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1. Introduction

Let C be a nonempty subset of a normed space X, and let Q be a compact topo-
logical space. For all a € @, let fo be an extended-real-valued function on X. We shall

be concerned with the following minimax problem:

minimize sup fo(z),
(P) a€Q
subject to z € C.

Optimality conditions for minimax prbblems involving functions that are differen-
tiable in the sense of Fréchet or Gateaux are given by séveral authofs, but in this paper
we are interested in general necessary conditions of the type given in [4], (5], [10]. In
recent years, in nonsmooth analysis a calculus for various directional derivatives and
subgradients of locally Lipschitzian functions and even larger classes of functions has '
been developed (see e.g. (3], 18], [11]-[15]). The results obtained in [13], [15] yield
necessary optirhality conditions for (P) of the type mentioned above. '
| The purpose of this paper is to establish various hecessary optimality conditions

for (P) in a rather general setting.




The remainder of the paper is organized as follows. Section 2 is devoted to derive a
general necessary optimality condition for (P) together with some examples. In Section
3, we gilve a necessary condition in terms of subgradients and polar cones. We also give
here examples corresponding to the special cases introduced in Section 2. Finally, in
Section 4 we establish necessary optimality conditions for a mathematical program with

mixed constraints.

2. General Necessary Optimality Conditions

We assume that zg is a local minimizer for (P), and for zq fixed we define (see e.g.

[3]):

(a) The contingent cone t6 C at zo is the set
Kc(zo) :={d € X | 3dn — d, 3t, | 0 such that zo +t.dn € C};

(b) The Clarke tangent cone to C at zg is the set
Tc(zo) :={d € X | Von, — zo with z, € C, Vi, | 0,
3d, — d such that z, +t,d, € C}.

Define Qg := {a € Q | fo(xo) = supgeq fo(zo)}. Assume that for all @ € Q we
have extended-real-valued functions ¢4(+) on X such that

1) o) is convex along rays from the origin, ¢+(0) <0 (Va € Q);

2) The mapping a — @q(d) is upper semicontinuous (u.s.c.) and real-valued

for all d € Kc(zo);

3) Forall a € Q \ Qo, pal(d) < +o0 (Vd € Kc(z0))-
Suppose, in addition, that the mapping a — fa(zo) is w.s.c..

Let us introduce the following

Assumption 2.1: For all d € Kc(zo) and sequences dn — d, tn, | 0 satisfying

To + tndn € C, _
o tndn) — Ja
ou(d) > lim sup Je(Z0 T tndn) = falz0)

n—oo tn

uniformly in «.

Theorem 2.2: Assume that Assumption 2.1 is fulfilled and for all o« € Q, fa(z0)
is finite. Then

sup po(d) >0 (Vd € Keo(z0)). (2.1)
a€Qo




Proof: Suppose that (2.1) is false. So, there exists d € Kc(zo) and g > 0 such
that . | |

¢a(d) < —p <0 (Ya € Q). _ (2.2)

Define tho(d) = fa(z0)+pa(d). It follows from (2.2) that for all & € Qo, ta(d) < s,
where m = supaeq‘fo,(xo). Note that m < +o0, since the mapping a ~ fu(zo) is
real-valued and u.s.c., and @ is compact. We shall begin with showiﬁg that there is
d € Ko(zo) such that | _ ,
bo(d) < (Va € Q). (2.3)

To do this, we set U = {a € Q | wa(d) < —p/2}. In view of (2.2) one has Qo C U.
By virtue of the upper semicontinuity of the mapping a — @q(d), Q\ U is compact.
Hence, by the upper semicontinuity of the mapping a — f,(zg), we can find a constant

I > 0 such that for all 8 € Q@ \ U, fg(zo) < m -, and therefore also

¥5(0) = fa(zo) + p(0) < M~ L. ’ (2.4)

