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This paper is concerned with the question of necessary and sufficient conditions to find
a vector field V € ['(TM) solving the equation divV = @ under inhomogenous boundary
conditions V|eym = Z|om with Z € F(TM ). An existence and regularity result is given for
an arbitrary Riemannian manifold -with boundary, M. The proof is based on the Hodge
theory of differential forms.
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1. Introduction

Boundary value problems for differential forms on manifolds M have been investigated for a
long time mainly with respect to the question of harmonic solutions, cf. [DuSp,Mo56,Kre].
These results easily apply to solve a problem with the divergence of a vector field and its
normal component prescribed in the interior of M and on the boundary M, respectively.
The solvability of that problem is not spoiled for special mixed problem, one may e.g.
prescribe in 3 dimensions also the curl of the vector field, cf. [Duf,Mar].

Few credit, however, has been paid to the general boundary value problem

divV =90 on M

1.1).
Vlem = Z|om on OM (1-1)

The homogeneous case Z|gp = 0 is studied in the literature under certain topological
restrictions, e.g. by demanding M to be an open subset of IR® [vWa). This paper is con-
cerned with the question of existence of solutions of the general problem on an arbitrary
Riemannian manifold with boundary. As a central ingredient we apply the harmonic anal-
ysis for differential forms, mentioned above, i.e. their Hodge decomposition and results
about the harmonic extension of boundary values. Dropping the restriction to harmonic
forms gives enough freedom to prove the solvability of (1.1). The analysis is carried out in
the H!-Sobolev category and regularity results are shown.

Following chapter 7 of [Mor62] we investigate the analytic and geometric structure of the
algebra Q(M) of differential forms on a bounded Riemannian manifold M in section 2.
Considering the boundary value w|ga of some w € Q7(M) we introduce the notion of its
normal and tangential components nw and tw, respectively. We give a special description
for the co-differential operator § and rewrite Stoke’s theorem in terms of one forms.

In section 3 we study extension problems for differential forms and the Hodge decom-
position of functions in that context. Especially we show that the extension problem
t(6w) = Claamr with wjspr = 0 has a solution w € Q"(M) for any ¢ € Q""(M). We
quote Morrey’s generalization of the Hodge-Kodeira theorem to manifolds with bound-
aries, yielding for any ® € L?(M) a decomposition ® = éa + C such that a(A) = 0 and
CeR.

By combining the extension result with the Hodge decomposition we prove in section 4
an existence and regularity theorem concerning two important special cases, namely the

boundary value problems

§8=®  with BWN)=¢ (1.2)
0

§y=0  with  ylom = (1.3).

In section 5 a general problem for the co-differential of one forms under inhomogeneous
boundary conditions is formulated and its solvability is shown. The divergence and the co-
differential operators transform into each other by means of the isomorphism § : I'(TM) —
QY(M), induced from the metric on M, such that §V* = divV. As a corollary we then
prove the solvability of the boundary value problem (1.1) under the integrability condition




/ @;LM—{—/ GM(ZlaM,N)ua=O (1.4).
M oM :

2. Differential forms on Riemannian manifolds with boundaries

The study of differential forms on Riemannian manifolds with boundaries goes back to
investigations of Duff, Spencer, Conner and Morrey [DuSp,Con,Mo056] in the 50th. While
these authors mainly have been interested in solving boundary value problems for harmonic
forms we are less restrictive and apply the coresponding results to (linear) problems of a
rather different kind. To fix the notion we give the following definitions :

By a n-dimensional manifold M with boundary we mean a paracompact topological Haus-
dorff space, which is locally homeomorphic to an open subset of R} = {x € R" |z, > 0},
such that boundary points p € OM are mapped to Ry = {x € R" |z, = 0}. We call M
to be of class C¥*! (k > 0 and 0 < v < 1, or k = o) iff there is an atlas such that of
the overlap maps are C**1 Holder smooth with respect to the differentiable structure on
R, naturally induced from IR"™ by restriction. In terms of a Ck+1.atlas we speak about
C*¥+1.maps and it is clear how to obtain a CF*!l-partition of the unite on the bounded
manifold M.

Vector fields Y € ['(TM) on M are (at most) of class C¥ and we can construct a Rieman-
nian metric Gps of the same differentiability class. By an unite normal field A/ we mean
a C¥-map, which orthogonal to the boundary &M, i.e. which obeys Ga(N,Y)(p) = 0 at
each point p € OM for all Y € I'(TOM).

