
Nr. 210/96

GENERALIZED SOLUTIONS OF LINEAR PARABOLIC

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

J. Potthoff, G. Vage and H. Watanabe



January 24) 1996

Generalized Solutions of Linear Parabolie
Stochastic Partial Differential Equations

JÜRGEN POTTHOFF1, GJERMUND VAGE2 AND HISAO WATANABE3

Abstract. Existence and uniqueness theorems for parabolic stochastic
partial differential equations with space~time white noise are proved.
The method is a combination of the characterization theorem for Hida
distributions with the Feynman-Kac and Girsanov formulae.

1. INTRODUCTION

The purpose of this paper is to show that certain stochastic partial differential equations
(SPDE's) which are too singular to be solved in the more traditional frameworks have so-
lutions which are generalized Brownian functionals in the sense of Hida. We are concerned
with stochastic partial differential equations of the following two types:

(1.1)

and

(1.2)

8
8tu(t,x) = Lu(t,x) + 17(t,X)U(t,x)

where tE IR+, x = (Xl, ... ,Xd) E IRd, 17(t,X), ei(t,X), (i = 1,2, ... ,d), are white noise
random fields with parameters (t, x) E IH = IR+ x IRd, and L is a uniformly elliptic second
order operator.

Wewill understand and solve these equationsin the framework of white noise analysis
(see, e.g., [6]). The main idea is to take the S-transform (see below) of the equations, to
obtain the following deterministic partial differential equations respectively:

(1.3)
88t v(t, x) = Lv(t, x) + h(t, x)v(t, x)
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and

(1.4)
a d a
atV(t,X) =Lv(t,x)+ Lhi(t,X)ax.v(t,x),

i=l 1

where hand hi(i = 1, ... , d) are elements in S(IRd+1), and v denotes the S-transform of
u.

By considering the diffusion process associated with the generator L we obtain the
usual stochastic representation formulae for the solutions of (1.3) and (1.4). These formulae
together with the characterizationtheorem of Hida distributions (see, e.g., [6,8]), and one
of its corollaries (Lemma A.3 in [11]) will be used to prove that v( t, x) and its partial
derivatives are the S-transforms of certain generalized Brownian functionals u( t, x) and
their corresponding weakpartialderivatives in the sense of white noise calculus. Inthis
way we obtain solutions of (1.1) and (1.2). For equation (1.2) we also show that the
solution has a representation by a generalized Feynman-Kac formula.

The SPDE's (1.1) and (1.2) arise in several contexts in mathematical physics. The
Burgers equation with white noise is reduced to the SPDE (1.1) by the Cole-Hopf trans-
formation. SPDE's of the type (1.2) were proposed in [2] as a model for the turbulent
transport of a substance. The SPDE (1.1) was also discussed by D. Nualart and M. Zakai
[10] and by H. Holden, T. Lindstr0m, B. 0ksendal, J. Ub0e, and T.-S. Zhang [7] from
different points of view. An SPDE related to (1.2) has been considered by R. Mikulvicus
and B.L. Rozovskii in [9].

Acknowledgement. H. W. acknowledges gratefully the warm hospitality and support
of Mannheim University. J. P. acknowledges gratefully the warm hospitality and support
of Okayama University of Science. Two of us (J.P. and G.V.) wish to thank F.E. Benth
and Th. Deck for fruitful discussions.

2. PRELIMIN ARIES

Let W denote the Wiener random measure on (IRd+1, B(IRd+1)) over a probability space
(fl, B, P): For every sequence {Bi,i == 1, ... , n} of Borel subsets of IRd+1, W(Bd, ...,W(Bn)
is a Gaussian family of centered randomvariables with covariance matrix (IBi n Bj I, i,j =
1, ... ,n), where 1.1 denotes the Lebesgue measure. The canonical realization of W is given
by the white noise prob ability spate (S'(IRd+1),B,fL), where Bis the weak Borel a-algebra
of S'(IRd+1), and fL the centered Gaussianmeasure whose covariance is given by the inner
product of L2(IRd+1). Let X. denote the canonical coordinate process on S(IRd+1), Xh(W) =
(w, h), h E S(IRd+1), W E S'(IRd+1). We can extend X. continuously in L2(fL) to L2(IRd+1),
and then realize W(B), B E B(IRd+1) by X1B on (S'(IRd+1), B, fL). From now on we shall
work with this represenÜltion for W.

