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1. Introd uetion

In recent years, there has been an enormous interest in the theory of large deviations,
i.e. in the asymptotic behaviour of small probabilities on an exponential scale. Although
the roots of this theory can be dated back to Cramer ([Cr 38]) in 1938 it took until the
mid-1970's that starting with Donsker and Varadhan ([DV 75 a,b, DV 76, DV 83]) the
subject exploded. Numbers of publications have been written since then (cf. e.g. the
references quoted in [DS 89] or [DZ 93]), and the subject has found many applications to
related fields like statistical mechanics (e.g. [EI 85, EI 95]) or others.

On the other hand white noise analysis provides lots of powerful tools as well for irrfinite-
dimensional calculus as for probability theory, a quite complete overview is given by [HKP
93].

So the combination of these two subjects should inspire new results and give a feed-back
to each of them.

In the present paper I will do a very first step towards this aim stating some large deviations
results in the context of white noise analysis. Not only the white noise probability measure
f.L will be considered, but also a certain dass of functionals over the white noise space
(S' (IR), B, f.L) turns out to correspond to measures as first shown independently in [KS 76]
and [Yo 90]. For some of these measures large deviations results can be shown as weIl.

2. Mathematieal Preliminaries

Let as usual (S'(IR), B, f.L) denote the white noise probability space and for pE 2Z let (S)p
denote the space of functionals on S'(IR) having finite norm 11<pllp:= Ilr(HP)<p1l2' Here
r( HP) denotes the second quantization of the pth power of the harmonie oszillator Hand
11.112the L2(S'(IR))-norm.
The space of Hida test functions (S) is defined as the projective limit of the spaces (S)p
and the space (Sr of Hida distributions as its dual.
For more details the reader shold confer [HKP 93] and the references quoted therein.

For an element <P E (S)* we define positivity by

Definition 2.1 An element <PE (Sr is called positive iffor every f.L-a.e.positive element
<P E (S) < <P, <P >~ 0 holds.
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The cone of positive elements in (S)* is denoted by (S):.

The important thing about these positive functionals is that they correspond to finite
measures on (S'(IR), ß), namely the following theorem holds:

Theorem 2.2 Let «PE (S):. Then there exists a finite measure l/<I>on (S'(IR), ß), so
that for all 'P E (S)

< «P,'P > = J ip(x)dl/<I>(x)
S'(IR)

holds, where ip is the pointwise defined, continuous version of 'P.
A proof of this theorem can be found in [HKP 93].

Since large deviations theory states results for the behaviour of measures with variance
decreasing to 0, we define for a measure l/

Definition 2.3 For € > 0 and l/ a finite measure on (S'(IR), ß) we define l/e to be the
image of the measure l/ under the transformation x ~ Vi x, i.e. for A E ß l/e(A) is defined

as l/ ()eA).
Next we give some basic definitions from the large deviations theory, where for simplicity
we have already used the notations as in white noise analysis.

Definition 2.4 A function [ : S'(IR) ----+[0,00] is called a rate function if it is lower
semicontinuous, i.e. if for all a E 1R+ the set [-1([0, a)) is closed.

[ is called a good rate function if [-1([0, a)) is compact.

Definition 2.5 A family of measures {l/e} on (S'(IR),ß), defined as in definition 2.3, is
said to satisfy the strong large deviations principle with the rate function [ if the following
holds:

VG ~ S'(IR) open

and
VF ~ S'(IR) closed.

Definition 2.6 A family of measures {l/e} on (S'(IR),ß) is called exponentially tight if
for every L > 0 there exists a compact subset KL ~ S'(IR) such that

lim clog l/e(Kf) :::; -L
e-O

where of course Ki denotes the complement of KL in S'(IR).

The most important tool to proof large deviations results in white noise analysis seems to
be Baldi's theorem:
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Theorem 2.7 Let {ve} be a family of measures on (S'(IR),ß) with
(i) {ve} is exponentially tight.
(ii) For all e E S(IR)

A(O

exists.
(iii) Assurne finally that with

.- lim clog J e<x,~> dve(x)
e-+O

5' (lR)

A*(x)'- sup «x,e>-A(O)
eES(lR)

the Fenchel-Legendre transform of A and

E := {x E S'(IR) l::Je E S(IR) with < x,e > -A*(x) > < z,e > -A*(z) Vz =1= x

and A(rO < 00 for some I > I}

the set of exposed points inf A*(x) = inf A*(x) holds for all G ~ S'(IR) open.
xEGnE xEG

Then the family {ve} satisfies the strong large deviations principle with the good rate
funetion A* .
A proof of this theorem can be found in [DZ 93].

