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Digraphs, Knowledge Hypernets, and Neurons.

Abstract

We deal with a current flow network of switches, with input node I and output node 

O, represented by a directed graph G. In G we define a model of a neuron, and 

introduce another model in which neurons are theoretically linked. In this second 

model, we cover invariance, information flow and noise. We show how this model 

arises from G, how it can be taught, and how it can be declaratively interpreted. 

The  system  is  made  dynamic  due  to  the  closing,  from  O  to  I,  through  the 

environment of the combined models, of a feedback circuit.

1. Introduction

This paper  is  not  intended to replace,  but  to support,  current  models of  neural 

networks.  It  merely  provides  an  alternative  model  that  incorporates  some new 

notions and some relatively new theoretical work. The paper assumes some prior 

knowledge of relation nets, hypernets, Concept-Relationship Knowledge Structures 

and their derivatives, Knowledge Hypernets, and some exposure to the theory of 

these structures. This background can be found in [RGS 2004].

2. System Models

The model is a dual one; a “hardware” model that is a directed graph G = <U, A> 

and an “interpretation” model that is a hypernet H = <V, E>. We start with G.



4

The set of vertices U of G can be regarded as a set of switches that pass or stop 

current. If a vertex is switched on we say it “fires”. The whole model is timed in 

successive time units of equal duration: a switch that is off can be switched on, i.e. 

fire, or not during a time unit. A switch/vertex that fires during a given time unit will 

be off during the next time unit, and will stay off until switched on/fired during a 

later time unit. The arrows of A carry current: if a vertex is on during a given time 

unit then all those vertices incident from it are switched on/fire during the next time 

unit. Each vertex is incident to at least one other vertex, and G is loop free.

We have a non-empty subset N   U of “nuclei”. A nucleus together with all the 

vertices incident to it and all the vertices incident from it constitutes our initial model 

of a neuron. If all the vertices incident to a nucleus fire in a given time unit then the 

nucleus fires in the next time unit, and all the vertices incident from the nucleus 

then fire in the following time unit and we say that the neuron is active during those 

three time units. The set of vertices incident to the nucleus is called the input to the 

neuron, and the set of vertices incident from it the output of the neuron. 

We now refine our model of a neuron in G. A neuron consists of the following.

• A set of input vertices and a nuclear vertex. Each member of the input set is 

incident to the nucleus.

• An output vertex incident from the nucleus. Together these vertices, input set, 

nucleus and output vertex, make up the soma.

• An output path, of length 1, with a terminal vertex. This path is called the axon 

of the neuron.

• A set of input paths called the dendrites of the neuron. Each dendrite starts at 

the terminal vertex of some axon and ends at an input vertex of our neuron.

This constitutes our model of a neuron.

The first  arrow of  a dendrite  is  called a synapse.  The synaptic  capacity of  the 



5

terminal  vertex of  an axon is the number of synapses at  it.  Its  synaptic  weight 

during a given time unit is the number of those synapses that are active, i.e. carry a 

current pulse, during that time unit.  A neuron may have feedback inasmuch as 

some of  its  own dendrites can have synapses at its own axon terminal  vertex, 

which vertex is in its own soma if the axon length is 1.

If all the input vertices of a neuron are active, i.e. “on”, during a given time unit, 

then the nucleus is activated during the next time unit, and the output vertex during 

the  following  time  unit.  The  length  of  a  dendrite  to  a  neuron  determines  the 

duration of the flow of activity along its length. Shortest routes will reach a neuron 

first:  a sort of “least  action” principle in simple form. With dendrites of different 

lengths transmitting activity to a neuron from different axon terminal vertices during 

different time units, we see that a neuron can process incoming activity through 

just firing or not.

Given a subset BU, a cascade from B in G, starting with B in time unit 0 for step 

0, is called a sweep in G. We define the cascade in such a way that each step n in 

the cascade takes place during time unit n, starting with step 0, i.e. B only, during 

time unit 0. Then all the new vertices “found” in step n are fired during time unit n. 

(Notice  that  there  is  no  distinction  between  fast  access  and  limited  access 

cascades in G.) A neuron will be activated in a sweep when all of its input vertices 

are found, together, in the same step. Each sweep defines a subgraph of G.