Since @ \ U is compact and the mapping o — ¢4(d) is real-valued and u.s.c., we can

find a constant v € IR such that g(d) < v (V8 € Q@ \ U), whence
¥s(d) = fa(zo) + pp(d) SRty (2.5)

For A € (0,1], dx := Ad = A + (1 — A\)0.€ Kc(zo). Then by virtue of the convexity
along rays of 1 (-) and the definition of U we get that for all o € U,

baldr) < M@ + (1~ Aga(0)
_gA(m_g)+(1_A)m

=m—

A < . (2.6)

N~

- For p € @\ U, it follows from (2.4) and (2.5) that
Cs(dr) S MA@ +7) + (1= AR - 1)
=m-Il+Xy+1).

'3




For A small enough (0 < A S-/\l), —I+ Ay + 1) < 0, which implies ¥g(dx) < m. This’
together with (2.6) gives (2.3), whence '

o~

sup (fa(20) + wa(d)) < .
€@ .

Then for some number 1 > 0 we obtain

o~

fa(zo) + wa(d) < — i (Va € Q). (2.7)

Since d € KC(IIIO),. there exist sequénces dn — [i: tn | O-such that zo+t,d, € C. Taking

~account of Assumption 2.1, we get

fa(o + tadn) = fal20) _ & (2.8)

limsup
n—oo t'n.

uniformly in «. Combining (2.7) and (2.8) yields that

limsup L2(Zettndn) = fal20) 5 5 £ (4

n—oo tn

uniformly in @. Consequently, for € > 0 there is a natural number NV (not depending

on «) such that for alln > N,

for(xo + tndn) — fa(xo)
tn

<m-f-falz)¥e. - (29)

We can assume that t, < 1, as ¢, | 0. So, observing that M — fo(zo) > O; from (2.9) it

follows that ‘ o
- fa(Zo + tndn) < fa(zo) + ta(Mm — @ — fa(z0) +¢)

= fal(z0) + ta(M — fal20)) — ta(t —€)
< falzo) + M — fa(zo) —ta(E —€)

= 1 — to(f —€).

- For € < [i, one has fi — ¢ > 0. Hence, for a number n fixed we get

sup fo(zo + tndn) <M —ta(i—e),

agQ
whence '
sup f(.(Io + tpdn) < sup fa(z0),
_ aeQ a€Q v
which conflicts with the hypothesis that zo is a local minimizexi for (P). |
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In the sequel we shall deal with a number of special cases of Theorem 2.2.

Examples 1. Let the functions f, (o € Q) be Fréchet differentiable at z,. Taking
va(d) = (fo(z0),d) we have

b falE0 + tadn) = fa(z0)

n—oco tn

= (fa(20), d), -(2.10)

forallde Kc(zg), dn — d, tn | 0 satisfying zg + tndn € C. Hence, if we assume that
(2.10) is uniform in «, then Assumptionv2.1 iséatisﬁed.
We can formulate an immediate consequence of Theorem 2.2 as follows.
Corollary 2.3: Let z¢ be alocal minimizer for (P). Assume that (2.10) is uniform

" in a; the mappings a — fo(zo) and a — (f"x(xo),d) are u.s.c. for alld € K¢(zo). Then

sup (f.(z0),d) > 0 Vd € Kco(zo).
a€Qo

2. Let the functions f, (@ € Q) be Hadamard differentiable at z¢. This means that for
each a € @ there exists V fo(zo) € X* such that for all d € X,

falwo +td)) — fulzo)
d'—d, t]0 t

(Vfa(:co) d). (2.11)

It is obv1ous that if the limit (2.11) is uniform in « (Vd € Kc(:co), then Assumptlon 2.1
is satisfied. This together with Theorem 2.2 y1elds the following

Corollary 2.4: Let zg be a local minimizer for (P). Assume that the limit (2.11)
is uniform in o for all d € Kc(zo); the ma-ppings ar— fo(zo) and a — (V fo(z0),d) are
u.s.c. for all d € Kc(zo). Then ' |

sup (V falzo),d) > 0Vd € Kc(zo)-
a€Qo

This is a generalization of a result in [7].

