'12 > t-s. This gives (t-S)(1-/)/2 :S IX-x'\1-1 = Ix-x'lalx-x'11-a
with 1 - a > O.So (3.4) yields

Interchanging x with x' and adding the two estimates yields

A*(X-y)2 A*(x'_y)2
2(t-s) + e 2(t-s)

3-"'Y(t - S)-2
(3.12)

Now Fc>"*(Y) :S c(h)ehy2 (for any h > 0) gives (3.11). Next we consider the second case,
Ix - x'12 :S t - s. Here we write ~1(X) - ~1(X') as the sum of the two terms

~1,1(X, x') := [b(t, x) - b(t, x')]8xZt-s(x - y)
~1,2(X, x') := b(t, x') [8xZt-s(x - y) - 8x' Zt-s (x' - y)],

and estimate them separately. The Hölder continuity of b, (3.1) and Ix - x'12 :S t - s give
an estimate for <I>1 1:,

A(x-y)2 A(x-y)2e 2(t-s) _ e- 2(t-s)

1<I>1,1(X,x')1 :S C41x - x,\a :S C4\x - x'la 2-"'Y •

t-s (t-S)-2-

8
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To estimate <I>i,2 observe that -(z - y)2 ~ - ~; (x' - y)2,. +, ~~~* (x' _z)2 holds for

all real x,x', y, z. For z E (~, x') and Ix - x'I2 ~ t - s thi~ \inplies 'exp{ -A ~(i!~;r:'~.
Cs exp{ -A* (;;;!2)2}. Using this, the mean value theorem and (3.1) (for n , 2) we,find

, t

'>. * (x' _y)2
e- 2(t-s)

18xZt-s(x - y) - 8x' Zt-s (x' - y)1 ~ C61x - x'l (t _ s)3/2 .

b(t, x') is bounded because Ix'l ~ K, and with Ix - x'I2 ~ t - s the formerestimate implies

>. * (x' _y)2 >. * (x' ...:..y)2
e - 2(t-s) A e- 2(t-s)

1(l)1,2(X, x') I ~ C6Ib(t, x') IIx -x'I (t _ s)3/2 ~ C71x - x' Iet: ~ .(t-s) 2

(3.14)

Combining ,(3.13) and (3.14) implies (3.11), so the two cases show that <P1 satisfies (3.11).
Hölder continuity for <P1 * <P: Replacing h by h/2 in (3.10) and combining this with

(3.12) yields

I<PI * <p(x) - <PI * <p(x') I ~ [L I<PI (t, x, r, z) - <PI (t, x', r, z) 11<p(r, z, S, y) Idzdr

~ Cslx - x/l&ehy2 /2[(W(t,x) + w(t, x')], (3.15)

with the abbreviation
>. * (x_::)2 >. * (z_y)2

11 e- 2(t-r) e- 2(r~s)

w(t, x) := Fc>"* (z) ~'.' dzdr.
s lR (t-r) 2 r-s

We apply (3.3) with an e* E (0,1) such that (1 - e*)A* = A** and use (3.8) to obtain

t _ >.* (x_z)2 _ (l-e*)>. * {z_y)2

1\l1 (t, x) I ~ CgF
c
* >..* (y) rr, r e 2{t-3s~'Y e 2(r-s) dzdr 'JsJlR (t - r)-2- r - s

>. ** (x_y)2e- 2(t-s)

::; C1oFe* >..* (y) . ~,
(t-s) 2

where in the last estimate we made us of (t - s) 1/2 ::; TI/2• Since we can replace x by x'
in this estimate (3.15) yields

') I I' '1& h 2/2, () e1<P1* (l)(x) - <PI * <p(x ::; Cu x - x e y Fc>..* y

and this finally gives (3.11).

9
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Lemma 3.4. Fix (8, y) 'E'[O, T) x lR. Then iP(t, x, 8,y) is continuous in (t, x) E (8, 'T] X lR.

Proof: Since iP = L: iPm is uniformly convergent on compacts of ~T it suffices to prove the
continuity of the functions iPm(.,., 8, y). Clearly iPI is continuous on ~T. We use this to
prove that iPm+1 = iPI * iPm is continuous in the fixed point (t, x). Let 0 < 8 < (t - 8)/4.
For It - t'l < 8 and x, x' ElR we then have

.. t-8

l<I:>m+l (t, x, 5, y) - <l:>m+l (t', x', 5, y) I . 11. Im. <1:>1(t, x, r, z)<l:>m(r,z, 5, y)dzdr