3. Large Deviation Results in White Noise Analysis

The aim is now to show that the large deviations principle holds for some families of
measures on (S'(IR), ß). Since aetually we do not really work on S'(IR) but on some
subspace S_p(IR) - which is the subspace of those elements of S'(IR) having finite norm
Ixl-p := IH-Pxb - first it is to show that the problem is well-defined.

Lemma 3.1 The support S_p(IR) of the measures {ve} does not depend on c.

Proof: In the Minlos theorem (cf. [Mi 62] for a detailed presentation) it is stated that if
the characteristic funetion

C(e):= J ei<x,e> dv(x)
5' (lR)

is continuous with respect to some I . Iq, q E IN and if pEIN is such that the injection
from Sp(IR) into Sq(IR) is of Hilbert-Schmidt type, then S_p(IR) is the fun support of the
measure v.
So an we have to show is that if the characteristic funetion C of v is continuous with
respect to some norm I. Iq, then so are the characteristic functions Ce of the measures Ve.
But this is obvious since Ce(O = C(Vie) as an easy computation shows. 0
The next result I'm going to show is that for an <PE (S)~ the corresponding family of
measures {ve} := {(Vq,)e}, defined as in theorem 2.2 and definition 2.3, is exponentially
tight. First I need a lemma:
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Lemma 3.2 For given q E IN there exists a pEIN such that the functional el'l~p E (S)q'

Proof: For x E S_p(IR) the function .p(x) = elxl~p has chaos decomposition

n=O
n odd
n=2m

--where \lJ(n) denotes the symmetrization of

.T.(n)( ) H-2p H-2p'J.' Xl, ... , Xn = < Xl, X2 > ... < Xn-l, Xn > .
Hence - with 11 . IIH.S. denoting the Hilbert-Schmidt norm - for given q

1I.p1l~= L n! II(H@n)q.p(n)//:.s.
n

L (2m)! II(H@2m)q ~! \lJ~)112
m H.S.

< L (2m)! (~!r II(H@2m)q\lJ(2m)II:.s.
m

and for II(H@2m)q\lJ(2m)II~.s. ~e get the estimation

11(H@2m)q\lJ(2m) 1I:.s.
L I(H@2mF < ek1, H-2Pek2 > ... < ek2m_1, H-2Pek2m

00L (2kl + 2)-4(P-q) ... (2km + 2)-4(P-q)
k1, ... ,km=O

[T4(P-Q) ~ (k + 1)-4(p-Q)r

< S-m
for p large enough. Here the ek denote sequences of Hermite polynomials which are eigen-
vectors of the harmonie oszillator.
So we get for 11.p1l~and p chosen as above the estimation

00 1 2

1I.p1l~~ L (2m)! (m!) S-m
m=O

< f 4m (m!)2 (~!r S-m
m=O

2.
o
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--- ------------------------------------

Theorem 3.3 Let ep E -(S)~. Then the family of corresponding measures {ve} :=

{(V<I»e} is exponentially tight.

Proof: Suppose ep E (S)~ n (SLq. Then choose p E J1Il such that S_p(IR) is a support

of V<I> and el'l~p E (S)q' For given L > 0 choose KL := {x E S'(IR) : Ixl=-p ::; L}. KL
is compact in S_p(IR) with the weak topology, and since the injection from S_p(IR) with
the weak topology into S'(IR) with the weak topology is continuous (cf. e.g. [Tr 67]' 35.8)
K L is compact in S' (IR) as weIl.
Now we get the estimation

J dve(x)
Ixl~p>L

J dve(x)
.1.1"'12 L.

e< -P>e<

< e-~ J e:lxl~p dve(x)
S'(JR)

e-~ < ep, el'l~p >

where we used the Chebycheff-Markov inequality. Since el'l~p E (S)q we get

lim clog ve(Kf)::; lim c log (e-~ < ep, el'l~p » = -L.
e-O e-O

o
The next result actually is not really surprising since analogous results are known for
Gaussian measures in other contexts.
Before I'm going to state it I want to quote a duality lemma for Fenchel-Legendre trans-
forms, applied to our case:

Lemma 3.4 Let f : S'(IR) ----+( -00,00] be lower semicontinuous and convex and define

g(e):= sup «x,e>-f(x)).
xES'(JR)

Then f is the Fenchel-Legendre transform of g, i.e.

f(x) = sup «x,e>-g(e)).
eES(JR)

For a proof of this lemma in a more general case cf. e.g. [DZ 93].