3. Let the functions f, (a € Q) be Lipschitz in a neighborhood of zo with Lipschitzian
constants Lo such that sup,eg La < +00. For each o € @, Clarke’s directional deriva-
tive of f, at zo with respect to d, denoted by f3(zo;d), is defined by

_fg(ro; d) := limsup folz +td) ~ fa(:c) (2.12)

I—*Io,tlo t
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Proposition 2.5: Assume that the limit (2.12) is uniform in « for alld € Kc(zo).
Then Assumption 2.1 is satisfied for ¢q(-) 1= fY(zo; ). '

Proof: Let L :=sup,eq La- Since (2.12) is uniform in « it follows

fa(Zo +tnd) — fa(20) + tnLlldn — d|l

foz(-'L'O + tndh) ““foz(xo)

lim sup < limsup
dpn—d, tn 10 tn dn—d, tn |0 tn
. : tnd) —
- lim sup fo:(mo +1in ) fa(fl?o)
t, 10 : tn
. td) —
< limsup fa(z +td) = fo(2) = folzo; d)
z—zg, t]0 t
uniformly in «. Hence Assumption 2.1 is satisfied. | . o

Now we can state a consequence of Theofem 2.2 as follows v

Corollary 2.6: Let zo be a local minimizer for (P). Assume that the limit (2.12)
is uniform in « and the mappings a — fq(z) and a — fi(zo;d) are u.s.c. for all
d € Kc(zo). Then |

sup fo(zo;d) =0 (Va € Kc(zo))- . : (2.13)
a€Qo

4. Let the functions f, (a € Q) be directionally Lipschitzian at zo. Let f be an
extended-real-valued funtion on a normed space X. Let 9 € X be a point at which f
is finite and d € X. We recall [3] that the Rockafellar directional derivative of f at zo
in the direction d is defined by

fT(:rO;d) = inf{r | (d,r) € Tepif(:vg,f(:ro)}.

It can be defined directly by the characterization of fT(zo;-) as follows

fN(z0;d) =lim limsup  inf fle+Aw) -7
el0 (1:,7)1!1:0, Alo wEd+eB )\

’

where (z,7) |s To means that (z,7) €epif, z — zo and v — f(zo); B stands for the
open unit ball. |

If f is lower semicontinuous (l.s.c.) at zo, this definition reduces to

o o)
fN(zq;d) = lun limsup inf f(z +Aw) f(:z:),
10 ], 19, ALO wEd+eB A .

where = | ; 7o means that £ — r¢ and f(z) - f(zg).
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The following properties of fT(zy;-) will be used later (see e.g. [13]):

(a) fT(zo;-) is Ls.c., convex and positively homogeneous;

(b) f1(20;0) = 4 O if fT(z0; ) is proper;

—o0, else
(<) epifT(20;-) = Topi (0, f(z0).
For further discussions on the Rockafellar derivative, we refer the reader to Ward and
Borwein [13], Rockafellar {11], Clarke (3], Hiriart-Urruty [8]. _
We also recall 3] that the function f is said to be directionally Lipschitzian at zo

with respect to d, if f(z¢) is finite and

flz + tw) —¥7

< .
; too

fH(zo;d) := lim sup
) (x)‘Y)lsz) L:J"—"d, tlo

If f is Ls.c. at 2o, this reduces to

f(z +tw) - f(z)
¢

fH(zo,d) = liméup < +o00.

zlyzo, w—d, ti0

Denote by D #(z0) the set of all vectors d such that f is directionally Lipschitzian at To
with respect to d. Notice that (see [3]):

f(zo;d) = fH(z0;d) (Yd € D(x0)).