+ rt r iPI(t,x,r,z)iPm(r,z,8,y)dzdrJt-8 JJR
, 8- 1.t - Im. <l:>1(t',x',r,z)<I:>m(r,z,5,y)dzdr
t'- r r iPI(t',x',r,z)iPm(r,z,s,y)dzdrl .. Jt'-8 JJR

(3.16)

/We are going to estimate the four terms, denoted lAI +A2 - A3 - A41, on the right hand
side separately. The same arguments leading to the estimate that follows (3.7) show that

,X" (.::_y)2
e- 2(r-s)

---3_-m-dzdr
(r - 8)-2-

C pm+l ..(y) l.t 1-,X :~:.=-:t< I €m+l,,\ e dzdr = C2(y)V8.- (t-S) 3-;m t 8 JR t - r-2- -

(In the second line we used t - 0 - 5 2: t;s.) A trivial modification of this estimation
yields IA41 :::; C2(y)V8. (Note that C2(y) only depends on y, but not on (t', x'), as long as
jt - t'l < 8.) So for any given e > 0 we can choose 0 E (0, t"4S) such that IA2 - A41 :::;e/2.
With this fixed owe are now left to estimate the term lAI - A31 in (3.16). We assume
t' :::;t (the case t' 2: t is treated similarly):

t'-8
IA1 - A31 < 1. 'L1[<1:>1(t, x, r, z) - <1:>1(t', x', r, z) ]<I:>m(r,z, s, y) Idzdr

+ [~ll<1:>l(t, x, r,z)<I:>m(r, z, s, y) Idzdr. (3.17)

Estimate the first integral in (3.17) by replacing t' - 0 by t - 0, and observe that the
integrand goes to 0 as (t', x') -+ (t,x). Moreover, in view of (3.4) thisintegrand is uniformly
dominated by cP€,,\(z)l~m(r, z, 5, y)1 whenever t' is such that It - t'l :::;0/2, and x, x' E IR.
Thus the dominated convergence "theorem implies that the first term in (3.17) goes to 0, as
(t', x') -+ (t,x), and the convergence ofthe second term to 0 is trivial. Thus IAI-A31 ~ e/2
for all (t', x') sufficiently dose to (t, x). In view of our former estimate IA2 - A41 ~ e/2
this proves the lemma. •
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(3.18)

Observe that Proposition 2.1 follows from Lemma 3.1 to Lemma 3.4. We are now
going to prove that the function p defined in (1.5) is a fundamental solution to (1.1a)~We"' "
need the following well-known result whichsummarizes some facts about so-called volume
potentials. For proofs we refer to [F1, pp. 7-13].

Lemma 3.5. Let 0 ~ ta < T and 1 E C([ta, T] x R) be locally Hölder continuous in x,
unilormly with respect to t E [ta,T]. Moreover assume I/(t,x)1 ~ cehx2 with h < 2(T:'to).
Then the volume potential of I,

"Vi(t, x) :- rt r Zt":"r(x - z)/(r, z)dzdr
JtoJJR

is continuous on [ta, T] x :IR and C1,2 on (ta, T] x R. The 8x and 8-; derivatives of Vi can
be calculated by interchanging them with the above integral. M oreover,

.8t Vf(t, x) = f(t, x) + rt r 8tZt-r(x - z)f(r, z)dzdr.
JtoJJR

Proof 01 Theorem 2.3: First we are going to show, that p(t, x, s, y) given by (1.5) satfsfies
-'for fixed (s, y) the equation (L - 8t)p = O. Choose ta E (s, t) and notice that the properties
(a,b,c) stated iIi Proposition 2.1 are exactly such that the function f(t, x) := <1>(t,x, s, y),
defined on [ta, T] x R, satisfies the conditions of Lemma 3.5. Thus the volume potential

V.,(t, x) :=11Zt-r(X - z)iJ?(r, z, s, y)dzdr

is C1,2, and the assertion of Lemma 3.5 shows that

(L -,.-8t)Vep(t, x) = rt r (L ~ 8t)Zt-r(x - z) <1> (r, z, s, y)dzdr - <1>(t,x, s, y).
JtoJJR

A simple application of Lebesgue's dominated convergence theorem shows that we also
have

(L - 8t) 1.t1Zt-r(x - z)iJ?(r, z, s, y)dzdr = 1.t1(L - 8t)Zt-r(x - z)iJ?(r, z, s, y)dzdr,

and thus we can replace ta by s in (3.18). Now (L-8t)Zt-r(x-z) = b(t,x)8xZt-r(x-y) =
<1>1(t,x, s,y), so with (1.5) and the r.h.s. of (3.18) (ta replaced by s) we find

