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This paper is concerned with the question of necessary and sufficient conditions to find
a vector field V E f(T M) solving the eQllation divV = ~ under inhomogenous boundary
conditions VleM = ZieM with ZE f(T M). An existence ~d regularity result is given for
an arbitrary Riemannian manifold-with boundary, M. The proof is based on the Hodge
theory of differential forms.



1. Introduction

Boundary value problems for differential forms on manifolds M have been investigated for a
long time mainly with respeet to the question of harmonie solutions, cf. [DuSp,Mo56,KreJ.
These results easily apply to solve a problem with the divergenee of a veetor £leId and its
normal eomponent preseribed in the interior of M and on the boundary 3M, respeetively.
The solvability of that problem is not spoiled for special mixed problem, one may e.g.
preseribe in 3 dimensions also the eurl of the veetor £leId, cf. [Duf,MarJ.
Few eredit, however, has been paid to the general boundary value problem

.." div V = <I>

VlaM = ZlaM

on M
on 3M

(1.1).

The homogeneous ease ZlaM == 0 is studied in the literature under eertain topologieal
restrietions, e.g. by demanding M to be an open sub set of IR 3 [vWa]. This paper is eon-
eerned with the quest ion of existenee of solutions of the general problem on an arbitrary
Riemannian manifold with boundary. As a eentral ingredient we apply the harmonie anal-
ysis for differential forms, mentioned above, i.e. their Hodge decomposition and results
about the harmonie extension of boundary values. Dropping the restrietion to harmonie
forms gives enough freedom to prove the solvability of (1.1). The analysis is earried out in
the H1-Sobolev category and regularity results are shown.
Following chapter 7 of [Mor62] we investigate the analytic and geometrie strueture of the
algebra n(M) of differential forms on a bounded Riemannian manifold M in section 2.
Considering the boundary value wlaM of some w E nr(M) we introduce the not ion of its
normal and tangential components nw and tw, respeetively. We give a special description
for the co-differential operator 8 and rewrite Stoke's theorem in terms of one forms.
In seetion 3 we study extension problems for differential forms and the Hodge deeom-
position of funetions in that eontext. Especially we show that the extension problem
t(8w) = (laM with WlaM = 0 has a solution w E nr(M) for any ( E nr-1(M). We
quote Morrey's generalization of the Hodge-Kodeira theorem to manifolds with bound-
aries, yielding for any <I>E L2(M) a deeomposition <I>= 8a + C such that a(N) = 0 and
CE IR.
By eombining the extension result with the Hodge decomposition we prove in section 4
an existence and regularity theorem eoncerning two important special eases, namely the
boundary value problems

with
with

ß(N) = 1/J

,1"aM == 0
(1.2)
(1.3).

In seetion 5 a general problem for the co-differential of one forms under inhomogeneous
boundary eonditions is formulated and its solvability is shown. The divergenee and the co-
differential operators transform into each other by means of the isomorphism ~ : r(TM) -+
n1(M), indueed from the metric on M, such that 8V# = div V. As a corollary we then
prove the solvability of the boundary value problem (1.1) under the integrability eondition
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(1.4).