With the class of directionally Lipschitzian functions we introduce the following

Assumption 2.7: The limit

folz + tw) — fo:(x).
t

fi(zo;d) = lim sup
zlyqTo, w—d, t10

is uniform in a (Vd € K¢ (z0)).

Propositionv 2.8: Assume. that the functions fo (o € Q) are Ls.c. at zo. Then
Assumption 2.7 implies Assumptioﬁ 2.1 with @o(d) := fi(zo; d).

Proof: Suppose that Assumption 2.7 is true. For d € Kc(zo), it holds that

fa($ + tw) - fa(x)

fi(zo;d) = lim sup
Ilja Zg, w—'d,tlo t
> limsup falzo + tndn) - fa(zo)
dn—d, tal0 tn
uniformly in «. Thus Assumption 2.1 is satisfied. ' : a
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- We now can state a conseQuenCe of Theorem 2.2 for the directionally Lipschitzian

case as follows.

Corollary 2.9: Let z¢ be a local minimizer for (P). Assume that the functions
fo (a ‘E Q) a,ré Ls.c. at zo and directionally Lipschitzian at zo with respect to all
directions d € K¢(zo), and Aséumption 2.7 holds. Suppose, in addition, that the
mappings o +— fa(zo) and a — fF(d) are u.s.c. for alld € Kc(zo). Then

sgcg; f(zo;d) > 0 (Vd € Kc(zo)). (2.14)

5. In the case where the functions f, (o € @) are not necessarily directionally Lip-

schitzian at zq, we introduce the following
Assumption 2.10: For all d € Kc(xo), dn — d, tn | 0 satisfying zo +tnd, € C,

f;(zo; d) > limsup fa(l'o + t"df_l) - fa(xo)

.n—00 tn

uniformly in a.

Under this assumption Assumption 2.1 is satisfied for ¢, := fl(zo;-)-

Corollary 2.11: Let zo be a local minimizer for (P) and f, be finite at zo (Vo €
Q). Assume that Assumption 2.10 holds; fl(zo;d) < +o00 (Vo € Q\ Qo) for all
d € Kc(zo); the mappings a — fa(zo) and a — fl(zo;d) are u.s.c. for all d € Kc(zo).
Then

sup fl(xo;’d) >0 (Vd € K¢(zo)).
-~ a€Qo ’

6. Let us consider the case

¢oo(d) = sup fl(zo;d).
a€Qo

Instead of Assumption 2.1 we introduce the following

. ‘Assumption 2.12:

(1) liminf falzo + td') — folzo + td")

=0
d'—d, d'"—d, |0 t T




uniformly in a (Vd € Kc(z0)); fo(zo +td') and fo(zo 4 td") are finite for A > 0 in a
neighborhood of 0 and (d',d") in a neighborhood of (d,d) (Va € @; Vd € Kc(z0)).

i) sup fl(zo;d) > (sup fa)'(20;d) (Vd € Kc(za)).
a€Qo a€Q _

Proposition 2.13: Let zo be a local minimizer for (P) and fo be finite at

zo (Va € Q). Assume that Assumption 2.12 1s fulfilled. Then

sup fl(zo;d) >0 (Vd € Ko(zo)). (2.18)

a€Qo

Proof: Suppose that (2.15) is false. This means that there exists d € Kc(zo)

and g > 0 such that '
sup fi(zg;d) < —pu<0. (2.16)

a€Qo

Let foo := Supgeq fa- It follows from Assumption 2.12 (i1) and (2.16) that
flo(z0;d) < —p,

that is v
7 (d,—p) € epifd(zo;-)-

Moreover,

Since d € K¢(zo), there exist sequences dn, — d and t, | 0 such that zo +tndn € C.
* It follows from (2.17) that there exist sequences d;, — d, pn — —p such that

(20, foo(0)) + tn(d, fn) € €Difoo,

which implies that ’

By Assumption 2.12 (i), for £ > 0 there exists a subsequence {ni} (not depending on

o) of the set {1,2,...} such that

fﬂ(l‘o + t”bd"k) - fa(xO + tnkdlnk)

tne

<e(Va e Q) - (2.19)

pifLo) = Topig (o, fol@)).  (217)




Combining (2.18) and (2.19) yields that

fOO(‘TO + tnkdnk) - fOO(a:O)

tny

< #nk +€.