Every random variable F E L2 (fL) is represented as
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(eonvergenee in L2(/1 )-sense) where the Fn are orthogonal random variables of the form

Fn = J...J In( a1, ... , an) W( dad ... W( dan),
(JRd+l)n

and the deterministie functions In are symmetrie L2 ((lRd+ 1)n) kernels. Therefore we have
the isomorphism

00

L2(/1) 0:! E9 L;ym((lRd+1 t),
n=O

l.e.,
F f-t (Jo, h, ..., In, ...),

whieh is ealled the Wiener ehaos expansion. It turns out that

00 2
IIFII; = I:n! II(n) 12 '

n=O

where 1.12 denotes the norm of L2((lRd+1 )n), n E N.

The S~transform of F is defined as follows: far h E S(lRdH), we set

(2.1)

with the abbreviation

(2.2)

Then we obtain

SF(h) := IE(F : eXh :),

: eXh : = (IEeXh )-1eXh

= eXh-~lhl~.

(2.3) SF(h) = f J...J In( a1, ... , an) h( ad ... h( an) da1 ... dan'
n=O (JRd+l)n

If we eonsider the last expression as a function of (Jo, h , ..., In, ...), we observe that it
extends to larger spaees than EB~=oL;ym ((lRd+1 t). This observation leads to spaees of
generalized random variables. Here we shall only need the spaceof Hida distributions (Sr,
which we describe next.

Let A be the self-adjoint extension of the differential operator

to L2(lRd+1). Let (S) denote the subspace of L2(/1) consisting of <p corresponding to
(Jn, n E No) so that

00I:n! I(A0ny In I~< +00,
n=O
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for all p E lN. (S) earries a natural Freehet topology, and (S)* is the eorresponding dual.
Thus we get the tripIe

(where we have identified L2(p,) with its dual). «P E (Sr is in one-to-one eorrespondenee
with a sequenee (To,T1, ... ,Tn, ... ) of symmetrie elements Tn in S'((IRd+1)n), and there
exists p E lN so that

00

L n! I(A0n)-PTnl~ < +00.

n=O

For sueh a «P, we get the following generalization of (2.3):

00

S«p(h) = L(Tn,h0n), hE S(IRd+1)
n=O

where (-,.) denotes the dual pairing between S'((IRd+l)n) and S((IRd+1 t), n E lN.

It is easy to see that the eanonieal eoordinate proeess X h = (., h) extends - as an
element in (S)* - to hE S'(IRd+1). The generalizedrandom field a ~ (. ,ba) E (S)*, a E
IRd+1, is a white noise on IRd+l, and we shall denote this field by TJ. Its S-transform is
given by S (TJ( a)) (h) = h( a). Informally, TJ ean be thought of as the Lebesgue density of
W. Similarly, the normalized exponential : el'/(a) : belongs to (Sr for every a E IRd+l, and

We usually write a E IRd+1 as a = (t,x), t E IR, x E IRd, where t represents time and
xis a spaee variable. Consider a mapping u from IRd+1 into (S)*: (t,x) ~ u(t,x). Under
very mild eonditions on the mapping (e.g., as in Chapter 8 of [6]), the expression

L Su(t,x)(h)h(t,x)dt, hE S(IRd+l),

is the S-transform of an element in (S)*, whieh we denote by

(2.4) L u (t, x) TJ ( t, x) dt.

