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1. Introduction

In 1928, when develloping the quantum theory of the electron, Dirac introduced
his famous first-order operator - the square-root of the so-called wave-operator
(d' Alembertian operator). Generalisations of thiJ operator, called 'Dirac operators' ,
have come to playafundamental role in the mathrmatics of our century, particularly
in the interrelations between topology, geometry and analysis. To mention only a
few applications, Dirac operators are the most imbortant tools in proving the general
Atiyah-Singer index theorem for pseudo-differential operators both in a topological
[AS] and more analytical way [G]. Dirac operatois also assurne a significant place in
Connes' non-commutative geometry [C] as the riain ingredient of a K-cycle, where
they encode the geometric structure of the undehying non-commutative 'quantum-
spaces'. In mathematical physics, in contrast, [Dirac operators had almost fallen
into oblivion, except in modifications of Dirac'~ original application and Witten's
proof of the positive mass conjecture in general relativity [W] where he used the
Dirac operator on the spinor bundle S of a fouf-dimensional Lorentzian manifold.
More recently, however, Connes and Lott derive~ the action of the standard model
of elementary particles using a special K-cycle [<:cL].Moreover, the Einstein-Hilbert
gravity action can be reproduced via the non-bommutative residue from a Dirac

I

operator on a Clifford module £ over a four-dimensional Riemannian manifold as it
was explicitly shown in [K] and [KW].

Nowadays a Dirac operator on a Clifford modul~ £ = £+ EB £- is understood as an
I

odd-parity first order operator D: r(£::%:) --+ r(s=F), whose square D2 is a general-
ized laplacian. In view of this rat her general d~finition, all Dirac operators of the
examples mentioned above are in a sense structhrallY the most simple ones as they

I
correspond to Clifford connections on the resptktive Clifford module £. Hence, it
may not be surprising that other types of DiraJ operators have more or less failed
to be studied in the literature. I

Here our subject is a more thorough treatmen~ of Dirac operators acting on sec-
tions of a Clifford mod~le £ under t",:oa~pects: vfe pr~ve ~he intrinsic decomposition
formula (3.14) for the1r square, Wh1Ch1Sthe generahsatlOn of the well-known for-
mula due to Lichnerowiez [L], and apply this Iformula to ealculate explieitly the
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the Wodzicki function vVe on the space of all Dirac operators V( £) in theorem 6.4.
This complex-valued function We: V( £) -l- C is defined via the non-commutative
residue, which has been extensively studied by Guillemin and Wodzicki (cf.' (Gu],
[W1]' [W2]) and represents a link between Dirac operators and (gravity-) action
functionals as already mentioned.

vVe now give a summary of the different sections: After fixing our notation we
recall Quillen's statement (cf. [BGV]), that 'Dirac operators are a quantisation of
the theory of connections' in the first section. More precisely, we show in lemma
2.1, that given any Dirac operator D, there exists a connection \7 on the Clifford
module £ such that D = co\7. This is the essential property to prove the generalized
Lichnerowicz formula (3.14) in section 3. Since there is a one-to-one correspondence
between Clifford superconnections and Dirac operators (cf. [BGV]), we present in
section 4 formula (3.14) in this context. In the following section, we classify Dirac
operators 'of simple type' with respect to the decomposition of their square. For
this kind of Dirac operators, the local Atiyah-Singer index theorem as proven by
Getzler (cf. [G]) for Dirac operators corresponding to Clifford connections, also
holds (theorem 5.6). In section 6 we turn our attention to the vVodzicki function ltVe
defined on the space of all Dirac operators V( £). By the help of our decompos~tion
formula (3.14) we obtain an explicit expression for the vVodzicki function vVe(D) of
an arbitrary Dirac operator D in theorem 6.4 . In the last section, we apply this
result to calculate the Wodzicki function vVe for various Dirac operators. These
examples are also inspired by physics. Note that by this method we are able to
derive the combined Einstein-Hilbert/Yang-Mills action out of one (special) Dirac
operator. From a physical point of view, this can be understood as unification of
Einstein's gravity and Yang-Mills gauge theories (cf. [AT2]).

For the reader who is less familiar with the notions of Clifford module, Clifford
connection and Dirac operator we recommend the recent book [BGV] which can
also serve as an excellent introduction into the theory of superconnections and
Clifford superconnections.
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2. Dirac operators

Let M be an even-dimensional Riemannian manifold and E = £+ EB £- a Zl2-graded
vector bundle over M. A Dirac operator actini on sections of £ is an odd-parity

Ifirst order operator j

D: f(EI) -+ f(£=F) (2.1)
I

such that D2 is a generalized laplacian. Here wb consider such bundles E provided
with a fixed Zl2-graded left action c: C(M) x £ - £ of the Clifford bundle C(lvI),
i.e. Clifford modules. For convenience of the reader and to fix our conventions
we recall that the Clifford bundle C(M) is a vector bundle over lvI whose fibre at
x E lvI consists of the Clifford algebra C(T; lvI) Igenerated by T; M with respect to
the relations v *w + w * v = -2gx( v, w) for all Iv, w E T; 1\11. It is well-known that
for an even-dimensional spin manifold lvI any Ciifford module £ is a twisted bundle

I

£ = S Q$) E. Here S denotes the spinor bundle ahd E is a vector bundle with trivial
Clifford action uniquely determined by E. I
We will regard only those Dirac operators D that are compatible with the given
Clifford module slruclure of [. This means lhj\

[D, I] = c(dI~ (2.2)

holds for all I E cooCAtI). Property (2.2) fully characterizes these Dirac operators
: 1£Pis a differential operator P:f(EI) - qE=F) with [P,I] = c(df) for all I E
COO(AI), then Pis a Dirac operator, cf. [BGV).lGiven any connection V't': f(EI) -
f(T* lH Q$) EI) on E which respects the grading, he first-order operator Dve defined
by the following composition

(2.3)

öbviously is a Dirae operator. Note that, in the case of E ~ BQ$) E, the above
construction yields a canonical Dirac operator rith respect to any fixed eonnection
V'E on E by taking the tensor product connectiion V't' := V'5 Q$)l1E + 1150 V'E. Here
V'5 denotes the spin connection on S uniquelyl determined by the metric structure
on lH.
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For our purpose it is important to realize that every Dirae operator D ean be
eonstrueted as in (2.3). This follows from

