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From the discrete to a continuum shown
on the example of an idealized skin

0 Introduction

Here we treat an application of a very simple sort of Lie theory to mechanics of
continua determined by finitely many particles.

The aim of this application is the description of a discrete medium as a conti-
nuum. The discrete medium consists of a large but finite collection P of inter-
acting material particles. The continuum is modeled on a compact nice manifold
M (without boundary, for simplicity) equipped with a smooth mass density. M
is called an idealized skin.

In characterizing the discrete deformable medium we use the virtual work
Ap(3p)(hp) resisting a distortion hp : P — IR™ at a configuration jp (cf. [He}).
The configuration space is a collection Op of injective maps from P to R™. Op
shall be open in the linear, finite dimensional space of all maps from P to R™.
The one-form Ap on Op, is supposed to be smooth and to be invariant under
the action on Op of a neighbourhood of the unity in the semidirect product
RTOIR™ of the groups RY and IR™ of all dilatations and of all translations
of IR™, respectively. The last requirement implies in particular, that constant
distortions cause no work.

The continuum is characterized accordingly by a smooth one-form A on the
configuration space O, a collection of smooth embeddings of M into R™ (cf. [B1]
to [B4] and [M,H]). Again O is supposed to be open in the infinite dimensional
Fréchet space of all smooth maps from M to R™. Let P C M. We construct
A out of Ap by slicing O into slices W, each one diffeomorphic to Op, via the
restriction map r. Pulling back Ap to each slice W by r and setting it (in
addition) equal to zero on the normal bundle of W yields A. The invariance of
A under RYOIR™ yields a constitutive map H characterizing the continuum.

The task is hence to deduce characteristics of A by those of Ap. We do so e.g.
by using a Hodge type of splitting of A and Ap to exhibit the smooth maps
F and Fp on O respectively on Op, relating them and identifying them as the
free energies in respective Gibbs statistics. This relates our description of media
to the one presented in [L,L]. The choice of Fp respectively F' does not only
determine Gibbs states, but also refines the description of the media via the
virtual work.

We close this note by introducing the notion of a configuration of the skin fitting
the discrete medium up to first order and present some descriptions of charac-
teristics of A in terms those of Ap and vice versa at this kind of configuration.
In particular we express the vibrational modes of the discrete medium in terms
of the structural capillarity and the area function both defined on O.




1 Characterization of an idealized skin

At first we treat the continuum since it is more common and -since it has more
structure than a general discrete medium- it is more economic as far as the
presentation is concerned.

1.1 An idealized skin

Here we describe an idealized skin, as a connected, smooth, compact and ori-
ented manifold M, equipped with a mass density and a constitutive law, both
configuration dependent. The constitutive law will be non-local in general. (The
reason for non-locality will become apparent if we treat the virtual work caused
by area deformations). For the geometric notions we refer to [G,H,V].

The configuration space is supposed to be an open subset O of the collection
E(M,RR") of all smooth embeddings of M into JR™ endowed with the C'*°-
topology, a principal DiffM-bundle (cf. [BiFi]). The tangent space at each
j € 0is C®(M,R"™), the collection of all smooth IR™-valued maps of M into
IR™. On R™ a fixed scalar product <, > is specified.

A mass density is a smooth positive map p : O — C*(M, R ) for which the
continuity equation

Dp(§)(h) = —p()-tr B ~ Yhe C®(M,R™) (1.1.1)

holds (cf. [Bi2]). Here ID denotes the differentiation on function spaces (on O,
here) in the sense of [Bi,Sn,Fi] or [Fr,Kr]. Moreover B}, is an element of End T'M,
the collection of all smooth bundle endopmorphism of TM over the identity,
equipped with the C*-topology; it is defined as follows : Let m(j) := j* <,>
be the pull back metric on M of <,> by j. Given any other j' € E(M,R"),
the metrics m(j) and m(j') are related by

m(§")(w,w) = m()(*(¢')v,w) Vo,weTgM VgeM  (112)

with f(j') € End TM being smooth and pointwise positive definite with respect
to m(j). The derivative of f at j in the direction of h is denoted by B. Given
a positive pg € C®(M, R ) the solution to (1.1.1) is obviously

p(j) = po -det f71(j) Jj€O. (1.1.3)

Denoting by u(j) the volume element determined by m(j) and the given orien-
tation of M the total mass

m(j) = /M o(5) 1) (1.1.4)

- is constant in j € O, due to (1.1.1).