This  then the “hardware”  model  G;  “hardware”  because it  can,  in  principle,  be 

constructed. We now describe the interpretation model. This consists of a hypernet 

<V, E> in which the vertices are the nuclei of G. <V, E> has, external to it, an input 

node I and an output node O, and there is a feedback circuit from O to I through 

the  external  environment  of  <V,  E>.  This  constitutes  our  interpretation  model, 

coupled to the hardware model, so we refer to our models as the G/<V, E> model.
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The edges of <V, E > are labelled as follows. Given an edge {v1,  v2},  the label 

consists of  v1 , an “input set” of v1, i.e. a minimal set of nuclei that must fire to fire 

v1, a minimal input set of v2, and v2. If the input for v1 all fire during some time unit, 

and the input for v2 all fire during a later time unit, then the labelling is said to be 

effective and the derivation direction of {v1, v2} is taken to be from v1 to v2 . We 

consider only effective labellings in <V, E >: no other edges are defined. It is clear 

that the edge set E of <V, E> changes with time. Note that a vertex of V can be in 

the input of several different nuclei, and there can be more than one label on an 

edge at any given time. We can have isolates v in <V, E>: v fires, but there is no 

edge from v.

3. Primaries, goals, clusters, and invariance

Four of the key facets of learning are trial-and-error, copying, finding invariance in 

contrast  with  “noise”  by  inductive  abstraction,  and  declaration.  An  invariant  is, 

generally,  a characteristic  or  pattern of  characteristics  common to a number of 

otherwise different situations or instances of a situation. We have then, at basic 

level, play involving trial-and-error and repetition. Satisfaction or reward is paired 

with invariance while lack of satisfaction or reward is paired with the contrasting 

noise against which invariance must stand out, so noise is essential.

We now  introduce  knowledge  hypernet  (KH)  clusters.  In  what  follows  we  mix 

vertices of G and vertices of <V, E >, so we must be careful to distinguish them. By 

a primary vertex/nucleus of V we mean a vertex that is connected to I in the sense 

that every member of its neuron input is such that there is a path to it, in G, from I. 

Suppose that we now have an edge {v1 , v2} from that primary vertex v1 of <V, E> in 

<V, E>. We may then be able to define, in <V, E>, a cluster for {v1, v2}, and if such 

a cluster is repeatedly activated by generally different sweeps from I in G, then we 

say that that cluster is a primary cluster of <V, E> and that it is invariant in contrast 

with the noise generated in G, and hence possibly in <V, E>, by the successive 
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sweeps in G. By a goal of V we mean a vertex/nucleus that is connected to O in 

the sense that its output vertex is such that there is a path from it, in G, to O. If our 

invariant cluster has a goal in it then it is an invariant subnet of <V, E> that is a KH 

and  is  such  that  any  sweep,  in  G,  through  it  which  activates  it,  induces  an 

information flow in <V, E>. (Notice the difference between a hardware “activation 

sweep” in G and an interpretational, theoretic, “information flow” in <V, E>.) Clearly 

non-primary clusters can exist, as can non-“terminal” clusters, i.e. those which are 

not linked directly to O in G. We can have many invariant clusters in <V, E> with 

successive sweeps in G, and, as indicated in [RGS 2004], we can associate them, 

as we will see in the following section, to form KH’s that yield information flow from 

I to O in <V, E>. We should remember that all clusters can be idiosyncratic, as then 

can any KH that arises by association of them.

4. Inside <V, E>

A KH subnet of <V, E> is called a clustered KH if 

Layer 1: the KH has at least one primary cluster as a subnet. Layer 1 consists of a 

number of primaries of <V, E>, each with its primary cluster, and such that all of 

those clusters are induced by one initial sweep in G. Layer 1 is complete, and the 

join of those primary clusters is a KH. Further, layer 1 is the first step in a limited 

access cascade, in <V, E>, from those primaries. Each non-primary is at deductive 

distance 1 from the primaries in layer 1. 