LEMMA2.1. Let £ be a Clifford module over an even-dimensional manifold M and
D: f( £~) -+ f( £=F) be an arbitrary Dirac operator compatible witb tbe Clifford
module structure. Tben tbere exists a connection Ve: f( T*M 0 £~) -+ f( £~) on
£ sucb tbat D = DVE := co Ve.
PROOF: Let D\lE := co \7e be a Dirac operator on £ constructed as in (2.3). Since
D\lE and D are compatible with the Clifford action on £ we obtain

[D\lE - D, f] = c(df) - c(df) = 0 (2.4)

for all fEcoo(lvf). Hence D\lE -D can be considered as a section AEf(End-(£)).
Now let the linear bundle map

v: C(Nf) ~ T* lV! 0 C(JIII) (2.5)

be locally defined by v( c(dxit ) * ... * c(dXik)) := dxit 0 c(dXi2) * .. , * c(dXik) with
il < i2 < ... < ik < 2n. Furthermore, we denote by Endc(M)£ the algebra bundle
of bundle endomorphisms of £ supercommuting with the action of C(JIII). Then
the composition of this map v with the canonical isomorphism End£ '" C(JIII) 0
Endc(M)£ induces a map

f(End-(£)) ~ f(T* JIII 0 End+(£)) = ni (JIII, End+(£)) (2.6)

which we denote with the same symbolfor convinience. Let w E ni (JIII, End+(£))
be the image of A E f(End-(£)) under this map v. Then Ve := \7e +w obviously
defines a new covariant derivative on £ which respects the ~2-grading, and the
Dirac operators DVE and D coincide.

o

vVewill now turn OUf attention to a specific dass öf connections on a Clifford module
£, namely the Clifford connections. Let us recall that a connection \7e: f(£~) -+

f( T* .1."11 0 £~) is called a Clifford connection, if for any a E f( C (lVI)) and X E
f(T1VI) we have

[\7i, c(a)] = c(\7 xa). (2.7)

In this formula, \7 denotes the Levi-Civita connection extended to the Clifford
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bundle C(NI). In the case of £ ~ S 0 E, the above mentioned tensor product
connections \Js 0 llE + II 0 \JE are Clifford connections. Furthermore, applying
a partition of unity argument, one is able to cbnstruct a Clifford connection on

I
every Clifford module £. In lemma 2.1 we can therefore chose \JE to be a Clifford
connection, i.e.

(2.8)

This is the only property we need in order to prove our generalisation of the Lich-
nerowicz formula. I

For later use we introduce the following notion: We call a graduation on the bundle
EndC(A'!)(£) with the property I

End+(£) I"V (C(NI)+0End&(M)(£)) EI7 (C(NI)-0EndcOv1)(£)) (2.9)

End-(£) I"V (C(Mt0Endc(M)(£)) EI7 (C(M)-0End&(M)(£)) (2.10)
I

a twisting graduation of £. Here 0 denotes the ?L2-graded tensor product. In
the case of a twistet spin bundle £ = S 0 E, 6bviouslY any twisting graduation
Endc(M)(£) = EndE(M)(£) EI7 Endc(M)(£) ind~ces a graduation on the twisting
bundle E and conversely. Since any Clifford Jnodule £ may be decomposed as
S 0 E lo~al:y, c.f. [BGV], a twisting graduationion £ corresponds to a graduation
of the tWlstmg part E. .

3. The generalized Lichnerowicz fo~mula

I
If \J£: r(£) -? r(T* lvI 0 £) is a Clifford connection on the Clifford module £, there
is the well-known decomposition-formula for the

j

l square of the corresponding Dirac
operator D'Ve := co \J£ due to Lichnerowicz [LJ:

D~e =6 'V
e +r;I + b(R;;es), (3.1)

Here 6 'Ve denotes the connection laplacian assJiated to \J£ (1), rAl is the scalar
curvature of NI and c(R;;es) denotes the imagJ of the twisting curvature R;;es E

(1) . . h I . 1 I' A 'Ve . I" . tl "W lth respect to a local coordmate frame of T Nt, t e connectlOn ap aClan L...:> lS exp lCl y glven
t: " " Iby 6'V = -gJlV(V'pV'~ - r~vV'~)"
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nZ(M, Endc(J\,'!)(£)) of the Clifford connection Ve with respect to the quantisation
map c:A*T*NI -+ C(M), cf. [BGV].

In this section we will generalize formula (3.1) for an arbitrary Dirac operator jj on
£ whichis compatible with the Clifford action. Using jj = c(dxJ.l)V~ and mimicking
the first step in the computation of the Lichnerowicz formula (3.1), we obtain

fJz = _gJ.lVV~V~ + c(dxJ.l)(V~, c(dxV))V~ + ~ c(dxJ.l)c( dxV)(V~, V~). (3.2)

It is remarkable that none of the first two terms in (3.2) is globally defined, but only
their sumo However, we observe that given a Clifford connection Ve on £, then (3.2)
can be rearranged in such a way that fJz -: 6. \7£ + P + F' where P: f( £) -+ f( £)
is a first-order differential operator and F' E End( £) with both terms depending on
(Ve - Ve) =: w E n1(M, End+(£)). More precisely we have

LEMMA 3.1. Let VE: f(£:t:) -+ f(T* lvI 0 £X) be a Clifford connection on the Clif-- -ford module £ and D = c 0 V a Dirac operator. If w denotes the one-form on NI
with values in End+(£) uniquely determined by w := V - VE, then

(3.3)

whereBw:f(T*NI0£) -+ f(£) with Bw(dxV0s) = (2gJ.lVwJ.l-c(dxJ.l)(wJ.l,c(dxV)])s
and F~= c( dxJ.L)c( dxV) ( '\7J.lwv) +c( dxJ.l)wJ.lc( dxV)wv together with the Lichnerowicz
terms !f- + c(REJ£s) determine the first order resp. the endomorphism part with
respect to a local coordinate system.