Since pn, — —p, there is a natural number N (not depending on a) such that for all

k>N,
foo(mO + tnkdnk) - foo(l'o)

R tnk '

< —p+ 2,
which implies that
foo(z0 +tnk dn,) — fOO(l'O) < tﬂk(2€ — 1)

For ¢ small enough, 2¢ — u < 0. Hence, for a numBer k fixed we get

foo(fEO + tnk nk) fOO(xo) < 0

which contradicts the hypothesis that zo is a local minimizer for (P). a

Remark 2.14: Proposition 2.13 includes Theorem 6 [8] as a special case.

3. Necessary Conditions in Terms of Subgradieﬁts

Denote by X} the topological dual of X, endowed with weak™ topology.
Assume now that g is sublinear (Vo € Q). Let Opqa(0) := {z* € X* | (z*,d) <

| vald)Vde X},

Theorem 3.1: Let zo be a local minimizer for (P) and let M be a closed convex
subcone of K¢(zo) with vertex at the origin. Assume that all the hypotheses of Theorem
2.2 hold; Op4(0) # 0 and Ya(d) = sup,eap, (0)(z*,d) (Yo € Qo). Then

0 € clco( | 8va(0)) — M*], (3.1)

a€Qo '
where co and cl denote convex hull and weak* closure, respectively; M* is the polar
cone of M, , :
M*:={z" € X* | (z*,d)y >0Vde M}.

Proof: Taking account of Theorem 2.2 we get

sup pq(d) >0 (Vd € M). (3.2)
T a€Qo :
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We now assume that (3.1) is false, i.e.,

0 ¢ clfco( | Bpa(0)) — M*]. (3.3)
a€Qo
The right hand side of (3.3) is weak* closed convex. So from a standard separation

theorem for convex sets (see e.g. Theorem 3.6 [5]) there exist dy € (X})* = X and
v € IR such that
0> 7> (£,do) forall € € co( | ] Bpa(0)) — M*.

a€Qo
Since M* is a cone containing the origin this implies

0> (&dy) VEE€ —M*, (3.4)
0> 752 (6 do) VE€ ] 0pal0). - (33)
a€Qo

It follows-from (3.4) that dy € —(—M*)* = M. If follows from (3.5)-that-———-

0>v2> sup (£ do) =waldo) (Vo € Qo),
Eea‘ch(O)_

whence

0> sup @a(do).
a€Qo

This contradicts (3.2). O

Remark 3.2: Under all hypotheses of Theorem 3.1, (3.1) is equivalent to (3.2).
Indeed, Theorem 3.1 shows that (3.2) implies (3.1). We shall prove that, conversely,
(3.1) implies (3.2). Assume now that (3.1) is true. Observe that if A is any subset
of X*, then @ being a element of the weak* closure of A implies that for all d € X
and € > 0 there exists a € A such that [(a — @,d)] < €. Hence for every d € X and
€ > 0 there exist finitely many a; € Qo, & € Opq;(0), A; > 0 satisfying >, A; =1, and
m* € M* such that

—e <> Ailbid) — (m*,d) < Nipei(d) — (m*, d).
Choosing d € M we get

—e < Z Aipa;(d) < Z Ai Sup Pa(d) = Sup pa(d).

ot S Y 7 s

Since ¢ is afbi-traryAthis implies
sup pqo(d) > 0.
a€Qo

Hence (3.1) implies (3.2). | a
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Remark 3.3: If cl(caner acpa(O)) is weak* compact, then (3.1) becomes

