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Abstract. The problem to determine partitions of a given reet angle which are optimal
for segment approximation (e.g. by bivariate pieeewise polynomials) is investigated. We
give eriteria for optimal partitions and develop algorithms for eomputing optimal parti-
tions of eertain types. It is shown that there is a surprising relationship between various
types of optimal partitions. In this way, we obtain good partitions for interpolation
by tensor produet spline spaees. Our numerical examples show that the methods work
efficiently.



1. Introduction

The motivation for our investigations comes from the following problem. Let a rectangle
o = [a, b] x [c, d] be subdivided by a fixed number of horizontal and verticallines. Such a
partition is called of type 3 (see Figure 3). We interpolate a function f E C(O) by a function
AU) from some tensor product spline space defined on this partition. The problem is to
determine a partition of 0 for which the error 111- AU) Iln is relatively small.

Since no general criteria are available for good or optimal partitions of this type, we
try to get such partitions via piecewise polynomial approximation. Therefore, we consider
the following general sub division problem. Let a partition of 0 into a fixed number of
subrectangles {Oj.t,v} as in Figure 1 or Figure 2 be given. Such a partition {Oj.t,v} is called
of type 1 or type 2, respectively. Moreover, let a functional d be given which associates to
each subrectangle Oj.t,v areal number d(Oj.t,v). We first investigate the problem to determine
a partition of type 1 respectively type 2 for which max d(O" v) is as small as possible. Such

J.l,V ,.....,

a partition is called optimal.

-

-

Figure 1. Partition of type 1 Figure 2. Partition of type 2

;

Figure 3. Partition of type 3

For a general class of functionals d (e.g. the minimal deviation for piecewise polynomials ),
we develop criteria for optimal partitions of type 1 respectively type 2 (Theorem 2.2).
Furthermore, we describe an algorithm for computing a partition for which all values d(Oj.t,v)
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are the same. Such a partition is shown to be optimal. In the univariate case, similar
methods were developed by Nürnberger, Sommer & Strauß [131 and Meinardus, Nürnberger,
Sommer & Strauß [91. However, the bivariate case is more complex, since certain anomalies
may occur. (For furt her results on univariate segment approximation see e.g. [11, [41, [51,
[61, [71, [81, [111, [121, [151, and the references therein.)

Partitions of type 1 and 2 are more general than partitions of type 3. Therefore, it
is surprising that for certain functionals d, the optimal value of type 3 partitions is equal
to one of the optimal values of type 1 and type 2 partitions (Theorem 3.5). Moreover, it
is shown that in this case, the horizontal lines of an optimal type 1 partition combined
with the vertical lines of an optimal type 2 partition yield an optimal partition of type 3
(Theorem 3.6).

A functional d for which these results hold, is given by

where R = [6,6] x [171,172], This functional reflects the error for interpolation by the tensor
product polynomial space IIm ~ IIm (see Theorem 3.2 and (3.3)). Moreover, the numerical
tests show that our method also works efficiently if we use the functional

d(R) = 111 - P(f)IIR,

where P(f) E IIm~IIm interpolates 1at (m+1)2 uniformly distributed points in R (although
d does not quite fit into the general setting of our results). Finally, some numerical examples
indicate that the optimal partitions of type 3 for piecewise polynomial approximation yield
good partitions for interpolation by tensor product spline spaces.

2. Partitions of Type 1 and Type 2

In this section, we give results on the existence of optimal partitions of type 1 and type 2
and derive criteria for optimality. Building on these results, we describe an algorithm for
computing optimal partitions.

Let a rectangle n = [a, b] x [c, d] be given. We subdivide n into r horizontal strips

(2.1)

where c = TO ~ Tl ~ ... ~ Tr-l ~ Tr = d. Furthermore, let each strip Jr be subdivided into
k subrectangles

(2.2)

where a = (jJ.L,O ~ (j J.L,1 ~ ••• ~ (jJ.L,k-l ~ (jJ.L,k = b. A partition {nJ.L,v} of this type is called a
partition 01 type 1 (see Figure 1).
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If we subdivide ° into k vertical strips and each strip into r subrectangles, then the
resulting partition is called of type 2 (see Figure 2). If ° is subdivided into r . k rectangles
of the form

(2.3)

where a = 0"0 ~ 0"1 ~ ... ~ O"k-l ~ O"k= b, then the partition {0tL,v} is called 0/ type 3 (see
Figure 3).

