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ABSTRACT
The possibility of branching processes for c1assical strings is investigated on the basis
of the Nambu-Goto action. We parametrize the world sheet by aRiemann surface M
and introduce a COO-smooth, degenerate metric 'rJ on M. Well-known results about the
conformal group are generalized to the case of (M, 'rJ). We provide a rigorous, infinite
dimensional Hamiltonian setting for processes that change the topology of astring. Finally,
the c1assical background for the theory of quantum strings as developed by Krichever and
Novikov in 1987 is discussed within this c1assical framework.

Keywords: semi-Riemannian manifold, conformal symmetry, infinite dimensional Hamil-•.•.. ~.•'-,~ ..,_ ...'" .•••.... ,", , ••~.""""'._..-.w~,._._ •.•.•••......_"'1 .,... ~... / ~'•.~.

tonian systems; . ;,:..
1991 AMS: 49H05, 53C50,: 70G35, 83E30



Introduction

Classical string dynamics based on variational principle~ is a we11-established theory [1,2].
For closed strings one usua11yconsiders string motions that are described by differentiable
maps X from IR x SI to IR d. The possibility of string splittings has been discussed in
the context of cosmic strings [3,4] whereas this aspect has not been investigated in detail
for classical fundamental strings. In the latter case the simple underlying idea is to treat
astring which self-intersects as consisting of two strings that obey their own dynamics
[5]. A consequence of such a viewpoint are "light cone diagrams" and it has been shown
by Giddings and Wolpert [6] that they provide a parametrization of the moduli space of
compact Riemann surfaces. The problem of quantization1of such diagrams has been tackled
successfu11yby Krichever and Novikov [7,8] and various hspects of that theory (ca11edKN-
theory) have been worked out since (cf. [9-13]). Nevertheless, the physical and geometrie
background on the classicallevel is still missing and we aim to fi11that gap.
The paper is organized as fo11ows:To fix notations, we reca11some basic facts about

closed strings in chapter one and we give an explicit solution for general string motions
that a110wsus to study the geometry of world sheets in a direct way. The general solution is
modified in the second chapter to processes where one string splits into two strings. From
the principle of least action we derive a local criterion whether the branching solution is
preferred or not.

Chapter three deals with the symmetry of topological non-trivial string world sheets.
It turns out that the symmetry is conveniently described by a geometrie structure on the
"base manifold M" that parametrizes the world sheet: This structure consists of a Rie-
mann surface M equipped with a smooth, degenerate semi-Riemannian metric Tl; those
points Pe on M satisfying det( Tl (Pe )) = 0 correspond to branching points of the string
motion. We then generalize results about conformal transformations of the manifold
(IR x SI, -dr2 +der2) to the case of (M, Tl). Specificly weishow that the conformal group is
infinite dimensional and the associated conformal algebr~ splits into two commu:ting parts.
A Hamiltonian description that a110wsus to cope with the varying string topology is

developed in chapter four: The classical phase space P is substituted by a co11ection of
spaces P = UTElR PT and astring motion is represented by a section s : IR -+ UTElR PT,
i.e. s( r) E PT' In order to obtain a we11-definedmotion for a specific initial string state,
one must choose the Riemann sUrface properly. In this way the moduli space of compaet
Riemann surfaces appears natura11y in the Hamiltonian setting. Next we investigate con-
served quantities Q~ having their origin in the algebra of conformal vector fields ~; these
quantities defineJas usual) a realization of the conformal algebra on phase space. More- .
over, we evaluate Poisson brackets of functions Q~ with arbitrary fields ~ on M, using their
"conformal extension " ~e.
This method is applied to holomorphic vector fields in the last chapter: It results in

a "local Wiek rotation" on the Riemann surface M and as a consequence the algebra of
holomorphic vector fields on M is also represented on phase space (this is not obvious
because the theory possesses no Euclidean conformal symmetry). The paper concludes
with the classical foundations of KN-theory: They are described in a natural way within
the formalism developed before.
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1. Remarks on classical string dynamics

Let us consider a classical closed string in Minkowski space*l (IR 4, g = diag( -'-1,1,1, 1)).
Its world sheet b is parametrized by functions XJL( 0-1,0-2), I-" = 0, ... ,3, with local (0-

1
,0-
2
)_

parameters. String dynamics can be defined by an action S which is proportional to the
area of b. We choose the constant of proportionality equal minus one,

(1)

where haß - 8aXJL8ßXV gJLV - X,a X,ß (spacetime contractions will be suppressed) de-
notes the induced metric on 1:. The Euler-Lagrange equations 8a a~~o< = 0 are given by

(2)

where Dcov labels the covariant d' Alembert operator. Notice that this equation is only well-
defined if (haß) is non-degenerate. The physical meaning of det( haß) = 0 can be recovered
with conformal parameters (T,o-) in which h reads (A 2: 0 is areal valued funetion)

(3)

We will construct such a conformal fiat metric below (cf. [1]'[14]). A first step is to choose
the T-parameter to be proportional to proper time

R = const. > 0 (4)

and 0-, R will be specified shortly; asusual we setXJL = a:'J-l, X'!L = a:; . Suppose that
we have conformal parameters, then the metric A . "1aß = X,a X,ß gives A = _X2 for
Cl! = ß = 0 and (3) is equivalent to

X2 +X'2 = 0 XX' = O. (5)

X := (Xl, X2, X3) is proportional to the velocity of the curve t -+ X( -h, 0-) which we call
the curve of a point 0-. From A = _X2 it follows that the induced metric h (3) is singular
at (T, 0-) if and only if the point 0- moves at the velocity of light, c =1.

Definition: A closed string at time t. = 0 has admissible initial data if its position Xo in
IR 3 as weIl as its initial velocity Uo = X(O, .) are parametrizable smoothly by the Euclidean
length l; moreover the relation luo(l)! < R (with respect to the metric 8 =gIIR3) holds for
all values of l~ 0 ~ 1 ~ L.

