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1.. Introduetion.

r
I
I

I
I

In a previous paper we have proved the existence' ~nd uniqueness theorems for
I
I

minimally interacting Yang-Millsand Dirae fields in a bounmed contractible domain M c
I,

1R3, [1]. The aim of this paper is to study the structureof tHe space of solutions.
I

Our results were obtained for Cauchy data A E i H2(M), E. E HI(M), and

'I' E H2(M), where and Hk(M) is the Sobolev space

integrable together with their derivatives up to the

conditions

of fie!lds on M which are' square
. I
orderi k, satisfying the boundary

!
1

( 1.1a)

(1.1b)

( 1.2)

syrnplectic
8p = (A,E,'I') E P and aM

theory under consideration is

nE = 0, tB = 0, inj}1'1' IaM = 'I'I~M'
I

nA = 0, inj}1{YJ()A<~ + im)'I'} laM =YJ()A<~! + im)'I'laM

Here we use the notation established in [1]. In particJlar, nE' d~notes the normal
I

cornponent of the "electric" part,' tB the tangential component of the "rnagnetic" part' of
!
Ithe field strength on the bouhdary dM of M. Thus. the !extended phase space of the
I
I

I
I

P = {(A,E,'I') E H:!(M) x Hl(M) x H:!(M) I sati!sfying (l.Ia,b)}.
I.

The variational principle underlying the theory gives: rise to a (weak)
I

structure on P. Let e be a I-form on P such that, for ev~ry

8 8 I
+ e'bE + ~ E TpP, r .:.

(CJI I 8 / 8 8) f ' tv\A,E,'I') aM + 'em + '11& = (E. a + 'I' 'II)d3x , (1.3)
M I

I .
The syrnplectic form(.tJ of P is the exterior differential of ~,

(.tJ = de . (1.4)

ILet Gbe the structure group of the theory, presented as a matrix group, and 9 be
, I

the Lie algebra of G. We assume that G is compact, an1 that 9 adrnits an ad-invariant

rnetric. The group GS(P) of gauge symmetries consists

. their action on the vari~bles. (A,E,'I'), given by

of maps ep : M - G such that
I

I
I
I

I
!
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- -- - l-

I
I

A - ~AtP'""1 + ~grad~l,. E - ~EtP'""1, 'fI = ~'fI, (1.5)

leaves .the extended phase space P invariant. The . fi' I. I action of an element ~10 Imte$lma
1

. of the Lie algebra gs(P) of GS(P) is given by f

(1.6) .

where

DA~ = grad~ + [A,~]

is the' covariant derivative of ~ with respect to the conndction
i

(1.7)

defined by A. It gives

. rise to a vector field ~P on P such that . I'
8 8 I 8

~p(A,E,'fI) = - (DA~) 7iÄ - [E,~] (SE i~(SIIT' (1.8)

The action of GS(P) preserves the I-form 8. Henc1, it is Hamiltonian with the
* !equivariant momentum map J : P - gs(P) such that i

I .

(1(A,E,'li) I~) = (81 ~p(A,E,'fI» = f {-E. DA~ + 'fit~}d3X (1.9)
. M !

*Here gs(P) denotes the L2 dual of gs(P), that is the sp~ce of square integrable maps
I

from M to the duäl 9* of the Lie algebra 9 of the stru!cture group G. For each ~ E

(1.10)

the .Haniiltonian vector

field.of J~, i.e.

(1.13)

(1.11)

(1.12)

Hence, the constraint

i
I

!
in the Yang-Mills-Dirac; theory.termsourcewhere j is the

~p..J (JJ = dJ~.

Integrating by parts on the right hand, side of' Eq. 10.9), and taking into account

the boundary condition nE = 0, we obtain !

(J(A,E,'¥)I~) = fHdivE + [A;E])~ ~ '¥t~'¥}d3X.
. M 1

. I
-, For every ~ E gs(P) ,

equation of the theory
I
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divE + [A;E] = j ,
is equivalent to the vanishing of the momentum map -J.

(1.14)

Huebschmann [7,8].

with a definite mode of symmetry breaking.

I
The presentation of the constraint set as the zero level J-\(O) of the momentum

I
i ,

map J, enables one to study its structure in terms of the ~ction of the group of gauge
I

symmetries. It was first done _by Arms [2], who -discussed the structure of the constraint
!

set for pure Yang-Mills fieIds in compact spaces (no bound~ry) in general terms, without
- - I'
specifying the topology of the function spaces under consideration.' The structure of the

. I
zero level of the moinentum map, corresponding to a Hamiltonian action of a

. I
Hilbert-Lie group on a Hilbert manifold was studied;! under additional technical

assumptions, by Arms, Marsden and Moncrief, [3]. Speci~ cases were considered by'-

Mitter and Vialet [4J, Atiyah and Bott [5], Kondrabki and Rogulski [6] and
I
I
!

Functional analytic. assumptions made in this paper a~e conseqtiences of the results
i

of, [1]. They' fai! to satisfy two basic assumptions made in 1[3]: (i) neither the differential, I .

of J nor its adjoint are elliptic, (ii) the extended phase' space P is not invariant under
, i

the interchange of A and E. Hence, we cannot use the results of Arms, Marsden . and
I

Moncrief, [3]. Instead, we follow the' main idea of their ~aper, and prove the necessary
1

intermediate steps. In particular, we prove the propemess ?f the action of GS(P) and of

the existence of slices for this action. From this we showl -that the reduced phase space

is the union of symplectic manifolds labe lIed by the ~onjugacy' classes of compact

subalgebras of ,gs(P). Each of these symplectic manifolds I consists of thefields (A,E,'¥)
I
I

In the fiiüte dimensional case the partition of the reduced phase space intb
I

symplectic manifolds can be. refined using conjugacy. cl~sses of compact subgroups of

GS(P) rather thart compact subalgebras. In this case on~ obtains a stratification, with

strata which can described algebraically in terms of. th~ Poisson algebra, c.f. [9,10].
I
I

,
/.
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sur~acelsSimilarresults fdr central Yang-Mills connections' on 1, has been obtained in [8].
I

An adaptation of their approach to our phase space will be ~tudied elsewhere.
I

The paper is .organized as folIows. In Section 2 we dfscuss, in a proper functional

analytic framework, the gaugesymmetry group and its actiJn. The structureof the zero

level of the momentum map is analysed in Section 3. A! stratification of the reduced. I
phase space is studied in Section 4. Section 5 contains disGussion of symmetry breaking

. ,I .
corresponding to each stratum. The almost complex structurle in the L2 completion of P

I

is discussedin Appendix A. The. propemess of the action of GS(P) is proved in

Appendix B. The slice theorem is proved in Appendix C. I
I
I

i
I

2. Gauge Symmetries and .the Momentum Map. I
i

The requirement that (1.6) gives an action of ; E gs(lP) in the space P, defined by

(1.2), implies that grad; E H2(M). S~nce M is bounded,1 it follows that ; E H3(M).

Moreover, the action of ; has to preserve the boundary~ohditions. The conditions (1.la) .
. . I ' .

are the usual bag boundary. conditions and are gauge invartant. The conditions (1.1b) are

satisfied if and only_ if n -grad; = O. Hence, I
gs(P) = {; : M -I gl; E H3(M) and n-grad; = O} (2.1)

* ,The L2 dual gs(P) of gs(P), considered here, is the spaceof square integrable

* Imaps from M to the dual 9 of. g, that is

* * Igs(P) = {v : M -I 9 Iv E L2(M)}. (2.2)
* . I

The evaluation of v E gs(P) on; E gs(P) is given I by pointwise evaluation and

integration I
(vi;) = f v-; d3x.1 (2.3)

M. I
The' momentum map J defined in Eq. (1.9) is a continuo~s map fram P to gs(P) *.

I
GS(P) has a manifold structure with the tangent bjundle space spanned by gs(P).

The presentation of the structuregroup G as a' m~trix group, and boundedness.

I
I
I
I
I
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1

I .
. of M, enable us to present GS(P) as a group of maps 4J. from M to G of Sobolev class

I
H3(M). Moreover, the boundary conditions (1.1) require that In.grad4J = O. Hence,

'. I
GS(P) = {4J : M -+ GI4J e H3(M) and n. grad4J = O}. (2.4). I

Since M is contractible and G is connected, GS(P) is .con,ected: However, it need not

Q.E.D.