PROOF: By inserting V = VE + w in (3.2) and by using that VE is a Clifford
connection, we get

fJ2 = 6.\7£ +~[c(dxJ.l),c(dxV)) (V~,V~) - gJ.lV((V~,wv) - f~J.Lwt7)

- gJ.LVwJ.lWV- gJ.lV(2wJ.l\7~) + c(dxJ.l)(wJ.l' c(dxV)]V~

+ ~ [c(dxJ.l),c(dxV)] [wJ.l'wv) +~[c(dxJ.l),c(dxV)][V~,wv)

+ c(dxJ.L)(wJ.l,c(dxV))wv

(3.4)

with respect to the local coordinate frame {8J.l} of T 1\11., Here r~v are the Christoffel
symbols defined by the Levi-Civita conneetion on lvI. Thus, the fifth together with
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the si~th term on the right-hand-side define Bw: !f(T* M 0 £) -+ r(£).
I

we have to explain our 'short-hand' notation (''V /-IW/I):
Furthermore

-g/-l/l ([\7~, W/I] - r~/lw",) = -g/-l/l (V'~ndCW/I) - r~/lw",) =: -g/-l/l ('V' /-IW/I)
1 l'
2[c(dx/-l),c(dx/l)][V'~,w/I] = 2[c(dx/-l),c(dx/l)](V'~nd cW/I) - f~/lw",) (3.5)

=: ~[c(dx/-l),c(dx/l)WV'/-Iw/I)'2 I

. I
Equivalently one could describe (3.5) in aglobaI manner by using the composition
of the connection V'TM@EndC:f(T*1\I10End£) r f(T*1\!10T*i\10End£) together
with the evaluation -evg and the quantisation map c, respectively. Finally we use
Hc(dx/-l),c(dx/l)] - g/-l/l = c(dxlt)c(dx/l) to obtaih the first term of F' E r(End(£)).

I .
The computation of the second term of F' is straightforward.

Cl

Of course, in spite of being global, the decomposition formula (3.3) seems to be
I

unsatisfactory since the first-order operator BwWC does not vanish, generally (2)
I

Also (3.3) term by term depends on the chosen <pliffordconnection V'c and is there-
fore by no means an intrinsic property of the IDirac operator i5. This shows that
(3.3) can not serve as a generalisation of the Licinerowicz formula (3.1). To remedy
this flaw we need the following observation: I

LEMMA3.2. Let 6.vE and 6."VE be the conneJion laplacians defined with respect
to the connections V'E and -gE acting on seetidns of a veetor bundle E over 1\11. If

I

furthermore (-gE _V'E) =: Ü E iV (.ivI, End E), then

(3.6)

where A.a: r(T* lVf0E) -+ r(E) with A.a(dxV (9 5v) := 2glt/lÜlt5v and the endomor-
phism 8a := glt/l( 'V'~Ü/I) + gJ1.Vültü/I are defined with respeet to a local coordinate
~t_. . I

(2) We will study the case Bw = 0 in the next seetion.
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PROOF: Obviously we have '\JE = '\IE + 0 and compute

I::.vE : = -g~/I(('\I: + 0~)('\I~ + 0/1) - r~/I('\I~ + Ou))
= _g~/I('\IE'\IE _ ru '\IE)

~ /I ~/I U
, J

V

= f)"vE

2 ~/I" ~/I (("End E rU) )- 9 Oll v /I - 9 V Il 0/1 - ~/IOU + O~O/l ,
'-,,-' , "v= A", \JE = E)",

where we have also used the definition of ''\IE given in (3.5).

o

(3.7)

Note, that Aa E r(TlvI 18>End E) can be described also by Aa = 2 o~, where a~
denotes the corresponding 'dual' element of 0 E r(T* lvII8>End E) in r(TA1I8>End E)

under the 'musical' isomorphism T* lvI 18>End E ~~1I TlvI 18>End E defined by the
1>@1I

Riemannian metric g.

Guided by the previous lemma in the case of E = E and '\IE = 'lc the given Clifford
connection, we define '\Jc := '\Ic + ~B~)lwith Bw E r(TlvII8> End£) as above. Thus
we have '\Jc = Vc + w with

w := -~( >:Ja (9 e(dxll)[wll, e(dx/l)])1> = -~gu/ldxU 18>e(dx~)[w~, e(dx/l)j. (3.8)
L. ux/l 2

In fact, this one form w 'measures' how much ~c differs from beeing a Clifford
connection because w = -~gu/ldxU 18>e(dxll)([(V~, e(dx/l)j- ['l~, e(dx/l)]). Since
any two Clifford connections on the Clifford module £ differ by an element of
iV (lvI, EndC(M)(E)), w only depends on the initial connection VC (3). Con-
sequently also '\Jc only depends on ~c. So we get as a result of the previous
lemmas:

LEMMA 3.3. Let E be a Clifford module over an even dimensional Riemannian
- - 0 e

manifold lvI and D = co '\Ic a Dirac operator. If I::.\J denotes the eonnection lapla-
~ - oe

cian corresponding to the above defined conneetion '\I, then D2 = I::. \J + F~e ,where
F~e E End (E) is given by F~e = !f + c(Re.jes)+ F~ + e tB,:, wi th respect to an
arbitrary Clifford conneetion '\1£ and w := (~£ - '\1£).

(3) In the further we will therefore write W'~e to indicate this dependence.
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(3.10)

i

I -PROOF: By lemma 3.1 we can decompose the square of the Dirac operator D as

jj' = 6.v' - (B~'V') + r: lC(R;-"S) + F~. (3.9)

When applying lemma 3.2 to the two connectioIil laplacians 6.",£ and 6. V£ , which
<:.orrespond to the given Cli~rd connection \JE iand the above defined connection
\J := \JE + tB:' with w := (\Jt: - \JE) as in lemma 3.1, we obtain

6.v' - B~ 'V' = 6.V' Le'B" ,
2 '"

which implies the desired result.

i 0

Since the Dirac operator i5 as weHas the connecton laplacian 6.V£ only depend on
~E ,obviously so does the endomorphism F~£. fhis suggests an intrinsic meaning
of this term. Using the definitions I

