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1. Introduetion

Let C be a nonempty sub set of a normed space X, and let Q be a compact topo-

logical space. For all a E Q, let fex be an extended-real-valued funetion on X. We shall

be concerned with the following minimax problem:

minimize sup fex(x),
exEQ

subjeet to x E C.

Optimality conditions for minimax problems involving funetions that are differen-

tiable in the sense of Frechet or Gateaux are given by several authors, but in this paper

we are interested in general necessary conditions of the type given in [4]' [5], [10]. In

recent years, in nonsmooth analysis a calculus for various directional derivatives and

subgradients of locally Lipschitzian funetions and even larger classes of funetions has

been developed (see e.g. (3), [8), [11]-[15]). The results obtained in [13], [15] yield

necessary optimality conditions for (P) of the type mentioned above.

The purpose of this paper is to establish various necessary optimality conditions

for (P) in a rather general setting.
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The remainder of the paper is organized as follows. Section 2 is devoted to derive a

general necessary optimality condition for (P) together with some examples. In Seetion

3, we give a necessary condition in terms of subgradients and polar cones. We also give

here examples corresponding to the special cases introduced in Section 2. Finally, in

Section 4 we establish necessary optimality conditions for a mathematical program with

mixed constraints.

2. General Necessary Optimality Conditions

We assume that Xo is a local minimizer for (P), and for Xo fixed we define (see e.g.

[3]):

(a) The contingent cone tö C at Xo is the set

Kc(xo) := {d E X I :3dn -4 d, :3tn 10 such that Xo + tndn E Cl;

(b) The Clarke tangent cone to C at Xo is the set

Tc(xo) := {d E X I VXn -4 Xo with Xn E C, Vtn 1 0,

:3dn -4 d such that Xn + tndn E Cl.
Define Qo:= {a E Q I fcAxo) = sUPßEQfß(xo)}, Assume that for all a E Q we

have extended-real-valued funetions <Pa(') on X such that

1) <Pa(') is convex along rays from the origin, <Pa(O) ~ 0 (Va E Q)j

2) The mapping a J-+ <Pa(d) is upper semicontinuous (u.s.c.) and real-valued

for all d E Kc(xo)j

3) For all a E Q \ Qo, <Pa(d) < +00 (Vd E Kc(xo)).

Suppose, in addition, that the mapping a J-+ fa(xo) is u.s.c ..

Let us introduce the following

Assumption 2.1: For a11d E Kc(xo) and sequences dn -4 d, tn 1 0 satisfying

Xo + tndn E C,

uniformly in a.

Theorem 2.2: Assume that Assumption 2.1 is fulfilled and for a11a E Q, fa(xo)

is finite. Then

~up ?n(d) 2: 0 (Vd E Kc(xo )).
oEQo
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Proof: Suppose that (2.1) is false. So, there exists d E Kc(xo) and J.l > 0 such

that

<Pcld) ~ -J.l < 0 (Va E Qo). (2.2)

Define 1/JOt(d) := fOt(xo)+<pOt(d). It follows from (2.2) that for all a E Qo, 1/JOt(d) ~ m-J.l,

where m := sUPOtEQfOt(xo). Note that m < +00, since the mapping a f-+ fOt(xo) is

real-valued and u.s.c., and Q is compact. We shall begin with showing that there is

d E Kc(xo) such that

1/JOt(d) < m (Va E Q). (2.3)

To do this, we set U = {a E Q I <POtCd) < -J.l/2}. In view of (2.2) one has Qo C U.

By virtue of the upp~r semicontinuity of the mapping a f-+ <POtCd), Q\ U is compact.

Hence, by the upper semicontinuity of the mapping a H fOt(xo), we can find a constant

l > 0 such that for all ß E Q \ u, fß(xo) ~ m -l, and therefore also

(2.4)

Since Q \ U is compact° and the mapping a f-+ <POtCd) is real-valued and U.S.C., we can

find a constant , E IR such that <pß(d) ~ , (Vß E Q \ U), whence

(2.5)

For A E (0,1], dA := Ad = Ad + (1 - A)OE Kc(xo). Then by virtue of the convexity

along rays of 1/JOt(.) and the definition of U we get that for all a EU,

1/JOt(dA) ~ A1/JOt(d) + (1 - A)1/JOt(O)

~ A(m - i) + (1 - A)m

~ 1\ ~
= m - -/\J.l < m.