.. '

PRoposmON 2.1.

PROOF.

implies that exp(U) = V.

be simply connected.

properness.

I
I
I
I
I

The exponential mapping exp : gs(P)' -+ GS(P) i is a diffeomorphism of a
I

neighbourhood of 0 e gs(P) onto a neighbourhood of :the identity in GS(P).'

I
I

Let V be a neighbourhood of 0 e 9 and V a Ineighbourhood. of the identity

e e G, such that the exponential mapping exp : g. -+G iJ a diffeomorphism of V onto. . I . .
V, and let in : V -+ V be the inverse of this diffeomo.whism. Since, by the Sobolev

I. i
embedding theorem, each 4J E GS(P) is a continuous map fromM to G, the sets

. I
V = {4J E GS(P) I range 4J ~ ~}

is open in GS(P). Similarly, the set I
. . . I
V = {~ E gs(P) I range ~. ~ VI}

is open In gs(P). For every 4J e V, lno4J is in gs(P), and !its range is in V. Hence, lno4J

E U. Let exp : gs(P) -+ GS(P) denote the exponential foJ the gauge' algebra. For every
. .\ I. .

~. E gs(P) , exp(~) = expo~. Hence, for every 4J E V, ex~(lno4J) ..,. expolno4J = 4J, which

'I
I
!
I

The main property ,of the action of GS(P) in Ip u~ed in this paper is its
I
I

I
I
!
I

I
I
I
1

I
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THEOREM1. The action of GS(P) in P is proper. I
I

That is, for every sequence Pn converging to q in P and every sequence tPn in
IGS(i?) Sl;lch that tPnPn converges to p, the sequince tPn has a convergent

(2.5)

(2.6)

subsequence with limit tP, and t/Jq= p.

PROOFis giyen in Appendix B.

that is

I
I

I
I

~ I
For each pEP, we denote by '0p the orbit of GS(P) i through p,

o = {w I tP E GS(P)} .P .
closed since, if tPnP is a contergent sequence of points in

I
tPn has a convergent subsequence with limit tP and q

I
I

we denote by y()J the symplectic annihilator ofY,
I

I
y()J = {w E T Plm(v,w) = 0 V VIE V}.

. P I

Note that that y()J is closed, and if Y is closed, then (Y~~ = v.

I
I

All orbits 0 of GS(P) arep
0' with limit q, then the sequencep

.= W, which implies that q E 0p.

For every subspace Y of TpP,

PRoposmON 2.2~

Foreach pEP,

(2.7)

If ~P is the

(2.8)

Hamiltonian vector field of J;:., cJ. Eq. (1.11), then for every v, . ~ 1

I
. I
vi E ,(T 0 )()J . if and only if

p P
I
I
I
!

m(~p(p),v) = (dJp(v) I~)
= {~p(p) I ~ E gs(P)} it follows thatSince T 0

P P

'PROOF.
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- I

I
I

V E ker dJp' Hence, (TpOp)Ctl

dJ is closed.- p ,

- ker dJp' and therefore TI 0 = (ker dJp)Ctl, since kerp p
I

Q.E.D.

with finite*of gs(P)

I
I,

subspacerange dJis a closedp
For every pEP,

codimension.

PROPOSITION 2.3

PRooF.

semi-Fredholm.

I
I

'For p = (A,E,'P) and (a,e, ljI) E T P, Eq. (1.12) ithplies that
. p I

(dJ (a,e,ljI)I;) = f {-(div(e) + [A,e] + [E,a]); + ljIt;'P + 'Pt;ljI}d3x .
p -. M _' I.

Hence, dJp = T +. S : T pP -+ L2(M,g), where I

T(a,e,'fI)= - div(e) and S(a,e,'fI) = - [A,e] [E,!a] + 'fit~'¥- + '¥t ~ljI .

The Hodge decomposition, cf. [11], applied to square ihtegrable zer~ forms on M,

implies that L2(M,g) =C EB 1, where, 1 is the space of conitant g-valued functions and' C
, . I

=. {div(v) Iv E HI(M,g), nv = O}: Both C and 1 are closed subspaces of L2(M,g). Since
. 'I,

range T =' C, it follows that therange of T is closed. Moreover, cokemel T' = .. . . I

L2(M,g)/range T ~ 1 has finite dimension, since dirn 11 = dirn g. Hence, T is

I

operator S is compacL This implies that dJp = T + S

closed range and finite codimension, c.f. [12].

Further, if Vn = (an,en,ljIn) is a bounded sequence in tpP, then the sequence

{Svn} = {- [A,en] - [E,an] + 'fI!~'¥ +1'Pt~ljIn}
is bounded in HI(M,g) c L2(M,g). Sincethe embeddinJ cf Hl(M,g) into ~L2(M,g) is

compact, it follows that the sequence {Svn} has a conver~ent subsequence. That is, the

isl semi-Fredholm, that is it has
I
I

Q.E.D .
. .. .



(2.10)

(2.11)

(2.12)

(2.13)

(2.i4)

(2.9)

range dJ = (gs )a .p. - p

9

By. (1.11), for each ; E gs(P), and pEP,'

PRoposmON 2.4.

PROOF.

~-,~.-~"T~c"~--

I
I
I
I
I
IFor each pEP we denote by gsP the gauge symmtry (isotropy) algebra of p,

that is !

gsP = {; E gs(P)lgp(p)= o}, i

and by GS gauge symmetry (isotropy) group of p, Ip .
. GS = {<p E GS(p) I <PP = p}. I

p -I

By properness of the action of GS(P) in P, each sequence {<Po} in GS has a, p
convergent subsequence,. which implies that GSp is c01pact. ,Consequently, the Lie

algebra gsP is finite dimensional. It is isomorphie to al subalgebra of the structure

algebra g; a constructiön of such ,ln ismomorphism is giveli in Section 5.

I *The annihilator of the subalgebra ~ -~ gs(P) iso the sU9space ~a ~ gs(P) defined by

~a = {v E gs(P)*I(vl;) = 0 V ; EI~}.-
i
I
I

* IThe range of the map' dJp: TpP -+ gs(P) is giyen by the annihilator of the

symmetry algebra of p, that is I
I
I
!
I
!

(dJp(') I;) = ;p(p) -1 UJ • I
Since UJ is non-degenenl.te, it follows from (2.9) that i

gs = {; E gs(P) I (dJ (v)I;) = OV v E T ~_}= (range dJp)a.p - p p
Since range dJ is closed, taking annihilators of both side~ we obtain

p . I
(gs )a = (range dJ )aa = range dJ

p P I p'
provided that (range dJ )aa is the closure of range dJ' Iy , - p I

In order to prove the last assertion, denote by Rp ~he closure of range dJp in the

topological dual gs(P)' ;f gs(P). The polar of Rp is I
I
I
I
I
I

I
I
I
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and the bi-polar

-- -1- ----- ..
I
I
I
I
I
i

(R )0 = {~' E gs(P) I <VI~) = 0 'V v EI R },
P' ,. I p

\ . I
. (R )00 = {V E gs(P)'I<vl~) = 0 'V ~ EI(R )O}

P .. I p
is the closure of Rp in gs(P)'; c.[ [13]. By definition R~ i~ closed so that Rp = (~p)OO.

Since range dJ is dense in R , it folIows that ' . I. p P
(Rp)O = (range dJp)a .

Q.E.D.

(2.16) .

Hence,

It is dear that Pf)= U Pt .
t~f)

I
* -' I *(range dJp)aa = (RP>00 !l gs(P) = Rp T gs(P)

which implies that (range dJ )aa is the closure of range dJl 'in gs(p) *.
/p p

I
I

,I
We conclude from' Proposition. 2.4 that pis' a regular point of the momentum map

J if and only ifphas no infinitesimal symmetries, i.e. gs I = {O}. In this case J-I(J(p»
~

is a manifold in a neighbourhood of. p with the tangent s~ace

Tl-I(J(p») = .ker dJp. I
Singular points of the momentum map have non tril~ial algebras of infinitesimal.

symmetries. Let f) bethe Lie algebra of a conneCted com~act subgroup H of GS(P).
I

We denote by P~ 'the set of points p in P such that gs :1: f), that is
') . p I

Pf) = {p E ~Igsp = f)}. I
It follows from Proposition 2.4 that pEP ~ if and only if Jor all v E T P

') I. . P
(dJ (v)I~) = 0 'V ~ E f)and (dJ (v) Isi) "# o. 'V Se f).

p " P I
Let Pf) be the s~t of points in P such that their symmetry algebra gsP contains f), Le.