Layer 2: a cluster in <V, E>, invariantly induced by repeated sweeps in G, is joined 

to layer 1 if the relevant edge {u, v} of that cluster is such that u is a layer 1 vertex 

(nucleus) that is “on”, and every member of the label of {u, v} is “on” as required, so 

that the derivation direction of {u, v} is from u to v. Further, all the vertices in the 

label of {u, v},  all of which are in G and V other than possibly v, must be switched 

on in all the sweeps that induce layer 1. Layers 1 and 2 together constitute a KH in 

which every non-primary vertex is at deductive distance 1 or 2 from its primaries: 

the first two steps in a limited access cascade from its primaries. Again we mention 

that each cluster induced is, in general, chosen from a number of alternatives, so 
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each is idiosyncratic, as is the resulting KH.

Iterating, we may achieve an invariant, idiosyncratic KH with goal vertices called a 

completed KH. Every edge {u, v} in it is such that every vertex in the label of the 

edge, other than possibly v, is primary or “derived”. This will contrast against the 

noise of successive different sweeps, in G, that have the KH and corresponding 

information flow in common. Every subnet of <V, E> is a potential KH, but some 

activated subnets will not be KH’s and some will not be invariant even if they are 

momentarily  sweep  induced  KH’s.  Some  activated  clusters  will  be  pairwise 

mutually  “associated”  in  the  sense  of  having  non-empty  intersections  of  their 

respective vertex sets – see [RGS 2004]. From these associations we may find a 

KH, using a limited access cascade as indicated above, and hence possibly an 

information flow from I to O through <V, E>. Generally the component KH’s in such 

an association may not all be clusters, but clusters are important as they are closer 

to observations than are the edges which induce them. Each KH will  generally 

have some noise attached to it, or associated with it, from the generally different 

sweeps, in G, that generate the KH through repetition, that noise being activated 

by the sweeps that form subnets that strictly contain the KH. Noise in <V, E>, then, 

can be regarded as edges that are activated but do not belong to our KH. In a KH 

we do not have closed non-derivation paths. We may have closed paths in G. If 

every vertex in  a  circuit  in  G fires  in  the same time unit  we have a hardware 

disaster. A similar problem will occur if we have unlimited “noise flow” as the result 

of a sweep in G.

A complete sweep is a sweep that leads to the firing of some goals of <V, E>. For 

any sweep,  we define  the  appropriate  set  of  edges,  if  any,  of  <V,  E> for  that 

sweep.  We look  for  a  complete  sweep that  defines  a  subnet,  of  <V,  E>,  that 

contains a completed KH, and some noise, that is a subnet of the sweep subnet. 

Repeated sweeps may then make that KH invariant during some interval of time. 

(A sweep will  generally induce arbitrary edges in <V,  E>.)  Given a sweep, the 

weight of an edge {u, v} induced by it is the number of u–v derivation paths induced 
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by that sweep. The weight of an edge is at least 1, and changes with succeeding 

sweeps in general. The higher the weight of an edge the more we say we have 

“learned  at  that  edge”,  because  the  higher  the  weight  of  the  edge  the  more 

information is inherently “stored” in it. The weight of a path in <V, E> is the sum of 

the weights of its edges, and its capacity is the minimal weight of all its edges.

Repeated sweeps may induce the same edge e  E. For every sweep that induces 

e we add 1 to the “memory gauge” of e, so the memory gauge of e is the number 

of sweeps that have induced e at a given time.

If we run a limited access cascade in the subnet of <V, E> that is induced by a 

complete sweep, and this yields a KH with some of the primaries in the sweep and 

some of the goals in the sweep, then we have information flow from I to O in that 

KH, and the rest of that subnet is noise. Repeated sweeps can then make that KH 

invariant if the sweeps start with differing sets of primaries that have an intersection 

which induces that KH each time. This will generally increase the memory gauge 

values of the edges of the KH more than those edges, in the sweep subnets, that 

do  not  belong  to  the  KH:  noise  edges  generally  have  smaller  memory  gauge 

values than those of invariant edges. Ideally,  the meet of the subnets of  those 

sweeps would be the KH.