Let M denote the set of all subrectangles R = [6,6] x ["11, "12] of 0. We consider
a functional d, which associates to each REM areal number d(R) with the following
properties:

d(R) ~ d(R),

d(R) = 0,

d(Rn) -+ d(R),

- -if R c R, R, REM,

if R consists of one single point,

if Rn -+ R, R, Rn E M for all n.

(2.4)

(2.5)

(2.6)

In contrast to the univariate case (see [9]), d(R) may be strictly positive, although the
rectangle R degenerates to a line segment.

Definition 2.1. Fix a number i E {1, 2, 3}. A partition {0tL,v} of type i is called optimal
if

(2.7)

vihere the infimum fs taken over all partitions {ntL,v} of type i. For an optimal partition of
type i, the value mi = max d(0tL, v) is called the optimal value. A partition {0tL,v} of type i

tL,v
is called leveled, if all values d(0tL,v), J1. = 1, ... , r, v = 1, ... ,k, are the same.

We first prove a result on optimal partitions of type 1 and 2.

Theorem 2.2. For fixed i E {1, 2}, the foltowing statements hold:
(i) For every partition {O/L,v} of type i,

(ii) Every leveled partition of type i is optimal.
(iii) A leveled partition 0/ type i exists.
(iv) 1/ d(R) < d(R) for alt R £; R, R, REM, then a unique optimal partition 0/ type i

exists.

Proof. It suffices to consider the case when i = 1. Since the mapping which associates to
each set ofreal numbers {O"lIv,T,,} (cf. (2.2)) the real number maxd(0tL,v) is continuous, it

rl ,... f..L,V
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follows from compactness arguments that the infimum in (2.7) is attained. Therefore, an
optimal partition exists.

To prove statement (i), we first have to show the following. Let arbitrary type 1 parti-

tions {OJL,v} and {nJL,v} with {OJL,v} i= {nJL,v} be given. Then

(2.8)

To show this, we distinguish two cases.

Case 1. TJL= TJL for I-" = 0, ... , r
Since {OJL,v} i= {nJL,v}, there is an index m such that {O"m,v} i= {am,v}' We consider the
strip [a, b] X [Tm-I, Tm]. By running through O"m,O,"" O"m,k it follows that there is an index

n with [O"m,n-l, O"m,n] s: [am,n-l, am,n], hence Om,n s: nm,n.
Case 2. TJLi= TJL for some I-" E {1,... ,r -1}
By running through TO, Tl,'" ,Tr, it follows that there is an index m, such that

We consider the strips [a, b] x [Tm-I, Tm] and [a, b] X [Tm-I, Tm]. It follows that there is an
index n with [O"m,n-l,O"m,n] C [am,n-l, am,n], hence Om,n s: nm,n' This proves statement
(2.8).

It is obvious that ml:::; maxd(O" v). Now, assurne that mind(O"v) > ml. Let {n"v}J..L,V ,...., J.t,lJ ,...., ,....,

be an optimal partition. Then by (2.8)

ml 2: d(nJL,v) 2: d(OJL,v) > ml

for some (1-",1/), which is a contradiction. This shows (i). Statement (ii) is an immediate
consequence of (i). We now prove (iii). Let us consider an arbitrary strip

For a :::;6 :::;6 :::;b, we set

Claim 1. Real numbers

exist such that

for 1/ = 0, ... , k - 2,

i.e., a leveled partition of the strip Jw
We prove this claim by induction on k, so first assurne k = 1. For any ~ E [a, b], we set

c(~) := d(O(a, ~)) - d(O(~, b)).

4
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It follows from (2.4) that

C( a) ::; 0 and c(b) 2: o. (2.10)

Therefore, the continuity of C (cf. (2.6)) implies the existence of a number ~ =: 0'J.L,1E [a,b]
with c(O'J.L,d = O. This proves Claim 1 in the case k = 1. (Note that, in contrast to the
univariate case, it may happen 0'J.L,1 = a or 0'J.L,1 = b, due to the fact that d(O(a,a)) and
d(O(b, b)) are strictly positive in general.)