2

For ß E Q \ U, it follows from (2.4) and (2.5) that

lI'3(d.\) ~ A(m + ,) + (1 - A)(m -l)

= in - l + A(, + l).
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For A small enough (0 < A ::; Al), -l +A(r + l) < 0, whieh implies 'l/;ß(d>..) < m. This
together with (2.6) gives (2.3), whence

Then for some number j1 > 0 we obtain

(2.7)

Since d E Kc(xo), there exist sequences dn -+ d, tn 1O-sueh that Xo +tndn E C. Taking

account of Assumption 2.1, we get

1. tAxa + tndn) - la(xo) < (d~)Imsup _ 'Pa
n--oo . tn

uniformly in a. Combining (2.7) and (2.8) yields that

(2.8)

1, la(xa + tndn) - la(xo) < ~ ~ f ( )1msup --------- _ m - !-L - a Xo
n--oo tn

uniformly in a. Consequent1y, for c > 0 there is a natural number N (not depending

on a) such that for all n 2:: N,

(2.9)

la(xo + tndn) ::; la(xa) + tn(m - j1- la(xa) + c)

= la(xo) + tn(m - la(xa)) - tnCji - c)

:::;Icr(xa) + m - la(xo) - tnCji - c)

=m-tn(j1-c),

We ean assurne that tn ::; 1, as tn 10, So, observing that m - la(xo) 2:: 0, from (2.9) it

follows that

Far c < j1, one has j1- c > O. Hence, for a number n fixed we get

sup la(xa + tndn) ::;m - tn(j1- c),
nEQ

whenee

:>up !u(ro + tndn) < sup la(xo),
"EQ aEQ ,

which eonfliets with the hypothesis that Xa is a loea1 minimizer für (P). o
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In the sequel we shall deal with a number of special cases of Theorem 2.2.

Examples 1. Let the funetions Jet (a E Q) be Frechet differentiable at Xo. Taking

tpet( d) := U~(xo), d) we have

(2.10)

for all d E Kc(xo), dn -:-t d, tn 10 satisfying Xo + tndn E C. Hence, if we assume that

(2.10) is uniform in a, then Assumption 2.1 is satisfied.

We can formulate an immediate consequence of Theorem 2.2 as follows.

Corollary 2.3: Let Xo be a local minimizerfor (P). Assume tbat (2.10) is uniform

in a; tbe mappings a I--t Jo:(xo) and a I--t U~(xo),d) are u.s.c. for all d E Kc(xo). Tben

sup U:(xo),d) ~ 0 Vd E Kc(xo).
o:EQo

2. Let the functions Jet (a E Q) be Hadamard differentiable at Xo. This means that for

each a E Q there exists \1Jet(xo) E X* such that for all d E X,

lim Jo:(xo + td') - Jo:(xo) = (\1Jo:(xo),d).
d'-d, tlO t

(2.11)

It is obvious that if the limit (2.11) is uniform in a (Vd E Kc(xo), then Assumption 2.1

is satisfied. This together with Theorem 2.2 yields the following

Corollary 2.4: Let Xo be a local minimizer for (P). Assume tbat tbe limit (2.11)

is uniform in a for all d E Kc(xo); tbe mappings a I--t Jo:(xo) and a I--t (\1Jo:(xo), d) are

u.s.c. for all d E Kc(xo). Tben

sup (\1Jo:(xo),d) ~ 0 Vd E Kc(xo).
etEQo

This is a generalization of a result in [7].

3. Let the funetions Jo: (a E Q) be Lipschitz in a neighborhood of Xo with Lipschitzian

constants Lo: such that sUPaEQLa < +00. For each a E Q, Clarke's directional deriva-

tive of Jo: at Xo with respect to d, denoted by f~(xo; d), is defined by

fo( 'd) '- l' fet(x + td) - fet(x)~ Xo, .- Imsup ..~ . t
. I-+Io,tlO
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Proposition 2.5: Assume that the limit (2.12) is uniform ina for all d E Kc(xo).

Then Assumptiori 2.1 is satisned for 'Pa(') := f~(xo; .).

Proof: Let L := sUPaEQLa. Since (2.12) is uniform in a it follows

1. fa(xo + tndn) - fa(xo) < l' fa(xo + tnd) - fa(xo) + tnLlldn - dllImsup . _ Imsup ....
dn->d, tn10 in dn~d, tn10 tn

1. fa(xo + tnd) - fa(xo)= Imsup
tn10 in

< 1. fa(x + td) - fa(x) fO( d)_ Imsup = a xo;
x->xo. t10 t

uniform1y in a. Hence Assumption 2.1 is satisfied.

