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Abstract

The Support Vector Machine (SVM) represents a new and very promising technique for
machine learning tasks involving c1assification, regression or novelty detection. Improve..;
ments of its generalization ability can be achieved by incorporating prior knowledge of the
task at hand.
We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions
and SVMs for waveform classification. The adaptation of the wavelet decompositions is
tailormade for SVMs with radial basis functions as kerneis. It allows the optimization 'Of
the representation of the data before training the SVM and does not suffet from compu-
tationally expensive validation techniques.
We assess the performance of our algorithm againstthebackground ofcurrent concerns in
medical diagnostics, namely the c1assification of endocardial electrograms and the detec-
tion of otoacoustic emissions. Here the performance of SVMs can significantly be improved
by our adapted preprocessing step.
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1 Introduction

The Support Vector Machine (SVM) is a novel type of learning machine and represents a
very promising tool for solving pattern .recognition tasks. 'fhe SVM is weIl motivated from
statisticallearning theory and minimizes an upper bound on the generalization error [49, 6].
However, improvements of its performance can still be achieved by using prior knowledge of
the pattern recognition task at hand. In [32] invariances in SVMs were incorporated by the
so-called 'virtual support vectors', a SVM adjusted scheme of the known technique of learning
with 'virtual training examples' [26]. Invariances and prior knowledge about the locality in
images were used in [34] for the constructlon' of appropriate kerneis for SVMs, see als~ (3]: .
Wavelet decompositions allow for a time-scale analysis of functions and have gained a lot
of interest in digital signal processing. Recently, overconlplete wavelet decompositions have
proven to be an efficient data representation for SVMs for object detection tasks [23, 24].
Independently frOln SVMs, a lotof feature extraction schemes which employ fast orthonormal
wavelet decompositions based on filter banks are known, see, e.g., [16, 25, 46]. Many wavelet

1

mailto:steidl@math.uni-mannheim.de


based feature extraction schemes deal withan adaptation of the wavelet dec'Ompbsi-tion,.tree;
e.g., the local discriminat basis algorithm of Saito and Coifman [29]. For a tecent comparisön
paper we refer to [28]. In the cited wavelet based feature extraction schemes and the exper-
iments in [29, 28] standard wavelets from wavelet theory were employed. These wavelets are
originally designed to optimize some properties, e.g., smoothness conditions, which are not
needed in pattern recognition in general. In recent studies one of the authors has shown that
a filter bank adaptation based on the lattice structure, a weIl acceptecl adaptation scheme
for signal coding [10], can significantly improve the performance of a wavelet based feature
extraction for waveform classification tasks [42, 41].
Wavelet based feature extraction schemes aim in the first place at a reduction of the dimen-
sionality of the input space to tackle with the 'curse of dimensionality', i.e., proliferation öf
parameters, which results in immense resources and/or overfitting. SVMs do not depehd
on dimensionality in general. Nevertheless, recent work has shown that SVMs can indeed
suffer in high dimensional spaces where many features of the input space are irrelevant and
dimensionality reduction due to feature selection leads to an enhanced SVM performance
[55, 14].
In this paper we couple the idea of SVM learning and-adapted wavelet representations for tlie,'
extraction of low dimensional feature vectors for binary waveform classification. Our adapta-
ti'Onstrategy is based on a discriminat functional which is wellmotivated from the paradigm' ,
of 'large margin classifiers' underlying the SVM appr'Oach. For investigating 'Our approach on
real world data, we adopt current tasks from medical diagnostics., In particular, Wedeal with.
a rate independent arrhythmia recognition in electrocardiology, wherewe incorporate local
instabilities in time in our learning task and with the detection of otoacoustic emissions in
audiology, where weneed a shift-invariant classification scheme.
This paper is organized as follows. In the Sections 2 and 3 we provide the necessary material
concerning SVM classifications and wavelet decompositions by parameterized paraunitary
filter banks. Section 4 presents the adaptation of the parameterized filter banks to SVMs
with kerneIs arising from radial basis functions (RBFs). In Section 5 we introduce RBFs with
compact supp'Ort which have not been used for the construction of SVMs up to now. The
Sections 6 and 7 deal with applications of our algorithm in medical diagnostics. Secti'On6 gives
an assessment of the algorithm for the waveform recognition in electrocardiology. Section 7
presents a shift-invariant approach to classify signals in audiology. The conclusions of the
paper are given in Section 8.

2 Support Vector Machine Classification

In this section we provide the tools concerning the support vector machine classification with
respect to the applications we have in mind. Our approach is based on the pioneering work
of Vapnik [49] and the new b'Ookof Christianini and Shawe-Taylor [6], where the reader can
find a detailed introduction in terms of statisticallearning theory.
Let X be a compactsubset of ~d containing the data to be classified. We suppose that there
exists an underlying unknown function t, the so-called target function, which maps X to the
binary set {-1, 1}. Given a training set

A := {(Xi, Yi) E X x {-1, 1}: i= 1, . .. ,M} (1)

ofM associations we are interested in in the Construction of areal valued function f defined on
X such that sgn(f) is a 'good approximation' of t whichclassifies the training data cotrectly,
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i.e., sgn(f(xi)) = t(xd = Yi for all i = 1, ... ,M. Here

" {I if f (x) 2: 0,
sgn(f(x)) :=. ~1 otherwise.