Theorem 3.5 Let (S'(IR), ß, f.l) the white noise space. Then for the family {f.le}, defined
as in definition 2.3, the strong large deviation principle holds with the good rate function

I(x) = {tlxl~ x E L2~IR) .
00 otherwlse
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Proof: In view of Baldi's theorem there only is to show:

(i) {J-le} is exponentially tight.
(ii) For all e E S(IR)

A(e) .- lim € log J e<x,~> dJ-le(x)
e •...•O

S'(JR)

exists.
(iii) The Fenchel-Legendre transform of A is

A*(x) = {ootlxl~ xE L2(IR)
otherwise

(iv) With E the set of exposed points defined as in theorem 2.7

inf A* (x) = inf A* (x)
xEGnE xEG

holds for all G ~ 5' (IR) open.
This can be shown as follows:

-

(i) With cfl(x) = 1 this is just a special case of theorem 3.3.
(ii) Since J e<x,~> dJ-le(x) = e21.lel~

S'(JR)

obviously

A(e) lim€log J e<x'~>dJ-le(x)
e ....•O

S'(JR)

exists for all e E S(IR).
(iii) In view of lemma 3.4 there only is to show that with

I(x) = {tlxl~ xE L2(IR)
00 otherwise

sup « x, e > - I(x )) t Ie I~
xES'(JR)

holds. Obviously we have

sup «x,e>-I(x))
xES'(JR)

and for all x E L2 (IR)

sup « x,e > -tlxlD
xE£2(JR)
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On the other hand choosing x := e we get

sup «x,e>-tlxl~) > tlel~.
xE£2(lR)

Hence I(x) = A*(x).
(iv) To show that E is dense in S'(IR) we show that S(IR) ~ E.

For given 'r/E S(IR) choose e := 'r/, then

<'r/,e>-A*('r/) = tl'r/I~
and for any z E L2(IR), z =1= 'r/we have with e = 'r/

< z,e > -A*(z) = < Z,'r/ > -tlzl~ = tl'r/I~ - tlz - 'r/I~ < tl'r/I~.

For z f/:. L2(IR) obviously < z, e > -A *(z) < t I'r/I~.
Furthermore ACre) = H"Y'r/I~< 00 for all , > 1.
Hence'r/ E E. 0

The next result gives a generalization of the above theorem for one dass of measures on
(S'(IR), B):
Theorem 3.6 Let cI> : S'(IR) -+ IR be of the form

cI> = t ciexp(f < ','r/ij » with Ci E IR+,'r/ij E S(IR).
t=l ]=1

Then obviously cI> E (S)~ and for the corresponding measures {ve} the strong large devi-
ations principle holds with the good rate function

I(x) = {tlxl~ XEL2~IR) .
00 otherwlse

J e<x,*> dv(x)
S'(IR.)

J e<x,*> exp C~l< X,~; >) dJL(x)
S'(lR)

J e<x,~> dve(x)
S'(lR)

Proof: In view of theorem 3.5 we only have to show that for cI> of the above form the
measures {ve} := {( V<I»e} satisfy

limelog J e<x,~> dve(x) = tlel~.
e-+O

S'(IR.)

First we show this result for cI> of the form cI> = exp (f < .,'r/j» , 'r/j E S(IR). Then we
]=1

have

2)e m- + L: 'r/jve j=l 2
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lim elog J e<x,f> dv.o(x)
.0--0

S'(IR)

x E L2(IR)
otherwise

and henee

[
11m 1 m 2]

lim e -I~I~+ - < ~, r>U > +- "£'rJj
.0--0 2e .jE j=l 2 j=l

2

= tl~l~
Obviously this result holds true if we replaee cP by c. cP with cE IR+.
So all that remains to show is that if the result is true for cPl and cP2 it is also true for
cPl + cP2. The rest then follows by induction.
Let {v.o} be the family of measures eorrsponding to cPl + cP2, then

clog J e<x,f> dv.o(x) = clog [< cPl, e<.,-j;> > + < cP2, e<.,-j;> >]
S'(IR)

is bounded from below by
1 .:F.. <. ..L>

e og< '*'l,e ''';< >

and from above by (assuming without lass of generality < cPl, e<',1;> > ~ < cP2, e<.,-j;> »
<. ..L>clog 2 < cPl, e ''';< >.