We choose Uo orthogonal to the string*2 , dfz° . Uo = 0, and because t does not depend
on 1 (4) we obtain d~o Uo = O. In order to get a conformal flat metric at least at T = 0,

*1 The results on the classieal level do not depend significantly on the dimension d2:4.
*2 This is not a dynamieal rest riet ion beeause the "infinitesimal surfaee" defined by the. veetors

(Rdr,ü(l)dr) eoineides with the surfaee defined by (Rdr,ü.dl)dr) where üJ..d~~otes that part of ü whieh

is orthogonal to the string.
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, I-t = 0,1,2,3. . (6)

(7)

we must define the a-parameter in such a way that (5) is fulfilled, in particular we need

_R2 + u5 +X~2 = O. This enforces the definition (dl =, /lida)

a(l) := ~ t. 1 'dl',
R Jo J1- VJ

where Vo = aa~ !t=o = ~ is the physical velocity of the point l( a). The range of a becomes
[0,21T] for R := 211r Jo£ Rdl. The second part of (5) now follows from d~Q Uo = 0, hence

it is always possible tosatisfy (5) at r = O. For r > 0 we have:
Proposition 1.1 i) On IR xSl the unique solution ofDXJL = 0 with respect to C2-smooth
initial data XJL(O,a) = Xt(a) and a:rl' (O,a) = u~(a) is given by

1 11u
+

T

XJL(r,a) = -2 {Xt(a + r) + Xt(a - r)} + - . u~(a')da'
2 U-T

ii) The map X : IR X 51 --t IR4 defines a Cl-smooth m~tric h = X*g (possibly degenerate)
on M = IR X 51. 1f the initial data obey (5) then DeovXJL = 0 is satisfied at all p E M
where h(p) is non-degenerate.

Proof: i) is a standard fact. ii) With (6) one can direetly verify (5) for alt values of r, i.e.
the pullback metric h reads h =A. 'f]. In (r,a)-parameters (which are coordinates on
IR X 81) we obtain, together with (2)

DeovXJL = 8a 8;~,a = 8a(Vhhaß8ßXJL) ~ 8a(A ~ 'f]
aß8ßXJL) .

In the case A(r,a) =F 0 this equation re duces to DeovXJL = 8a('f]aß8ßXJL) = DXJL = 0.0
Remarks: 1. Because (5) can always be satisfied at r = 0 this proof shows the existence of
global conformal parameters for on-shell string world sheets of closed strings. Notice that
solution (6) for Xg(a) = 0, u~(a) = R is given by (4). ~
2. Equation (7) reveals another useful property of conformal parameters: They allow us
to regularize the equations of motion (2) at critical points pe where h degenerates. But
one should bear in mind that DX(Pe) = 0 is not derived rigorously from the variational
principle.

A simple consequence of (6) is a property which is usually assumed to be valid:

Corollary 1.2 1f astring has admissible initial data at r = 0 then no point of the string
will exceed the velocity of light for alllater times t > 0, i.e. we have Iaa~(t,a)1 ~ 1.

Proof: With (5) we obtain dl(a::l: r) = JX~2(a::l: r)da == RJ1 - VJ(a::l: r)da. This yields

:.. R dX 0 (a + r) / ..
X (r, a) = I { dl V 1- VJ (a + r) + Vo(a + r)}

R dX 0(a - r) . /:-!2 .-+- I{ dl VI - vo(a- r) -vo(a - r)} .
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He~ce, applying the triangle inequality in IR 3 we obtain (using dJz0 'vo = 0 and I dJz0 I = 1):

lax (t,a)1 < ~. /(1- V'5(a + r)) + V'5(a + r) + ~. /(1- 115(a - r)) + V'5(a - r) = 1. 0m -2V 2V
For X2 (p) #0 the map X defines a local embedding of a neighbourhood U (p) c IR X SI
into IR 4, but when a point a reaches the velocity of light, the' singular behaviour of the
equations of motion is refieeted by a singular behaviour of the world sheet ~: The unit
tangent vector aa1 = J~X2 ~~ may behave discontinuously only if X2 vanishes.

Special case: It is geometrically intuitive to see how astring with velocity zero at r = 0
evolves. The parameter a = 2{ .lis proportional to the Euclidean length of the string and
the solution X( r, a) =~{Xo( a+r )+Xo( a-r)} has the following interpretation: After time
r the point X(a,O) = Xo(a) moved exaetly to the middle between the points Xo(a + r)
and Xo( a - r). The physical velocity is given by v( r, a) = ~{dit° (a+r) - dito (a-r )}. This
gives a unit veetor, i.e. the velocity of light, ifand only if the tangent veetors dito at the
points Xo(a+r) and Xo(a-r) are parallel. Indeed, ifthe string lies in a two dimensional
plane each point X(a, 0) necessarily reaches the velocity of light because the angle </J( r)
between the two tangent veetors dito (a + r) and - dito (a - r) varies continuously from -7r.

to 7r. The shape of astring in a neighbour hood of a point X(ao , ro) with IVI = 1 can easily
be derived by approximating the string at r = 0 with parts of circles. One finds a cusp at
X (ao, ro) and this cusp generally exists within a whole time interval ßr, defining a cusp
curve c(r) in Euclidean IR 3. Examples of that behaviour are pietured in ref. [3].

2. Modified string dynamics

From (6) follows that the state of astring is reproduced after aperiod ßt = R. 7r up to
a rigid translation ßX = J::7r ü( a' )da' and up to a parameter change a -* a + 7r. If the
string doesn't self~intersect and if no point reaches lvi = 1 during one period then string
dynamics is uniquely fixed and we have aglobai embedding of IR x SI into IR 4. Now
suppose that two branches ofthe string intersect, X(O,ro) = X(ao,ro), having velöcities
lvi< 1 at the interseetion point. The general configuration will be as shown in fig.1:

X
I "

•X •X
Fig.l Intersecting string branches.
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,
Solution (6) for X(7,a) implies that these two branches move through eachother without
any influence. However, we might ,Üike a different point"ö(view; namely that we aregiven
two strings at 70 each of which obeys its own dynamics for 7 2: 70:

00E [0,000) (8)

(10)

X( T,") = ~{Z(" + T - TO) + Z(; - T + TO) +E::;:" s( ,,')d,,'} "E ["0,2,,). (9)
I

Here the functions Y(a) = X(a,70) and r(a) = X(d,70) have periodicity 000 and analo-
gously Z and s are (27l" - 000)-periodic functions. The equations DX = DX = 0 are valid
in a distributional sense because of the kinks which arise from the intersection point. We
remark that no conservation law is violated by the splitting because all these conserved
quantities are given by integrals that only contain first derivatives of the XJ1.. Of course
energy, momentum and angular moment um behave additively under such a splitting. In
consequence there is no obvious reason to exclude this alternative motion so let us con-
sider how the action behaves as a function of time (70 := 0 for convenience). From (1)
and (5) we obtain the on-shell action 5 = J X2d2a. We set S/ree( 7) := Jo

r
J0
27r
X2dad7',

. 2 . 2
Ssplit(7) = Jor J;O X dad7' + Jor J:

0

7rX dad7' and examine the difference of the two areas.