In [RGS 2004] we dealt with five modes of reasoning. We have looked briefly at the 

associative  and  constructive  modes  above.  Also  covered  is  deductive,  or 

inferential, reasoning by limited access cascade. Intuitive reasoning is modelled by 

fast  access  cascade,  and  here  fast  access  cascades  can  access  noise  and 

subnets not directly associated with a given KH. For example, some vertices may 

belong to the given KH and also to some other subnet which may or may not be 

another KH, with derivation paths involving such vertices in one or both subnets 

but no derivation path passing from one to the other either way. A limited access 

cascade in the given KH will stay in it, but a fast access cascade in it will penetrate 

the other subnet if there is a path into it from the KH. In this way we can move from 
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a KH to another subnet that may be a KH or just noise. A fast access cascade can 

link to noise, or to a subnet that provides insight; those “Eureka” moments. Finally, 

inductive, or analogical reasoning is modelled by means of KH isomorphism. As we 

saw above,  a  fast  access  cascade could  provide  a  link  between “overlapping” 

KH’s,  or  even  between  KH’s  separated  by  noise,  providing  the  stimulus  for  a 

search for isomorphic association of (sub-KH’s of) the two KH’s. Notice that in G 

the induced KH’s in question are referent free, but inherent in their representation 

in <V, E> are distinct interpretations. See later.

To close this section we point out that any given vertex v   V can belong to the 

label of several different edges of <V, E> and of a KH. Those edges constitute the 

context scheme of v in <V, E>, and the KH if relevant, and deletion of v from <V, 

E> deletes all those edges. For example, a primary firing repeatedly can be in the 

label  of  different  edges  at  different  times,  if  it  is  also  adjacent  to  the  relevant 

nucleus, a facet of the strong vulnerability of <V, E> - see [RGS 2004]. 

5. Through <V, E>

In [RGS 2004] we have dealt with Menger’s theorem in a KH with regard to “flow” 

through a KH. Here we could extend our treatment since we now have capacities 

for the derivation paths in a KH. Given that only the KH’s in <V, E> can have that 

flow of activity that we call information flow, from I to O in the critical cases, we can 

give some meaning to Menger’s theorem in max flow – min cut form for the current 

KH’s, or a subset of them, in <V, E>. Without pursuing this here, we can claim that 

one facet of learning consists of associating more invariant clusters into a current 

KH,  or  of  course of  constructing  a new KH.  Further,  it  entails  increasing flows 

through invariant KH’s by “finding”, i.e. activating, more paths so as to increase 

weights, capacities and memory gauge values. Both vertex flow and edge flow can 

be considered, where the latter is perhaps more relevant here.
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In all  this,  vertex and edge vulnerability in <V, E> play a central  role in finding 

critical affects on the linking of clusters and on information flow. Associated work 

on complexities, concept schemas and predecessor schemas is also relevant to 

analysis of the KH’s in <V, E> with regard to learning – see [VGS 2004]. Perhaps 

the less complex KH’s will be associated with higher memory gauges and “higher” 

flows in the sense of Menger’s theorem in max flow – min cut form.

The question is one of how all this activity and the associated learning is to be 

achieved. The answer lies with the notion of  a feedback circuit,  from I  through 

G/<V, E> to O, and then from O to I through the environment of G/<V, E>. In the 

following sections we set out some of the criteria for that circuit and environment, 

and point out some of their consequences.

6. Feedback circuit

To  make  the  G/<V,  E>  model  dynamic  we  need  at  least  the  following 

characteristics  of  the  feedback  circuit  through  the  environment  of  G/<V,  E>, 

including I and O as conduits that are part of that circuit. We denote the system 

model by G/<V, E>/F.

• from I through G/<V, E> to O.

• from  O,  trial-and-error  (primitive  procedure)  and  copying/mimicry  (primitive 

declaration), both of which are idiosyncratic, can lead to repeated sweeps and

• invariance of a cluster, or noise, which, in the case of invariance produces

• satisfaction via indirect and direct “rewards”, leading to

• repetition,  with  some  inevitable  changes  through  I  producing  noise  and 

reinforcing invariance – the cluster loops.

• Iteration links clusters to produce idiosyncratic KH’s, and then information flow 

from I to O – the completed KH loops, which constitutes
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• learning and “understanding” by virtue of declaration of interpretation of those 

KH’s – the learning loops.

All three loops return to I for the next “perceptual stimulus” of G/<V, E>, and then 

through G/<V, E> to O for the next feedback round.

Learning  to  recall  implies  some  control  of  our  loops  to  emphasise  invariance 

through repeated sweeps of G. Instinctive behaviour is genetically built in to G/<V, 

E>/F, particularly of course in G and F, by natural selection, and may include some 

completed KH’s for it.

