No.123/91

A symplectic setting for the formulation
of a dynamics of smoothly deformable media

E.Binz




A symplectic setting for the formulation
of a dynamics of smoothly deformable media

E.Binz

Abstract

The quality of a smoothly deformable medium in a Riemannian manifold N is characterized
by a smooth one form F on the space of configurations, a Fréchet manifold. F' characterizes
the work done at a configuration under an infinitesimal distortion. In fact F' determines
a smooth constitutive vector field H on that Fréchet manifold. A symplectic setting is
deduced to determine the equation of motion of the medium subjected to F. The equation -
not hamiltonian in general - is such that ¥ 4 o(t) balances along the curve of configurations
o the (internal) force density A(o(t)) H(o(t)) with A(o(t)) the Laplacian determined by
o(t) and Y the covariant derivative on the space of configurations. We exhibit the effect to
this equation of the work done by distorting the volume. No balance laws are presupposed
in deriving the equation. Two types of such laws are derived from the symplectic setting
on one hand and on the other from the Noether theorem, provided symmetry groups are
present.

Introduction

In these notes we formulate in the realm of symplectic geometry a dynamics for smoothly
deformable media. The equations of motion will not be Hamiltonian in general. Let us
proceed to more details:

The description of the quality of any such medium expressed within the setting of global
differential geometry, relies on the space of configuration described next: The deformable
media at hand are supposed to maintain the shape of a compact, smooth connected and
orientable manifold M’ which moves and deforms in a smooth connected, orientable Rie-
mannian manifold N. This is to say that a configuration is a smooth embedding j of a fixed
manifold M into N. The manifold M shares the topological and geometric qualities of M'.
The collection E(M,N) of all these embeddings forms a Fréchet manifold if endowed with
the C™ - topology, (cf sec. 1). (To discuss the influence of internal structures or any sorts
of defects e.g the space of configuration would have to be appropriately generalized.)
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A constitutive law which characterizes the quality of the medium is supposed to be a
smooth one - form F on E(M, N) which admits an integral representation via a so called
constitutive field H (a smooth vector field on E(M,N)) as explained in sec. 7. The real
number F(j)(1) is interpreted as the work done under an (infinitesimal) distortion [ at the
configuration j. In case the Riemannian manifold is an Euclidean space and F' is invariant
under the Euclidean group then a symmetric stress tensor field T' can be used to compute
the work mentioned (cf. [Sch] and [Tr]). However this method fails in case of a general
Riemannian manifold N because of the lack of enough isometries. Using one - forms as the
basic constitutive ingredient, as mentioned above, yields a formalism rich enough to handle
the rather general situation. This way of describing the quality of a deformable medium is
used in the literature e.g. in [He], [E,S], [Bi 1] to [Bi 4] and in [Bi,Sc,So].

To explain what’s meant by an integral representation we first introduce the metric g on
which this representation relies.

After the basic geometric preliminaries are collected, we introduce in sec. 3 the bun-
dle AL(M,TN) of smooth TN-valued one-forms on M mapping M into N which cover
embeddings. This space is fibred over E(M,N) by the Fréchet spaces A}(M,TN) =

AY(M,j*TN). On these fibres, a “dot metric” g is defined by

a(T)(e, B) = / o B uli),

M

fora,p € .AJI(M ,TN). Here a3 is a smooth real-valued function on M which is symmetric
and bilinear in @, # and whose construction is based on the classical “trace inner product”
for bundle endomorphisms of the Riemannian bundle TN (cf sec. 3). If g is restricted
to the subspace Lg(M,TN) consisting of all VI with | € C®°(M,TN), one obtains a
generalization of the classical Dirichlet integral (cf. [Bi 2]).

By q-représéntable one-forms F on E(M, N), that is a one - form F' admitting an integral
representation, we mean the following: There exists a smooth map a : E(M,N) —
AL(M,TN) such that for j € E(M,N) and | € C{°(M,TN), the real number F(5)(I) can

be expressed as

F(G)(1) = /a(j)-Vl w(i) = a(i)(e(s), V1) , (0.1)

M

where V! is the covariant derivative of ! along j induced by the Levi-Civita connection of

N.

A crucial step is the following result: For any g-representable one-form F, there exists a
smooth vector field H on E(M, N) such that

FG)(1) = / VH(G) - VI u(5) = aG)(VHG), V1) (0.2)
M }
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holds for j € E(M,N) and l € C';”(M,TN). The existence of such a field H follows from

the fact that a in (0.1) defines an elliptic problem whose solvability is guaranteed by [Ho
2]. Then (0.2) may be rewritten in the form

FG)(D) = / < AGHG) > u(5)

M

where <, > denotes the Riemannian metric in N. Here A(j) is the Laplacian determined
by V and j* <, > on M. In physical terms, if F describes the deformable medium in
N, then A(F)H(j) is the (internal) force density acting up on M. The existence of force
densities at each configuration j € E(M, N) associated with F is equivalent with the g -
representability of F' (cf. [Bi 4] and [Bi,Fi 2]). f N = R™ and <, > is a scalar product,
then representing F' by (0.1) means that the center of mass of the medium is fixed (cf. [Bi

4)).

In sec. 8 we exhibit the volume sensitive part of F (which will make its appearance in
the equation of motion subjected to F in a very specific fashion, cf. below): At each
j € E(M, N) the constitutive field H(j) contains as a component a real multiple a(j) .jof
7, the solution of A(j)j = tr S(j) where the right hand side is the mean curvature field.
This splitting is of an L, type with respect to g.

The dynamics we introduce in sec. 9 is based on a symplectic form on TE(M, N) and on a

metric B on E(M, N) (introduced in sec. 4) which relies itself on a density map p defined

for each configuration and which obeys a continuity equation. The integral J p(u(j) is
M

the total mass m(j) on j(M). Due to the continuity equation m(j) is independent of

j € E(M,N).

The symplectic form w on TN (cf. sec. 5) determined by pulling back the canonical sym-
plectic form on T*N via the metric on N yields, in conjunction with the density map p, a
symplectic form wg on TE(M, N).

The work form W on TE(M, N) is given by
Wr = d€kin — 75 F

where d&rin denotes the differential (on C°(M,TN)) of the kinetic energy Erin given by
B and where 7% F denotes the pullback of F onto TE(M, N) by the canonical projection

TE.
The Eulerfield Xr € T'(T2E(M, N)) (cf. sec. 9) is then defined by
wg (Xr,Y) = d&in(Y) — 75 F(Y).

The Eulerfield X is called Hamiltonian if F is exact. In case F' = 0 then Xr is the spray
Xg of B, of which the solution curves are geodesics. A smooth curve ¢ on E(M,N) is a
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geodesic of B iff o, given by o,(t) := o(t)(p) for any t, is a geodesic in N for any fixed
p € M. Thus Xg describes the free motion of the collection of mass points constituting the
body in N. The term 75 F with F # 0 can hence be understood as being responsible for
keeping these mass points together to form a body at each configuration.