Now we can state a consequence of Theorem 2.2 as follows

Corollary 2.6: Let Xo be a loeal minimizer for (P). Assume that the limit (2.12)

isuniform in a and the mappings a t-+ fa(xo) and a t-+ f~(xo;d) are u.s.e. for all

d E Kc(xo). Then

sup f~(xo; d) 2:: 0 (Va E Kc(xo)).
aEQo

(2.13)

4. Let the functions fa (a E Q) be directional1y Lipschitzian at Xo. Let f be an

extended-real-valued funtion on a normed space X. Let Xo E X be a point at which f
is finite and d EX. We recall [3] that the Rockafellar directional derivative of f at Xo

in the direction d is defined by

fi(xo;d):= inf{r I (d,r) E Tepi/(xo,f(xo)}.

It can be defined direct1y by the charactenzation of ji (xo; .) as follows

fex + J..w)-,
fi (xo; d) = lim lim sup inf J.. '

dO (x,-r)1lxO. >'10 wEd+eB .

where (x,,) 11 Xo means that (x,,) Eepif, x ---+ Xo and, ~ f(xo); B stands für the

open unit ball.

1£f is 10wer semicüntinuous (l.s.c.) at Xo, this definition reduces to

. f (x + J..w) - f (x )
fi (xo; d) -= !im lim sup mf J..

'LO LI/IO, .\1owEd+eB .

where x 11 Xo means that .e --t LO and fex) ---+ f(xo).
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The following properties of Ji(xo;.) will be used later (see e.g. [13]):

(a) Ji(xo;') is l.s.c., convex and positively homogeneous;
(b) Ji(xü; 0) = {O, if ji(xo;.) is proper;

,-00, else
(c) epiJi(xo;') = TepiJ(xo,J(xo)).
For furt her discussions on the Rockafellar derivative, we refer the reader to Ward and

Borwein [13]' Rockafellar [11]' Clarke [3]' Hiriart- Urruty [8].

We also recall [3] that the function J is said to be directionally Lipschitzian at Xo

with respect to d, if J( xo) is finite and

J+(xo; d) := limsup _J_(x_+_tw_)_-_, < +00.

(x"HfxO, w-d, tLO t

If J is l.s.c. at Xo, this reduces to

J (x + tw) - J (x )J+(xo,d) = limsup ------ < +00.
xLf Xo, w-d, tLO t

Denote by DJ( xo) the set of all vectors d such that J is directionally Lipschitzian at Xo

with respect to d. Notice that (see [3]):

With the dass of directionally Lipschitzian functions we introduce the following

Assumption 2.7: The limit

J;;(xo;d) = limsup
xLfoxO, w~d, tLO

Ja(x + tw) - Ja(x)
t

is uniform in a (Vd E Kc(xo)).
Proposition 2.8: Assume that the funetians Ja (a E Q) are l.s.c. at xo. Then

Assumptian 2.7 implies Assumptian 2.1 with 'Pa(d):= J;;(xo;d).

Proof: Suppose that Assumption 2.7 is true. Fard E Kc(xo), it holds that

J;;(xo;d) = limsup
.cl!<> Xo. w~d,tLO

uniformly in a. Thus ASSuIllption 2.1 is satisfied.
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We now can state a consequence of Theorem 2.2 for the directionally Lipschitzian

case as follows.

Corollary 2.9: Let Xo be a local minimizer for (P). Assume that the functions

fa (a E Q) are l.s.c. at Xo and directionally Lipschitzian at Xo with respect to all

directions d E Kc(xo), and Assumption 2.7 holds. Suppose, in addition, that the

mappings a 1---7 fa(xo) and a 1---7 ft(d) are u.s.c. for all d E Kc(xo). Then

sup rt(xo; d) ;:::0 (Vd E Kc(xo)).
aEQo

(2.14)

5. In the case where the funetions fa (a E Q) are not necessarily directionally Lip-

schitzian at Xo, we introduce the following

Assumption 2.10: For all d E Kc(xo), dn ---+ d, tn L 0 satisfying xo+tndn E C,

uniformly in a.

Underthis assumption Assumption 2.1 is satisfied for <pa := fl(xo; .).