Activation flow from I in G can induce KH’s in <V, E>, through which that flow is 

called information flow. If that KH is completed, we speak of complete information 

flow.  Information  flow  occurs  only  in  KH’s  that  are  invariant  under  successive 

sweeps  of  activation  flow,  and  information  flow  is  necessarily  contained  in 

activation flow in order that the contrasting noise exists against which invariance is 

gauged. Information flow can function as one of the gauges of learning.

Information flow conforms with the progress of a limited access cascade through a 

KH,  other  activation  flows  from  sweeps  being  noise  flows.  Teaching  tries  to 

eliminate idiosyncrasies; to establish invariant, repeatable KH’s that are currently 

“correct”  according  to  some  opinion.  This  entails  that  the  teacher  guides  the 

feedback from O to I. Induction and analogy are governed by KH isomorphism, 

while intuition is covered by fast access cascade – see [VGS 2004]. Interpretations 

of KH’s in <V, E> vary with context,  and context  and understanding within that 

context depend on “linguistic” declaration, i.e. communication. Thus we may treat 

interpretation, understanding and communication as different facets of learning and 

teaching.
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7. Some comments on the model system G/<V, E>/F

Clearly some of our real world situation is either not represented or only partially 

represented  in  the  G/<V,  E>/F  model.  This  is  always  the  case;  it  is  scientific 

method. Only some invariant observations are chosen as the observables to be 

represented,  and only  some of  the relationships  among those observables  are 

represented,  in  the model.  Precisely  specified  reasoning is  then applied  to  the 

model,  model  and reasoning constituting  a theory.  This  is  intended to produce 

some predictions, about the real world situation, from the model. At least some of 

these should be empirically confirmed,  more or  less,  to  support  the model  and 

theory. At least one prediction must be empirically falsifiable, so that we can modify 

or  reject  the model  and theory,  thereby learning in the process.  The choice of 

observables and relationships must be “objective”, i.e. repeatable.

The G/<V, E>/F model, with the theory developed in [VGS 2004], generates no 

immediate predictions to test, but it has certain consequences that maybe testable, 

and a certain “philosophy” to criticise. Its “time unit” supposition is introduced to 

synchronise with the steps in cascades, and if there really is a time unit in sweeps 

then it would vary in duration in practice. Memory gauges should be coupled with 

“least resistance” paths in G/<V, E>/F, using the inverse of the current memory 

gauge of an edge for example, so that we have, again, a “least action” kind of 

principle functioning. Investigation of vulnerability, and vulnerability of flow using 

Menger’s theorem, as well as complexity gauges – see [VGS 2004] – should be 

investigated.

We must remember that paths, in G, from I to primaries in <V, E> and from goals in 

<V, E> to O, can be of different lengths. Thus KH’s can occur anywhere in G/<V, 

E>. More work needs to be carried out on the details of I, O and the feedback 

circuit, and on different details of different kinds of neurons.
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The dual nature of G/<V, E> seems appropriate. Further the notion of feedback is 

essential  in  G/<V,  E>/F;  without  it  one  cannot  have  a  realistic  model.  Finally, 

consider that directed graphs like G are appropriate models for a host of situations 

in differing fields – see [HNC 1965]  for a basic,  classic example.  If  we have a 

complex loop free digraph we might approach it as follows.

• The vertex base constitutes I.

• The vertex contra-base constitutes O.

• Define neurons and synapses as they occur in it, if any, and the edges of a <V, 

E> hypergraph.

• Consider invariances, information flow and interpretation in this light.

We may get a fascinating new view of the digraph!

Using  <V,  E>  as  an  interpretation  –  see  later  –  and  programming  tool  that 

incorporates the feedback, one can visualise G as a potentially different kind of 

“computer”  aimed  perhaps  at  structural  analysis  and  learning.  The 

user/programmer would be the environment and control the sweeps through G in 

accordance with what happens at O and what is desired in <V, E>. Such a “hybrid” 

invites parallel processing of simultaneous KH’s, for example, through fast access 

cascades, also drawing in “useful noise” against which to judge invariance of a 

solution.

It  is clear that standard computing is required to work with G/<V, E> - see the 

constructional schemes in [VGS 2004]. Standard computing together with neural 

network computing and G/<V, E>/F computing would provide a broadening of our 

range of computing and the domain of computable and simulatable problems.

