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ABSTRACT

The possibility of branching processes for classical strings is investigated on the basis
of the Nambu-Goto action. We parametrize the world sheet by a Riemann surface M
and introduce a C'*®—smooth, degenerate metric n on M. Well-known results about the
conformal group are generalized to the case of (M,n). We provide a rigorous, infinite
dimensional Hamiltonian setting for processes that change the topology of a string. Finally,
the classical background for the theory of quantum strings as developed by Krichever and
Novikov in 1987 is discussed within this classical framework.
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Introduction

Classical string dynamics based on variational principles is a well-established theory [1,2].
For closed strings one usually considers string motions that are described by differentiable
maps X from R x S to R%. The possibility of string splittings has been discussed in
the context of cosmic strings [3,4] whereas this aspect has not been investigated in detail
for classical fundamental strings. In the latter case the simple underlying idea is to treat
a string which self-intersects as consisting of two strings that obey their own dynamics’
(5]. A consequence of such a viewpoint are ”light cone diagrams” and it has been shown
by Giddings and Wolpert [6] that they provide a parametrization of the moduli space of

compact Riemann surfaces. The problem of quantization!of such diagrams has been tackled

successfully by Krichever and Novikov [7,8] and various aspects of that theory (called KN-

theory) have been worked out since (cf. [9-13]). Nevertheless, the physical and geometric

background on the classical level is still missing and we aim to fill that gap.

The paper is organized as follows: To fix notations, we recall some basic facts about
closed strings in chapter one and we give an explicit solution for general string motions
that allows us to study the geometry of world sheets in a direct way. The general solution is
modified in the second chapter to processes where one string splits into two strings. From
the principle of least action we derive a local criterion whether the branching solution is
preferred or not.

Chapter three deals with the symmetry of topological non-trivial string world sheets.
It turns out that the symmetry is conveniently described by a geometric structure on the
"base manifold M” that parametrizes the world sheet: This structure consists of a Rie-
mann surface M equipped with a smooth, degenerate semi-Riemannian metric n; those
points p. on M satisfying det(n(p.)) = 0 correspond to branching points of the string
motion. We then generalize results about conformal transformations of the manifold
(R x 8, —dr? 4+ do?) to the case of (M, n). Specificly we show that the conformal group is
infinite dimensional and the associated conformal algebra splits into two commuting parts.

A Hamiltonian description that allows us to cope with the varying string topology is
developed in chapter four: The classical phase space P is substituted by a collection of
spaces P = |J, ¢ Pr and a string motion is represented by a section s : R — {J, g Pr,
i.e. (1) € P;. In order to obtain a well-defined motion for a specific initial string state,
one must choose the Riemann surface properly. In this way the moduli space of compact
Riemann surfaces appears naturally in the Hamiltonian setting. Next we investigate con-
served quantities Q¢ having their origin in the algebra of conformal vector flelds &; these
quantities define (as usual) a realization of the conformal algebra on phase space. More- -
over, we evaluate Poisson brackets of functions Q¢ with arbitrary fields £ on M, using their

conformal extension 7 &..

This method is applied to holomorphic vector ﬁelds in the last chapter: It results in
a "local Wick rotation” on the Riemann surface M and as a consequence the algebra of
holomorphic vector fields on M is also represented on phase space (this is not obvious
because the theory possesses no Euclidean conformal symmetry). The paper concludes
with the classical foundations of KN-theory: They are descnbed in a natural way within
the formalism developed before. :




1. Remarks on classical string dynamics

Let us consider a classical closed string in Minkowski space*! (R*,g = diag(—1,1,1,1)).
Tts world sheet X is parametrized by functions X#(o*,0?), =0, ...,3, with local (a1,0%)-
parameters. String dynamics can be defined by an action S which is proportional to the
area of ¥. We choose the constant of proportionality equal minus one,

s;/L(X,a )‘d20>=—/\/‘——de-t(haﬂ)d20 L )

where hop = 0o X*03X"gur = X,oa X,p (spacetime contractions will be suppressed) de-

- notes the induced metric on . The Euler-Lagrange equations 94 aiLa = 0 are given by

OeowX* = PV VXt =0, 2)

where [, labels the covariant d’Alembert operaﬁor. Notice that this equation is only well-
defined if (hqp) is non-degenerate. The physical meaning of det(hag) = 0 can be recovered
with conformal parameters (r,0) in which h reads (A > 0 is a real valued function)

" h(r,0) =A(r,0) -1, 17=—d7'2+d02. (3)

We will construct such a conformal flat metric below (cf. [1],[14]). A first step is to choose
the 7-parameter to be proportional to proper time

t=X%r,0)=R-7 , R=const. >0 |, (4)
and o, R will be specified shortly; as usual we set X# = agi“, X' = %. Suppose that
we have conformal parameters, then the metric A - nop = X,a X, gives A = —X? for

a = =0 and (3) is equivalent to

X?+X%=0 , XX'=0. (5)
X = (Xl,XZ,X3) is proportional to the velocity of the curve ¢t — X(%, o) which we call
the curve of a point o. From A = —X? it follows that the induced metric k (3) is singular
at (r,0) if and only if the point o moves at the velocity of light, ¢ =1.

Definition: A closed string at time ¢t = 0 has admissible initial data if its position Xo in

IR3 as well as its initial velocity @ = X (0, -) are parametrizable smoothly by the Euclidean
length [; moreover the relation |@s(I)] < R (with respect to the metric § = g|rs) holds for
all values of [, 0 <[ < L. '

We choose @y orthogonal to the string*? | dT”ﬂ . ﬁ'o = 0, and because ¢ does not depend

on [ (4) we obtain dfl" up = 0. In order to get a cbnformal flat metric at least at 7 = 0,

*1  The results on the classical level do not depend significantly on the dimension d>4.