We will seareh for f in some reprodueing kernel Hilbert spaees whieh wewill introduee next.
By L2(X) we denote the Hilbert spaee of real valued square integrable funetions on ;f with
inner produet (f,g)£2 = Ixf(x)g(x)dx. Let K : X x X -+ ffi? be a positive definite
symmetrie function in L2(X x X). Following [30], we eall a function K E L2(X X X) positive
definite iff for any finite set of elements {Xl, ... , xn} C X, the matrix (K(Xi, Xj))~j=l is
positive definite. In this paper we are only interested in functions K arising from RBFs. In
other words, we assurne that there exists areal valued function k on ffi? so that

K(x,y) ~'k(llx - ylh),

where 11.112denotes the Euelidean norm on ffi?d. In our applieations we will use Gaussian kerneis
and Wendland's eompaetly supported RBFs [54]. The latter were not applied in eonneetion
with c1assifieation tasks up to now.
For a given K, there exists a reproducing kernel Hilbert space

HK := span {K(x,.) : x E X}

of real valued functions on X with inner produet determined by

(K(x, x), K(x, X))HK := K(x, x)

whieh has reprodueing kernel K, i.e.,

(f(.), K(x, '))HK = f(x) (f E HK).

By M ercer' s Theorem, K ean be expanded in a uniformly eonvergent' series on' X x X

,'(3)

00

K(x, y) =L 1]j<Pj(x)<pj (y), (4)
j=l

where 1]j 2: 0 are the eigenvalues of the integral operator TK : L2(X) ---t L2(X) with
TK f(y) .- Ix K(x, y)f(x) dx and where {<pj }jEN are the eorresponding L2(X)-
orthonormalized eigenfunetions.
We introduee a so-called feature map q>: X ---t 1/2 by

Let £2 denote the Hilbert space of real valued quadratie summable sequences a = (ai)iEN with
inner produet (a, b)£2 = LiEN aibi' By (4), we have that q>(x) (x E X) is an element in £2
with

00

11q>(x)II;2=L 1]j<P](x) = K(x,x) = k(O).
j=l -

We define. the feature space :FK C £2 by the £2-c1osure of all finite linear eombinations of
elements q>(x) (x E X)

:FK := span {q>(x) : x EX}.
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Then FK is a Hilbertspaee withJJ.:~II~K',.==II'llf2.T~~/~~!.yre space FK and the reprod~dng
kernel Hilbert space HK are isomehically isomorph with isometry ~ : FK -+ HK defined by

Ob

~(w) := fw(x) = (w, <I>(X))~2= LWj.;rJj<Pj(x).
j=l

In particular, we have that

(5)

(6)

Let us turn to Our c1assification task. For a given training set (1) we intend to construct a
function f E HK which minimizes

where

M 1
A L(1 ~Yif(Xi))+ + 211flltK'
i=l

{
7 if 7 ~ 0,

(7)+ = 0 otherwise.

(7)

Note that we can also look for functions of the form f = h + b (h E HK) with a so-called bias
term b E lR. We omit the bias term b here, because its explicit consideration does not lead to
an improvement of our numerical results.
The unconstrained optimization problem (7) is equivaient to the following constraint dpti-
mization problem: find f E HK and Ui (i == 1, ... ,M) to minimize

(8)

subject to

Yif(Xi) > 1~ Ui (i = 1, ... ,M),
Ui > 0"( i = 1,... ,M).

Every function f E HK corresponds uniquely to a sequence w E FK. Thus, by (5) and (6),
the optimization problem (8) can be rewritten as follows: find W E FK and Ui (i == 1, ... ,M)
to minimize

subject to

Yi(W, <I>(Xi))FK > 1~ Ui (i == 1, ... ,M),
Ui > 0 (i = 1, ... ,M).

(9)

(10)

In general the feature space FK C e2 is infinitely dimensional. For a better illustration df
(9) we assume for a moment that F K C lRn. Then the function lw (v) := (w, v) FK defines
a hyperplane Hw := {v E FK : lw(v) =O}-inIR:n through theoriginand an arbitrary point
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Vi E FK has the distancel(w,vi)FKI/II~IIFK from Hw. "Note that jw(~(x)) = fw(x). Thus,
the constraints Yi(W,~(Xi))FK/llwIIFK 2:: 1/llwllFK ~ udllwllFK (i = 1, ... ,M) in (10)
require that every ~(Xi) must at least have the distance 1/llwllFk - ui/llwllFK frotn Hw.
If there exists w E FK so that (10) can be fulfilled with Ui = 0 (i = 1, ... ,M), then We say
that our training set is linearly separable in FK. Of course, for Gaussian kerneIs or kerhels
arising from Wendland's compactly supported radial basis function every finite training set
is linearly separable in FK, see, e.g., [2] and [38]. Then the optimization problem (9) can be
furt her simplified to: find w E FK to minimize

(11)

(12)

subject to
Yi(W,~(Xi))FK 2:: 1 (i = 1, ... ,M).

Given HK and A, the optimization problem above hasa unique solution fw*. In our hyper-
plane context Hw* is exactly the hyperplane which has maximal distance r from the training
data, where

1 . 1. ... { I (w, ~ (Xi) )FK I }
r:= Ilw*IIFK = Ilfw*II1iK = ~}~i=~~~M . IlwllFK .

The value, is called the margin of fw* withrespect to the training set A. In this context, the
solutions of the optimizations problems (9) and (11) are called soft inargin and hard margin
SVM classifiers, respectively. See Figure 1 for an illustration of the hard margin case for
n = 2.

class 1
0

0
0

0

0

0 0'

o'

.0'

.-tt'
,1,

'4. ..

class 2

Figure 1: The separation of two classes by an optimal hyperplane Hw* with margin ,.

Remark 1. There exists an important relation between the margin of the SVM classifier and
its generalization error, i.e., the probability that sgn(fw* (x)) -=I Y for a randomly chosen ex-
ample (x, y) E X x {-I, I}, which motivates the SVM approach and our further investigations,
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By [6, Theorem 4.18], the generalization error of the hard rnargin SVM classifier decreases if
the ffiargin r increases. In other words: the larger the margin r the better generalization of
the SVM can be expected.
Note that there exist also estimates for the generalization error of soft margin SVM classifiers
which involve the margin ofthe unknown target function, see, e.g., [6, Theorem 4.21] and [38].