. - I '
Pf) =, {p E PI f) \;;; gsp}. I (2.17)

I
I
I
I
I
I
I
I
I,

I
I
I
I
I



(2.19)

Q.E.D.

11

(1)

(2)

PRorosmoN 2.5..

PROOF.

Therefore, P~

syroplectic.

submanifold S of Pcontaining p. andsuch thatp ,

1
I
I
I
I
!
I
I
I
!

P~\ is a closed affine subspace of P. I
I

P~ is a submanifold of P with the tangent space I
I

TpP~ = {v E TpPI (D2Jp(u,v) I~)= 0 ,'V U Ei !pP~, ~ E ~}; (2.18)

(3) The restrictions of the symplectic form fJ) to p~ Iknd P~ are symplectic.

I
I
I
I

(1) It follows from the fact that the action of GS(P) in ~ is continuous and affine.

(2) Let p be a point in P~. Then, for every , e~, I the linear map (dJp(') I')
TpP -+ IR does not vanish identically. Since dJ is I continuous, the(e exists a

neighbourhood U of p iil P such that, for all q E U, (dJ 1(.) 1') :t 0 for every , not inq . .
~. This implies that U (\ P~ !: P~. Hence, P~ is an o~en sUbmanifold of P~ and a

submanifold cf P. The expression (2.18) for the tangentl space of. P~ is obtained by
) I

differentiating (dJp(') I~) = 0 for all ~ E ~ and all p E Pd.
. I _

(3) Here we have, to use the almost complex struct_ure dfscribed in Appendix A. Let P
. - - I -be the L2-closure of P. Then P~ = {p E PI ~ ~ gsp} is t~e L2-closure of P~. Since J is

GS(P) invariant, it follows that JP~ = i\. Suppose that u IE TP~ is such that u is in the

kernel of fJ) IP~. Since TP ~ c Ti>~, !
(Jul v)L2 = äJ(u,v) = fJJ(u,v)=10

I
for every v E TP~. By construction TP~ is dense in T~~, hence Ju == 0, and u = O.

is symplectic. Since P~ is an open tubmanifold of P~ it is also

I
I
!
I
I
I

The last essential property of the. action of G~(P} in P needed here is the

existence of slices. A'" slice througn a \ point pEP I for the action of GS(P) is a

I
I
I
I
i
I
i
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THEOREM2 (Slice Theorem).

(2.21)

(2.20)

(1)

(2)

(3)

(4)

Sp is transverse and c?mplementary to the orbit 0p at p, that is
'\

TpSp EIl TpOp = TpP. I
Sp is transverse to all GS(P) orbits, that is, for each q E Sp'

I
T S + T °.= T P. Iq p q q q I

S is invariant under the actionof the gauge symmet1jy group GS of p.
P 'I P

For q E Sp and c/JE GS(P) , if'c/Jq E Sp then c/JE GSd.
I

I
I

. I
I

For each pEP there exists a slice Sp through p ifor the action of GS(P) such

PROOFis given in Appendix C.

(3.3)

(3.2)

(3.1)

with the submanifold Pf)'

3. Structure of the constraint set. I
I

The constraint set is the' zero level of the mom~ntum map J. It follows from
I

Pr~position 2.4 that J-1(0) need not be a manifold in neiJhb'ourhoods of points admitting
I

infinitesimal. symmetries. We shall show that it is foliat~d by submanifolds labelled by
I .
1

the Lie algebras f) of compact subgroups of GS(P). Let ~f) be the interseetion of J-1(0)
I
I
I

Mf) = J-1(0) (l Pf)' I

We denote by )lf) the pull-back of (J) by the indusion m~p jf) Mf) -4 P,
o * I

)lf) = J f) (J) • I

By n(f) we denote the normaliser of f) in gs(P), !
, ./

n(f) = {; E gs(P) /[;,g E f) V ~ E f)}
I
I...

I
I
I
I
I
I
I
I
!
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THEOREM 3.

For every comp~ct connected subgroup H of GS(P), with Lie algebra Q, (MQ,,uQ)is

a co-isotropie submanifold of (P,m). Tbe null diSlrib+on of I'~ is spanned by the

vector. fields ;P' for ; E n(Q).

The proof of. this theorem will be given in aseries of P~opositions. First, we observe

that the annihilator Qa is closed, and hence

(3.4)

*We denote by 1ff) : gs(P) -+

composition of J with 1ff)'

Qa the projections on the first component, and by K the

I

K = 1l'f)0J: P -+ f)a. (3.5)

It should be noted that the map K depends on the choice ;of the infinitesimal symmetry
. I

algebra f), but we shall not label it by the subscript f) in Jrder to simplify the notation.

Moreover, J-1(O) !: K-1(O) for every f:J, so that

(3.6)

. PR.oPOsmON3.1.

For every p E K-1(O) ('i PD' K-1(O) is a submanifold Of P in a neighbourhood of p

and

(3.7).

PROOF. Since p E PD ('i K-1(O), it follows from Prop. 2.4 that

range dK = 1l'r.,CrangedJ ) = 1l'~(Da)= Da,p ') . P L)

which implies that K is a submersion. Hence, K-1(0) is; locally a submanifold of P.

Moreover, T K-1(0) = ker dK ::;:ker d(1l'~oJ) = ker dJ .p.p .') P P•.
Q.E.D.
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PRoPüSmON 3.2.

K-l(O) 11 P~ is a submanifold of P~. For every p E Kf(O) 11 P~,

Tp(K-l(O) 11 P~) = {v E ker dJp! (D21p(v,w)!~) = 0 'r/ ~ E~, W E TpP}. (3.8).

PRooF. For every P E K-l(O) 11 P~, K is a submersion in a neighbourhood of p .

. Hence, for every Y E ~a, there exists a" vector field X in P such that y = dK(X ) =. y y

1r~(dJ(XJ) in a neighbourhood of p. Also, Y E ~a implies that (dJ(Xy)'~) = 0 for. all

~ E ~. Differentiating this equation in direction of W E T P we obtaihp
. (D21p(\Y,Xy<P»'~) + (dJp(DXy(w» I~)I= 0 .

However, (dJp(DXy<w» I~) = 0 since (dJp('), ~) = I forall. ~ E ~. Hence,

(D21 (w,Xy(p»!~) = 0 for all .~ E ~, which implies by Eq. (2.18) that Xy<p) E TpP~.P . .
Therefore, the restriction _.of K to P~ is a submersion at p~ and K-l(O) 11 P~ = .

(KI P~)-l(O) is a submanifold of P~. Eq. (3.8) follows from €3.7).

Q.E.D.

Most of the following analysis is local.' Therefol' we

1-1(0) 11. P~ and discuss the structure of M~ in its neighbourhood.
. . I

Let S be a slice for the GS(P) action such that T S
~ ~~

complement of T 0 ,
. Po Po

T S = (T 0 ).L.
PaPa ~Po

PRoposmON 3:3.

fix a point Po in

is the L2 orthogonal

(3.9)

Pf) 11 Spo is a manifold in a neighbourhood of Po with tangent space

T (Ph 11 S ) = {VE (T 0 ).LI(D21(v,w)I ~) = 0 'r/ ~ E f), W E Tp P}. (3.10)
Po ') . Po Po Po . . 0

PRooF.
..

Let p(f) the set of points on the GS(P) orbits thtough 'Pf)' that is

. p(f) = {epql<p E GS(P), q E PfJ} (3.11)
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at p . It
o

of Po. Further,

By definition of p(Q)

follows that Pr.. ('\ S') Po
Bq. (2.16), implie's that

If 'l'q = p, and q E PQ' then 'I'~yrlp' = P 'V ~ E H. Thus, for every q E p(Q)' the

symmetry group GSq is conjugate to H. Moreqver, property (4) of a slice yields

p(Q) ('\ S = {~E S I~ EGS(P), q EIPr..} =
, P PI')

= {~ E Sp I ~ E H, q E PQ} = PQ iSP .

and property 2/ of the slice, p(r..) and S are transverse
~) I Po

is a submanifoid 'of S in a. nJighbourhood
Po

PQ ('\ Spo= {p E Spol (dJp(.) I ~) = 0 'VI ~.E Q}. (3.12)

Differentiating this co~ditio'n at Po and 'taking into account ]fq. (3.9) we obtain (3.10).
:

Q.E.D.