For sake of simplicity we restrict ourselves to compact, orientable manifolds with boundary
which are at least of class C';. Then the metric Gps induces a Riemannian volume form
iy, which can be integrated over M and the normal field M induces a Riemannian volume
element on M given by ps := ixpa, where i is the interior product, cf. [AMR].
Differential forms w € Q"(M) are locally, i.e. on U C M, described by

e (wlv)(p) = Z ' c.ui‘,l"“’j'(yl,...,yn)dzj1 A...Adzo (2.1),
1<h <..<jr<n

where o(p) = (y1,...,yn) and {dz°,...dz"} is the standard dual base of R™! wis
called a differential form of class C¥, if the coefficient functions wg,}"“'j' are of class C¥ on
@(U) C R for any chart (U, ¢). For the boundary value of w € Q7(M), i.e. its restriction
w|anm, we have in a chart (U, ¢)

P Wlamrv)p) = Y. Wi (yn, e Yao1,0) de?t AL A e (2.2)
' 1<51<...<jr<n

with ¢(p) = (y1,.--,Yn-1,0) for p € OM. w|an is called of class C* along OM, iff for any
chart the restriction (wi!*7" )|z of the coefficient function is of that class with respect

to the differentiable structure on R"™™'.
The boundary value w|aps naturally splits into a tangential and a normal component




v _ wlaM = tw + nw (23)
such that tw(N,Y7,...Y,—1) = 0 for all fields Yi € I'(TM|spr). For the normal component
we have in a local representation

¢*(nw|v)(p) = Z wi"""j”“l’"(yl,...,yn_l,O) dzlt A...Adz?-r Adz™ (2.4).

1<j1 <o <jr—1<n—1

The exterior algebra Q(M) is constructed in the same way as for manifolds without bound-
ary, i.e. the A-product and the exterior derivative d : Q"(M) — Q"t!(M) compute as usual.
The Hodge operator « : Q"(M) — Q"~"(M) becomes, written in coordinates

(*w)‘:pl,...,zn_,- — w#,...,]r (25),

where the (ordered) tuple [y, ... ,%n,—r] is the complement of [j1,...,j,] in the set [1,.. . n|
For the boundary values the identity (w)|sm = *(w|anm) is obvious and we get '

(xw)lopm = n(*w) + *(nw) (2.6).

From (2.4) and (2.5) it is easily seen that

11y stn—r

. (n*w)y where tn_r =n
J1yeeesdr
(loa)y - i1 yenyinr . (2.7).
(*nw)y where j, =n
Since [¢1,...,in—r] and [j1,...,Jr| are complementary to each other in both cases we have

in—r # jr if and only if j, = n, what proves (2.6).

By means of the Hodge operator the co-differential § : Q"t1(M) — Q"(M) is given as
6 := (—1)""*! «dx. Following [Mat] it computes in terms of a local G pr-orthonormal frame
{Ei,...,E,} on TM and the coresponding Levi-Civita connection V as

n

(bw)(X1,... Xr) = =Y (VEw)(Ek, X1,... X;)  with Xi,...X, e [(TM) (28).
k=1

Finally we introduce a Riemannian structure on Q"(M) given by

wen = /wA*n (2.9).
M

Since M is compact by assumption the integral converges. Using the coresponding norm
| - || we equip Q7(M) with a Sobolev structure : The Sobolev spaces H'Q"™(M) and
HYQ7(M) are defined as the completion of Q7(M) with respect to the norms |lwl|| and
VIwl[? + ||dw]||? , respectively. We furthermore call the boundary value w|apm to be of class
H? along OM, iff the restrictions (wj!»r)|gry are of class H'(R"™!) for any chart, in-
tersecting OM.




In the H'-category we then have Sfoke’s theorem [AMR], which yields for the special case
of one forms :

[own = = [wta)us | (2.10).

M oM

3. Extension problems for differential forms and Hodge theory for functions

By an extension problem we mean the question of existence of a r-form w € Q"(M) — of
a certain differentiability class on M — with some components of its boundary value or of
the boundary value of its derivative prescribed. Denoting by D™ the unite disk in R™,
the analytic foundation for the problems, we have in mind, is laid by the following lemma:

Lemma 1
For any f € H'(JR™™') with supp(f) C D™ there exists a map v : R™ — IR with
u € H'(IR™) and supp(u) C D" such that

u(yl’ayn—lvo)zo (3 1)
6ynu(y1’"'ayn—l’0) = f(yla"'vyn—l)

All derivatives 9y, u can be chosen of class H'(R"). If f € C¥(R™') the map u can be
chosen of class CZ‘“(R ™).