Next we consider the solution of (11), where we follow mainly the lines of [51]. Here the
notation 'support vector' cornes into the play.
By the Representer Theorem ([20, 51]), the minimizet of (9) has the form

M

f(x) = L cjK(x, Xj)'
j=l

(13)

Setting f:= (f(XI),'" ,f(XM))T, K:= (K(Xi,Xj))fJ=1 and e:= (Cl,,,, ,CM)T we obtain
that

f=Kc.

Note that K is positive definite. Further, let Y := diag(YI, ... , YM) and u := (UI, ... ,UM)7'.
By 0 and e we denote the vectors with M entries 0 and 1, respectively. Then the opt"imization
problem (9) can be rewritten as

(14)

subject to

u 2: e - YKe,
u > o.

The dual problem withLagrange multipliers 0: = (al, ... , aM)T and ß = (ßI,' .. ßM)T reads

max L(e, u, 0:, ß),
C,U,Q,{3

where

. subject to
8L 8L
Be = 0, 8u = 0, 0: 2: 0, ß 2: o.

Now 0 = ~~ = Ke - KY 0: yields

e = Yo:.

Further we have by ~~ = 0 that ß = Ae - 0:. Thus, our optimization problem becomes

subject to

6
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This quadratic programming (QP) problem is usually solved in the SVM literatute. For a
moderate number of associations some standard QP routines can be used and for. a large
number of associations, e.g., lAI> 4000, specifically designed large scale algorithms should
be applied, e.g., SVMlight [17].
The support vectors (SVs) are those training patterns Xi for which Qi does not vanish. Let I
denote the index set of the support vectors I := {i E {I, ... ,M} : Qi =J=. O} then by (13) and
(15),the function f has the sparse represent~£ion' ... ,',

f(x) = L CiK(Xi, x) = LYiQiK(x~, x)
iE! iE!

which depends only on the SVs. With respect to the margin we obtain by (12) and (3) that

Due to the Kuhn-Tucker conditions [11] the solution f of the QP problem (14) has to fulfill

Qi(1 - Yif(Xi) :- Ui) = 0 (i = 1 ... ,M).

In case of hard margin c1assification with Ui = 0 this implies that Yif (Xi) = 1(i E I) sO that
we obtain the following simple expression for the margin

f= ...(LQi)-~
iE!

(17)

Remark 2. By [6, Theorem 6.8], the number of SVs can also be used to give an upper bound
of the generalization error. The fewer the number of support vectors the beUer generalization
of the SVM can be expected.

3 Wavelet Decompositions by Parameterized Paraunitary Fil-
ter Banks

In this section we give a short introduction to paraunitary filter banks and corresponding so
called discrete-time wavelets. The first patt mainly builds up on [40]. Here we prefer the use
discrete-time wavelets in £2 instead of wavelets in £2 (JR) since this approach is straightforward
for digital signal processing. A broader introduction to the topic can be found in [50, 8].
Let Ho(z) := 2:kEZ ho[k]z-k be the z-transform of the analysis lowpass filter and H1(z) :=
2:kEZ h1[k]z-k the z-transform of the anl1lysi~ highpl1sS filter ofa two-"-chanJ)elfilteL.ha.nk
with real~valued filter coefficients. Throughout this paper, we use a capital letter to denote
a function in the z-transform domain and the corresponding small letter to denote its tirile-
domain version. A filter bank with analysis filters Ho and H1 is called paraunitary (sometirhes
also referred as orthogonal) iff

Ho (z-l )Ho (z) + H1 (z-l )H1 (z) 2,

HO(z-l)Ho(-z) + H1(z-1)H1(-z) = O.

The corresponding synthesis filters are given by
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The polyp hase matrix of a paraunitary. filter bank
C .'. ~ '. • •

(
Hoo(z) H01(Z))

Hpol (z) := H 10 (z ) H 11 (z )

with entries from the polyphase decomposition

satisfies the relation

(20)

where 12 denotes the 2 x 2 identity matrix.
We are interested in finite impulse response (FIR) filters of order 2L + 1 with real-valued
coefficients

2L+1

Hi(Z) := L hi[k]z-k (hdk] E ffi.).
k=O

(21)

For these filters, according to [47], [40, Theorem 4.7], the corresponding polyphase matrix
Hpol(Z) can be decomposed into

L-'-l
H (z) = (II ( C~S{)l. sin. 'l9l ) (1 0 )). ( C~S{)L Sin'l9L),
pol _ SIn 'l9l cos 'l9l 0 z'-l - SIn{)L COS'19L

l=O

(22)

where '19L E [0,21f) and {)l E [0,1f) (l == 0, ... , L -1). Further we assurne that the highpass .
filter has at least one vanishing moment; .i.e.., H1 (1)~0. By (18) and (19) this implies,that
the lowpass filter satisfies Ho( -1) == O. Using these properties and (20) it is easy to check
that

1 ( 1 1)Hpol(l) = J2 -1 1 .

Since wehave by (22) that

L
sin(l: 'l9z)

l=O
L

cos( l:'I9l)
l=O

we obtain
L

L 'l9l == ~ (mod 21f).
l=O

Let '19L be the residue of ~ - l:f=f}{)l modlllo 21f in W, 21f). Then the space

pL := {19 = ('190, ... , {)L-d : {)l E [0,1f)}

can serve to parameterize all two-channel paraunitary filter banks (21) with at least one
vanishing moment of the highpass filter. To emphasize this parameterization we will use .
the superscript 19 later. A parameterization withmore than one vanishing moment of the
highpass filter can be realized by the method of Zou et al. [56]. Filter banks having the
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representation in (22) can efficiently be iinplemented"bythe lattice structure [48]. A spedal
and even more "efficient implementation is called the twomultiplier lattice [47]. Note thatthe
parameterization can also be implemented by lifting steps [9] which are frequently used for
designing biorthogonal filter banks. However, we rely on the implementation based on the
lattice structure due its availability in already existing very efficient architectures, e.g., [19]'
which we will especially need when dealing with algorithms for low-power devices.