(2.4) is ealled the Hitsuda-Skorokhod integral of u. (Aetually, the "produet" of u and TJ
under the integral sign is the so-ealled Wiek produet.) It is known that when d = 0 the
Hitsuda-Skorokhod integral is a generalization of the Ito integral.

3. FORMULATION OF THE CAUCHY PROBLEMS

We denote lH = IR+ x IRdand lHT = (O,T) x IRd,T > 0, withtypieal elements (t,x),(s,y)
ete. Partial derivatives with respeet to the spaee variable in IRdare denoted by Di, i =
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1, ... , d, the time derivative by Dt , and - if convenient - also by Do. Throughout the paper,
we consider a partial differential operator L in IRd of the form:

1 d d

(LJ)(x) = 2 L aij(x)(DiDjJ)(X) + Lbi(x)(Di/)(x), fE C2(lRd),x E IRd
,

i,j=l i=l

satisfying the following hypothesis:

(H1) L is uniformly elliptic, i.e., there exists E: > 0 so that for all x, y E IRd
,

d

L aij(x)YiYj 2: E: iyl2.
i,j=l

(H2) For all i, j = 1, ... , d, aij and bi belong to Cl(IRd) (i.e., are bounded and have
bounded, continuous derivatives up to second order).

We remark that the method of the paper applies also to problems where L has time
dependent coefficients. For simplicity of the presentation we refrain from considering this
more general situation.

Let u be a mapping from IH (or IHT) into (S)*. The weak derivative Diu, i = 0,1, ... , d,
of u is defined as follows. For rp E (S) consider the function Fp(t, x) = (u( t, x), rp). If for
(t, x) E IH and all rp, (DiF",)( t, x) exists, and rp f---t (DiF",)( t, x) defines a linear, continuous
mapping from (S) into IR, then we say that u is weakly (partially) differentiable with
respect to Di at (t,x), and denote DiF",(t,X) by ((Diu)(t,x),rp), with (DiU)(t,X) E (S)*.
Weak derivatives of higher order are defined in the obvious way.

In Sections 4 and 5 we solve the following Cauchy problems in (S)*:

(3.1)
(3.2)
(3.3)

Dtu(t,x) = Lu(t,x) + ry(t,x)u(t,x),
Dtu(t,x) = Lu(t,x) + e(t,x). Vu(t,x),

u(O,x) = fex),

respectively, where f belongs to Cl(IRd). In (3.1) ry is space-time white noise, and in (3.2)e is a d-vector of independent space-time white noise (generalized) random fields. In both
equations multiplication by white noise is understood in the sense of Hitsuda-Skorokhod or
~ equivalently - Wick (the natural generalizationof Ita's convention to generalized random
pro cesses and fields).

By a solution of the Cauchy problems (3.1,3), (3.2,3) respectively, we mean a mapping
u from IHor IHT into (Sr, so that the weak derivatives Dtu(t,x),Diu(t,x),DiDju(t,x)
exist for all i,j = 1, ... , d and all (t, x) E IH, (IHT, resp.), and such that equations (3.1),
(3.2) respectively hold. Furthermore, we require that limtlo u( t, x) = f(x) for all x E IR d,

where the limit is taken in the weak topology of (Sr.
We remark that a solution of (3.1,3) in the sense described above is alsoa solution in

the weak sense which has been used in [10]. Hence our concept of solutions is stronger.

5



Finally, in order to discuss uniqueness of solutions to the Cauchy problems we intro-
duce the following additional assumption on the coefficients of L:

(H3) For all i,j = 1, ... , d, aij has unifarmly Hölder continuous derivatives up to second
order.

For T > 0, letWT be the space of weakly measurable mappings u : IHT --+ (S)*, for which
there exist p E :INa and k > 0 so that

[T [ Ilu(i,x)112_ e-kX2dxdi< +00.
Ja JJRd ' P

(Note that this entails Bochner-integrability of u with respeet to the measure e-
kx2 dx di

over IHT.)

