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Higher-Order Optima]ity Conditions
| for a Minimax

Do Van Luu and W. QOettli

Abstract: Higher-order necessary and sufficient optimality conditions
for a nonsmooth minimax problem with infinitely many constraints of inequality _

type are established under suitable basic assumptioné and regularity conditions.

1. Introduction

We consider the minimax problem:

minimize sup fu(z)
a€Q

(P) | subject to

sup gp(z) < 0and z € C,
BeB

where C is a nonempty subset of a normed space X, Q and B are compact
topological spaces, fo (@ € Q) and gg (B € B) are extended-real-valued functions
on X.

First-order necessary optimality conditions for (P) without constraints of
inequality type are investigated in our recent paper [7). The results obtained
there can be applied to minimax problems involving functions whose generalized
directional derivatives are convex. The aim of this paper is to develop higher-
order necessary and sufficient optima.lify conditions for (P) involving functions
whose generalized directional derivatives may be nonconvex in a quite general
form. Optimality conditions of this type for the case in which @ is a singleton
and there is no constraint of inequality type can be found in {2 ], [9]. Nonsmooth
analysis has produced a calculus for various directional derivatives and subgra-
dients which yields a number of first-order necessary conditions of this type (see

e.g. [10}[12]).



" The paper is organized as follows. In section 2, under a basic assumption and
a regulérity condition we derive higher-order necessary optimality conditions for
. (P), which can be applied to thé lower and upper directional derivatives of order
k of f, and gg. Section 3 is devoted to developing sufficient optimality conditions
for (P) in the finite dimensional case. As in Section 2, the results obtained here
can be applied for the lower and upper directional derivative of order & of f, and

~order p of gg, where k and p are positive integers.

2. Higher-Order Necessary Optimality Conditions
Denote the closure of C by clC. For zo € clC we recall (see e.g. [3]) that

the contingent cone to C at zg is the set
Ke(zo) :={d € X | 3d, — d, 3t, | 0 such that zg + t.dn € C}.

Let k be a posmve mteger and for each @ € @, 8 € B, tp(k) and ¢§,k) be

extended-real-valued functions on X. Let us introduce the followmg

Assumption 2.1:
(a) <p£,k)(0) (k)(O) =0 foralla € Q and B € B;
(b) The mappings @ — @y )(d) and § — w(k)(d) are continuous for all
d € Kc(zo);
(c) m _:=>supa€Q fa(zo) is finite; the mappings o — fa(zo) and 3
gp(zo) are upper semicontinuous (u.s.c.); '

(d) If hp — 0 as n — oo, then
lim jnf [¢p (B)(h,) — oF(0)] <0
uniformly in a, and

lim inf [57 (ha) — 57 (0)] <0

uniformly in 3;




(e) The mapping d +— sup,¢q, gog,k)(d) is u.s.c., where Qo = {a €
Q | fa(zo) = suppeq fo(zo)}-
(k)

Let us introduce relations between f, and ¢&’, gg and z/;ék).

Basic Assumption 2.2: - Foralld € Kc(zo) and sequencesd, — d, t, | 0
satisfying o + tnd, € C, '

<p£.'°).(d). 2 oo tlk [fa(o + tadn) = fa(20)]
uniformly in o, aﬁd
(k)(d) > hmmf — [gp(xo + tadn) — gp(20))
uniformly in B.

Example:  Recall that the lower Dini directional derivative of fo at zg in the

direction d is defined by (see e.g. (5], [6])

foz(zﬂ +th) fo:(zo)

(1) =
i d) = i

which is also called the contingent derivative (see [1]). _

Denote d* := (d,---,d) € X*. The lower directional derivative of order k of
fo at zg in the direction d is defined as follows (see e.g. [9])

bt .
Lo ¥ (203 %) 1= k! liminf — [fa(l’o-i-th) fa(wo)—;wk

Note that the mapping d — f_o,(k)(a:o; d*) is lower semicontinuous. - :

In particular, if f, is (k - 1) times Fréchet differentiable on X (k > 1)
and the derivative of order & of f, at zg, c(yk) (o), exists, then fc(,k)(zo)d" =
fa (k)(xo;-d")’(‘v’d € X) (see e.g. [8]). If we take C' = X, then Kc(:co) =
Choosing ¢u )(d) M we assume that ¢g )(zo) <0(i=1,2,. - 1)
and the following limit




o g | k=15 f)0 i
o1 ¢ fa (zo)h
() k! — - - E SJa \O)T
fa7(o)d” = ki h_%ldl,ntlo tk |:fa($0 * th.) fa(@0) — J! ]
is uniform in . Then f, (e € Q) satisfy the basic assumption 2.2.