For a fixed {) E pL let Go = Gg and GI = Gf be the synthesis filters of a two-channel
paraunitary filter bank implemented by the lattice structure. When cascading these filters
in an octave band tree, the synthesis filters of an equivalent parallel structure on level j =
1, . .. , J are giyen by

j-l

rr 2mGO(Z ),
m=O

(23)

j-2

Qj,I(Z) = G1(Z2i-1
) rr GO(Z2m

).

m=O

(24)

According to [50] we introduce the discrete-time scaling sequences and wavelets on stale j by
the impulse responses qj,O = (qj,O[kJ)k~Z and qj,l = (qj,l[kDkEZ of the filters (23) and (2~),
respectively. Let qJ:i := (qj,i[k - 2Jm]) kEZ (i = 0,1) denote the translation of qj,i by 2Jm
sampIes. The paraunitarity of the filter bank implies the following orthogonality relations of
the scaling sequences and wavelets:

(qJ,o, qJ:o)£2
(qrl' qj,I)£2

(qJ,o, qJ:l)£2

5[m],
5[i - j]5[m - n],
0, (25)

(m, n E Z; i, j = 1, ... , J), where 5[m] = 1 if m = 0 and 5[m] = 0 otherwise. We introduce
the spaces no,o := £2 and

nj,o = span{qJ:o : mEZ}, nj,1 = span{qJ:l : mEZ}.

Note that {qJ:i : mEZ} forms anorthonormal basis of nj,i (i = 0,1). Further we have by
(23) that nJ,o C ... C n2,o C n1,o C no,o and by (24) and (25) that

where EB denotes the orthogonal sum. Thus, the space £2 can be decomposed as
£2 = nJ,o EB EB;=1 nj,1 and the set

{q~O,qJ:l : j = 1, ... ,J;m E Z} (26)

constitutes an orthonormal basis for £2. With respect to this basis an arbitrary sequence
x E £2 can be decomposed as

J

x = L dJ,o[m] q~o + L L dj,l[m]qJ:l
mEZ j=1 mEZ

9
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with the wavelet eoeffieients

(i=O,I).

We set
dj := (dj,dmDmEZ (j = 1, ... , J).

We will need norms of these wavelet coefficientvectors later.
Some applications, e.g., our classification task in Section 6 require a shift-invariant multilevel
decomposition (27). This can be achieved by replacing the orthonormal wavelet basis (26) by.
the tight wavelet frame

{2-J/2q-mJo.,2-j/2q-JT(Ll : J' = 1, ... , J,' mEZ},, ,

where q~ := (qj,i[k - m])kEZ (i = 0,1). Then x E £2 can be decomposed as

J

x = L dJ,o[m] q:J,o + L L dj,dm]qTl
mEZ j=l mEZ

(28)

with the coefficients

We set
clj := (dj,dml) ~EZ. (j = 1, ... , J).

Overcomplete expansions can be implemented by oversampled paraunitary filter banks [7, 1]
The highly J;'edundant expansion (28) corresponds to a nonsubsampled filter bank, i.e., we have
no multirate operations at all. In this special case, the subbands are obtained by pure linear
time-invariant (LTI) filters given by (23) and (24), respectively. Note that an implementation
as cascaded two-channel building blocks requires to insert 2j - 1 zeros between the nöI1zero
coefficients of the filters at the levels j = 2, ... , J. This procedure is also known as 'algorithm
a trous' [36] and is equivalent to the so-called 'cyclic spinning' [5]. The computation of the
frame coefficients vectors clj requires O(N log N) arithmetic operations instead of O(N) for
the computation of dj (j = 1, ... , log2 N). There exist nearly shift-invariant approaches
with lower arithmetic complexity, e.g. [21]. The incorporation of these algorithms into our
adaptation scheme may be a future point of research.

In the following we emphasize the dependence of the wavelet coefficients on the chosen angles
iJ E pL by the superscript iJ.

4 Adaptation to Waveforms

Recent studies [52, 42, 41] have shown that the so-called multilevel eoncentrations 11 . II~p
(1 ::; p < 00) of coefficient vectors of wavelet-like decompositions in distinct levels provide
reliable feature vectors for waveform classification tasks. This mainly steams from the fact
that such feature vectors help to tackle with local instabilities in time. They are therefote
more robust than the consideration of specific Heisenberg cells in the time-scale domain.
The multilevel concentration is a robust but global feature and can be insensitive to siight
morphological dissimilarities of waveforms belonging to distinct classes when non~adapted
decompositions are utilized [42,41]. Here we present an adaptation of wavelet decompositions

10



'~. ". _. ~ .l,','•.•.

that is tailormade for SVM classifiers. We restrict our' attention to orthonormal wavelet
, decompositions. The generalizati~ii'to fr~me deconipositfol1s is straightforward.

Let a set of M waveforms Xi E Do,o C ffi.N be given which belong to two distinct classes with
corresponding labels Yi E {-I, I} (i = 1, ... ,M). By M+ and M_ we denote the sets of
indices i E {I, ... ,M} with Yi = 1 and Yi = -1, respectively. In general, the length N of our
waveforms will be large, e.g., N =512.Weintend tO,reduce this length while emphasizing
the discriminating features of the signals to support classification tasks.
For this we consider wavelet decompositionsof our signals as in the previous section. Let J
be maximal depth of the wavelet decomposition. Further let {JI, ... ,jd} C {I, ... , J} be the
indices of those wavelet coefficient vectors we are interested in. The choice of the relevant
levels can be determined by some validation technique or by prior information about the
waveforms, e.g., a known pre-filtering.
For a fixed waveform x E Do,o with wavelet coefficient vectors d1 we define the function
ex : pL -7 ffi.d by

ex(19) = (~1(19),~2(19),... ,Xid(19)) := (1Id~ II~p,lld~lI~p, .. '. , Ild1JI~p) (29)

and set ei(19) := eXi(19) (i = 1, ... ,M).
Note that for nonsubsampled filter banks, IId1kliep and thus ex(19) do not change ifthe signal
is shifted. In this case our approach becomes completely translation-invariant.
We want to find 19 so that

is a 'good' training set for a SVM. By Remark 1, we can expect a better generalization ability
of the SVM if the margin becomes large. Consequently, we try to find iJ so that

(30)

By definition of the inner product in FK and (2) it follows that

IliP(ei(19)) - iP(ej(19))IIFK = IliP(ei(19))II}K + 11<I>(ej(19))II~K- 2 (<I>(ei(19)),<I>(ej(19)))FK

2k(0) - 2k (1Iei(19) ~ ej(19) 112).