Proposition 2.1 The first and second derivative 0/ l::i.S(7) := S/ree( 7) - Ssplit( 7) at 7 = 0
is given by l::i.S(O) = 0 and

d:~2S (0) = (üo(ao)- ÜO(Q))2 - (X~(ao) - X~(0))2

Proof: The following formula is an immediate consequence oI the fact that the val-
ues XJ1.(7,a) for both kinds of solutions coincide outside the a-intervals [-7,7] and
[000- 7,000 + 7]:

l::i.S(O) = 0 is now obvious. One must be cautious with derivatives of terms like
. 2 . 2

J; X (7,00 )da because X (7,00) is discontinuous at 00= 7. But it is standard analysis to
. 2 . 2

show ddr !r=oJ; X (7,00 )da = lim"lo X (E, 0). Differentiating l::i.S(7) at 7 = 0 and collecting
terms that comefrom (6), (8) and (9) yields l::i.S(O) = (uo(ao)-uo(O)? -(Xb(ao)-Xb(0))2.
Since the time component of this expression vanishes we obtain (10). 0
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We note from ~S(O) = 0 that at T = 0 the two surfaces grow at the same rate at first
order: If-~S(O) is positive, the value Sfree(T) is greater than Ssplit(T) within some time
interval [0, €]. One may now modify string dynamics by the requirement of least growth
of S which then implies splitting and merging effects of strings on a classical level. The
term (u(ero) - u(O)? can be interpreted as follows: At high relative velocities of the two
string branches the splitting solution is preferred whereas at low relative velocities these
two branches do not interact. To see what the second term means, suppose that the string
is at rest (uo = 0) and we treat the two stringbranches locally as straight lines. Then after
time T there are two strings, each of which has two kinks and all points X( T, er) between
such two kinks exactly move at the speed ~IXö(ero) - Xö(O)1(so by this effect the resulting
action is increased).

Remark: This dynamic is not invariant under time reversal: Suppose we have a splitting
process at T = O.Then the time reversed motion is a process where two strings merge into
one. However, the minimality criterion forces us to take also a splitting solution for T< 0,
because at T = 0 only uo changes to -uo which has no effect on (10).

From the last chapter we know that the situation is different when a point ero of the
string reaches the velocity of light (at TO). If we express the equations of motion in the
parameters (T, I) instead of (T, er) we find that the tangential part of the string accelera-
tion becomes singular at X( ero, TO)' From this intrinsic point of view (in contrast to the
variational viewpoint) it seems to be natural to consider string branchings at such points.
Geometrically it means that two cusp curves intersect at the same time and examples can
be constructed by hand, using the "special case" discussed in chapter 1. A splitting solu-
tion is given (as for IJ(ero, To)1 < 1) by equations (8,9). The main difference here is the fact
that for both the classical as weIl as the splitting solution the equations of motion are not
well-defined at the critical point because h( TO, ero) =0. Outside this point both solutions
are well-defined, hence there is no natural preference of one of them. This is somewhat
unsatisfyingbut similar (non unique) situations also arise in classical one dimensional me-
chanics*3. One might argue that DX = 0 is only valid in a distributional sense and that
it is unnatural for astring to move with kinks*4. But even this argument against string
branchings can be refuted because of

Lemma 2.2: Suppose we have astring at T = 0 with admissible initial data and at TO

there is astring splitting with parallel velocity vectors J( TO, 0) = J( TO, ero) at the speed of
light. Then both strings (for T > TO) are described by C1- funetions.

*3 A point particle in the Cl-potential U(x)=-tlxli with position x(O)=O and velocity :i:(0)=0has the

choice tostay at the origin (x(t)=O), or to move away (x(t)=(~)3): Both motions obey x(t)=-~~(x(t».

*4 For cosmic strings there are good arguments for this viewpoint: Finite-width corrections to the

Nambu action of Nielseri-Olesen strings. involve a curvature term which suppresses kinks, see [15].
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f.

Proof: The one':sided derivativesbr (8) are given by

~~ (T,O") = ~{X~(O" + T) + X~(O" - T) + u(O" + T) - u(O" - T)} 0" = 0" mod 0"0

and the last two terms are continuous due to our assumption. Discontinuities can only
arise at 0" = T or 0" = 0"0 - T because only then one argument of X~ takes a value at

., . 2
which the splitting occurred. From X2(O,O) = X2(O,0"0)= 0 and X2 +X' = 0 we obtain
X~(O) = X~( 0"0) = 0 so left-sided and right-sided derivatives of X coincide. The same
arguments hold for the T-derivative which completes the proof. 0

In consequence, no kinks emerge from the intersection point and DX = 0 is obeyed in
an ordinary sense. Notice that we have ~S(O) = 0 (10), so the case with parallel light
vectors is rather distinguished. So far we discussed splitting solutions of the form (8,9) but
it is now obvious how to construct merging solutions of the same type. The only difference
would be that we have to perform some shifts O"i -t O"i + Si along each string in order to
get a continuous parametrization of that merging solution.

Remark: We argue that a closed string cannot split into an open string, even at points
0"0 that move at the velocity of light. The boundary conditions for open strings impose
constraints on the Fourier modes of such astring. If these constraints are satisfied for the
state Xo of a closed string then we can interpret Xo as initial state for an open string. We
now alter t~e state XQ.. outside a neighbourhood of 0"0 such that the constraints fail for the
new state Xo, hence Xo cannot describe the initial configuration of an open string. On the
other hand suppose that there is a criterion which allows Xo to split. This criterion must be
of a loeal r.:.ature(like Proposition 2.1) in order to obtain a local interaction. Consequently
the state Xo is also allowed to split which is an obvious contradiction.

