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Higher-Order OptimalityConditions
for a Minimax

Do VanLuu and W. Oettli

Abstract: Higher-order necessary and sufficient optimality conditions

for a nonsmooth minimax problem with infinitely many constraints of inequali~y_.

type are established under suitable basic assumptions and regularity conditions.

1. Introduction

We consider the minimax problem:

(P)

minimize sup JOt(x)
OtEQ

subject to

supgß(X):S 0 and x E C,
ßEB

where C is a nonempty sub set of a normed space X, Q and Bare compact

topological spaces, JOt (a E Q) and 913 (ß E B) are extended-real-valued functions

on X.
First-order necessary optimality conditions for (P) without constraints of

inequality type are investigated in our recent paper [7]. The results obtained

there can be applied to minimax problems involving functions whose generalized

directional derivatives are convex. The aim of this paper is to develop higher-

order necessary and sufficient optimality conditions for (P) involving functions

whose generalized directional derivatives may be nonconvex in a quite general

form. Optimality conditions of this type for the case in which Q is a singleton

and there is no constraint of inequality type can be found in [2], [9]. Nonsmooth

analysis has produced a calculus for various directional derivatives and subgra-

dients which yields a number of first-order necessary conditions of this type (see

e.g. [10]-[12]).
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The paper is organized a.sfollows. In section 2, under a basic assumption and

a regularity condition we derive higher-order necessary optimality conditions for

(P), which can be applied to the lower and upper directional derivatives of order

k of Ja and g{3. Section 3 is devoted to developing sufficient optimality conditions

for (P) in the finite dimensi~nal case. As in Section 2, the results obtained here

can be applied for the lower and upper directionalderivative of order k of Ja and

orderp of g{3, where k and p are positive integers.

2. Higher-Order Necessary Optimality Conditions

Denote the dosure of C by dC. For Xo E dC we recall (see e.g. [3]) that

the contingent cone to Cat Xo is the set

Kc(xo) := {d E X I 3dn -+ d, 3tn 10 such that Xo + tndn E Cl.

Let k be a positive integer and for each a E Q, ß E B" tp~k) and 7/J1k)be

extended-real-valued functions on X. Let us introduce the following

Assumption 2.1:

(a) tp~k)(O) = 7/J1k)(O)= 0 Jor alt Q E Q and ß E B;

(b) The mappings a 1-+ tphk)(d) and ß 1-+ 7/J~k)(d) are continuous Jor all

dE Kc(xo);

(c) m := sUPaEQ Ja(XO) is finite; the mappings a 1-+ Ja(XO) and ß 1-+

g{3(xo) are upper semicontinuous '(u.s.c.);

(d) 1Jhn -+ 0 as n -+ 00, then

uniJormly in a, and

uniJormly in ß;
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(e) The mapping d t--+- SUPoEQo <p~k)(d) is u.s.c., where Qo .- {a E

Q I !o(xo) = SUPßEQ Jß(xo)},

Let us introduce relations between Ja and <p~k),gß and 7/;;;).

Basic Assumption 2.2: . For alt d E Kc(xo) and sequences dn - d, tn L 0
satisJying Xo + tndn E C,

uniJormly in a, and

uniJormly in ß.

Example: Recall that the lower Dini directional derivative of Ja at Xo in the

direction dis defined by (see e.g. [5], [6])

1, (1)( . d)'- li . f Jo(xo + th) - Jo(xo)o Xo, .- mln --------,
- h--d, t!ot

which is also called the contingent derivative (see [1]).

Denote dk := (d, ... , d) E Xk. The lower directional derivative of order k of

Ja at Xo in the direction dis defined as follows (see e.g. [9])

. k-l ti F (j)( . hi)
(k) . k._ .. 1 [ . " :!.E. Xo, ]Ja (xo, d ) .- k! limmf k Jci(XO + th) - Jo(Xo) - LJ ., .

- h-d, tlO t . J.
J=1

Note thatthe mapping d t--+- Jo(k)(xo;dk) is lower semicontinuous ..