PRoposmON 3.4.

MQ is an open subset of PQ (l K-l(O), and

MQ ('\ Spo = PQ ('\ Spo('\ K-l(O) (3.13)

PROOF.

Therefore,

By Eq. (3.12), (cUp(') I~) = 0 for all p E Pf) (l Spo(l K-1(0) and all ~,E Q.

the function (J I ~) on P is constant on connected compoI1ents of

Pr.. ('\ S. ('\ K-1(0). By hypothesis l(po) = O. Therefore (l(p) I~) = 0 for all p in the')Po i
connected component of PQ ('\ Spo('\ K-1(0) containing Po. Hdnce, IIPQ ('\ Spo('\ K-1(0) has

range In f)a. By definition K = Jrf)01 : P -+ f)a, so trat I(Pf) ('\ Spo('\ K-1(0)) ,=

K(Pf) (l Sp/' K-l(O)) = O. SinceMf) = Pf) ('\ 1-1(0) and 1-1(@) ~ K-1(0), it follows that

Mr.. ('\ S = Pr.. ('\ S ('\ K-1(0).
') Po ') Po

The preceding 10ca1 analysis is valid for every Po E, E Pf) ('\ 1-1(0). In order to

show that Mf) is ~pen in Pf) ('\ K-1(0), for each Po E Pf) ('\ {-1(0), we choose a slice Spo

through Po satisfying (3.9), and a neighbourhood V I of Po in 0 such that, ~,Po
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S x V is an open neighbourhood of Po in P. The collec'ltion
Po Po .

. {(Spo x Vpo) (1 Pf) (1 K-I(O)IPO E Mf)} (3.14)
, , 'i

is an open covering of Mf) in Pf) (1 K-I(O). If P E If) (1 K-I(O) is contained 10

(SPo x VPo), for some Po E Mf)' then there exists q, E GS(P~ .such that p is contained in
. / I

the slice S~ = f/J(Spo) through Wo, satisfying (3.9), which need not to' be10ng. to the

collection of slices chosen in (3.14). Hence, I

P E Pf) (1 S~o(1: K-I(O) = Pf) n S4wo(1 J-I(O) ~ If) (1, J-I(O) = Mf)'

This implies that the union of sets in (3.14) is contained in Mf)' Hence, Mf) is open in

Pf) (1 K-I(O).

Q.E.D.

PRoposmON 3.5

PROOF. Since Mh (1 S = Ph (1 S (1 K-I(O), we prove the statement for Ph n S (1
y Po y Po y ~

K-l(O). Consider the restrietion KI Ph (1 S . For each v E l' P,
o ') Po IPO

dK(v) = 1l'h(dJ (v». Hence, usmg Eq. (3.10), !

Po ') Po
range d(KI (Pf) n Spo»po = '

= {1l'h(dJ (v»lv E (T 0 ).L and (D2J(v,v)I~) = 0 'V. ~ E f), W E TpP}o
y Po PoPo 0

Since T 0 c ker dK , the condition v E (T 0p).L can be ornitted and, using
Po Po- Po Po 0

Proposition 2.5,' we obtain

range d(KI (Ph n S » . =
') Po Po

{1l'h(dJ (v»lv E T Ph and (D2J(v,w)I.~) = 0 'V ~'IiE f):.w E Tp P} =
y Po PoY. 0

= -{1tf)(dJpov)Iv E TPoPf)} = range d(KlIPf)po'

In the proof of Propo 3.2 we have shown that KIP
Q

is a submersion at Po. Hence,
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K/ (p£) 1"\ SPo) is a submer~ion at Po, which implies that p£) 1"\ SPo 1"\ K-l(O) = (KI (p£) 1"\

S »-l(O) is locally a submanifold of P~ 1"\ S . The expression (3.15) for the tangent
Po' ') Po
space follows from (3.7) and (3.10).

Let v E Tp(P~ 1"\ S 1"\ J-l(O». Since v E T(P~ 1"\ S ), Eqs. (3.10), (2.7) ando ~ Po Po ') Po
(A.7), imply that -:Iv E J«T 0 )J.) = ker dJ , where J is the almost complex

Po Po ,Po i

structure discussed in Appendix A. Also, v E ker dJ , iso that JVE J(ker dJ ) =. Po!' Po
I,

(T 0 )J.. Moreover, Lemma A~'l yields (D21' (Jv,Jw) I~) T (D2J (v,w) I~) = 0 for all
,PoPo . , ,Po I Po
~ E £), W E T P. Hence, Jv ET (P~ 1"\ S 1"\ K-l(O», cf. Eq. (3.15).

. . Po Po ') Po
Let v E T (P~ 1"\ S 1"\ K-l(O» be 'such that m(v,w) '= 0 for all w E

Po ') Po
T(P~ 1"\ S 1"\ K-l(O». Then ?iJ(v;w)= 0 for all Vi in the L~ closure of
PÖ ') Po .

T (P~ 1"\ ,S 1"\ K-l(O». Taking, Vi = Jv we obtain IIvllL22== (vIV)L2 = ?iJ(Jv,v) = O.
Po ') Po '

Hence, v = 0, which implies that T (P~ 1"\ S (j K-l
1

(0» is symplectic. Hence,
. Po ') Po i

p£) (j Spol"\K-l(Q) is symplectic in a neighbourhood of Po. I

We have shown m Proposition 3.4 that, Mf) is an open submanifold of

P f) (j K-1(0), the manifold structure of which has been eSiablished in Proposition 3.2.

Moreover, M~ 1"\ S is sympleetie by Proposition 3.6. It remains to show that the
, ') Po ' I

pull-baek 1Jf) of (jJ to Mf) is co-isotropie with the null spanhed by the vector fields ~P'

for ~ in the normalis~r n(f) of f), given by (3.3).

Let. N(H) denote the normaliser of H in GS(P), that is

N(H) = {4> E GS(P) I qr-1x4> E H "i/ i.E H} , (3.16)

and No(H) be the, connected component of the identity in N(H). It is a subgroup of. .

GS(P) with

intersection

follows,

the Lie ~lgebr~ n(f) gi~~n by Eq. (3.3). The .Iconne.cted component of the

of P f) wlth 0Po contammg Po can be descnbed m terms' of No(H) as

component (P f) (j 0po) ,,= {Wo 14> E No(H)}.
, I

!

(3.17)
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The tangent space to Pr., ('\ O. at Po is given by
') .' Po

TPo(Pf) ('\ Opa) = {~p(Po)l~ E n(f)~}. (3.18)

For every ~ E n(f)) and everyw E T Mr., = T (Pr., ('\ J-1(0)),
. Po ~ Po ~ I

. ,uf)(~p(po),w) = ~~p(Po),w) = (dJPo(W)I g) = 0 .
This implies that T .(Pr., ('\ ° ) is contained in the null spabe of,ur., at Po.