Now consider the history of n classical strings which do not interact at times T < Tl, i.e.
we have n ineoming strings. We restriet the discussion to the case of finitely many string
btanchings that occur at times Tl, .. , Tk. The resulting configuration consists of m strings
for T > Tk, i.e. m outgoing strings. In ref. [6] it has been shown that such a process (which
was treated on the formal level of a diagram ) can be parametrized by aRiemann surface
M. The position of the strings on 1\1 at a fixed moment of time TO is given by

era - {q E MIT(q) = Re r dk = TO} ,Jqa

(11)

where qo is some fixed reference point and dk is a unique meromorphic differential on a
compact Riemann surface M ::JM that has simple poles at the points Pi, i = 1, .. , n and
Qj, j = 1, ..,m and is holomorphic elsewhere (M =M\{P1, .. ,Pn,Q1, .. ,Qm}). At the Pi
(corresponding to T = -00) dk has real positive residues whereas at the Qj (corresponding
to T = +(0) there are only real negative residues. The critical points of the harmonie
function T: M -t IR are given by the zeros of dk and these points coinCide with those Pe
where the strings split or rejoin. We denote a critis:al value of T by Tc: Tc E {T1, .. , Tk}'
In conformal (T, 0" )-parameters dk has the simple form dk = dT + idO" (indeed, this is the
definition of dk given in [6]). The O"-parameter has the property to be defined modulo some
angle O"i along each string andO" may change discontinuously by some twist angle e iftwo

7



(12)

stri~gs merge. This behaviour is exactly described by (J = Im rq dk because dk has pureJqO
imaginary periods. Summarizing, we end up with the following situation:

A parameter surface of the string world sheet can always be deseribed by a smooth
submanifold M of a compact Riemann surfaee M together with a unique meromorphic
differential dk on M; we call (M, dk) base manifold. If a point qo E Mis not a critieal
point then the parameters u = T + i(J = Jq

q
o dk define a loeal holomorphic chart around qo.

A erueial öbservation is that these charts eonsist of conformal parameters for the string
world sheet.

3. Conformal symmetry

The natural geometrie structure on a base manifold (M, dk) associated to a specific string
motion X : M ---t IR 4 is given by the pullbaek X* g =: h of the metrie g in Minkowski spaee.
In general, the wOrld sheet L;= X(M) is not a smooth submanifold of IR 4, even in the
simplest ease of M = IR X SI. Only if X is an embedding we ean identify M with X (M) and
in that case the "induced metric h on L;" is well-defined. Hence for an arbitrar:y Cl-string
motion there is a CO-metrie*5 on M, whereas X(M) doesn't earry a geometrie structure.
This is one reason why M, not X(M), is relevant in the subsequent eonsiderations. Another
reason is even more eompelling: In a eonformal chart V c M:= M\ {eritical points Pe}
the string action (1) ean be written as

Sv =iX2d2(J = -~ iTlaßOaXOßXd2(J

where we used (5). Sv is loeally (i.e. for any domain V c t1) invariant under conformal
dijJeomorphisms ~: V ---t V' cM, satisfying ~*Tl = F. Tlwith a smooth ftinction F. This
observation iscrueial with respect to thegeometry of Mbeeause it follows that the metrie Tl
is of physical importanee and not the pullbaek metric _X2 . Tl, whieh ean be diseontinuous
and degenerate on M.

Let {~s, s E IR} be a conformal fiow on M, i.e. a one parameter group of diffeomor-
phisms, where eaeh ~ s is a eonformal transformation from M to, M. We extend ~ s to a
map Ws: M ---t M by the definition W s(Pe) = Pe and we assurne that Ws is a smooth map
(cf. the remark following Corollary 4.5). This situation ean be described globally on 1\1
if the definition Tl(Pe) = 0 makes sense because then the eritieal points Pe are neeessarily
fixed points of any conformal £lowWs on (M, Tl).

Lemma 3.1 The metric Tl= ~dT2 + d(J2 on M has a unique Coo -smooth extension to iVf
which is given by Tl(Pe) = 0 for all critical points Pe on M.

Proof: We represent Tlin achart around pe with coordinates ((J0', (Jl') ..:.-(T', (J'), Pe ~ (0,0).
The parameter transformation is oft he form (cf. [6]) T+i(J -a = (T' +i(J')n with n ~ 2 and
some constant a. Therefore the matrix ;::, depends analytieally on T',(J' and vanishes-in

the limit P ---t Pe. From Tla'ß' = ;::';::' Tlaß we obtain the required statement. 0

*5 Strings with kinksgive rise to metries h that are discontinuous along those trajectories on M which

parametrize the kinks.
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Notice that the definition of Tl is independent of the specialstring process under consider-
ationbut it fits weIl into t~e picttii~ of str'ing motion inthe case X2(pc) =0 because then
the induced metric h = _X2 . Tl vanishes in (T, 0-)-coordinates in the limit P ---+ Pe.

Definition: The conformal group of (M, Tl) consists of all diffeomorphisms W : M ---+ M
which obey w*Tl = n . Tl, where n ~ 0 denotes a smooth funetion on M.

We are now prepared to study conformal veetor fields e .:.- ~o which generate a conformal
£low W.3 on M. Obviously we have e(Pe) = ~o(Pe) = O. The Lie algebra of conformal
vector fields on (M, Tl) is denoted by AM. It is well-known that in (T, 0-),-parameters
e = eoor +e O(T E AM has to obey the "pseudo" Cauchy- Riemann equations

(13)

The general solution of (13) in 10cal light-cone coordinates 0-:1:: reads e = f( 0-+ )O(T+ +
g( 0-- )O(T- , with 0-:1:: = T ::I: 0- and O(T-J:= ~(Or ::I: O(T)' From the critical points Pe we do not
receive any constraints upon the derivatives of e because the resulting constraint equations
are trivial (0=0) due to the vanishing of Tl at pe. Of course, the local decomposition of e
defines a unique global decomposition e = e+ + e- with'Lie bracket [e+, e-] = O.

Theorem 3.2 AM is the direct sum of two commuting infinite dimensional subalgebras,
AM = At E8 AM' Each e = e+ + e- E AM is uniquely determined by its restriction along
an arbitrary but fixed time slice Cr (11). It can be constructed via parallel translation of
e:l:: IcT along light curves ,:I:: which obey 0-:1:: = const. in local light-cone coordinates.