*2 This is not a dynamical restriction because the ”infinitesimal surface” defined by the vectors
(Rdr,@(l)dT) coincides with the surface defined by (Rdr,@ (l)dr) where @ denotes that part of @ which

is orthogonal to the string.




we must define the o-parameter in such a way that (5) is fulfilled, in particular we need

~R2+ @2+ XP =0. This enforces the definition (dl = +/X!2do)

L
o(l) := = —il',
=5 — -
where 7y = %[t:o = ﬁ—é’ is the physical velocity of the point /(). The range of o becomes
[0,27] for R := &= fOL 11 —dl. The second part of (5) now follows from 4Xouo = 0, hence
. —'UO

it is always possible to satisfy (5) at 7 = 0. For 7 > 0 we have:

Proposition 1.1 i) On R x S? the unique solution of OX* = 0 with respect to C?%-smooth

initial data X*(0,0) = X§ (o) and a;(r" (0,0) = uf (o) is given by

1 1 o+
XH¥(r,0) = §{X6L_(a +7)+Xg (o —7)}+ 5/ ub(o')de' , p=0,1,2,3. (6)
i1) The map X : R x S* — R* defines a C*-smooth métric h = X*g (possibly degenerate)
on M = R x SY. If the initial data obey (5) then OeouX* = 0 is satisfied at allp € M

- where h(p) is non-degenerate.

Proof: i) is a standard fact. ii) With (6) one can directly verify (5) for all values of 7, i.e.
the pullback metric h reads h = A - n. In (7,0)—parameters (which are coordinates on
R x S') we obtain, together with (2)

oL
conu = Vg
| ) ax7 .

= Ou (VAR5 X M) = 8(,(/\%7]"58[;)(”) . 1)

In the case A(7,0) # 0 this equation reduces to Ueop X* = Ba(n“ﬂBﬂX“) =0X*=0.0

Remarks: 1. Because (5) can always be satisfied at 7 = 0 this proof shows the existence of
global conformal parameters for on-shell string world sheets of closed strings. Notice that
solution (6) for X3(c) = 0, ud(o) = R is given by (4).

2. Equation (7) reveals another useful property of conformal parameters: They allow us
to regularize the equations of motion (2) at critical points p. where h degenerates. But
one should bear in mind that 0X(p.) = 0 is not derived rigorously from the variational
principle. ' '

A simple consequence of (6) is a property which is usually assumed to be valid:

 Corollary 1.2 If a string has admissible initial data at 7 =0 then no point of the string

will exceed the velocity of light for all later times ¢t > 0, i.e. we have |88—)f(t,’0)| <1
Proof: With (5) we obtain dl(c £7) = \/ X2 (o £ 7)do = R+\/1 - 02(o £ 7)do. This yields

" R dfo(a +7)

X(r0) = {2 1= (e +7) +5o(o +7)}

N R dXo(o —7) . S,
,. | _5{ dl \/1—”0("—‘7)—”0(‘7—7)}-
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Hence applying the triangle inequality in IR * we obtain (usmg -2 -vp = 0 and |d °| = 1)

|66_)t((t,g)1 < —;—\/(1.—63(0+T))+13§(0+T)+ %\/(1 — (e —r)+ (e —-T1)=1. VD

For X2(p) # 0 the map X defines a local embedding of a neighbourhood U(p) C R x S*
into IR*, but when a point ¢ reaches the velocity of light, the singular behaviour of the
equations of motion is reflected by a singular behaviour of the world sheet ¥: The unit
tangent vector %%f = \/1_ 5o

may behave discontinuously only if X? vanishes.

Special case: It is geometrically intuitive to see how a string with velocity zeroat 7 =0
evolves. The parameter o = ZT" -1 .is proportional to the Euclidean length of the string and

the solution X (r,0) = ~%{X0(U+T)+XO(U—T)} has the following interpretation: After time
7 the point X(c,0) = Xo(o) moved exactly to the middle between the points Xo(a +7)
d dX" (o0 —7)}. This

gives a unit vector, i.e. the velocity of light, if and only 1f the tangent Vectors ﬁ" at the

- and Xo(0 — 7). The physical velocity is given by #(r,0) =

points Xo(a +7) and )20(0 — 1) are parallel. Indeed, if the string lies in a two dimensional

plane each point X (0,0) necessarily reaches the velocity of light because the angle ¢(7)
4Xo(0+7) and — i&(a T) varies continuously from —7

between the two tangent vectors

to w. The shape of a string in a neighbourhood of a point X(ao, 79) with || = 1 can easily
be derived by approximating the string at 7 = 0 with parts of circles. One finds a cusp at
X (00,70) and this cusp generally exists within a whole time interval Ar, defining a cusp
curve ¢(7) in Euclidean R®. Examples of that behaviour are pictured in ref [3].

o

2. Modified string dynamics

From (6) follows that the state of a string is reproduced after a period At = R -7 up to
a rigid translation AX = f i(c')do' and up to a parameter change o — o + =. If the
string doesn’t self-intersect and if no point reaches |U] = 1 during one period then string
dynamics is uniquely fixed and we have a global embedding of R x § ! into R*. Now
suppose that two branches of the string intersect, X (0,79) = X(00,70), having velocities
|0] < 1 at the intersection point. The general conﬁguratlon will be as shown in fig.1:

Fig.1 Interéecting string branches.




Solution (6) for X(7,0) implies that these two branches move through each other without
any influence. However, we might take a different point ‘of view; namely that we are given
two strings at 7o each of which obeys its own dynamics for 7 > o

=N » ‘ . o+1T—T9o
X(T,O’):§{Y(O'+T——T0)+Y(O'—T+T0)+/_ . r(c')do'} o €[0,0) | (8)
- . 4 B o+1T—T19 )
X(T,'a) —{Z(0+T—7'0)+Z(a—7'+7'0)+/ +" s(c")da'} o €log,2m) . (9)

, . \
Here the functions Y(0) = X(o,70) and r(c) = X(d,70) have periodicity oo and analo-

gously Z and s are (27 — og)-periodic functlons The equations 0X = OX = 0 are valid
in a distributional sense because of the kinks which arise from the intersection point. We
remark that no conservation law is violated by the splitting because all these conserved
quantities are given by integrals that only contain first derivatives of the X#. Of course
energy, momentum and angular momentum behave additively under such a splitting. In
consequence there is no obvious reason to exclude this alternative motion so let us con-
sider how the action behaves as a function of time (7o := 0 for convenience). From (1)

and (5) we obtain the on- shell action S fX2d2<7 We set Sfree(T) := fo 2"X2dadr
spzit(T) N X dodr' + fo fzﬂ' X dodr' and examine the difference of the two areas.

Proposition 2.1 The first and second derivative of AS(T) = Stree(T)—Ssprit(7) at 7 =0
18 given by AS(0) =0 and

d*AS
dr?