Corollary 2.11: Let Xo be a local minimizer for (P) and fa be finite at Xo (Va E

Q). Assume that Assumption 2.10 holds; fl(xo; d) < +00 (Va E Q \ Qo) for all

d E Kc( xo); the mappings a 1---7 fa(xo) and a 1---7 fl(xo; d) are u.s.c. for all d E Kc(xo).

Then

sup fl(xo;d);::: 0 (Vd E Kc(xo)).
aEQo .

6. Let us consider the case

<p<XJ(d)= sup fl(xo; d).
aEQo

Instead of Assumption2.1 we introduce the following

Assumption 2.12:

(i) 1.. f [fa(xo+td')-fa(xo+td")] 0
In1111 =

d'--d, dU -d. t [0 t
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uniformly in a (VdE Kc(xo)); Ja(XO + td') and Ja(XO + td") are finite for ,.\ > 0 in a

neighborhood ofO and (d',d") in a neighborhood of(d,d) (Va E Q; Vd E Kc(xo)).

(ii) sup J!(xo; d) ~ (sup Ja)i(XO; d) (Vd E Kc(xo)).
aEQ~ aEQ

Proposition 2.13: Let Xo be a local minimizer for (P) and Ja be finite at

Xo (Va E Q). Assume that Assumption 2.12 is fulfilled. Then

sup JI(xo; d) ~ 0 (Vd E Kc(xo)).
aEQo

(2.15)

Proof: Suppose that (2.15) is false. This means that there exists d E Kc(xo)

and J.L > 0 such that

sup Jl( xo; d) ::; - J.L < O.
aEQo

Let Joo := sUPaEQJa. It follows from Assumption 2.12 (ii) and (2.16) that

that ~s

. (d, -J.L) E epiJL,(xo; .).

Moreover,

(2.16)

(2.17)

Since d E Kc(xo), there exist sequences dn --+ d and tn 10 such that Xo + tndn E C.

It follows from (2.17) that there exist sequences d~ --+ d, J.Ln --+ -J.L such that

which implies that
(2.18)

By Assumption 2.12 (i), far E> 0 there exists a subsequence {nd (not depending an

a) af the set {I, 2, ... } such that

(2.19)
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Combining (2.18) and (2.19) yields that

!oo(xo + tnkdnk) - !oo(xo)
t < /-lnk +6.

nk

Since /-lnk ~ - /-l, there is a natural number N (not depending on a) such that for all

k 2:: N,

which implies that

For 6 small enough, 26 - /-l < O. Hence, for a number k fixed we get

which contradicts the hypothesis that Xo is a local minimizerfor (P).

Remark 2.14: Proposition 2.13 inc1udes Theorem 6 [8}as a special case.

. '

3. Necessary Conditions in Terms of Subgradients

D

Denote by X~ the topological dual ofX, endowed with weak* topology.

Assume now that !.pOlis sublinear (Va E Q). Let O!.pOl(O):= {x* E X* I (x*, d) ::;

!.pOl(d) Vd EX}.

Theorem 3.1: Let Xo be a loeal minimizer for (P) and let M be a closed eonvex

subcone of Kc(xo) with vertex at the origin. Assume that all the hypotheses oE Theorem

2.2 hold; O!.pOl(O)=1= 0 and !.pOl(d)= SUPx.E8'PQ(O)(x*,d) (Va E Qo). Then

OEcl[co( U o!.pOl(O))-M*],
OlEQo

(3.1 )

where co and cl denote convex hull and weak* closure, respectivelYi M* is the polar

cone oE M,

M* := {x* E X* I (x*, d) 2:: 0 Vd E M}.

Proof: Taking account of Theorem 2.2 we get

sup 'P0l( d) 2:: 0 (Vd E M).
. crEQo
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We now assurne that (3.1) is false, i.e.,

o tf. cl [co( U 8'Pa(O)) - M*]. (3.3)
aEQo

The right h~n<.lside of (3.3) is weak* closed convex. So from ~~t,~~..Q.9f.gs.eparation

theorem for convex sets (see e.g. Theorem 3.6 [5]) there exist do E (X;)* = X and

I E IR such that

o > I ~(~,do) for all ~ E co( U 8'Pa(O)) - M*.
aEQo

Since M* is a cone containing the origin this implies

o ~ (~, do) V~ E -M*, (3.4)

o > I ~(~,do) V~ E U 8'Pa(O). (3.5)
aEQo

It follows~from (3.4) that do E -( -M*)* = M. 1£follows from (3.5}.that ..----.-

o > I ~ sup (~, do) = 'Pa(do) (Va E Qo),
eE8c,o", (0)

whence

o > sup 'Pa(do).
OIEQo

This contradicts (3.2).