Let us introduce a regularity condition of the type used in [4].

Regularity Condition 2.3:
(i) For any closed sets V and W satisfying Qo CV C Q and By C W C
B it holds that Cywy = {d € Kc(zo) | ¢$(d) < 0, $§7(d) <
0Va €V, V8 € W} # 0 implies 0 € clC(v,w), where By := {B €

B gp(z0) = 0} | |
(ii) {d € Kc(wo) | $4)(d) < 0 V8 € Bo} C d{d € Ko(ao) | ¥ (d) <
0VB € By}

We are now in a pdsition to formulate a general necessary optimality condi-

tion of order k for (P).

Theorem 2.4: ,
Let zo be a local minimizer for (P). Assume that Assumptions 2.1.(a)-

2.1 .(e), the basic assumption 2.2 and the regularity condition 2.3 hold. Then

sup @ (d) > 0 for all d € Kc(zo) satisfying sup zbgk)(d) < 0.> - (2.1)
a€Qo . ' , BEBo ‘
Proof:  We first prove that sup,cq, @gk)(d) >0 for all d € K¢ (zo) satisfying
suppen, V5 (d) < 0. |

Suppose this is not true. So thereis d € Kc(zo) satisfying SUPge B, ¢f3’°)(2) <
0 and sup,eq, w&k)(a) < 0. So for some py > 0 and p2 > 0 we have that for all
a € Qo, B € By, ’

HP @) < —p, (2.2)
W$(d) < —pa. O (23)
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Define X(x(d) = fa(zo) + <P<(x )(d), Ca(d) == gp(zo) + 1/)2 )(d). By virtue of (2.2)
and (2.3) we have

Xa(d) < M — (Vo € Qo),
Ca(d) < pa (Y8 € Bo).

We now prove that there is d € Kc(zo) such that
Xa(d) < 7 (Ya € Q), , (2.4)

¢s(d) < 0 (V8 € B). (2.5)
Define
- _{a€Q|¢(k)(d)<—7 ,
| Uri= {8 e B @< -5).
In view of (2.2) and (2.3) one has Qo C Uy and By C U;. Moreover, @ \ Uy
and B\ U; are compact, as the mappings a + @,"’(Z) and 8 — ¢gk)(a) are

continuous, and @ and B are compact. By virtue of Assumptions 2.1.(a)-2.1.(c) .

we can find constants {4y > 0, I3 > 0.such that

Xa(0) = fa(zo) + <P('°)(0)s -1 (Vo€ Q\U1), (26)
¢p(0) = gp(zo) + ¥57(0) < ~lz (¥ € B\ Ua). (2.7)

Since the mappings a — <p( ) (d) and 8 — w(ﬁk)(Z) are continubus, it follows
that ‘
o) < -“—‘ < 0 (Ya € dly),
$5(@) < - 2 < 0 (V8 € dllUy),
which implies that |

Creluy cluy) = {4 € Kc(zo) | 947(d) < 0, 457(d) < 0 Vo € cl, VP € cll}

#0.




By the regularity condition 2.3 (i), 0 € ch’(dU vy ThlS implies that there

exists a sequence hn, — 0 such that
hn € Ko(wo), ¢ (ha) < 0 (Va € U1), and 9§ (hn) < 0 (Y6 € V),
whence

Xa(hn) < M (Va'e Ul), | (2.8)
Cp(hn) < 0 (VB € Un). i - (2.9)

According to Assumption 2.1.(d), for £ > 0 there exists a subsequence {n,}

(not depending on @) of the set {1,2,...} such that
(k)(h ) < el(0) +e. (2.10)

Combining (26) and (2.10) yields that for all a € Q\ U,
Xa(hn,) < Xa(0) +€
< m — 11 + €.
For e < [; the latter implies

x;(hnp) < (Ve e Q\Uy). | (2.11)

On the other hand, by Assumption 2.1.(d) for € > 0 there exists a subse-
quence {n,, } (not depending on f) of the set {np} (for convenience we write {n,}

- instead of {ny,}) such that
P (ha,) < $50(0) + e | (2.12)

It follows from (2.7) and (2.12) that for all 8 € B\ Us,

(a(hn,) < Cp(0) +¢

S.—lg +e.