Now we assurne that Claim 1 is true for k - 1. We define, for ~ E [a, b], functionals Cl

and C2 by

Cl(O := min{ max d(O(lTJ.L v, lTJ.Lv+d) : a = lTJ.L0 ~ lTJ.L1 ~ ... ~ lTJ.Lk-l :=0
0:S;v:S;k-l " " ,

and

(2.11)

Again by the continuity of the functional C2, there is some ~ := O'J.L,k-l with

(2.12)

Moreover, by the induction hypothesis there exists a leveled partition with parameters
0' J.L,O,... ,0' J.L,k-l for k - 1. It follows from (i) that this partition is also optimal, and so

for 1/ = 0, ... , k - 2. (2.13)

Finally, a combination of statements (2.11), (2.12) and (2.13) completes the proof of Claim 1.
Now, we set for C ~ 'fJl ~ 'fJ2 ~ d,

By Claim 1 we know that there is a leveled partition {Rv('fJl,'fJ2)}v=1, ... ,k ofthis strip, which
minimizes the functional

(2.14)

Claim 2. Real numbers

C = Ta ~ Tl ~ ... ~ Tv-l ~ Tv = d,

exist such that

for J.L = 0, ... , r - 2.

5
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Claim 2 follows analogously as Claim 1. This proves (iii).
Now, we prove (iv). From (iii) we know that a leveled partition {0J.L,v} exists. Assurne

that th::-e is another optimal partition {DJ.L,v}. Then, by (2.8), there is an DJ.L,v such that
0J.L,V ~ 0J.L,v' But since {0J.L,v} is leveled, this implies

which contradicts the optimality of {DJ.L,v}. o

Before describing an algorithm for computing leveled partitions, we investigate special
functionals d which arise from best approximation.

Let G be a subspace of C(R), where R = [6,6] x ['T}l, 'T}2] and 1 E C(R) be given.
A function 9f E G is called best approximation of 1 if 111 - gfllR = inf 111 - glIR, where

gEG

IlhliR = max Ih(z) I for h E C(R). The value pU, G)R = inf 111 - gliR is called minimal
zER gEG

deviation of 1from G.
In the next two examples, we investigate functionals d of the form d(R) := dU, R) :=

pU, G)R.
Example 2.3. We denote by fim = span{xJ.LyV : f-l,V E INo, f-l,V ::; m} the space of
bivariate polynomials 01 total degree m. Given the function l(x,y) = xmlym2, we define the
functional d by

for all R = [6,6] x ['T}l, 'T}2] in °= [a, b] x [c, d]. We will show that

d(R) _ (6 - 6)ml ('T}2 - 'T}1)m2

- 22m1+2m2-2
(2.15)

Then it is easy to verify that for d, the equidistant partition is the unique optimal partition
., (b-a)m1 (d-c)m2

of type 1, type 2 respectIvely type 3 wlth ml = m2 = m3 = 22m1 +2m2-2.km1.rm2 .

We first determine d(R) for Ro = [-1,1] x [-1,1]. Generalizing earlier work of Ehlich
& Zeller [3]' it was shown by Reimer [141 that a best approximation Pf E IIml +m2-1 of 1
exists such that

where Tm denotes the univariate Chebyshev polynomial of the first kind of degree m (see
e.g. [6]). Since IITmll[1,1] = 1, we get pU,IIm1+m2-dRo = 2m1+1m2-2' By transforming Ro to
R, we get (2.15).

Example 2.4. For ° = [0,1] x [0,1] and l(x, y) = JXY, we consider the functional d(R) =
dU, R) = pU, fidR' We will determine an explicit expression for a leveled type 1 partition.

We first prove the following

6
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Claim. The polynomial

pf(X, y) = 4 (v'Il+ J6~ (y'ril + .fii2) (2( JTil + VTi2) 2x + 2 ( ~ + ~)2 Y

- ( J6172 - J617lr) ,

is a best approximation of f from ITI on R = [6,6] x [171,172]and the corresponding minimal
deviation is

d(R) = (J&i72- v'Wh/
4 (v'Il+ J6) (y'ril + y'rj2) .