.' Po ') Po, I ')

Let S be a slice through Po satisfying Eq. (3.8). Thbn, by the Slice Theorem,
Po

T Mr., = T (Mr., ('\ 0 .) e T (Mr., ('\S )= T (Pr., ('\ 0 ) e T (Mr., ('\ S ),
Po ') Po ') Po Po ') Po Po ') Po Po ') Po

since ° ~ J-1(0). By Proposition 3.5, T (Mr., ('\ S ) issymplectic. Hence,
Po Po ') IPo

C'p(po) I' E n(f))} = TPo(Pf) ('\ Opa) is thenull space of ,uD at Po. This completes the

proof of Theorem 3. I

4. Reduction.

The reduced phase space P of the ,system is defined as. the space of GS(P) orbits
I

in the constraint set J-1(0),

P = J-1(0)/GS(P). (4.1)

We denote by p . J-1(0) --+ P the natural projection, assigming to each p E J-1(0) the

orbit 0p E P,
pep) = 0p., (4.2)

Since .the action of GS(P) in p. is proper, the quotient tOPolrgy in P is Hausdorff. This

can be seen as folIows. If p, q E J-1(0) are such that pep) and p(q) cannot be separated

by open sets; then there ~xists a sequence Pn in J-1(0) such ~hat P(Pn) .converges both to

pCp) and p(q). Let Sp and Sq be slices through P and q, ~espectively. For sufficiently

large n, there exist epn' IfInE GS(P) such thatepnPn E Sp and IfInPnE Sq' Hence, ep~Pn'-+ P

and IfInPn-+ q as n -+ 00. Thus, epnvrn1(lfInPn)-+ P; while IfInPn-+ iq, which implies that epnvrn1

has a co~vergent subsequence with limit X and Xq = p; Henc11e,P E ° and pep) = p(q)... q•.
. .
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. I
If H1 and H2 are conjugate compact subgroups of GS(IP), with Lie algebras £)1and

. - I
£)2, respectively, the,n the GS(P)-orbits of P£)1 and

c

P£)2 cOinciie, that is P(£)l) = P(£)2)' c.f.

Eq. (3.11), and P(P£)1) = P(p£)/ For every Lie algebra £) qf a compact subgroup' H of

GS(P), we denote by Pe£)) the projection' of J-1(0) 11 Pe£))to P,

Pe£)) = p(J-1(0) 11 p(£))),

and by p£)' M£) - Pe£)) the restriction of p to M£) = J-1(0) 11 p£)' considered as a map

to p(£))'

THEOREM4.

Pe£)) is a weakly symplectic manifold with ah exact syrpplectic form

w(£)) = d8(f))' (4.4)

For every f) in the conjugacy dass (f)), Pf): Mf) ...:....Per,) is a submersion, and

• P~8(f)) = BIMf) and p~W(f)) = ,u~. (4.5)

I
I

The proof of this theorem will be split into several propositi<i>ns.

PRoposmON 4.1.

Each connected component of

conjugacy dass (f)), the map Pf)

I
I

l,<~) is a smooth mlfold, For

M 'pY
• bl.

: f) - (f)) lS a su ~erslOn.

each f) in the

(4.6)

PROOF. Since H is normal in N(H), the quotient N(H)~ is a group. We want to

define an action of N(H)/H in Mh' Let p ancl q = eppbe tJro points on the same orbit'
~~ . '. I .

of N(H) in Mf)' Since,' xp = p far every XE H, it ~ollows that q is uniquely

. determined by p and the equivalence dass [1/>] of I/> in N(H)/H. Hence, we can set [I/>]p

= epp. This defines a left action of N(H)/H in Mf)' Moreovtr, p(f)) = pf)(Mf)) coincides..
with the space of N(H)/Horbits in Mf)'

p(f)) = Mf)/(N(H)/H)
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In p(~) is independent

If ~I is another

{ (PE) IUp)-I IP E ME) } defines a smooth a'tlases in

differentiable structure defined in this way the

submersion.

. I '
The (N(H)/H) orbits inM~ are unions of connected components. Each 4' E (N(H)/H),

" I .
which is not in No(H)/H acts as a diffeomorphism between connected components.

I
Hence, connected components of p(~) are diffeom0rPhic tOI"the quottents of connected

components of M~ by No(H)/H. I

,The map p~,: M~ -+. p(~) is ~nto:, Furthermore, it fOllrWS from the Slice Theorem

that, for each p' E M~, there exists a slice Sp through p f<;>rthe action of GS(P) in P.

By Proposition 3.5, Mh n S is a smooth manifold. Iti~ a slice for the action of~ p . I

No(H)/H in M~. Then, byEq. (4.6), there exists an open ne:ighbourhood Up of p in M~

n Sp such that p!) IUp is a homeomorphism of Up onto pJeu ~ c p(!)" Thefamily of

sets {p!) (U~ Ip E M!)) is. an open cover of p(!)" Suppose I PI and P2 be in the same'

connected component of Mh and Po E Ph(U ) n Ph(U ). For any Po E Ph'-I(Po) in the
. ') ') PI') P2 I ')

same connected component as PI and P2, let U be the ch0sen neighbourhood of Po in
Po I, • I

Mh n S . There exist 4'1, 4'2 E No(H) stich that4'lpoE S I' and 4'2Po ES. Moreover,') Po . PI P2
there is a map <I>from a neighbourhood V of 4'IPO in Mh ()I S to No(H)/H such that,~ PI .

- i
for each P E V, 4'2<1>(P)4'I-IpE Sp2' and <I>(4'IPO)= identity. iince the action of No(H)/H

in ME) is locally free, for sufficiently small V"the map <I>: Y -+ No(H)/H satisfying the

above conditions is unique and smooth. Hence, the map I
I

V -+ ME) n Sp2 : P 1-+ 4'2<1>(P)4'I-I
P1

is a diffeomorphisrn onto its image. This ensures that the farnily rnaps
I ¥

connec~ed fornponen~s of .p(E)' In the

rnap PE) : •ME) -+ p(~) 1S clearly a
. . ,

It rernains to show that the obtained differentiable strudture
. , . 1

of the choice of ~ in the conjugacy class (f).
I

I
I
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Q.E.D.

PRoposmON 4.2.

For every ~ in @, the pul I-back of the I-form B to ~~, denoted B~ I~, is N(H)

invariant, and it vanishes on the ~ectors ~:(P), with I p E Mf) and ~ E n(f). It

pushes forward to a unique I-form B(f) on p(f) such tpat

p~~(f)= Bf)1Mf)' I ¥ (4.7)

The ext~rior differential W(f) = dB(f) is a weakly symplectic form.on p(f)' and

.. p~tlJ@ = Jl~. I (4.8)

The forms 8@ and tlJ@ are independent of the choice 10f ~ in @.

I

!'ROOF. (BI ~P<p)) = J~(p) = 0 for al1 p E M~ = P~ n. Jl'(O) and all ~ E gs(p). This

implies that Bf)IMf) vanishes on ~p(p) for all p E Mf) and all .~ E n(f). Since B is,

GS(P) invariant, B~IM~ is. N(H) invariant. Hence, B~IM~ Jushes forward to al-form
• !.
B(f)' satisfying, (4.7), which does not depend on the choice of f) in (f).

. It follows from (4.7)' that . I

p~~(f) = P~d8(f) = dP~8(f) = d(Bf)IMf) = dBf)IMJ = COf)IMf)=' ~f)'
I

which prove's (4.8).' The independence of m(f) from the choice of f) in (f) follows from

the independence of8(f)'

Q.E.D.

This completes the proof of' Theorem 4.
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5. Symmetry breaking.

Yang-Mills potentials represent connections in a right\ principal bundle Q over M

with struCture group G. Since, M is contractible, the bundle F is trivial,

Q = M x G (5.1)

and the action of, G in Q is giyen by
I

Q x G -. Q : ((x,g),h) 1--+ ((x,g). h)= I~X,gh). (5.2)

The associated bundle Q[G] of Q with typical fibre GI and the adjoint action of G

on itself is called the group bundle of Q. Sections of Q[G] correspond to automorphisms

of Q covering the identity transformation in M. In this c~ntexi, the group GS(P)of
,

(5.4)
# '
.~ (x,e) = ~(x) .

I

gauge symmetries of P can be identifies with the group oE sections of Q[G], of class
I

H3(M), which satisfy the boundary condition (2.4). \. ,

Sections of associated bundles correspond to equivariant maps from the principal
I . I

bundle to the typicalfibre. Thus, each element q, e G5;(P). corresponds to a map
I

q,# : Q -. G such that, for every (x;g) e Q, I

q,#((x,g)) = g-lq,(x)g . L' . (5.3)

The adjoint bundle of Q is the associated bundle Q[g] , ith typical fibre 9 and the

adjoint action of Gong. The space of sections of' Q[g] ,is t~e Lie algebra of the group

of sections of the, group bundle Q[G]. The Lie 'algeb~a gs(P) I consists of sections of the
I

adjoint bundle, which are of Sobolev class H3(M) and satisfy the boundary condition

(2.1). Each .~ : M -. g.in gs(P) eorresponds to an eqUivarilnt map t :p-. 9 such

I
I

I

, that

and H the eonneeted

Let Xo be a' fixedpoint in M, then

Let f) c gs(P) be the symmetry algebra of p = (A,E,'I') i e P,

subgroup of GS(P) with L,ie algebra f). We have shown in ,sec. 2 that H is eompact.