In particular, if Ja is (k - 1) times FfEkhet differentiable on X (k > 1)

and the derivative of order k of Ja at Xo, Jik)(xo), exists, then Jik)(xo)dk =
Jo(k)(xo;dk)'(\:fd E X) (see e.g. [8]). If we take C = X, then Kc(xo) = X.

Choosing <p~k)(d) := f~k)<:o)dk we assume that <p~)(xo) ~ 0 (i = 1,2, ... , k - 1)

and the following limit
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is uniform in a. Then Ja (a E Q) satisfy the basicassumption 2.2.

Let us introduce a regularity condition of the type used in [4].

Regularity Condition 2.3:

(i) For any closed sets V and W satisJying Qo C V c Q and Bo cW C

B it holds that C(V,W) := {dE Kc(xo) I cp~k)(d) < 0, 7j;~k)(d) <
o 'Va E V, 'Vß E W} =I 0 implies 0 E clC(V,w), where Bo := {ß E

B I gß(xo) = O};

(ii) {d E Kc(xo) I 7j;~k)(d) :::;0 'Vß E Bo} c cl{d E Kc(xo) I 7j;~k)(d) <

o 'Vß E Bo}

We are now in a position to formulate a general necessary optimality condi-

tion of order k for (P).

Theorem 2.4:

Let Xo be a local minimizer Jor (P). Assume that Assumptions 2.1. (a)-

2.1. (e), the basic assumption 2.2 and the regularity condition 2.3 hold. Then

sup cp~k)(d) ~ 0 Jor all d E Kc(xo) satisfying sup 7j;~k)(d) ::;O. (2.1)
aEQo ßEBo

Proof: We first prove that sUPaEQo cp~k)(d) ~ 0 for all d E Kc(xo) satisfying

sUPßEBo 7j;~k)(d)< O.

Suppose this is not true. So there is d E Kc(xo) satisfying sUPßEBo 7j;~k)(d)<
o and sUPaEQo cp~k)(d) < O. Sofor some }-LI> 0 and}-L2 > 0 we have that for all

a E Qo, ß E Bo,

(k) -
7/Jß (d) :::; -}-L2'
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Define Xa(d) := fa(xo) + l{)~k)(d), (ß(d) := gß(xo) +'I/J~k)(d). By virtue()f.(2._~)

and (2.3) we have

Xa(d) :::;m - j1.1 (Va E Qo),

We now prove that there is d E Kc(xo) such that

Xa(d) < m (Va E Q),

Define

u1:= {a E Q Il{)~k)(d) < _~1},

U2 := {ß E B I 'I/J~k)(d)< _~2}.

(2.4)

(2.5)

In view of (2.2) and (2.3) one has Qo C U1 and Bo C U2• Moreover, Q \ U1

and B \ U2 are compact, as the mappings a 1-+ l{)~k)(d) and ß 1-+ 'I/J~k)(d) are

continuous, and Q and Bare compact. By virtue of Assumptions 2.1.(a)-2.1.(c)

we can find constants II > 0, l2 > 0 such that

Since the mappings a 1-+ l{)~k)(d) and ß 1-+ 'I/J~k)(d) are continuous, it follows

that

l{)~k)(d) :::;_~1 < 0 (Va E dU1),

'l/J1k)(d):::; _f.L
2
2 < 0 (Vß E clU2),

which implies that

C(clu
1
,clU

2
) = {d E Kc(xo) I 'P~k)(d) < 0, 'I/J~k)(d) < OVa E dU1, Vß EclU2}

=1=0.

5



By the regularity condition 2.3 (i), 0 E clC(clu
1
,clu

2
l" This implies that there

exists a sequence hn -:* 0 such that

whence

XOI(hn) < in (Va E Ud,

(ß(hn) < 0 (Vß E U2).

(2.8)

(2.9)

According to Assumption 2.1.( d), for E > 0 there exists a subsequence {np}

(not depending on a) of the set {I, 2, ... } such that

(2.10)

Combining (2.6) and (2.10) yields that for all a E Q \ U1,

::;in - h + E.