(2.16)

This can be seen as follows. Let H = f - Pf be the error function. Then the set of
extremal points of H consists of the two points (6,172) and (6,171), where H attains the
value -d(R), and of all points of the intersection of the line

(y'rh _ VTi2)2x _ (~+ ~)2y = 0

with the rectangle R, where H attains the value d(R). Since there is no function in ITI which
is negative at the points (6, 172)and (6, 171)and positive on the intersection of the above line
with R, it follows by Kolmogorov's criterion (see e.g. [6]) that Pf is a best approximation of
f, and that d(R) is the corresponding minimal deviation.

In order to compute a leveled partition, we recursively define functions 91/ : [0, 1] -t lR
for v E lNo. We set

90(A) = 0

and

for all A E [0,1]

for v E lNo. It is easy to verify that
(i) 91/ is continuous and monotone on [0,1];

(ii)

(iii)

(iv)

()
v(v + 1)

91/ 1 = 2 ;
2

91/(A) < 91/+l(A) < (1 _ A)2 for A E [0,1);

. 2
11m 91/(A) = ( )2 for A E [0,1).
1/-+00 1- A

With AO = 0, real numbers Al, A2, ... , Ar-l in (0,1) exist such that

7
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for I-L = 0,1, ... , r - 2. These numbers are uniquely defined. In fact, the continuous function

h(A) = A(1 + A)gdA)

vanishes for A = 0 and has the value k(k + 1) for A = 1, i.e., its value for A = 1 is larger than
the right hand side of (2.17), where we have used the assumption All- < 1 and, for 1/ E :IN,
the monotonicity of gk. This gives the existence of a number AIl-+l satisfying (2.17). The
uniqueness follows from the fact that the function h is strictly monotone. The numerical
procedure to compute the numbers All- is easy.

We now show that

forl-L=1,2, ... ,r-1,

(2.18)
for I-L = 1,2, ... , r, 1/ = 1,2, ... , k - 1,

(gv(AIl--d - Att-lgv-l(Att-d)2 = gv(Att-d + gv-dAIl--d,

it follows from (2.16) that

which, by using (2.17), gives

The optimal segmentation for r = k = 3 is shown in Figure 4; here, ml = 0.035678.

Algorithm

We now describe an algorithm for computing a leveled (hence optimal) type 1 partition
of a given rectangle 0 = [a, bJ x [c, dJ w.r.t. any functional d satisfying (2.4)-(2.6) and
the corresponding optimal value ml, which we assurne to be positive. It uses some meth-
ods developed in the univariate case by Nürnberger, Sommer, Strauß [131 and Meinardus,
Nürnberger, Sommer, Strauß [91.

The method is as follows. We compute iteratively a sequence of partitions {0Il-,V,P}PEIN,
and simultaneously two sequences of real numbers {~in}pEIN and {~ax}PEIN, which are
monotonously increasing respectively decreasing and converge to ml, such that for all p,

the inclusion

(2.19)

L _

holds.
In practice, the algorithm terminates if d~ax - d~in < c for some prescribed tolerance c.
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Figure 4. Optimal partition in Example 2.4

Description of the Algorithm

First Step: In order to get two positive numbers drin and drax with the property (2.19),
compute the values

d(Op"v,l), 1J = 1, ... , k, f.." = 1, ... ,r

of an arbitrary type 1 partition {Op"v,r} of O. According to Theorem 2.2, the numbers

drin := mind(O" v r) and
j..L,V ,-, ,

drax :=max d(O" v,r)
J.L,V ,..."

satisfy (2.19). We may assume that drin> o.

pth Step:

a. Set dp := Jdr.;in dr.;ax. If ~ax - ~in < c, then stop.

b. For f.." = 1,2, ... , determine a strip Jp"p = [a, b] x ['TJ.L-l,p, 'Tp"p], such that

Let ii ::;r - 1 be the maximal index such that this is possible, and put 'Tj:L+l,p := ... =

'Tr,p'

c. Compute a leveled partition {Or,l,p, ... ,Or,k,p} of the strip Jr,p, and set

Cp := d(Or,l,p) = ... = d(Or,k,p).