Along a solution curve of Xr a balance law between the. differential of kinetic energy and

7 F holds.

The volume sensitive part contributes to the equation of a motion o, subjected to a consti-
tutive law F, by the force density A(o(t))a(t) for all ¢ in the domain of ¢. If F' constitutes
of the volume sensitive part only, then the equation of a motion subjected to F'is a gener-
alized wave equation. Generalized is meant in the sense, that the Laplacian is configuration
dependent.

In sec. 11 we consider a constitutive law on E(M, R™) determined by a stress tensor T(j)
smoothly depending on j € E(M,R") and determine the constitutive field. The equation
of a motion of a deformable material characterized by T takes a simple form. We refer to
[H,M] for the various notions of stress tensors in elasticity theory.

In sec. 12 we discuss briefly the influence of groups of orientation preserving diffeomor-
phisms Diff* M on M and of orientation preserving isometries J on N respectively. In
particular we determine via the moment maps a criterion for first integrals given by the
elements of the respective Lie algebras, provided that F is invariant under either of the
groups mentioned. The symplectic technics used here, show in particular in the context of
first integrals a superiority over setting up dynamics by hand.

Finally sec. 13 contains the studies of motions subjected to a constitutive law F’ under the
constraint, that it takes place on a fixed manifold i(M) with ¢ € E(M,N). In case WF is
the differential of the kinetic energy only, the resulting equations are Euler’s equations of
a perfect fluid provided the motion is further restricted to i o Dif f, (i) M with Dif f,)y M
the group of all u(3) - preserving diffeomorphism on M, (cf [E,M]).

' The somewhat broad complex of the first six sections is of an introductory nature and is
intended to prepare the geometric tools necessary for a rigorous treatment of our setup.
The objects introduced and discussed are in particular the configuration space E(M,N)
as a Fréchet manifold, the metrics G and B on E(M, N) and the metric g involved in the
integral representation of F. Moreover the one - and two - forms Og and wp associated
with B are derived and are used to determine the spray X’s of B.

Throughout these notes smoothness on infinite dimensional manifold is meant in the sense
of [Bi,Sn,Fi] or [Fr,Kr].

Finally let us remark that e indicates the end of lemmata, propositions, theorems and O
the end of proofs respectively.



1. Geometric preliminaries and the Fréchet manifold E(M,N)

Let M be a compact, oriented, connected smooth manifold and N be a connected, smooth
and oriented manifold with a Riemannian metric < , > assumed to be fixed. For any
J € E(M,N) we define a Riemannian metric m(j) on M by setting

m(j)(X,Y):=<TjX,TjY >, VX,Y e (TM). (1.1)

(More customary is the notation j* <, > instead of m(5).) We use I'(E) to denote the
collection of all smooth sections of any smooth vector bundle E over a manifold @ with
7g : E — @ the canonical projection.

Let V be the Levi-Civita connection of the Riemannian manifold (V,< , >). In this
situation, the Levi-Civita connection V(7) of (M, m(j)) is obtained as follows:

TN|j(M) splits into Tj(T M) and its orthogonal complement (T7(T'M))* (the Riemannian
normal bundle of j) and hence any Z € I'(T'N|j(M)) has an orthogonal decomposition
Z = Z7 + Z+, where the tangential component Z T is of the form ZT = T'j -V for a unique
V e I(TM).

If now Y € I'(TM), then TjY : M — TN is smooth and therefore, the above covariant
derivative V(T;Y) is well-defined. We use this to define the vector field V(5)xY on M by
the equation

Tj(V(j)xY) = Vx(TjY) — (Vx(TjX))* (1.2)

for all X,Y € ['(TM). In fact V(j) is the Levi - Civita connection of m(j) which is called
d in case N is Euclidean, i.e if N = IR"™ and <, > is a fixed scalar product. Instead of

(VX(T,-X))'L we write S(j)(X,Y) and call 5(j) the second fundamental tensor of j.

It is well-known that the set C®°(M, N) of smooth maps from M into N endowed with
Whitney’s C*-topology is a Fréchet manifold (cf.e.g.[Bi,Sn,Fi] or [Fr,Kr]). For a given

f € C®°(M, N), the tangent space TyC*°(M, N) is the Fréchet space

CP(M,TN) := {l € C®(M,TN)|lrn ol = f} = I(f*TN) and the tangent bundle
TC>(M, N) is identified with C*°(M,TN), the topology again being the C'*°-topology.

The set E(M,N) of all C*®-embeddings from M to N is open in C*°(M,N) and thus
is a Fréchet manifold whose tangent bundle we denote by C(M,TN). It is an open
submanifold of C*®°(M,TN), fibred over E(M,N) by “composition with =n”. Moreover
E(M,N) is a principal Diff M-bundle under the obvious right Diff M-action and the
quotient U(M,N) := E(M,N)/Diff M is the manifold of “submanifolds of type M” of
N (cf. [Bi,Sn,Fi], ch.5, and [Bi,Fi 1]).

Lastly, the set M(M) of all Riemannian structures on M is a Fréchet manifold since it is
an open convex cone in the Fréchet space S2(M) of smooth, symmetric bilinear forms on
M. Moreover, the map

m: E(M,N) — M(M)
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is smooth (cf.[Bi,Sn,Fi)).

By an E- valued one-form a on M, where E is a vector bundle over N, we mean a smooth
map

a:TM — E

for which a|T,M is linear for all p € M. We denote the set of such one-forms by
Al(M,E) and now obtain the following description of its structure: The requirement that -
a € AY(M,E) should be linear along the fibres of TM means that there is a (smooth)
map f : M — N such that a|T,M is a linear map into E¢,) for p € M, in other
words, that a is a bundle map from TM to E over f: This map f € C*°(M, N) satisfies
mg oa = fomwy (where mg, mp are the respective bundle projections). The set of such
one-forms is naturally identified with the Fréchet space A'(M, f*E). This shows that

AYM,E) = | J{A' (M, f'E)|f € C®(M,N)}.
f

It is clear from the construction that there is a natural surjection
II: AY(M,E) — C>®°(M,N)

whose fibres are the Fréchet spaces A'(M, f*E), in fact A'(M, f*E) is a vector bundle
over C*°(M, N) with projection II (cf.[Bi,Fi 2}). '

In the following three sections we will introduce three metrics on some special types of
infinite dimensional manifolds and will prepare in this way the geometric background of
the description of a dynamics for smoothly deformable media.