(L - 8t)p = <1>1 +<1>1 * <1> - <1>= o.
So property (F1) of a fundamental solution holds. To infer (F2) we use that Zt-s(x - y)
is a fundamental solution to 8tu = ~8-;. Hence

lim r p(t, x, s, y)f(y)dy = lim r. Zt-s(x - y)f(y)dy
4sJJR 4sJJR

-./- + lim r rt r Zt-r(x - z)<1>(r,z, s, y)f(y)dzdrdy
t-1-s} IR} s } JR

-: f (x) + lim I (t, x, s) (3.19)
t-1-s

11



Recall that If(Y)1 ~'6~ip{hy2} for ~ suitable h > O.Using property (c) of Proposition 2.1
for this hand also (3.8) we find

t >.(x-z)2 ,\ * (z_y)2

11 11e- 2(t-r) e- 2(r-s) h 2

IZt-r(x - z)q>(r, z, s, y)f(y)ldzdr ~ Cl ( )1/2 e2 y dzdr
s lR. s lR. t-r r-s

>. * (x_y)2 2
~ C2e - 2(t-s) e2hy (3.20)

This shows that in (3.19) we have limt.l.sI(t, x,s) = 0, so (F2) is indeed satisfied. •

Corollary 3.6. Under the assumptions of Theorem 2.3for every h > 0 there is a c(h) > 0
such that

>.* (x_y)2. e - 2(t-s) 2

Ip(t, x, s, y)1 ~ c(h) (t _ S)1/2 ehy
.

Proof: From the definition (1.5)of p we have

(3.21)

Ip(t, x, s, y)1 s IZt-s(x - y) 1+ [L IZt-r(x - z)if!(r, z, s, y)ldzdr. (3.22)

The second term can be estimated as in (3.20) with f(y) = 1 ~ ehy2 for all h > 0, Le. we
can choose h > 0 in (3.20) arbitrary small. By (2.3) and A > .,\* (3.22) implies (3.21). •

Remark. The estimate (3.21) will be convenient for us in the following but it is not
optimal. Recall that we derived the factor exp hy2 in (3.21) from a factor exp clYl2ß in the
proof of Lemma 3.2 with a suitable (but not arbitrary small) c > O.

~roof of Theorem 2.4: BX assumption luo(y)1 ~ ce8y2 with 8 < 2~. Write 8 =: 2~ with
A < 1, and choose .,\* E (A, 1). In view of (3.21) the function u in (2.5) is well-defined on
(0, T] x :IR. By the definition of p in (1.5) and with (3.1) we can write it as

u(t, x) = L Zt(x - y)uo(y)dy +Ll% Zt-r(x - z)if!(r, z, 0, y)uo(y)dzdrdy.

In view of (3.10) also u(r, z) := IlR. q>(r,z, 0, y)uo(y)dy is well-defined and it is simple to
check that we can apply Fubini to obtain

u(t, x) = r Zt(x - y)uo(y)dy + rt r Zt-r(x - z)u(r, z)dzdr. (3.23)
JlR. JoJlR.'

Using luo(y)j ~ ce8y2, and th:_estimate (2.3) we get

(3.24)
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with J > 8 so ~lbseto 8 that J < i;.Clearly u(t, x) is eontinuous in (0,Tl x IR. Furtherm~.r~',
the loeal Höldereontinuity (3.11) of<p implies ' . " .. , L_ • :'.

lu(t, x) - u(t, x') I ::; Im. ICJ!( t, x, 0, y) - CJ!(t,x', 0, y) I. luo(Y) Idy
),**(:l:_y)2 '),**(:l:'_y)2

( , & e-, 2t + e- " 2t , 8y2
::;03irR Ix - x I t(3-,)/2 e dy

< C Ix - x'l&_ 4 ,

for any t ~ to > ° and Ixl,lx'l ::; K. So u(t, x) isaiso loeally Hölder continuous in x,
uniformly w.r.t. t E [to, Tl. With Lemma 3.5 we conclude .

(L-ßt) t r Zt_r(x-z)u(r, z)dzdr = rt r (L-ßt)Zt-r(x-z)u(r, z)dzdr-u(t, x). (3.25)itoirR ' itoirR
(3.1) combined with (3.24) implies that the functions (r, z) t-+ 8~Zt-r(x - z)u(r, z) (with
n = 0,1,2) are integrable on (0, to]x IR (beeause t > to), and they are dominated by
/integrable funetions, locally uniform w.r.t. (t,x). Thus Lebesgue's theorem implies that

(L - 8t) ltO{ Zt-r(x - z)u(r, z)dzdr = ltO{(L - 8t)Zt-r(x - z)u(r, z)dzdr. (3.26)
o irR 0 irR '

Combining (3.25) and (3.26) yields

(L -ßt)u(t, x) = Im. (L - ßt)Zt(x - y)uo(y)dy

+ 10% (L - ßt)Zt-r(x - z)u(r, z)dzdr - u(t, x)

= Im. [CJ!1 (t, x, 0, y) + CJ!1 * CJ!(t,x, 0, y) - CJ!(t, x, 0, Y)]uo(Y )dy = O.