The real complexity of the model begins with the subgraphs of G, generated during 

the same time interval by various sweeps, when these “overlap”.
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To be useful  a model must be common to, applicable in,  a number of different 

situations:  here different  kinds of  brain for  example.  Our model  suggests some 

possible “mechanisms” in learning, which involves G/<V, E>, and teaching, which 

involves partial control or directing of the feedback from O to I – see [VGS 2004].

 

8. G/<V, E>/F and images

Consider  a  given image,  or  pattern.  Controlled  sweeps through  G build  up  an 

overall impression, and sections of the image, as invariant KH’s in an idiosyncratic 

order, as dictated by feedback and satisfaction, against contrasting noise in the 

sweeps. Gradually more detail is incorporated, myriads of relationships and their 

edges are defined. Idiosyncratic edge weights and memory gauge values build up, 

dictating what is noticed and what is recalled, both in the relevant invariant KH’s 

and in the “noise” subnets.

The image, or rather generally only parts of it, and some noise with a relatively high 

memory gauge value,  are  built  up.  They  are  then forgotten  later  through non-

stimulation of the required primaries in later sweeps. The image, or parts of it, or 

some of the noise could then be recalled if the appropriate subset of primaries is 

stimulated, perhaps fortuitously or deliberately, in feedback to I.

9. G/<V, E>/F and training/teaching of it

While there may be “genetically programmed” inherent KH’s in <V, E>, the model 

system needs initial training/teaching. Starting with trial-and-error and examples, 

this  can  potentially  be  accomplished.  The  examples  should  be  chosen  to  be 

different while each having the same relationship structure, and should each have 

different noise as contrast with that invariant relational structure. For instance, well 

chosen examples can result in the formation of invariants such as primitive concept 

– names like “red” (from a predicate) as an invariant from different sweeps, number 
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(from  a  collection  of  collections,  of  objects,  that  are  in  pairwise  one  –  one 

correspondence), relation (from several different statements of a relationship that 

reduce to the same tuple set and label an edge in <V, E>), and a referent free KH 

(from a collection of KH’s that are pairwise isomorphic) – see [VGS 2004]. Thus 

<V, E> can be taught to “recognise” certain invariants, in contrast with the ever 

present noise.

As input through I to subsets of primaries varies due to controlled or uncontrolled 

feedback  through  the  environment  from  O,  <V,  E>  will  not  only  recognise 

previously  established  higher  memory  gauge  value,  more  “used”,  invariant 

structures and edges, but it will continue to create new ones and change previously 

established ones. <V, E> can thus be taught, and it can learn, due to the existence 

of a dynamic and partially controllable feedback circuit in G/<V, E>/F.

The G/<V, E>/F system can establish invariant structures given appropriate trial-

and-error  experiences  and  examples.  These  can  be  interpreted  using  <V,  E>, 

bearing in mind that the edges of a referent free KH can each be associated with a 

number of statements of relationship – see the definition of a KH in [VGS 2004].

A  possibility:  perhaps  one  side  of  the  brain  is  more  adept  at  linking  clusters 

(vertical/deductive/constructive/inferential  reasoning),  while the other  is  better  at 

finding  links,  such  as  isomorphisms,  (lateral/analogical  reasoning)  between 

referent free invariant structures without concern for any particular interpretation of 

those structures via <V, E> - see [VGS 2004].

10. Interpretation of a KH

We only “notice” and interpret invariant,  completed (sub-)KH’s.  If  a sweep in G 

induces isolates,  or  effective edges that  form loops or circuits,  we must regard 

those as noise.
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An  interpretation  of  a  KH  is  any  one  of  the  CRKS’s  from  which  that  KH  is 

abstracted – see [VGS 2004]. CRKS isomorphisms can exist between two or more 

of these interpretations, of the same KH, or between two or more interpretations of 

isomorphic (sub-) KH’s. Every CRKS isomorphism is defined via abstraction to a 

KH, then KH isomorphism, and then interpretation – see [VGS 2004]. Of course 

any KH is isomorphic with itself.