2. The metric G on E(M,N)

The Riemannian structure < , > of N induces a “Riemannian structure” G on E(M, N)
as follows: For j € E(M,N), let u(j) be the Riemannian volume defined on M by the
given orientation and the metric m(j). For any two tangent vectors l1,lz € C7°(M,TN),
we set

G5 t) 5= [ <Iala > ui). (2.1)

M

It is clear that G(j) is a continuous, symmetric, positive-definite bilinear form on

C{°(M,TN) for each j € E(M,N).



The metric G possesses some invariance properties (which will become important in sec.
12): Let Difft+M be the group of orientation-preserving diffecomorphisms of M. As a
subgroup of Diff M, it operates (freely) on the right on E(M,N) by

é: BE(M,N) x Dif ft+ M — E(M,N)

() — ° . (22)

For a fixed ¢, we also write R,j for j o ¢.

Similarly, if J is any group of orientation-preserving isometries of NV, then it operates on

the left on E(M,N) by

J x E(M,N) — E(M,N).

. . 2.3
(9:7) — g0 (23)
We need the following rather obvious result (c:f.v['Bi',Fi 2]) for some basic invariance prop-
erties of one-forms on E(M,N):

2.1 Proposition:
G is invariant under both Diff* M and J.

3. The fibred space Lz(M,TN) and its dot metric

To begin with, denote by AL(M, TN) the subset of A'(M,TN) consisting of all TN-valued
one-forms covering smooth embeddings from M to N. This is the inverse image of £ (M,N)
under the projection II : AY(M,TN) — C*(M, N), hence is an open submanifold and,
in fact, is itself a (Fréchet) vector bundle whose fibre at j we denote by ALM,TN).

By construction of m(j), the map T'j is fibrewise isometric. This allows us to write

a € A}(M,TN) in the form

o =ca,Tj)-Tj +Tj - Ale, Tj) (3.1)

for a suitable bundle endomorphism ¢(a,Tj) of TN|j(M), skew adjoint with respect to
<, > and mapping TjTM into its normal bundle (TjTM )1 and vice versa and where
A(a,Tj) is a strong bundle endomorphism of TM. These endomorphisms are uniquely
determined and are smooth continuous linear functions of a as shown in [Bi 4]. The usual
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“trace inner product” for endomorphisms of TN and of TM then yields for any j € E(M, N )
the dot product

a-fB:= —%tr c(a,Tj)-c(B,T7) —{itr A(a,Tj) - A*(B,Ty),

for any two «, 3 € A}(M ,TN). Here A*, the adjoint of A, is formed fibrewise with respect
to m(y). We define ' ‘

o(T5)(a, B) == f o B ulj). (3.2)

M

This yields a smooth continuous, symmetric and positive-definite bilinear form on the
Fréchet space A}(M,TN), the dot metric (it is a generalization of the classical Dirichlet
integral which will be apparent in the theorems (3.1) and (6.2) below). For the sake of
simplicity we will write g(7) instead of g(T7).

We shall also need a subfibration of AL(M,TN) defined by

Ls(M,TN) = {Vi|l € C¥(M,TN)} (3.3)

whose fibres we denote by £;(M,TN)(= Lg(M,TN) N A}(M,TN)); evidently these are
subspaces of the Fréchet spaces A}(M,TN); cf.[Bi,Fi 2].

Next, we introduce the Laplacian A(j) which will depend on j via m(j); (cf.[Mal]):
For k € C°(M,TN ), we define the covariant divergence by

V*(j)k =0 (3.4)

as usual, while following [Ma], V*(j)a for a € AJ(M,TN) is given locally by

V()a = =3 Vi, (@)(Er), - (39)

(E,.) a local orthonormal frame with respect to m(j). In (3.5) we have used Vx« to denote
the more informative symbol V(j) xa, defined in the standard manner by

V(i) x(a)(Y) = Vx(a¥) - «(V(j)xY) VX, Y e (TM).

The definition of A(j) does not depend on the moving frames chosen (cf. [Bi,Fi 2])

The following theorem (cf. [Bi.4], [Bi,Fi 2] and [L.M] for the last assertion) will be a basic
tool in our studies of one - forms on E(M, N) (cf. [Bi 4] and [Bi,Fi 2]). It relates the metric

G with g




3.1 Theorem:
For any j € E(M, N), any a € Ap(M,TN) and any two h,l € C°(M,TN) the following
relations hold

9(3)(e, V1) = GG)V* (), 1), (3.6)

and
a(7)(Vh, V1) =G()(AG)R,1). (3.7)

Here V denotes the Levi-Civita connection of the metric <, > on N. Let
K;:={l € C(M,TN)|Vi=0} for any j € E(M,N), then

leK; < A(G)=0. (3.8)

In fact dimK; < oo.

We close this section by stating invariance properties. For the rather straight forward proof
we refer to [Bi,Fi 2].

3.2 Proposition:
The metric g on Lg(M,TN) is invariant under Dif f* M and any group J of orientation-

preserving isometries on N.
[ J

4) The metric B and its covariant derivative on E(M,N)

The dyﬁamics of deformable media to be introduced later relies on the metric B on
E(M, N). This metric will be based on a density map p. A smooth map

p: E(M,N) — C®(M,R)

is called a density map if the following is satisfied:

p(j)(p) >0  Vj€ E(M,N)andVpe M. (4.1)
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(J)

dp(j)(k) = trm(J)Jm(j)( ) Vj € E(M,N) and Yk € C;°(M,TN). (4.2)

trm(j) denotes the trace formed with respect to m(j). The symbol d denotes the differential
of maps of which the domain is a Fréchet manifold and which assume values in a Fréchet
space. If both domain and range are finite dimensional the usual d replaces d. We will
construct a density map next. For any j' € E(M, N) we express m(j') via a smooth strong
bundle endomorphism f2(j') of TM selfadjoint with respect to m(j) as

m(j")(vp, wp) = m(j)(f2(j')(p)vp,wp) Vop,wp € )M and Vp € M (4.3)
and observe that the Riemannian volume forms u(j) and u(y') are linked by
p(G'") = det f(5")u(s). (4.4)
Fixing a map p(j) € C*°(M, R) for some fixed j € E(M, N) satisfying (4.1) then
p: E(M,N) — C*(M,R)
given for any ;' € E(M,N) by

p3") = 7 f(] 2t 7PV (4.5)
satisfies both (4.1) and (4.2).

To construct the metric B we fix a density map p on E(M,N) once and for all (unless
specified otherwise).

The metric B is then defined by

BG)(u,tx) = [ o) <1, la > u() (46)
M

for each j € E(M, N) and for each pair l1,l, € C°(M,TN). This metric depends smoothly
on all of its variables.