I
Ho = {h(xo)lh E H} (5.5)

is a closed subgroup of G isomorphie to H. Consider the set
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I
# I

Qo = ((x,g) E Plh (x,g) = h(xo) 'V h IE H}.

The right action of k E G leaves Qo invariant if and only if k

Z[Ho] of Ho, defined by ", I
I .

Z[Ho] = {k E GI kg = gk 'V g E ~o}. .

(5.6)
is. in the centralizer

(5.7)

for each g E G, the set

PRoposmON 5,1.

Actually, Qo is a right principal bundle over M- with structure group Z[Ho]. Furthermore,
. . I '

. i

# I
H(x g) = {h (xo,g) Ih E H} = {g-lh(xo)g Ih EH}

~ .1..
is a group conjugate to. Ho with the centralizer conjugate tp Z[Ho].' Hence, for a fixed

H c GS(P), the principal bundle Q is foliated by princiPal\' sub-bundles with conjugate

structure groups. I
The Yang-Mills potential A gives a loeal description 0r a connection in Q relative

to the trivialization given by the product structure (5.1). The corresponding connection

form a on Q is given by

a = y-1Ay + y-1dy ,\ (5.8)

where y is the embedding of G into the matrix group gl(lRk)1" The horizontal distribution

horTQ on .Q is the kerne I of the connection form. The connection in. Q is said to
. . I

reduce to a connection in a sub-bundle Qo if horTQ IQo c hqrTQo.

I. Let f) c gs(P) be the stability al~ebra of p = (A,E,'¥). E P, and H the connected

subgroup of GS(P) with Lie algebra f). Then, connlction in Q defined by A

reduces to a connection in the sub-bundle Qo with struc\ture group Z[Ho].

Proof. Let q(t) be a horizontal cu",e in Q. For every I he H, }, h#(q(t» is the

equivariant function on Q describing the covariant derivative! of' the seetion h of Q[G]

along q(t). However, H ~ GSp implies that .every h E \H is covariantly constant.

I

/
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\

\

I
'\

Hence, every horizontal curve through Qo is contained id Qo,
!

connection in Q defined by Areduces to a connection in Qb.

which means that the

I
\

Q.E.D.

(5.9)

E, then (1.6) yields

The electric component E of thefield strength is a 'g~valued I-form on M. It can

be interpreted as' a seetion of the bundle T *M O?J' Q[g]\ over M. Let E# be the

corresponding equivariant form on Q with values in g. If f) \ is the symmetry algebra of
I .

\

This implies that

(5.10)

(5.11)

[E#,;#] = 0 "i/,; E f).

At points of Qo, given by (5.6), we have ;# IQo = ;(xo).
\

Hince, for each point (x,g) E

I# .
[E (x,g),;(xo)] = 0 "i/ ; E f), I

which implies that, for all (x,g) E . Qo, E#(x,g) is in the! Lie algebra J[Ho] of the
,

centralizer Z[Ho] of Ho. Hence, the electric component E of the field strength reduces to
I

a seetion Eo of the bundle T*Qo O?J Q[J[Ho]] over M. \
I

The matter field '¥ is a section of the associated bundle of Q, with typical fibre
I

/Rn O?J /R4, where /Rn is the space of the fundamental representJtion of (the mat;ix group)
1

G, and the' factor /R4 describes the spin degrees of freedom. \It follows from (1.6) that

(A,E,'¥) E Pf) implies that

;'¥ = 0 "i/ ; E f). (5.12)

yields

Let ,¥# be the equivariant function from Q to /Rn O?J /R4 corresJonding to '¥. Then, (5.12)

I

(5.13)
•.

For each point (x,g) E Qo,

(5.14)
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of Qo, with typical fibre Vo. ~ IRn~ 1R4.

I
I

I

\

. which implies that 'P#(x,g) is in the subspace .1

V0 = {z E IRn~ 1R41~(xo)z = 0 'tJ ~ -\E fJ}
I .

of IRn ~ 1R4annihilated by Lie algebra fJo of Ho. The action of the centralizer Z[Hol
I

preserves Vo. Hence, the matter field 'P reduces to a sectiod 'Po of the associated bundle
. I

Thus, we have proved

THEOREM 5.

For every (A,E,'P) E PfJ, the Cauchy data (A,E) for thel Yang~Mills theory with t~e

structure (internaI syrnmetry)- group G reduce to Cauchy data for a Yang-Mills

theory with principal bundle I '

Qo = {(x,g) E PI h#(x,g) = h(xo) 'tJ h 1 H}
I

and structure (internal syrnmetry) group \

Z[Hol = {g E GI gh(xo) = h(xo)g 'rj h ~ H},

where Xo is and arbitrary fixed point of M, and the latter field 'P reduces to a

section of the associated bundle of Qo with typical fibrJ

Vo = {z E IRn~ 1R41~(xo)z= 0 'rj ~ E \f)}.

The change of the base pointxo correspond to passing from Qo to another
. .I

principal sub-bundle of Q with conjugate structure grouP
r

It follows from Theorem 5 that each symplectic manifo~d. P(f)) In P corre.sponds to

symmetry breaking from the original internal symmetry groupl G to 'conjugacy classes of

subgroups Z[Hol centralizing Ho. It should be noted that the symrnetry breaking

encountered here is completely intrinsic, it does not require II dditional Higgs fields. On

the other hand, it does not lead to vector bosons.

I

I

\

I
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Riemannian metric in P. Let J : TI' - TI' be defined by

E.

-~~~--I:' --
\

I
I
I
I

. ,\
Appendix A. Completion and almost complex strUcture. I

One of the technical assumptions in [3] is the existeAce of an appropriate almost
. . !

complex structure, which in Yang-Mills theory acts by interqhanging A and E. However,

in ourphase space P the variables A and E appear asymme~ricallY, and we do not have

existence and uniqueness theorems in spaees symmetrie undJr the interehange of A and
\

\

Let I' denote the eompletion of P in the L2 norm. The \ weak symplectic form (J) in

P induces a strong symplectic form fiJ in P. The L2 scalarl product (.1. )L2 defines a
I
\

_ J(ßA,OE,8¥) = (-OE,ßA,i'¥) I
for every (ßA,ßP,8¥) E .TP. Then, J2 = - 1, and \

I
Qi...Ju,Jv)= Qi...u,v) = (Ju Iv)L2 = - (u IJeL2

for all u,v E TI'. Thus, J is an almost complex structure on IP. The action of GS(P) In
IP extends to an action in I' preserving its symplectie form, the Riemannian metrie and
I
I
I
,ts closure In TpP . The

I
\

Y} I'
I

.
the almost complexstructure.

Let Y be a closed subspace of T P and let Y be. p
symplectic anni~ilator y(J) of Y is defined by

y(J) = {u E TpPIaJ(u,v) = 0 V V E

Similarly, the symplectic annihilator of Y in TpP is

yfiJ = {u E T PIQi...u,v)= 0 V V E Y}p
(AA)

Since V is closed, we have

(y~(J) = Y .

We denote by y.l.. the L2-orthogonal complement of

orthogonal complement of its closure Y in T P. We have. p

(y.l.)(J) = cy.l.)fiJ (\ T P
P

I
\

I
Y,lin

I
I

(A.5)

TpP, and y.l. the L2

(A.6)

Moreover, by Eq. (A.2)

I
\

I
I
I
I
I
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(vJ.)(j) = JV () T P
p'

In the following we shall use the notation

Hence,

I '

I
I

T PIID(u,v) = 0 'i/ v E yJ.} = {U E T IPIJu Ep p

!

I
I

.1V = JV () T P.~ P

(A7)

(A.8)

Since J2= - I, we have

(AlO)

I
J2V ~ V, and(.1V) () V = {O} '\ (A~)

. for each pEP, the second derivativeof the momentuIn map J : P -+ gs(P) is a
. I_ * i.

symmetrie bilinear map D2J : T P x T P -+ gs(P) . It extends to asymmetrie bilinear \
. P P P I

- - - *map D2Jp : TpP x TpP -+ gs(P) .