F~ := c(dxJl)c(dxV)(V~wv) + c(dxJl)wJlc(dxV)wv

~B: := w - ~gO"vdxO"0 c(dxJl)(wJl,c(dxV)] (3.11)

etB~ := ~ g""('v;(B~)") + ~ t""(B~)"(B~)"

together with the identity!:f + c(R~£s) = Hc(1xJl),c(dxV)][\J~, \J&] we compute

1 c t: 1 I V] (I t: )F~e =4 (c(dxJl),c(dxV)][\J~, \Jv] + 2(c(dxJl),y(dx ) \JJlWV

1 -cl 1 (+ - (c( dxJl), c(dxv )][wJl, wv] + gO"v(\J~, - :j"gO"vc(dxJl )(w Jl' c( dxV)]] 3.12)
4 I ~

+ ~9JlVc(dx" )(w", c(dxJl )]c( dxO")[wO", c(dxV)].
4

. The first three terms of (3.12) join together to define Hc(dxJl),c(dxV)][~t:, ~E] =
-e -e . -t:

c(R'" ), i.e. the image of the curvature R'" E ~2(1\II, End £) of the conneetlOn \J
under the quantization map c. The forth term cJn be written as eVg ~T* M@EndE w~£

- * I -t:with.the tensor product connection \JT /vI@EndE := \J0 lIE + lIT* M 0 \J ,cf. equa-
tion (3.5) and the remark thereafter. Using the pointwise defined produet '.' in the
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algebra bundle T(M) 0 End£, where T(JVI) denotes the tensor bundle of T* JVI, we
can write evg( Qv£ . Qv£) for the last term. So we get

(3.13)

Therefore we have shown

THEOREM 3.4. Let £ be a Clifford module over an even dimensional Riemannian
manifold lvI and i5 = c 0 VC a Dirac operator. Then

(3.14)

with Qv£ := -tgvKdxV 0c(dxJL)([V~,c(dxK)] +c(dxO")f~JL) E !V(Nf,End£) and
the conneetion VC := VC + Qv£ •

In this decomposition of the square of D, the last two terms obviously indicate the
deviation of the connection VC being a Clifford connection. Only the second term
of (3.14) is endowed with geometrie significance. Of course, if VC is a Clifford con-
nection, obviously Qv£ = 0 and therefore (3.14) reduces to Liehnerowicz's formula
- -£ ciSD2=D."Q' +!f+c(~£ ). So we eall (3.14) 'the generalized Liehnerowicz formula'.

4. The 'Super - Lichnerowicz formula'

In this seetion we will turn our attention to the generalized Lichnerowicz formula
(3.14) in the eontext of 'super-geometry'. This is motivated by the well-known fact,
that any Clifford supereonneetion A on a Clifford module £ uniquely determines a
Dirae operator DA due to the following construetion

DA:r(£) ~ 0,*(lvI,£) c~ f(C(lvI) 0£) ~ f(£), (4.1)

l.e. there is a one-to-one eorrespondence between Clifford superconneetions and
Dirac operators, see [BGV] (4). Since (3.14) is already the deeomposition of

(4) This reference can serve also as an excelent introduction into the theory of superconnections and
Clifford superconnections.
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Ihe square of an arbilrary Dirac operalor ou t:, ~e only have 10 adapl il 10 super-
geometry. Thus, the expression 'Super-Lichnerowicz formula' is an abuse of notation
here. To proceed, let again v: C(M) ~ T* M ~ C(JIII) be the linear bundle map
defined in the second section. The following sim~le observation is crucial:,

I

LEMMA 4.1. Let A be a Clifford superconnecti6n on the Clifford module £. Then
the operator 'VA denned bythe following compdsition

I

r(t:)~!1*(M,t:t~r(C(M) 0 t:)"~r(T' 10 C(M) 0 t:)'T~0"r(T' M 0 t:)

is a connection on £ with the property that the 'associated Dirac operator DVA :=

co 'VA coincides with DA'

(4.2)
f(£)r(C(l\II) 0 £)

1,,@ll£

f(T* lVI 0 C(l\II) 0 £)

PROOF: Because A satisfies Leibniz's rule AUs) = df 0 s + JAs for all f E COO( £)
and s E f(£), so does 'VA. Therefore 'VA is a co~mection on £. To prove the second
statement we simply remark, that the diagramzi

I
I

cl

1
I

llT*Mil@c f(T* 1'110 £)

commutes.
o

In general, however, the connection 'VA defined py a Clifford superconnection is not
a Clifford connection, i.e. ['V:, c(dx")] "# -c(dJ:t7)f~tL' Using lemma 4.1 , we can
now 'reformulate' theorem 3.4 in the following tay

I

THEOREM 4.2. Let £ be a Clifford module over an even dimensional Riemannian
manifold M, A:n:f:(JIII,£) ~ rr=f(l\II,£) a Cli'zrord superconnection and DA the
corresponding Dirac operator. Then

D~ = 6. v£ + C(RV'A) + evg('VA f* M@EndfwV'A + evg( wV'A . WV'A), (4.3)

with WV'A := -~g"Kdx" 0 c(dxtL)(['V:,c(dxK + c(dxt7)f~tL) E n1(lVI,End£) and
the connection V£ := 'VA + WV'A.
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5. Dirac operators of simple type

Now we will begin with our analysis of Dirae operators with regard to our deeom-
position formula (3.14). We start with the following

DEFINITION 5.1. A Dirac operator D aeting on seetions of a Clifford module £ is
called 'of simple type' if the conneetion flc which dennes the connection laplacian
6. ~£ in the decomposition formula (3.14) of 152 is a Clifford conneetion.

Beeause it is essentially the section Bw E r(T M 0 End£) whieh defines the connec-
tion flc (cf. the definition of flc before (3.8)), such Dirae operators are eharaeter-
ized by the following

LEMMA 5.2. Let D be a Dirac operator on a Clifford module £. Then D is of
simple type iff there exists a Clifford conneetion V'c: r( £) -lo r(T* lvI 0 £) such that
Bw E r(T.1'vI 0 End£) in the decomposition (3.3) of 152 vanishes.
Obviously any Dirae operator DV'£ assoeiated with a Clifford eonneetion V'c is of
simple type. Now we ask wether there are still other Dirae operators of simple type
on £. 1£ the twisting graduation of the Clifford module £ is non-trivial, we will
ans wer this question affirmatively. Moreover we will show, that Dirae operators of
simple type are in one-to-one eorrespondenee with the set of pairs {(V'c, 4>H. Here
V'c denotes a Clifford eonnection on the respeetive Clifford module £ and 4> is a
seetion of the endomorphism bundle Endc( M)C£). In the following we denote by
Sym2(T* lvI) the bundle of symmetrie two-tensors of T* lvI over ivI. vVe further
remark that there is a natural inclusion Sym2(T* lvI) e..-.,. T* J.VI0 C-(1\!I).