To find the Levi-Civité connection and the one- and two - forms associated with B we need
to differentiate B which we regard as a map
B:Cg(M,TN) x CP(M,TN) — R.
E(M,N)

The domain is the fibred product of Cg°(M,TN) with itself over E(M, N). Now let I(t) €
C(M,TN), varying smoothly in t € IR and let j(t) := my 0l(t). Setting j(0) = j,1(0) =
and {(0) = 0, then we verify:
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3 BGENAE o / ) <UD, 1) > lemonl)
M

2//)(]) < Vak,1>pu(s) (.7)

= 23(])(v,, kD) = 2B(5)(k*°™, 1)

where vert denotes the pointwise formed vertical component of k in T?N (with respect to
the connection given by < , >, cf [G,H,V]). It is regarded at each p € M as a tangent
vector to {(p) € Tryoi(p)V and hence as an element of Tryoip)N. Thus given any two
K1,K, € T(CE(M,TN)) and any h € C$°(M,TN) the following formula

dB(h)(K1,K2) = B()(TK, o h)ve”,zc;) + B()((Kz 0 )™, K1) (4.8)

holds true. This shows that the covariant derivative

V:TC®(M, TN) — T'C>®(M,TN)
given by

VeL(p) = (T,c(k(p)))”m Vi€ E(M,N) and Vp € M (4.9)

for any choices of £ and k € T'C*°(M,TN) is metric and obviously torsion free. Here
T, denotes the tangent map of £ on E(M,N) at | and vert means again the vertical
component formed in T?N. This type of connection is unique for B, as easily seen by
following the proof of the analogous statement for finite dimensional manifolds. Therefore
we have (cf. [Bi 4]):

4.1 Lemma:
The covariant derivative Y given by (4.9) is the Levi-Civita connection of the metric B.
[ ]

5) The one - and two - forms associated with B and the spray
of B

In the category of finite dimensional manifold the canonical one - and two - forms respec-
tively are associated with the cotangent bundle. In the infinite dimensional setting however
the notion of the cotangent bundle is involved with several sorts of complications. In case
of a metric the situation is rather simple: We equip the set
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B*(TE(M,N)) := {B()(I,...) | j € E(M,N) and | € T,E(M,N)} (5.1)

with the C*-topology and obtain a Fréchet manifold, the geometric dual of TE(M, N).
It is a smooth vector bundle and we use it as a replacement of the cotangent bundle of
E(M,N). The one - form O associated with B on this bundle is defined in analogy to the
finite dimensional case: It is the pull back by

B®: TE(M,N) — B*(TE(M,N))

(5.2)
I B(ryol)(,...)
of the canonical one form on B*(TE(M, N)), i.e Og is given by
Os(l)(k) = =B(7)(I,Tre(k
s(D(k) = ~B()(1, T () 653

= —-B()(I,Trn o k).
Here g : TE(M,N) — E(M,N) and nny : TN — N are the canonical projections.
The two - form wpg associated with B is defined by

wp :=d0Og. (5.4)

where d also denotes the exterior differential for forms on TE(M, N). We obtain a more
explicit formula if we execute the differentiations on the right hand side of (5.4). To this
end let K1,K, € I(T?E(M,N)) =I(TC(M,TN)) and | € C5°(M,N), then

dOs(K1,K2)(1) = — / p()d{mrn 0 K2, Trn 0 K2 ) (K1(D)) u(4)
M

+ /p(j)d(ﬂ'TN 0Ky, Ty o ICl)(lCz(l))u(j) (5.5)
i |

+ [ o)1 Do K2l
M
This shows that for any j € E(M, N), for any | € C{°(M, N) and for any two
ki, ke € CF°(M,T%N)
wa(l)(k1,k2) = B() (k3™ , Tnn o ki) — B(j)(k1*™, Ty o k2)

= /p(ﬂ'N o] l)wb(kl, k2)ﬂ(7rN o l)
M

(5.6)

where w? is the pullback of the canonical two - form on the cotangent bundle T*N of N
by the diffeomorphism

<,>"TN —T*N

vl v, >.
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Fundamental in our setup of a dynamics will be the notion of the spray Xp of B. It will
govern the free motion. It is defined by

w(Xs,Y) =d&in(Y) VY ETT?E(M,N) (5.7)

with
Exin(D) := 5 B(l,) Vi€ C®(M,TN). (5.8)

Since

dEkin(DN(X() = /p(er o ){(X(1)**™, Try o l),u(mvgo 1) Vie C*°(M,TN)
M

holds for any X € T'(T?E(M,N)) = I(TCF(M,TN)) we deduce from (5.6)
< X)) Try ol >=w’(Snol, X(1)) (5.9)
and therefore
B(X()*™, Trn o 1) = /p(mv 0 l)wb(SN ol,X(I))u(wn o)
M

where Sy is the spray of <, > on TN, a second order vector field on N. If X exists, then
it is unique. Hence we conclude from (5.9)

Xg(l) = Snol Vie C*°(M,TN). (5.10)
A smooth curve

o:(=\A) — E(M,N) with A e R
is called a geodesic iff

Xg(o(t)) = Snoa(t) Ve (=X A). (5.11)

Since V 4 o(t)=Tg 6(t) — Xg(o(t)), where T o(t) denotes the tangent map
To: R x R — TE(M N) evaluated at (t, 1) equation (5.11) turns into

Y 456(t) =0. (5.12)

Hence we have in more simple terms and in accordance with Lemma 4.1:

5.1 Proposition:
A smooth curve o : (=), A\) — E(M, N) is a geodesic of B with the initial conditions
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o(0) =7 and ¢(0) =1

iff
gy (=X, A) — N
t— o(t)(p)

is a geodesic in N for any p € M, satisfying the initial conditions o,(0) = j(p) and
ap(0) = I(p).

The above proposition implies in particular, that the spray Xp admits locally a unique
flow on C(M,TN).

Now we have the tools necessary to introduce the notion of a constitutive law and to begin
with the description of smooth deformable media.

6) One - forms on E(M,N), the notion of a constitutive law

In this section we review the notion of a constitutive law for a medium, smoothly de-
formable in the Riemannian manifold N. The sorts of constitutive laws we have in mind
will be special one - forms on E(M,N) in accordance with the definition as given e.g.
in [E,S]. Recall from section 1 that the tangent bundle of E(M,N) is identified with
Cg(M,TN); accordingly, we define one-forms on E(M, N) as follows:

A (scalar) one-form on E(M,N) is a smooth function

F:Cy(M,TN)— R

with the property that for each j € E(M, N), the restriction F(j) := F|C*(M,TN) is
linear in | € Cj(M,TN). In particular, F(j) is a continuous linear map on this fibre.

As done in [He], [E,S], [Bi 1] to [Bi 4] and in [Bi,Sc,So] the quality of a deformable media
is given by specifying a one - form F on E(M,N). The real F(j)(!) is interpreted as
the work done under the (infinitesimal) distortion [ € C$°(E,TN) at the configuration
j € E(M,N).

