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Abstract ’
The structure of the constraint set in the Yang Mills- Dlrac theory
in a contractible bounded domain is analysed under tne bag boundary
conditions. The gauge symmetry group is identified, ajnd.' it i1s proved
that its action on the phase space is proper and admi;ts slices. -
The reduced phase space is shown to be the union o‘f sympleetic
manifolds, each of which corresponds te a deﬁnite. mpde of syrnme-try.
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1. Introduction.
in a pfeVious paper we have proved the existence and uniqueness theorems for
minimally interacting Yang-Mills and Dirac fields in a bounded contractible domain M ¢

IR3 (1]. The aim of thlS paper is to study the structure of the space of solutions.
|

Our results - were obtamed for Cauchy data A E, H"(M) E ¢ HI(M)
Y e H2(M) where and Hk(M) is the Sobolev space of ﬁe’lds on M which are square

integrable together with their derivatives up to the orderi k, satisfying the boundary
. | :

conditions ]

nE =0, 1B =0, iny¥|y, = ﬂé‘;M, Ll

| nA = 0, i { Pk + im¥}| 5, = POk + im¥{ g - (L1b)
Here we use the notation established in [1]. In particu,flar, nE de'nqtes the normal
- component of the “electric” part, B the tangential component of the "magnetic” part of

the field strength on the bouhdary' M of M. Thus. the lextended pﬁasev space of the
o

{

theory under consideration is |
, _ |

P = {(AEY) € HX(M) x HY(M) x HX(M)|satisfying (1.1ab)}. (1.2)
~ The variational principle "underlying the - theory giv.es; rise to. a (weak) symplectic

structure on P. Let 6 be a l-forrln_ on P such that, for evej'l:ry p = (AEY) € P and ag-x
fegE+,u1§WETpP, [. ‘
(e('A,E,W)|ag-K +!¢§E + w%,) f (E- a‘ + " u/)d3x . o (13)
The symplectic form ‘@ of P is the exterior d‘ifferentxal of é | » o
| | | S0 =-df . { | (1.4)
Let G be the structure group of the theory, pres_entec_ji a§ a matrix group, and g be'
the Lie algebra of G We assume that G is compact,'-anc; thut g admits an ad-invariant
'r"netric. The group GS(P) of gauge symmetries consists of maps ¢ : M — G such that

" their action on the variq’bleé.(A,E,W), given by = '{
|
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A — QAQ-! + Ggrad-l, E v~ $E¢-, f ¥ = ¢¥, (L5)

. leaves -the extended phase space P invariant. The infinitesimal action of an element &

_ ; :
~of the Lie algebra gs(P) of GS(P) is given by b : -
E— E - [E&], ¥ =’w + &, (1.6)°
S |
L
D & = gradf + [AE] (1.7

is the covariant derivative of & with respect to the connection defined by A. It gives
. . i - : ,

A A-DS

where

!

|
EAEY = - 0,8 S - BA S e & (1.8)
The action of GS(P) preserves the 1-form 6. Hencq, it is Hamiltonian with the
. ' ‘ | '
equivariant momentum map J : P — gs(P)* such that |

. P
(AEDIE) = (O1GAED) = [ (- BDAE + vieviax . (19)

- rise to a vector field &, on P such that - -

Here gs(P))'= denotes the L2 dual of gs(P), that is the Sp?'.CC of square integrable maps

from M to the dual g* of the Lie algebra g of the stru!cture group G. For each £ e

. gs(P), the function J 5: P — R given by : f ,
J(AE® = JAEDIO | (1.10)
is called the momentum associated to £ The vector ﬁeldg’ éP is the -Hamiltonian vector
: i _

R
!.

field of Jé, ie. A
G de=ag | | ’ B (1.11)

Integrating by parts on the right,hand\ side of Eq. !(1.9), and taking into account
the boundary condition nE = 0, we obtaih : : '

(J(A,E,‘P)I@ = f {(divE + [AEDE +l ¢T e} dax. (1.12)
For every & e gs(P),

|
|
|
f (1.13)

viey = - j.g

where j is the source term in the Yang-Mills-Dirac ’theory. Hence, the constraint

equation of the theory - - v [’
|




divE + [AE] = j , (1.14)
is equivalent to the vanishing of the ,momentumv map ‘J. &

The presentation of the constraint set as the zero lex’fel J*i(O) of the momentum
map J, enables one to study its‘ structure in terms of the afiction.of the group' of 'gauge

N

symmetries. It was first done by Arms (2], who discussed the structure of the constraint
set for pure Yang-Mills fields in compact spaces (no boundary) in general terms without
specrfymg the topology of the function spaces under conmderatlon.'The structure . of the
zero level ‘of the‘ momentum. rrlap, corresponding te a Hamiltonian action of .a

Hilbert-Lie group on a Hilberr manifold was | under - additional technical

aSsumptions, by Arms, Marsden and Moncrief, [3]. Specml cases were considered by

Mitter and Vialet [4]:’, Atlyah and Bott [51, Kon_draLh and Rogulski [6] and
|

Huebschmann [7,8].
Functional analytic. assumptions made in this paper ar{e consequences of the results
|

of, [1]. They fail to satisfy two basic assumptions made in ![3]: (1) neither the differential
of J nor its adjoint are elliptic, (ii) the extended phase- space P is not invariant under
the interchange of A and E. Hence, we v_cannot use the r[.esults of Arms, Marsden " and

Moncrief' [3]. Instead we follow the’ main idea of their paper and prove the necessary '
1

intermediate steps. In particular, we prove the properness of the action of GS(P) and of

“the exrstence of slices for this action. From this we show’ that the reduced phase space

is the union of symplectic manrfolds labelled by the ;'conjugacy classes of compact.

subalgebras of gs(P). Each of these symplectlc mamfolds{conmsts of the fields (A,EY) .

|

In the finite dimensional case the partition of the reduced phase space into

. ‘ , |
symplectic manifolds can be- refined using conjugacy . classes of compact subgroups of

GS(P) rather than compact subalgebras. In this case onfe obtains a stratification, with

|

strata which can described algebraically in terms of the Poisson algebra, c.f. [9,10].

with a definite mode of symimetry breakmg
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Similar results for central Yang-Mills conneqfions’ on surfacT:s has been obtained in [8].
An adaptation of their approach to our pha_se space will be ;studied élsewhere.

The paper is organized as foll_bws. In Section 2 We d;iscusg, in a proper functional
analytic framework, the gauge symmetry group and its’ acticf)n. AThé structure of the 'zero
level of the momentum map is analysed in Section 3. A,j stratiﬁcatiori of the reduced
phase space is studied in Section 4. Section 5 contains discussion of symmetry breaking
| corresponding to each stratum. The al‘most .complex st,ructur]'e in the L2 completion of P

is discussed ‘in Appendix A. Thea properness of the ac;’ion of GS(P) is proved in

Appendix B. The slice theorem is proved in Appendix C. j

|

2. Gauge Symmetries and.the Momentum Map. |

The requirement that (1.6) gives an action of & € gs(P) in the space P, defined by

(v1.2), implies that gradf ¢ HXM). Since M is bounded, it follows that & € H3M).