We suppose that k(t) is monotonely decreasing in Itl. Then (30) can be rewrittenas

, , (31)

Note that the geometryin feature spaces induced by kerneis was investigated in [3, 33]. For
most waveform recognition tasks the sets M+ and M_ can be reduced by averaging the
patterns of the respective classes (or subsets thereof) or by expert seleCtion of representative
subsets. Here we use the first approach and introduce the notation

11



Instead of (31) we search for iJ. with

(32)

(33)

Solving this optimization problem analytically seems to be infeasible. The optimization func-
tional involves the multilevel concentration and seems not to allow for sophisticated optirhiza-
tion strategies. In particular, hilI climbing methods in pL are doomed to fail due to local
minima of the optimization functional. We introduce a discrete grid

P~:={19=('l9o, ... ,'l9L-1):'l9lED}, D:={;'" :0-=0, ... ,T-1}
in pL and solve (32) by evaluatingthe optimization functional at each grid pOInt.
There exist possibilities to reduce the complexity of these computations. For example we can
compress the parameter space p~ as folIows: Given a positive number p < 1, we can further
reduce the parameter space by selecting a maximal subset p~ of p~ .so that

d .

~L l(q~i,1(19),q~i,1(19*))i21:s; p (19,19*E Pt; 19 =I 19*).
i=l

In other words, the distinct wavelets in (33) satisfy the strengthened Cauchy-Schwarz inequal-
ity, that is, the smaller p the more orthogonal the wavelets become. In a way, f.-l steers the
redundancy of our parameter space. If we restrict our ~nterest to smooth wavele'ts, the Con-
sideration of only one level in (33) is sufficient due to their self-similarity across levels. Such a
compression of the parameter space can be significant even for a large p. For instance, when
working with T = 32, L = 2 and f.-l = 0.98 we have achieved a compression of IP~I/IP~ I ::::::0.65
in [42].

5 Radial Basis Functions with Compact Support

In the following sections we will apply two kind of RBFs k(llxI12), namely Gaussian RBFs
and Wendland's compactly supported R13Fs. The Gaussian RBF K with

is a positive definite function in Coo (lRd) for all dimensions d and all s E ~. Here Cn (IRd)
denotes the space of n times continuously differentiable functions on lRd. This kernel is also
well accepted for constructing SVMs and provides excellent results for real world applications,
see, e.g., [49, 35]. '
Recently positive definite RBFs with compact support have been constructed by various au-
thors to solve interpolation problems with scattered data {Xi}~l' see [31] and the references
therein. In the context of scattered data interpolation, in particular in connection withhierar-
chical interpolation methods [12), RBFs with compact support have several advantages such as
a sparse interpolation matrix (K (Xi, XJ' ) )~-=1' and a sparse representation of the interpolating2,J-
function ~ajK(x,xj) at xE lRd.

RBFs with compact support have not been used for constructing SVMs up to now. One
reason for this maybe that any positive definite RBF with compact support has to be designed
in dependence on the space dimension d, i.e., there does not exist an universal RBF like the
Gaussian which is compactly supported, positive definite and smooth for all space dimensions.
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RBFs with compact support areonlYßuited'for telat,ively small spate dimensi6ns.Usingour
multilevel concentration approa~h ihe' 'training data area:t. most of length d = log2N. In our
applications we have d = 8. For spaces of such a low dimension the following RBFs proposed
by Wendland [54] can easily be calculated and evaluated.
For Cl: E ~ and m E No we define (')m and [']m by

where r denotes the Gamma function. Let

Wm (x) :=:: (1 - x) ~ .

Then Wendland's RBFs have the representation

where the coefficients satisfy the recursion

~ ß(.m) . [i ~ 1k.~t+l6 ------- (0:::; t:::; n + 1),
i=t-l ~,n (m + 2n - i + 1)i-t+2

(n E N) ,
n

'" (m) ikm,n(x) = 6 ßi,nx Wm+2ri-i(X)
i=O

ß(m)
t,n+l

if the term for i = -1 for t = 0 is ignored.
Let lxJ := max{i E Z: i:::; x}.' For m = ld/2J +n+ 1, Wendland has proved that km,n
defines a positive definite function in c2n(~d). Further, km,n is of the form

k . (x) = {p(x) 0:::; x :::;1,
m,n. 0 x> 1,

with a polynomial p of degree ld/2 J + 3n + 1. There does not exist a positive definite RBF
in C2n (~d) of the above form with a polynomial p of lower degr'ee.
In the remainder of this paper, wewill deaJ(up tü ITl1iltiplications 'with constants} withthe .
RBFs

(7 x + 1) (1 - x): E C2(~8)
1/3 (80x2 + 27x + 3) (1-'- x)~ E C4(~8).

and their dilations km,n (. / s) (s E ~).

