The Metric Projection for Free Knot Splines

(

G. Niirnberger

Nr. 112, 1990

Abstract

Only few results are known on continuity properties of the set-valued metric
projection in nonlinear uniform approximation. Inithis paper we investigate this
mapping in the case of best uniform approximation by splines of degree m with k
free knots. A characterization of those functions at which the metric projection
is lipper semicontinuous is given. It follows that the metric projection is upper
semicontinuous if and only if £ < m, and that it is upper semicontinuous at all
?normal” functions. On the other hand, it is shown that the metric projection is
never lower semicontinuous. ‘




1. Introduction
There is a vast literature on continuity properties of the set-valued metric projection onto
linear subspaces (see e.g. the surveys Deutsch [7], [8], Niirnberger & Sommer [14], Singer [18],
Vlasov [19] and the references therein). On the other hand, not as many results are known
about this mapping in nonlinear approximation (see e.g. Berens & Finzel [1], Brosowski &
Deutsch [5], Deutsch [6], Niirnberger [9], Schmidt [15] and Singer [18]).

The aim of this paper is to investigate the metric projection onto Sm k, the set of po-
lynomial splines of degree m with k free knots. This is the mapping which associates to
each function f € Cfa,d], the set Ps,, .(f) = {s5 € S.mk 2 f =gl = lnf ”f — ||} of

its best umform approximations from Sy, k. We give a characterlzatlon of those functions in
Cla,b] at which Pg,, , is upper semicontinuous. As a consequence we get that Ps, , is upper
semicontinuous on Cla,b] if and only if £ < m. Moreover, it follows that Ps,,, is upper
semicontinuous on the set {f € C[a,b] : Ps,, ,(f) C C[a b] and Ps,, ,(f) N Smk—1 = 0}. On
the other hand, we show that Pg, , is never lower semlcontmuous

The same statements hold for the set-valued mappm‘g which associates to each function
f € Cla, b], the nonempty set Ps, . (f) N Cl[a,b] of its continuous best approximations.

In a further paper we apply the results to derive uniqueness theorems (announced in [12])
for Sm k-

2. Main Results

Let C[a, b] be the space of all continuous real-valued flsmctions f on [a,b] endowed with the

supremum norm ||f|| = sup |f(t)|. Moreover, let points e =9 < £1 < *+- < Zp < Tp41 = b
tc|a, i

and integers mi,...,my € {1,...,m + 1} be given, where m > 1 and r > 1. We denote
by Sm( L1y ’z') the space of polynomlal splines of degree m with r fixed knots z1,...,z, of
multlphatles mi,..., My, and by Sp i the set of polynomial splines of degree m w1th k free
(multiple) knots, where k > 1 (see e.g. Nirnberger [11] and Schumaker [17]). Here we use
the convention that a spline has a knot of multiplicity m + 1 if for this spline no continuity
is required at the knot.

A spline sy € Smk is called best uniform approzimation of a function f € Cfa,b] from
Sk i || f=s¢ll = . elgf . [|f—sl||- The nonempty set of best uniform approximations of f from

Sm,k is denoted by Ps,, ,(f), and the resulting set-valued mapping Ps,, , : Cla,b] — 25m.k is
called the metric projection onto Sp, k.
In the following we investigate continuity properties of this mapping.

Definition 1 The metric projection Ps,, , : Cla,b] — 2Sm’° is called upper semicontinuous
(u.s.c.) (respectively lower semicontinuous (l s.c.)) at f E Cla,b] if for each sequence (fn) C

Cla,b] with f, — f and each closed subset A of S,k with Ps,, .(fa) N A # 0 (respectively
Ps,. (fn) C A) for all n, we have Ps, ,(f)N A # 0 (réspectively Ps,, .(f) C A). Ps,, is
called upper semicontinuous (respectlvely lower semzcontmuous) if it is u.s.c. (respectlvely
ls.c.) at every function f € Cla,b). !

The first result shows that the upper semlcontmulty of the metric projection Ps, , at
a given function depends on the multiplicities of the knots of its best approximations from

Smk




Theorem 1 For a function f € Cla,b]\Smk, the followz:'ng statements are equivalent:

(i) Ps,,, is upper semicontinuous at f.