Proof: The following formula is an 1mmed1ate consequence of the fact that the val-
ues X#(7,0) for both kinds of solutions c01nc1de outside the o-intervals [—7,7] and

(o0 — T, 00+ ]

dAS

55 (0) = (da(o) - @(0))” — (Ry(00) - K5(0))* . (10)

(T) /_T {Xz(r, o)+ XZ(T, oo + 0)|do

T2 2 Y L ) S22
——/ (X (r,0)+ X (7',0'0——T+0’)]d0’—/ (X (r,0)+ X (1,00 + 7+ 0)]do .

0 -—T

( ) = 0 is now obvious. One must be cautious with derivatives of terms like

2 22
N X (r,0)do because X (r,0) is dlscontlnuous at o = 7. But it is standard analysis to

show £ 1,=0 f, e (7‘ a)da = lim o X (¢,0). Differentiating AS(r) at T = 0 and collectlng
terms that come from (6), (8) and (9) yields AS(0) = (wo(a0)—u0(0))? —(X' (00)—X (O))2

Since the time component of this expression vanishes we obtain (10).




We note from AS(0) = 0 that at 7 = 0 the two surfaces grow at the same rate at first
order. If’AS’(O) is positive, the value Sfree(r) is greater than S,p1i:(7) within some time
interval [0, ¢]. One may now modify string dynamics by the requirement of least growth -
of S which then implies splitting and merging effects of strings on a classical level. The
term (w@(cg) — @(0))? can be interpreted as follows: At high relative velocities of the two
string branches the splitting solution is preferred whereas at low relative velocities these
two branches do not interact. To see what the second term means, suppose that the string
is at rest (o = 0) and we treat the two string branches locally as stralght lines. Then after
time 7 there are two strings, each of which has two kinks and all points X (t,0) between -

such two kinks exactly move at the speed 1 z | X4 (o) — X}(0)] (so by this effect the resulting
action is increased).

Remark: This dynamic is not invariant under time reversal: Suppose we have a splitting
process at 7 = 0. Then the time reversed motion is a process where two strings merge into
one. However, the minimality criterion forces us to take also a splitting solution for 7 < 0,
because at 7 = 0 only @ changes to —iy which has no effect on (10). -

From the last chapter we know that the situation is different when a point oo of the
string reaches the velocity of light (at 7). If we express the equations of motion in the
parameters (7,1) instead of (7,0) we find that the tangential part of the string accelera-
tion becomes singular at X (0o, 70). From this intrinsic point of view (in contrast to the
variational viewpoint) it seems to be natural to consider string branchings at such points.
Geometrically it means that two cusp curves intersect at the same time and examples can
be constructed by hand, using the ”special case” discussed in chapter 1. A splitting solu-
tion is given (as for |0(c9, T0)| < 1) by equations (8,9). The main difference here is the fact
that for both the classical as well as the splitting solution the equations of motion are not
well-defined at the critical point because h(7,00) = 0. Outside this point both solutions
are well-defined, hence there is no natural preference of one of them. This is somewhat
unsatisfying but similar (non unique) situations also arise in classical one dimensional me-
chanics*3. One might argue that (0X = 0 is only valid in a distributional sense and that
it is unnatural for a string to move with kinks**. But even this argument against strlng
branchings can be refuted because of

Lemma 2.2: Suppose we have a string at 7 = 0 with admissible initial data and at 1o
there is a string splitting with parallel velocity vectors ¥(7o,0) = ¥(70,00) at the speed of
light. Then both strings (for T > 7o) are described by C'—functions.

3 A point particle in the C'-potential U(r)=—%|z|§ with position z(0)=0 and velocity £(0)=0 has the
choice to stay at the origin (z(t)=0), or to move away (z(t)=(%)3): Both motions obey i‘(t)———(z(t))
*4

For cosmic strings there are good arguments for this viewpoint: Finite-width corrections to the

Nambu action of Nielseri-Olesen strings involve a curvature term which suppresses kinks, see [15].




Pr(;of.' The one-sided derivatives“'oﬁ?(‘é) are given by

g—f(r,a) = %{Xé(a + 1)+ Xg(o—7)+uloc+1) —‘u(ar —7)} , o =0 moday
and the last two terms are continuous due to our assumption. Discontinuities can only
arise at ¢ = T or ¢ = 0y — T because only then one argument of X takes a value at
which the splitting occurred. From X?2(0,0) = X2(0,0,) = 0 and X? + X' = 0 we obtain
X1(0) = X}(oo) = 0 so left-sided and right-sided derivatives of X coincide. The same
arguments hold for the 7—derivative which completes the proof. _ O

In consequence, no kinks emerge from the intersection point and X = 0 is obeyed in’
an ordinary sense. Notice that we have AS(0) = 0 (10), so the case with parallel light
vectors is rather distinguished. So far we discussed splitting solutions of the form (8,9) but
it is now obvious how to construct merging solutions of the same type. The only difference
would be that we have to perform some shifts o; — o; + ©; along each string in order to
get a continuous parametrization of that merging solution.

Remark: We argue that a closed string cannot split into an open string, even at points
0o that move at the velocity of light. The boundary conditions for open strings impose
constraints on the Fourier modes of such a string. If these constraints are satisfied for the
state Xp of a closed string then we can interpret Xo as initial state for an open string. We
now alter the state Xy outside a neighbourhood of g such that the constraints fail for the
new state Xo, hence X, cannot describe the initial configuration of an open string. On the
other hand suppose that there is a criterion which allows X, to split. This criterion must be
of a local nature (like Proposition 2.1) in order to obtain a local interaction. Consequently

the state X is also allowed to split which is an obvious contradiction.