2. Differential forms on Riemannian manifolds with boundaries

The study of differential forms on Riemannian manifolds with boundaries goes back to
investigations of Duff, Spencer, Conner and Morrey [DuSp,Con,Mo56] in the 50th. While
these authors mainly have been interested in solving boundary value problems for harmonie
forms we are less restrictive and apply the coresponding results to (linear) problems of a
rat her different kind. To fix the not ion we give the following definitions:
By an-dimensional manifold M with boundary we mean a paracompact topological Haus-
dorff space, which is locally homeomorphic to an open sub set of IR ~ = {x E IR n IXn :2: O},
such that boundary points p E 8M are mapped to IR ~ = {x E IR n IXn = O}. We call M
to be of dass C:+ 1 (k :2: 0 and 0 < l/ ~ 1, or k = (0) iff there is an atlas such that of
the overlap maps are C:+1 Hölder smooth with respect to the differentiable structure on
IR~, naturally induced from IR n by restrietion. In terms of a C:+1-atlas we speak about
C:+1-maps and it is dear how to obtain a C:+1-partition of the unite on the bounded
manifold M.
Vector fields Y E r(T M) on Mare (at most) of dass C: and we can construct a Rieman-
nian metric GM of the same differentiability dass. By an unite normal field N' we mean
a C:-map, which orthogonal to the boundary 8M, i.e. which obeys GM(N', Y)(p) = 0 at
each point p E 8M for all Y E r(T8M).
For sake of simplicity we restriet ourselves to compact, orientable manifolds with boundary
which are at least of dass Ci. Then the metric GM induces a Riemannian volume form
J-lM, which can be integrated over M and the normal field N' induces a Riemannian volume
element on 8M given by J-la := iNJ-lM, where i is the interior product, cf. [AMR].
Differential forms w E {Y(M) are locally, i.e. on U C M, described by

<p*(wlu)(p) = L w~l,.",ir(Yl, ... ,Yn)dxit /\ ... /\dxir

l::;it <".<ir::;n
(2.1),

where <p(p) = (Yl,"" Yn) and {dxo, ... dxn} is the standard dual base of IR n+l. w is
called a differential form of dass C:, if the coefficient functions W~l , ... ,ir are of dass C: on
<p(U) C IR ~ for any chart (U, <p). For the boundary value of w E {Y(M), i.e. its restrietion
WlaM, we have in achart (U, <p)

<p*(WlaMnu)(P) = L w~l, ... ,ir(Yl, ... ,Yn_l,O)dxit/\ ... /\dxir (2.2)
l::;it<".<ir::;n

with <p(p) = (Yl,"" Yn-l, 0) for p E 8M. wlaM is called of dass C: along 8M, iff for any
chart the restrietion (W~l '''. ,ir) I.IR ~ of the coefficient function is of that dass with respect
to the differentiable structure on IR n-l.

The boundary value wlaM naturally splits into a tangential and anormal component

2



WlaM = tw + nw (2.3)

such that tw(Af, YI, ... Yr-l) = 0 for all £leIdsYk E f(T MlaM)' For the normal component
we have in a local representation

<p*(nwlu)(p) - 2: w~1,... ,jr-l,n(YI, ... ,Yn_I,O)dxJt 1\ ... l\dxjr-1I\dxn (2.4).
I~Jt <... <jr-1 ~n-l

The exterior algebra n(M) is construeted in the same way as for manifolds without bound-
ary, i.e. the I\-produet and the exterior derivative d : nr(M) ~ nr+I(M) compute as usual.
The Hodge operator * :nr(M) ~ nn-r(M) becomes, written in coordinates

(2.5),

where the (ordered) tuple [il, ... , in-r] is the complement of [iI, ... , jr] in the set [1, ... , n]
For the boundary values the identity (*W )laM = *(WlaM) is obvious and we get

(2.6).

From (2.4) and (2.5) it is easily seen that

where in-r = n
(2.7).

where jr = n

Since [il, ... , in-r] and [iI, ... ,jr] are complementary to each other in both cases we have
in-r =I jr if and only if jr = n, what proves (2.6).
By means of the Hodge operator the co-differential 8 : nr+I(M) ~ nr(M) is given as
8 := (_l)nr+1 *d*. Following [Mat] it computes in terms of a local GM-orthonormal frame
{EI, ... , En} on TM and the coresponding Levi-Civita connection \7 as

n

(8w )(XI, ... Xr) = - 2:(\7 EkW )(Ek, Xl," . Xr) with Xl,'" Xr E f(T M) (2.8).
k=l

Finally we introduce a Riemannian structure on nr(M) given by

w. "1 := J w 1\ *"1 (2.9).
M

Since M is compact by assumption the integral converges. Using the coresponding norm
11. 11 we equip nr(M) with a Sobolev strueture : The Sobolev spaces HOnr(M) and
Hlnr(M are de£lned as the completion of nr(M) with respect to the norms Ilwll and
IIwl12+ IIdwl12, respeetively. We furthermore call the boundary valuewlaM to be of dass

HI along ßM, iff the restrictions (wÜ, ...,jr)llR~ are of dass HI(IRn-l) for any chart, in-
terseeting ßM.
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In the H1-category we then have Stoke's theorem [AMR], which yields for the special case
of one forms :

- J w(N) Pa
aM

(2.10).