4. THE SOLUTION OF Dtu = Lu + TJU.

In this seetion we consider the Cauchy problem (3.1), (3.3). The main idea is as follows.
By taking the S-transform of (3.1) we obtain a classical parabolic PDE, whose initial value
problem (3.3) can be solved via the Feynman-Kac farmula. Using this representation for
the solution, we can prove regularity estimates which allow to invert the S-transform, and
to show that weend up with a solution of (3.1), (3.3).

Taking (informally) the S-transform of equation (3.1) evaluated at h E S(lRd+1), we
obtain

(4.1) Dtv(i, x; h) = Lv(i, x; h) + h(i, x)v(i, x; h), (i, x) E IH.

Fix h for the moment. It is known (e.g., [5]) that under the conditions (H1), (H2) the initial
value problem (4.1) with v(O, x; h) = f(x), f E C;(lRd), has a solution v which is bounded,
continuous on [0,T] x lRd for every T > 0, and which is continuously differentiable with
respeet to time and twice continuously differentiable with respeet to the space variables
on (0, T) xlRd. From now on we consider only this solution v( i, x; h).

Lemma 4.1. There exists a mapping u : IH --+ (Sr,(i,x) t--7 u(i,x), which is far
all i > 0 weakly continuously differentiable in i and twice weakly continuously partially
differentiablein x. Moreover, the relations Su(i,x)(h) = v(i,x;h), S(Dtu(i,x))(h) =
Dtv(i,x;h), S(Diu(i,x))(h) = DiV(i,x;h), S(DiDju(i,x))(h) = DiDjV(i,x;h) holdfor
all i, j = 1, ... , d, i > 0, x E lRd, and h E S(lRd+1).

Proo£. It is well-known that the solution of (4.1) with v(O,x; h) = fex) can be
represented by the Feynman-Kac farmula, cf. e.g. [4, Theorem II.2.2]: Let B(i), i ~ 0, be
a d-dimensional Brownian motion on an auxiliary prob ability space (!1, B, ]5), and consider
the stochastic differential equation associated with L,

(4.2)
d

dXi(i) =LO"ij(X(i)) dBj(i) + bj(X(i)) di.
j=l
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Here (J'ij is a smooth funetion on IRd with L.~=l(J'ik(X)(J'jk(X) = aij(x),X E IRd. The
solution of (4.2) with X(O) = x E IRd is denoted by (X(t,x),t 2: 0).

Now the Feynman-Kac formula for v(t, x; h) reads as follows (loc. cit.):

(4.3)

where

(4.4)

v(t,x; h) = fE(f(X(t,x))Z(t,x; h)),

Z(t, x; h) = exp (lt h(t - s,X(s, x)) ds),

~ ~
and JE denotes expeetation with respeet to P.

It is obvious that Z(t,x;.) and v(t,x;.) have ray-entire extentions, i.e., for h, 9 E
S(IRd+1), Z E <C,Z(t,x;zh + g) and v(t,x;zh + g) are well-defined, and entire in z E <C.
Moreover, we trivially get the estimate

(4.5) Iv(t, x; zh)1 :::; Ifloo etlzllhl=.
Since 1.1

00
is a continuous norm on S(IRd+1), it follows from the charaeterization theorem

(e.g. [6,8]) that there exists u(t,x) E (S)* with Su(t, x)(h) = v(t, x; h). This defines the
mapping u : lH --+ (S)* in the statement of the lemma.

In order to show that u has the claimed differentiability properties, and that the
partial derivatives commute with S (to give SDiU(t,x)(h) = DiV(t,x; h) etc.) we apply
Lemma A.1.3 in [11]. To this end we first have to establish that for all f, 9 E S(IRd+1

), Z E
<C,v( t, x; zh + g) is continuously differentiable in t and twice continuously differentiable in
.1:. This, however, is quite obvious from the representation (4.3) and left to the interested
reader. Furthermore, we have to prove that the relevant partial derivatives of v( t, x; zh)
admit abound of the type (4.5) which is locally uniform in (t,x).