Now consider the history of n classical strings which do not interact at times 7 < 74, 1.e.
we have n incoming strings. We restrict the discussion to the case of finitely many string
branchings that occur at times 71,.., 7x. The resulting configuration consists of m strings
for 7 > 1%, i.e. m outgoing strings. In ref. [6] it has been shown that such a process (which
was treated on the formal level of a diagram) can be parametrized by a Riemann surface
M. The position of the strings on M at a fixed moment of time 79 is given by

Cr :{q€M|T(q)=Re/qdk=7'0} , (11)

where ¢o is some fixed reference point and dk is a unique meromorphic differential on a
compact Riemann surface M D M that has simple poles at the points P;, 2 =1,..,n and
Qj, j = 1,..,m and is holomorphic elsewhere (M = M\{Py,..,Pn,Q1,..,Qm}). At the P;
(corresponding to 7 = —c0) dk has real positive residues whereas at the Q; (corresponding
to 7 = +o00) there are only real negative residues. The critical points of the harmonic
function 7 : M — IR are given by the zeros of dk and these points coincide with those p.
where the strings split or rejoin. We denote a critical value of 7 by 7. : 7. € {71,y Tk}
In conformal (7, 0)-parameters dk has the simple form dk = dr + ido (indeed, this is the
‘definition of dk given in [6]). The o-parameter has the property to be defined modulo some
angle o; along each string and ¢ may change discontinuously by some twist angle © if two
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' strmgs merge. This behaviour is exactly described by ¢ = Im f dk because dk has pure

imaginary periods. Summarizing, we end up with the following s1tuat10n

A parameter surface of the string world sheet can always be described by a smooth

submanifold M of a compact Riemann surface M together with a unique meromorphic

differential dk on M; we call (M, dk) base manifold. If a point go € M is not a critical
point then the parametersu = 7 +1i0 = | qo dk define a local holomorphic chart around gq.
A crucial observation is that these charts consist of conformal parameters for the string
world sheet.

B 3. Conformal symmetry

The natural geometric structure on a base manifold (M, dk) associated to a specific string
motion X : M — IR* is given by the pullback X*g =: h of the metric g in Mmkowskl space.
In general, the world sheet & = X(M) is not a smooth submanifold of IR*, even in the
simplest case of M = IR x S*. Only if X is an embedding we can identify M with X (M) and
in that case the "induced metric h on £” is well-defined. Hence for an arbitrary C!-string
motion there is a C%-metric*> on M, whereas X (M) doesn’t carry a geometric structure.
This is one reason why M, not X(M), is relevant in the subsequent considerations. Another
reason is even more compelhng In a conformal chart V C M := M\{critical points p.}
the string action (1) can be written as

§V:/X2d20=——1-/ naﬁ_ao,Xanga , (12)
v 2 )y ,

where we used (5) Sy is locally (i.e. for any ¢ domain V C M) invariant under conformal
diffeomorphisms TV =V C M, satisfying \Il*n = F' - np with a smooth function F. This
observation is crucial with respect to the geometry of Mbecause it follows that the metric 7
is of physical 1mportance and not the pullback metric < n, which can be dlscontmuous
and degenerate on M.

Let {¥,,s € R} be a conformal flow on M, i.e. a one parameter group of diffeomor-
phisms, where each \Ifs is a conformal transformation from M to. M. We extend \Il to a
map ¥, : M — M by the definition ¥,(p.) = p. and we assume that ¥, is a smooth map
(cf. the remark following Corollary 4. 5). This situation can be described globally on M
if the definition n(p.) = 0 makes sense because then the critical pomts p. are necessarily
fixed points of any conformal flow ¥, on (M,n).

Lemma 3.1 The metricn = —dr® + da on M has o unique C®-smooth extension to M
which 1s given by n(p.) = 0 for all critical points p. on M.

Proof: We represent 7 in a chart around p, with coordinates (¢°',01") = (7/,0"), pc = (0,0).
‘The parameter transformation is of the form (cf. [6]) 7 +i0—a = (' +w')" with n > 2 and
some constant a. Therefore the matrix 22— depends analytically on 7', 0" and vanishes-in

8 o
g:a (;90'5’ Nag We obtain the required statement. a

the hmlt P — Pe. From 77(.1113/ =

*S Strings with kinks give rise to metrics h that are discontinuous along those trajectories on M which

parametrize the kinks.



Notice that the definition of 7 is independent of the special string process under consider-
ation but it fits well into the pictife of string motion in the case X?(p.) =0 because then
the induced metric h = —X? - 7 vanishes in (7, 0)-coordinates in the limit p — p..

Definition: The conformal group of (M,n) consists of all diffeomorphisms ¥ : M — M
which obey U*n = Q- n, where > 0 denotes a smooth function on M.

We are now prepared to study. conformal vector fields { = ¥, which generate a conformal
flow ¥, on M. Obviously we have {(p.) = ¥o(p.) = 0. The Lie algebra of conformal
vector fields on (M,n) is denoted by Apr. It is well-known that in (r,0)—parameters.
£ =¢€0, + €16, € Ap has to obey the "pseudo” Cauchy-Riemann equations

5,8 — 65} ’ ga(l) = éa(lj . (13)

The general solution of (13) in local light-cone coordinates o* reads £ = f(o)0,+ +
g(07)0,-, with 0 =7+ 0 and 9,+ = %(8, + 9,). From the critical points p. we do not
receive any constraints upon the derivatives of ¢ because the resulting constraint equations
are trivial (0=0) due to the vanishing of 1 at p.. Of course, the local decomposition of ¢
defines a unique global decomposition ¢ = €+ + £~ with!Lie bracket [£T,67]=0.

Theorem 3.2 Ay 13 the direct sum of two commutingv infinite dimensional subalgebras,
Ay = Al @ Ay Bach € = € + €~ € Ay 1s uniquely determined by its restriction along
an arbitrary but fized time slice Cr (11). It can be constructed via parallel translation of
£*|c, along light curves ~*E which obey 0% = const. in local light-cone coordinates.

Proof: In a neighbourhood of any point p # p. we have £ = f(67)3,+ + g(07)0,- and
the coefficients f(o+) and g(o~) are constant along the curves 4% and v~ respectively.
Hence ¢+ and €~ coincide with those fields which arise from ¢ *|;. via parallel transport
along v* (with respect to the metric n). On a curve v} which meets a critical point p.

the field ¢t must vanish since otherwise £(p.) becomes singular (%”;’ diverges at p.). An

- analogous argument holds for v;,£{~. The curves ~* arising from C, cover M in a unique

way: Along a fixed ”string tube” [11,72] X S1 these curves wind up with a constant slope
of % = F1 (an example is pictured in fig.2). Therefore the components £ are fixed by
this construction. ' '

The zeros of ¢+ along v impose finitely many vanishing conditions on ¢£|c., say at the
points p1, .., pn € Cr. From a smooth function f on C; that vanishes in some neighbourhood
of {p1, .., pn} We receive the vectors f(c)9,+|c,. They define a global conformal vector field
¢+ on M via parallel translation along v*. Since the vector space of such functions f on
C, is infinite dimensional, so is .A}{',I and of course also Ajy;. _ o m|

Fig.2 Light curves covering M.
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The ¢ coefficients of £ = 21 8,+ + £79,- are bounded on C- which implies
Theorem 3.3: The conformal group of (M,n) is infinite dimensional.