Moreover, the action of & has to preserve the boundary 'co_~nditions. The conditions (1.la)

: : ‘ , |
.are the usual bag boundary conditions and are gauge invarliant. The conditions (1.1b) are ‘
's‘atisﬁéd if and only if n-éradé = 0. Hence, | |

|

gs(P) = {& : M — g|& € H3M) and ﬁ-grade: =0} . .1

The L2 dual gS(P)* of gs(P), considered here, is tw'hé sp’ace of squére' integrable
rriaps from M 'to the dual g* of g, that is o [ _ : _ | | |
| Cgs(P) ={v:Mog|ve Lz'(le)}. ) @2
The evaluation of v e gs(P)* on 57 e gs(P) is given.‘ by pointwise evaluation ahd
integration | o . l

vE = [ vEdx | ‘ 2.3)
S ~ M |
The momentum map.J defined in Eq. (1.9) i1s a continuou:s map from P to gs(P) .
. _ ! ‘
GS(P) has a manifold structure with the tangent bJ'undle space spanned by gs(P).

-

The presentation of the structure group G as a matrix group, and boundedness.

|
|
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. of M enable us to present GS(P) as a group of maps ¢ frc%m M to G of Sobolev class

H3(M) Moreover, the boundary conditions (1 1) require that !n -grad¢g = 0. Hence
GS(P) {0 : M — Gl|¢ e H3(M) and n- grad¢ = 0}. 24

Since M is contractxble and G is connected, GS(P) 1s connected However it need not

be simply connected. I
| |
|
PROPOSITION 2.1. , | v
. ' : f
The exponential mapping exp : gs(P) — GS(P) I is a diffeomorphism of a
neighbourhood of 0 e' gs(P) onto a neighbourhood of the identity in GS(P).*
v | ! T

. - , ;
PROOF. - Let U be a nelghbourhood of 0e gand V a !nelghbourhood of the identity

e € G such that the exponential mappmg exp . g.-— G 1§ a diffeomorphism of U onto

Viand let In : V — U be the inverse of this dlffeomorphlsm Since, by the Sobolev
embedding theorem, each ¢ ¢ GS(P) is a contlnuous map frorn M to G, the sets.

= {¢ € GS(P)|range ¢ ¢ V[!},
is open in GS(P). Smularly, the set | l

= {'é € gs(P)Irange &c UI[}

is open in gs(P). For every ¢ € V, lno¢ is in gs(P), and lits range is in U. Hence, Ino¢
€ U. Let exp : gs(P) — GS(P) denote the exponentlal for.’ the gauge algebra. For every

é € gs(P), exp(&) = expo&. Hence, for every 9 eV, exg(lnod)) = expolno¢ 0, Wthh

|
|
|
il

The main property .of the action of GS(P) in [jP used in this paper is its

~ properness. | ' | y

implies that exp(U) =
Q.E.D.
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THEOREM 1. The action of GS(P) in P is proper. |
That is, for every sequenée Pn converging to q in I” and every sequence ¢, in
GS(P) such that ¢gp, converges to p, the sequence ¢, has a convergent
: subsequence with limit ¢, and ¢q = p. o ' .\
PROOF is gi\ten in Appendix B. R | ' '
|
For each p ¢ P, we denote by 'Op the orbit of GS(P){through P |
=UplocGs®) | @Y
All orbits 0 of GS(P) are cloeed since, if q)np is a convergent sequence of pomts in
0 with hrmt q, then the sequence ¢, has a convergent subsequence ‘with limit ¢ and q
= ¢p, which implies that q € O o : | .. _
| For every subspace V of TPP,' we denote by vo thc‘é symplectic annihtlatcr of V,
that is _ : [
| {w eT P|a)(vw) 0 Vv vfe V‘} (2.6)
Note that that V¥ is closed, and if V is closed, then (Vw) = V. |
- o |
PROPOSITION 2.2. : | S '
For each p € P,

' 0]
= 2.7
Tpop , (ker de) 2.7)

I
|
|
PRrROOF. If éP is the Hamiltonian vector field of J 2 c[f Eq. (1. 11) then for every v

e T P,
p

l
oy
‘ (D(ép(P),V) = (de(Y)'@ ] , (2.8)
Since Tpop = {ép(p)|§ ¢ gs(P)} it follows that v. € (T 0) 'if and only if

|
|
I
|
.
|
|
|
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|
“ker dJ_. Hence, (T 0.)" , 0 "1 )® since
v € ker p ence .(TP p) = ker dJ p and therefore Tp = (ker de) , since ker
dJ P is closed. ' .‘
. Q.E.D.
. ) ' - ]
PropoSITION 2.3 © v ' |
‘F.or every p € P, range de ‘is a closed subsbace of gs(P)* with finite
codimension. - ' '
‘ProoF.  For p = (AE)Y) and (aey) ¢ ,TpP, Eq. (1.12) ir.nplies that _
(aepl) = [ @he) + [Ael + Babt + v'E¥ + Py

Hence, de =T +.S: TPP — LZ(M,Q), where | | ]

. Taews= - dive) and S@ae) = - [Ael - [Ea] + y'o¥ + ¥oy .
The Hodge decomposition, cf. [11], applied to square i_’ntegrablc zero forms on'M,
implies that LZ(M,g) = C o ¥, where ¥ is the space of coh]stant g-valued functions andlC
=. {div(v)|v € HI(M,g), nv = 0}. Both C and % are closed subspaces of L2(M,g). Since
rartge T = C, it follows that the 'range of T is closcled._ Moreover, cokernel T =
L2(M,g)/range ’T ~ ¥ has finite dimension, since dim[ ¥ = dim g. Hence', T is-
semi-Fredholth. ' | . |

.Further,_if Vo = (ap.ep ) is a boundetl sequence in ’f‘ P, then the sequence

(Sval = (- [Aea] - [Ba] + yis¥ +¥Toy)

is bounded in HI(M,g). ¢ L2(M,g). Since the embedding’ of HI(M,g) into'.LZ(M,g) is
compact it follows that the sequence {Sv,} has a convergent subsequence. That is, the

voperator S is compact. This implies that de T + S is semi-Fredholm, that is it has

closed range and finite codimension, c.f. [‘12].

Q.E.D.

N
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For each p € P we denote by gs D the gauge syrlnmJ try (isotropy) algebra of p,
" that 1s | |
- v o | |
gsp = (& € gs(P)|Gp(p) = O}, | 9
and by GS p gauge symmetry (isotropy) group of P | o
= (¢ < GSP)|p = p) | @0

B

By properness | of the action of GS(P) in P, ~each sequence {¢“}. in GSp has a
~ convergent subseq'uence,‘ Which implies that ~GSp is com’pact. ,Consequeritly,' th'e Lie
algebra 85p is finite dimensional. It is isomorphic to a| subalgebra of the structure
~ algebra g; a construction of such an’ 1smomorph1sm is g1vent in Sectlon 5.

The annihilator of the subalgcbra hc gs(P) is the subspace h? ¢ gs(P) defined by -

b = {v e gs(P) [(V|E) =0V & ef B} | (2.11)

1
| |
PROPOSITION 2.4. _ |
The range of the map: de . TPP — gs(P)% is gl\‘ren by the annihilator of the
j .
|
|
|
|
|

symmetry algebra of. p, that is

dj_ = a-, (212
range p (gsp) (. )

" PROOE. ~ By.(l.11), for each & € gs(P), and p € P, |
(W01 = &) 0 e
Since 2 is non-degenerate, it follows from (?..9) that | |
| | = {&e gs(P)‘] v(de(v‘)[é) =0V ve Tpr} = (range de)a. (2.14)
. Since range dJ‘p is clo§ed, taking annihilators of both side[s we obtain\
(gs )2 = (range dJ )ala = range dJ
»

the closure of range de in the

pv s '.
provided that (range de)aa is the closure of range de

In order to prove the last assertion, denote by Rp

'topoiogical dual gs(P)' of gs(P). The polar of Rp is




|
|
o I
10 |
|
(
J
(Rp)o = ({Ee gs(P)|<v|§) OYveR }

and the bi-polar : ])

CRYW = (ve gs(P)|<v|§> =0QV¢& el(R )0}

in gs(P), c.f. [13] By definition Rp l§ closed so that Rp.# (Rp)OO.
| ‘ :

is the closure of Rp
Sirice range dJ p is dense in Rp’ it follows that

(R )0 = (range dJ )a

Hence,

® .
in gs(P) .