The constitutive law which describes phenomenologically the quality of the
medium will be a special sort of a smooth force density map

$:0— C°(M,R")




which will prescribe at each j € O the force density ®(j) € C*°(M, R™) resisting
an infinitesimal distortion A € C*°(M,IR™) of j(M) C IR™. The special quality
we will impose on & is inherited from its virtual work (cf. [He]), the one-form
A:0OxC®(M,R™ — IR given by

A(G)(h) = /M < ®(j),h > p(y) VjeO Vhe C®(M,R™). (1.1.5)

This virtual work is supposed to be invariant under the action of a neighbourhood
of the neutral element of the semidirected product R+ IR on O. Here R and
IR™ are respectively the multiplicative group of all positive reals, called the group
of dilations and the translation group IR™ of the vector space IR™. The action
we have in mind is based on the splitting of any j € E*°(M,R™)into j = j, +=2
with z € R™ where j; is orthogonal to IR™ with respect to the Lo-metric G(j)
given by

G(j)(h, k) = /M < h, k> u(j) Vh ke C*(M,R™) (1.1.6)
and is defined as follows: Given j € O, and any (7,2') € RT$IR™ near enough
to the unity (1,0) € RTOR™ then

jo(ne) = +roz 42 (1.1.7)

The invariance of A under this action is thus expressed by
AL +7-2+2)h+(r=1)-2) = A(jL + 2)(h) Vhe C*(M,R™) (1.1.8)
with 7€ R and 2,2 € R™. Hence 7 =1 and 2’ = —z for z near 0 € R yield
A(jL)(h) = A(G)(R)  Vhe C®(M,R™), (1.1.9)

saying that A(j) depends on dj only. If h =0, 7 # 1 and 2’ := —(7 — 1) - 2 then
(1.1.8) yields

A"y =0 V" eR", (1.1.10)
saying that constant distortions cause no work, hence A(j)(h) depends on dh
only. Equation (1.1.9) and (1.1.10) specify the sorts of force densities and in
turn of virtual work we will use in the sequel. This leads us to the following:

An idealized skin with underlying manifold M is given by a mass density p
satisfying the continuity equation and a force density map ® : O — IR™ obeying

(i +2) = ®(j) VjeOo Vz near 0e€R™ (1.1.11)
and _
/M d(Hu(y) =0 Vjeo. (1.1.12)
(1.1.12), however, is the integrability condition for the equation
AGYH(G) =8() V€O (1.113)



with H € C*(0,C*°(M,R™)) determined up to a map in C*(0O,R"). Here
A(j) is the Laplacian of m(j) (cf. [Ma]). H, resulting from the above mentioned
invariance of A, is referred to as a constitutive map in these notes. Given H,
the force density map ® is determined and vice versa. We thus reformulate:

An idealized skin with underlying manifold M is given by a mass density
p € C*(0,C™(M,R)) satisfying the continuity equation (1.1.1) and a smooth
map H € C*(0,C*(M,R")).

In later sections we will base the description of an idealized skin on a reference
configuration jo € O. To this end we solve the following equation

~

A(Jo)H(j) = det f(5)-®(5) J€O (1.1.14)
for a constitutive map H (now adapted to the reference configuration) and set
&(j) == det f(j) B(j) Vi€ O; (1.1.15)

® reproduces the virtual work A for all j € O, as seen by

AG)(R) = G(Go)(@(5), h) = G(jo)(A(jo)H(j),h)  VheC®(M,R™).
(1.1.16)

1.2 Structural capillarity
Let A: O C E(M,IR") — IR be the area functional of a skin defined by

AG) = /Mu(j) Vjeo. (1.2.1)

The virtual work caused by distorting the area is
A(H(R) == a(j) - D A(5)(R) VjeO and VheC®(M,R™), (122)

where a € C®(0, R) is called the structural capillarity. It is easily verified
that any H € C=(0,C>(M,IR™)) splits G(j)-orthogonally into