Proof: It suffices to show that for each generator £ € Ay the conformal flow ¥, = ezp(s{)
exists on M for all s € IR. Remember that we denoted the set of critical values 7. by
{r1,...,7%}. Each time slice Cr with 7 € (7}, 00) consists of m components CJ, j = 1,..,m.
The C! give rise to the subspace M; := Ure(m,oo) CJ C M that is parametrized by

_2n
o

holomorphic coordinates u = 7 + ic with ¢ = ¢ mod 0;. From z = = +11y = j
we obtain another holomorphic coordinate and the value z = 0 corresponds to a point Q;
outside*® of M. One verifies by direct computation that the components of £ represented in
(z,y)-coordinates vanish in the limit (z,y) — 0 and therefore we can extend contmuously
¢ to € by the definition £(Q;) = 0, j = 0, ..,m. Analogously we set &P)=0,7=0,.

for those points P; corresponding to the n components of C; (1 < 1) for 7 = —o0. The
continuous field ¢ is defined on the compact manifold M so it generates a global flow

{T,|s € R} on M. The conformal flow on M is now given by ezp(sf) = ¥,|p. O

‘Remark: Because of the vanishing constraints on fi|c, it is not possible to use an arbi-
trary smooth vector field e.g. f(o%)8,+ along C- to define £+ on M via parallel translation:
The result would be a vector field on M which at certain points along the strings behaves
like a step function and which is smooth outside these points. Such a vector field does not
generate a diffeomorphism of M. This is the geometrical reason why the Virasoro gen-
erators &5 = " 9,4+ |¢c. (for C, ~ S') do not define conformal transformations on. the
base manifolds M pictured in fig.2. Nevertheless we can expand the restnctlon of a smooth
conformal vector field {* for 7 < 71 in a series {Flc, = ) axn ei"?" 9,4+ |c,. The parallel

inoc

inot »+|c, provides an expansion {T(01)0,+ = > ane ot

translation of the fields e

on M where the fields £} = ein?” 9,4+ are discontinuous on C; for values 7 > 7;. Unfor-
tunately several difficulties with Poisson brackets arise if we use such discontinuous vector
* fields in the Hamiltonian treatment of string dynamics. This will be explained in the next
chapter.

4. Hamiltonian description and conserved charges

Due to Noether’s theorem for each conformal vector field ¢ a conserved quantity (called
charge) is associated:

Qe = / ¢OT0do " (14)

where T denotes the canonical energy momentum tensor T,” = X, X? — 168X X7 in

(7, 0)-coordinates, derived from S. Notice that  degenerates at pc, so there is no naturally
induced isomorphism between T, M and T; M. Hence we can only raise and lower indices

outside p.. Of course, Q)¢ is conserved in time because Taﬂ vanishes on-shell.

*6 In this way the compactification M of M is defined.
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Before we consider the Hamiltonian theory with varying string topology let us first
“set up the general context needed. The simplest Hamiltonian description for the classical
string (M = IR x S') is to start with

H(X,II) = -;-/Sl(x'2 +[2)do

together with the constraints IIX' = 0, 1% + X'? = 0 imposed on the initial data of a string -
motion. Usually, a symplectic structure is fixed by setting {X* (o), II"(0")} = g**6(0 — a").
However the evaluation of {Q¢, @y} is not possible for discontinuous vector fields £ and n
e.g. those which arise from Virasoro generators if Cr ~ 51 because then one gets products
of delta functions. To clear up these problems within a rigorous setting (cf. [16]) we start
with a phase space .
| - Pi= (@) H'(SY) ® (®h=0L*(5V))

which we denote by H!(S)* x L?(S)* for short. H'(S') stands for the first Sobolev space
over R. Note that P is the natural domain of definition for the Hamiltonian H and of
course a Hilbert space with the scalar product ' '

3
< (Xo, M), (X1, ) >pi= Y (< X§, X{ > + < T, T >p2) .

u=0
The canonical weak symplectic formw : TP x TP — R is defined by ,
wexm ((a, B); (7,6)) =< a*, 6 >p2 = <7, By >12 (15)

with (a,8), (v,6) € TixmP = HY(SY)* x L*(ShH)*. Because w is only a weak
symplectic form the defining equation for Hamiltonian vector fields Xy, df(a,B) =
w(Xs; (e, B8)) V(a,B) € TP, need not have a solution at each (X,II) € P. In conse-
quence the Poisson bracket of C!-functions f, g on P, {f, g} = w(Xf;Xy), is only defined
" on the common domain D = Dy N Dy of the fields Xy and X,.

Especially for the vector field Xz = (I, X"') we have Dy = H*(5')*x H'(S')* whichis
a dense subspace of P. The solution of the Hamiltonian equation of motion, (X,00) = XH,
is given by formula (6) together with its 7—derivative X = I. It defines for each 7 a
continuous linear map @, : (X(0),1(0)) — (X(r),II(7)) on H?(SY)* x H'(S')*. This

map has a unique continuous extension
®,.: P — P,

which gives the Hamiltonian flow of X on P. In this way strings with kinks can naturally
be described in the Hamiltonian setting. ' :
We express the conserved quantity (14) in phase space variables. Q¢ : P — IR is given by

Qe(X,10) = _/51[%50“[2 + X)) + €X' do . | (16)

11



Of course Q¢ is also well-defined if we pldg piecewise continuous functions £° and ¢! into
-(16). Then Q¢ is a C*°-smooth function on P and its Fréchet derivative is given by.

dQe¢(X, M), B) = ~/Sl [(EOX'+§1H)a'+(£oﬂ+§1.X')ﬂ]da , (a,8) € TxmP . (17)

Lemma 4.1 Let £°, £! be continuous functions on S which are piecewise of class C1.
Then there ezists a Hamiltonian vector field X¢, with domain Do, = H*(S')* x H'(S*)*:

' Xo; :(Y&ZE):(_fonéflxla_(foxld‘flﬂ)')

. Proof: From the assumptions we obtain £°X'* + ¢ 11* € H'(S!) hence we can integrate
(17) by parts and the defining equation for X¢, yields:

/[(£°X’+§1II)’-a—-(§°H+§1X’)-ﬂ]da=<Y5,ﬂ>Lz—<Z5,a>L2' . O
St .