We must  emphasise  that  “activation  flow”,  i.e.  a  sweep,  occurs  in  G and is  a 

“hardware reality”. On the other hand, information flow occurs in the edges of <V, 

E>,  and in  particular,  in  the  completed invariant  KH subnets  of  <V,  E>.  While 

induced  by  activation  flow,  information  flow  is  an  entirely  theoretical  notion. 

Information  flow  becomes  “interpreted  flow”  when  we  have  any  one  of  the 

interpretations of the relevant KH. Interpreted flow can mean a variety of things; for 

example knowledge flow in the interpretation CRKS or simply derivation and the 

progress of a limited access cascade, from the primaries, in that CRKS. Note that 

for every edge {u, v} of <V, E>, the members of its label are all unnamed vertices 

of G, so our KH’s are all referent free.

In the case of the KH for an image, the interpretation CRKS would be very complex 

but  idiosyncratic,  and  would  be  noticed  and  recalled  only  in  relatively  small 

sections each of which is both idiosyncratic and relatively simple, i.e. incomplete, 

with respect to the full detail of that section. The same would apply to noticing and 

recalling the image as a whole: much of the detail would be missing from such an 

overall experience of the image, and it would be idiosyncratic. An expert in the type 

of image involved would notice and recall more detail than a non-expert, and have 

a different and more detailed interpretation.

We have dealt  briefly with trial-and-error,  examples,  invariance and insight.  We 

have pointed out how (rare) insights can occur. The other basic facet of learning is 

declaration,  and  thus,  here,  CRKS  interpretations  of  a  KH.  Teaching  tries  to 
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establish an interpretation, that is regarded as “correct” according to some opinion, 

by controlling feedback. When a teacher says “pay attention”,  s(he)  is  trying to 

direct feedback from O to I.

11. Concluding Comment

The  “measure”  and  nourishment  of  curiosity,  imagination  and  learning  is 

speculation. This speculative model is intended to further stimulate discussion by 

the curious and imaginative. To set up our model we need 

• To specify a loop free diagraph G = <U, A>.

• Find a vertex base B for G, introduce I, and let I be incident to each member 

of B. 

• Find a vertex contra-base C for G, introduce O, and let O be incident from 

each member of C.

• Find the neurons, and hence the set of nuclei V  U, in G.

• Define, at each time, the (effective) edges of <V, E>.

• Let the teacher/programmer function as the feedback from O to I. 

If it does nothing else, our model clarifies the approach to teaching and learning 

indicated in [VGS 2004] and Part 1 of [GVS 99]. Learning is modeled in the G/<V, 

E> part  of  the  system,  while  teaching  involves partial  attempted  control  of  the 

feedback from O to I. The G/<V, E>/F model provides some possible theoretical 

mechanisms  for  achieving  learning  and  teaching,  for  example  the  building  of 

invariant subnets of <V, E> with contrasting noise, limited access cascades and 

information  flow,  fast  access  cascades  and  insight  and  intuition,  isomorphic 

subnets, and partial control of feedback from O to I.

Notice that the fundamental notion of a model hinges upon inductive abstraction, 
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which is characterised by structural isomorphisms – see [VGS 2004] and Part 1 of 

[GVS 99].

Acknowledgements

Sue Fenton and Petro van Rooyen for typing the drafts. The many colleagues and friends who have 

influenced our work. Our families for constant support. 



20

References

[VGS  2004]  Van  Rooyen  Hendrik  O.,  Geldenhuys  Aletta  E.,  Stetter  Franz: 

Modelling knowledge systems using relation nets and hypernets. Technical 

Report TR-04-009, Dept. of Mathematics and Computer Science, Univ. of 

Mannheim, 2004.  
             http://madoc.bib.uni-mannheim.de/madoc/volltexte/2004/850/pdf/TR200409.pdf 

[HNC 1965] Harary, F., Norman, R.Z., and Cartwright, D.,: Structural models: An  

            introduction to the theory of directed graphs. John Wiley, 1965

[GVS 99]  Geldenhuys,  Aletta  E.,  van  Rooyen,  Hendrik  O.,  and  Stetter,  Franz: 

Knowledge Representation and Relation Nets. Kluwer Academic Publishers, 

1999.

http://madoc.bib.uni-mannheim.de/madoc/volltexte/2004/850/pdf/TR200409.pdf

	Abstract