For a proof we refer to section 6 of [Mo56]. Inspired by results from the same work of
Morrey one shows :

Lemma 2

Let M be a Riemannian manifold with boundary of class C{ and let n € Q"(M) be a
r-form with boundary value n|sp of class H! on OM.

a) There exists a H'-extension of nlsum, i.e. a r-form x € H'Q"(M), such that

xlam = nlom (3.2).
b) There exists a (r — 1)-form w € H*Q™~!(M) with dw € H'Q"(M) such that

wlom =0 and n(dw) = nn (3.3).

If M is of class C¥*! with k > 1 and 5| is of class C; on M, then x can be chosen of
class CF on M and w can be chosen such that w and dw are of class CFon M.




Proof :
a) Let {(Ua,%a)}aca be an atlas on M and {ps}eeca 2 subordinated Ck+! partition of
unite. For each o € A we define a r-form xo € H'Q"(M) by

Y = {0 if supp (pa) NOM =0 (3.4).

T | Xa else

where Xa|m\v, =0 and Xq|v, is locally determined from n by

(RaBT (yrsyn) = 05 (W Y100 (Pa 0 0 (YL, -5 Yn) (35).

Setting x := Y, ,e4 Xa> We get a solution of (3.2) of the desired differentiability class.

b) Let {(Us,¥a)}laca be an atlas on M such that ¢o(Us) D D". Given a subordinated
Ck+1partition of unite {pa}aca, Which obeys pq (supp(pa)NOM) C D71, We define for
each a € A a r-form w, € H'Q"(M) by

We else

where &q|a\v, 1= 0 and Galu, is locally determined from n as follows : We set 74 := 1 pa
and know from lemma 1 that for all 1 < j; < ... < jr—1 < n the problem

hil,...yjr—l(yl, o ’yn_l,o) =0
ayn h{;’m’h_l(yls s ayn—lvo) = (na)g;...,jr_hn(yla e >yn—1a0)

has a solution AL~ € H!'(R™) with support in the interior of D". Furthermore these

solutions can be chosen of class C’f“ on M, if n|sar is of class Cl’f. By construction hf}’""j'“l
can be considered (in the sense of (2.1)) as the coefficient function of a (r — 1)-form, since it
transforms properly under change of charts. Hence we define (Za|u, )i, 77" i= hY 7t

what solves (for each a € A) the problem

(3.7)

Walom =0 and n(d@qs|amnv, ) = n(nalomnu, ) (3.8).
Setting w := Y, 4 Wa, We get a solution of (3.3) of the desired differentiability class. O

For our further investigations we need the (Hodge) dual of the result in part b :

Corollary 3

Let M be as in lemma 2. Given ¢ € Q" (M) with (|oam of class H* on M, there exists
some x € H'Q"(M) with §x € H'Q"~!(M) obeying the boundary conditions

Xlom =0 and t(6x) = t¢ (3.9).

If ¢|ap isof class C¥ on M then x and §x can be chosen of class Ck on M, too.




Proof :
For n = ( the problem (3.3) transforms by means of (2.6) into

wlomw =0  and  n(dw) = *(t() (3.10).
Taking the Hodge dual of this and using (2.6) once more we get

wolowr =0  and % (dw)lons — n(xdw) = (=1)"Ft¢ (3.11).
Hence x := *w solves the problem (3.9), iff w is a solution of (3.3). Since * is an operator
of class C¥, this solution is of the desired differentiability class, too. a

The central result to face boundary value problems for differential forms is Morrey’s gen-
eralization of the Hodge-Kodeira decomposition theorem for manifolds with boundaries,
cf. chapter 7.7 of [Mo62] :

Theorem 4
Let M be a compact Riemannian CF*'-manifold with boundary where (k,v) = (0,1) or

k>1and 0 < v <1 and denote by £, D" and ‘H" the following subspaces of H°Q" (M) :
£ = {ba | a € H'Q™M (M) with na =0}
D" .= {dB | B € H'Q ™M) with t8 =0}
H™ = {k € H'Q"(M) | with dx = 6k =0}

There is an orthonormal decomposition

HQ(M)=E"®D dH" (3.12)
with respect to the product (2.9) on H°Q"(M). Each w € H*Q"(M) uniquely writes as
w=éa+dB+k (3.13)

such that o € £, dB € D" and k € H". If w € Q"(M) is of class C¥~! (for k > 1), a and

B can be chosen of class C¥ and & of class CF1.

For our purpose it is important to consider the special case of zero forms, i.e. the case of
usual (Lebegue-) functions ® € L?(M), where the Morrey-Kodeira decomposition yields

d=6a+C withae HQ' (M) suchthat o(N)=0 and C € R (3.14).

This is obvious since D° = {0} and H® = R for any manifold M. The regularity results
of theorem 4 hold accordingly.