So for € < I3,
| Co(hn,) < 0 (VB € B\ U2),

which together with (2.8), (2.9) and (2.11) gives (2.4) and (2.5) for d := hy,.
Hence for some 7 > 0 and fis > 0 we have

-~

falzo) + Fd) < A — i (Ve € Q), (2.13)

g5(z0) + ¥57(d) < ~fiz (V8 € B). | (2.14)

Since d € Kc(zo), there exist sequences d, — 3, tn | 0 such that z¢o +t,d, € C.

Making use of the basic assumption 2.2 we get
N : ~
liminf — [gp(0 + tndn) — ga(20)] < $57(d). (2.15)
n—00 tn .
It follows from (2.14) and (2.15) that
N )
lim inf - [95(20 + tndn) - go(x0)] < —B2 — gp(20). -

Therefore, for € > 0 there is a subsequence {n,} (not depending on 3) of the set

{1,2,...} such that

1 : : ~
e (96(z0 + tn,dn,) = gs(z0)] < —H2 — gp(20) + ¢,
which implies that
95(20 + tn,dn,) < gp(z0) + t&_(—gp(20)) — t5 (2 — €)-

Since t,, | 0, we can assume t, < 1. So observing that gg(zo) < 0 we get

96(z0 + tn,dn,) < —th (2 —€).

The latter implies that zo + tn, dn, is a feasible point of (P) for € < [is.

Next, taking account of the basic assumption 2.2, it follows from (2.13) that

—
r—0o0 n,

liminf = [fa(20 + tn, dn,) = fal20)] < = 1 = fa(so).
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Hence for € > 0 there is a subsequence {n,,} (not depending on a) of the set. v

{n,} (for brevity we write {n,} instead of {n,,}) such that -

L [ fa(@0 4+t dn) — fa(20)] < 7= it = fa(z0) + &,

whence
fa(@0 + tn,dn,) = fa(20) <ty (fi~ fa(z0)) = tr (B2 —€).
Conséquently, observing that M — fo(zo) > 0 we get
fol(Zo + tn,dn,) < 2 — th (1 — ).
Taking ¢ < i := min{,ul,ygr}, we obtain
supr falzo + tnpdnp) < m,
a€Q

which conflicts with the hypothesis that z¢ is a local minimizer for (P). So we

have proved that

sup @()(d) > 0vd € {d € Ko(o) | ¥ (d) < 0 V4 € Bo}.
a€Qo

By Assumption 2.1.(e), the mapping d H'SuPaebQo w&k)(d) is u.s.c. Hence

s:g o (d) > 0 Vd € cl{d € Kc(zo) | z/:},k)(d) < 0VpB € Bo}.
o 0 :

By the regularity condition 2.3 (ii) we get
sup ¢{(d) > 0 ¥d € {d € Ko(o) | ¥”(d) < 0B € Bo}.
a€Qo

The proof is complete. : : Q




Theorem 2.4 can be app]jed to the lower directional derivative of order k of

fo and gg. We obtain the following

~Corollary 2.5:
Assume that for <p£,k)(d) = %__&(k)(xo; d*) and wék)(d) = %g_q(k)(zo; d*) all
the hypotheses of Theorem. 2.4 are satisfied.” Then

sup fa(k)(xo;dk) >0 forallde Kc(zo)
a€Qo ’

 satisfying sup gp® (zo;d*) < 0.
BEBo ™ »

We note that Theorem 2.4 remains true, if the basic assumption 2.2 is replaced
by the stronger

Assumption 2.2 For-all d € Kc(zo) and sequences d, = d, t, | 0
satisfying o + tpndy, € C, ' v '

A0 > tmsup [+ ) = o)
uniformly in o, and
4§7(d) > tm sup ¢ [96(z0 + tadn) = 9a(z0)]
uniformly in §.

Assumption 2.2’ is more naturally suited for working with upper directional
derivatives . ,
~ Recall that the upper Dini directional derivative of f, at zg in the direction
d is defined as follows (see e.g. [5], [6]).

7 (a0 d) 1= limsup JelZot ) = Jolz0),
h—d, t10 t

the upper directional derivative of order k of fy at z¢ in the direction d is defined

as follows (see e.g. 9D

| | SR Ue)
- : o
fgk)(xo;dk) := k! lim sup tik[fa(zo“}'th)‘fa(iro)—zt]fa -—.(7':;70, J)]

h—d, t]0 =



Applying Theorem 2.4 to upper directional derivative we obtain

Corollary 2.6: »

Assume that for cpf,k)(d) = w05 d¥) and wgc)(d) = %igk)(wo;dk) all
the hypotheses of Theorem 2.4 are fulfilled, where the basic assumptions 2.2 is
replaced by Assumption 2.2°. Then | '

sup 7(:)(3:0;(1") >0 foralld e Kco(zo)
a€Qo

satisfying sup ‘Efgk)(a:o;dk) <0.
: BEBy

3. Higher-Order Sufficient Optimality Conditions

In this section we deal ’Withbthe case in which X = R™.