9
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d. If cp = dp, then stop,

If cp < dp, set

drnin '= max{drnin c }p+1 ' p , p

drnax._ . {drnax d }p+1 ,- mln p , p ,

if cp > dp, set

drnin '= max{drnin d }p+1 . p , p

d~B:= min{d~ax, cp},

and proceed with the (p + l)st step.

Details of the Algorithm

Step b: For simplicity, we omit the index p and set I-" = 1. The computation of the strip
J1 := [a, b] x [TO, Tl], i.e., of the parameter Tl, such that

is as follows.

{ }
n~ooCompute a sequence T1,n such that T1,n --t Tl. To do this, determine T1,1 and

nL1' nL2"'" such that

and

Here, nb u ... u nt,k = [a, b] x [TO, T1,1].

Moreover, determine T1,2 and nr,u nr,2" .. , such that

and

Here, nL u ... u ni,k = [a, b] x [Ta, T1,2].
This implies

10



Set

1
Tl 3 = - (Tl 1 + Tl 2), 2' ,

and determine nt,l' nt,2' ... , such that

(2.20)

If d(ntk) ::; d, then T1,3 ::; Tl ::; T1,2 and set T1,4 = ~(T1,2 + Tl, 3), if d(ntk) > d, then
T1,1 ::; Tl ::; T1,3 and set T1,4 = ~(T1,1 + T1,3). Proceed by induction.

Step c: For simplicity, we omit the indices p and r. The computation of the leveled
partition {nI, ... ,nd of a strip J with optimal vallue C follows the same principle as used
in the algorithm itself: Given two bounds c~in ::; c ::; c~ax, set, in the nth step,

Determine rectangles nr,n~,... , such that

and compute 'Yn := d(nk).
If 'Yn = <5n, then stop.
If 'Yn < <5n, set

min {min}cn+1 := max cn , 'Yn

max ._ . { max .r }cn+1 .- mln cn , Un ,

if 'Yn > <5n, set

Cmin '= max{cmin <5}n+1 . n , n
max . . {max }cn+1 .= mln cn ,'Yn,

and proceed by induction.

The convergence of the algorithm is proved in the following

Theorem 2.5.
(i) For each pEIN, the relation

holds.

0< (

(f,llin ) 2~
_1_ < ... <
dmax -
1

(cEin)p~ ::; 1
~+1
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(ii) For each pEIN, the inclusion

holds.
(iii) We have

lim dmin = lim dmax = ml.
p-+oo p p-+oo p

Remark 2.6. In connection with problems of best approximation, the numbers d~in and
~ax are typically of the form d~in = lOQp and d~ax = lOßp with Ctp ~ ßp «0. Then,
Theorem 2.5 implies a fast convergence of the algorithm, since it follows from (i) that

for all p.

Proof of Theorem 2.5. From the definition of ~~~ and ~-tf in Step 4, it follows directly
that

if cp :c dp. Since 0 < d~in ~ d~ax for all p, relation (i) is proved. Moreover, (ii) is obvious.
Since 0 < dmin < dmin < m < dmax < dmax for all p we see thatp - p+l - 1 - p+l - P ,

exist and satisfy

lim dmin =: A
p-+oo p

and lim dmax =: B
p-+oo p

(2.21)

dmin p-+oo
It follows from (i) that d::'ax -'----7 1, hence A = B, and so (2.21) implies statement (iii). 0

p

Numerical Results

We give some results on optimal partitions of type 1 on the square [0, 1F. We consider the
functional

(2.22)
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where R = [6,6] x ["71, "72]. Note that this functional reflects the error in best approximation
of the function

I (x, y) = J x + Y + 1~0'

(cf. (3.2)). For r = k = 6, the leveled type 1 partition computed by the algorithm is shown
in Figure 5.

Our numerical experience shows that the algorithm works efficiently if we use the func-
tional d(R) = 111 - PU) IIR, where PU) interpolates I at (m + 1)2 uniformly distributed
points in R, although d does not satisfy (2.4) in general. To illustrate this, we show in
Figure 6 the leveled type 1 partition w.r.t. d for m = 2. By comparing Figures 5 and 6 we
see that the optimal partitions for both functionals are almost the same.

Figure 5.

3. Partitions of Type 3

Figure 6.