(3.1).

3. Extension problems for differential forms and Hodge theory for functions

By an extension problem we mean the question of existence of ar-form w E fF(M) - of
a certain differentiability dass on M - with some components of its boundary value or of
the boundary value of its derivative prescribed. Denoting by Dm the unite disk in IR m,

the analytic foundation for the problems, we have in mind, is laid by the following lemma:

Lemma 1
For any f E H1(IRn-1) with supp(J) C Dn-l there exists a map u IRn ---+ IR with
u E H1 (IR n) and supp( u) C Dn such that

U(Yl' , Yn-l, 0) = 0
0Yn U(Yl, , Yn-l, 0) = f(Yl' ... , Yn-d

All derivatives Oy. u can be chosen of dass H1 (IR n). If f E C:(IR n-l) the map u can be
chosen of dass C~+I(IR n).

For a proof we refer to section 6 of [Mo56]. Inspired by results from the same work of
Morrey one shows :

Lemma 2
Let M be a Riemannian manifold with boundary of dass Cl and let", E nr(M) be a
r-form with boundary value ",laM of dass H1 on oM.
a) There exists a H1-extension of ",IaM, i.e. ar-form X E H1 nr(M), such that

xlaM = ",laM

b) There exists a (r - l)-form w E H1nr-1(M) with dw E H1nr(M) such that

(3.2).

wlaM = 0 and n( dw) = n", (3.3).

If M is of dass C:+1 with k ~ 1 and ",laM is of dass C: on oM, then X can be chosen of
dass ci on Mand w can be chosen such that wand dw are of dass Ci on M.
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Proof:
a) Let {(Ua,<Pa)}aEA be an atlas on M and {Pa}aEA a subordinated C:+1 partition of
unite. For each a E A we 'define ar-form Xa E H1nr(M) by

._ { 0 if supp (Pa) nGM = 0
Xa.- Xa else

where XaIM\Ua := 0 and Xalua is locally determined from Tl by

(3.4).

(~ )lt, ... ,ir( ) il, ...,ir( 0) (-1)( ) (35)Xa 'Pa Y1, ... ,Yn =Tl'Pa Y1, ... ,Yn-1,' Pao<pa Yl, ... ,Yn ..

Setting X := L:aEA Xa, we get a solution of (3.2) of the desired differentiability dass.
b) Let {(Ua,<Pa)}aEA be an atlas on M such that <Pa(Ua) :J Dn. Given a subordinated
C:+1-partition of unite {Pa }aEA, which obeys <Pa(SUPP(Pa) nGM) c Dn-1. We define for
each a E Aar-form Wo' E H1nr(M) by

if supp (Pa) nGM = 0
else

(3.6).

where WaIM\Ua := 0 and walua is locally determined from Tl as follows : We set Tla := Tl' Pa
and know from lemma 1 that for all 1 :S iI < ... < jr-1 :S n the problem

hlt, ... ,ir-l( 0)-0
0' Y1, ... ,Yn-1, -

£:.l hlt, ...,ir-l( 0) - ( )il, ...,ir-l,n( 0)
UYn 0' Y1,'" ,Yn-1, - Tla 'Pa Y1, ... ,Yn-1,

(3.7)

has a solution h~l, ...,ir-l E H1(JR n) with support in the interior of Dn. Furthermore these
solutions can be chosen of dass ci+1 on M, if TllaM is of dass ci. By construction h~l, ...,ir-l
can be considered (in the sense of (2.1» as the coefficient funetion of a (r - 1)-form, since it
transforms properly under change of charts. Hence we define (wo' IUa )"a~...,ir-l := h~l ,...,ir-l
what solves (for each a E A) the problem

and (3.8).