H(j) =a(j) -5 +Hi(§) Vj€O (1.2.3)

where H1(j) is not sensitive to area deformations (cf. [Bil] to [Bi3]), saying
that A(j)j is G(j)-orthogonal to Hi(j) for all j € O. The map A(j)j, pointwise
normal to TjT M with respect to <,>, is called the mean curvature tensor.
Obviously (1.2.2) and (1.2.3) yield the following equation for a:

A(G)(J) = a(f) - dim M - A(j) Vj€O (1.2.4)

which in turn determines @ directly out of A, a fact which will be used later.
The notion of structural capillarity will be crucial in determining the vibrational
modes of the continuum (cf. sec. 4 and 5). The sort of virtual work given by
(1.2.2) justifies our non-local approach.




A word to the type of constitutive laws we use for the continuum here: To base
the constitutive properties of a continuum on the notion of virtual work in the
above sense is a rather naive approach from the continuum mechanics point of
view {cf. [M,H]). We do so because it is on one hand appropriate for discrete
media (cf. below) and keeps on the other the formalism simple. The relation of
'H to the first Piola-Kirchhoff stress tensor can be found in [Bi3].

2 Description of discrete media

In this section we are given a finite set P of points, thought of as locations
of material interacting particles. We characterize the discrete medium in this
generality via internal forces as well. The analogy to the previous section is
apparent in the case of nearest neighbour interaction (n.n.i.).

2.1 Discrete media

The configuration space of a discrete medium is Op, some open set in the col-
lection E(P,IR™) of all injective maps in the finite dimensional space 7 (P, IR"™)
of all maps from P to IR™. The discrete medium is determined by a positive

smooth mass distribution
pp: P— R

with total mass m = ) _.ppp(g) and by a smooth internal force map ®p €
C>(Op,F(P,IR™)), causing the virtual work Ap defined by
Ap(jp)(hp) = > < ®p(jp)(@),hr(q) > Vijp€Op Vhp € F(P,R")
gqeEP

which is supposed to be invariant under the action on Op of a neighbourhood
of the neutral element in Rt QIR™. Hence

S ®p(jp) =0 (2.1.1)
qeP
as well as
bp(jp+2)=0 and Vz near 0eR™, (2.1.2)

the analoga of (1.1.12) and (1.1.11), respectively. Let pp = 1 from now on.

2.2 Nearest neighbour interaction (n.n.i.)

We think of P as the collection of all null-simplices of a finite, one-dimensional
and oriented simplicial complex L. The collection of all zero- and one-simplices
is denoted by P and L; respectively. Two particles at ¢ and ¢;, say, interact,
iff they bound the same one-simplex o € Li. Any ¢; € P interacting with g is
called a nearest neighbour (n.n.) of ¢. By nb(g) we mean the total number of




n.n. of any ¢ € P. On the linear spaces F(P,IR™) and F(L,R™) of all zero
respectively one-cochains of L there are the natural scalar products Gp and Gy,
given respectively by '

p(hp,kp) =Y <hp(q),kp(q)> and Gf (c1,c2) = Y <ci(0),c2(0) >
q€P oel,
(2.2.1)
for all hp,kp € F(P,IR™) and for all ¢;,c2 € F}(L,IR™). The coboundary
' : F(P,R™) — FY(L,IR™) has an adjoint §', the divergence, defined by

Gr (8 hp,c) =Gp(hp,6'c)  VYhpe F(P,R") Vc€ FYL,R™).

We therefore have the Hodge Laplacian Ar := ' 08! on F(P,R™) (cf. [B],[E]).

Due to (2.1.1) any internal force ®p € C*°(0, F(P,IR™)) caused by n.n.i. admits
a constitutive map Hp € C>(0Op, F(P,IR™)), satisfying

ArHp(jp) = 2p(jp)  Vijp € Op. (2.2.2)
We characterize this kind of a medium by pp and the map Hp. Since

nb(q)
ArHp(jp)(g) = nb(q) - Hp(jp)( Z Hp(jp)(@:) VgeP (223)

(cf. [B]) we immediately observe that Hp(jp)(¢q) —Hp(jr)(g:) is the interaction
force off equilibrium between the material particles at jp(g) and jp(g:). It is
alternatively described by

Hp(ip)(q) — Hp(jp)(@:) = £8'"Hp(jp)(os)  Vi=1,..,nb(g), (2.24)

with + accordingly as to whether ¢ = o or ¢ = o;. Here + and — is given by
the orientation. Forces of this kind may be determined by a potential which is
proportional to the square of the length of djp(0).