LEMMA 5.3. Let £ be a Clifford module over an even dimensional Riemannian
manifold lvI and let the linear map S: DI(lvI, End+(£)) -lo r(TlvI 0 End(£)) be
denned by w ~ Bw. Then ker S =J 0 iff the twisting graduation of £ is non-
trivial. lv'1oreover w E ker S iff w = w 0 F with w E r(Sym2(T* ,llvI)) and F E
r(EndC(A1)(£)).
PROOF: On an open subset U C 1\11 any w E DI(1\Il,End+(£)) ean be deseribed by

(5.1)
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wher~ W~ I E COO(U) and Fi E Endc(M)(£), I =r (il, ... ilII) is a multi-index, I I I
denotes its length, c(dxI) := c(dxit ) . .. c(dxil)1 and 2:' signifies that the sum is
taken over strictly increasing indices (4). By t.fuedefinition of Bw (see lemma 3.1)
we get

Here the sign (_l)IFdlc(dxV)1 is a consequence ofu.sing the Zlz-graded tensor product
in (5.1). vVe have to determine the solutions ot the equation B~ = 0 for all v E
{I, ... 2n}.

1. case: End+(£) :::::C+(M) (9 Endc(M)(£) ~ Cj(M)@Endt(M)(£)' i.e. the twist-
ing graduation of £ is trivial.

Using Fi E Endt(i\'/) (£), i.e. IFil = 0 for all i, together with the Clifford relation
C(dXik)c(dxV) + c(dxV)c(dxik)) = _2gikV we obtain from (3.8)

L ' (gP,Vw~IC(dx1) + (_l)kgikVW~IC(dxJL)c(dxit) ... C(J;ik) ... c(dxiIII))= 0,.
111 even

where the hat indicates that the corresponding factor has been omitted.ln the
following we supress the endomorphism-index li for convinience. Since each co-
efficient Wp,l = WJLit ... ilII is totally antisymmepric in the multi-index I, we have
(-l)kwJLil ... ik'" ilII = -w .. ~ . . vVith the definition of 2:'111 and using the

P,lk 11 ••• 1k ... 1111 I
short-hand notation c(dxit,..;:,..ijII) := C(dXil) i" C(J;ik) ... c(dxiIII), we therefore

(4) Without using the Einstein summation convention this means

L' w~ IdxP, Q9c(dxl)0Fi :=L
1I1 1I1

13
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obtairi for the seeond term above:

I: I ( -1)kgikIlWJ.L]C(dxP};(dxi1 ... ;; ... iI11) = L(-1)kgikIlWJ.Li1 ... ik ... iI1IC(dxJ.L)c(dxi1 ... ;; ... illl)

111 even . 1".
11<"'<'111

111 even

~ _(~ W 11. • c(dxJ.L)c(dxi2 ... iI11))~ 111 J.L 12... 1111

i2 < ... <iI11
111 even

~ -W 11. . C( dXJ.Li2 ... iI11)L.....J J.L 12... 1111
l"<i2< ... <illl

111 even

+

Consequently for J.l = il we have to solve

~ W 11. .C( dXi3 ... illl).L.....J J.L J.L13... 1111
I"

i3< ... i111
111 even

~ Wi 11.. . c(dxi3 ... illl) = 0L.....J 1 1113 ... 1111
i1

i3< ... illl
1II even

(5.3)

for all 1 ~ v ~ 2n; Now let 111 > O. Sinee the indices are ordered and therefore
the veetors c(dxI) resp. c(dxi3 ... iIIl) are linear independent in the Clifford algebra,
equation (5.3) shows that

(5.4)

must hold for all il, v, i.e. eaeh eoeffieient Wi1Ili2 ... iIIl is symmetrie in the first
two indices il,v. As a eonsequenee Wi1Ili2 ... illl resp. Wi1Ili1i3 ... illl are also totally
symmetrie in the multi-index (i3 •.. ilII) for all 111 even and greater than zero. This,
however, eontradicts the total antisymmetry of the multi-index 1 = (il, ... iIII)'
Therefore W~i1'" il11 = 0 for all 2 Sill S 2n and all i. For 111= 0 we have
c(dxI) := lIC(M) by definition and therefore obviously w~ = O. In sum we obtain
only the trivial solution W = 0: Consequently ker E = O.

2. case: End+(£) ~ (C(A'1)+ 0 End6(M)(£)) EB (C(NI)- 0 Endc(M)(£»)' i.e. the
t\visting graduation of £ is non-trivial.

14



: I
We now only have to check the case of w E n1(M, C(Al)- Q9Endc(M)(£)). Using
Fi E Endc(M)(£)' i.e. IFil = 1 for all i together Jith the Clifford relation we obtain
from (3.8) as above

L' (g/.l.Vw~/c(dx/) + (_1)kgikvw~/c(dx/.l.)c(~xi1) ... C(;I;k) ... c(dxilll)) = O.

I/Iodd . I .

For 111 > 1 we can argue as in the even case abo1ve concluding w:,1' . = 0 for all
,.. 1... 1111

z. In the case 111 = 1, however, we obtain !

g/.l.vwi. C(dXi1) _ gvi1wi .l(dX/.l.) = 0
. /.1.
1
1. /.1.1

1
1 .. . A

Therefore each coefficient w~v = w~/.I.is symmetrie and so w = W~i1 dx/.l.tgt;(dX11 )0Fi E

Sym2(T* 2vI)@Endc(M)(£) lies in in the kernel df E. .

o

COROLLARY 5.4. There exist Dirac operators 10f simple type not corresponding
to Clifford connections on a Clifford module £ iff the twisting graduation of £ is
non-trivial. Moreover if i5 is such a Dirac opefator, then i5 = D\l£ + lIC(M)@cI>,
where D\l£ is a Dirac operator denned by aiClifford connection \Je and cI>E

r(Endc(lvl)( £)). . I

PROOF: Bv the previous lemmas 5.2 and 5.3 the first statement is obvious. So we• . I
only have to prove the second one. :