LEMMA A.1.

For all v,w E TpP, and all ~ E gs(P),

(D2j (Jv,Jw) I~> = (D2J (v,w) I ~>
. p p \

For ~ E gs(P),' and a constant vector field X 1P, with X(p) = w, the
. I

equation äJ(~p-,X) = (dJ(X) I ~>, differentiated at p in the direction v E T P yields, I p ~
ID(I?~p(p)v,w) = (D2Jp(v,w) I~> . I

Since .the action of GS(P) in P preserves the almost complex \structure J, for every ~ E

.gs(P), we have JoT~p = T~p0.1. Hence, !

(D2Jp(Jv,Jw) I ~> = äJ(D~p(p)Jv,Jw) = ID(d~p(p)v;w)=f (D2Jp(v,w) I ~>.
~ Q.E.D.

I
Appendix B. Propemess of theaction of ~the' gauge symmetry ~oup.

The gauge symmetry group GS(P) consists of map ep : I M .~ G in the Sobolev

dass H3(M) such that n.gradep = 0, (2.4). Its action in P is\ given by (1.5). In order

I

1
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with limit 4J and 4Jp~ = p.

\ '

I
I
I

toprove that this action is proper, we need to shoi that, for every sequence

Pn = (An,En,'I'n) converging to p = (A ,E ,'1' ) E P, and ~very sequence 4Jn in GS(P)~ ~ ~ ~ ! .

such that 4JnPnconverges to P = (A,E,'I'), the sequence 4Jnh~s aconvergent subseqqence

\

\

The gauge transformations act on A, E, and 'I' independently. Hence, we may
\ I

consider first the action of GS(P) on the connections. For a\ seque~ce An converging to

A, and a sequence 4Jn in GS(P), let~

(B.I)

denote An transformed by 4Jn' This implies I

d4Jn= 4JnAn- Cn4Jn' \ (B.2)

By hypothesis, the sequenees A" and c" eonverge in H'(M) \to A~ and A,. respeetively.

In particular, their H2(M) norms IIAnllH2 and IICnllH2 are Ibounded. Furthermore, the

L2(M) norms l14JnllL2of 4Jn are bounded since M and G are ~ompact. Eq. (B.2) implies

that also the L2(M) norrns IId4Jn1lL2of d4Jn are bounded. Henct the H1(M) norms l14JnllHl

of <Pnare bounded. Repeating tbis argument twie~, we eonclu~ that the H3(M) norms ~f

4Jnare bounded. By Rellich's Lemma the sequence ~n has a stibsequence convergent to 4J
./ !

, in H2(M). Without loss of generality, we can restriet our argiliment to this subsequence,

and assurne ihat <Pneonverges to ~. in lP(M). Henee, the rquenee c" = <PnA"o/öl+

4Jnd4J~1 converges to 4JA~ 4J-1 + q,d4J-1 in H1(M),. . l
I14JA~Ij>-l+ q,d4J-1 .- CnllHl -I 0 as n -I r. (H.3) ,

By hypothesis, Cn converges to A in H2(M). Hence, \

II~A~~cl + <Pd~l - AIiHI ,; II~A~~l + </Jd~l - c"IIHI + II~ - AIiHI ~ 0 as n ~ ~.

This implies that

and hence,

A = 4JA 4J-1 + q,dlj>-l~

dlj>= Ij>A - AIj>.~

(BA)

(B.5)
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that 4>e H3(M).

to Hl(M), we obtain

In a similar manner we obtain

boundary .condi tions (1.1).

\

ISince the right hand side of (B.5) belongs to H2(M), it fo1llows ethat d4> e H2(M) , so

I
I

Using (B.2) and (B.5), we observe that !

IId4>n-. d4>IIH2= l14>nAn- Cn4>n- (4)Aoo -44»IIH2 S

l14>nAn- 4>AooiIH2+ IICn4>n - A4»11Hl.

As n -+ 00 the right hand side tends to zero, because 4>n-+ 4>,\An -+ Aoo' and Cn -+ A in

H2(M). Hence, IId4>n- d4>IIH2-+ 0, whichimplies that 4>n-+ 4>lin H3(M). This proves the

properness of the action ~f GS(P) on the space of H2(M) \ connections satisfying the

I
I

In remains to show that 4>takes E to Eand 'P to 'P. By hypothesis En -+ E and
00 00 I 00

4>nEn4>ö..1-+ E in Hl(M). Since 4>n -+ 4> in 'H3(M), and a ~ointwise multiplication of

functions in Hl(M) by functions in H3(M) is a continuous mapl from Hl(M) x H3(M)
, I .

\

E = Zim (4)nEn4>ö.1)= (l im 4>n)(/im En)(lim 4>ö.~)= 4>E4>-1..
00Hl (M) H3(M) Hl (M) H3(M) \

\

I
'P = lim (4)n'Pn) = lim (4)n)lim ('Pn) = 4>'P00'

H2( M) H3( M) H2( M) I

This completes the proof of properness of the. action of GS(P) ~n P.
I

\

Appendix C. Proof of the slice theorem. \

We es'tab"lish here the slice theorem for infinite dimensionJl groups, c.f. [14]. Since
. . - \

the assumptions made here are more general than in the body pf the paper, we use an

. independent notation following that of Appendix 2 of [15]. I
I

Let M be a Hilbert manifold, and G a Hilbert Lie g~oup, with a continuous

proper smooth left action cI> : G x M -+ M. In the following wJ use the notation cI> (m)I . g.
= cI>(g,m). Let 9 be the Lie algebra of G. For each m E M, I we denate by G the, m

isotropy group of m, by 9m the Liealgebra. of Gm' and\ by 0m= G. m the

I
I
\

I
I
I
I
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HYPOTHESES:

\

\

\

I
(a) The group G is a Lie group in the sense that the exponential map gives a

I
diffeomorphism of a neighbourhood of 0 E 9 onto a neighbourhood of e E G.

I.

I

orbit of G through 01. Since Ibe action IS proper Gm is c1mpact and Ibe orbit 001 is

closed. The tangent space Tm0m can be presented as g. m ITlI>(g,O)(e ,m), and gm' m =
O.

(b) The action lI>is proper;
I

(c) Bochner Linearization Lemma, (16]. There is a Gm invariant neighbourhood
, .' I

U of 'm E M and a diffeomorphism 1jI : U --+ T M such that:
m \.

ljI(m) = 0 and Tm 1jI = identity (C.l)

and, forevery g E Gm and ,p E U

. (C.2)ljI(~ (p)) = T lI>(ljI(p))g mg \

I
I

These assumptions are stronger than needed to get slices, but they allow us to control
I

the topology of the space of orbits of the group action. They \are satisfied by the' gauge

symmetry group GS(P) considered in this paper. Proposition \2.1 guarantees assumption

(a). Properness of the action of GS(P) is proved in Abpendix B. The Bochner
I

Linearization Lemma follows from the fact that the action of GS(P) is affine.
. I

First we need a lemma.

LEMMA C.l.

Given In E M, let L be a submanifold of G through e

9 = gm e TeL,

and let S be a submanifold of M through m such that

T M = T 0, e T S.m m m m

Isuch that
.1

I
I
I

(C.3)

(CA)
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['

I

I

I
I

Then there is an open set U x' V ~ L x Ss*ch that $1 (U x V) is a
I

diffeomorphism onto an open neighbourhood W of m EI M.

,PROOF. Let D$ : TG x TM -+ TM denote' the 'derivativeof $, and Dj$' ,be the
I

restriction of D$ to the i'th factor. Since $(e,m) = m for lall m E M, we have that
I

D2$( ') = identity,and so D$( )' is surjective. No~ ker D1$( ) = 9m bye,m e,m I e,m

definition, and also, by definition image D1$(' ) = T ° . I
.' e,m : ~ m.1

Choosmg Land S so that we can make the ldentlficatlons
I

Q.E.D.

Q.E.D.

(C.S)

(C.6)

is a Hilbert manifold the

If $ V (I V :;, 0 for some g E U ~ LeG,g

U containing m with U g; Ü.

TeL == g/gm \

TmS == TmMfTmOm I

we have that D$I (TeL x TmS) is an isomorphism. Since J
I

, \

I

I

Lemma now follows by the inverse fUDction theorem.