For our purposes, it will be sufficient to limit attention to a smaller class of such one-forms.
They are precisely those which yield a well defined force density at each configuration (cf.
theorem 6.2 below). More precisely:
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6.1 Definition:
The one-form F on E(M, N) is said to be g-representable if there exists a smooth section
o:E(M,N) — AL(M,TN) of the bundle (AL(M,TN),II, E(M, N)), such that

FG)(D) = / o(5) - VIu(5) = a(i)(a(3), V1) (6.1)

M
for j € E(M,N) and | € C{°(M,TN). The section « is called the g— kernel of F'.

For instance, suppose that H is a smooth section of CF(M,TN) over E(M,N), i.e a
smooth vector field; for the existence of such fields cf. [Bi,Fi 2]. Then a(j) = VH(y) will
provide a g-kernel and the right-hand side of (6.1) will define a g - representable one-form.
In fact, this example can be shown to characterize the representability of one-forms, cf.
below. Let us denote by AL(E(M,N),IR) the collection of all smooth g- -representable
one-forms on E(M, N). We now point out that any kernel a of a smooth one-form F €
A} (E(M,N), R) can be replaced by VH where 1 : E(M,N) — Cg(M,TN)is asmooth
Vector field. This means that for any j € E(M, N) the following formulas

[ o) Sty = [ 9HG) - V1) (6.2)
M

M

or equivalently,
a(3)(a(5), V1) = g()(VH(), V) (6.3)

have to hold for all I € C$°(M,TN). To prove this, we are required to solve

AGYHG) = V¥a. | (6.4)
The existence of a solution H(j) is guaranteed for each j € E(M,N) by the theory of

elliptic problems comprehensively described in [H6 2] (cf. also [Bi,Fi 2]). We may therefore
state:

6.2 Theorem:
Any F € AL(E(M,N), R) admits a smooth vector field H : E(M,N) — C&(M,TN)

for which

FG)D = [ VHG)- VL uG) (6.5)
M
and hence
FG)D) = [ < AGHGLL> uG) (66)
M
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hold for all variables of F. The map A(j)H(j) € T;E(M, N) is called the (internal) force

density at the configuration j € E(M,N)
.

Equation (6.6) shows that F(j) is for each j € E(M, N) continuous on L*(M,TN), the

L? - completion of C$°(M,TN) formed with respect to G(j). Given vice versa smooth
force density ¢(j) dependmg smoothly on the configuration then there is a H(j) depending
smoothly on 7, such that A(j)é(j) = H(7), provided ¢(j) satisfies an integrability condition
(cf [H6 2]). If ¢(j) does not satisfy such a condition, then an L? - orthogonal splitting of
#(j) allows to exhibit a component of ¢(j) which does satisfy an integrability condition
(cf. [Bi 4] and [Bi,Fi 1]). This component might be called the internal force density at j.

6.3 Definition:

A one - form F € A(E(M,N),R) is called a constitutive law iff F € Ay (E(M,N),R).
Any smooth vector field H : E(M,N) — TE(M, N), for which VH is a g - kernel of F
is called a constitutive field.

The following corollary is an easy consequence of proposition 2.1 :

6.4 Corollary:
Let G and K be groups acting on M and on N via the homomorphism

®:G— DifftM and T:K—J

respectively, where J is a group of orientation preserving isometries of N. If
F e AL(E(M,N),R) is invariant at each j € E(M, N) under ¢ and ¥ respectively, then
there is a smooth vector field H : E(M,N) — Cg(M,TN) such that

FG)(1) = / VH() - VI u(i)
M

satisfying
H(j o ®(g) =H(j)o ®(g), Vg€GC (8.7)
as well as |
H(T()oj)=TT()oH(s), Vie J (6.8)
for each j € E(M,N).




7) Constitutive fields of exact constitutive laws

Again F denotes a constitutive law of a deformable medium with smooth constitutive field
H. Let us assume that F is exact, i.e

F=du (7.1)
with U € C®°(E(M,N),R), called a potential. U allows a representation as
uG) = [eu(i)  ¥ie BOLR (72)

M
with the map e, called the mean density of U, defined by

e(j) i= é’l% Vj € E(M,N) (7.3).
Here
AG) = / u(5) (7.4)
M

is called the volume of M. Clearly e(j) : M — IR is a constant map for each j € E(M,N)
and varies smoothly in j € E(M, N). Hence F allows the following descriptions

1
F(H) =du@i)l) = de(5)(1) + =e(j) - trmjydm(s)(1) | 1(5)
A[( 2 ( ) 5)
= G(H)(AGIHG), )

for any j € E(M,N) and for any [ € C°(M,TN). Equation (7.5) shows the existence of
the G - gradient Grad U of U.

Firstly let us investigate the term involving the differential of the metric in (7.5). To this
end we decompose any | € C$°(M,TN) according to sec. 1 into

I=TiX(, )+ 1+

for a unique X(j,!) € T(TM). The upper index L denotes the pointwise formed normal
component to TjT M. Moreover we let W(j, I4): TM — TM be the uniquely determined
strong bundle map of TM for which

(Vx)" =Tiw(,)X VX € (TM). (7.6)

The upper index T means here the pointwise formed component tangential to j(M). Then

dm(j)()(X,Y) = LxGom(G)(X,Y) + m() (W0, 1), X,Y) VX, Y €ITM. (7.7)
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Due to the theorem of Gauss and the fact that de(j) = 0 the following equation holds for
any j € E(M,N):

3¢G) - [[trmpdm(GYOu) =€)+ [ WG.DWG) V€ CROMTN). - (78)
M M

Hence

/ tr W3, Du(j) = dAGY1)  Vj € E(M,N),Vl € C*(M,TN) (7.9)
M

holds true. Moreover d A can be represented as

dAG) (1) = / Ti - V(uG) = 6G)AGT, D) Vi€ EM,N)  (7.10)
M
with

A(5)i = =V*(T3) (7.11)

for some j € Ce(M,TN) determined up to a harmonic field along j (the integrability
conditions of (7.11) are obviously satisfied). Clearly A(j )7 is pointwise normal to Tj(M) C
TN as one immediately deduces from the theorem of Gauss. If not specified otherwise, we
let 7 be g - othogonal to K; (cf. (3.8)) for any j € E(M,N). Hence 7 depends smoothly
on j. Since S(H)(X,Y) := (Vx(Tj)Y)* is symmetric in X and Y, we find

dim M
VH(Ti) = ~tr S() == Y, SGNELE) (7.12)

E;, ..., E4im ym being a moving orthogonal frame on M. The vector field tr S(j) along
j is called the mean curvature vector field (cf [L]). Clearly Tj and Vj are identical. To
illustrate 7, let N be Euclidean and of codim M = 1. If N(j) denotes the positively unit
normal vector field along j then we may set j = 7 implying A(j)j = H(j)- N(j) with H(j)
the trace of the Weingarten map W(j) as seen from (7.9) and (7.10). Moreover, 7 being g
- orthogonal to K requires j € E(M,N) to have the center of mass fixed at 0 € R", cf.
[Bi 4]. Leaving this special case and turning back to our general investigation we deduce
from (7.8) and (7.10) :