6 Classification of Endocardial Electrograms

Sudden cardiac death is a major public health concern worldwide. According to Ameri-
can estimates, sud den cardiac death claims more than 350.000 lives in the USA every year,
80% up to 90% being due to ventricular tachycardia (VT) [13, 22]' i.e., a fast disorder of
the heart beat which sterns from the major heart chamber, the ventricle. The implantable
cardioverter-defibrillator (IeD) is an automated antitachycardia device and accepted to be
the most effective therapy for preventing suddencardi.a.~ death due to ,VTs [43]. Th~.ICl) i$.a
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permanently implanted device w~i~h c~nÜnually m6nit~rs the electrical activity öfthe heart
by an endocardial electrogram (EE), i.e.,a bioelectric signal from the inner heart is analyzed.
Usually, the information of the EE litilized by an ICD is the heart rate. However, the rate
is of limited reliability in some elinical situation, e.g., excitement or physical exertion where
the (physiological) sinus rhythm (SR) may have an abnormal fast rate which can exceed a
predefined threshold such that a malignant rhythm is detectecl. Although additi~naid~tecti~n
enhancements are used in third generation ICD-systems, inappropriate ICD thetapy occur in
up to 13% of the patients who received such a device [53].

SR

-t-

Figure 2: Consecutive beats of SR and VTwithin a time-'-frame of 256ms.

Here morphological dissimilarities in the EE of individual beats, due to different activation
patterns, can be used for discriminating the physiological from the pathological rhythm since
they are rate-independent. Such morphological methods are patient dependent and there is
an ongoing interest in an efficient evaluation of morphological criteria [37]. Template matching
methods are weIl known approaches. The correlatzon waveform analysis (CWA) with best fit
alignment [44] offers an excellent perforrnance and is widely accepted [39]. We will use this
method as reference tool for performance comparisons to our algorithm.
Pattern recognition schemes for EEs have to tackle the following problems: an excellent
generalization performance although the training data is very sparse and a highly efficient
implementation for classifying the waveforms in view of the limited energy resources of an
implantable device. Furthermore, in view of the current iriterest in EE compression algorithms
for ICDs [4]' the use of perfect reconstruction filter -banks is also desirable for EE analysis:
since coding conditions can be added without difficulty.
The signals analyzed in this section were obtained during electrophysiological examinations at
the University Hospital of Homburg, Germany. Bipolar EEs were obtained from the apex of
the right ventricle in 10 patients with inducible monomorphic ventricular tachycardia (VT).
The EEs were amplified, filtered (10-500Hz), and digitized (2kHz, 12 bit resolution). Data
segments of lOs duration were recorded during SR and VT. Consecutive beats were selected
as .•morphological patterns of SR (240 beats) and VT (240 beats) within a time-frame of
256ms and normalized. Consequently, we have to deal with waveforms x E 00,0 C ~N, where
N = 512 and with a decomposition depth of the wavelet tree of J = 8. The set üf beats was
controlled by an expert to exclude ectopic beats and artifacts. Since false classifications can
be of fatal consequences, we allow no errors at all and work with A = 00 in (9) to implement
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a hard margin SVM. For our numerical experiments we use p = 1 in (29). The discrete
parameter space was constructed with T = 30 and L = 2. This setting was also used in [41],
where one of the authors has successfully classified antegrade and retrograde atrial activations
patters by neural networks. We label examples of SR by 1 and of VT by -1. Figure 2 shows
five original beats of SR and VT within their time-frame.

0.1 (b) •

170 '.5

0.0

Figure 3: Distribution of the difference IIe+(19) - e-(19)112 (a) and of the corresponding mar-
gin ry (19) of the SVM (b) in dependence on 19.

Figure 3(a) presents the distributionofthe differences Ile+(19) -e-(19)112 in p~ for an indi-
vidual patient (IM+I = IM_I = 1). In Figure 3(b) we show the corresponding distribution
of the margin ry(19) in p~ for a SVM with Wendland's function k7,2(-/5). As noticeable, the
margin is directly related to 11e+ (19) - e_ (19)112' The angles D provide a multilevel concen-
tration that results in the largest margin of the SVM classifier.
In order to illustrate our adaptation strategy, we consider for a moment only the multilevel
concentrations on the levels j = 4 and j = 5, i.e., ~x(19) = (1Id~llf1,Ildfllf1).

(a) (b)

Figure 4: The decision curve f (e) = 0 for SVM applied to the non-adapted multilevel concen-
trations with 19D (a) and to the adapted multilevel concentrations in ~2. The darker points
denote SR.

This allows us to visualize the 'decision curve' f(e) = 0 in ~2. We have used a number of
M = 36 training examples for this experiment with IM+ I = IM_I = 18. For the SVM we
have employed a Gaussian kernel with scaling factor s = 1. Figure 4(a) shows the decision
curve and the 36 training patterns whenutilizing the lattice angles 19D = (1.4653,0.49984)
which correspond to the Daubechies wavelet D3 with three vanishing moments. We use the
well known Daubechies wavelet as representative for a non-adapted wavelet. In Figure 4(b)

15



--------- -I

we have taken the same settings but applied the optimal angles {). Clearly, we expect that
the SVM classifier performs more reliable for the adapted approach. Herethe examples of the
distinct classes laying far apart.
In the following we provide some assessments of the classification performance of our method
using the whole data set of all ten patients. Here two decomposition levels as in the previous
example are not sufficient. To rule out that filtering effects may lead to a loss of information
we consider the full wavelet decomposition tree, i.e., d = 8. Of course, a couple of other data
dependent strategies to choose jl, ... , jd in (29) is possible. But, instead of engineering the
best possible classification scheme for SR and VT, we are mainly interested in a cornparison
of our method to SVMs applied to the original time-domain waveforms and to SVMs applied
to non-adapted multilevel concentrations.

80 10

~
-;; 60
> ~00

'Cl '";6
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° 0 2 3 4
scaling parameter 8 scaling parameter 8

Figure 5: The mean number of SVs and the error rate of a SVM applied to the original
waveforms with Gaussian Kernel (top) and to the non-adapted multilevel concentrations
(D3) with Wendland's function k7,2 (bottörn).