(i) There does not ezist a spline s € Ps,, ,(f) 0 Sm(y) L1, ) such that s is discontinous

orm+2+ Em,——zmlz’ixrm, <k.

Proof: (ii)=(i). Suppose that (i) holds. Let a closed set A in Smk, f € Cla,b] and
(fa) C C[a,b] be given such that fn — f and Ps,, (fn) N A # 0 for all n. We have to show
that Ps,, .(f) N A # @ which implies that Ps,, , is upper semicontinuous at f. For all n, we
choose a spline sp, € Ps,, ,(fn) N A. We will show that there exists a spline s € Ps,, ,(f) and
a subsequence (sp,) of (sn) such that hm ||3 — Sp,ll = 0. Since A is closed, it follows that

s € A which proves the claim. It is easy to see that (sp) is a bounded sequence. Therefore,
it follows from Braess [4, p. 229] that there exists a spline s € Ps,, ,(f) N Sm(nt" ) such
that a subsequence of (s,), again denoted by (sy), converges to s uniformly on each compact

subset of [a,b]\{z1...,2,}. Moreover, the knots of (sn) converge to the knots of s. It follows
from (ii) that s is continuous and m +2+ Z m; — max m, > k. Forallz € {1,...,7},let m;

=1 =1,.r |
be the minimal multiplicity of z; such that s € Sm(71:7o ). Now, let an index j € {1,...,7}
be given. By going to a subsequence, we may assume that for all n, the same number of
(multiple) knots of sy, say y1n < -+ < Yp;n, converges to ;. Then we have pj > mj.

Because, if pj < mj < m, then it follows from Braess [3, p. 229] that

1
lls - 3"”[%(zi—1+zj),%(zj+xj+‘1)] -0

and that s has a knot of multiplicity p; at z; which is a contradiction. Moreover, we have
pj < m+ 1. Because, if p; > m + 2, then, since (ii) holds,

sz>m+2+zmz>m+2+zm;-— [max mi > k
t#J

which is a contradiction to sp € Sy k. We define

Kn(0)=(t=2F ,  (50)¢labx[a]

!
and denote by Kn[21,. .., 2141, t] the divided difference of.order [ of the function z — Kp(2,1)

with respect to the points 21,...,21+1. Then for all n, the spline s, can be written as
m . bj | 1 1
su(t) = ;ai,nt’ + ;bi,nKm[?/l,na co¥imt] € [-2-(13]'—1 +25), 5(25 + wj+1)] :

For sufficiently large n, we have
3 : 3
2j-1+ 7(25 = 2j-1) S Y1n < -+ S Ypym < 75+ 7(2541 ~ @)
Now, we choose points t1,...,tm+p;+1 such that
(:c_+:c)<t< c <t < Tjo1 + 3z —a:_)<:z: + Hzjp—zj) < t
211 J 1 m+1 J-17T 3\&j Jl i+ (T4 J m+2

- < tmpi1 < 325+ Tjt)-




o

© It is well known and easy to verify that the determinant generated by inserting these points

into the m + p; + 1 functions
| Lt,...,t™ Knlzj,-],..., Knl2), ..., 25,]
is different from zero. Therefore, since (s,) is bounded and for all ¢ € [a, b]\{z,},
Kmlyins -5 Yino t] = Kmlzj, ..o, 25,8 |, i = 1,...,pj

the sequence (a;n), ¢ = 0,...,m, and (b;n), ¢ = 1,...,pj, are bounded. Thus by going to
subsequences, we may assume that these sequences conv'erge.
Moreover, since the spline s is continuous, we have nli_rgobmﬂ,n =0, if p; = m+ 1. This
implies that

s = snll{y zj-rten) (asbasan) = O

Since this holds for every index j € {1,...,r}, it follows that ||s — s,|| — 0.

(i) = (ii). Suppose that (ii) fails. We will show that Ps,. , is not upper semicontinuous

at f. We first assume that there exists a spline s € PSm,lk( f) which is discontinuous at some
knot z;j. Then it follows from Schumaker [16] (see-also ]iBraess [4, p-230]) that there exists a
sequence (s,) C Ps,, ,(f) with the following properties. For all n, the spline 5, has a simple
knot at zj — an and a knot of multiplicity m at z; + By, where ap >0, 8r > 0 and an — 0,

ﬁn—)o.