Optimality criteria for type 3 partitiüns differ very much from that für type 1 and type 2.
In general, for type 3, no leveled partition exists and, on the other hand, if for a partition
{ntL,lI} all values d(ntL,lI) except one are the same, this still does not imply optimality. We
illustrate this behaviour by two examples in the case r = k = 2.

Example 3.1. Let n = [0,1] x [0,1] and a function F :n -+ 1R be given. We consider the
functional d defined by

for all subrectangles R = [6,6] x ["71, "72] of n. (Compare the functional d2 in (3.2).)
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We first consider the case when F(x, y) = Ix + y - 11- For the equidistant partition, we
have d(Ü1,t} = d(Ü2,2) = (~)m+1 and d(Ül,2) = d(Ü2,t} = (~)m+2. It is easy to verify that
this partition is the unique optimal partition of type 3 but it is not leveled.
We now consider the case when F == 1. For al = Tl < ~,all values d(üJ.t,v) = (l-at}m+l

are the same except that d(Ül,d = a~+l. But these partitions are not optimal, since the
equidistant partition is the unique optimal partition of type 3 with m3 = (~)m+l.

Despite these difficulties, we describe an approach to determine optimal type 3 partitions
for functionals d which arise from piecewise polynomial approximation. This is done by
analyzing the relations between optimal partitions of type 1 respectively type 2, and type 3.
We denote by IIm = span{l, t, ... , tm} the space of univariate polynomials of degree m and
by IIm l8l IIm = span {xJ.tyv : j1., /) E IN0, j1., /) ::; m} the space of tensor product polynomials

of degree m.
Let a sufficiently differentiable function fEe (ü) and a subrectangle R = [6, 6J x [771, "72J

of ü be given. Since no general methods are available in the literature for computing
p(f, IIm l8l IIm)R, we replace this value by the value d(R) of some appropriately chosen
functional d.
We define two functionals of this type. The first one replaces the value p(f, IIm l8l IIm) R

by the maximum of the univariate minimal deviations

p(f, IImh = min Ilf - pliI
pEIIm

for all horizontal and vertical line segments I in R. We define

d1 (R) := d1 (f, R)

:= max{ max p(f, IIm)Ix(R), max p(f, IImhy(R)}'
xE[6,6] yE[1]l,772J

(3.1)

where Ix := Ix(R) = {(~,"7) ER: ~ = x}, and Iy := Iy(R) = {(~,"7) E R "7 = y}.
Obviously, the value d1 (R) is a lower bound for p(f, IIm l8l IIm).
The second functional is up to some constant an upper bound for the error Ilf - P(f) IIR

and therefore, for p(f, IIm l8l IIm)R. Here, P(f) is the unique polynomial in IIm l8l IIm which
interpolates f at (m + 1)2 uniformly distributed points in R. We define the functional d2
by

d2(R) := d2(f, R)

:= max{llfxm+11IR . (6 - 6)m+l, Ilfym+11lR. ("72 - "7dm+1}, (3.2)

where fx and fy denote the partial derivatives of f.
For these functionals, the estimate

(3.3)
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holds, where C is some positive constant.
The last inequality follows from the next result in which we give an upper bound for

the interpolation error Ilf - P(J)IIR. This estimate differs from the known upper bounds in
which an additional term Ilfxm+1ym+lIIR(6 _6)m+1(172 -171)m+l appears (see e.g. [2, p. 87]).

Theorem 3.2. For each function f E Cm+l(O), a constant K > 0 exists such that

where K is independent of 6,6, 171,172and f.

Praof. We denote by {(Xi, Yj) : i, j = 0, ... ,m} the set of uniformly distributed interpolation
points in R. Moreover, we set h1 := 6 - ~1, h2 := 172- 171and consider for x E [6,6], the
line segment

Ix:= {(~,17) ER: ~ = x}.

Let p E IIm denote the unique univariate polynomial which interpolates f at the points
{(x,Yj)}j=O, ...,m. It follows that

Ilf - P(J)IIIx ~ Ilf - pilIx + IIp- P(J)IIIx,

and the univariate interpolation theory implies that

Now, we consider the univariate polynomial

q(y) := p(y) - P(J)(x, y).