30 [ trmiydm(i)OuG) = [ < €IAGIT1 > uo) (713)

M M

To rewrite [ de(7)(1)u(J) in terms of < , > we introduce
M
Grad e : E(M,N).— Cg(M,TN),
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the G - gradient of e, by setting
de(j)(D) = [ < Grad e(i).1 > () (7.14)
A .

for any j € E(M,N) and for any | € C$°(M,TN). Equation (7.14) does not show the
existence of Grad e at all. Nevertheless if it would exist we would be able to conclude

A(jYH(j) = A(j) - Grad e(j) +e(j) - A(j)s Vi € E(M,N). (7.15)
In particular we would find

A(j) - Grad e(j) = A(j) (H(j) —e(j)j) Vi€ E(M,N). (7.16)

However, the right hand side of (7.16) does exist. Thus Grad e can be computed from (7.16)
and (7.15) is the gradient of e(j) - A(j) with respect to G. From (7.16) we immediately
derive the existence of some smooth vector field

é: E(M,N) — Cg(M,TN)
given by &(5) := A(j)™ - (H(j) —e(j) - 7) for all j € E(M, N) which satisfies
Grad e(j) = A(7)e(y). (7.17)

These observations yield a description of a constitutive field of an exact constitutive law,
in which the mean density e is of interest: '

7.1 Proposition: ‘
Let F be an exact constitutive law i.e F = di{ for some smooth map U : E(M,N) — R.

Then F admits a constitutive field H of the form

H(j) = e(j) -7+ A(j)-&(j) Vi€ E(M,N) (7.18)
with e : FE(M,N) — IR the mean density of U,(cf (7.3)), and
é: E(M,N) — C¥(M,TN) the smooth vector field linked to e by

de(i)(D) = 66)(A0)e,1) = [ Vel) - Viuti) (719)
M

valid for all j € E(M, N) and for all [ € C{°(M,TN).

Another type of splitting of F' = dU with constitutive field H is based on the proportion-
ality to d A. Let a: E(M,N) — IR be given by
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a(j) := g(3)(VH(5), Vi) (7.20)
for any j € E(M,N). In fact

F(G)(7) = a(y) - IVilly = dimM - A(j)-a(5) Vi€ E(M,N),

showing that a(j) € C*(E(M,N),R). By ||l||; we mean [ VI-Viu(j), the g - norm of
V. The splitting we have in mind is then described in the following obvious proposition:

7.2 Proposition: _
Any constitutive law F of the form F' = dU with U € C*° (E(M, N), R) splits uniquely

into
F=d(a-A)+dy (7.21)

where

a) = FG)G)/IVGIE Vi€ B(M,N) (7.22)

and ¥ € C °°(E(M ,N ),R) is uniquely determined up to a constant map. Moreover F
admits a smooth constitutive field H decomposed for any j € E(M, N) into

H(5) = a(y) -7 + AG) - 8) + $(): (7.23)
~ - Here &(j) and () are for each j € E(M, N) defined by
Grad a(j) = A(j)a(j) and Grad ¥(j) = AG)P()- (7.24)
Moreovet
A(G) - 6G)(AG)aG),7) = —6()(AG)(),]) (7.25)

holds for any j € E(M, N).
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8) The volume sensitive part of a constitutive law

Let F be any constitutive law with constitutive field H. First of all we split off d A from
F, based on (7.11). We do it as follows: Recall that L?(M, TN) be the space of all vector

fields ! of M along j for which [ < ;I > p(j) is finite. Then taking the component of
M
A(j)H(j) along j in L}(M,TN) for each j yields
AGHG) = a() - AG)I + AU H () (8.1)
for a well defined a(j) € R and some H,(j) € C°(M, N) for which Hi(j) is orthogonal
to A(j)7 in L3(M,TN). Hence F(j) decomposes into

F(j)(l)=a(j)'JA(j)+/Vﬂl(j)'Vlﬂ(j) vie C7°(M,TN). (8.2)
M

a- d A is called the volume sensitive part of F. Due to (6.3) we have in particular

F()(7) = 6G)AGHG),T) = al) - [Villg: (8.3)

Since both ||[V(7)j|| and j vary smoothly in j, the map a : E(M, N) — R is smooth as
well. The vector field H® : E(M,N) — C(M,TN) assigning to each j the map a(j) 7
is called the volume sensitive part of H. In fact it only depends on F' and not on the
particular constitutive field H. By looking at (8.1) and (8.3) we have the following:

8.1 Theorem:
For each constitutive law F, any constitutive field H determines uniquely a smooth map

a: E(M,N) — R given for each j € E(M,N) by

a(j) :== F(3)(7)/1V3llq - (84)

and splits uniquely into
H() =a(j)-7+Hi(j) Vi€ E(M,N) (8.5)
where H; has vanishing volume sensitive part and is Ly - orthogonal to A(j)j. The volume

sensitive part H® of H as well as H; vary smoothly in j € E(M,N ).
.

8.2 Remark: _
If n =1+ dim M then due to (7.11) and (7.9) A(j) - = H(j)N(7) implying via (7.10)

F()(H(j) - N()) = al) - 1aG)l* Vi€ E(M,R7)

where N(j) is the positively oriented unit normal vector field and H (j) denotes the trace
of the Weingarten map and where ||A()]||? == [ < A®G)7, AG)s > p()-
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9) The dynamics determined by a constitutive law

As we have mentioned in the previous section, a constitutive law on E(M, N) of a smoothly
deformable medium is defined to be a smooth one - form F : TE(M,N) — IR admitting
a smooth constitutive vector field H € TCg(M,TN).

The work form

Wr : C®(M,T*N) — R

- the fundamental ingredient of our set up of a dynamics - is given by

W (1)(k) = d€kin(1)(k) = (7 F)(1)(k) (9.1)

for any | € C(M,TN) and for any k € CF(M,T*N).

The dynamics determined by F is given by the unique vector fleld Xr (if it exists at all)
for which '

wa(Xp,X) = Wr(X) VX eTT*E(M,N). (9.2)

The following theorem shows the existence of Xr and moreover expresses its simple form:

9.1 Theorem:
Given a constitutive law F on E(M, N) with constitutive field H then

1

——— - (A(ry o YH(ry o))" VIEC™(M,TN)  (9.3)
p(mn ol)

Xr(l) = Xs(l) +

where vert denotes the pointwise formed vertical lift of A(my ol)YH(7wyol) on N determined
by V. )

Proof:
If X exists, then again it is unique. Using (5.6) and (9.2) we verify (9.3) for any
1€ C>®(M,N) by the following calculation:
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o (Xp(1), X(1) = [ plm o Do (Xa(1), X(D) u(my o)
M
+

/w((A(WN o YH(mn 0 1)*™, X (1)) (7 o 1)
M
=d'5k,'n(7rN (0] l)(X(l)) » (9.4)

(mv o YH(mn o D), Tan(X(1))u(mn o 1)

+ (D)™ Trn o (A(ry o H(mn o )P N u(rn o D).

e
J

Since the last summand is zero we find for each [ € C*(M,TN)
wg (Xp(l),X(l)) =J5km(7rzv (o) l)(X(l))
- /(A(ﬂ'N o YH(wn o), Trn o X(I)Yu(rn o)

= d&kin(mn o )(X() = F(ry o 1)(Trn 0 X(1))
establishing the claim.