I

|

!
(range dI )y = (R)® gs® =R rf\ gs®)

which implies that (range dJ )aa is the closure of range I[’
] QE.D.
I[ .

- We conclude from' Proposition 2.4 that p is a regulajr point of the momentum map
J if and only if p has no inﬁniteéimal symmetries, i.e. gs pl = {0}. In this case J—l(J(p))
|
is a manifold in a neighbourhood of p with the tangent space
T J(J(p)) = ker dJ_ . |
— p ((lp)) ver P |
Singular points of the momentum map have non trivial algebras of infinitesimal

symmetries. Let f be .the Lie algebra of a connected compact subgroup H of GS(P).

We denotevby Pf) the set of points p in P such that gsp = b, that is

f) = {p € P|gs = b} | (2:15)

| |

It follows from Proposmon 2.4 that pE€ Pb if and only if for all v e TpP _
(dJ (v)lé)—O v Ee b and (dJ (v)|C)¢0 V {¢ f) (2.16)
' Let Pb be the set of points in P such that their syrnmetry algebra gsp contains b, i.e.
Py =(pePlhcegs) I[ - 2.17)

It is clear that Pfj = U P, i
£oh
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PROPOSITION 2.5. | ‘
1y pb\is a closed affine subspace of P. II

2y Pyisa submanifold of P with the tangent space|

| | Tpr = {ve TpP](Dsz(u,v)|5)_ =0 », YV u e[’[ Tpr, & e b (2.l8) '

(3) The restrictions of the symplectic form o to l—’b. ;and Pb are symplectic.

T o

B

PROOF. l

() It follows frombthe fact that the actioh_ of GS(F) in PI is contihuous ond affine. -

(2) Let p be a point in Pb. Then, for every ¢ ¢ .b,!lhe linear map (de(.)lC) :

TpP — R does not vanish identically. Since dJ- islj continuous there exists a

neighbourhood U -of p in P such that, for all qe U (dJ l()lC) # 0 for every C not in

b. This implies that U N Pb c Pb Hence, Pb is an op[en submamfold of Pf) and a

submamfold of P. The expression (2.18) for the tangentl space of Pb is obtained by
; ‘

differentiating (dJ ()[5) = 0 for all 5 € hand all p e Pb

(3) Here we have to use the almost complex structure descrlbed in Appendlx A. Let P
be the. L2-closure of P. Then ~b {p € Plh c gs } is th!e L2-closure of Pb Since J is
GS(P) invariant, it follows that ]Pf) = Pb Suppose that u (Ie TPE) is such that u is in the

kernel of w|P Since TPU c TPb | ' ' I

( | (Ju|v)Lz = @(u, v) = @&(u,v) -] 0 | .(2.19)
for every v € TI_)fl' By construction TPU is dense in TlTb hence Ju = 0, ond u = 0
Therefore, Pf) is symplectic. Since Pb is an open slubmam'fold of l-)b it is also

sympléctic. II

. Q.E.D.
I B

|

L (
The last essential property of the- action of G.?'(P)' in P needed here is the
existence of slices. A slice through a: point p € Pf!for the action of GS(P)tlis a

submanifold s, of P containing p. and such that

|
|
|
|
|
|
|
|
|
|




|

I

| . |
12 s . ’
-

|

|

(1) S_ is transverse and complementary to the orbit 0p at| p, that is
_ ; BN . ;

TS T = . : .
o pop © Tp%p = TP | (2:20)
) Sp is transverse to all GS(P) orbits, that is, for each qE€ Sp’
‘ o
TS +TO.=TP ;‘ 2.2

qPp q 9 q
_ . : :
(3) S_ is invariant under the action of the gauge symmetry group GSp of p. -
: ! ‘ | .

(4) For q ¢ Sp and ¢ € GS(P), if 9q ¢ S then g ¢ GS |
i

THEOREM 2 (Slice Theorem). o |

For each p ¢ P there exists a slice S p.through p for the action of GS(P) such

|

that Tpsp is L2 orthogonal to TPQP'

|
. o I
PROOF is given in Appendix C. ; '
. b

o . . . f

3. Structure of the constraint set. [I
Thé constraint set is the’ zero lex)el of the mornefntum map J. It follows from
Propositibn 2.4 that J-1(0) hee‘d not be a manifold in neiéhbourhood’s of points admitting

. . | : . E

infinitesimal- symmetries. We shall show that it is foliat}’ed by submanifolds labelled by
‘the Lie algebras fj of compact subgroups of GS(P). Let ‘Mf) be the intersection of J-1(0).

with the submanifold Pb, ’

]
= J-1(0) n Py ,! - R
v ,

My
We denote by iy, the pull-back of @ by the inclusion mafp jy : My — P,
| ub = 'j;w . I! ' | (32
By n(f) we‘ denote the normaliser of § in gs(P); ; '
| ’ 3.3)

nh) = {Ee gPIECT e h VY Ce b} .
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.THEOREM 3.

For every compact connected subgroup H of GS(P), w

ith Lie algebra b, (Mb,ub) is

a co-isotropic submanifold of (P,w). The null distribution of ub is spanned by the

|

vector. fields ép, for £ € n(h).

The proof of this theorem will be given in a series of propositions. First,

that the anmhllator b3 is closed, and hence

gs(P) = ba ® (ba)

we observe

(3.4)

~We denote by n’b : gs(P) — h? the pro_|ect1ons on the first component, and by K the

composition of J with _nb,

K=7Z'h0J:P—»f)a.

3.5)

It should be noted that the map K dependsv‘on the choice of the infinitesimal symmetry

algebra b, but we shall not label it by the subscript b in order to simplify the notation.

Moreover, J-1(0) ¢ K-1(0) for e\}cry "b, so that
Mb = J-1(0) n Pb c K‘?(O) N Pf‘

_ PROPOSITION 3.1.

(3.6)

For every p € K-1(0) n Pf)’ K-1(0) is a submanifold 6f P in a neighbourhood of p

and

TéK?l(O) = ker di,

PROOF. Since p € Pb n K-1(0), it follows from Prop. 2.4 that

range de = h(range dJ ) b(ba)

(3.7).

which implies that K is a submersmn Hence, K-1(0) 1s locally a submamfold of P.

Moreover TpK—l(O) ker de = ker d(n:boJ) = ker dJ

-

P

QED.
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ProposITION 3.2.
K-1(0) n Pf) is a submanifold of Pb." For every p ¢ K]
Tp(K-l(O) n Pb) = {v ¢ ker de|(DZJp(v,w)|§) =0V E
PROOF. For every p ¢ K-1(0) n Pb,'K is a submersio
Hence, for every v € f?, there exists a vector field X, in
ﬁb(dJ(Xv)) in a neighbourhood of p. Also, v € b2 implies
¢ e b. Differentiating this équation in direction of w e TpP
\ (D JP(W,XV(P))|§> + (de(DXV(W))Ié)

However, (de(DXV(w))[E,) 0 since (de(,).|§)
(D2Jp(w,Xv(p))|§) = 0 for all £ € b, which implies by Ec

Therefore, the restriction of K 'to Pf) is a submersion

(KIPb)—l(O) is a submanifold of Pf)' Eq. (3.8) follows from

o

Most of the following analysié is local. Therefor

J-1(0) n. Pb'and discuss the structure of Mb in its neighbour

Let SPb be a slice for the GS(P) action such tﬁat )

com_pleﬁlent of TPOO Do’
| TS
Po

Po Po

= (T_O0 )"
 TpOp)
PROPOSITION 3.3. |
Pb N SPo is a manifold in a neighbourhood of py with

. Lyy -
TPy 0 Sp) = {V_s (TpOpy) |(.D21(v,w)[§)‘ =0V &e

PROOF. Let P

0

thevset of points on the GS(P) orbits thr

P = {¢g|<p e GS(P), q ¢ 'Ph} :

'1(0) n Pb,
€ b, w e TPP}. (3.8).

n in a neighbourhood of p.