Notice that the domain of X¢q, coincides with those of Xp = (II, X").

Remark: As mentioned in the last chapter we are also interested in the case where £°
and ¢! stem from discontinuous vector fields { = {¥|c, +¢7|c, with Cr = {7} x St
Therefore we have to find Xg, together with its domain'Dg, C H*(S')* x H'(S)*. Itis a
standard fact that for L?(S!)-functions f, g and o' the equation [, ga'doc = — 5, fado
is fulfilled if and only if ¢ € H'(S') and then f = ¢’ holds Consequently we must have
E0X' + 1TI# € H(S') which is equivalent to

£+(a+){X'(T,'a) + II(r, 0)} - £_—(av_){X'(7‘,a) — H(T,'e')} € HI(SI)4 | (18)

and this condition defines a vector space V, C H2(S1)* x H'(S*)* for a fixed 7. Hence the
discontinuity of ¢ restricts the domain of Xg, to the subspace*” V.. In consequence the
Poisson bracket {Q¢, @y} with two discontinuous fields ¢, 71 is not deﬁned on the whole of
H?2(SH)* x H1(S1)4.

Our next task is to examine strings with varying topology. We want Q¢ to be defined
on a phase space P and from (14) it follows that P must depend on C; or at least on
C .. = C.\{pc}, for critical values of 7. Therefore we need a Hamiltonian description
for each fixed manifold (M, dk). The natural generalization of P = H*(S')* x L*(S')*
is to take the collection of spaces P, = H(C,)* x L?>(C.)* (the integration measure is
defined by the conformal parameter o). In the case of critical curves C,, we compactify
the different components of C ., in such a way that the resulting space is isomorphic to
Cr.+¢, where € has to be sufficiently small. In fig.2, for example, one gets two copies of
S for the compactification of C ., which we also denote by C.,. Now all C; are smooth
compact manifolds (not submanifolds of M for 7.) so one avoids the discussion of boundary
values at p. and instead gets the notion of differentiability along C;, which is necessary to

* One can identify H(S!) with a subspace of C°(S!) due to the Sobolev lemma. If fICT—E+|CT has

only one discontinuity at a'o the condition (18) gives X'#(r,0] ¥ )44 (T, oy =0, i.e. Vo #H?(SY)*xHI(S")*
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understand what H*(C,) means. A symplectic form w, on P; is obtained by formula (15)
where now <, >: denotes the scélar product on L?(C;). The Poisson bracket is defined
by : '
{f,g},- —w(Xp,X,) , Xy, X, €TP, . (19)

Definition: We call P = |J,cp (Pr,wr) the generalized phase space.

String branchings occur at times 7 = 71, .., 74 and the spaces C, are naturally isomorphic
if 7 is restricted to Jo = (—o0,71), Ji = [ri,Ti+1), ¢ = 1.k =1 or Jp = [r,00): One
simply identifies points with the same value of the conformal oc—parameter by maps I L
C, — Cu, V7,7" € J;. This yields isomorphisms I'*, : P — Pr and they define an
equivalence relation on |J,.¢; Pr. Of course an analogous equivalence relation holds on
the tangent spaces (J,. ;. TPr. We denote the space of equivalence classes by P; resp. TF;
and a symplectic form w; on the class P; is defined by wi(X;,Y;) := w-(X,,Y;) where
X, Y. € TP, are the representing fields of X;,Y; € TP; with arbitrary 7 € J;. The
vectors (II, X" ) x my € T(x,mPr are equ1va1ent hence there is a vector field (II, X");
on each class P; and the Hamiltonian flow ®: : P; — P; yields integral curves on this
space The representing functions (X,,II;) € P, of such an integral curve define a section

: Ji = U,ey, Pr which describes a string motion within the time interval J;. At the
crltlcal value 741 the limit limrqr, ., s(7) has to be interpreted as a function on Cr,, and
if this new initial condition is in PT +1 dynamlcs contmues via @1, Hence a string motion
on (M, dk) is given by a section*® s : IR — |J,¢g Pr and in order to be well-defined the
' transition conditions lim 1., () € PT must be satisfled. This clearly restricts the set of
initial states (X,,,II,,) at 7o < 71 for each fixed base manifold (M, dk).

However these restrictions are not of physical nature: If the transition conditions fail for
a given initial state it means that our choice (M, dk) is not appropriate for the resulting
-~ string motion. The choice M = IR x S! fits well for any initial state but from chapter
9 follows that there are also different possible choices in general. It is at this point that
we have to consider the totality (or at least a subset) of compact Riemann surfaces, i.e.
moduli space, in order to get a well-defined Hamiltonian description for arbitrary string
motions. _ '

We carried out this formal construction to adhere as close as possible at the usual
Hamiltonian treatment which deals with integral curves in a fized phase space. Notice that
for M = R x S! we have Jo = IR, Py ~ H*(S')* x L*(S")* and wy is given by (15), hence
our description reduces to the usual one for M = IR x.S'. Now we study the algebra of
conserved charges:

Theorem 4.3 The conformal algebm .AM has an anti-representation on each space
H?(C,)* x HY(C;)* via Poisson brackets of the associated charges Q¢:

{QE7Q7I}T = _Q[E,rl] V 6777 € -AM . . (20)

*8 By ”section” we only mean s(t)EP,;: The set Urem Pr. has no canonical smooth vector bundle

structure because the spaces P, and P, are not naturally isomorphic for arbitrary 7.
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Pr;)of: Formula (19) and the generalization of Lemma 4.1 (S 1 is substituted by C.) yield:

{Qe, Qn}r =<Y¢, 24 V>L2 - < Zg Yy >L5: / (foH + lel)(WOX'I +‘771H),d0' - (f “’ n)

r

where ¢ & n denotes the same integral expression with £ and 7 interchanged. After some
elementary calculations we find for {Q, Qn}r:

/ {(€°01n° + ¢! din’* )HX'——( 0615 ~£'m )X'2+ (5 Oint —n'on € Hz}da (& = n).
(21)