9.2 Definition:
The equation of a motion ¢ : (=X, A\) — E(M, N) subjected to F' is given by

5(t)=Xr(a(t)  Vie(=AA), (9.5)

combined with initial conditions.

We therefore have :

9.3 Theorem:
The equation of a motion o : (—A,A\) — E(M, N) subjected to a given constitutive law F

with constitutive field H € T(Cg(M,TN)) and with the initial data 0(0) = j € E(M, N)
as well as 6(0) = lp € C$°(M,TN) is given by

5(t) = X (6(1) + ——— - (A(a(®)) H(a(®)))™"  Vte (=AN) (9.6)

plo (t))

or equivalently by
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() = —— o o |
Va4 a(t) = (o @) A(o(t))H(o(t)). (9.7)
The motion ¢ is free i.e a geodesic iff F' = 0.

Equation (9.6) coincides with the equation of a motion subjected to a constitutive law of
[Bi 4]. There the equation was derived by d’Alembert’s principle and not on a geometric
basis as done here. The present method has the advantage that first integrals can be derived
from invariance under group actions, while the one in [Bi 4] does not admit a comparable
mechanism.

10) Refinements of the equation of motion

The above decomposition theorems (8.1) and (8.2) yield immediately refinements of the
equations of motions subjected to a constitutive law:

10.1 Theorem: _
Let F be a constitutive law with constitutive field H. Any motion
o :(=\A) — E(M,N) (with any initial condition) is subjected to F iff

1
p(o(t))

a(o(t))
p(a(1))

(A(®)H(o(1))*™ Vi (<A,
(10.1)

5(t) = Snos(t)+ (A(o()7()" " +

or equivalently

3 _a(a(t))' o(t))e L o o —
V4,600 = S ACNTD + s AGWM(e(0) Ve (-AN). (102

Moreover the following balance law

%d&kin(a(t))(d(t)) = a(o(t)) - dAp(o(t))o(t) + 7 Fi (o(t))6(t) ¥t € (=X,)) (10.3)

holds true. F; is the constitutive law associated with H;, the volume insensitive part of H.
®
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10.2 Corollary:
If the constitutive map of F is of the form

H(j)=a(j)-7 Vi€ E(M,N) (10.4)
that is if F(j) = a(j)-d.A(j) then the motion o, subjected to F, satisfies for any t € (=X, A)
o(t) = a(t) -Alo(t))o
Vot) = o7 o Al 0)70) 103)
as well as the balance law
%J&cm(a(t))(d(t)) = a(a(t)) - dA(a(1)) (6(1)). (10.6)
If N is Euclidean we may let 7 = j for all j € E(M, N) and conclude
5(t) = :‘EZE:?; A®))o(t)  VEE (=4 (10.7)

In case M is of codimension one then (10.5) rewrites as

A _ |
Vo) = S0 - How) Ne) Vi (AN (108)

where N(o(t)) is the positively oriented unit normal of j(M) in N.

An immediate connection between the density map and the vanishing of F* at some ”equi-
librium” configuration in the Euclidean case is described next:

10.3 Corollary:
Let F be given by (10.4). If the motion o, subjected to F, given by (10.5) satisfies (to) =0

for some tg € (—A, A) then

Sy 06(tg) = 0 and a(o(te)) - A(o(te))F(te) = 0 (10.9)

hold true. In particular if (N,< , >) is Euclidean i.e if N = R™ with <, > a scalar
product and if the codimension of M in N is one then

a(o(to)) - H(o(ta)) - N(o(t)) = 0 (10.10)
and consequently

Alo(t0) |y e

o) T (to))(N(o(t))) =0 (10.11)
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implying dp(a(te)) =01if a(o(tg)) # 0.

The proof of (10.9) and (10.11) is immediate from section one and (4.2).

11) F determined by a symmetric stress tensor T

In this section N = IR™ and <, > denotes a fixed scalar product and J the group of all
orientations preserving linear isomorphismon IR ". As shown in [Sch] and [Tr] a constitutive
law invariant under J and satisfying an additional requirement can be described in this
case by a symmetric stress tensor field T'. Let us determine the equation of motion subjected
to a J - invariant constitutive law: We are given a smooth map

T:E(M,R™) — S*(M).

(Recall from section one that S?(M) is the Fréchet space of all smooth symmetric two -
tensors on M endowed with the C* - topology.) The symmetric tensor T'(j) is called the
stress tensor at the configuration j € E(M,R™). As a general reference for the notion of
a stress tensor we recommend [M,H].

The work F : TE(M,R") = E(M,R") x C*°(M,R") — IR associated with T is
according to {L,L] defined by

FG)D = 5 [ TG)- dm(i)(DuG) (a11)

M

for any j € E(M,R™) and any | € C®°(M,R"). The dot - product on the right hand
side is defined as follows: Both T(j) and 1dm(j)(I) are represented via m(j) as bundle
endomorphisms Q(j) and B(dl,dj) of TM respectively. Both of these endomorphisms are
selfadjoint with respect to m(j). In fact B(dl,dj) is the selfadjoint component of A(dl,dj)
introduced in (3.1). Then

1,.,. . . . . n
5T7() - dm()(1) = tr Q7) - B(dl,dj) ~ Vj € E(M, R"). (11.2)
A constitutive field of F' is constructed by solving

CAGHT(G) = VQ) (11.3)

for any j € E(M,R"). Choosing Hr(j) € imA(j) yields the smoothness in j. The consti-
tutive law F' is then rewritten as
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G0 =5 / 1G) - dm(OuG) = [ < AGHGLT> u6)
M M (11.4)
dHr(7) - dip(s)
M
for all variables of F.
We consider next the volume sensitive part only. By (8.4)
F(j)(5) = G(0)(AGHG),J) = ali) - 17l (11.5)

is valid for each j € E(M,R"™). This yields immediately:

11.1 Proposition: A

Given any smooth stress tensor T E(M,R") x C®*(M,R") — S*(M), there are
uniquely defined smooth maps a: E(M,R") — R and T} : E(M,R") — S?(M) such
that for each j € E(M,IR") the following equations hold:

a(j) - 1413 = = / T(5) - dm(i)(d )u(s) (11.6)
M
T()y=a(y) -m(j)+Tu(y) (11.7)
and
Hr(7) = a(7) - j + Halj) (11.8)

where H; and T have vanishing volume sensitive parts.