Remark 3.2: Under all hypotheses oETheorem 3.1, (3.1) is equivalent to (3.2).

o

Indeed, Theorem 3.1 shows that (3.2) implies (3.1). We shall prove that, conversely,

(3.1) imp'!i~~_(3.2)._Assume now that (3.1) is true. Observe ~h~!.JEA_~.~_a:rysubset
of X*, then a being a element of the weak* closure of A implies that for all d E X

and c > 0 there exists a E A such that I(a - a,d) I Sc. Hence for every d E X and

c > 0 there exist finitely many ai E Qo, ~i E 8'Pa;(O), .Ai~ 0 satisfying L:i.Ai = 1, and
m* E M* such that

-c S I:: .Ai(~i, d) - (m*, d) S I:: .Ai'Pa;(d) - (m*,d).
i i

Choosing dEM we get

-c s I:: .Ai'POI;(d) S I::.Ai sup 'Pa( d) = sup 'Pa( d) .
.i i aEQo aEQo

'" ~ ,'~_."""",-'-""'"""."'-,,",-.

Since c is arbitrary this implies

Hence (3.1) implies (3.2).

sup 'Pa( d) ~ O.
OIEQo
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Remark 3.3: If c1(coUO'EQo84'0'(0)) is weak* compact, then (3.1) becomes

OE cl (co U 8<1'0'(0)) - M*.
O'EQo

(3.6)

Indeed, from the general fact that cl(A + B) d( dA + B), if we take

A = co UO'EQo8<p0'(0), B = -M*, then dA + B is weak* dosed. So the assertion

is proved. 0

Corollary 3.4: Let Xo be a loeal minimizer for (P) and M be a c10sed eonvex

subeone of K c( xo) with vertex at the origin. Assurne that all the hypotheses of Theorem

2.2 hold; <PO'is l.s.e., proper and upper-bounded in a neighborhood ofO (Va E Qo); the

mapping a t--+ 8<p0'(0) is u.s.e. from Q into X;. Then

OE d(co U 8<pa(0)) - M*.
O'EQo

Proof: From Theorem 3.1 and Remark 3.3 we need. only show that

cl( co UO'EQo8<p0'(0)) is weak* compact.

By virtue of Proposition 2.1.4 [3]' 8<p0'(0) (VaE Q) are nonempty weak* compact

subset and

<PO'(d) = max (x*, d).
x*E8ep",(0)

Making use of the compactness of Q and the upper semicontinuity of the mapping

a t--+ 8<p0'(0) we get UO'EQ8lpO'(0) is weak* compact (see e.g. [2]). By Alaoglu's Theorem

[1] UO'EQ8<p0'(0) is norm-bounded. So cl( co UO'EQo8<Pa(0)) is norm-bounded. Hence

cl(coUO'EQo 8<pa(0)) is weak* compact. 0

Examples

We now turn back to the situations investigated in the examples of Section 2.

1. The functions JO' (a E Q) a.re Frechet differentiable at Xo with the derivatives J~(xo).

We suppose that (2.10) is uniform in a, the mappings Ci. t--+ JO'(xo) and a t--+ (J~(xo),d)

are u.s.c. for all d E Kc(.rQ). Then, by Theorem 3.1 we get

cl coU~(xo), a E Qo} n M* i= 0.

12
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This is a generalization of a geometrical necessary condition in [5].

2. The funetions la(a E Q) are Lipschitz in a neighborhood of Xo.

The Clarke sub gradient of I at Xo is defined by

ßla (X0) := {x * E X * I (x * , d) ::;I~ (x 0 ; d) Va EX}.

Then,

ßla(xo) = ß/~(xo; 0).

Hence, by Corollary 2.6 and Corollary 3.4 we get the following

Corollary 3.5: Let Xo be a loc81 minimizer for (P) and M be a c10sed convex

subcone of Kc(xo) with vertex at the origin. Assume that 811 the hypotheses ofCorollary

2.6 hold. Suppose, furthermore, that the mapping a 1-+ ßla(xo) is u.s.c. from Q into

X;. Then

OE cl co U ßla(xo) - M*.
aEQo

3. The funetions la (aE Q) are directionally Lipschitzian at Xo.

The generalized sub gradient of la at Xo is defined by

ßla(xo):= {x* E X* I (x*,d)::; Il(xo;d) VdE X}.