We now use (13) to substitute the first term in each bracket e.g. £°917° = £°0gn? and after
collecting analogous expressions from £ < 7 the assertion follows. _ ]

Remark 1: An important step in the proof is the substitution of terms like £°0,7° by
£989,n! because only in this way one gets the T-derivatives for the Lie bracket [€,n]. This is
only possible if (13) is fulfilled, i.e. only if the functions €0 and £! can be interpreted as the
restriction of the components of a conformal vector field £ on M. For general fields ¢, n on
M the substitution is not allowed but we can take a bit different point of view: At fixed
7o we have {|c, (p) = £ (p)0,+ + £ (p)3,- and there is a unique conformal eztension &
(constructed by parallel translations) of these initial data within some interval [ro, 7o + €):

Ee(r,0) = (10,0 + A7)0yt + € (10,0 —AT)0,- , T=To+ AT E[r0,70 +€) - (22)
We may not substitute foamo by £°9pn' but instead we can take £29on; and this yields

Corollary 4.4: Let £ and n be arbitrary smooth vector fields on M. Then the Poisson
bracket {Q¢, Qq}r (16) is given on H*(C.)* x HY(C,)* by

{Qe, @n}r = Qe nal
Here £ and 7, denoterthe conformal eztension (22) arising from C-. a
Notice that 4.4 remains valid for complex valued vector fields, i.e. £5,mp, € T,M @ C. |
Remark 2: To obtain (21) we had to integrate by parts: '

[ ey +eon ey o = - [ @y x® s @ty myo

If £17° or £9n! were discontinuous along v or 7. we would obtain additional boundary
values, e.g. at 7 = 0 terms like II%(0,0) - (£°1%(0,00) — €°7%(0, 0)). For critical values 7.
one can give exphclt examples where these additional terms do not cancel at certain pomts

(X, II) € V,-c (18). This means that we have

{Qe,Qn}rc = —Q¢,q + extra term

at these points; notice that the derivatives occuring in [£,7] are interpreted as left-sided
resp. right-sided limits at those points (7, 0) where €|c, or n|c, are discontinuous. Equiv- .
alently we may drop the extra term and interpret the Lie bracket [£,7] in a distributional
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sense. In consequence the simple algebraic structure of Virasoro generators einet 9,1 is
lost on the level of Poisson brackets if we work not on IR x S! but e.g. on the manifold
“pictured in fig.2. This is the main reason why one looks for smooth basis fields ¢£. An ele-
gant solution for this problem is provided by KN-theory, using the holomorphic structure ‘
of M. '

Our final observation about the proof of 4.3 is that we made no explicit use of the fact
¢*(yF) = 0. Only continuity of £ and 7 is necessary for the vanishing of boundary terms:

Corollary 4.5 The algebra Ay of smooth vector fields on M which obey (18) is represented
on each space H2(C-)* x H'(C,)* via Poisson brackets by formula (20). a

The vector fields in Ay are generally not smooth fields on M but each £ € Ay generates
a local conformal flow on M and this suffices to obtain a conserved quantity Q. Therefore
it is Ay which is of physical interest*®. '

5. The classical background of KN-theory

In this chapter we restrict the discussion to the case of one incoming and one outgoing string
‘because we will need two analytical theorems that are available in this case (expansions (24)
and (25) below, for generalizations see [9]). We denote the space of C >_smooth complex
valued vector fields on C, by £(C;) and the space of meromorphic vector fields on M that
are holomorphic on M by L(M). Around each point p # p. there are holomorphic (7, 0)-
coordinates defined via the differential dk and any vector field e € £L(M) is represented by
(T +i0)1(8- —10,). If we fix 7 # 7. and take o as coordinate along C, we have a natural

"restriction” o '
o Lo - LG (23)
T Ur +10)3(0- —i0,) — —il(r +i0)85 |

which is a Lie algebra homomorphism. A fundamental theorem about the set r-(L(M))

states the following [7]: There exists a countable basis {en} of L(M) such that each field
vy € L£(C;) can be expanded in a uniformly convergent series: :

vy = ZAan -rT(enj . E 3 (24)

Remark: The map r, can also be defined for critical values 7. but then the expansion (24)
(in the sense of uniform convergence) is not generally valid: An arbitrary e € £L(M) reads
e = [(2)0, in holomorphic z-coordinates around p.. For p # p. we choose u-coordinates
u=T+10 = fzzo dk(2')dz' so we have e = l(u)0, = I(2)0; with I(u) = I(z)dk(z). Since dk
' vanishes at p. the restriction r-(e)(p) converges to zero for p — p. and consequently at
most those fields v-, on Cr, can be expanded that obey vr,(pc) = 0.

*9 The situation is similar in an Euclidean context: A holomorphic vector field on P1\{0,00} is a
conformal-field with respect to the Euclidean metric dzdZ (on €) but only those fields which are

‘holomorphic on P! generate global conformal transformations.




A fepresentation analogous to (24) holds with meromorphic quadratic differentials {2 on
M (i.e. locally Q = f(z)dz?) that are holomorphic on M: Let {Q™} be the dual basis to
{en} with respect to the pairing < Q,e >:= %fC+ Qe,-), i.e. we have- < Q™ e, >= 67;

{Q™} was introduced in [8], up to a factor 27. Then for any smooth quadratic differential
0, on C, there is an expansion (ir : Cr — M denotes the embedding)

Q, = ib,, Qn - (25).