Thus n.n.i. resemble the type of structure met in the case of the continuum. In
fact the first Piola-Kirchhoff stress tensor can be introduced here as well; it is
just a one-cochain (which depends on the configuration in the non-local-case).

3 The discrete medium modeled as a continuum

To describe the discrete medium as an idealized skin we have to assume that
P C M and need to construct out of the given data pp and ®p a mass density
p and a constitutive map H on an open set O C E(M,RR™). To do so, we
fix jo € O. Let r : C*(M,R") — F(P,IR"™) denote the restriction map.
Since r~10p C E(M,IR™) for Op C E(P,IR™) small enough, we intend to set
A := r* Ap. However, the requirement of the existence of a force density & (cf.
(1.1.15) and (1.1.16)) implies the existence of a G(jo)-orthogonal complement
to kerr C C°(M,R™). This however does not exist in general, otherwise the
S-function would admit a density. We therefore look for a complement to kerr
not G(jo)-orthogonal but isomorphic to F(P, IR™) via the restriction map 7.




3.1 The construction of a complement to ker r

Let O C r~10p with jo € O. We require for each j € O that the maps <i>(j)
and H(7) in (1.1.15) and (1.1.14) are in the complement to construct. Hence the
finite dimensional complement has to be invariant under A(jg), and thus has
to be generated by eigenvectors of A(jp). But there is still a choice involved.
Here is how we proceed: Let zi,...,2, € IR™ be a <, >-orthonormal basis. We
choose G(jo)-orthonormed eigenvectors e;,, ..., e;, in C®(M,R™) of A(jy) with
respective eigenvalues 0 < A;; < ... € Ay, such that zq,..., z,,7(es, ), ..., 7(€5,)
forms a basis of F(P,IR™) and that le’:l A:, is as small as possible. The last
condition expresses our choice. The complement F*(M,R"™) C C*(M,R")
we look for is the span of 21, ..., 2n,€4,,...,€;,. For simplicity we write just e
instead of e;, for s = 1,...,b. Clearly

C®(M,R™) = ker r & F®(M,R™). (3.1.1)

Obviously the G(jo)-orthogonal complement F*°(M,R"™)* C C*°(M,R") to
F(M,IR"™) is not identical with kerr but

C®(M,R™) = F°(M,R™) & F°(M,R™)* (3.1.2)

holds certainly true as well. Constructing F°(M,IR) just accordingly, yields
the G(jo)-orthogonal splitting

C*(M,R) = F°(M,R)® R. (3.1.3)
Let r(jo) = 7%. We require O C 771Op to be of the form
O — jo = Oger ®W' (3.1.4)

with Oger C kerr and W' C F°(M,R™) being an open neighbourhood of zero,
respectively. Hence O slices into

0= ) W) with  Ey:=r'(j3)n0 (3.1.5)
JEE,

where W(j) = j + W' for all j € r~1(%) N O. From now on O is as in (3.1.5).

3.2 The construction of p and A

Let jo € O be such that 7(jo) = j%. The discrete mass density pp (cf. sec. two)
yields by lemma A2.1 some positive map pg € F*°(M, IR) satisfying

/M po ulio) = ;pp(q) =m

where m is the total mass. Letting f(j) as in (1.1.2) with f(jo) = ¢d then
o(§) = po - det f1(j)  Vj€O (32.1)

determines a mass density on M in the sense of sec. 1.1. Clearly p(jo) = po and
p(3) € F°(M,R), in general except for jo.



The virtual work A is constructed as follows : Let 7o := r|F>*(M,R"™) and
accordingly 7o := r|W(j) for all 7 € r71(3%) N O. We set

A:=r1*Ap oneachslice W(j) and A|OxF*(M,R™)* =0
(3.2.2)
Hence A is constant along 771(5%) N O. Given j € O and k € ker r then in
general A(7)(k) # 0. However, if Ap(r(jo)) = 0 then indeed A(j)(h) = 0 for all
he C®(M, R™) and for all j € r~1(;4) N O.

