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1 Introduction

ic Quantization

Let (X, g) be a Lorentz manifold. In geometric quantization the quantum operator H

of the function H(z) := g(z,z),z € T*X, is given by

H(y) = B*(—0°(y) + 1/6R%Y),

|

1)

where 7 is a squared integrable function on X Wit}‘l respect to the density /— det(g),
09 is the d’Alembert operator and RY the scalar curvature of the metric g. Because of

the fact, that the critical points (Lorentz metrics) of the functional [y R9./— det(g) d*z

!

are determined by the Einstein equation for the yacuum,

the question arises, as to

whether there is a connection between the Einstein equation and the operator H. In
fact, we will show, that under some restrictions on|the function %, the critical metrics
of the expectation value of H have to satisfy Einstein’s equation for a suitable energy-
momentum tensor. Moreover, if g is a solution of the Einstein equation, the function

obeys the Klein-Gordon equation

—0(¥) + % Ry =

0.

These observations yield an interpretation for the |scalar curvature as a density of the

expectation value of the mass-squared operator H (cf.3).

2 Geometric Preliminaries

In this section we present some terminology of geometric quantization on a Lorentz
manifold needed in the sequel. For more informations see [3]. Let (X, g) be a Lorentz
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manifold and (T*X,wp) the cotangent bundle with

given by the exterior derivative of the canonical

the canonical symplectic structure
one-form 83 on T*X. The vertical

polarization PY on the symplectic manifold T*X determines the Hilbert space HPY to
be L?(X, g). The quantum operator H of the function H : T*X — IR defined by

H(z) = 9(z, ),

is given by

H(yp) = h*(—0°(¥) + 1/6R%

where 009 denotes the d’Alembert operator, R? the
D(H) the domain of the operator H. In the next se
of this operator.

3 The expectation value of the ma;

reT*X

¥ € D(H),

scalar curvature of the metric g and
ction we study the expectation value

)

ss-squared operator

The ezpectation value of an operator A on L%(X, g

(A = [ AW)F~detlg) d's.

Associated with a Lorentz metric g and a real and
we define the Lorentz metric § by

g=vg

in the state 9 is given by
(2)

nowhere vanishing state ¢ € D(H),

The expectation value of the operator H is connected to the scalar curvarure R7 of the

metric g as follows:

Theorem 3.1

L[ roy/=auitg) ' -

saying, that the Einstein-Hilbert action determined
tation value of the mass-squared operator H. Thus
of (H)¥.

The proof follows immediately from the definiti
following Lemma:

Lemma 3.2  Let 9 be real and nowhere vanis!
the metric § = 1? g satisfies

(3)

by the metric g is equal to the expec-
RI can be interpreted as a g-density

1 .
?(Hyp’

on of the expectation value and the

hing. Then the scalar curvature RY of

RPy® = —60°(y) + R°Y. (4)

The Ricci tensor Ric? is given by
i e dv@dy VY (|dyf Dg(w)) .
Ric? = Ric® +4 e 2 m ( e + m g. (5)




These formulas are a consequence of the following
conformally modified metric

| g=exp(2f)g,
where f is an arbitrary real, smooth function. Acco

Ric® = Ric? — 2(Vdf — df ® df) +

where V9 denotes the Levi-Civita connection of g. I

f :=log(¥)

into (6) yields (5). Taking the trace with respect to

Next, we are looking at the critical points (Lore
vative of the expectation value (H)¥. It is well kno
Einstein-Hilbert action

formula for the Ricci tensor of the

rding to [1]
—0°(f) - 2ldf|*)g,

nserting

(6)

the metric g of (5) we obtain (4).
ntz metrics) of the variational deri-
wn, that the critical metrics of the

Syzg = %/XR%/— det(7) d*z

are entirely determined by

0

|

=1 .
Rid® — ~R%g =

Lemma 3.2 shows that this equation is equivalent t

0

1
Ric? — ERgg =

Taking the trace with respect to g yields immediat

Cdwedy Vi | (g DW))
4 e +2 m + ( e 2 1/) g (7)
ely the Klein-Gordon equation
~O9($) + 3 Bpl= 0 ®)

for the state . In summarizing we state:

Theorem 3.3  Let (X, g) be a Lorentz manifold

metrik § := 1?g is a stationary point of the action

%/X R/~ det(3)

off the Einstein equation

g
_edy  vedy

and ¢ € D(H) positiv und real. A

dz,

=)

1
] g _—— g =
Ric 2R g e ”

is valid. Moreover, every solution g of the Einste:
Klein-Gordon equation (8).

1

+(w2 w)

equation (9) requires 1 to solve the

(9)




The expectation value of the mass-squared operator H depends on the metric g and
the state . Therefore it is of interest to look at the critical points of the variational
derivative if either v or g is fixed. First let g be fixed and R;; denote the components
of the Ricci tensor Ric? of the metric §. One easily verifies

éﬂ /X R9\/det(~g) d*z

1 o _
= & [ (-2 Ry +4R7y?

1 _
= 2 [ 2R 9 6y \Jdet(~g) d'a

) 61 /det(—g) d*z

_ é /X (—12009(3) + 2R%9) 1) +/det(—g) d*z.

The last equation follows again from (4). Thus

1 ~
Yy g —§)dir = —
66 /XR Vdet(—g) d*z = 0 <= —L

which means, that the Euler-Lagrange equation of the action 1/6 fy R9

o)+ SR =0,

(10)

det(—g) d*z is

the Klein-Gordon equation. If we don’t change ¢ and vary g only, we obtain

59 /X R, /det(7) d*z

= /X(R-j 554/det(g) — 1/2 3i;; R9%*/det(g) 6g7) d*x

— RI . ,
= /X(Rij -_ ‘5“gij)¢2 59” \/det g) d4l‘

Thus

59 /X R \Jdet(—g) d*z = 0 <=

g
Rz‘cﬁ—%—gzo.

(11)

But this is exactly the Einstein equation (9). Because of Theorem 3.1 we get the follow-

ing:

Theorem 3.4  Let 1 be a smooth, real and positive state in the domain of H. The

expectation value of the operator H is extremal for

|

’aﬁ:ced metric g, iff Y fullfils the Klein-

Gordon equation (8). On the other hand, if g is varied, the critical Lorentz metrics of
(HY* in a fived state ¢ satisfy Einstein’s equation (9) and ¢ is a solution of the Klein-

Gordon equation (8).

We point out, that our concept generalizes to complex-valued states in an obvious

manner. The interested reader is refered to {2].
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