We begin with Dtv(t, x; zh). An application of Hö's formula gives

Dtv(t,x;zh) = fE([zf(X(t,x))(h(O,X(t,x)) + lt
Dth(t - s,X(s,x))ds)+

+ Lf(X(t, x))] Z(t, x; zh)).

This equation yields immediately the following estimate

IDtv(t, x; zh)1 :::;(Izl (Ihloo + t IDohloo)lLloo + ILfloo )etlzllhl=,

which suffices to conclude that u( t, x) is weakly continuously differentiable in t for t >
O,:r E IRd, and that SDtu(t,x)(h) = Dtv(t,x; h).

Next consider DiV(t,x;zh),i = 1, ... ,d. From (4.3) we get the formula

d

Div(t, x; zh) = fE( (I)Djf)(X(t, X))DiXj(t, x)
j=l

(4.6)
d t

+ z f (X ( t, x)) L(1 (D j h) (t - s, X (s, x) )D iX j (s, x) ds ) ) Z (t, x; z h )) ,
j=l 0
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and DiXj, j = 1, ... ,d, satisfies the following (linear) system of stochastic integral equations

t d

DiXj(i,x) = 8ij +1L (DkO"jI)(X(S,x))DiXk(S,x)dBI(s)
o k,l=l
t d

(4.7) +1~(Dkbj)(X(s,x))DiXk(S,x)ds.

Equation (4,6) yields the following bound

d

In iV ( i, Xi z h) I ~ (L ID j f 100EUD iX j ( i, x) I)
j=l

Therefore we only have to show that the last two expectations are locally uniformly
bounded in t- > 0 and x E lRd. But this follows from a standard estimation. (For example,
one can consider first :iE(2=~=l(DiXj(i,x)?), use (4.7) andapply Gronwall's lemma. The
bound one obtains this way can be used to estimate the expectations in question. )

Finally, the estimation of DiDjV(i, Xi zh) is done similarly and does not present any
new difficulties. We therefore leave the details to the interested reader. 0

Now we are ready to prove our first main result:

Theorem 4.2. Under conditions (H1), (H2) the initial value problem (3.1,3) has a
solution u( i,x), which for every T > 0 is a bounded, weakly continuous mapping from
[0, T] x lRd into (S)*. Moreover, this solution is the inverse S-transform of (4.3).

Proof Let u(i,x) be defined as in Lemma 4,1, i.e., as the pre-image of the v(i,x) in
(4.3) under, S.

First we show that u : (i,x) 1---+ u(i,x) E (S)* is bounded on [O,T] x lRd for every
T> 0: this follows directly from inequality (4.5) and Lemma A.1.1 in [11]. Since far every
hE S(lRd+1), v(.,. ;h) is continuous on [O,T] X lRd, itfollows from Lemma A.1.2in:[11]
that u is weakly continuous from [0,T] x lRd into (S)*.

Next we showthat u(i,x) ---+ f(x),xE lRd, as i 1 0, weakly in (S)*. Since we have
from(4.3) that v(i,Xi h) ---+ f(x) as i 10 for all hE S(lRd+1), it follows that u(i,x) ---+ f(x)
on the linear span ofthe exponential vectors : eCk): in (S). Since u( i, x) - f( x) is bounded
in (S)* in iE [O,T]' T> 0, the last stated convergence extends to all of (S).

It remains to prove that (3.1) holds. The fact the v(i,x) solves (4.1) means that
u( i, x) solves (3.1) when paired with elements from the linear span,of the exponential
vectors. Since this span is dense in (S), u(i, x) solves (3.1). D
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In order to obtain a stochastic representation formula directly for u, we define for
(t,x) E IH and P-a.e. wEn, the mapping Tt,x(W) from S(IRd+1) into IR by

(4.8) h f---t (Tt,x(w),h):= lt h(t -s,X(s,x)(w))ds.

It is obvious that Tt,x belongs P-a.s. to S' (IR d+l). Therefore, : exp( ( . , Tt,x)) : is P almost
surely in (S)*.