— o0

With these analytical preliminaries we now describe the physically relevant quantities
in a convenient way: In local light cone coordinates 0¥ = 7 £ o the energy momentum
tensor is of the form

T=T.ydot ®@dot +T__do~ @ do™

with Ty = 04 X0+ X and T__ = 0_X0_X. For an arbitrary conformal vector field
£ =£€T0,+ + £ 0,- the quantity Q€ is given by

Qe =Qer+ Qe == [ €'Tpsdo— [ Tdo

Due to (24) the field €+ (o) := £t (7 +0)0, along C, has an expansion £ = 3 anrr(en) =
S an - (=)ln(7 +i0)d, which applies for any value 7 # 7, and we receivei

Q£+_f an(") / —ln(r +i0) Ty 4 dor =: - Zan Le, . (26)

Therefore we can evaluate {Q¢+,Q,+}+ if we know the Poisson brackets {Le,,, Le,, }r-

- Proposition 5.1 The functions L., = —fCT In(T 4+ 10)T4+do, defined on Pr, obey:

{Levi Lo}y = —iLje, o) - (27)

Proof: In view of Corollary 4.4 we have to consider the vectors e} := (79 + i0)0,+, that
are defined on C,. Their local conformal extension (22) is given by

+(7' o) = l(Tg+z(a+AT))3,,+ , T=To+Ar. - (28)

At T = 1o we have L, = Qei and the derivative 0,+ acts like ¢3, = %(3,- —10,) on I,

. .0l :
Os+ (o + (0 + AT))|r=r, = 25;(7'0 +1i0) .
This implies [ej{?, e;;] =tlen,em] for r = 7. Using Corollary 4.4 we obtain

{Len’Le.m}To = {Q +aQ + }To = Q[en et = —Q 1= _iL[en,em] . O

en yem c

Meromorphic vector fields e, obey the KN algebra [ensem] = 32; Cnmen+m+] where ci_
are structure constants and the summatlon ranges over some ﬁxed finite set [7]. Hence (27)
reads {Le,, Le,, }r = —1 Z ci .. and we find that the L. satisfy a Poisson algebra

erz+m+1
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wh1ch is not 7-dependent. This is somewhat astomshmg because meromorphic vector fields
do not correspond to a symmetry of S (12). We interpret this representation property as
follows: The conformal extension (28) is constructed via the map

We, o (10 + AT + io) — (10 + (o + AT)),

defined on some right-sided neighbourhood U, = UrE[ro rote) Or of Cry. Wiy may be
regarded as the local analogy of a Wick rotat1on In essence we substitute AT by :Ar. The
map W, together with the substitution (8, —i0,) — —i0,+ results in a homomorphism
from L£(M) to the space of complex Valued conformal vector fields on U,,. We made use
of this homomorphism (up to a factor %) in the proof of 5.1. Notice that the concept of
a Wick rotation only makes sense because there is a canonical splitting of the Riemann
surface into time x space, iriduced by the differential dk.

Remark: The functions L., and Q¢ (¢ € A) vanish on-shell because the constraints T =0
are conserved in time. Even without these constraints Q¢ would be a conserved quantity
(due to Noether’s theorem). This property does not hold for L., : For T # 0 these functions
depend on time 7.

Finally we 1nterpret the L.. by means of the pullback 1T of the energy momentum tensor
along C;. The local coefficient of ;T is given by ? T(@,, 05) = Ty+(r,0)+T—_(r, a) hence
the tensor splits into two parts: ,

T = Typdo?® + T__do® = Ty +T- .
Proposition 5.2 The T.;.. part of ;T can be decomposed into Ty = Z‘foo_Len Z:Q"

Proof: Ty is a quadratic differential on C, so there is an expansion (25) Ty = > bnir Q™.
We can express L., via T4, L, = %fCT Ty (r-(en),), which gives:

n

1 ' : 1 : C N
en — T bm‘*Qm r\€n)y') = bm—- aQm ln d
L=t [ S bnit@re(en),) = Tbmg [ @G+ ilalr +io)ide
; |
= - Mlen, ) =Y bmb™ =by . O
Song [ Aen) = bt =

Hence the T -components L., of the energy momentum tensor represent the algebra L(M)
. on each space (Pr,wr) for 76 Te.

Example: Let us d1st1ngu1sh explicitly between the usual theory on R x S! and the
treatment given here. Usually one uses the basis :

g = ey L neZ

for global ¢t —fields on IR x S, satisfying (13). Each conformal vector field £t admits
a Fourier decomposition ¢t = S a,é} with time independent coefficients a,. The

conserved charges read Qer = — [+ IT__(r,0)do.
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In our treatment we start with M = P! and we choose P, =0 and Q; = oo A basis of
holomorphic vector fields on M = P '\{0, 00} is given by

en:=2"110, neZ.

The differential dk = 1dz defines the (7, o )-representation of e, = e"(r+io)1 (3 —10,) and
from (28) we obtam é\*' = en(rotiotATg | At T = 7o this gives

. i 2m
Le, =—e"™ / e Ty 4 (79,0)do = e"T°(1_Z)Q5+ :
0 n

The time dependence drops out in the Poisson algebra {L.,, Le,, }r, = i(n —m)Le,,,. be-
cause both sides contain the factor e(®*™ (1 =% Tt is this observation Wh1ch is generalized
to arbitrary compact Riemann surfaces.

" The whole reasoning for £, T+ can be repeated for £, T_ by simply using the anti-
holomorphic bases {€,} and {Q" }. The resulting components of T =52 Lz, Q" obey

{Lgn ’ Lgm }T =1 Z éirlnLén-i-m-}.-i
J

where CJ_ denote the KN structure constants of [en, em]. We also obtain
{Le,, Lz, }-=0.

There are two major advantages in dealing with L., and Lg, instead of Qg+ :
1. The algebraic structure of {L.,} is related (by complex conjuga,tlon) to the structure
of {Lg, }. Such a property does not hold for conformal vector fields £=: *: Generally there is
no canomcal map which assigns £T —fields to f —fields because the condltlons (E(yE) =
const. are totally different.
2. For any Riemann surface M the algebra £(M) is generalized graded and different repre-
sentations (for central extensions of £L(M)) are available in that case [7,10]. An analogous
grading for the algebra Ajs is not obvious.

With these considerations we_ conclude our treatment of the classical theory. It follows from
the Poisson structure and the Hamiltonian formulation that this description is directly
related to KN-theory.

Concluding remarks

The description of string dynamics given here improves the physical understanding in
the following sense: First, it showes how branching processes emerge naturally from a
geometric point of view. Second, it makes transparent the relation between the conformal
symmetry of a topological non-trivial string world sheet and the holomorphic structures on
the assoc1ated Riemann surface. This treatment differs from that one where the ”Euclidean
version” of string theory is considered (cf. [12]): In the latter case one has a conformal
symmetry with respect to an Euclidean metric § on M that locally reads 6(z) = el®dzdz.
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The corresponding conserved charges L., represent (as expected) the Euclidean conformal
symmetry on phase space.

In our description not only the conformal symmetry of (M,n) is realized by the Qg:
Also the symmetry of (M, ) is represented via ”charges” L.,; the connection between
these two structures is exploited by the theory of Krichever and N ovikov.
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