Moreover, for all n,

|
|

sn(t)=s(t) ,  te€la,b\(zj—|on,zj+ Bn),

and
M =s) .  telob\z)

We set for all n, sp = s + % and fp, = f+ %. Since f — $ has alternating extreme points, for
all n, sy ¢ Ps,, ,(f). Moreover, since s, € Ps,, ,(f), it follows that s, € Ps,, ,(fn). The set
A = {sp : n € IN} is closed, since no subsequence of (s5) converges uniformly. Now, since
o= f, Ps, . (fa)N A # Qfor all n, but Ps, (f)NA= 0, the metric projection Ps,,, \ is not
upper semicontinuous at f.

Finally, suppose that there exists a spline

s € Psm'k(f)ﬂsm(xl’”"zr) C Cla,b]

m],...,mr

]
t

T
such that m +2+ > m; — max m; < k. Let z; be a knot with mj = max m; < m. We
=1 ?

=1,...,r i=1,...,1
set
Yip = L5 t=2,...,m;+1,

and choose points

Yin <} Zj < Ym;+2,n < -0 <'Ym42,m

such that .
Yip — Ti i=1,...,m+2.

Let By be the normalized B-spline of degree m associated with the knots

Yi,n < -0 L Ym2,ne
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<

By multiplying B, with an appropriate factor for all n, we may assume that

Ba(z;) = 5(/(z;) - s(25))

For all n, we set §n = 5+ By. Then for sufficiently large n; 5, € Ps,, ,(f). As above, we set for
all n,8p = Sp+ 1, fa=Ff+iand A={s, : ne N} Since no subsequence of (sn) converges
uniformly, the set A is closed Analogously as above, we have fn— fand Ps, (fa)NA# ]
for all n, but Ps, (f)N A = 0. Therefore, Ps,, , is not upper semicontinuous at f. This
proves Theorem 1. :

As a first consequence\of Theorem 1, we obtain a characterization of the upper semicon-

tinuity of Ps, ,.

Corollary 1 The metric projection Ps, , is upper semicontinuous on Cla,b] if and only if
k< m.

Proof: 1t is easy to verify that. Ps, . is upper semicontinuous on Sm . Suppose that
k < m and let f € Cla,b]\Smx be given. Then all sphnes s € Ps, f) are continuous

and the inequality in Theorem 1 is obviously not satisf 1ed for s. Therefore, it follows from
Theorem 1 that Ps, , is upper semicontinuous at f. :

Now, suppose that k > m. Then there exists a spline s € Sy, & which is not continuous. It
is clear that we can construct a function f € Cla,b]\Smk such that f—shasm+2k+2
alternating extreme points on some knot-interval of s. Tl;len by Schumaker [16], s € Ps,, ,(f)
and by Theorem 1, Pg, , is not upper semicontinuous. This proves Corollary 1.

The second conclusion of Theorem 1 shows that Ps, L is upper semicontinuous on a large
subset of C[a,b], namely at all "normal” functions. i

Corollary 2 The metric projection Ps, , is upper semz:continuous on
{f € Cla,b] : Ps,,,(f) C Cla,b] and Ps,,, N Sm—1 = 0}.
Proof: Let a function f € C|a,b] be given such that Fs,, .(f) C C[a,b] and
Ps,, ,(f)N Sm k-1 = 0. This means that for all s € Psmk(f)ﬂSm( o) We have m; < m,
i=1,...,r,and zgl m; = k. Therefore, the inequality in| Theorem 1 cannot be satisfied and
Ps,,, , is upper semicontinuous at f. This proves Corollary 2.

While by Corollary 1, the metric projection Ps,, , is upper semicontinuous if and only if
k < m, we now show that Pg,_ . is never lower semicontinuous.

Theorem 2 The metric projection Ps, , : Cla,b] — 25m.k is not lower semicontinuous.