4. Special boundary value problems for one forms

Now we combine the (classical) results, presented in the preceding section, to solve bound-
ary value problems for one forms. We are interested in first order problems, involving
the co-differential operator § and consider at first Neumann and homogeneous boundary
conditions :
Lemma 5

Let M be a compact Riemannian C**!-manifold with boundary, where (k,v) = (0,1) or
k>landO<v <.

a) Given a pair of functions ® € L?(M) and ¢ € H'(0M), which obey the integrability
condition

/m+ [ wno =0 (4.1),
oM

M

there exists a one form 8 € H'Q'(M) which solves the boundary value problem

6p =9 on M
BN)=1v on OM
If ® € Ck~1(M) and o € C5(OM) (for k > 1) one can chose 8 of class C on M.
b) Given a function ¥ € H'(M) such that ¥|sps € H'(OM), which obeys the integrability

condition

(4.2).

/ Uy =0 (4.3),
. M
there exists a one form v € H'Q!(M) which solves the boundary value problem '

oy =" on M’

4.4).
Yom =0 on OM (4.4)

If & € C*~1(M) (for k > 1) one can chose v of class C} on M.

Proof : .
a) Applying the Morrey-Kodeira decomposition (3.14) to ® € L?(M), determines some
ag € HIQY (M) such that

P =bae +Cos with aq>(N) =0 (4.5).

On the other hand lemma 2 and the collar theorem, cf. [Hir], guaranty for any ¢ € H'(9M)
the existence of some 7y, € H'Q'(M) such that nylan(N) = ¢ on M. Applying (3.14)
to the function 67y € L?(M) then determines some ay € H'(M), such that

dny = bay + Cy with ap(N)=0 (4.6).



From the regularity results of the Morrey-Kodeira decomposition and lemma 2 we get ag
as well as 1y, and ay being of class C¥ if & € C¥~1(M) and ¢ € CF(OM).
Now Stoke’s theorem (2.10) and the integrability condition (4.1) yields

(Co—Cu)- [ = [(8=bny = bas + by iar = 0 (4.7)
. f
M

Then f := ag + 7y — @y is a solution of (4.2) of the desired regularity class.

b) We start as above and apply (3.14) to the function ¥ € H'(M). The integrability
condition (4.3) implies that the constant Cy has to vanish, so we get

U =day with ag(NM)=0 (4.8).

By assumption ¥|spy € H'(OM), hence we have also ay (at least) of class H' along M.
Then corollary 3 determines a two form (y € H1Q?(M) solving the problem

Culom =0 and (6¢w)|om (X)) = aw|om(X) VX el'ToM (4.9),

such that 8¢y € HIQ!(M). For ¥ € C¥~'(M) we furthermore have ay of class C¥ and
hence (y and 6Cy can be chosen of class C¥ on M. Using the fundamental property of the

co-differential to be nilpotent, saying that §(éw) = 0 for all w € Q"(M), we see that
) -6 =¥ M
(cw = &) on (4.10).

t(aq, —6(4,) =0 on OM

To investigate the normal components we have nay = 0 by construction. For n(6{y) we
use the collar theorem [le] which guaranties near any p € OM the existence of a local

orthonormal frame {A/, Es,...,Enq } such that N|3M N and E;|sp is tangential to OM.
Then (2.8) yields

(6¢o)lom(N) = —(Vg¢w)lomWV, N) — Z(V Co)lom(Er, N)

m

= - Zka (Co(Ex, N))lom

(4.11)

since (v )|ap = 0 by construction. Also due to that fact (Cw)|asm is covariantly constant in
the direction of each Ekla M, which are vector fields along the boundary OM. This proves
that (6¢w)|om(N) = 0. So the boundary value of (ay — 6Cw) vanishes identical. Hence
v = ay — 6Cy yields a solution of (4.4) of the desired regularity. |

Both assertions of that lemma are not original. Part a) may also be derived by transforming
the boundary value problem (4.2) into a standard elliptic problem : Demanding 8 = dH
for some function H, we are left with the Neumann problem AH = @ and dH(N) =

which has a unique solution, cf. [Hor]. By using more a subtile extension results [Pal] as
we have from lemma 2, also the existence of a solution can be guaranteed if ¢ is only of

Sobolev class H'/2 on OM.