4 The free energy

Given a discrete medium described as an idealized skin M, we will split Ap
on Op (to be further specified below) via a Neumann boundary problem into
exact and non-exact parts and show that the exact part can be identified as the
differential of the free energy associated with specific observables.

4.1 The free energy of the discrete medium

Let F(P,IR™) be oriented and Op shall be a compact, smooth and connected
manifold with boundary 80p, sliced as in (3.1.5). Moreover, Op shall be a
neighbourhood of j% := jo|P. Here jo is fixed again. Given Ap on Op then

Ap=DFp+Tp (4.1.1)

with divo, Ap = A 0, Fp, and Ap(no,) = D Fp(no,) for some smooth posi-
tive map Fp : Op — IR, determined up to a constant (cf. [H6]). Here divo,
and A o, on F(P,IR™) are the divergence operator and the Laplacian of Gp,
respectively. o, denotes the positively oriented unit normal of 80p in Op. Let
the Boltzmann constant be equal to 1. For each jp € O the positive real F'(jp) is
the free energy (cf. [B,St]) associated with a temperature map 8 € C=(Op, R )
and a Gibbs state pZ,,,,(jp) as seen as follows: Let Fp € C=(0p, F(P,R))
be such that F(jp) = Y cp Fr(ip)(q) for all jp € Op. Each such density Fp
is of the form

Fp(jp) = %(j;i) +ep(p)  with S &p(ip)@) =0  (412)
geP

for a suitable ép € C°(Op, F(P,R)). Here #P denotes the number of points
in P. The state p.,,,(jp) is defined by

PGanps(IP) = ?;83 = FI;:;P) + él;((éi)) Vip € Op. (4.1.3)

The observable Ip € C®(Op, F(P, R)) associated with 3 and pZ,,,, is

|
Ip = Fp — 3 In pEinpss (4.1.4)




and yields for each jp € Op

e—BUP)Ip
PGinws(JP) = Soer e BGR) Tr @) (4.1.5)
Hence pZ;;,.(jp) is a Gibbs state for each jp € Op. This state implies
Fp=Ip-p1-5p (4.1.6)

with the usual notions

Ip(jp) =) pEinss(ir)(@) - Ir(iP)(9)
qeP
and

Z szbbs(]P -In szbbs (7p)(a);
g€P

hence F is a free energy. ¥p # S-IDf unless ¥ p admits an integrating factor
in which case Fp can be chosen such that ¥p = 5 - ID 3 holds indeed.
Specifying 3, £p and Fp needed to interpret F' as a free energy yields a finer
characterisation of the discrete medium than the one determined by Ap.

Instead of dealing with £p from above, we may choose
(p € C*(0p,F({1,...,b},R)) for which Zz_l ¢p(jp)(3) = 0 for all jp € Op
and proceed accordmgly In this case the density f of Fp is defined by

Fp(jp) , C(p)() Vi=1,..b

f(4p)(7) := = vy Op.
(5p)() b + ) JpeOp
The observable associated with 3 is thus
e A 1 fip)(E) . ,
1) := F ——ln == Vie{l,..,b} and Vjp € Op.
e(jp)(@) == Fp(jp) 5G) ™ Felin) { } jp € Op

(4.1.7)
Choosing Q(jp) € End F*(M,R™) for each jp € O such that it vanishes on
R™ and has ¢o(jp)(1),...,0(jp)(b) as its eigenvalues for any jp € O then

- 1
Fp= _B “ntr e P9 on Op (4.1.8)
and the state g5, = Ff; is determined by the partition function

Zp Ze—ﬁ(JP) wi(iP) — p — B(ip) -tr Q + —— p (]P) tr Q2(jp) —
=1
Moreover + otr QM = hmg_,o ftm, Where pi,, is the m-th order momentum of

the Gibbs state Plibns = ZP on {1,...,,b}. Clearly

b .
trQ=0bF— % : Elnf(“_‘)(’) on  Op.




Finally, let us introduce the concept of an equilibrium configuration jp € Op:
We require from jp both to hold, namely ®p(jp) = 0 and Gradg, Fp(jp) =0,
with Gradg, being the gradient formed with respect to Gp.