Definition 3.1 ([12)]): The point zo € C is said to be a strict local
minimizer of order k for the mathematical program min{f(z) | z € C} if there

exist a number o > 0 and a neighborhood U of zq such that
" f(z) > f(zo) + ||z — zo|[* forall z € UN C, z # zo.

Let zo be a feasible point of (P). Let k and p be positive integers and let
o) (¢ € Q) and gb[(;j) (B € B) be extended-real-valued functions on R™ (i =
1,...,k; 7 =1,...,p). We define

M(zo) :={d € Kc(zo) | ¢P(d) <O0VaeQp, i=1....,k—1;
¥ (d)<0VBE By, j=1,...,p}.

Let us introduce relations between f, and gog), gp and ng) (i=1,...,k; 5=
1,. ...,p).

Basic Assumption 3.2: Foralld € K¢(z¢) and sequencesd, — d, t, | 0

satisfying xo + tndn, € C, and for.eachi=1,...,k and j = 1,...,p) there hold

©P(d) < limsup — [ fa(2o + tadn) — falz0)],

1
n—oo til
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S 1
¥ (d) < limsup —[gp(0 + tndn) = gp(20)]-

n

A higher-order sufficient optimality condition for (P) can be stated as fol-

lows. "

" Theorem 3.3:
Let supaeQ fa(zo) be finite and the basic assumption 3.2 hold. Assume that

sug o B (d) > 0 for all d € M(zo) \ {0}. (3.1)
a€Qo |

Then z¢ is a strict local minimizer of order k"for (P).

Proof: Assume that z¢ is not a strict local minimizer of order & for (P). Then

for any o > 0 there exists a sequence z, — zro,v z, € C, zn # zo such that
sup fo(2n) < sup ful®o) + 0l|2a — zoll*, (3.2)
a€Q - a€Q _

gp(zn) <0 (V0 € B). (3.3)

By virtue of (3.2) in particular for a € @, we get
faln) < fa(z0) + ollzn — zo]l*. BENEY)

Taking t, = ||zn — Zo|| and d, = "—2::—2-” we obtain zo + thd, = T, € C. '
Moreover, since the set {d € R™ | ||d|| = 1}'isAcompa.ct, we may assume that
d, — dg with ||do|| = 1. Hence dg € K¢ (zo). ‘
Furthermore, for each o € Qqg, ¢ = 1,...,k — 1 it follows from the basic
assumption 3.2 and (3.4) that
o < lim sup fo(zo + tadn) — fa(zo0)

i
n—oo tn )

< lim otk = 0.

n—oo

On the other hand, from (3.3) it follows that

95(z0 + tnds) — gp(z0) < 0 (VB € Bo). (3.5)
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According to the basic assumption 3.2 we have
99 (do) < lim sup %[ga(xo ttndn) - go(z0)]- - (3.6)
Combining (3.5) and (3.6) );ields that
(’)(d )< 0 (Y8 € Bo; j=1,...,p).

Consequently, do € M(zo) \ {0}
Making use of (3.4) we get

fa(:tO + tndn) -
ty

f“(?f’) < o (Yo € Qo).

So taking account of the basic assumption 3.2 yields that there is a subsequence
{ns} of the set {1,2,...} such that

fa(zO + tn,dn,) fa(:vO) <

AP (do) - 5

which implies thé,t
o) (dg) < 0 (Ve € Qo).

Since o is arbitrary, this implies
¢ (do) <0 (Vo € Qo),
which contradicts (3.1). This completes the proof. ]

Theorem 3.3 can be applied to the upper directional derivatives of order k&

of fo and order p of gg.

Corollary 3.4:
Assume that for o9(d) := uf (zo,d‘) and ¢(’)(d) = 595 J)(:z:o,dJ) (z =
. k; j=1,...,p) all the hypotheses of Theorem 3.3 are fulfilled. Then z¢ is

a strict local minimizer of order k for (P). -
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Remarks:  (a) Theorem 3.3 remains Va_lid without the sets ) and B being
compact.
(8) Theorem 3.3 remains true, if we. replace “limsup” in the basic assumption 3.2
by ““liminf”. Then it can be applied to the lower directional derii;atives of order

k of f, and of order p of gg.
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