Proof: In a neighbourhood of any point P f. pe we have e = f( 0-+ )O(T++ g( 0-- )O(T- and
the coefficients f( 0-+) and g( 0--) are constant along the curves ,+ and ,- respeetively.
Hence e+ and e- coincide with those fields which arise from e:l:ICT via parallel transport
along ,:I:: (with respect to the metric Tl). On a curve ,; which meets a critical point Pe
the field e+ must vanish since otherwise e(Pe) becomes singular (~::' diverges at Pe). An
analogous argument holds for ,;, e-. The curves ,:I: arising from Cr cover M in a unique
way: Along a fixed "string tube" [Th T2] x SI these curves wind up with a constant slope
of ~: = 1=1 (an exampl~ is pietured in fig.2). Therefore the components e:l: are fixed by
this construetion.
The zeros of e:l: along ,:I: impose finitely many vanishing conditions on e:l:IcT, say at the
points PI, .. , Pn E Cr. From a smooth funetion f on Cr that vanishes in some neighbourhood
of {PI, .. ,Pn} we receive the veetors f(o-)O(T+ ICT' They define aglobai conformal veetor fielde+ on M via parallel translation along ,+. Since the veetor space of such funetions f on
Cr is infinite dimensional, so is At and of course also AM' - 0

(--r

Fig.2 Light curves covering M.
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Th~ e:l:-coefficients of e = xi+ 817+ + e- 8u- are bounded on Cr which implies

Theorem 3.3: The coriformal group of (M, 7]) is infinite dimensional.

Proof: It suffices to show that for each generator e E AM the conformal £lowWs = exp( sO
exists on M for all s E IR. Remember that we denoted the set of critical values Tc by
{Tl, ... , Td. Each time slice Cr with T E (Tk, 00) consists of m components ct, j = 1, .. ,m.
The ct give rise to the subspace Mj := UrE(rk,oo) ct c M that is parametrized by

2.-

holomorphic coordinates u = T + ia with a = a mod a j. From z = x + iy = e- "j U

we obtain another holomorphic coordinate and the value z = 0 corresponds to a point Qj
outside*6 ofM. One verifies by direet computation that the components of e represented.in
(x, y)-coordinates vanish in the limit (x, y) --t 0 arid therefore we can extend continuously
e to ~ by the definition ~(Qj) = 0, j = O, .. ,m. Analogously we set ~(Pi) = 0, i = O, .. ,n,
for those points Pi corresponding to the ~ components of Cr (T < TI) for T --t -00. The
continuous field ~ is defined on the compaet manifold M so it generates aglobai £low
{wsls E IR} on M. The conformal £lowon M is now given by exp(sO = Ws/M. 0

Remark: Because of the vanishing constraints on e:l:ICr it is not possible to use an arbi-
trary smooth vector field e.g. f( a+ )817+ along Cr to define e+ on M via parallel translation:
The result would be a veetor field on M which at certain points along the strings behaves
like a step funetion and which is smooth outside these points. Such a veetor field does not
generate a diffeomorphism of M. This is the geometrical reason why the Virasoro gen-
erators e;t = ein17+817+ ICr (for Cr ~ 51) do not define conformal transformations on the
base manifolds M pietured in fig.2. Nevertheless we can expand the restriction of a smooth
conformal veetor field e+ for T < Tl in aseries e+lcr = .2:: anein17+ 817+Icr' The parallel
translation of the flelds einl7+817+lcr provides an expansion e+(a+)817+ = 2::aneinl7+817+
on M where the fields e;t = ein17+817+ are discontinuous on Cr for values T > Tl' Unfor-
tunately several difficulties with Poisson brackets arise if we use such discontinuous veetor
fields in the Hamiltonian treatment of string dynamics. This will be explained in the next
chapter.

4. Hamiltonian description and conserved charges

Due to Noether's theorem for each conformal veetor field e a conserved quantity (called
charge) is associated:

(14)

where T denotes the canonicale.=:ergy moment um tensor Tel = X,aX,ß - ~8~X,"YX'''Y in
(T, a)-coordinates, derived from 5. Notice that 7] degenerates at Pc, so there is nonaturally
induced isomorphism between TpcM and T;cM. Hence we can only rai"seand lower indices
outside Pc' Gf course, Qe is conserved in time because Taß vanishes on-shell.

*6 In this ~ay the compactification M of M is defined.
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,
Before we consider the Hamiltonian theory with varying string topology let us first

set up the general context needed. The simplest Hamiltoniall description for the classical
string (lvI = IR x 51) is to start with

P:= (EB~=OHl(51)) EB(EB~=OL2(51))
which we denote by Hl (51 )4 X L2 (51 )4 for short. Hl (51) stands for the first Sobolev space
over IR. Note that P is thenatural domain of definition for the Hamiltonian Hand of
course a Hilbert space with the scalar product

together with the constraints IIX' = 0, II2 +X,2 = 0 imposed on the initial data of astring.
motion. Usually, a sympleetic strueture is fixed by setting {XIl( er), IIv (er')} = gllVo( er - er').
However the evaluation of {Qe, Q77} is not possible for discontinuous veetor fields ~and Tl
e.g. those which arise from Virasoro generators if Cr ~ 51, because then one gets produets
of delta funetions. To clear up these problems within a rigorous setting (cf. [16]) we start
with a phase space

3

< (Xo,IIO),(Xl,IIl) >'p:= 2:« xt;,xr >Hl + < II~,IIi >£2)
Il=O

The canonical weak sympleetic form w : T P x T P --+ IR is defined by

W(x,I1)((a,ß);("y,o)) :=< all,oll >£2 - < ill,ßIl >£2 (15)

with (a,ß), (i,O) E T(x,IT)P = Hl(51)4 x L2(51)4. Because w IS only a weak
sympleetic form the defining equation for Hamiltonian veetor fields Xf, df(a, ß) =
w(Xf;(a,ß)) V(a,ß) E TP, need not have a solution at each (X,II) E P. In conse-
quence the Poisson bracket of Cl-funetions f, 9 on P, {f,g}:= w(Xf;Xg), is only defined
on the common domain D= D f n D 9 of the fields X fand X 9 .

