Einstein Equation and Geometric Quantization

Ernst Binz and Peter Oellers Universität Mannheim Lehrstuhl Mathematik I, Seminargebäude A5 68131 Mannheim

No. 202 / 1995

Einstein Equation and Geometric Quantization

E. Binz¹ and P. Oellers² Lehrstuhl für Mathematik I Universität Mannheim Seminargebäude A5 D-68133 Mannheim

1 Introduction

Let (X, g) be a Lorentz manifold. In geometric quantization the quantum operator \hat{H} of the function $H(x) := g(x, x), x \in T^*X$, is given by

$$\hat{H}(\psi) = \hbar^2 (-\Box^g(\psi) + 1/6R^g \psi),$$
(1)

where ψ is a squared integrable function on X with respect to the density $\sqrt{-\det(g)}$, \Box^g is the d'Alembert operator and R^g the scalar curvature of the metric g. Because of the fact, that the critical points (Lorentz metrics) of the functional $\int_X R^g \sqrt{-\det(g)} d^4x$ are determined by the Einstein equation for the vacuum, the question arises, as to whether there is a connection between the Einstein equation and the operator \hat{H} . In fact, we will show, that under some restrictions on the function ψ , the critical metrics of the expectation value of \hat{H} have to satisfy Einstein's equation for a suitable energymomentum tensor. Moreover, if g is a solution of the Einstein equation, the function ψ

$$-\Box^g(\psi) + \frac{1}{6} R^g \psi \stackrel{!}{=} 0.$$

These observations yield an interpretation for the scalar curvature as a density of the expectation value of the mass-squared operator \hat{H} (cf.3).

2 Geometric Preliminaries

In this section we present some terminology of geometric quantization on a Lorentz manifold needed in the sequel. For more informations see [3]. Let (X, g) be a Lorentz

¹binz@math.uni-mannheim.de

²oellers@math.uni-mannheim.de

manifold and (T^*X, ω_0) the cotangent bundle with the canonical symplectic structure given by the exterior derivative of the canonical one-form θ_0 on T^*X . The vertical polarization P^V on the symplectic manifold T^*X determines the Hilbert space \mathcal{H}^{P^V} to be $L^2(X, g)$. The quantum operator \hat{H} of the function $H: T^*X \longrightarrow \mathbb{R}$ defined by

$$H(x) = g(x, x), \quad x \notin T^*X$$

is given by

$$\hat{H}(\psi) = \hbar^2(-\Box^g(\psi) + 1/6R^g\psi), \quad \psi \in D(\hat{H}),$$

where \Box^g denotes the d'Alembert operator, R^g the scalar curvature of the metric g and $D(\hat{H})$ the domain of the operator \hat{H} . In the next section we study the expectation value of this operator.

3 The expectation value of the mass-squared operator

The expectation value of an operator A on $L^2(X,g)$ in the state ψ is given by

$$\langle A \rangle^{\psi} = \int_X A(\psi) \,\overline{\psi} \,\sqrt{-\det(g)} \,d^4x.$$
 (2)

Associated with a Lorentz metric g and a real and nowhere vanishing state $\psi \in D(\hat{H})$, we define the Lorentz metric \bar{g} by

$$\bar{g}:=\psi^2\,g.$$

The expectation value of the operator \hat{H} is connected to the scalar curvarure $R^{\bar{g}}$ of the metric \bar{g} as follows:

Theorem 3.1

$$\frac{1}{6} \int_X R^{\bar{g}} \sqrt{-\det(\bar{g})} \, d^4x \stackrel{!}{=} \frac{1}{\hbar^2} \langle \hat{H} \rangle^{\psi}, \tag{3}$$

saying, that the Einstein-Hilbert action determined by the metric \bar{g} is equal to the expectation value of the mass-squared operator \hat{H} . Thus $R^{\bar{g}}$ can be interpreted as a \bar{g} -density of $\langle \hat{H} \rangle^{\psi}$.

The proof follows immediately from the definition of the expectation value and the following Lemma:

Lemma 3.2 Let ψ be real and nowhere vanishing. Then the scalar curvature $R^{\bar{g}}$ of the metric $\bar{g} = \psi^2 g$ satisfies

$$R^{\bar{g}}\psi^3 = -6\Box^g(\psi) + R^g\psi.$$
(4)

The Ricci tensor $Ric^{\bar{g}}$ is given by

$$Ric^{\bar{g}} = Ric^{g} + 4\frac{d\psi \otimes d\psi}{\psi^{2}} - 2\frac{\nabla^{g}d\psi}{\psi} - \left(\frac{|d\psi|^{2}}{\psi^{2}} + \frac{\Box^{g}(\psi)}{\psi}\right)g.$$
(5)

These formulas are a consequence of the following formula for the Ricci tensor of the conformally modified metric

$$\tilde{g} = \exp(2f) g,$$

where f is an arbitrary real, smooth function. According to [1]

$$Ric^{\tilde{g}} = Ric^{g} - 2(\nabla^{g} df - df \otimes df) + \left(-\Box^{g}(f) - 2|df|^{2}\right)g,$$
(6)

where ∇^{g} denotes the Levi-Civita connection of g. Inserting

$$f := \log(\psi)$$

into (6) yields (5). Taking the trace with respect to the metric \bar{g} of (5) we obtain (4).