P such that v = dK(X,)
that (dJ(X,)|&) = O for. all
we obtain o

=0.

0 for all 5 € b. Hence,

pr.

at p, and K-1(0) n Pb- =

. (2.18) that X (p) € T

13.7).

QE.D.
.. we fix a point py in
hood.

r is the L2 orthogonal

S
o Po

P

3.9

tangent space

by we TPOP}. (3.10) N

rough ‘Pb, that is
3.1




If yg=p and q ¢ Pf)’ then Ww-lp": P V ¢¢€ H. Thus, for every q € P(f))" the

symmetry group GS q is conjugate to H. Moreover, property
P(h)‘r\'Sp = {¢q € Sp|¢ e GS(P), q ef
= {¢q € Sp|¢e H,qe Pb}=an

By definition of P-(b) and property 2/ of the slice, P(fJ) and S 0 are transverse at po. It

(4) of a slice yields
Pb} =
Sp .

P |
follows that Pf) N SpO is a submanifold of S Po in a niighbourhood of pg. Further,

Eq. (2.16), implies that ,
5 " Spy = (P € Spl(d0IE) =0V

& € bl . (312

Differentiating this condition at pg ar_ld‘taking.into account Eq (3.9) we obtain (3.10).

" PROPOSITION 3.4. .
Mb is an open subset of Pb n K-1(0), and

=P \ -1
Mb N Spo b N Spon K-1(0)

ProOF. By Eq. (3.12), (W0]8) =0 for all p ¢ Py 0
Therefore, the function _(J.l 5). on P is constant on

P
y

QED.

(3.13)

Sp K-1(0) and all ;e .

connected components of

N Spon K-1(0). By hypothesis- J(py) = O. ‘Therefore (J(p)|§) = O for all p in the

connected component of P, n §_n K-1(0) containing py. Hence, J|P. n S_n K_—I(O) has
: T Tpo . b “po _

range in f2. By. definition K = ﬂboJ : P — B2, so that J(Py n Spon K-1(0)) =

K(P[,J N Spon' K-1(0)) = 0. Since"MEJ = PfJ n J-1(0) and J-1(0) ¢ K-1(0), it follows that

M =P
" SPo b

The preceding local analysis is valid for every py €

n S n K-10).
Do )

e P.n J-1(0). In ordef to

b

show that Mh is open in Pf)’ n K-1(0), for each pgy € Pf) N .{-1(0); we choose a slice SPO

thfough po satisfying (3.9), and a neighbourhood V. of po in OPOsuch‘ that

Po
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Spo X Vpo is an open neighbourhood of py in P. The collecition
| | S xV_)nP_n K10 :
| (Bpy X Vpy) 0 Py 0 KOl € My - G19
is an open covering of Mb in Pb' n K-10). If p ¢ Ff) n K-1(0) is contained in
(S, Do X Vpo), for some py € Mf)’ then there exists ¢ € GS(P) such that p is contained in-
the slice /Sfbpo = ¢(Sp0) through ¢pg, satisfying (3.9), which need not to ‘bclorig~ to the
collection of slices chosen in (3.14). Hence, |
P [ . ~1 = - ' -1 ) —1 ='

p € Py N S¢p0n, K-1(0) Pb N S(ppon I-1(0) _g _Pb an (V) Mb’ _ |
This implies that the union of sets in (3.14) is contained in MU' Hence, Mb is open in
Pb n K-1(0). |

Q.E.D.

ProposITION' 3.5
"Mb N SPO’ is a symplectic manifold m a neighbourhood. of py with tangent space

T, Mg S, )= @319

b
{ve(T O ) nkerdJ |(D2J(vw)|§)-OV§ef)weT P}

e

PkmF. Since Mb N Spo = Pf) N Sp(-)n' K—l(O)V, we prove |the statement for PfJ N Spon

K-1(0). Consider the restfiction KIPU n -Spor.' For each v ¢ TPoP’

dK, (V) = m(dJ p’o(v)). Hence, using Eq. (3.10),
. range d(Kl(Pb n. Spo))po =
= {nb(deo(v))Iv € (Tpoopo)* and (DJ(v,v)|[E) =0 V. Ee b, we TPOP}.
Since Tp 0p c ker dKPo’ the condition v € (TPOO pO)* can be omitted and, using

Proposition 2.5,- we obtain

range d(KI(Pb n SP_O))PO = ‘
{ﬂb(djpo(v))lv € Tp Pb and (DZJ(V W|E) =0V Ee b we TpOP} =
= {er(dJ v)|v e T Pb} = range d(KleJ)Po

In the proof of Prop. 3.2 we have shown that K|P, f) a submersion at pg. _Hence,




KI(PU nsS p0) is a submereion_at Pos which implies that P‘)
S ))-1(0)’ is locally a submanifold of Pb nS Do’ The expr
space follows from (3 7) and (3.10). _

‘ Let v € TPO(PU A J-1(0)). Smce vV € T (PfJ
(A,
structure  discussed in Appendix A. Also, v € ker deO,

‘(T PoObO)L' Moreover, Lemma A’l yields <D2.II/)0(JV,]W)|§)'

Eeh w € TPOR Hence, Jv ETi)o(Pf) N Spoh K-1(0)), cf. Eq.

Let T (P -1(0) : tk
et v € po(br\SpOr\K()) be ‘such that

T'(()P N S n K-1(0)). Then a(v,w) = 0 for all W

T (Pb n. S n K-1(0)). Takmg, = Jv we obtain ”v||12‘2

Hence, v 0, which implies that T Po(PfJ n S n K-

- Po
Pb' n Spon K-1(0) is symplectic in a neighbourhood of py.

M,

the mamfold structure of wh1ch has been es

We have shown in Proposition 3.4 that,

P, n K-1(0),

b

M , M
orecver b N Sp

pull-back ub of o to Mf) 18 co-lsotroplc with the null span

for 5 in the normahser n(b) of b, glven by (3.3).

in the L2

18|

is symplectlc by Proposition 3 6 It

N Spo van-l(O) =V(K|(Pb N

ession (3.15) for the tangent

S, Eas. (3.10), 27) and

imply that - T 0 = ker dJ is the alm '
imply tha Jv € .7(( Po Po)_) er po’ where J is the almost complex

so that Jv € ](ker deO) =
(D2] pO(Y,W)|§) = 0 for all
(3.15). |
ov,w) = 0 for all w.e
closure of

= (vIV)Lz = iJv,v) =
1(0))

‘ .

is symplectic. Hence, |

Q.E.D.
an open submanifold of
tablished in Proposition 3.2.
remains to- show that the

ned by the vector fields &y,

Let - N(H) denote the normaliser of H in GS(P), that 1s |

NH) = {¢ ¢ GS(P)I«Hm e HY x €

and No(H) be the connected component of the identity in
GS(P) with the Lie algebra n(f) given by Eq. (3.3). The
intersection of Pb with O

folloWs,

component (Pb no.) ¢po|® € N

containing pg can be descri

H} , - (3.16)
'N(H). It is a subgroup of
connected component of the

bed in terms of Ny(H) as

o(FD) } (3.17)

1
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The tangent space to Pf) N 0p at pg is given by

T (Pb N 0 ) = {5P(Po)|§ € n(b,
For every é € n(b) and every w e T Mf) =T (Pb nJ- 1(O))

|
#b(ép(PO) w) = a’(éP(PO) w) = (dJ_ (W)M) =0.