Especially for the vector field XH = (II, X") we have DH = H2(51)4 X Hl(51)4 which is
a dense subspace ofP. The solution of the Hamiltonian equation of motion, (X, TI) = X H,

is given by formula (6) together with its r-derivative X = II. It defines for each r a
continuous linear map ;r;r: (X(O),II(O)) --+ (X(r),II(.r)) on H2(51)4 x Hl(51

)4. This
map has a unique continuous extension

cI>r : P --+ P,

which gives the Hamiltonian £lowof XH on P. In thisway strings with kinks can naturally
be described in the Hamiltonian setting.
We express the conserved quantity (14) in phase space variables. Qe : P --+ IR is given by

(16)
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Of course Qe is also well-defined if we plug piecewise continuous functions ~o and e into
(16). Then Qe is a COO-smooth function on P and its Frechet derivative is given by

(O'.,ß) E T(x,IT)P. (17)

Lemma 4.1 Let ~o, e be continuous funetions on 51 which are piecewise of dass Cl.
Then there exists a Hamiltonian vector field XQe with domain DQe = H2 (51 )4 X H1 (51 )4 :

Proof: From the assumptions we obtain ~oX' J.L + e IlJ.LE H1 (51) hence we can integrate
(17) by parts and the defining equation for XQe yields:

r [(~OX' + eIl)' . 0'. - (~oIl+ e X'). ßJda- =< Ye, ß > £2 - < Ze,O'. > £2 0151
Notice that the domain of XQe coincides with those of XH = (Il, X").

Remark: As mentioned in the last chapter we are also interested in the case where ~o
and estern from discontinuous vector fields ~ = ~+ ICr + ~-ICr with CT = {T} X 51.
Therefore we have to find XQe together with its domain DQe C H2 (51 )4 X H1 (51 )4. It is a
standard fact that for L2(51)-functions f, 9 and 0'.' the equation 151 gO'.'da- = - 151 fO'.da-
is fulfilled if and only if gEHl (51) and then f= g' holds. Consequently we must have
~oX'J.L +e IlJ.L E H1 (51) which is equivalent to

and this condition defines a vector space VT C H2(51)4 X H1(51)4 for a fixed T. Hence the
discontinuity of ~ rest riets the domain of XQe .to the subspace*7 VT• In consequence the
Poisson bracket {Q e, Q7/} with two discontinuous fields ~, TJ is not defined on the whole üf
H2(51)4 x H1 (51)4. .

Our next task is to examine strings with varying topology. We want Qe to be defined
on a phase space P and from (14) it follows that P must depend on CT or at least on
c; Tc := CTc \{Pe}, for critical values of T. Therefore we need a Hamiltonian description
for each fixed manifold (M,dk). The natural generalization of P = H2(51)4 X L2(51)4
is to take thecollection of spaces PT = H1(CT)4 X L2(CT)4 (the integration measure is
defined by the conformal parameter a-). In the case of critical curves CTc we compactify
the different components of c; Tc in such a way that the resulting space is isomorphie to
CTc+f' where € has to be sufficiently small. In fig.2, for example, one gets two copies of
51 for the compactification of c; Tc which we also denote by CTc' Now all CT are smooth
compact manifolds (not submanifolds of M for Te) SO one avoids the discussion of boundary
values at Pe and instead gets the not ion of differentiability along CTc which is necessary to

*7 One can identify H1(Sl) with a subspaceof CO(Sl) due to the Sobolev lemma. If elcr=e+lcr has

only one discontinuity at ut the condition (18) gives X'I'(T,ut-T)+IP'(T,ut-T)=O, i.e. Vr#H2(Sl)4xH1(Sl)4. ,
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(19)

. ....~..,

understand what H1(CrJ means. A symplectic form Wr on Pr is obtained by formula (15)
where now <, >L2 denotes the scalar product on L2( C;).' The Poisson bracket is defined
by

{f,g}r = wr(Xf,Xg) Xf, Xg E TPr .

Definition: We caU P = UrElR (Pr, wr) the generalized phase space.

String branchings occur at times T = Tl, .. , Tk and the spaces er are naturally isomorphic
if T is restricted to Jo = (-00, Tl), Ji = [Ti, Ti+d, i = l..k - 1 or h = [Tk, 00): One
simply identifies points with the same value of the conformal CT-parameter by maps I~r' :
Cr --t Cr', VT, T' E Ji. This yields isomorphisms I~~, : Pr' --t Pr and they define an
equivalence relation on UrEJi Pr' Of course an analogous equivalence relation holds on
the tangent spaces UrEJi T Pr' We denote the space of equivalence elasses by Pi resp. T Pi
and a symplectic form Wi on the elass Pi is defined by Wi(Xi, Yi) := wr(Xr, Yr) where
X r, Yr E T Pr are the representing fields of Xi, Yi E T Pi with arbitrary T E Ji. The
vectors (TI, X")(X,II) E T(X,II)Pr are equivalent, hence there is a vector field (TI, X")i
on each class Pi and the Hamiltonian flow ep~ : Pi --t. Pi yields integral curves on this
space. The representing functions (Xr, TIr) E Pr of such an integral curve define a section
Si : Ji --t UrEJi Pr which describesa string motion within the time interval Ji. At the
critical value Ti+1 the limit limrTri+l s( T) has to be interpreted as a function on Cri+1 and
if this new initial condition is in Pri+1 dynamics continues via ep~+l. Hence astring motion
on (M, dk) is given by a section*8 S : IR --t UrElR Pr and in order to be well-defined the
transition conditions limrTri s( T) E Pri must be satisfied. This clearly restricts the set of
initial states (Xro,TIro) at TO< Tl for each fixed base manifold (M,dk).

However these restrictions are not of physical nature: 1£the transition conditions fail for
a given initial state it means that our choice (M, dk) is not appropriate for the resulting
string motion. The choice M = IR X 51 fits weIl for any initial state but from chapter
2 follows that there are also different possible choices in general. It is at this point that
we have to consider the totality (or at least a subset ) of compact Riemann surfaces, i.e.
moduli space, in order to get a well-defined Hamiltonian description for arbitrary string
motions.

