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1 Introd uction

Let (X, g) be a Lorentz manifold. In geometric quantization the quantum operator iI
ofthe function H(x):= g(x,x),x E T*X, is given b~

H( 7/J)= Ii'(-0'(7/J) + 1f6R'7/J), (1)

where 'l/J is a squared integrable function on X with respect to the density J- det(g),
09 is the d'Alembert operator and R9 the scalar cJrvature of the metric g. Because of
the fact, that the critical points (Lorentz metrics) of the functional Ix R9 J- det(g) d4x
are determined by the Einstein equation for the racuum, the quest ion arises, ~s to
whether there is a connection between the Einstein equation and the operator H. In
fact, we will show, that und~r some restrictions onl the function 'l/J, the critical metrics
of the expectation value of H have to satisfy Einstein's equation for a suitable energy-
momentum tensor. Moreover, if 9 is a solution of the Einstein equation, the function 'l/J

obeys the Klein-Gordon equation

These observations yield an interpretation for the scalar curvature as a density of the
expectation value of the mass-squared operator iI (cf.3).

2 Geometrie Preliminaries

In this section we present some terminology of gleometric quantization on a Lorentz
manifold needed in the sequel. For more informations see [3]. Let (X, g) be a Lorentz
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Theorem 3.1

manifold and (T* X, wo) the cotangent bundle witbi the canonical symplectic structure
given by the exterior derivative of the canonical lone-form Bo on T* X. The vertical
polarization pV on the symplectic manifold T* X determines the Hilbert space 1{pv to

A I
be L2(X, g). The quantum operator H of the function H : T* X ~ IR defined by

H(x) = g(x, x), x J T*X
~~wn~ I

A 2 A

H('I/J) = 1i (-09('I/J) + 1/6R9'I/J1), 'I/JE D(H),
whe!e 09 denotes the d'Alembert ~perator, R9 thelscalar curvature of the metric 9 and
D(H) the domain of the operator H. In the next section we study the expectation value
of this operator.

3 The expectation value of the mass-squared operator
I

The expectation value of an operator A on L2(X, gl) in the state 'I/J is given by

(A)VJ= [ A('I/J)'l/JJ-det(g)d4x. (2)
Jx I A

Assodated with a Lorentz metric 9 and areal and nowhere vanishing state 'I/J E D(H),
we define the Lorentz metric 9 by

g:= 'l/J2 g.

The expectation value of the operator H is connected to the scalar curvarure Rg of the
metric 9 as follows:

![Rgv-det(g)d4x I ~(H)VJ, (3)
6Jx 1i

saying, that the Einstein-Hilbert action determinea by the metric 9 is equal to the expec-
tation value of the mass-squared operator H. Thul Rg can be interpreted as a g-density
of (H)VJ. I
The proof follows immediately from the definition of the expectation value and the
following Lemma: I _
Lemma 3.2 Let 'I/J be real and nowhere vanishing. Then the scalar curvature R9 of
the metric 9 = 'l/J2 9 satisfies

I -

The Ricd tensor Ricg is given by

Ric9 = Ric9 + 4 d'I/J; d'I/J_ 2 \l~'l/Jr _ (ld;12 + D9~'I/J)) g.

2

(4)

(5)



These formulas are a consequence of the following formula for the Ricd tensor of the
conformally modified metric

9 = exp(2 f) g,

where f is an arbitrary real, smooth function. Accol'ding to [1]
- I

Ricfl = Ric9 - 2(yr9df - df 0 df) + Q-09(j) - 2IdfI2)g,

where yr9 denotes the Levi-Civita connection of g. Ibserting

f:=log('l/J)

(6)

into (6) yields (5). Taking the trace with respect to the metric 9 of (5) we obtain (4).
Next, we are looking at the critical points (Lorentz metrics) of the variational deri-

vative of the expectation value (1/)1/1. It is weIl kndwn, that the critical metrics of the
Einstein-Hilbert action I

81/129 = ~ fx R9J - det(g) d4x
are entirely determined by

- 1 -Ric9 - -R9g = O.

Lemma 3.2 shows that this equation is equ~valent t1b

R" 9 _ ~R9 = _4d'l/J0d'l/J +2 yr9d'l/J!+ (ld'l/J12 _ 209('l/J)) (7)
,e 2 9 1/1' 1/1 I 1/1' 1/1 g.

Taking the trace with respect to 9 yields immediately the Klein-Gordon equation

for the state 'l/J. In summarizing we state:

Theorem 3.3 Let (X, g) be a Lorentz manifoUl and 'l/JE D(H) positiv und real. A
metrik 9 := 'l/J29 is a stationary point of the action

ijj the Einstein equation

R' 9_~R9 =_4d'l/J0d'l/J +2yr9d1/( + (ld'l/J12 _209('l/J)) (9)
,e 2 9 . 1/1' . 1/1.1 1/1' 1/1

is valid. Moreover, every solutwn 9 of the Eznstezn equatwn (9) requzres'l/J to solve the
Klein-Gordon equation (8).
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The expectation value of the mass-squared operat~r H depends on the metric 9 and
the state 'l/J. Therefore it is of interest to look at the critical points of the variational
derivative if either 'l/J or 9 is fixed. First let 9 be fi~ed and ~j denote the components
of the Ricd tensor Ric9 of the metric g. One easily verifies

~81/J Ix R9Vdet( -g) d4x
~ Ix (_2gij Rij 'l/J3+ 4R9 'l/J3)8'l/JVdet( -g) d4x

~ Ix 2R' 1/1' 61/1Vdet( -g) +
~ !x( -1209('l/J) + 2R9'l/J) 87/1\/~de-t(--g-) d4x.

The last equation follows again from (4). Thus

~81/J Ix R9 Vdet( -g) d4x = 0 ~ _[]9('l/J) + ~R9'l/J = 0, (10)

which rneans, that the Euler-Lagrange equation 01 ~he adion 1/6 Ix R' Vdet( -9) d'x is
the Klein-Gordon equation. If we don't change 'l/J and vary 9 only, we obtain

(11)

Thus

69 Ix R' Vdet( -ii) rf'x = 01Ric' - ~' ii~ O.

But this is exactly the Einstein equation (9). Because of Theorem 3.1 we get the follow-
ing:

Theorem 3.4 Let'l/J be a smooth, real and positive state in the domain of H. The
expectation value of the operator H is extrem al for [b fixed metric g, iff 'l/Jfullfils the Klein-
Gprdon equation (8). On the other hand, if 9 is raried, the critical Lorentz metries of
(H)1/J in a fixed state 'l/Jsatisfy Einstein's equation (9) and'l/J is a solution of the Klein-
Gordon equation (8).

We point out, that our concept generalizes to complex-valued states in an obvious
manner. The interested reader is refered to [2].
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