We separate the total data set of 480 beats in a training set of 160 beats (SR: 80, VT: 80)
and a test set of 320 beats (SR: 160, VT: 160). Thus, for each patient we have a training set
of IM_I = IM_I = 8 waveforms. The remaining set of 32 beats forms an independent test set
for the individual patient.
In the Figures 5 and 6, we have 'plotted the mean number of SVs (of the ten patients) and
the error rate independence on the scaling factor s for different RBFs. The mean number
of SVs is given in percent and 100% means that all of the 16 training patters are SVs for
all patients. The error rate [%] is determined for all patients in common, that is, the ratio
of false classifications on the whole test set tö the total nurnber of 3'20 examples within this
set. A comparison of Figure 5 with Figure 6 with respect to the error rate shows that our
adapted algorithm with both the Gaussian and Wendland's function is superior to the original
SVM and to the SVM on non-adapted multilevel concentrations. Note that by Remark 2 the
number of support vectors can be considered as indicator for the generalization of the SVM.
The number of support vectors of our new algorithm is approximately half as many as that
of the original SVM. However, the case ü(SVMs on non-':adapted multilevel conc~nt'r~tions
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Figure 6:The mean number of SVsand the error rate of a SVM applied to the adapted multi-
level concentrations with Gaussian Kernel (top) and to the adapted multilevel concentrations
with Wendland's function k7,2(bottom).

seems to be not in a good agreement with Remark 2. Here we have a smaller number of SVs
than for SVMs on the original waveforms but a worse performance on the test set.
In Figure 7(a1) and (bI) we show the evaluations of f for SVMs with Gaussian kernel and
scaling factor s = 0.8 applied to the original waveforrns and for SVMs with k7,2 and scaling
factor s = 5 applied to the adapted multilevel concentrations. The corresponding number of
SVs for the individual patients is given in Figure 7(a2) and (b2), respectively. We see that
SVMs on adapted multilevel concentrations perform better and more reliable than SVMs on
the time-domain waveforms. It is noticeable that the number of SVs found is less for aur
hybrid approach.
For the purpose of a performance comparison we shortly introduce the CWA. Let x+ E 00,0

serve as template of SR which is obtained by averaging all the training waveforms of SR,
i.e., x+ = IM+I-1 I:iEM+ Xi. Let furt her x E 00,0 an arbitrary EE waveform to be classified.
Then the CWA between the template and the waveform is based on the correlation coefficient
pE [---:1,1]defined by

I:~l(xt -X+)(Xi - x)
p:= ~------ .,

JI:~l(xt - x+)2JI:~1(Xi - x)2
(34)

where x+ := N-1 I:~l xt and x := N-1 I:~l Xi For p = 1 we have a perfect match of the
waveform x and the template. The decision of the CWA, i.e., the classification of SR and VT,
is based on an appropriate threshold T with T < 1. Now p > T denotes SR and p :s; T denotes
VT. The performance of the CWA heavily depends on the alignment of the time-frame in
which an individual beat is selected. Therefore, we can furt her improve the results of the CWA
by the best fit alignment strategy. Here the template x+ is shifted over a specific time-frame
centered around the detection point of the beat, i.e., the point where an individual beat is
separated from the EE, and (34) is calculated for each point n E Z of this time-frame so that
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Figure 7:The evaluationof f for 10 patiEmts by an SVM applied to the time~domain wave- .
forms (al) and to the adapted multilevel. concentrations, (b1). The" corresponding number'of,
SVs is given in (a2) and (b2), respectively.

p[n] becomes a time dependent sequence. The decision is then based on 'TJ = IlpllfOo using
the same threshold criterion as before for p. This procedure is computationaHy demanding
in general and not appropriate for efficient implementations. The support of the time-frame
depends on the preprocessing of the data .. lnour experiments we have used 20ms .. Itisworth ','c,,£'

to emphasize that the best fit strategy has only a minor influence for our signals as the beats
are already weH aligned. However, in other settings it can be significant.
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Figure 8: The results for the CWA with best fit alignment (CWABF) for 10 patients,;'.

When averaging the8 training waveforms of SR of the individual patient as template for the
CWA, we obtain the results in the Figure 8. There is a significant overlap for a subset of
patients and a threshold T can heavily be defined for these patients. Comparing these results
to those in Figure 7 we see that the CWA performs much worse than our hybrid scheme and
also worse than SVMs applied to the time-domain waveforms.
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7 Detection of ütoacÖustic Emissions

As already mentioned, the beats analyzed in the previous section are well aligned within
their time-frame. Thus, the analysis does not strongly suffer from shifts in time so that
shift-invariance is of minor importance. Here computationally very efficient but time~variant
orthonormal wavelet decompositions perform well. However, as in our next c1assification
problem, there is often a need for shift-invariance in waveform recognition. In the following
we use the shift-invariant frame decompositions introduced at the end of Section 3 instead of
orthogonal wavelet decompositions.
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Figure 9: Two exemplary signals from the physiological and pathological group.

Otoacoustic emissions are sounds generated by the cochlea. that can be recorded in the exter-
nal ear canal, see [18, 27]. In the following,wewilldealwith the transient evoked otoacousli.c
emission (TEOAE) that is, in short, abrief pressure wave that emanates from the ear in
response to an acoustic stimulus. These responses are typically of alow intensity or absent in
individuals with mild or greater hearing loss. Consequently, the analysis of TEOAEs seems to
be promising as noninvasive method for detecting hearing loss in patients. Such an objective
analysis requires no patient -interaction and is especially of interest in infants. The detection
of otoacoustic emissions represents achallenge for automated schemes. They are of a very low
intensity and hard to separate from the signal background in current measurement set ups.
Up to now, the c1assification of individuals with and without hearing losses is to large extend
based on expert knowledge, see [15] for a description of the parameters used by experts.
The analysis and characterization of TEOAEs is an active and ongoing field of research.
For approaches in the time-frequency domain, see, for instance, [45]and the references therein.