Then, if Il( xo; .) is proper,

(see e.g. [13]). By Corollary 2.9 and Corollary 3.4 we obtain the following

(3.8)

Corollary 3.6: Let _xo be a loc81 minimizer for (P) and M be a c10sed convex

subcone of Kc(xo) with vertex at the origin. Assume that 811 the hypotheses ofCorollary

2.9 hold; the mapping a 1-+ ßla(xo) is u.s.c. from Q into X;; It(xo;') (Va E Qo) are

finite on X. Then

OE cl co U ßla(xo) - M*.
aEQo

4. The case: <.poo(d) = sUPoEQo fl(xo; d).

Combining Proposition 2.13 and Corollary 3.4 we get

(3.9)

Corollary 3.7: Let IO be a loc81 minimizer for (P), lais finite at Xo (Va E Q),

and M 'be a c10sed convex subcone of Kc(xo) with vertex at the origin. Assume that
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Assumption 2.12 holds; the mappiilg a f-+ 8Ja(xo) is u.s.e. from Q into X;~ J!(xo;') is

proper and upper-bounded in a neighborhood ofO (Va E Qo). Then

OE cl coU 8Ja(xo) - M*.
aEQo

4. A Constrained Mathematieal Program

Let us consider the following problem:

minimize f (x )

(MP) subject to

sup Ja(x) ~ 0 and x E C.
aEQ

where fis an extended-real-valued function on X, Ja (a E Q) and C areas in (P).

Assurne that i.p is a u.s.c., positively homogenuous function on X satisfying the

following

Assumption 4.1: (i) Forall d E Kc(xo), dn ~ d, tn 10 satisfyingxo+tndn E C,

(d) > 1. J(xo + tndn) - J(xo)i.p _ 1msup --------j
n-oo tn

(ii) cl{d E Kc(xo) I sUPaEQo i.pa(d) < O} :) {dE Kc(xo) I SUPaEQoi.pa(d) ~ O}, where

cl indieates the norm-closure ..

Theorem 4.2: Let Xo be a loeal minimizer for (MP) and J, Ja (Va E Q) be

finite at Xo. Assume that Assumptions 2.1 and 4.1 are fulfilled. Then

i.p(d) ~ 0 for all d E Kc(xo) satisfying sup i.pa(d) .~ O.
aEQo

(4.1)

Proof: We first prove that i.p(d) ~ 0 for all d E Kc(xo) satisfying stiPaEQo i.pa(d) <
O.

Suppose that this is false. So there is d E Kc(xo) satisfying sUPaEQo i.pa(d) < 0 such

that i.p(d) < O. Hence, for same jJ. > 0, i.p(d) ~ -jJ. < O. Define 'ljJa(d)= Ja(XO) + i.pa(d).

In the same way as in the proof of Theorem 2.2 we can find d= ).d E Kc(xo) such that

sup !J',,(d) < m, where in = sup Ja(XO)'
aEQ aEQ
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Since d E Kc(xo), there exist sequences dn -+ d, tn t 0 such that Xo +tndn E C.

Making use of Assumption 2.1, by an argument analogous to that used for the proof of

Theorem 2.2 we can find a natural number NI such that for all n ~ NI,

Hence Xo + tndn is a feasible point of (M P). On the other hand, since rp(d) :::; -f-L it

follows from the positively homogeneity of rp, that

rp( d) = );rp(d) :::; - jI < 0,

where jI = ).fL. By Ass':lmption 4.1 (i), for € > Othere is a natural number N2(~ NI)

such that for all n ~ N2,

whence

Consequently, for € < Ii and a number n fixed, we get

which contradicts the hypothesis that Xo is a local minimizer for (M P). So, we have

proved that

rp(d) ~ 0 Vd E {d E Kc(xo) I sup rpex(d) < O}.
exEQo

Since rp is U.S.c., it follows that

rp(d) ~ 0 Vd E cl{d E Kc(xo) I sup rpex(d) < O}.
exEQo

By Assumption 4.1 (ii), we get

rp(d) 2 0 '711 E {d E Kc(xo) I sup tpex(d) :::;O}
exEQo

o
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Corollary 4.3: Let Xo be a ioeal minimizer for (M P). Assurne that all the

hypotheses of Corollary 2.9 and Assumption 4.1 (i), (ii) are fulfilled. Then

11(xo;d) ~.O for all d E Kc(xo) satisfying sup I!(xo;d)::; O.
aEQo

By arguments analogous to that used for the proof of Proposition 2.13 we get the

following result.