Let w := w~vdx/.l. Q9c(dxV)@Fi with wi := w~)lx/.l.0 c(dxV) E r(Sym2(T* NI)) c
r(T* lvI 0 C-Uv'f)) and Fi E r(Endc(M)(£) be Js in the previous lemma. With the
help of the Clifford relations we compute I

I

c(w) = w~vc(dx/.l.)c(dxV)0Fi

= * w~v(c(dx/.l.)c(dxV) + 1(dxV)c(dx/.l.))0Fi
- I= _g/.l.vwi 0F-

/.I.v z

= -tr( wi )0Fi

=: lIC(A,n@<I>

15
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with<1> := L:i -tr(wi) . Fi E f(Endc(M)(£))' Now let \l£ be a Clifford connection
and let us define V£ := \l£ +w. We obtain f5 = e(V) = e(\l£)+e(w) = Dv£ +e(w)
for the corresponding Dirac operator and the above computation (5.5) proves the
second statement.

o

Note that V£ is not a Clifford connection unless w = O. In the case of a twisted
spinor bundle £ = S 0 E the corresponding Clifford superconnection A is given by

A:= \ls 01IE + lIs 0 (\lE + <1»,

i~e. Ais uniquely determined by the superconnection AE := \lE +<1>on the twisting
bundle E.

We now study the decomposition formula (3.14) for the square of such Dirac op-
erators which are distinguished by lemma 5.3 resp. corollary 5.4. Let therefore
again w E [21(M, End+(£)) be given by w := wi0Fi with wi := w~vdXIL 0 e(dxV) E

f(Sym2(T* .1vI)) C f(T* 1\110 C-(1'vJ))and Fi E f(Endc(M)(£))' Then we find that
[e(dxlL),e(dxV)][wlL,wvl = O. Thus, this term does not contribute to the endomor-
phism part Fv£ in (3.12). Using this, straightforward computation yields

which can be seen as a eharacteristie feature of Dirae operators of simple type.
Now, if one takes the connection laplacian 6. v£ together with the Lichnerowicz
part !f- + c(Rt;j/), then - by using (3.1) - we obtain the

COROLLARY 5.5. A Dirac operator D aeting on seetions of a Clifford module £
is of simple type iff there exists a Clifford conneetion \le on £ and a morphism
<pE f(Endc(M)£) such that f52 = D~£ + e \lEnde (1IC(J\'/)0<P)+ lIC(A'f)0<p2.

vVe note that the endomorphism part in the deeomposition formula (5.6) of the
square of a Dirac operator of simple type is of Clifford degree ~ 2. Getzler has
reeognized in [G], that this is the essential information needed to prove the local
Atiyah-Singer index theorem for Dirae operators associated with Clifford connec-
tions, which is provided in this case by the 'usual' Lichnerowicz formula (3.1). As

16



far as'we know it has not yet been proven whetliler this refined index theorem also
holds for some Dirac operator not associated to J Clifford connection. However, be-
cause of our observation mentioned above and oulr formula (5.6) instead of the usual

I

Lichnerowicz formula (3.1), the techniques of [BGV], chapter 4, can be adapted even
to all Dirac operators of simple type. So we statr:

THEOREM 5.6. For D~rac o~erato~s of simple t1pe acting on sections of a Clifford
module £ thelocal Atlyah-Smger mdex theorem holds.

6. The Wodzicki function

In this section, we define the Wodzicki functiol1 vVe on the space of all Dirac op-
erators 'O( £) acting on sections of a Clifford rriodule £ via the non-commutative
residue, which has been studied extensively by puillemin and Wodzicki (cf. [Gu]'
[Wl]' [W2]). This function is closely related to (gravity-) action functionals of
physics as already mentioned in the introductioJ and might also be useful to inves-
tigate the space of all Dirac operators. This w~ll be the subject of a forthcoming
paper. As will be seen, the generalized Lichnerdwicz formula that we have derived
in section 3 also applies to calculate the Wodzicki function explicitly.

Let E and F be finite dimensional complex vlctor bundles over a compact, n-

dimensional m?-nifold N. The non-commutatJ

1

e residue of a pseudo-differential
operator P E '11DO(E, F) can be defined by

r(!!) 1 :res(P):= 2.!!. tr(o{n(x,O) dxd~, (6.1)
2'iT 2 s. 1\'1 I .

where 5* !vI C T* !vI denotes the co-sphere bundle on 1\1and a~n lS the component of
order -n of the complete symbol aP := 2:i af df P. Here the integral is normalized
bv vol( sn-1 )-1 = r(~rIn his thesis, Wodzicki ~as shown that the linear functional

• 21l"~ I
res: '11DO(E, F) -t C is in fact the unique trace [(up to multiplication by constants)
on the algebra of pseudo-differential operators 4DO(E, F).

Now let !vI be a Riemannia~ mani.fold of even I dim~nsion 2n a~d let £ be a Clif-
ford module over lvI. If D lS a D1rac operator actmg on sectlOns of £ and .A. E
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f(End-(£)), then D := D + Ais another Dirae operator eorresponding to the same
Clifford action on £. As we have already mentioned (cf. seetion 2) the eonverse is
also true: Any two Dirae operators Da and D1 differ by a seetion A E f(End-(£)).
Consequently the set of all Dirae operators 1)(£) eorresponding to the same Clifford
action on a Clifford module £ is an affine spaee modelled on f(End-(£)). Henee,
for any Dirae operator D E 1)(£) we have the natural identifieations

(6.2)

DEFINITION 6.1. Let £ be a Clifford module of rank r over a Riemannian manifold
!vI witb dirn !vI = 2n and let 1)(£) be tbe space of all Dirac operators on £. Tbe
"VVodzicki function WE on 1)(£) is tbe complex-valued function VVE:1)(£) ~ C
denned by vVE(D) := - r(2~-1) res(D-2n+2).

Notiee that in the ease of fixing a hermitian inner produet ( . , . )r(E) on r(£) one
ean introduee the (formal) adjoint operator P* of P E \lfDO(£). Sinee res(P*) =
res(P) (cf. [W2]), where the bar denotes eomplex eonjugation, the Wodzieki function
VVE is real for self-adjoint Dirae operators.