Proof: We construct a function f € Cla,b] and a sequence (fp) in C|a, b] such that
fn = f, Ps, i (fn) = {so} for all n and {so} gPsm,k(f), xlavhich shows that Pg, , is not lower
semicontinuous. For doing this, we choose arbitrary points
;

a=29g<21 < < Tp<Thy1=b

|

and a spline sg € S k\ Sm,k—1 Which has active knots at zj, ...,z such that so(t) = (t—2)™,
t € [zk—1,2k], and so(t) = 0, t € [zk,b]. Moreover, we define f € Clzk,zx+1] such that




f(zx) = -1, f (Eg%i =1, f(zk+1) = -1 and f is'linea,r elsewhere on [z, zgp41]. We
may extend f to a function in Cf[a,b] such that ||f — so|| = 1, f — so is piecewise linear and
f — so has sufficiently many (which will be specified la,ter) alternating extreme points on each
knot-interval [z;, ziy1], i = 0,...,k — 1. We now define 2:1 sequence ( fp) in Cl[a,b] as follows.
For all n, we set ‘

fa®)=f®) , t€a,z]U[zk+ 5,0,
fa®)= -1 ,  t€lzkzk+ g5,
. 1 1
fn linear on (zk + — 5 , Tk + ;) .
Then it follows that f, — f. .
Now, let y13 < --- < yor be the knots of sg counting each knot twice. Moreover, we choose

arbitrary points y—m < --- < y-1 < yo = a and b = yor41 < Y2k+2 < -+ * < Y2k+m+1. We have
the freedom to define f on [a,zk) such that for all n, f; — so has at least j + 1 alternating
extreme points in each knot-interval (y;, ¥i4m+;) C (y_mf, Y2k+m+1), J > L.

Note, that by construction the interval (yok—1, Y2k+m+1) C (Y—m; Y2ktmt1), J > 1, contains

three alternating extreme points of f, — so for all n, but |o:mly two alternating extreme points
of f — sp.

Moreover, by construction f — sgo has the same number of alternating extreme points on
[a,b] as f — sy, and therefore, f — sp has at least m + 2k + 2 alternating extreme points on
(Y—m, Y2k+m+1)- Therefore, it follows from Schumaker [16] and Braess [3] that so € Ps,. (f)-
Moreover, since f, — sp has sufficiently many a.lternatmg extreme points in each interval
(Y5, Yitm+j), it follows from Nirnberger[9] that s¢ is a (strongly) unique best approximation

of fn from Spm i for all n. We now show that {so} # PSm’k(f) For all ¢ > 0 we define
Se € Sm,k - Sm,k—l by

: se()=  st) , t€[adp,
se(t)=(t—zK)™ , t€[zkin,Trte],
and '
se(t) = (t—zp)™ + ac(t — (zk + ))™ t €[z +¢,0b).
Where

&

_ @G —a)T
(3(zk41 — zk) — )™

Then it follows that

f

3
%0)>0 1€ (akzk+ (k- 2k),

and 3
se()<0 , te(zp+ Z(ivk-l—l — zf), b].

Since f is linear on [wk, ”L*;ﬁ-_l] , there exists a sufficiently small ¢ > 0 such that
|f@) —se(®) <1 ,  t€[zk,zr+e]
Moreover, since ||s¢|| — 0 for € — 0, for sufficiently small ¢ > 0,

If -~ Sell[zk,zk+1] =1
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which implies that

If = sell =1 =1If = soll.

This shows that so # se € Ps,, ,(f) and proves Theorem|2.

We note that the proofs of the above results show tha.t the same statements hold, if we
consider the mapping Ps,, , : Cla,b] — 25m,kNCla,b] defined by PS,,. «(f) = Ps,, .(£)NCla,b]
for all f € Cla,b), instead of Ps,, ,. It was shown by Schumaker [16] that Psm L(f) # 0 for all
f € Cla,b]. In [12] we mcorrectly announced the result that Ps & is upper semicontinuous
(compare the statement in Corollary 1 for PSm,k) 1

We finally consider a further continuity property. A continuous mapping
F : Cla,b] = Smp is called continuous selection for Ps, , if F(f) € Ps,, (f) for all f €
Cla,b]. '

[ In]the fixed knot case, it was proved by Niirnberger| & Sommer [13] that there exists a
continuous selection for the metric projection Pg (71 ::k) if and only if £ < m+1 (for further

continuity results see Berens & Niirnberger [2], Nurnberger & Sommer [14], and Nirnberger
[11]). On the other hand, the problem of the existence of continuous selections for Ps,, . is
unsolved at present.
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