(3.5)

(3.6)

(3.7)

Since p interpolates f at the points {(x, Yj)}, it follows again from the univariate theory
that

Iq(Yj)1 = If(x,Yj) - P(j)(x,Yj)1

~ (m ~ I)! Ilfxm+11lIYj • h~+l

~ (m ~ I)! Ilfxm+11lR . h~+l

for j = 0, ... ,m, where

We now write the polynomial q in Newton form, i.e.,

m

q(y) =L t::,.(yO," . 'Y/L; q) (y - Yo) ... (y - Y/L-1),
/L=O
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where ~ denotes the usual divided difference.
Using the recurrence relation for divided differences and inequality (3.8), it is easily

shown by induction that for each J.LE {O,... , m} a constant K(J.L) > 0 exists such that

This implies, using (3.9), that

(3.10)

with some constant K > O.
Since R = U Ix, the combination of (3.5), (3.6) and (3.10) completes the proof of

xE[6,6J
Theorem 3.2. o

Remark 3.3. It is also possible to prove an analogous result for the case of Hermite inter-
polation by tensor product polynomials.

From now on, d denotes the functional d1 or d2, defined in (3.1) and (3.2). We now in-
vestigate type 3 partitions for these functionals. First we describe a method for constructing
an optimal type 3 partition by using an optimal type 1 partition.

Algorithm

Step 1: We construct a leveled partition of type 1 and fix the corresponding T-parameters
To :::;... :::;Tr (by applying the algorithm in Section 2).

Step 2: We consider the univariate functional

(3.11)

where a :::;6 :::;6 :::;b. We construct a leveled partition for this functional d, i.e., we
compute parameters 0'0 :::;... :::;O'k such that

v=1, ... ,k-1 (3.12)

(by applying the algorithm in Section 2). We denote the optimal value in (3.12) by m.

The next result shows that in this way, we obtain an optimal partition of type 3.

Theorem 3.4. The partition {nJL,v}, defined by

J.L = 1, ... , r, v = 1, ... , k,

is an optimal partition 0/ type 3.

16



We also show that the optimal value of type 3 partitions is equal to one of the optimal
values of type 1 and type 2 partitions.

Theorem 3.5. We have

where mi is the optimal value for partitions of type i, i = 1,2,3.

Finally, we establish a connection between the three types of optimal partitions. It is
shown that optimal partitions of type 1 and type 2 yield an optimal type 3 partition.

Theorem 3.6. The horizontallines of an optimal type 1partition combined with the vertical
lines of an optimal type 2 partition yield an optimal type 3 partition.

Proof of Theorems 3.4-3.6. Let d = d1 or d = d2.
It follows from the definition of m that

for all J.L and v. Since {nJL,v} is a partition of type 3, the inequalities

and (3.13)

follow.
We now distinguish two cases:

Gase 1. ml = m
In this case ml = m3 as a consequence of (3.13), and Theorems 3.4 and 3.5 are proved.
Gase 2. ml < m
We first consider the functional d = d2. Since {ero, ... ,erd is a leveled parameter set W.r.t.
the functional d (cf. (3.12)), there exist indices J.Ll,'" ,J.Lk, such that

for v = 1, ... , k. (3.14)

Moreover, since the parameters Ta, ... ,Tr belong to a leveled type 1 partition, we see
that for each J.L= 1, ... , rand z E [a, b] x [TIt-l, TIt],

(3.15)

Therefore

> ml
2: Ifym+1 (z) I . (TItv - TItv_l)m+l

is valid for all z E [a, b] x [T Itv-1, T Itv] and v = 1, ... , k.

17



This implies that

Ilfym+11ln . (TJ.tv - TJ.tv_dffi+1
1J./,I,/,I

< d(DJ.tv,lI)

= max {llfxm+1Iln . (0'11 - 0'1I_dffi+1, Ilfym+1lln . (TJ.tv - TJ.tv_dffi+l},
IJ.v,LI J.Lv,1I

and SO

d(DIIV 11) = Ilfxm+11ln . (0'11 - O'II_l)m+l
,.- , ~'lJ.v,v

(3.16)

for v = 1, ... , k.
For v = 1, ... , k, let ZJ.tv,1I E DJ.tv,1I be a point where the norm in (3.16) is attained, Le.,