Setting W := L:aEA Wo', we get a solution of (3.3) of the desired differentiability dass. 0

For our further investigations we need the (Hodge) dual of the result in part b :

Corollary 3
Let M be as in lemma 2. Given ( E nr-1(M) with (laM of dass H1 on GM, there exists
some X E H1nr(M) with 8X E H1nr-1(M) obeying the boundary conditions

xlaM = 0 and t(8X) = t( (3.9).

If (laM is 'of dass C: on M then X and 8x can be chosen of dass C: on M, too.
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Proof:
For Tl = *( the problem (3.3) transforms by means of (2.6) into

WlaM = 0 and n(dw) = *(t() (3.10).

Taking the Hodge dual of this and using (2.6) once more we get

*WlaM = 0 and (3.11).

Hence X := *W solves the problem (3.9), iff w is a solution of (3.3). Since * is an operator
of dass ci, this solution is of the desired differentiability dass, too. 0

The central result to face boundary value problems for differential forms is Morrey's gen-
eralization of the Hodge-Kodeira decomposition theorem for manifolds with boundaries,
cf. chapter 7.7 of [Mo62] :

Theorem 4
Let M be a compaet Riemannian Ci+l-manifold with boundary where (k, v) = (0,1) or
k 2: 1 and 0 < v < 1 and denote by Er, vr and Hr the following subspaces of Hon/(M) :

Er := {ba I a E H1n,r+l (M) with na = O}

1X := {dß I ß E H1n,r-l(M) with tß = O}

Hr := {,,;E H1n,r(M) I with d,,; = {j,,; = O}

There is an orthonormal decomposition

H°n,r(M) = Er E8 Vr E8 Hr (3.12)

with respeet to the produet (2.9) on H°n,r(M). Each w E H°n,r(M) uniquely writes as

w = {ja + dß +,,; (3.13)

such that {ja E Er, dß E vr and ,,;EHr. If W E n,r(M) is of dass ci-1 (for k 2: 1), a and
ß can be chosen of dass ci and,,; of dass Ci-I.
For our purpose it is important to consider the special case of zero forms, i.e. the case of
usual (Lebegue-) funetions 4>E L2(M), where the Morrey-Kodeira decomposition yields

4>= ba + C with a E H1n,I(M) such that a(N) = 0 and C E IR (3.14).

This is obvious since VO = {O} and HO = IR for any manifold M. The regularity results
of theorem 4 hold accordingly.
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4. Special boundary value problems for one forms

Now we combine the (dassical) results, presented in the preceding seetion, to solve bound-
ary value problems for one forms. We are interested in first order problems, involving
the co-differential operator 8 and consider at first Neumann and homogeneous boundary
condi tions :

Lemma 5
Let M be a compact Riemannian Ci+1-manifold with boundary, where (k, v) = (0,1) or
k ~ 1 and 0 < v < l.
a) Given a pair of funetions <P E L2(M) and'l/J E H1(3M), which obey the integrability
condition

J <P I-lM + J 'l/J I-la = 0
M aM

there exists a one form ß E H10,1(M) which solves the boundary value problem

(4.1),

8ß= <P
ß(N) = 'l/J

on M
on 3M

(4.2).

(4.3),

If<p E Ci-1(M) and'l/J E Ci(3M) (for k ~ 1) one can chose ß of dass ci on M.
b) Given a funetion \lJ E H1(M) such that \lJlaM E H1(3M), which obeys the integrability

condition

J \lJ ~M = 0
M

there exists a one form I E H1 0,1(M) which solves the boundary value problem .

on M"
on 3M

(4.4).

If \lJ E Ci-1(M) (for k ~ 1) one can chose I of dass ci on M.

Proof:
a) Applying the Morrey-Kodeira decomposition (3.14) to <P E L~(M), determines some
a<I> E H1n1(M) such that

<P = 8a<I> + C<I> with a<I>(N) = 0 (4.5).