Proposition 4.4: Let Xo be a loeal minimizer for (MP) and I, la (a E Q) be

nnite at Xo (Va E Q)). Assurne that Assumptions 2.12 and 4.1 (i), (ii) hold. Then

f1 (xo j d) ~ 0 for alld E K c( xo) satisfying sup I!( xo; d) ::;O.
aEQo

To derive a neeessary optimality condition for (MP) in terms of subgradients, we

now assurne that epand epa are sublinear (Va E Q). Let

o<p(O):= {x* E X* I (x*,d) ::;ep(d) VdEX}.

Theorem 4.5: Let Xo be a loeal minimizer for (MP), I, la (a E Q) be nnite at

Xo, and M be a closed eonvex subeone of Kc(xo) with vertex at the origin. Assurne that

Assumptions 2.1 and 4.1 are fulnlled. Suppose, furthermore, that oep(O) is nonempty,

weak* eompaet an.d ep(d) = SUPx.E8<,o(0)(x*,d); for eaeh a E Qo, Oepa(O) is nonempty

and epa(d) = sUPx.E8a(0)(x*,d). Then

OE o<p(O)+ c1[ee( U Oepa(O)) - M*],
aEQo

where ce and cl denote eonvex conieal hull and weak* closure, respeetively.

Proof: By Theorem 4.2 we get

<ped) ~ 0 for all d E j\1 satisfying sup <Pa(d) ::;O.
aEQo

(4.2)

(4.3)

Assurne now that (4.2) is not true. So 0 doesn't belong to the set on the right hand side.

The latter is weak* closed, since oep(O) is weak* eömpaet. Moreover it is eonvex. So from

16



a standard separation theorem (see e.g. Theorem 3.6 [5]) there exist do E (X;)* = X

and I E IR such that

o > I ~ (e, do) Ve E 8<p(O) + cc( U 8<Pa(O)) - M*.
aEQo

Since cc(UaEQo 8<pa(O)) and M* are cones it follows from this that

o > I ~ (~, do) V~ E 8<p(O),

o ~ (~, do) V~ E U 8<pa(O),
aEQo

o ~ (~,do) V~ E -M*.

The first of these inequalities implies <p(do) < O. The second implies <Pa(do) :::;0 for all

a E Qo. The third implies do E M** = M, a contradiction with (4.3). 0

Remark 4.6: We remark that, conversely, (4.2) impli es (4.3).

Indeed, assurne that (4.2) is true. Observe that if A is any subset of X*, then a

being an element of the weak* closure of A implies that for all d E X and 6 > 0 there

exists a E A suchl(a - a, d) I :::;6. Hence, if (4.2) is true, then for every d E X and 6 > 0

there exist e E 8<p(O), finitely many ai E Qo, ei E 8<pa,(O), .Ai ~ 0 and m* E M* such

that

In particular if dEM and satisfies <Pa(d):::; 0 (Va E Qo) we obtain

-6 :::;<p(d).

Since 6 is arbitrary, this implies 0 :::;<p(d). Hence (4.3) is satisfied. So (4.2) is equivalent

to (4.3) 0
Remark 4.7: IE we ~sume that r.p is l.s.c., proper, sublinear, then it can be expressed by

r.p(d) = sup (x*, d),
x. Eo<p(O)

where 8r.p(0) is nonempty, weak* closed (see e.g. [3]). If we suppose, in addition, that r.p is upper-

bounded in a neighborhood of 0, or that r.pis a finite function on X, then 8r.p(0) is weak* compact (see

e.g. Theorem 5 [8] and Proposition 2.14 [3}).

We derive a consequence of Theorem 4.5 for the directionally Lipschitzian case of

Ja (Va E Q).

17



Corollary 4.8: Let Xo be a locaJ minimizer for (MP) and M be a c10sed convex

subcone of Kc(xo) with vertex at the origin. Assume that aJl hypotheses of Corollary

4.3 hold; fi(xo;') is proper and upper-bounded in a neighborhood ofO. Then

OE &f(xo) + cl [cc( U &fCi(XO)) - M*].
CiEQo
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