The following is now immediately:

11.2 Theorem:
Let

T:E(M,R™) — S*(M)

be a smooth stress tensor. Then the equation of a motion ¢ : (=A,A\) — E(M,R")
subjected to F, as defined by (9.5), is
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5(t) = ~divy 1y T(o(t))

p(a(t))
1 ] _
(a(t))dwﬂt)( a(o(®) - m(e®) ~ oy - dvew Tale®) (11.9)
aGAQ) N 1 ) )
(D) A(a(t)) (t)+——p(a(t))A( (1) H1(o(1)).

12) Symmetry groups

Given any density map p : E(M,N) — C*®(M,R"), the metric B on E(M, N) associated
with p is invariant under Dif f* M, the group of all diffeomorphisms preserving the orien-
tation of M. This is immediate from the solution of the continuity equation (4.2) and the
transformation formula of the integral. Equation (5.6) moreover shows immediately the
invariance of wg under Dif f* M.

Let us suppose that we are given a constitutive law F' being invariant under Diff* M,
meaning that (Ry)*F = F for all ¥ € Dif f* M, where Ry denotes the right translation
by ¥ on E(M,N) (cf. sec. 2). More explicitly, Dif f* M invariance of F' means

F(joy)loy)=F()) VjeE(M,N)andVye DifftM (12.1)

The work form Wrp is invariant under D:f f+ M. Differentiating (12.1) with respect to ¢
yields for any j € E(M,N) and any | € C{°(M,TN) the equation

Vrix (F(G)(1) + F(j)(Vxl)=0 VX e'TM. (12.2)
Here I'(T M) is identified with T;aDif f* M.
The symplectic formalism yields a smooth moment map
J:CP(M, TN) — B (T(TM)) (12.3)

given for any l € C$°(M,TN) and any j € E(M, N) by the equation

I()(X) = (1)(TIX) = —B(x o )(I, Try o TIX) = —B()(1, Ti X), (12.4)

The relation between J and integrals of a motion is as follows:

12.1 Lemma:
Let F be Diff*M invariant. For any X € I'(TM) the map Jx : C&(M,TN) — R
defined by

Ix () := J()(X) Vie Cg(M,TN) (12.5)

is constant on any motion subjected to F iff
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F(GY)(TjX)=0 Vj€ E(M,N)and VX € I'TM.

If F is exact and the potential is Diff* M invariant, then Jx is a first integral of the
motion for each X € I'TM.

Proof: Let us compute dJx : For any k € C°(M,TN) we have

d3x (k) = d(85(1)(T(ry 0 X))(k) = —=dB(r o (1, T(wy 0 DX )(k)
= —(B(k**™, T(nn o )X) + B(L, T(ny 0 k"7 X)) = —B(k*", T(zn 0 [)X).

(12.6)
Because of Xg(1)”¢" = 0 the choice k := Xp(l) yields
dIx(D)(Xp() = = B(Xp()**™, T(rn o )X) — B(Xs(1)**™, T(xn o [)X) (12.7)
= F(any o ) (T(mn o 1)X) '
for all [ € CF(M,TN). The validity of the assertion is now immediate. a

Next we consider a more general situation coming up rather frequently. If we have differ-
entiable groups D and I together with the respective smooth representation

a:D— Diff T Mandb: I — J

then both a and b yield moment maps. Following the same routine in the proof of Lemma
12.1 we derive the following;:

12.2 Theorem:
Let F be invariant under both a(D) and b(I). The respective moment maps of a and b
yield first integrals of any motion subjected to F for each of the elements in the respective

Lie - algebras if for any j € E(M,N)
F(j)}(TjaX)=0 VX eI'(TM) (12.8)
as well as
F(G)b(c)-7)=0  Vce Tl (12.9)

hold. Here @ and b denote the representation of the respective Lie algebras determined by

a and b.
[ ]
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13) The restriction of a motion subjected to F on a fibre in the
principal bundle E(M,N)

Each fibre in the principal bundle E(M, N) is of the form ¢ o szf M with fixed
1€ E(M,N).

In this section we impose on the motion o : (—A\,A) — E(M,N) subjected to F' the
constraint that

o) (M) =i(M)  Vte (=X N).

To find the equation of such a motion o we proceed analogous as in the previous sections:
We let B* be the metric on i o Diff M obtained by restricting B to this fibre. This
yields immediately the symplectic structure w* on T(j o Dif f M), the pullback of wp by
the tangent map of the inclusion map i o Diff M — E(M,N). Moreover let F* be the
pullback of F by the inclusion map mentioned.

Observing that any tangent vector to io¢ € 10 Diff M with ¢ € Diff M is of the form
T(j o )X for some X € I'(TM), the one - form F* is given by

Fiiow)(Tlow)X) = [ <AGowHiow). Tiow)X >uli).  (181)
M
There is a connection on E(M, N) induced by the orthogonal projection of TN to T2 T M:

Given any | € C%5,(M,TN) with ¢ € Diff M we let the component I of lin
Tiopt o Dif f M be given by

IT(p) = T o p)X(I7,j) € TG o p)(TM)  Vpe M, O (139)

for a well defined vector field X(I7,j) € T(TM). Clearly the projection from TE(M, N)
to T(i o Dif f M) given by T is Dif f M invariant for each ¢ € E(M, N).

Let &}, denote the kinetic energy on T'(z o Dif ft M) given by B'. Its Euler field on
Tio Diff M is the spray X" of B*. It is of the form

X{(T(i0g)X)=T*(i0g)S (T(i0g)) 'T(iog)X (13.3)

with S the spray of m(i) on TM and X € I'(TM). We need one more geometric notion
to formulate our equations: Let §* denote the covariant derivative of Levi - Civita of B
on i o Diff M. Due to general principles in Riemannian geometry and the fact that 7 is
normal to TjTM we immediately find for any j € E(M, N) the following :

13.1 Theorem:
The equation of motion o : (=\,A) — E(M,N), subjected on one hand to a given
constitutive law F on E(M; N) with constitutive field H and on the other to the constraint

30



o(t) (M) =i(M) Vte(=\A) (13.4)
for a fixed : € E(M,IR), read as

Vi o(t) = ((Ale®)H) ") | (13.5)
for all t € (—A, A), with Sps the spray of m(z) on TM.

If we subject moreover the motion to the further constraint that o maps into ¢o Dz f f, ;) M
with Dif f,;yM, the group of all u(z) preserving diffeomorphisms of M, then we obtain
Euler’s equation of a perfect fluid on i(M) as in [E,M]), provided H = 0
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