0 € clfco U Bpa(0)) — M*. , (3.6)
a€Qo :
Indeed, from the general fact that cl(4 + B) = cl(clA + B), if we take

A = colUqeq, 99a(0), B = —M*, then clA + B is weak* closed. So the assertion
is proved. ' - a

Corollary 3.4: Let zo be a local minimizer for (P) and M be a closed convex
subcone of K¢(zqo) with vertex at the origin. Assume that all the hypotheses of Theorem
2.2 hold; ¢4 is L.s.c., proper and upper-bounded in a neighborhood of 0 (Yo € Qo),‘ the
‘mapping a — 0pq(0) is u.s.c. from Q into X;. Then

0€ cl(éo U Opa(0)) — M*.
a€Qo

Proof: From Theorem 3.1 and Remark 3.3 we need only show that

| cl(coUqeq, Opa(0)) is weak* compact. | .

By virtue of Propoéition 2.1.4 [3], 8¢+(0) (Va € Q) are nonempty weak* compact
subset and : ‘

o(d) = *.d).
pa(d) z~§$3f(o)<$ )

Making use of the compactness of @ and the upper semicontinuity of the mapping
a — Opa(0) we get U e Opa(0) is weak™ compact (see e.g. [2]). By Alaoglu’s Theorem
(1] Ugeq 9¢(0) is norm-bounded. So cl(co Uaer-acpa(O)) is norm-bounded. Hence
cl(coUqen, 84(0)) is weak* compact. _ : a

Examples .

We now turn back to the situations investigated in the examples of Section 2.
1. The functions fo (@ € Q) are Fréchet differentiable at o with the derivatives f5(zo).
We suppose that (2.10) is uniform in «, the mappings o fa(zo) and a — (fi(z0),d)
are u.s.c. for all d € Kc(ry). Then, by Theorem 3.1 we get

el co{f!(zo), a € Qo} N M* #19. | (3.7)
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~ This is a generalization of a geometrical necessary condition in [5].
2. The functions fo(a € Q) are Lipschitz in a neighborhood of zg.
The Clarke subgradient of f at z¢ is defined by |

Bfalmo) := {z* € X* | (z*,d) < fo(zo;d) Vo € X}.
Then, .
8fa(z0) = Ofa(z0;0).
Hence, by Corollary 2.6 and Corollary 3.4 we get the following ‘

Corollary 3.5: Let 7o be a local minimizer for (P) and M be a closed convex

subcone of K¢(zo) with vertex at the origin. Assume that all the hypotheses of Corollary

2.6 hold. Suppose, furthermore, that the mapping « — 3fa(zo) is w.s.c. from Q into

| X>. Then

"Oeclco | Ofalzo) - M™. (3.8)
a€Qo '

3. The functions f, (a-€ Q) are directionally Lipschitzian at zg.
The generalized subgradient of fo at zo is defined by

Ofa(zo) = {z* € X* | (2", d) < fi(zo;d) Vd € X}.

Then, if fl(zo;-) is proper,
| 0fa(z0) = 8f1(z0;0)

(see e.g. [13]). By Corollary 2.9 and Corollary 3.4 we obtain the following

Corollary 3.6: Let 2 be a local minimizer for (P) and M be a closed convex
subcone of K¢(zo) with vertex at the origin. Assume that all the hypotheses of Corollary
2.9 hold; the mapping a — Ofs(zo) is u.s.c. from Q into X5; f&(zo;-) (Va € Qo) are
finite on X. Then ' | ‘