As an intermediate step to compute the Wodzieki funetion vVe explieitly, we need
the following expression for the diagonal part <PI(x, x, fj2) of the subleading term
<PIin the heat-kernel expansion of the square of an arbitrary Dirae operator D:

LEMMA 6.2. Let £ be a Clifford module over an even-dimensional compact Rie-
mannian manifold !vI and let fj = c 0 VE be a Dirac operator. Tben tbe diagonal
part of tbe subleading term <PIin tbe asymptotic expansion of tbe beat-kernel of
jj2 is given by

- 2 1 (~t' - T" M@E cl e ~ .<Pl(x,x,D )=(3rM(x)-\c(R )+evg\7 n 'W~t'+evg('W~t' 'w~t'))(x),

withw~t' := -~g/lKdx/l Q9c(dxJl)([V&, c(dxK)] + c(dxO")f~Jl) E n1 (!vI, End£).

PROOF: Let 6. be ageneralized laplacian aeting on seetions of a hermitian vector
bundle E over lvI and let <PI(x, x, 6.) denote the diagonal part of the subleading
term <PIin the heat-kernel expansion of 6.. It is well-known that

A 1
<P1( X , x, 6.) = {3 r lvI ( x) . 1IE - F (x) .

18
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(6.6)

o

Agairi, rM denotes the scalar curvature of M anid F E r(End E) is determined by
the unique decomposition of the generalized lapVacian 6.:

. I
• E I

6. = D. "i1 + F; (6.4)

Here /:;vE denote, the conneetion laplacian asJciated with the connection ~E on
the hermitian bundle E. I
In our case we have E = £ and 6. = f52. Using th,e generalized Lichnerowicz formula
(3.14) the furt her proof of this lemma is obvious.

I
I

REMARK 6.3. For an arbitrary generalized lJplacian 6. on a hermitian vector
I

bundle E it is only the decomposition (6.4) which is proven to exist - neither the
~ I

connection 'V E nor the endomorphism F E r~End E) are known explicitly (cf.
[BGV], Proposition 2.5). Conseq,:ently in geneIij'al the subleading term (h(x, x, 6.)
in the heat-kernel expansion of D. can not be. computed with the help of (6.4).
Therefore lemma 6.2 is also interesting on its m~n.

According to [KW] the diagonal part (h(x, x, h) of the subleading term in the
I ~

heat-kernel expansion of any generalized laplacian D. acting on seetions of a her-
mitian vector bundle E over an even dimensi9nal Riemannian manifold j'vi with
dim lvI = 2n > 4 ca.11be related to the non-commutative residue

A 2n - 11 I ~res(D.-n+1) = -- *:tr(ljJl(x,x,D.)).
2 i'vI I

Here * denotes the Hodge-star operator defined by the Riemannian metric on lvI.
I

Together with the previous lemma we thereforelobtain:

THEOREM 6.4. Let £ be a Clifford module over a compact, Riemannian manifold
- - Ilvi with dim lvI = 2n ~ 4 and let D = co \1£ bh a Dirac operator. Then

- 1 (1 1 (~£ - r* LSiEnd £ )))t-Ve(D) = * --rM + -tr c(R )+evg v: I w~£ +evg( w~£ . w~£ ,
M 6 r _ I

with w~£ := - !gll"dxll @ c(dx1t) ([\1~,c(dx")] t c(dxc7 )f~tt) E n1(lvI, EndE).
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Now let (EI, cI)) and (E2,C2)) be Clifford modules of rank rl resp. r2 over M.
Here Ci: C(M) x Ei -+ Ei for i = 1,2 denotes the respective Clifford action of the
Clifford bundle C(M). Obviously the direct surn bundle E := EI EB E2 together with
the Clifford action C := Cl EB C2 is also a Clifford module. Given Dirac operators
i5i := Ci 0 V£i with i = 1,2 corresponding to the connections V£i on Ei and a21 E

!V (NI, Horn( E2, EI)) respectively a12 E !V (NI, Horn(EI, E2)), the following operator

- (DlD:= 12
C2 0 a

(6.7)

is a Dirac operator on E = EI EB E2•

We now want to calculate the Wodzicki funetion VV£ = vV£lffi£2 of this Dirac op-
erator i5. Given that V£ := V£ EB V£2 be the direct surn connection, an easy
cornputation shows

(6.8)

and

tr(ev9(wVE 'wVE)) =tr(ev9(wVE1 'WV(1))+tr(eV9(WVE2 'wV(2))
+ tr(evg(b. b))

tr (evg(VT* AtI@End £wVE)) = tr( evg(VT* AtI@End £1 tzVE1 ))

+ tr(evg(VT* M@End £2wV(2))

(6.9)

(6.10)

(6.11)tr(c(RVE)) = tr(cl(RVE1)) + tr(c2(RVE2))
+ tr(c([a /\ a])).

Here [. /\ .] denotes the rnultiplication in the graded Lie algebra f'l,*(NI, EndE).
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Thus~e are able to prove the following I

LEMMA 6.5. Let (£1, cd and (£2, C2) be Clifförd modules of rank rl resp. r2
over a compact Riemannian manifold M of evJn dimension witb 2n > 4 and let

_ _ _ - I - -- 21

DI := Cl 0 \7£1 resp. D2 := C2 0 \7£2 be Dirac 0perators. Then D:= ( D\2 Cl~ )
I C20a D2

with a := (a~2a~l) EnI(M, End£) defines a Dirac! operator on £ := £1 ffi £2 and

- rl - r2 - 1 f ~ (b21'b12 0 ))W£(D) = -; W£l (Dd+ -; W£2(D2)+ -;:-) ~tr ~e([a 1\ a])+evg 0 b12.b21

with bi' := - ~g"dx' 0 Ci(dx') (a~i Cj( dx') - Ci(kx.)ati) E n' (M, Horn(Ej, Ei» for
i,j E {l, 2}, i =1= j and r := (rl + r2)'

7. The Wodzicki function for special Dirac operators
i

We now apply theorem 6.4 resp. lemma 6.5 to blculate the vVodzicki funetion of
different types of Dirac operators. These examJles are inspired by physics, where

I
they might be used to derive gravity and comlbined gravity /Yang-Mills aetions,

I

respectively (cf. [K]' [KvV]' [ATl], [AT2]). In the following, let NI be a compaet
Riemannian manifold with dirn NI = 2n ~ 4.