This 1mp11es that T (Pb N O ) is contamed in the null space of ,ub at po.

(3.18)

Nt

Let Sp be a slice through Po satlsfymg Eq. (3.8). Then, by the Slice Theorem,

T vM =T_ (M, n 0 T M n S =T T M
Po- D Po( b o ® Tp™My o (Pb Opy © TpoMp 7 SPO)"
since OPOI c JL0). By Prqposmon 3.5, TPO(Mb n’ Spo) is symplectic. Hence,

{_CP(pO)IC e nh)} = TPO(PU N OPO) is the null space of u at Po- This completes the |

proof of Theorem 3.

0

4. Reduction. ,

The reduced phase space P of the system is defined as the space of GS(P) orbits |

in the constraint set J-1(0), | ‘ '
| p = J-1(0)/GS(P). y @

.We denote by p : J-1(0) — P the natural projection, assigﬂing to each p € J-1(0) the

“orbit O_ € P,
orp1 p

p®) =0y, . 4.2)

Since ‘the action of GS(P) in P is proper, the quotient topology in P is Hausdorff. This
can be seen as follorws. If p, q € J-K0) are such that p(p) a‘wnd p(q) cannot be sep'arated
by open sets, then there exists a sequence p, in J-1(0) such that p(p,) converges both to
p(p) -and p(q). Let Sp and § q be slices through p gnd g, iespectively. For sufficiently
large n, there exist ¢p, Y, € GS(P) such that ¢,p, € Sp and Y,pn € Sq' Hence, ¢,pn - P
and Y¥,p, - q as n - «. Thus, 95" (¥opy) = p, while y,p, - q, which implies that ¢,y5!

has a convergent subsequence with limit ¥ ahd xq=p Hence, pE€ Oq and p(p) = p(Q.

©




If H, and H, are conjugate compact subgroups of GS(P), with Lie algebras f and
bz, respectively, then the GS(P)-orbits of Pb and Pb comcxc!ie that is P(b y = P,y c.f.
Eq. (3.11), and p(Pb) = p(Pb) For every Lie algcbra b of a compact subgroup H of
GS(P) we denote by 5) the pro;ectlon of J-l(O) a P(b) o P, '
. ' = _1 . . . -

P P(J ©) n Py, o ‘(4-3)

and by p[j : Mf) — f)(f)) ‘the. restrlctlon of p to Mb = J1(0) n Pf)’ considered as a map
to P(f))'
- THEOREM 4.

P(b) is a weakly symplectic manifold with an exact syrppIectic form

By = By @4
For every b in the conjuoacy class (b) pb ’b QP—(U) is a ,submersioo, and
" pyfy = OIMy and pgag = m (45)

The proof of this theorem will be split into several propositions.

PRopoémON 4.1.
' Each connected component of lv’(b) is a smooth manifold. For each f in the

conjugacy class (h), the map Py Mf) — P(b) is a submersion.

PROOF. Since H is norroal in N(H), the quotieot N(H)/H is a group' We want to
deﬁne an action of N(H)/Hv in Mb Let pand q = ¢p be two points on the same orblt‘
of N(H) in Mh Since, xp = p for every ¥ € H, it follows that q is umquely
" determined by P and the equivalence class [¢] of ¢ in N(H)/H Hence, we can set [@]p

= ¢p. This defines a left» actlon of N(H)/H in Mf)' Moreovor, f’(b) = pb(Mh) coincides

with the space of N(H)/H orbits in Mb

Py = M

b/(N(H)/H) : ('4.6_) '
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Thev(.N(H)/H) orbits in 'Mb are unions of connected component.s.r Each ¢ ¢ (N(HYH),
which is not in Ng(H)H acts as a diffeorﬁorphisin | betx'xlleen connected components. |
Hence, connected components of P(f)) are diffeomorphic to the quotients of connected
components of Mf) by No(H)/H.

The map pbr: Mf) — P(U) is onto. Furthermore, it follows from the Slice Theorem

that, for each p € Mb’ there exists ‘a’ slice Sp through p for the action of GS(P) in P.
By Proposition 3.5, Mb n Sp is a smooth manifold. It .i:s a slice for the action of
No(HYH in Mf)" Then, ‘by. Eq. (4.6), th‘ere\exists an open nelighbourhood Up of pin Mf)
N Sp such t.ha_t pblUp is a homeomorphism of» U.p onto pb_(UP) c P(f))' The ‘family of |
sets {pb(U p)|p € Mb} is-an open cover of P('f))' Suppose | p; and p; be in the same
conngcted component 6f Mb and pg € pb(Upl)i N Pb(Upz)" For any pg € pb—l(po) in the
same connected component as p; and p,, let UPo be the chosen neighbourhood of pg in

Mb N »SPO' There exist ¢, ¢ e No(H) sﬁch that ¢,pp € Spl and ¢;pg € sz; Moreover,

there. is a map ¢ from a neighbourhood V of ¢,py in Mb s Spl to No(H)/H such that,
for each peV, 0pop e sz, and ®(¢;pg) = identity. Since the action of No(H)YH

in Mb is loca.l'ly free, for sufficiently small _V_:the map @ : V — No(H)/H satisfying the
ébqve conditions 1is unique' and smooth. Hevnce," the map
‘ o |
NS_ :p— 00pe !
5" 5py p— ¢0(p)¢1” P |
~ is a diffeomorphism onto its image. This ensures that the family maps
. {(prIUP)_llp € Mb} defines a smooth atlases in connected Icom'ponents of P(b). In the

differentiable structure defined in this way the map pb > 1Mb — P(b) is clearly a

V- M

submersion.

~

‘It remains to show that the obtained differentiable structure in P(b) is indépendent _

|

of ‘the choice of b 'in the conjugacy «class (h). If b is another
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 representative. of (), and H; is the group generated by it, fhen there exists ¢ € GS(P)

|

) such that ¢H¢! = H;. Moreover, by Eq. (2.10), ¢(P|b) = Pbl, and ¢|Pb is a

diffeomorphism of Py onto Pbl"
l QED.

l

For every b in ), the puli-back of the I-form @ to 1!“‘)’ denoted -Ob[Mb, is N(H)

PROPOSITION 4.2.
invariant, and it vanishes on the vectors ép(p), with| p € Mb and & € n(h). It
pushes forward to a unique 1-form é(b) on f,(f).) such that _

. v
| | PoSe) = OIMy @7
The exterior differential EJ(b') = dégp) is a weakly symplecti.c form on P(b)’ and
Polig) = My 1 e

The forms é(b) and (I)(b) are independent of the cnoice lof b in (6).

PrROOF. (] &p(P)) = T(p) = O for all p e M, =Py n 1;1(0) and all £ € gs(P). This

implies that eble vanishes on ép(p) for all p e -Mf) and all & e n(h). .Since 0 is.

GS(P) invariant, Gh|Mb is N(H) invariant. Hence, Gble pushes forward to a 1-form
_ G(U), satisfyingv(4.7), which does not depend on the choice of b in (f).