For part b) there is no elliptic reformulation, i.e. the problem cannot be identified with
some standard Dirichlet problem. In the literature [Bog,vWa] there has been considered
the existence question for the divergence of vector fields under homogeneous boundary
conditions, what is an equivalent to our study on the co-differential of one forms, see
section 5 below. We note, however, that the authors were more restrictive in choosing M
— considering either the sum of starlike connected domains in JR™ [Bog| or open subsets
of R® [vWa] ~ but thereby also could give an explicit kernel to solve the problem and
describe the precise range of the operator §. Another approach is due to [Kre] who can find
harmonic solutions for the boundary value problem (4.4), but requires stronger integrability
conditions. In turn our result — based on a variational method [Mor62] — allows to solve
this problem for a general Riemannian manifold but just gives necessary and sufficient
conditions for the existence of solutions.

5. The problem divV = & under general boundary conditions

With the same techniques, we used to prove lemma 5, we now can study the solvability of
a more general problem :
Theorem 6

Let M be a compact Riemannian Cf*!-manifold with boundary, where (k,v) = (0,1) or
k>1land O < v < 1.

Given a function ® € L?(M) and one form = € Q!(M) with boundary value Z|sp of class
H' on M, which obey the integrability condition '

[ #un e ' (5.1),

there exists a one form a € H'Q!(M) solving the boundary value problem

ba =& on M

(5.2).
alsm = Elom on OM
If ® € Ck~1(M) and Z|aps is of class C¥ (for k > 1), a can be chosen of class C’k on M.

Proof :
Since the normal field A is (at least) of differentiability class CY on OM the function

Yz 1= Z(N) is of Sobolev class H'Q%(OM). Under the 1ntegrab1hty condition (5.1) part
a) of lemma 5 guaranties the existence of a one form 8 € H'Q!(M), such that

6 = @ and Blom(N) = ¢z (53)

On the other hand the extension p_roblem

§|3M =0 and t(&E)laM =t(5—ﬂ) (5,4)




has a solution ¢ € HQ*(M) with 6§ € H'Q'(M) by using corollary 3. Furthermore one
shows — literally as in the prove of lemma 5 (part b) — that this two-form also obeys

(6&)lam(N) = 0.

Hence we obtain « :=  + é£ as a solution of the problem

§a=® , na=nZ and t(ajom) = t(Z) (5.5).

Finally we conclude from the regularity results of lemma 2 and corollary 3 that § and 6¢
are of class CF if ® € C5¥~1(M) and Z|ap is of class CF. . a

The key observation for the proof — as for the proves of lemma 5 - was that the co-
differential is a nilpotent operator, i.e. 62 = 0. This fact made it possible to modify the
one form determined from the Hodge decomposition of ®, which solves a homogeneous
boundary value problem, by the co-differential of any two form. Knowing this and having
the appropriate extension results at hand we could adjust the solution to the desired
boundary value.

Boundary value problems originated from physics, however, are - in their classical formu-
lation — given in terms of vector fields instead of one forms. To make our results appli-
cable we observe that the Riemannian structure Gy on a Cf*!-manifold M induces a
Ck-isomorphism

§:T(TM) — QYM)
WHY) := Gu(Y, W) VY € I(TM)

Under this map the co-differential operator (2.8) transforms into the divergence, 1.e.

(5.6).

W = divw VYW e I(TM) (5.7)
and our central result (theorem 6) immediately transforms into

Corollary 7

Let M be as in theorem 6. Given a function ® € L*(M) and a vector field Z € T'(TM)
with Z|sp of class H! on M, the boundary value problem

divV =@ on M
(5.8)
Viem = Zlom on OM
has a solution V € I'(TM), if and only if the integrability condition
/ D pup + / Gu(Z|om,N) pa =0 (5.9),
M oM

is satisfied. The vector field V € T(TM) is of Sobolev class H! on M and if ® € CF~*(M)
and Z|sar is of class C¥ (for k > 1), V can be chosen of class C} on M.

10




For the special case Z|sp = 0 this the problem is studied in [vWa]. As noted in that
work its solvability is of great interest for investigations in fluid dynamics. The more
general problem, prescribing the boundary value Z|sp arbitrarily — modulo demanding
consistency with the integrability condition (5.9) — has (to the author’s knowledge) not
been studied in the literature, but might also be of some importance for fluid dynamics.
Another range of applications is electro-dynamics. One has to observe, however, that the
the physical nature of this theory is such that harmonic solutions are preferable, except in
very special gauges.

Similar to (5.7) also the action of other first order differential operators (the rotation and
the gradient) can be expressed in terms of the exterior derivative and the co-differential.
In principle it is possible to study coresponding boundary value problems with the same
technique, we used here. One needs, however, to apply the Morrey-Kodeira decomposition
(theorem 4) not only to zero-forms but to the space Q"(M), what yields some technical
difficulties and will not be pursued here further.
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