• Dirae operators of simple type. Let £ be a Clifford module of rank r over
NI and jj a Dirac operator of simple type acting on sections of £. By corollary 5.5
there exists a Clifford connection V£ on £ and ah endomorphism ~ E Endc(M)(£)'

I -
such that we obtain the decomposition formula (5.6) for the square of D:

-2 \7€ rM EIS End£1 A A 2D = /:::,. + - + e(R\7€ ) + c V QlIC(M)0~) + lIc(l1.n0~ .
4 I

Using theorem 6.4 we then calculate
i
,
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for the Wodzicki function, since both tr(c(Re.j/)) and tr(eVEnd e(llc(M)0<1») van-
ish.

Now let us take the zero-morphism for <1>.In that exceptional case D is associated
with the Clifford connection Ve. Therefore we obtain We(D) = I; IM *rM. Thus,
the Wodzicki function evaluated on Dirac operators corresponding to Clifford con-
nections reproduce the classical Einstein-Hilbert functional on NI. This was already
mentioned by Connes and explicitly shown in [K] and [KW]. In the case of M be-
ing a spin-manifold and E = S 0 E with E := M X C2 = (NI x C) EB (M xC),
then EndE = C(NI)0M2(C). Here M2(C) denotes the algebra of two by two ma-
trices over the complex numbers. Interesting, we thus recover the situation of a
'non-commutative two-point space' as considered in [CFF] and [KW]. Further spe-
cializing the Dirac operator of simple type by <1>:= <p . (~ ~), where <P E COO( NI)
denotes a complex-vallued function as in the mentioned references, we obtain

- 1 1 2We(D) = *(-rM + <P ).
M 12

(7.1)

This was interpreted in [KW] as Einstein-Hilbert gravity action with cosmological
constant .

• Dirac operators with torsion. Let now NI be a spin manifold in addition.
The Levi-Civita connection v: r(T M) -4 r(T'" NI 0 TNI) on NI induces a a con-.
nection Vs: r(S) -4 r(T'" lv'I0 S) on the spinor bundle S which is compatible with
the hermitian metrie < " . >5 on S. Adding a torsion term t E ill(NI, EndT1\1)
to the Levi-Civita eonnection, we obtain a new eovariant derivative V := V + t on
the tangent bundle T NI. Sinee t is really a one-form on NI with values in the
bundle of skew endomorphism Sk(TNI) (cf. [GHVJ), V is in fact eompatible with
the Riemannian metrie 9 and therefore it also induees a eonneetion VS - VS + T
on the spinor bundle. Here T E nl (lv'I,EndS) denotes the 'lifted' torsion term
t E nl(NI, EndT.ivI): However, in general this indueed eonneetionVs is neither
compatible with the hermitian metrie < ., . >5 nor is it a Clifford eonneetion.

The most general Dirae operator on the spinor bundle S eorresponding to ametrie
eonneetion V on Tlv'I ean be defined by jj := co VS. Thus the Woc1zieki function
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WE of D yields

WE(D) = iM * (112 rM + 2~ (-ta~ctabc + 2tabctaCb)). (7.2)

From a physical point of view, this can be interJreted as the action functional of a
modified Einstein-Cartan theory (cf. [ATI]) .

(7.5)

• An Einstein- Yang-Mills Dirac operator. Let (£, e) be a Clifford module
of rank r = 2n . rk(£/5), where £/5 denotes t~e twisting part of £. As already
mentioned, the direct sum t := £EB£ is also a Clifford module. Given a Clifford
connection VE on £, obviously Vt := (~e ;e) d.efines a Clifford connection on t.
Define I

Vt := Vt + ( ~a b) , (7.3)

with a := dxJl Q9e(dxV)0RJlv En1(1\!I,End£). HJe R = REJes En2(M, Endc(M)(£»
denotes the twisting curvature of '\JE. We now c~nsider the associated Dirac oper-

I

ator '

D := CO Vt = (e ~(~a) ;:~). (7.4)

An easy computation yields wvt' = (~a ~). TJus, with regard to our lemma 6.5
we obtain I

tr c ([ Cil. ;) 1\ (.'. ;)]) = _2n T (R'"oR'"R,:R'.)
tr eVg (-~.a -~.a) = _2n tr (R)IovoR)IoV R)IovoR)Iov)'

I

When we use lemma 6.5 together with our first example, the Wodzicki funetion vVt
for the above defined Dirac operator D yields I

"_(-) __ r (1 4 (R RJlV») (76)WE D -- }I'v/ * 12 rM - rk(4/5) tr JlV' .

Thus we recover the combined Einstein-Hilbert/IYang-Mills action. Note, that this
example can also be understood in the sense of a non-commutative two-point space
(compare the first example). I

Although being a gauge theory, it is well-known Ithat the classical theory of gravity
as enunciated by Einstein stands apart from the non-abelian gauge field theory of
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Yang 'and Mills, which encompasses the three other fundamental forces: the weak,
strong and electromagnetic interactions. Interesting, as this example shows, they
both have a common 'root': the special Dirac operator D considered above. We
hope that this may shed new light on the gauge theories in question. Moreover,
in a physical sense the above derivation of (7.6) via the Wodzicki function Wt can
be understood as unification of Einstein's gravity- and Yang-Mills theory as it is
shown in [AT2].

8. Conclusion

In this paper we studied Dirac operators acting on sections of a Clifford module £
over a Riemannian manifold NI. We obtained an intrinsic decomposition of their
squares, which is the generalisation of the well-known Lichnerowicz formula [L].
This enabled us to distinguish Dirac operators of simple type. For each operator
of this natural dass the local Atiyah-Singer index theorem was shown to hold.
Furthermore we defined a complex-vallued function We: 1)(£) - C on the space of
all Dirac operators on £, the vVodzicki function, via the non-commutative residue.
If NI is compact and dirn NI = 2n ~ 4, we derived an expression for We in theorem
6.4. For certainDirac operators we calculated this function explicitly. From a
physical point of view, this provides a method to reproduce gravity, resp. combined
gravity /Yang-Mills actions out of the Dirac operators in question. Therefore we
expect new insights in the interrelation of Einstein's gravity and Yang-Mills gauge
theories.
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