0eclco | ] Ofalzo) - M (3.9)
’ a€Qo ,

4. The case: Yoo(d) = SUpseq, fl(zo;d).
Combining Proposition 2.13 and Corollary 3.4 we get

Corollary 3.7: Let ro be a local minimizer for (P), fa is finite at zo (Va € Q),

“and M be a closed convex subcone of Kc(zo) with vertex at the origin. Assume that
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Assumption 2.12 holds; the mapping a — 0fq(zo) is u.s.c. from Q into X% fl(zo;-) is

proper and upper-bounded ina neighborhood of 0 (Va € Qo). Then

Oeclco | J Ofalzo) — M".
a€Qo

4. A Constrained Mathematical Program
~ Let us consider the folloWing problem:
minimize f(z)

(MP) _ subject to

sup fo(z) < 0and z € C.
a€Q

where f is an extended-real-valued function on X , fa (2 € Q) and C are as in (P).
Assume that ¢ is a u.s.c., positively homogenuous function on X satisfying the
following |

Assumption 4.1: (i) Fora]l d € Kc(zo), dn — d, in | 0 satisfying to+1tndn € C,

Lp(d) > lim sup f(:L'O + tndn) — f(xo);

N O0 tn

(i) cl{d € Kc(zo) | suPgeq, Pa(d) < 0} D {d € Kc(zo) | supaeq, Pa(d) < 0}, where

cl indicates the norm-closure. -
Theorem 4.2: Let zo be a local minimizer for (MP) and f, fo (Va € Q) be
finite at zo. Assume that Assumptions 2.1 and 4.1 are fulfilled. Then

@(d) > 0 for all d € Kc(zo) satisfying sup .goo,(d) <0. (4.1)

a€Qo

Proof: We first prove that ¢(d) > 0 for all d € Kc(zo) satisfying sup,eg, ald) <

Suppose that this is false. So thereisd € Kc(zo) satisfying sup,eq, @a(d) < 0such
that p(d) < 0. Hence, for some u > 0, ¢(d) < —u < 0. Define o(d) = fa(zo) + @a(d).
In the same way as in the proof of Theorem 2.2 we can find d=Xde€ Kc(zo) such that

sup ';’:(,(J) < 7, where m = sup fo(zo)-
a€Q . ) a€Q
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Since d € Kc(zo), there exist sequences d, — c;l\, tn | 0 such that z¢ + tpd, € C.
Making use of Assumption 2.1, by an argument analogous to that used for the proof of

Theorem 2.2 we can find a natural number N, such that for alln > Ny,

sup fo(To + tndn) — sup falzo) < 0.
a€Q . acQ _

Hence zg + tndy is a feasible point of (MP). On the other hand, since o(d) < —p it
follows from the positively homogeneity of ¢, that

o(d) = Xp(d) < - <0,

where o1 = . By Assumption 4.1 (i), for ¢ > 0 there is a natural number No(> Np)
such that for all n > Ns,

f(@o + tadn) = f(z0)

—+e
. S —pte,

whence
f(xO + tndn) - f(xO) S tn(“‘ﬁ + 5)-

Consequently, for ¢ < & and a number n fixed, we get
f(zo + tadn) — flzo) <0,

which contradicts the hypothesis that zg is a local minimizer for (M P). So, we have

proved that
o(d) > 0Vd e {de Ke(zo) | sup wald) <0}

a€Qo

Since ¢ is u.s.c., it follows that

p(d) 2 0Vd € cl{d € Ke(so) | sup ¢ald) < 0).

a€Qo .

By Assumption 4.1 (ii), we get

¢(d) > 0%d € {d € Kc(zo) | sup pa(d) < 0}
a€Qo
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Corollary 4.3: Let zo be a local minimizer for (M P). Assume that all the
hypotheseé of Corollary 2. 9 and Assumption 4.1 (i), (11) are fulfilled. Then

fT(zo;d) >0 for all d € K¢ (zo) satisfying sup fl(zo;d) < 0.
a€Qo

By arguments analogous to that used for the proof of Proposition 2.13 we get the

following result.

Proposition 4.4: Let zo be a local minimizer for (M P) and f, fa (a € Q) be
finite at zo (Vo € Q)). Assume that Assumptions 2.12 and 4.1 (i), (i) hold. Then

fT(:I:o; d)>0 for alld e Kcv(mo) satisfying sup fl(mo; d) <0.