The signals analyzed in this section were obtained at the University Hospital of Homburg,
Germany. The signals were recorded in a sound-proof cabin using a probe inserted into the
outer. ear canal. The probe contains a transmitter which delivers the acoustic stimulus and
a miniaturized microphone. The signals- were amplified, filtered (300Hz - 10kHz),digitized
(25kHz, 12 bit resolution) and averaged to enhance the signal noise ratio by the standard
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Figure 10: Distribution of the difference Ile+(19) - e-(19)112 (a) and of the corresponding
margin ,(19) of the SVM (b) in dependence on 19.

technique of the 1L088 Systems (Otodynamics, Ltd.) .With this preprocessing, signals of
approximately 20ms(again represented by 512 samples) duration were normalized (by their
energy) and stored for subsequent analysis.The individuals were binary classified in a patho-
logical and a physiologicalgroup.,The pathologicalgroup is labeled .with-1 and consists 6f
individuals with ahearing loss athigher frequenciesor with a broad band hearing, 10ss.All
individuals in this group have a hearing lossof more than20dB above BkHz. The physi0logical'",
group is labeled with 1 and consists of individuals with a hearing loss of less than 20d:B in
range from OkHz to 10kHz. Figure 9 shows an exemplary signalof the physiolögical and the
pathological group, respectively.
We have a total of 68 individuals (and signals) in the physiological group.The pathological
group consists of 55 individuals. We use twenty signals of each group as training set, i.e.,
IM+I = IM_I = 20. The remaining signals form an independent test set for the respective
group.
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Figure 11: The mean number of SVsand the error rate of a SVM applied to the original wave-
forms with GaussianKernel (top) and to the adapted orthonormal multilevel concentrations
also with a Gaussian kernel (bottom) .
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If present, the occurrence of TEOAEs in our signals varies over 'time for the individual subjects.
Consequently, there is a need for a recognition scheme which is not based on locality. In other
words, it must incorporate the fact the information can appear aIlywhere in the signal and
must thus be shift-invariant.
The morphology of physiological and pathological waveforms may overlap, in particular for
physiological group and individuals which only suffer from a hearing loss at higher frequencies. '
Therefore, the appropriate choke of the regularization parameter A in (16) may ünprove the
results. However, we use again A = 00 for implementing a hard margin SVM since' it is easier
to interpret and we are mainly interested in comparing SVM on the original time-::-domain,
waveform and on the shift-invariant adapt~d mU:ltile~el conc~ntrations. . .' ,. ~... " ..
Figure 10 illustrates the difference Ile+(19) - e-(19)112 for IM+I = IM-c-I = 1 as example. The
corresponding margin ,(19) in p~ is also shown, where we have used the Wendland function
k7,2 for the SVM. As in the previous section, only a few wavelets of the parameter space result
in a .large lnargin of the SVM classifier.
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Figure 12: The tnean number of SVs and the error rate of a SVM applied to to the adapted
shift-invariant multilevel concentrations with the Gaussian kernel (top) and to the adapted
shift-invariant multilevel concentrations with k7,2 (bottom).

Figure 11 contain the error rate and the number of SVs in dependence on the scaling
parameter s for a SVM applied to the original waveform and for our scheme, but based on
orthonormal (not shift-invariant) decompositions. It is obvious that no reliable hypothesis
about the underlying mapping can be dedueted form the training set in the first case so that
the original SVM classifier allows no satisf(1ctory di~c.rimination between the physi91o.gi~al.
and the pathological group. In view of the fact that the SVM is astate 0/ the art classifier,
this indicates how difficult it is to deduce a reliable hypothesis. Our scheme with orthonormal
decompositions performs better. However, when using the shift-invariant tight frames in our
scheme, the results in Figure 12 are obtained for k7,2 and a Gaussian kernel. Here our hybrid
SVM dassifier performs significantly better than SVMs on the original waveforms and on
the orthonormal multilevel concentrations. The number of SVs is much smaller than that
of the original SVM. Clearly, with furt her heuristics, e.g., by discarding information or by
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regularization, better results seem to be achievable.

In our applications RBFs with compact support have performed similar to Gaussian RBFs.
The best performance of RBFs with compact support was achieved for large values of the
scaling parameter s so that K(Xi,Xj) > 0 for all i,j E {I, ... ,M}. Thus, we have achieved
no further advantages from the compact support of these functions.

8 Conclusions

We have presented a new method for improving' the performance of SVMs. For this,' we
have merged ideas which have' recently been developed in signal processing and machirie
learning to obtain a hybrid scheme based on wavelet decompositions and SVMs for waveform
classification.
We have illustrated the performance of our scheme against the background of current concerns
in medical diagnostics. Our hybrid scheme classified all EEs of SR and VT of the given test
set correctly, a result that was neither achievable by a SVMon the original waveforms nor by
the weIl accepted CWA with best fit alignment. Based on the very efficient lattice structure
implementation, our scheme meetsalso the low power requirements of ICDs.
For. the analysis of .TEOAEswe. have employed tight frames. to obtain shift-invariance of our
scheme. Here we archived a significant improvemerit of the classification performance for
detecting the hearing loss inindividuals compared to SVMs on the original waveforms.
We have used RBFs with compact support and have shown that these functions perform
similar to the weIl accepted Gaussian kernels. However, furt her research is necessary to
exploit the full power of the compact support of these functions.
We conclude that the performance of SVMs cansignificantly be improved by signal-adapted
wavelet decompositions since it allöws tlie ihcltlSiönöf prior 'knöwledge such as löcalihsta-
bilities in time and shift-invariance. The direct relation of the distances in the input space
and the feature space induced by the RBF allows an optimization of the signal representation
before training the SVM.
For our applications, the presented method is powerful and very promising. However,
especially in the case of TEOAE analysis furt her investigations are needed on larger data
sets. Here is still room for improvements, i.e., by the optimal choice of the decomposition
levels, the straightforward incorporation of wavelet packets and the optimal choice of the
regularization. constant A.
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