For E < h the latter implies

(2.11)

On the other hand, by Assumption 2.1.( d) for E > 0 there exists a subse-

quence {np,} (not depending on ß) ofthe set {np} (for convenience we write {na}

. instead of {np,}) such that

(2.12)

It follows from (2.7) and (2.12) that for all ß E B \ U2,
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which together with (2.8), (2.9) and (2.11) gives (2.4) and (2.5) for d := hn •.

Hence for some /11 > 0 and /12 > 0 we have

(2.13)

(2.14)

Since d E Kc(xo), there exist sequences dn --+ d, tn 10 such that Xo + tndn E C.

Making use of the basic assumption 2.2 we get

(2.15)

It follows from (2.14) and (2.15) that

liminf ~ [gß(xo + tndn) - gß(xo)] ::; -/12 - gß(Xo),
n-+oo tn

Therefore, for c > 0 there is a subsequence {nr} (not depending on ß) of the set

{I, 2, ... } such that

t~ (gß(xo + tnrdnJ - gß(xo)] < -/12 - gß(xo) + c,
nr

which implies that

Since tnr 10, we can assurne tnr ::; 1. So observing that gß(xo) ::; 0 weget

The latter implies that Xo + tnr dnr is a feasible point of (P) for c < /12'

Next, taking account of the basic assumption 2.2, it follows from (2.13) that
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Hence for £ > 0 there is a subsequence {nrp} (not depending on a) of the set

{nr} (for brevity we write {np} insteadof {nrp}) such that

t; [fa(XO + tnpdnp) - fa(xo)] ~ in - /11 - fa(xo) + £,
np

whence

Consequently, observing that in - fa(xo)"?:' 0 we get

Taking £ < /1:= min{/Lb/L2}, we abtain

which conflicts with the hypothesis that Xo is a Iocal minimizer for (P). So we

have proved that

sup <p~k)(d) ?:. 0 Vd E {d E Kc(xo) I 7/J~k)(d) < 0 Vß E Bo}.
aEQo

By Assumption 2.1.(e),the mapping d f->SUPaEQo <p~k)(d) is u.s,c. Hence

sup <p~k)(d) ~ 0 Vd E cl{d E Kc(xo) I 7/Jbk)(d) < 0 Vß E Bo}.
aEQo

By the regularity condition 2.3 (ü) we get

sup <p~k)(d) ~ 0 Vd E {d E Kc(xo) I 7/J~k)(d) ~ 0 Vß E Bo}.
aEQo

The proof is complete.
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Theorem 2.4 can be applied to the lower directional derivative of order k of

Ja and gß. We obtain the following

Corollary 2.5:

Assume that Jor c.p~k)(d) := iJJa(k)(xo; dk) and 'l/J1k)(d):= iJgß(k)(xo; dk) alt

the hypotheses oJ Theorem 2.4 are satisfied. Then

sup Ja(k)(xO; dk) 2::0 Jor all d E Kc(xo)
aEQo-

satisJying sup gß(k)(xO; dk) ~ O.
ßEBo-

We note that Theorem 2.4 remains true, if the basic assumption 2.2 is replaced

by the stronger

Assumption 2.2':

satisJying Xo + tndn E C,

For all d E K c(xo) and sequences dn ~ d, tn 1 0

c.p~k)(d) 2::limsup ~ [Ja(XO + tndn) - Ja(XO)]
n--cp tn

uniJormly in a, and

uniJormly in ß.

Assumption 2.2' is more natural1y suited for working with upper directional

derivatives

Recal1 that the upperDini directional derivative of Ja at Xo in the direction

dis defined as follows (see e.g. [5]' [6]).

-.fal) (xo; d) := lim sup Ja(XO + th) - Ja(Xo);
h__d, t10 t

the upper directional derivative of order k of Ja at Xo in the direction dis defined

aS follows (see e.g. [9])

-J(k)( dk) k' lia xo; :=. msup
h--d, t10
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Applying Theorem 2.4 to upper directional derivative we obtain

Corollary 2.6:

Assume that Jor <p~k)(d) := tfa(xoidk) and 'l/Jhk)(d) := irg~k)(xo;dk) all

the hypotheses oJ Theorem 2.4 are Julfilled, where the basic assumptions 2.2 is

replaced by Assumption 2.2'. Then

sup tk)(xo; dk) ~ 0 Jor alt d E Kc(xo)
aEQo

satisJying sup ~k)(XOidk)::; o.
ßEBo

3. Higher-Order Sufficient Optimality Conditions

In this section we deal i.vith the case in which X = IRm.