Qo

To derive a necessary optimality condition for (MP) in terms of subgradients, we

now assume that ¢ and @, are sublinear (Va € Q). Let
9p(0) := {z* € X" | (z*,d) < p(d) Vd € X}.

Theorem 4.5: Let zo be a local minimizer for (MP), f, fo (a € Q) be finite at
Zo, and M be a closed convex subcone of K¢(zo) with vertex at the origin. Assume that
Assumptions 2.1 and 4.‘1 are fulfilled. Suppose, furthermore, that 0p(0) is nonempty,
weak® compact and ¢(d) = sup,-ca,(0)(¢*,d); for each a € Qo, O0pa(0) is‘nonempty
and pq(d) = sup,«ea,(0)(z",d). Then |

0 € 0p(0) +lfec( | dpal0) — M), (42)

a€Qo

where cc and cl denote convex conical hull and weak* closure, respectively.

Proof: By Theorem 4.2 we get

~p(d) >0 for all d € M satisfying sup @a(d) < 0. (4.3)

a€Qo -

Assume now that (4.2) is not true. So 0 doesn’t belong to the set on the right hand side.

The latter is weak” closed, since 9p(0) is weak* compact. Moreover it is convex. So from
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a standard separation theorem (see e.g. Theorem 3.6 [5]) there exist do € (X;)* = X
and v € IR such that
0> 7> (£,do) V& € 8p(0) + cc( | ] Bpal(0)) — M™.
a€Qo

Since cc(Uqeq, 99a(0)) and M* are cones it follows from this that
0> 7 > (€,do) V& € 9p(0),

0> (¢,do) VE€ | Bpal0),
a€Qo

0> (£,do) VEE —M™.
The first of these inequalities implies ¢(do) < 0. The second implies pqo(do) < 0 for all
a € Qo. The third implies dg € M*™* = M, a contradiction with (4.3). O

Remark 4.6: We remark that, conversely, (4.2) implies (4.3).

Indeed assume that (4.2) is true. Observe that if A is any subset of X*, then @
being an element of the weak* closure of A implies that for all d € X and ¢ > 0 there
exists a € A such |{(a—@,d)| < e. Hence, if (4.2) is true, then for every d € X and ¢ >0
there exist £ € 8p(0), finitely many a; € Qo, & € 0wa;(0), Ai 2 0 and m* € M?* such
that |

e < (6,d) + 3 Mlind) — (", d) < p(d) + 3 Mipes(d) — (m,d).

In particular if d € M and satisfies po(d) < 0 (Yo € Qo) we obtain
—e < p(d).

Since ¢ is arbitrary, this implies 0 < ¢(d). Hence (4.3) is satisfied. So (4.2) is equivalent
to (4.3) . a

Remark 4.7: If we assume that ¢ is l.s.c., proper, sublinear, then it can be expressed by

so(d)= sup (z*,d),
z*€8¢(0)

where &p(O) is nonempty, weak* closed (see e.g. [3]). If we suppose, in addition, that ¢ is upper-

bounded in a neighborhood of 0, or that o is a finite function on X, then 8p(0) is weak™ compa.ct (see

e.g. Theorem 5 [8] and Proposition 2.1.4 [3]).

‘We derive a consequence of Theorem 4.5 for the directionally Lipschitzian case of
fo (Va € Q).
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Corollary 4.8: Let zo be a local minimizer for (M P) and M be a closed convex

subcone of Kc(zo) with vertex at the origin. Assume that all hypotheses of Corollary

4.3 hold; f(zo;-) is proper and upper-bounded in a neighborhood of 0. Then

(1]

[13]

DO VAN LUU, Institute of Mathematics, P.O. Box 631 BoHo, 10000 Hanoi, Vietnam.

0 € 8f(zo) +clfcc( | 8falzo)) — M*].

a€Qo
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