4.2 The concept of free energy of the continuum

Let Fp on Op be the free energy of Ap and 7% € Op be an equilibrium con-
figuration. We regard ID Fp as a virtual work by itself and hence lift ID Fp by
(3.2.2), to a one-form Ap, on O. ie. we set slicewise Ap, = 5 ID Fp and
Ap, |0 x F*(M,R™)* =0. Hence Az, |r~1(j%)NO = 0. Clearly there is some
F € C>*(0,R") such that ID F = Ap, near any j € O. Moreover

F(j) = Fp(r(j)) + const. ~ ¥j  nearany fixed j €r '(j%)nO.

Setting const. = 0 yields

F=r*Fp. (4.2.1)
The gradient Gradg;,)F formed with respect to G(jo) satisfies
Too(Gradg(; F(5")) = ©¥(§3) - Gradg, Fp(5%)  Vj' €r™'(j3)n0O (4.2.2)
for some ¥ (%) € F(P,IR") as seen by lemma A2.1. Clearly A splits into
A=DF+Y7 near any j' € 77'(j%)N0O (4.2.3)

with ¥ := A — ID F" and is the Neumann splitting formed slicewise with respect
to 7*,Gp. In determining the divergence divyy;)A on each slice W(j'), formed
with respect to 75,Gp, the structural capillarity a of A as defined in sec. one
plays a crucial role. To see this we let K» C W(j') be a closed ball of radius r
centered about 5 € W(j') . Due to ( 1.2.4), (4.2.3) and (A3.3)

- . : . . 1 )
AwiinF(5) = divyinA(G) = —dimM - lim —-——/ (a—a(j)) A paxy-
| Kr Jok,

T—07T VO
(4.2.4)
Here /A yy(;+) is the Laplacian on W(j'). The structural capillarity a can be de-
duced by discrete data and dim M only: a as given by (1.2.4) can be determined
by the differential of the free energy F of A as seen from the observation

D F(j)(j) = DFG)(G®) = a(j) -dim M - A(j)  VjeW(').  (4.25)

To verify this we assign to each j € W(j') the value & - 7%,Gp(r(5),7(j)) and
observe that j is the r’ Gp-gradient at j. Here 7 is the component of j in
Fo(M,R™). We thus find due to (A3.5), (1.2.3) and (A2.1) the following:

Proposition 4.2.1  For any j' € v (j%) N O, each j € W(j') and some
oF(j) € C*(0,F(P,IR)) the structural capillarity a of A 1is given by
a(j) - dim M - Y oF(§)(g) = D Fp(r(5))(re0 (5°°))- (4.2.6)
qEP

If r(j) is an equilibrium configuration then a(j) = 0.
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Defining an equilibrium configuration j' € O by A(j') =0 and ID F(5') =0
we immediately deduce that any 7/ € 7~1(5) N O is an equilibrium configura-
tion if (') € Op is one. Differentiating both sides of (4.2.6) and representing
ID?Fp(jo) by Gp via Fp € End F(P,IR™), say, then by (4.2.2), proposition
4.2.1 and lemma A2.1 the following holds true:

Corollary 4.2.2

. 1 _—
reo(Grodgn))7P) = G pr ooy TP (#.2.7)
q

where Gradgj,)a is formed with respect to G(jo).

4.3 Linearized free energy, vibrational modes

Let jo € O be an equilibrium configuration. The force density map & on W(j0)
of A (cf. (1.1.15) and (3.2.2)) is dominated near jo by the linear part, i.e

®(jo + 1) = D &(50) (1) + higher order terms

for all [ near zero. Accordingly
_ _ 1 -
F(jo+1)=F(jo) + —2—D 2F(jo)(1,1) + higher order terms. (4.3.1)

To define and compute the vibrational modes at jp let I € EndF*°(M,IR™)
be such that D 2F(jo) = G(jo)(FF ..., ...) and let ap be the structural capillarity
of the linearized ID F. Due to (A3.4), the analogon of (4.2.4) on W(jo) formed
at jo reads here