It follows from (4.7)‘th_at _ | |
*_ ok, *. | . ‘
Pyl = Pol0gy = Arply) = Oy M) = 4B IMy = wIMy = u
which proves (4.8). The independence of 'b(b) from the choice of b in (h) follows from

the _mdependence of e(b)f

QED.

This completes the proof of Theorem 4.
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5 Symmetry breaking.

Yang-Mills potentxals represent connections in a nght principal buxidle Q over M
- with structure_ group G. Smce,M is contractible, the bundle Q is trivial,
, Q=MxG | | | (5.'1)
and the action of G in Q is given by | ) o ' )
Qx G = Q: (xghh) — (x&)h) = (xgh). 62
‘The assocxated bundle Q[G] of Q with typlcal fibre G and the adjomt action of G

‘on itself is called the group bundle of Q. Sections of QIG] correspond to automorphisms
of Q covering the identity transformation in M. In this cpntext,- the: groﬁp GS(P) of
gauge sym‘met.riesu of P can be identifies with the group of‘. sections of Q[G], of class
H3‘(M) which satisfy the boundary condition (2.4). |

Sections of associated bundles correspond to equivariant fnaps from the pr1nc1pa1
bundle to ‘the typical fibre. Thus, each element ¢ € G.%(P)- corresponds to a map
d) :Q — G such that, for every (x,g) € Q ' '

. Fe) = g0 . )
The adjoint bundle of Q is the associated bundle Qlg] L/ith typical fibre g and the

adjoint ection of G on g. The space of sections of ‘Qlg] .is the Lie algebra of .the' group

of sections of the\ group bundle Q[G]. The Lie algebfa bgs(P) consists of sections of the
adjoint bundle, which are of Sobolev class H3(M) and satisfy the boundafy condition
(2.1). Each &€ : M — g in gs(P) vcorrésponds to an eduivari nt map 5# : P — g such
> that | . ‘ . _
£'xe) = &) . (5.4)

Let § ¢ gs(P) be the symmetry algebra of p = (AEY) e P, and H the connected

subgroup of GS(P) with Lie algebra §. We have shown in Sec. 2 that H is compact.
Let xo be afixed 'pbint in M, then - } ‘
) Ho = {h(xo)|h € H} (5.5)

is a closed subgroup of G isomorphic to H. Consider the set

!




Qo = ((x® € Ph*(xg) = h(x) ¥ hie H). 5.6)

The right action of k € G leaves Qg invariant if and only if k is in the centralizer

Z[Ho] of Hy, defined by
Z[Hg] = {k ¢ Glkg = gk ¥ g ¢ Ho} 57

Actually, Qg is a nght principal bundle over M with structure group Z[Hp]. Furthermore,

fof each g € G, the set ‘

_ ’ _ o (x L - = {h (Xo,g)|h e H} = {g-lh(xo)'g;|h,e ‘H}

is a group conjugate to Hy with the centrahzer conjugate ta Z[HO]..Henee, for a fixed

H c GS(P), the principal bundle Q is foliated by principal sub-bundles with conjugate
structure groups. h | |

The Yang-Mills potential A gives a local description of a connection in Q relative
to the trivialization given by the product struet_ure (5.1). The  corresponding connection
form. o on Q is given by | | . |
: o= plAy + yldy, (58

where y is the embeddmg of G into the matnx group gl(R¥). The hoﬁzontal distribution

horTQ on Q 1s the kernel of the connectlon form. The connection in Q is sald to

reduce to a connection in a sub-bundle Qo 1f horTQ]QO c horTQO.

Let hc gs(P) be the stability algebra of P = (AEY) € P, and H the connected

* PROPOSITION 5.1 ‘ |
subgroup of GS(P) with Lie algebra h.  Then, conm‘ectxon in Q deﬁned by A
reduces to a connection in the sub-bundle Qq with structure group Z[Ho). |

Proof. Let q(t) be a horizontal curve in Q. For every h € H, gf'h#(q(t)') is the

equivariant function on Q describing the covariant derivative| of the section h of Q[G]

along q(t). However, H ¢ GS_ implies that ‘every h € H is covariantly constant.




u |
; l]
‘Hence, every horizontal curve through Qp is contained - inl Qo which means that the

connection in Q defined by A reduces to a connection in QL).
| . QED
] :
The electric component E of the field strength is a ‘g—jvalued l-form on M. It can

be interpreted as a sectlon of the bundle T M ® Q[g]l over M. Let E# be the
corresponding equivariant form on Q with values in g. If f) is the symmetry algebra of
E, then ‘(1.6) yields | _ ‘ |
[EGl=0 V¥ &ebh ll 69
[E#,E#] =0 ¥, Eeh l | (5.10)

At points of Qg given by (5.6), we have §#|Qo = &(xq). He.:nce, for each point (x,g) €
Qo | : - | | "

B B9l =0 ¥ Ee b | G.11)
which 1mplles that, for all (x,g) € Qu, E (x,g) is in the’ Lie algebra a[Ho] of the

This implies that

centralizer Z[Ho] of Hy. Hence, the electrlc component E of the field strength reduces to
a section Eg of the bundle T Qo ® Q[3[Holl over M. l

The matter field ¥ is a sectlon of the associated bundle of Q, with typlcal fibre
R oo R4, where Rn is the space of the fundamental represent:itlon of (the ‘matrix group)
G, ’and the' factor R* describes the spin degrees of freedom. lIt follows from (1.6) that
(AEY) ¢ P implies that R
| ’ =0V Ech | (5.12)
Let v* be the equivariant function from Qto R & R4 corres;LOnding to Y. Then, (5.12)
yields S ” - ._ |

- vt -0 v gen (5.13)

For each point (X,g) € (30,,

(5.14)

Exo¥(xg) =0 ¥ Ee b
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* which implies that ‘l’#(x,g) is in the'subspace_

m

| Vo={zeRneR|Exp)z=0VY EE b} (5.15)

of R ® R4 annihilated by Lie algebra b of Hb. The act'lion of the centralizer Z[Hp) .
preserves V. Hence, the matter .ﬁeld. ¥ reducés to a seciiorf' Yo of the ass‘ociatéd bundle
of Qo, with typical fibre Vo ¢ Rn & Ré. B

Thus, we have proved

THEOREM 3§. ‘
For every (ALE)Y) € Pb’ the Cauchy data (AE) for the! Yang-Mills theory with the .

structure (internal symmetry)- group G reduce to Cauchy d'ata for a Yang-Miils- |

theory with principal bundle .
Q= (58 ¢ PIb¥(xg) = hixo) ¥ b ¢ H)

and structure (internal symmetry) group | 3
Z[Hy] = {g ¢ Glgh(xo) = h(x)g ¥ h ¢ H},

where Xxg is and arbitrary fixed point of ‘M, and the matter field ¥ reduces to a

- section of the associated bundle’ of Qp with typical fibre

Vo ={z ¢ R o R&(xp)z = 0V & e b
The change of the base point X cofrespond to pa‘issing from Qg to another

principal Sub—bundle of Q with conjugate structure groupl.

:

It follows from Theorem 5 that each symplectic manifold f’(b) in P co‘rre.spo_nds to

symmetry breaking from the original internal symmetry group

G to 'conjugacy classes of
subgroups Z[Hp] centralizing Hy It should be noted that the symmetry ~breaking
encountered here is completely intrinsic, it does not require additional Higgs fields. On

the other hand, it does not lead to’ vector bosons.

o




\
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' Appendix A. Completion and almost complex structure.