On the other hand lemma 2 and the collar theorem, cf. [Hir], guaranty for any 'l/J E H1 (3M)
the existence of some 1Jt/J E H10,1(M) such that 1Jt/JlaM(N) = 'l/J on 3M. Applying (3.14)
to the funetion 81Jt/J E L2(M) then determines some at/J E H1(M), such that

with

7
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(4.7).

.#

From the regularity results of the Morrey-Kodeira decomposition and lemma 2 we get CY<I>

as weIl as Tll/Jand CYl/J being of dass ci if<I>E Ci-1(M) and 'ljJ E Ci( 3M).
Now Stoke's theorem (2.10) and the integrability condition (4.1) yields

(C<I>-Cl/J).j f.1M = j(<I>-8Tll/J-8CY<I>+8CYl/J)f.1M = 0
M ~ M

Then ß := CY<I> + Tll/J- CYl/J is a solution of (4.2) of the desired regularity dass.
b) We start as above and apply (3.14) to the function \lJ E H1(M). The integrability
condition (4.3) implies that the constant Cw has to vanish, so we get

\lJ = 8CYw with CYw(N) = 0 (4.8).

By assumption \lJlaM E H1(3M), hence we have also CYw (at least) of dass H1 along 3M.
Then corollary 3 determines a two form (w E H1n,2(M) solving the problem

(w laM == 0 and (8(w )laM(X) = CYwlaM(X) VX E fT3M (4.9),

such that 8(w E H1n,1(M). For \lJ E Ci-1(M) we furthermore have CYw of dass ci and
hence (wand 8(w can be chosen of dass ci on M. Using the fundamental property of the
co-differential to be nilpotent, saying that 8(8w) = 0 for all w E n,r(M), we see that

8(CYw-8(w)
t(cyw - 8(w)

\lJ

o
on M

on 3M
(4.10).

To investigate the normal components we have ncyw == 0 by construction. For n( 8(w) we
use the collar theorem [Hir], which guaranties ne ar any p E 3M the existence of a local
orthonormal frame {N, E2, ••• , En} such that NlaM = N and EilaM is tangential to 3M.
Then (2.8) yields

m

n

L)V' Ek (w)laM(Ek,N)
k=2 (4.11)

LV'Ek ((w(Ek,N))löM
k=2

since ((w )löM == 0 by ~nstruction. Also due to that fact ((w )laM is covariantly constant in
the direction of each Ek löM, which are vector fields along the boundary 3M. This proves
that (8(w )löM(N) = o. So the boundary value of (CYw - 8(w) vanishes identical. Hence
,:= CYw.- 8(w yields a soiution of (4.4) of the desired regularity. 0

Both assertions of that lemma are not original. Part a) mayaiso be derived by transforming
the boundary value problem (4.2) into a standard elliptic problem: Demanding ß = d1-£
for some function 1-£,we are left with the Neumann problem 61-£ = <I>and d1-£(N) = 'ljJ,

which has a unique solution, cf. [Hör]. By using more a subtile extension results [Pal] as
we have from lemma 2, also the existence of a solution can be guaranteed if 'ljJ is only of
Sobolev dass H1/2 on 3M.
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For part b) there is no elliptic reformulation, i.e. the problem cannot be identified with
some standard Dirichlet problem. In the literature [Bog,vWa] there has been considered
the existence question for the divergence of veetor fie1ds under homogeneous boundary
conditions, what is an equivalent to our study on the co-differential of one forms, see
section 5 below. We note, however, that the authors were more restrietive in choosing M
- considering either the sum of starlike conneeted domains in IR n [Bog] or open subsets
of IR 3 [vWa] - but thereby also could give an explicit kernel to solve the problem and
describe the precise range of the operator 8. Another approach is due to [Kre] who can find
harmonic solutions for the boundary value problem (4.4), but requires stronger integrability

•. conditions. In turn our result - based on a variational method [Mor62] - allows to solve
this problem for a general Riemannian manifold but just gives necessary and sufficient
conditions for the existence 6f solutions.