(3.17)

Let {DJ.t,II} be an arbitrary type 2 partition with parameters {ao, ... , ak}. There exists
an index n E {1, ... ,k} such that

(3.18)

(cf. the proof of Theorem 2.2).
Moreover, there is some DJ.t,n such that

Now it follows from (3.14), (3.16), (3.18) and (3.19) that

d(DJ.t,n) ~ Ilfxm+lIIOI",n . (an - an_dm+1

~ Ifxm+l (zJ.tn,n)1 . (an - an_l)m+l

~ Ilfxm+11ln . (O'n - O'n_dm+1
J.1.n,n

= d(DJ.tn,n)

=m.

(3.19)

(3.20)

Since {DJ.t,II} is an arbitrary type 2 partition, and since {DJ.t,II} is also of type 2, it follows
that m = m2, hence m3 = m. This proves Theorems 3.4 and 3.5 for d = d2.

Now let d = d1. Since the parameters Ta, ... ,Tr belong to a leveled type 1 partition, we
have for each f..l = 1, ... , rand x E [a, b],

hence

> ml

~ pU, IImhx([a,b]x[Tl"v-1,Tl"vD

18



.. for 1/ = 1, ... , k. It follows that

for 1/ = 1, ... , k.
Let Iyl-'v C 0J.Lv,V be a line segment where the maximum in (3.21) is attained, i.e.,

(3.21)

(3.22)

Let {0J.L,v} be an arbitrary type 2 partition, and n an index such that (3.18) holds. Then
there is some 0J.L,n such that

It follows from (3.14), (3.18), (3.22) and (3.23) that

d(0J.L,n) ~ max pU, TImhy(l1I-',n)
yE(TI-'-l,TI-']

~ pU, TIm)IYl-'n (l1I',n)

~ pU, TIm) IY!'n (O!"n)

= d(°J.Ln,n)

=m.

(3.23)

,

As above, it follows that m = m2 = m3. This completes the proof of Theorems 3.4 and 3.5.
We now prove Theorem 3.6. Let

{(~, TJ) : TJ = r;h=o, ...,r

be the horizontal lines of an optimal type 1 partition, and

the verticallines of an optimal type 2 partition. We have to show that {O~,v}, where

1/ = 1, ... , k, f..L = 1, ... , r, is an optimal type 3 partition.
To do this, let f..L E {I, ... , r} be fixed. Then, for each z E J~,

we have

19
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••
if d = d2, and für each x E [a, b]

(3.25)

ifd=d1.
Analogously, for each LI E {1, ... , k} and z E J~,

we have

(3.26)

if d = d2, and for each y E [c, d],

(3.27)

if d = d1.
Since ml :S m3 and m2 :S m3, equations (3.24) and (3.26) (respectively (3.25) and (3.27))

imply that for all p, and LI

and

respectively

and

L_

hence {n~,v} is an optimal partition of type 3. This completes the proof of Theorems 3.4-
3.6. []

Numerical Results

Some results concerning optimal type 3 partitions, computed by using the method of The-
orem 3.6, are given.

We continue the example of Section 2 concerning approximation of the square root
function

f (x, y) = J x + Y + 1~0'

The optimal type 3 partition for the functional d, defined in (2.22), is shown in Figure 7.

In a second step, this optimal partition is used for interpolation by tensor product splines

from the spaces

20
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Figure 7.

optimal partition
0.000635
0.000654

equidistant partition
0.01759
0.02508

.'

Table 1.

for i = 0 and i = l.
The entries of Table 1 are the errors

Ilf - 811[0,1]2,

where 8 is the interpolating spline from Sg,2 respectively S~,2' corresponding to the optimal
partition respectively to the equidistant partition.

By comparing the errors in both lines of the table, we see that there is a significant reduc-
tion of the interpolation error when we use the optimal partition instead of the equidistant
one.

Moreover, these errors are compared with the maximum of the errors for piecewise
polynomial interpolation at nine equidistant points on each subrectangle of the partition in
Figure 5 (respectively Figure 6). The maximal error is 0.000755 (respectively 0.000541) (cf.
Table 1), and the errors on each subrectangle are almost the same (respectively the same).
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