4

One of the technical assumptlons in [3] is the exlstence of an appropriate almost
complex structure, which in Yang-Mills theory acts by mterchanglng A and E. However, :
in our phase space P the variables A and E appear asymmetrlcally, and we do not have
ex1stence and uniqueness theorems in spaces symmetric under the interchange of A and

 Let P denote the completion of P in the L2 norm. Thel\ weak symplectic foxm )] in.
P induces a strong symplectic form & in P. The L2 scalar, product (.].)1 2 defines a

Rier_nannian' metric in P. Let J : TP — TP be defined by ll .

JSASESY) = (-BESAY) | A
for every (5A8E6‘P) ¢ TP. Then, 72 = - 1, and l -
| wJu,Jv) = (u,v) = (JUIV>L2 = - <ul‘71V>L2 ' (A2)

for-all u,v € Tﬁ Thus J is an almost complex structure on 1P The action of GS(P) in
P extends to an acnon in P preserving its symplectlc form tl\he Riemannian metric and
the almost complex structure. " _ . ] |

’ Let V be a closed subspace of TPP and let V be lts closure in TpP . The

.sy_mplectlc annihilator V? of V is defined by

l
|
A

={ueTP|a)(uv)=O\'/veV} (A.3)
Slrmlarly, the symplectic anmhllator of V in TPP is , ll -
~-{ueTP|co(uv) 0V ve V}ll TV
_V Smce V is closed, we have ' ' ‘ 1
v =v . ll (A5)

We denote by V “the L2-orthogonal complement of V in TpP and V* the L2

orthogonal complement of its closure V in TPP We have

A A s TP - (A.6)

Moreover, by Eq. (A.2)




|
- | :
| |

W42 = (u e T Blowy) =0V ve V) = (ue TBlue (79" } =

Hence, ' ,
v’ = VA TR | AT
In the following we shall use the notation . ] _
JV = .7V n TpP ' ') (A.8)
Since J2 = - I, we have - ]
JV = Vand(JV)nV-{O} | - (A9)

. For each peP the second derivative of the momentur\n mapJ : P — gs(P)* is a
symmetric blhnear map D2 p : TpP X TpP — gs(P) It exte‘inds_ to a symmetric bilinear '

map D2 Ti)ﬁ x TP — gs(P)". | |

LEMMA A.l. , | SR 1
For all v,w ¢ TpP,'and all & e gs(P), \
| (Dsz(JVJW)I@ = (D2Jp(v,w)_] 5)-] - (A.10)

PROOF. For & ¢ gs(P), and a constant vector field X in P, with X(p) = w, the
equation &(éls,X) = (dJ(X)Ié),'différentiated at p in the directiop Ve TPP yields
| | WDEREV.W) = (DU (v.w)|&) . l' -
Since the action of GS(P) in P,presefves the‘ almost complexlst_ructuré J, for every £ € .
.gs(P), we have JoTéjp:»T&i,o-J. ‘Hence, o l
(DUTvIw)| &) = DERPIV.IW) = WAEREIVW) = (D (v,w)[&).
| | Q.E.D.

S - —II;

- Appendix VB. Propemness of the action of »theA gauge symmetry - group. .
The gauge symmetry group GS(P) consists of map ¢ :1M — G in the Sobolev
class H3(M) such that _n-gfadd) = 0, (2.4). Ité,action' in P is]i given by (1.5). In order

|
|
|
|
|
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to prove that this action is proper, we need to show that, for every sequence

_ | ,
Pn = (ApEyY,) converging to p_ = (A E Y ) ¢ P, and eveq sequence ¢, in GS(P)

| such that ¢,p, converges to p = (AE}Y), the sequence ¢nvhtas a convergent subsequence

with limit ¢ and ¢p_ = p. . ll

- The gauge transformations act on A, E and Y mdependently Hence, we may

~ consider ﬁrst the action of GS(P) on the connections. For al sequence A, convergmg to

Am.,’ and a sequence ¢, in GS(P), let

Co = PuAnfi! + frdg5! H (B.1)
denote A, transformed by ¢,. This implies : l
49 = fuAn - Cobhy, \ (B.2)

'By hypothesis the sequences A, and C; converge in H2(M) to A and A, respectlvely

In particular, their HXM) norms ||An|| w2 and |Gyl g2 are lbounded Furthermore, the
L2(M) norms ||¢n|| (2 of ¢, are bounded since M and G are compact Eq. (B.2) implies
that also the L2(M) norms ldenll, , of dén are'bounded.‘ Hencel;, the H!(M) norms ”(pn”Hl
of ¢, are bounded. Repeating this argument tw_ice, we concludf that the H3(M) norms \of

¢, are bounded. By Rellich's/ Lemma the sequence ¢, has a su;bsequence convergent to ¢

" in H2(M). Without loss of generality, we can restrict our argl‘glrnent to this subsequence,

and aSsﬁme fhat ‘¢n cohveroes to ¢ in H2(M). Hence, the s]equence C, = oA +
¢nddn! converges to ¢>A ¢‘1 + ¢d¢"i in HI(M), o L |
||¢A ¢l + ¢dg! Cnll {2 0asn- bk | (B.3) -
By hypothesxs G, converges to A in H2(M) Hence, ' l -
l6A971 + 9do™ - All, < [|0A 971 + g - qm+ul

This implies that

A||H1—bOasn-+oa.'

A= ¢A ¢!+ odol, | (B.4)
\ | o

and hence,

! d¢ = ‘¢Am -Ap . o | (B.5)




Since the right hand side of (B 5 belongs to H2(M), it follows -that d¢ € H2(M) s0
that ¢ € H3(M). | l
Using (B.2) and (B.5), we observe that ll
ldgn - dolly, = l1¢nAn - Cady - (9, - All¢)||H2 <
| I6:An - 0A_ll,2 + 1Cade - AD, 2
As n - = the right hand side tends to zero, because’(prl - ¢,ll Ap » A, and G, —+ A in
H2(M). Hence, ||d¢, - d(l)”H2 + 0, which implies that tp,; -+ ¢ lin H3(M). Tl’ris proves the
properness of the action of GS(P) on the space of H2(M)lconnections satisfying the
boundeiry .conditions .(l.l). _ i l ’ |
| In remoins to show thar ¢ takes E_ to E and Y, to V. Bl‘y.hypothesis E, - E_ and
¢.Ents! - E in HI(M).- Since 0 - ¢ in 'H3(M), and a Inlointwise multiplication of
: ‘function's in HI(M) by functions in H3(M) is a continuous rnap\ from HI(M) X H3(M)v
to H!(M), we obtain | ' | ll | .
E = lim (9.Fa03) = (lim %)(lzm E)(lim ¢3l) = ¢E_ ¢l

HI (M) H3 (M) HI(M) H(M)l

In a srrmlar manner we obtain o l

Y= lim (@) = Lim Golim () = O,
H2 (M) H3 (M) HZ(M) |

This cor_npletes the proof of properness of the action of GS(P) 1\n P.
Appendlx C. Proof of the slice theorem. ll
We estabhsh here the slice theorem for infinite dlmenswnal groups, c.f. [14]. Since
the assumptlons made here are more general than in the body of the paper, we use an
iodependerit, notation following that of Appenclix 2 of [15]. |
| Ler M be a Hilbert manifold, and G a Hilbert Lie grl‘loup, with a continuous
proper smooth left action ® : G Xx M — M. In the following wel, use the notation (Iﬁg(’m)'
= <l>(g,m) Let g be the Lre algebra of G. For each m ¢ M,|we denote by Gm the
isotropy group of m, by 9n the Lre algebra . of Gm, andll by O = G-m tbe

|
|
l.
|

g
|
l




orbit of G through m. Since the action is proper Gm is compact and the orbit Om is
closed. The tangent space TmOrn can be presented as g-m

0.