Definition 3.1 ([12]): The point Xo E C is said to be a strict local

minimizer of order k for the mathematical program min {f( x) I x E C} if there

exist a number (1 > 0 and a neighborhood U of Xo such that

J(x) > J(xo) + (1IIX - xollk for all xE U n C, x =f:. Xo.

Let Xo be a feasible point of (P). Let k and p be positive integers and let

'P~) (a E Q) and 'l/JY) (ß E B) be extended-real-valued functions on IRm (i =
1, ... ,k; j = 1, ... ,p). We define

M(xo) := {d E Kc(xo) I 'P~)(d) ~ 0 'Va EQo, i = 1. , k - 1;

'l/JY)(d)::; 0 Vß E Bo, j = 1, ,p}.

Let us introduce relations between Ja and 'P~), gß and 'l/JY) (i = 1,... ,ki j =
1, ... ,p).

Basic Assumption 3.2: For alt d E Kc(xo) and sequences dn -- d, tn 10
satisJying Xo + tndn E C, and Jor each i = 1, ... , k and j = 1, ... ,p) there hold

'P~)(d) ~ lim sup -i [Ja(xo + tndn) - Ja(XO)],
n-oo tn
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A higher-order sufficient optimality condition for (P) can be stated as fo1-

10ws..

Theorem 3.3:

Let sUPaEQ fa(xo) be finite and the basic assumption 3.2 hold. Assume that

sup <p~k)(d) > 0 for alt d E M(xo) \ {O}.
aEQo

Then Xo is a strict local minimizer of order k for (P).

(3.1)

Proof: Assurne that Xo is not a strict 10cal minimizer of order k for (P). Then

for any a > 0 there exists a sequence Xn -+ Xo, Xn E C, Xn ::P Xo such th;tt

sup fa(xn) ~ sup fa(xo) + allxn - xollk,
aEQ . aEQ

By virtue of (3.2) in particular for a E Qo, we get

(3.2)

(3.3)

(3.4)

Taking tn = IIxn - xoll and dn = II~:=~~II we obtain Xo + tndn = Xn E C.

Moreover, since the set {d E JRrn I IIdll = 1} is compact, we may assume that

dn -+ do with lIdoll = 1. Hence do E Kc(xo).

Furthermore, for each a E Qo, i = 1, ... ,k - 1 it follows from the basic

assumption 3.2 and (3.4) that

(i) < li fa(xo + tndn) - fa(xo)
<Pa _ msup i

n-+oo tn
< lim atk-i = o._ n

n-+=

On the other hand, from (3.3) it follows that

(3.5)
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According to the basic assumption 3.2 we have

Combining (3.5) and (3.6) yields that

Consequently, do E M(xo) \ {O}.

Making use of (3.4) weget

Jo:(xo + tn:;) - Jo:(xo) ::; (J (Va E Qo).
n

(3.6)

So taking account of the basic assumption 3.2 yields that there is a subsequence

{ns} ofthe set {1,2, ... } such that

which implies that

Since (J is arbitrary, this implies

which contradicts (3.1). This completes the proof. o

Theorem 3.3 can be applied to the upper directiona! derivatives of order k

of Jo: and order p of 9ß.

Corollary 3.4:

Assume that Jor <p~)(d) := rt)(xo;di) and 'ljJY)(d) := ~~)(xo;dj) (i=

1, ... , k; j = 1, ... ,p) all the hypotheses oJ Theorem 3.3 are Julfilled. Then Xo is

astriet loeal minimizer oJ order k Jo; (P).
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Remarks: (Cl!) Theorem 3.3 remains valid without the sets Q and B being

compact.

(ß) Theorem 3.3 remains true, if we replace "limsup" in the basic assumption 3.2

by "liminf". Then it can be applied to the lower directional derivatives 'of order

k of JOI and of orderp of gß.
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