COROLLARYC.2.

PROOF.

and V ~sJ then g = e.

I

PROOF. Let mEV be such that $(g,m) = $(e,m') with J, E V. Since $ is a local

diffeomorphism on U x V it follows that (g,m) = (e,m'), so tJat g = e.
, \

\

ILEMMA C.3.

For every neighbourhood Ü on M containing m, there iJ a Gm invariant open set

I

I

'" countaJ1e.Since M is a Hilbert manifold, it is first u Hence; there exists a
I 00

,sequence fUn} of neighbourhoods of m in M such that Un ce Un-I, (I Un = {m}, and1 n=l'

I
I

\
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Q.E.D.

(C.IO)

(c.?)

(C.S)

(C.9)

I. '
~f M through m such that

l
I

\

\then g E
I

T M = T 0 + T S 't/ pES.
P P P P

Gm'S ~ S .

For pES, and g E G, if<l>/p) E S

For each m E M, there exists a smooth submanifold S

(1)

(2)
(3)

(4)

SLICE THEoREM.

I

Gm.U. is not contained in Ü. Snppose now that the sta!elent of the lemma is false.
I '. .

Then Gm' Un is not contaiQed in' Ü for all n. Hence, there exist sequences mn E Un and

gn E G such that gnmn ~ Ü. Since the action ~f G is prdper, the isotropy group G
m . . . I . m

is compact and the sequence gn has a convergent subsequence. Without loss of
, I

. . . I .
generality we may ass~me that gn converges to g E Gm' Th~ sequence mn converges to

!
I

m by construction. The. continuity of the. action of G in M implies that gnmn converges, I

to g. m = m, which contradicts the statement that gnmn ~ Ü ~or all n.. I
I

I

\

showing that properties (I) through (4) hold.
c

Observe that if k E Gm' kg. m = kgk-1. m, or

(C.I2)

(C.Il)

constru~ting a candidate Se and

\

I
<l>k°<l>/m) = <l>kgk-1(m). I

then the I-parameter groUps I t •.....• k[exp(t~)]k-l and

J O. Hence, 'differentiating

I
!

\

I

\

I

I
I

\

I

g,E

We prove the existence of a slice byPROOF.

t •.....•exp(tAdk~) have the same tangent vector Adk; at t

(C.II) with respect to t at t = 0 we get

If g = exp(t~),
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(C.13)

Since Gm is compact, there is a Gm invariant in~er product onT mM. So

(TmOm)J. is a Gm invariantsubspace. Using the local lihearizing diffeomorphism VI

(from the Bochner Lemma) the submanifold \
I

\

where B", is a ball of radius e in T M (with .respect to the G invariant inner(;. m.! m
product) is Gm invariant. So S'" has property (3). MoreoverJ T! S = (T 0 )J., since

(;.. I m e m m

TmVl = identity. Hence, property (1) holds a~ weIL I

. We argue that Property (2) is an open condition in si as folIows. Observe that
I. $1 (G x Se): G x Se ~ M is a submersion at (e,m). Hence ~t is a submersion at (e,p),

for all p in a neighbourhood of m in .Se' \

Now it remains to show that we can find e > 0 so that\ (4) holds. Suppose that it

does not hold for any e' > O. This would imply that there is k sequence of points {mn}

with mn E SI/' and a sequence gn E G, such that gn i: G ,I and gnmn E si/, Hence,
n .. ml n .

mn-+ m and gnmn -+ m. Since the action of G in M is pr<i>per, it follows that there
I

exists convergent subsequence of gn' Without loss of generalit~, we may assurne that gn

-+ g. Moreover, gnmn -+ gm = m, which implies th,at g E GJ. Hence, g-lgn -+. e,.g E

\

I
Gm acts in G be multiplication on the left, and the orbit of this action through

\

the identity in G coincides with Gm' Applyin~Lerp.rna Cl tOI the action of Gm in G,

we conclude that there is a submanifold L of G transverse to <fm at ~, and an open set

U x V ~ Gm x L such. that the multiplication (k,l) t-+ kl i~ a diffeomorphism onto

some open neighbourhood W of e in G. Thus, we may assum~ that g-lgn = knln, with

k, E Gmand In E L. Sinee, g and kn are in Gm and gn E Fm' it follows that In =

kn-lg-lgn i: Gm for all n. I
We now apply Lemma Cl to U x V ~ L x Se' For suf;ficiently large n, gnmn =

gknlnmn is in, V ~ vS~. It follows from Corollary C2 Ithat gknln = e for n

I
I
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Q.E.D.

References.

orthogonal eomplement of T 0 .m m

contradiction establishes (4).

I
I
\

large enough. Hence, Ln = kn-1g-1 E Gm' which contradibts the result above. This
I
I
I
\

\

I
\

We should remark that, for the case under consideration in this paper, that is for
\

I G = GS(P) , there is a natural GS(P) invariant weak inner product on on the manifold M
\

~ P given by the L2 scalar product. In this case, we can ialCe (T 0 )J. to be the L2
. \ mm

orthogonal complement of Tm 0m' As long as \the ball Be is defined with respect to the
. c. \ _

strong Gm invariant inner product on M,. the mariifold SG defilned by (C.13) will satisfy
I .

, I
properties(1) through (4). Hence, for the gauge syrnrnetry group GS(P) one can always

\ \

choose a sliceS through m satisfying the condition' (3.8), reqtiiring that TmS IS the L2
\

I
\

I
I
I
I

I
[1] G. Schwarz and J. Sniatycki, "Yang-Mills and Dirac field~ in' a bag, existence and

uniqueness theorems", Comm. Math. Phys. (to appear) '\

[2] J. Arms, "The structure of the solution set for the Yang-Mills equations", Math.
Proc. Camb. Phi/. Soc.,90 (1981), 361-372. I

I
[3] J. Arms, lE. Marsdenand V. Monerief, Symmetry and Bifurcation of momentum

maps ", Comm. Math. Phys., 78 (1981), 455-478. ' I
I

[4] p. Mitter and C. Viallet, "On the bundle of connectioii.s and 'the gauge orbit
manifold in, Yang-Mills theory", Comm. Math. Phys., 79 (1~81), 457 - 472.

I
[5] M. Atiyah and R. Boot, "The 'Yang-Mills equations over Riemann surfaces" , Phi/.

Trans. R. Soc. London, A 308 (1982) 523-615, ' I

[6] W. Kondracki and J. Rogulski, "On the stratification of ~he orbit spaee for the
action of automorphisms on connections", Dissertatione~ Mathematicae, CCL,
Warsaw, 1986. \

, . , . I
[7] J. Huebschmann, "The singularities of Yang-Mills connections over a surface. I.

The loeal model", "preprint, February 1992. \,

[8] J. Huebsehmann, "The singularities of Yang-Mills conneeti6ns over a surfaee. n.
I

The stratification", preprint, February 1992. I
, \

I
I
I
I
I
I
!



35
I
\

\

I
[9] R. Sjamaar, "Singular orbit spaces In Riemannian kd Symplectic geometry",

Thesis, University of Utrecht, 1990. 1
1

i
[10] R. Sjamaar and E. Lerman, "Stratified symplectic spaces andreduction", Ann., of

Mdth. 134 (1991), 375-422. . . 1
1

\

[11] C.B. Morrey, Multiple Integrals in ...the Calculus of Variations, Springer Verlag"
Berlin, 1966. .\

[12] T. Kato, Perturbation Theory for Linear Operators, Sprin~er Verlag, Berlin, 1966.
, . 1

I
[13]. A. Pietsch, Nukleare Lokalkonvexe Raüme, Akademie-Verlag, Berlin, 1965.

. 1

\ .

[14] R. Palais,' "On ,the existence of slices for actions of non~ompact Lie groups, Ann.
Math., 73 (1961), 295-323. I

[15] R. Cushman and L. Bates, Global Asp~cts of Classicaf Integrable Systems, in
preparation. \

I
.[16] S. Bochner, "Compact groups of differentiable transformat~ons", Ann. of Math. 46

(1945) 372-381. \

\

I
\

\

I
I
I
I
I
I
I
\

I
I
l-
I
\

I
I
I
I
I
I
I
\

\

\

I
\

I
I
I
\

\

\

\

I
I
I
\

oelhoff
Rechteck


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035