HYPOTHESES:

-

| o

30 - l]
|

-—-‘\ Td(g,0)(e,m), and g M =
.
|
(a) The group G is a Lie group in the sense that the exponential map gives a
diffeomorphism of a neighbourhood of 0 € g onto a neighbourhood of e.‘ e G
(b) The action ® is proper: ) B _ ] |
(c) . Bochner Linearization Lemm& [16]. There is a é m invariant neighbourhood
Uof me Mand a diffeomorphism y : U — TmM suc]h that:
(C.1)

Wm) = 0 and T vy = identity |
and, for every g € G and p e U _ ; l |
HOLE) = Ty 0y (W) - 1] | (€2

These assumptions are stronger than needed to get slices, buti they allow us to control

the topology of the space of orbits of the group action. "They'3lare satisfied by the gauge

symmetry group. GS(P) considered in this pape}r.l Propbsition 12.1 guarantees assumption

(a). Propéfness of the action of GS(P) is proved  in A;’)pén'dix B. The Bochner

~ Linearization Lemma follows from the fact that the action of GS(P) is affine.

First we need a lemma. . '

X

Lemma C.1. . v | ' : l

Given m € M, let L be a submanifold of G through e su‘ch that
g=g9,°TL (C.3)

and let S be a submanifold of M through m such that

-

|
T M=T O eT_S. . (C.4)
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Then there is an open set U Xx V ¢ L X S such that ¢[(U x V) a’

diffeomorphism onto an open nelghbourhood W of m el

PROOF.  Let D& : TG x TM — TM denote" the '-d“eriva“tive of ¢, and Di® be the
restriction of D® to the i'th factor. Since d(e;m) = m fo:]all m € M, we have that

D,® = identity, and so Dd>( m) is surjective. Now ker Do "

(e, rh)

definition, and also by definition zmage Do, T O |

Plem) ~
Choosing L and S so that we can make the 1dent1ﬁcat1q)ns

T L = glg l _ : (C.5)

T, S=T MT O | L , (C.6)
we have that D(Dl(T L x T_S) is an isomorphism. Since M is a Hilbert manifold the

Lemma now follows by the inverse function theorem. '

‘ l ‘ Q.E.D.
COROLLARY C.2. l
If <DgV nV 0@ for some ge UcLcG,and V ¢ S,!then g =
PROOF. Let m e V be such that <I>(g,m) ®(e,m’) with m' € V. Since ® is a local
diffeomorphism on U X V it follows that (g,m) = (e,m' ), %) th1at g =
| QED.

LEMMA C.3. . | -
For every neighbourhood U on M containing m, there is a Gm invariant dpen set

|

PrOOF.  Since M is a Hilbert manifold, it is first countable. Hence, there exists a

U cont.aining m with U ¢ U. |

l Up-1 :lUn = {m}, and
=

|
|
|
|

.sequenqé {U,}  of neighbourhoods of m in M such that U,




which tells us that T mq)k leaves TmOm invariant.
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G -U, is not contained in U Suppose now that the statement of the lemma is false :

|

_Then G .Uy is not contained in U for all n. Hence there exist sequences m, € U, and

gn € Gm such that gnmn ¢ U. Since the action of G is proper, the 1sotropy group Gm

is compact and/ the sequence g, has a cohvergent subsequence. Without loss of
generality, we. may aSsqme that g, converges to g € G o .Thcte sequence ni_n converges to ‘
m by ‘constr_uction. The - continuity of the action of G in M i;mplies thatA gnIMy; converges
to gf m = m, which contradicts the statement that g,m, ¢ U for all n. 7

Q.E.D.

1
|
|

SLICE THEOREM.
For each m € M, there exists a smooth submanifold S of M through m such ‘that
(1) - TM=TO_ oTS. L (C.7)
2 " TM=T T v 8)
@ | > 20p ps peS l - (C®)
3) } ‘ G,ScS. l - (C9)
C)) For pe S, and g ¢ G if © (p) € S then g € G _ (C.10)

~ PROOF. We prove the existence of a slice by constructing a candidate S 8‘ and
showing that properties (1) through (4) hold. |
’ VObserve that if k € Gm’ kg-m = kgk-1-m, or
¢ 00 (m) = d)kgk_l(m) (C.11)

If g=exptf, & € g then the l-parameter groups o k[exp(té)]k—l‘. and
t — exp(tAdké) have the same tangent vector A'dké. at t = 0. Hence, differentiating
(C.11) with fespect totatt=0 we get o

T T 00 6 = T8, (442 . (C.12)




|

|
|

Since Gm is compact, there is a. -Gm- invariant 1nner product on T M So
(T o )* is a G invar'iant subspace. Using the local hnearlzmg dlffeomorphlsm v
(from the Bochner Lernma) the submanifold | _ l

= yI(T0 ) n B, \ , (C.13)
where B is a ball of radius € in T oM (with -respect to the G invariant inner
product) is G invariant. So S has property (3). Moreover‘ T S = (T rnOm)J‘, since
T . oV = identity. Hence, property (l) holds as well, | l \ |

|

- We argue that Property (2) is an open condition in S A

. 0|(G x S 8) : G xS e ™ M is a submersion at (e,m). Hence ‘lit is a submersion at (e,p),

for all p in a neighbourhood of m in S e ' l
Now it remains to show that we can find € > 0 so thatl 4) holds. Suppose that it

does not hold for any € > 0. This would imply that there is Ll sequence of points {m}

with m, € §, /> and a sequence g, € G, such that gn ¢ Gm,l and g,m, € S1 Iy Hence ’
’ . n

m, - m and g,m, - m. Since the action of G in M is proper, it follows that there

|

exists convergent subsequence of g,. Without loss of generalit}}.,’ we may assume that &n

-+ g. Moreover, gym, -+ gm = m, which implies th'at-gé Gnla' Hence, g-lg, -+ e, :g" €

Gm and g, ¢ Gm' l

Gm acts ._in G be multiplication on the left, and the orbit of this action through

\
we conclude that there is a submanifold L of G transverse to G at e, and an open set

UxV ¢ G x L such that the multiplication (k, l) — ki 1‘5 a dxffeomorphlsm onto

1

some open neighbourhood W of e in 'G. Thus, we may assume that g-lg, = kyl,, with

the identity in G coincides with G Applying Lemma C.l to the action of Gm in G,

k, € 'Gm 'and_ln e L. Since, g and k, are in Gm'and gn ¢ le, it follows that I, =

kolg7lga ¢ G foralln. - ' , : |

We now apply' Lemma C.1to UXx V c L xS & For sufiﬁciently large n, g,m,
gkpylym, is in V ¢ vS‘g. It follows from Corollary C.2 ]that gkyl, = e for n

|
|
N
|
|

as follows. Observe that
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large enough. Hence, I, = k,~lg-! ¢ Gm, which contradi‘lcts the result above. This

contradiction establishes (4).

l
1
11 Q.E.D.
\
l

We should remark that, for the case under consideration in this paper, that is for

’G = GS(P), there is a natural GS(P) invariant weak inner product on on the manifold M

= P given by the L2 scalar product. In thrs case, we can take (T,,0 ) to be :the L2
orthogonal complement of T O . As long as,the ball B, is cll_eﬁned with respect to the
strong Gm invariant inner product on M, the -manrfold S € deﬁlllned by (C.13) will satisfy
properties (1) through (4). Hence, for the gauge symmetry grohp GS(P) one can always
\

choose a slice S through m satrsfymg the condition -(3.8), requmng that T S is the L2

orthogonal complement of T 0 _ |-
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