We carried out this formal construction to adhere as elose as possible at the usual
Hamiltonian treatment which deals with integral curves in a fixed phase space. Notice that
for M = IR X 51 we have Jo = IR, Po ~ H1(51)4 X L2(Sl)4 and Wo is given by (15), hence
our description reduces to the usual one for M = IR X SI. Now we study the algebra of
conserved charges:

Theorem 4.3 The conformal algebra AM has an anti-representation on each space
H2(Cr)4 X H1(Cr)4 via Poisson brackets of the associated charges Qe:

(20)

*8 By "seetion" we"only mean s(r)EPT: The set UTEm.PT h;;'s no eanonieal smooth veetor bundle

strueture beeause the spaees PT and PT' are not naturally isomorphie for arbitrary r,r'.
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P;oof: Formula (19) and the generalization of Lemma 4.1 (SI is substituted by Cr) yield:

{Q€,Q71}r =< Y€,Z71 >£2 ~ < Z€'Y71 >£2= f (eOII+ eX')(1]°X' +1]III)'doo - (e t-+ 1])JCT

where e t-+ 1] denotes the same integral expression with e and 1] interchanged. After some
elementary calculations we find for {Q€, Q71}r :

f {(eO 811]°+e811]1 )IIX' - ~(1]081e - e 811]°)X'2 + ~(eO 811]1-1]181 eO)II2 }doo - (e t-+ 1]).JC
T

2 2
(21)

We now use (13) to substitute the first term in each bracket e.g. e0811]° = e0801]1 and after
collecting analogous expressions from e t-+ 1] the assertion follows. 0

Remark 1: An important step in the proof is the substitution of terms like eo 811]° by
e0801]1 because only in this way one gets the T-derivatives for the Lie bracket [e, 1]]. This is
only possible if (13) is fulfilled, i.e. only if the funetions eo and e can be interpreted as the
restriction of the components of a conformal veetor field e on M. For general fields e, 1] on
M the substitution is not allowed but we can take a bit different point of view: At fixed
TO we have elcTO(p) = e+(p)8u+ + e-(p)8u- and there is a unique conformal extension ec
(constructed by parallel translations) of these initial data within some interval [TO, TO+ E):

T = TO+ 6.T E [TO, TO+ E) • (22)

Here ec and 1]c denote the conformal extension (22) arising from Cr. 0

Notice that 4.4 remains valid for complex valued veetor fields, i.e. ep,1]p E TpM 0 (J;.

Remark 2: To obtain (21) we had to integrate by parts:

at these points; notice that the derivatives occuring in [e,1]] are interpreted as left-sided
resp. right-sided limits at those points (T,oo) where elc

T
or 1]IcT are discontinuous. Equiv-

alently we maydrop the extra term and interpret the Lie bracket [e,1]] in a distributional
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sense. In consequence the simple algebraic structure of Virasoro generators einu+ 0u+ is
lost on the level of Poisson bracket~ if we work not onlR x 51 but e.g. on the manifold
pictured in fig.2. This is the main reason why one looks for smoothbasis fields e:i:. An ele-
gant solution for this problem is provided by KN-theory, using the holomorphic structure
of M.
Our final observation about the proof of 4.3 is that we made no explicit use of the fact
e:i:({;) = O. Only continuity of e and 'Tl is necessary for the vanishing of boundary terms:

Corollary 4.5 The algebra AJ\9! of smooth vector fields on N! whieh obey (13) is represented
on eaeh spaee H2( Cr)4 X Hl (Cr)4 via Poisson braekets by formula (20). 0

The vector fields in AJ\9[ are generally not smooth fieldsbn M but each e E AJ\9! generates
a loeal conformal £lowonN! and this suffices to obtain a conserved quantity QE,. Therefore
it is AJ\9! which is of physical interest*9.

(23)-7 £(Cr)
-7 -il( T + i(7)ou

5. The classical background of KN-theory

In this chapter we r,estrict the discussion to the case of one incoming and one outgoing string
because we will need two analytical theorems that are available in this case (expansions (24)
and (25) below, for generalizations see [9]). We denote the space of Coo-smooth complex
valued vector fields on C r by £(C r) and the space of meromorphic vector fields on M that
are holomorphic on M by £(M). Around each point p i= Pe there are holomorphic (T, (7 )-

coordinates defined via the differential dk and any vector field e E £(M) is represented by
l(T + i(7H(Or - iou). Ifwe fix T i= Te and take (7 as coordinate along Cr we have a natural
"restriction"

which is a Lie algebra homomorphism. A fundamental theorem about the set rr(£(M))
states the following [7]: There exists a countable basis {en} of £(M) such that each field
Vr E £(Cr) can be expanded in a uniformly convergent series:

.00

Vr = Lan' rr(en) .

-00

(24)

Remark: The map rr can also be defined for critical values Te but then the expansion (24)
(in the sense of uniform convergence) is not generally valid: An arbitrary eE £(1\.1) reads
e = l(z)ozin holomorphic z-coordinates around pe. For P i= pe we choose u-coordinates
u = T + i(7 = jZ dk(z')dz' so we have e = l(u)ou = l(z)oz with l(u) = l(z)dk(z). Since dk~ .

vanishes at pe the restriction r r (e)(p) converges to zero for p -7 Pe and consequently at
most those fields Vrc on Crc can be expanded that obey VrJPe) = O.

*9 The situation is similar in an Euclidean context: A holomorphicvector £leldon IP l\{O,oo}is a
conformal-£leIdwith respect to the Euclidean metric dzd"Z (on a:) but only those £leIdswhich are
.holomorphicon IP 1 generate global conformaltransformations,
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A ;epresentation analogous to (24) holds with meromorphic quadratic differentials n on
M (i.e. locally n = j(z)dz2) that are holomorphic on M: Let {nm} be the dual basis to
{en} with respeet to the pairing < 0, e >:= +Ic

T
n(e,.), i.e. we have-< nm, en >= 8~;

{on} was introduced in [8]' up to a faetor 27l". Then for any smoothquadratic differential
Or on er there is an expansion (ir : er '-----+ M denotes the embedding)

=
Or =2: bn . i;on .

-=
(25)

Due to (24) the field ~; (0") := ~+ (T +0" )0.,. along er has an expansion ~; = 2: an T'r (en) =
2: an . ( -i)ln (T + iO")0.,. which applies for any value T i= Tc, and we receive:

(26)

Therefore we can evaluate {Qe+,Q7]+}r ifwe know the Poisson brackets {Len,Lem}r.