1
F =di — . i 3
tr dim M T ool K /Kr(aF A) pax, (4.3.2)

The i-th eigenvalue v; is called the i-th vibrational mode (cf. [Ch,St]), ¢ =
1,...,b. Let F beasin (4.3.1) and a% be the structural capillarity of the linearized
ID (F o ;) where 7; is the G(jo)-orthogonal projection on IR - u; and u; is th

i-th eigenvector of IF. Since DF = ¥, D (F o w;) obviously ap = Yo_, a’
holds true and we thus find due to (4.3.2) the following:

Theorem 4.3.1  For each i = 1,...,b the vibrational mode v; at jo is deter-
mined by

1

,=dimM - ——— .
vi = dim r-vol K, Ky

(a% — a%(jo)) - A pax, (4.3.3)

5 A concept of a fitting surface
Let Ap, A and F be as in sec. 4.2. Moreover jp € Op and jo € O with

r(jo) = jp are supposed to be equilibrium configurations. The latter implies
that F is constant along r—!(jp) near jo. We may work on W (jo) only.
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5.1 The motivation of the concept of first order fitting

The vibrational modes of the discrete medium and the continuum are the eigen-
values v% of Fp respectively v; of IF for 4 = 1,...,b (cf. sec. 4.2 and 4.3). To
link the two endomorphisms Fp and ' we use lemma A2.1: There is a map
@ € F*(M,R™) such that

wor;IOFporoo =I.

Since the continuum is supposed to describe the discrete medium we require
from jg that
Too O IF = IFp 0 7. (5.1.1)

This implies in particular that v% = v; and 7eo(u;) = ub for i = 1,...,b, where

u; and uip are the respective eigenvectors of ' and [Fp. We thus call the
equilibrium configuration a first order fitting configuration if ¢ = 1.

5.2 Simple conclusions for a first order fitting configura-
tion

We present equations associated with a first order fitting configuration jo in-

volving the structural capillarity. At first let us remark that jo is not uniquely

determined, if it exists at all. Since the first order fitting configuration is defined

via the linearization ID >F(jo) of ID F at jo, the equations for jo have to emanate
from this linearization. Due to (4.3.3) and (5.1.1)

1 . 1 i i/ .
vpzfui=dzmM.m./}{r(aﬁ_ap(Jo)).A“aKr i=1,..b

has to hold. Setting j*° = Ele 1 - u; with u; as in sec. 5.1, equation (4.2.7)
together with corollary A2.2 yields
1 _
0y _ 0
Teo (Gradg(jo)a)(jp) = Zim M #P Fp(jp) (5.2.1)

and hence ¢; satisfies

123

D alio)w) =% Go %P

where # P denotes the number of points in P.
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Appendices

Al Complement in C*(M,R") to kerr

Given a finite set P C M the restriction map r, sending any h € C*°(M, IR) into
its restriction 7(h) on P is a surjective IR -algebra homomorphism to F(P, R ),
the IR -algebra of all IR -valued maps of P (the operations are defined pointwise).
Constant maps in both C*° (M, R) and F(P, R) are identified with their values
in IR. Given a linear map s : F(P,R) — C>°(M,R) with r 0 s = id, we let
L := s(F(P,IR)). Setting h e k := s(r(h) - r(k)) for any two h,k € L turns L
into an IR -algebra with unity, however, not into a subalgebra of C*°(M,R™), in
general. The projection prr : C*°(M,R) — L assigning to any h € C*°(M, IR)
the function sr(h) € L is linear and satisfies prp(h- k) = prp h e pri k for any
h,k € C*(M,R), as seen by

pri(h- k) =s(r(h-k)) = s(r(k) - r(k)) = (s(r(h)) o (s(r(k))) = prrh e prpk.
Thus L = C®(M,IR™)/ker » as IR -algebras with units. Moreover
C®(M,R)=kerr® L (A1.1)

as linear spaces. Due to C*(M,R") = C°(M,R™")®R™ weset L(M,R™) :=
L® R™ and obtain

C®(M,R"™)=kerr® L(M,R™). (A1.2)

A2 [y-scalar products on the discrete and the continuum
Let P C M be asin Al. On F(P, R) the discrete Lo-scalar product is given by
gp(r(h),r(k)) ==Y r(h)(g)-r(k)a)  Vr(h),r(k) € F(P,R).
q€P

On the the other hand, given a Riemannian metric g on M with volume element
w(g) the associated Lo-metric is defined by