Theorem 4.3. The solution u(t, x) in Theorem 4.2has a representation given by the
following generalized Feynman-Kac jormula:

(4.9) u(t, x) = jE(j(X(t, x)) : e(' ,Tt,x) : ),

where the expectation in (4.9) is a Bochner integral in (S)*.

Prao£. Let hE S(IRd+l) and consider Z(t,x;h) given in (4.4). It can be written as

Z(t,x;h) =exp((Tt,x,h))

with Tt,x defined in (4.8). Moreover Z(t,x;h) is (a.s.) the S-transform of the Hida
distribution: e(' ,Tt,x) :. The bound IZ(t, x; zh)1 ::; exp(!tllzllhlcx:,) shows that we can apply
Theorem 4.51 in [6] with the result that S-lj(X(t,x))Z(t,x;.) = j(X(t,x)) : e(.,T"x) :

is Bochner integrable in (S) *. Furthermore, the expectation with respect to P and the
S-transform can be interchanged, which proves (4.9). 0

Note that for all T E S'(IRd+1), the (S)*-element : exp((T, .)) : is positive (in the
sense of Hida distributions, e.g., [6]). It is then obvious fram formula (4.9) that u( t, x) is
positive if the initial condition fis. For general f E Cb(IRd+1), we can decompose f into
its positive and negative parts, and it follows from (4.9) that u(t,x) is the difference of
two positive Hida distributions. Applying Yokoi's theorem (e.g., Theorem 4.26 in [6]) we
obtain the following result.

Corollary 4.4. For all initial conditions f E Cb(IRd+1), and all (t, x) E IH, the solution
u (t, x) in Theorem 4.2 is a signed measure on B. In particular, if f is posi ti ve, then u (t, x)
is a measure on B.

We end this seetion by discussing the uniqueness of the problem (3.1,3). Let T > O.
It is well-known that under conditions (H1), (H2), and (H3) the initial value problem for
(4.1), v(O,.) = JE Cb(IRd), has a unique solution in the dass offunctions w on [0, T] x IRd

so that for some k > 0,

fT f Iw(t,x)1 e-kx2 dxdt < +00.

Ja JJRd
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1£u E WT (see end of Seetion 3), then we find far all h E S(lRd+1),

l' L, Iv(t, x; h)1 ,"'X' dx dt = l'L, I (u( t, x), : ,(. ,h) :) I ,-'x' dx dt

:::;e~lhlL t r Ilu(i,x)llz,_pe-kX2 dxdi < +00,Jo JIRd
for appropriately chosen p E 1l'J,k > O.Since a solution of (3.1,3) has an S-transform
which solves the initial value problem for (4.1), it follows that (3.1,3) has a unique solution
in WT. We summarize:

Theorem 4.5. Let T >0. Under hypotheses (H1), (H2), and (H3) the Cauchy problem
(3.1,3) has a unique solution in t~e class WT, and the solution is given by (4.9).

in the definition (2.1) of the S-transform. (Of course, in (2.2) Ihl~ then stands for
'L-t=l IhiI12(IRd+1)') The S-transform of equation (3.1) at h reads (v := Su):

(5.1)
d

Dtv(i, x) = Lv(i, x) +L hi(i, X)DiV(i, x),
i=l

where we have suppressed the dependence of v on h E S(lRd+1)d. Again it is well known
that under conditions (H1), (H2), the initial value problem for (5.1) with v(O) = f E
Cb(lRd) has a solution v, which is bounded and continuous on [0,T] x lRd for every T > O.