Proposition 5.1 The funetion~ Len = - JC
T
ln( T + iO")T++dO", defined on Pr, obey:

(27)

Proof: In view of Corollary 4.4 we have to consider the veetors e~ := ln( TO + iO" )0.,.+, that
are defined on era. Their l'Öcalconformal extension (22) is given by

T = TO + f).r . (28)

At T = TO we have Len = Qet and the derivative 0.,.+ acts like ioz = t(Or - i0.,.) on 1,

This implies [e~c' e~J = iren, em]t for T = TO. Using Corollary 4.4 we obtain

{Len, Lem }ra = {Qe+' Q e+ }ra = -Q[e+ e+ ] = -Qi[e e ]+ = -iL[en ,em] D
n m nc, mc n, m c ..

Meromorphicvector fields en obey the KN algebra ren, em] = 2:j e~men+m+j where e~m
are strueture constants and the summation ranges over some fixed, finite set [7]. Hence (27)
reads {Len, Lem}r = -i2:j e~mLen+m+j and we find that the Len satisfy a Poisson algebra
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whieh is not T-dependent. This is somewhatastonishing beeause meromorphie veetor fields
do not eorrespond to a symmetry of S (12). We interpret this representation property as
follows: The eonformal extension (28) is eonstructed via the map

Wro: (TO+ 6.T + ia) -t (TO+ i(a + 6.T)) ,

defined on some right-sided neighbouthood Uro = UrE[ro,ro+€)Cr of Cro' Wro may be
regarded as the loeal analogy of a Wiek rotation: In essenee we substitute 6.T by i6.T. The
map Wro together with the substitution Hßr - ißO') -t -ißO'+ results in a homomorphism
from £(M) to the spaee of eomplex valued eonformal veetor fields on Uro' We made use
of this homomorphism (up to a factor i) in the proof of 5.1. Notiee that the eoneept of
a Wiek rotation only makes sense beeause there is acanonical splitting of the Riemann
surfaee into time x space, iridueed by the differential dk.

Remark: The functions Lenand Qe (e E A)vanish on~shell beeause the eonstraints T = 0
are eonserved in time. Even without these eonstraints Qe would be a eonserved quantity
(due to Noether's theorem). This property does not hold for Len: For T =I 0 these functions
depend on time T.

Finally we interpret the Lenby means of the pullbaek i;T of the energy momentu;n tensor
along Cr. The loeal eoeffieient of i;T is given by i;T( ßO',ßO') = T++( T, a)+T_-( T, a) henee
the tensor splits into two parts:

i;T = T++da2 + T __ da2 =: T+ + T_

Proposition 5.2 The T+ part of i;T can be decomposed into T+ = I:~CX)Len . i;nn.
. .

Proof: T+ is a quadratie differential on Cr so there is an expansion (25) T+ = I:bmi;nm.
We ean express Len via T+, Len = t JeT T+(rr( en),.), whieh gives:

D

Henee the T+-eomponents Len of the energy moment um tensor represent the algebra £(M)
. on eaeh spaee (Pr, wr), for T =I Tc.

Example: Let us distinguish explieitly between the usual theory on IR x SI and the
treatment given here. Usually one uses the basis

t+.- in(r+O')ß nE '77"n .- e . 0'+ , aJ

for global e+ -fields on IR x SI, satisfying (13). Eaeh eonformal veetor field e+ admits
a Fourier deeomposition e+ = I:~CX)ane;i with time independent eoeffieients an' The
eonserved eharges read Qet = - J ein(r+O')T __ (T,a)da.
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,
- 1In our treatment we start with M = lP and we ehoose PI =0 and Ql = 00. A basis of

holomorphie veetor £leIdson M =:= lP 1\{0, oo} is given by

The differential dk = ~dz de£lnes the (T, o}representation of en = en( r+iO")HOr - i00" ) and
from (28) we obtain e;t = en(ro+i(O"+~r»oO"+. At T = TO this gives

c

The time dependenee drops out in the Poissonalgebra {Len, Lern }ro = i(n - m )Len+rn be-
eause both sides eontain the faetor e(n+m)ro(1-i). It is this observation whieh is generalized
to arbitrary eompaet Riemann surfaees.

The whoIe reasoning for e+, T+ ean be repeated for e-, T_ by simply using the anti-
holomorphie bases {en} and {nm}. The resulting eomponents of T_ = 2:~ooLennn obey

{Len,Lern}r = -iLC~mLen+rn+j
j

where C~m denote the KN strueture eonstants of ren, em]. We also obtain

There are two major advantages in dealing with Len and Lern instead of Qe.z:
1. The algebraie strueture of {Len} is related (by eomplex eonjugation) to the strueture
of {Lern}' Sueh a property does not hold for eonformal veetor £leIds e::i: Generally there is
no eanonieal map whieh assigns e+ -£leIds to e- -£leIds beeause the eonditions e::i(-Y1=) =
const. are totally different.
2. For any Riemann surfaee M the algebra £(M) is generalized graded and different repre-
sentations (foreentral extensions of £(M)) are available in that ease [7,10]. An analogous
grading for the algebra AM is not obvious.

With these eonsiderations we.eonclude our treatment of the classieal theory. It follows from
the Poisson strueture and the Hamiltonian for.mulation that this description is direetly
related to KN-theory.

Concluding remarks

The deseription of string dynamies given here improves the physieal understanding in
the following sense: First, it showes how branehing proeesses emerge naturally from a
geometrie point of view. Seeond, it makes transparent the relation between the eonformal
symmetry of a topologieal non-trivial string world sheet and the holomorphie struetures on
the assoeiated Riemann surfaee. This treatment differs from that one where the "Euclidean
version" of string theory is eonsidered (cf. [12]): In the latter 'case one has a eonformal
symmetry with respeet to an Euclidean metrie 8 on M that loeally reads 8(z) = el4>(z)ldzdz.
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Th~ corresponding conserved eharges Len represent (as eOxpeeted)the Euclidean conformal
symmetry on phase space.

In our description not only the conformal symmetry of (M, ry) is realized by the Q~:
Also the symmetry of (M, 8) is represented via "charges" Len; the conneetion between
these two structures is exploited by the theory of Krichever and Novikov.
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