To summarize, u is 01,2 on (0,T] x IR and 8tu = Lu. It is well-known that the first
term on the r.h.s. of (3.23) together with the boundary values uo(x) defines a continuous
funetion on [0,T] x IR. Moreover, the estimate (3.20) implies (with I introduced in (3.19)
and f ~uo) that II(t, x, 0) I ::; Cst1/2ehx2 with a suitable h > O.This shows that the second
term in (3.23) goes to 0 as (t, x) goes to a boundary point (0, xo),which implies that u is
indeed continuous on all of[O,T] x IR. That u is of quadratic exponential growth for any
parameter ;5 > 8 followsfrom(3.21) and condition (B):

, ),*(:l:_y)2

lu(t, x) I ::; Im. Ip(t, x, 0, y) Iluo(Y) Idy ::;Cl Im. e- t1/; e
8y2

dy ::;C2 e
8x2

•

-----
It therefore remains to show uniqueness of u, which can be done by the maximum

principle. Indeed, the uniqueness assertion of Corollary 4.2 in 8ection 6 of [F2] applies
without modification to our situation. •
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4. Remarks on extensions and on stochastic. PDE's.

Informal discussion 0/ extensions. Recall that our proofs are mainly based on two es-
timates. The first one is (3.1) for the parametrix, and the second one is (3.3) which
implies the estimate (3.4) for the singular integral kernel q>1. The first estimate gener-
alizes to d dimensions for the parametrix Z(t, X,s, y) which is associated to the operator
A = ~~t,j=l aij(t, X)8xi8xi, provided A is uniformly elliptic and has bounded, Hölder
continuous coefficients aij, see e.g. [Fl]. The second estimate (3.3) easily e~tends to d di-
mensions. Therefore it is quite clear that our proofs go through for these extensions. When
we add a Hölder continuous, Hölder growing potential to our equation, Le.

d 2 d '
8u 1" 8u" 8u
8t = 2 L..Jaij(t, x) 8xi8xj + L..J bi(t, x) 8xi + c(t, x)u .

i,j=l i=l

(4.1)

we have to estimate the term c(t, x)Z(t, x, s, y) similarly as we did for b(t, x)8xZt-s(x - y).
Clearly this additional estimate is easier than the previous one because Z is less singular
than 8xZ. This indicates that our -results can be extended to equations (4.1) with co-
efficients having the before mentioned properties. The technical details will be given in
.'[Kr].

Connection to stochastic partial differential equations. Our motivation for this work orig-
inated from Cauchy problems of type (1.1) where the drift b is not an ordinary function,
but is a continuous random field on [0,Tl x lR. This means that the continuous function
(t, x) H b(t, x, w) depends on an additional "random parameter" w. It is natural to con-
sider (1.1) for each fixed w separately, and this essentially reduces the stochastic problem
to a non-stochastic one.

Example. Let (B;, B;)s>o be a two-dimensional normal Brownian motion' and define the
time independent field b(x, w) := B;(w) for x :2: 0 and b(x, w) := B~x(w) for x ::; o.
The sampIe functions of this field are nowhere differentiable but they are locally Hölder
continuous for every exponent a E. (0, ~). Moreover they are two-sided unbounded and
for ß:2: ~ they satisfy the global Hölder type growth condition Ib(x,w)1 ::; c(w)(IxIß + 1).
Notice that this example meets all the requirements that we made in this paper.

Equations of type (1.1a) (in 3-dim. space with random b) arise in the theory of advection-
diffusion phenomena and in turbulent diffusion, see e.g. [Ba],[CC]'[CF]'[HM], and references
given there. A related example comes from the filtering theory of diffusion processes: the
so-called robust Zakai equation is a parabolic differential equation with random coefficients
[Da]. The right side of (1.1a) defines a so-called random operator and such operators also
appear in stochastic partial differential equations with additional singular noise terms.
Since such equations are frequently investigated in the mild sense [DZ],(DP], the existence
of a fundamental solution is of basic interest in that context. Two recent examples with
random fundamental solutions c:r~discussed in [LN] and (ALN].

Acknowledgement. It is a pleasure to thank Jürgen Potthoff for discussions and valuable
comments on this paper.
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