Gk = [ hEulg)  VhEeCTOLR).
M

The relation between r*Gp and G(g) on a complement L C C®(M,R) of kerr

is as follows:

Lemma A2.1  Given a positive map ¢¥ € F(P,R) there is a unique positive
map ¢(g) € L smoothly depending on g such that

G(9)(e(g) ® h,k) = Gp(p” -r(h),r(k)) VhkeL (A21)
and vice versa any (g) yields some ¥ in a unique manner. Given ¢f then
1
D p(6)(S) = —3 - priela) - tr4S) (A2.2)

for any smooth symmetric two-tensor S on M.
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Proof:  Obviously
G(9)(Qh.k) = Gp(¢® -r(h),r(k))  Vh,keL

for some well defined selfadjoint Q@ € End L. Let hq := s(1,) for all ¢ € P where
1, is the characteristic function of ¢. Since for any two q,q¢' € P

g(Q)(QhQ7 hq’) = gP((PP ) lqlq’) = SOP(Q) '6q,q’

we conclude Qhy = £(q) - hq for some £(g) € R™. Thus G(q)(h,k) = Gp(¢~1 -
oF -r(h),r(k)) for all h,k € L. Setting o(g) := s(¢) yields

G(@)(@(g)oh, k) = Gp(6~ 9" -£-1(R),r(k)) = Gp(¢” r(h),r(k))  VhkeL

Thus Qh = ¢(g) e h for all h € L; hence ¢(g) is uniquely determined. On
the other hand given ¢(g) then ¢ obviously exists and is unique as well. To
show the continuity equation (A2.2) we choose some Riemannian metric ¢’ in
the Fréchet manifold M of all Riemannian metrics on M and observe that

g'(v,w) =g(f(¢')* v,w) Vo,weTgM VqeM

for some well defined g-selfadjoint strong bundle isomorphism f(g') of T M.
Hence
' prole(g’) - det f7H(g")) = w(a)-

Differentiating this on M with respect to ¢’ in the direction of S at g yields
A2.2.

Since F*(M,R™) = F°(M,IR)®R"™ the restriction n = 1 in lemma A2.1 can
be dropped.
Choosing h =k =1 € IR in (A2.1) yields

| (@) o) = 6(@)ela) ¢ 1.1) = Gr (o™ - 1,1) = 3 " (0)
M geP

implying the following

Corollary A2.2 Given a positive function ¢ € F(P,IR) then ¢(g) in A2.1
satisfies

[ ooy uta) =T erl)  Yoem.

q€M
Hence ¢’ := <p(g)dTn2_A7 - g yields
Alg') = #P

provided ¢ = 1. Here #P denotes the number of points in P and
A(g") := [,; m(g') is the area of M defined by g' and the given orientation.
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A3 On the Neumann problem

Let IV be a smooth, compact, connected and oriented Riemannian manifold with
boundary ON and metric g. The metrical divergence and the Laplacian are de-
noted by div and A respectively. Given £k € C*(N,R™) and ¢ € C*(dN,IR"™)
the Neumann boundary problem (cf. [H6])

k=AH with dH(n)=¢ (A3.1)

has a solution H unique up to a constant iff the integrability condition

/ k#N+/ o pan =0 (A3.2)
N aN

holds. Here n is the positively oriented unit normal of N in N and py as
well as pon denote the Riemannian volume forms on NV respectively ON. Given
any smooth IR "-valued one-form « the integrability condition (A3.2) holds for
k = div o and ¢ = a(n). Hence (A3.2) yields for any g € N

k(q) = — © pon + higher order terms. (A3.3)

’UOlN‘ 8N

Here vol N := fN puy. I N =IR™ and n = 1 with g being a scalar product,
(A3.3) yields for any B € End R™ in particular

tr B =

vol N ' N g(B,’I‘L()) KON - (A3.4)

For any x € ON the integrand takes the value g(B(z),n(z)). Let X, be such
that @ = g(Xq, ...) then

/ 9(Xa, grad h)py = / diva-h py +/ a{n) - h pan
N N aN
yielding for div @ = 0 and a(n) = 0 the orthogonality relation

/ 9(za,grad h)py = 0. (A3.5)
N
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