Yang-Mills and Dirac fields with inhomogeneous boundary conditions

Schwarz, Günter ; Sniatycki, Jedrzej ; Tafel, Jacek

204_1996_bearb.pdf - Published

Download (661kB)

URL: https://ub-madoc.bib.uni-mannheim.de/1692
URN: urn:nbn:de:bsz:180-madoc-16927
Document Type: Working paper
Year of publication: 1996
The title of a journal, publication series: None
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Mathematik > Mannheimer Manuskripte
Subject: 510 Mathematics
Classification: MSC: 35Q40 81T13 58J32 ,
Subject headings (SWD): Yang-Mills-Theorie , Dirac-Gleichung , Nichthomogenes Randwertproblem , Singuläre Störung
Keywords (English): Yang-Mills systems , Dirac systems , inhomogeneous boundary conditions , gauge fixing , singular perturbation
Abstract: Finite time existence and uniqueness of solutions of the evolution equations of minimally coupled Yang-Mills and Dirac systems are proved for inhomogeneous boundary conditions. A characterization of the space of solutions of minimally coupled Yang-Mills and Dirac equations is obtained in terms of the boundary data and the Cauchy data satisfying the constraint equation. The proof is based on a special gauge fixing and a singular perturbation result for the existence of continuous semigroups.
Additional information:

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.

Metadata export


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics

You have found an error? Please let us know about your desired correction here: E-Mail

Actions (login required)

Show item Show item