First we are going to prove that Lemma 4.1 also holds for the solution of theCauchy
problem under consideration. However, for simplicity we shall only treat the case where
L = ~ß: the general case follows by obvious modifications of the argument. We usethe
Girsanov formula (in a suitable form which can be found, e.g., in [4]) for the solution v
above and obtain the following respresentation

(5.2)

where we have set

v(i, x; h) = iE(f(x + B(i)) G(i, .1:; h)),

10



As in the previous seetion B is an independent lRd-valued Brownian motion on a proba-
bility space ([2, iJ, P), and :iEdenotes the expeetation with respeet to P. It is quite obvious
that replacing h in (5.2) with g + zh, h, g E S(lRd+1)d, Z E <C,leads to an entire funetion
z f-+ v(t, x; g + zh). We have to estimate Iv(t, x; zh)l. Note first that

1 d t
IG(t,x;zh)1 = G(t,x;Rezh)exp ("2(Imz)2 2.: Jo hi(t - S,x + B(S))2 ds).

i=l 0

Since :iE(G(t, x; Re z h)) = 1 we obtain the bound

1 tlzl2 ""d Ih 12Iv(t, x; zh)1 :::; Ifl=e2 LJi=l i 00.

This is sufficient to conclude that for every (t, x) E IH there exists u( t, x) E (Sr so that
Su(t,x) = v(t,x).

It is useful for the following argument to note that the preceeding estimation yields
immediately the following bound:

(5.4)

In order to prove that u is weakly continuously differentiable to order 1 in t and to
order 2 in x, we have to estimate the corresponding derivatives of v(t,x;zh) locally in a
uniform way. Using (5.2), (5.3) and Itö calculus we get the following formula:

Dtv(t, x; zh) = :iE(Ho(t, x; zh) f(x + B(t)) G(t, x; zh)) +:iE (Lf(x + B(t)) G(t, x; zh))
d

+ z 2.::iE( hi(O, x + B(t)) Dd(x + B(t)) G(t, x; zh)),
i=l

with

d t

Ho(t,x;h) = 2.:[1 (Dohi)(t-s,x+B(s))dBi(S)- ~hi(O,x+B(t))2
z=l 0

-lt hi(t - s,x + B(s))Dohi(t - S,X + B(s)ds].

With Schwarz' inequality, (5.4), and the Itö isometry it is easy to show that for every
T > 0 there exists a constant KT > 0 so that for all tE [O,T]' z E <C,hE S(lRd+1)d,

d

IDtv(t, x; zh)1 :::;KT (Ifl= + ILfl= +L IDdl= ) e[(T (l+lzI
2

) l:~=1(lhil~+IDohi I~).
i=l

Therefore an application of Lemma A.1.3 in [11] proves that u( t, x) is weakly continuously
differentiable in t and S(Dtu) = Dtv.
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For Div, i = 1, "" d, we get the following expression

Div(i, x; zh) =i( Hi(i, x; zh) fex + B(i)) G(i, x; zh)) + i( Dd(x + B(i)) G(i, x; zh)),

with

d t

Hi(i,x;h) = 'L(1 Dihj(i-s,x+B(s))dBj(s)
j=l G" •

-lt hj(i-:s,x+B(s))Dihj(i-s,x+B(s))ds).
The same arguments as above lead to an estimate of the form

where the constant J{t only depends on i; - in particular the estimate is uniform in x E
IRd, Therefore we obtain in the same way as before that u(i,x) is weakly continuously
differentiable with respeet tox and for all i = 1, .." d,( i, x) E lH, S(DiU)( i, x) = Div( i, x).

Finally, the second order terms DiDjV(i, x) do not present anynew difficulties, and
are left asan exercise to the interested reader. Hence we have established the statement of
Lemma 4.1 for the current case. The additional arguments which led to Theorem 4.2 and
4.4 can be taken over without any change. Altogether we established the following result:

Theorem 5.1. Under conditions (H1), (H2) the initial value problem (3.2), (3.3) with
f E C~(IRd), has a solution u(i, x), which for every T > 0 is a bounded, weakly continuous
mappingfrom [O,T] X IRd into (5)*, Moreover, this solution is given by theinverse S-
transform of (5,2). If for T > 0 in addition (H3) holds, then this solution is unique in the
dass WT.
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