5. The problem div V = 1> under general boundary conditions

With the same techniques, we used to prove lemma 5, we now can study the solvability of
a more general problem:

Theorem 6
Let M be a compact Riemannian Ci+1-manifold with boundary, where (k, v) = (0,1) or
k 2:: 1 and 0 < v < 1.
Given a funetion 1> E L2(M) and one form 3 E n1(M) with boundary value 31aM of dass
H1 on 3M, which obey the integrability condition

[ 1>J.lM + [ 3(N) J.la = 01M 1aM .
there exists a one form a E H1n1(M) solving the boundary value problem

(5.1),

(5.2).
8a = 1> on M

alaM = 31aM on 3M

If 1> E Ci-1(M) and 31aM is of dass ci (for k 2:: 1), a can be chosen of dass ci on M.

Proof:
Since the normal field N is (at least) of differentiability dass Cf on 3M the funetion
'l/J=. := 3(N) is of Sobolev dass H1nO(3M). 'Under the integrability condition (5.1) part
a) of lemma 5 guaranties the existence of a one form ß E H1n1(M), such that

8ß = 1> and (5.3).

•

•

On the other hand the extension problem

elaM == 0 and t(801aM = t(3 - ß)

9

(5.4)



has a solution e E Hl0,2(M) with 8e E Hl0,l(M) by using corollary 3. Furthermore one
shows - literally as in the prove of lemma 5 (part b) - that this two-form also obeys
(80IaM(N) = O.
Hence we obtain a := ß + 8e as a solution of the problem

8a=<P, na=n2: and t(alaM)=t(2:) (5.5).

•

Finally we condude from the regularity results of lemma 2 and corollary 3 that ß and 8e
are of dass ci if<p E Ci-1(M) and 2:1aM is of class ci. 0

The key observation for the proof - as for the proves of lemma 5 - was that the co-
differential is a nilpotent operator, i.e. 82 = O. This fact made it possible to modify the
one form determined from the Hodge decomposition of <P,which solves a homogeneous
boundary value problem, by the co-differential of any two form. Knowing this and having
the appropriate extension results at hand we could adjust the solution to the desired
boundary value.
Boundary value problems originated from physics, however, are - in their dassical formu-
lation - given in terms of vector £leIds instead of one forms. To make our results appli-
cable we observe that the Riemannian structure GM on a Ci+1-manifold M induces a
Ci-isomorphism

U : f(TM) ~ 0,l(M)

WU(Y) := GM(Y, W) VY E r(TM)
(5.6).

Under this map the co-differential operator (2.8) transforms into the divergence, i.e.

VW E f(TM) (5.7)

and our central result (theorem 6) immediately transforms into

Corollary 7
Let M be as in theorem 6. Given a function <PE L2(M) and a vector £leld Z E f(TM)
with ZlaM of dass H1 on 3M, the boundary value problem

div V = <P

VlaM = ZlaM
on M
on 3M

(5.8)

•

•

has a solution V E f(T M), if and only if the integrability condition

f <P/tM+ f GM(ZlaM,N)/ta=O (5.9),1M 1aM
is satis£led. The vector £leIdV E f(TM) is of Sobolev class H1 on M and if <PE Ci-1(M)
and ZlaM is of dass ci (for k 2: 1), V can be chosen of dass Ci on M .
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For the special case Zl8M == 0 this the problem is studied in [vWaJ. As noted in that
work its solvability is of great interest for investigations in fluid dynamies. The more
general problem, p,rescribing the boundary value ZI8M arbitrarily - modulo demanding
consistency with the integrability condition (5.9) - has (to the author's knowledge) not
been studied in the literature, but might also be of some importance for fluid dynamies.
Another range of applications is electro-dynamics. One has to observe, however, that the
the physical nature of this theory is such that harmonie solutions are preferable, except in
very special gauges.
Similar to (5.7) also the action of other first order differential operators (the rotation and
the gradient) can be expressed in terms of the exterior derivative and the co-differential.
In principle it is possible to study coresponding boundary value problems with the same
technique, we used here. One needs, however, to apply the Morrey-Kodeira decomposition
(theorem 4) not only to zero-forms but to the space ~Y(M), what yields some technical
difficulties and will not be pursued here furt her .
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