Next, we are looking at the critical points (Lorentz metrics) of the variational derivative of the expectation value $\langle \hat{H} \rangle^{\psi}$. It is well known, that the critical metrics of the Einstein-Hilbert action

$$S_{\psi^2 g} = \frac{1}{6} \int_X R^{\bar{g}} \sqrt{-\det(\bar{g})} d^4 x$$

are entirely determined by

$$Ric^{\bar{g}} - \frac{1}{2}R^{\bar{g}}\bar{g} = 0.$$

Lemma 3.2 shows that this equation is equivalent to

$$Ric^{g} - \frac{1}{2}R^{g}g = -4\frac{d\psi \otimes d\psi}{\psi^{2}} + 2\frac{\nabla^{g}d\psi}{\psi} + \left(\frac{|d\psi|^{2}}{\psi^{2}} - 2\frac{\Box^{g}(\psi)}{\psi}\right)g.$$
(7)

Taking the trace with respect to g yields immediately the Klein-Gordon equation

$$-\Box^g(\psi) + \frac{1}{6}R^g\psi = 0 \tag{8}$$

for the state ψ . In summarizing we state:

Theorem 3.3 Let (X,g) be a Lorentz manifold and $\psi \in D(\hat{H})$ positiv und real. A metrik $\bar{g} := \psi^2 g$ is a stationary point of the action

$$\frac{1}{6}\int_X R^{\bar{g}}\sqrt{-\det(\bar{g})}d^4x,$$

iff the Einstein equation

$$Ric^{g} - \frac{1}{2}R^{g}g = -4\frac{d\psi \otimes d\psi}{\psi^{2}} + 2\frac{\nabla^{g}d\psi}{\psi} + \left(\frac{|d\psi|^{2}}{\psi^{2}} - 2\frac{\Box^{g}(\psi)}{\psi}\right)$$
(9)

is valid. Moreover, every solution g of the Einstein equation (9) requires ψ to solve the Klein-Gordon equation (8).

The expectation value of the mass-squared operator \hat{H} depends on the metric g and the state ψ . Therefore it is of interest to look at the critical points of the variational derivative if either ψ or g is fixed. First let g be fixed and \bar{R}_{ij} denote the components of the Ricci tensor $Ric^{\bar{g}}$ of the metric \bar{g} . One easily verifies

$$\begin{array}{l} \frac{1}{6}\delta^{\psi}\int_{X}R^{\bar{g}}\sqrt{\det(-\bar{g})}\,d^{4}x \\ = & \frac{1}{6}\int_{X}(-2\bar{g}^{ij}\,\overline{R}_{ij}\,\psi^{3} + 4R^{\bar{g}}\,\psi^{3})\,\delta\psi\,\sqrt{\det(-g)}\,d^{4}x \\ = & \frac{1}{6}\int_{X}2R^{\bar{g}}\,\psi^{3}\,\delta\psi\,\sqrt{\det(-g)}\,d^{4}x \\ = & \frac{1}{6}\int_{X}(-12\Box^{g}(\psi) + 2R^{g}\psi)\,\delta\psi\,\sqrt{\det(-g)}\,d^{4}x. \end{array}$$

The last equation follows again from (4). Thus

$$\frac{1}{6}\delta^{\psi}\int_{X}R^{\bar{g}}\sqrt{\det(-\bar{g})}\,d^{4}x = 0 \iff -\Box^{g}(\psi) + \frac{1}{6}R^{g}\psi = 0,\tag{10}$$

which means, that the Euler-Lagrange equation of the action $1/6 \int_X R^{\bar{g}} \sqrt{\det(-\bar{g})} d^4x$ is the Klein-Gordon equation. If we don't change ψ and vary g only, we obtain

$$\delta^{g} \int_{X} R^{\bar{g}} \sqrt{\det(\bar{g})} d^{4}x$$

$$= \int_{X} (\overline{R}_{ij} \,\delta \bar{g}^{ij} \sqrt{\det(\bar{g})} - 1/2 \, \bar{g}_{ij} R^{\bar{g}} \psi^{2} \sqrt{\det(g)} \,\delta g^{ij}) d^{4}x$$

$$= \int_{X} (\overline{R}_{ij} - \frac{R^{\bar{g}}}{2} \bar{g}_{ij}) \psi^{2} \,\delta g^{ij} \sqrt{\det(g)} \,d^{4}x.$$
(11)

Thus

$$\delta^g \int_X R^{\bar{g}} \sqrt{\det(-\bar{g})} \, d^4x = 0 \iff Ric^{\bar{g}} - \frac{R^{\bar{g}}}{2}\bar{g} = 0.$$

But this is exactly the Einstein equation (9). Because of Theorem 3.1 we get the following:

Theorem 3.4 Let ψ be a smooth, real and positive state in the domain of H. The expectation value of the operator \hat{H} is extremal for a fixed metric g, iff ψ fullfils the Klein-Gordon equation (8). On the other hand, if g is varied, the critical Lorentz metrics of $\langle \hat{H} \rangle^{\psi}$ in a fixed state ψ satisfy Einstein's equation (9) and ψ is a solution of the Klein-Gordon equation (8).

We point out, that our concept generalizes to complex-valued states in an obvious manner. The interested reader is referred to [2].

Literatur

- [1] Besse A.L.: Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3.Folge, Band 10, Springer Verlag, Berlin Heidelberg (1987)
- [2] Oellers P.: Das Einstein-Hilbert Funktional und der Bezug zur Geometrischen Quantisierung, Dissertation, Universität Mannheim (1995)
- [3] Śniatycki J.: Geometric Quantization and Quantum Mechanics, Applied Mathematical Sciences 30, Springer Verlag, New-York (1980)