Sinee both boundaries eonverge for e -t 0 to tl~I~,so does

lim e log J e<x,f> dv.o(x) .
.0--0

S'(IR)

o
Remark 3.7 Obviously the above result holds true if we replaee the exponential by the
Wiek exponential

: exp« X,'rJ »: := exp « X,'rJ > -tl'rJID
and let 'rJ be an element of L2(IR). But : exp( < ., 'rJ » : is nothing else than the Radon-
Nykodym derivative of the translated measure T.,.,f-l := f-l(' + 'rJ) with respeet to f-l (cf.
e.g. [HKP 93]), henee we get the result that the family {(T.,.,f-l).o} also satisfies the large
deviations prineiple with the same rate funetion.

Also for the sealings U).,f-l of the measure f-l the large deviations prineiple holds, but with a
different rate funetion:

Lemma 3.8 Define for given A E IR\{O} the sealing U).,f-l of f-l by u).,f-l(A) := f-l(A-1 A) for
AEB.
Then for the family {v.o} = {(U).,f-l).o} the strang large deviations prineiple holds with the
good rate funetion
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Proof: Since U>.11 corresponds to an (S)~ -element (cf. e.g. [HKP 93]' theorem 4.35),
exponential tightness is given by theorem 3.3.
Analogously to the proof of theorem 3.5 we show
(i) For all ~ E S(IR)

A(e) = lim £ log J e<x,~> dve(x)
e-+O

S'(JR). J <x M.> ()hm £log e' ,;; dll x
e-+O

S'(JR)

(ii) If we define

I(x) = {002i2Ixl~ x E L2(IR)
otherwise

I -

then by choosing x := A 2 ~ we get

( ( 1 1 12) > -21\21(122.sup < x,1" > - 2A2 X 2 A I"

xES'(JR)

On the other hand we have for all x E L2(IR)

x 1 2
= < I' A~ > - 2A21xl2

-tlf - A~I~+ tA21~1~
< tA2Iel~.

Hence by lemma 3.4 I(x) = A*(x).
(iii) For given 7J E S(IR) choosing e := 127J E S(IR) we get

and for any z E L2(IR), z =1= 7J we get for this e

1 1 I 12< z,e > -A*(z) A2 < Z,7J > -2A2 z 2

- 2~21z - 7J1~+ 2~217J1~
1 12< 2A217J 2.

Furthermore A(re) = tA21~7JI~ = ~17J1~ < 00 for all, > 1.
Hence 7J is an exposed point.

9
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However the rate function need not always look so nice but can be rather degenerated as
the following example shows:

Example 3.9 For y E S'(lR) define < Dy,<p >= tP(y) for <p E (S). Then obviously Dy
belongs to (S): and for the corresponding measures we can show directly that they satisfy
the strong large deviations principle with the good rate function

I( ) - {O x = 0
x - 00 otherwise.

Trivially I is a good rate function and for H ~ S' (lR)

inf I(x) = {O 0 E H
xEH 00 0 rt. H

holds. Furthermore we have for H ~ S'(lR)

.fiy E H
otherwise

So for G ~ S'(lR) open and 0 E G we have

lim e 10gve(G) = 0 = - inf I(x)
e-+O xEG

because also a small neighbourhood of 0 belongs to G and for 0 rt. G

lim e 10gve(G) ~ - inf I(x)
e-+O xEG

holds trivially.
For F ~ S'(lR) closed and 0 rt. F we have

limelogve(F) = -00 = -inf I(x)
e-+O xEF

because also a small neighbourhood of 0 doesn't belong to Fand for 0 E F

lim clog ve( F) :::; - inf I( x)
e-+O xEF

holds trivially because of ve(F) :::;1.

Let us finally remark that the problem of calculating A(0 is closely related to the calcu-
lation of certain limits of the S-transform of <P,defined as

S<p(O = < <P,: e<.,e> :> .

Namely it holds

limelog J e<x'~>dve(x) = tlel~+ limdogS<P( ~e)
e-+O e-+O ye

S'(IR)
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each of the limits existing if the other one does.
As an easy application of the Potthoff-Streit charaeterization theorem (cf. [PS 91, KLP
94]) we therefore get that if the limit exists it has to be finite:
For ep E (S) * there exist C > 0 and pEIN 0 such that

Hence if the limits exist we can estimate

lim 6 log J e<x,~> dve(x)
e-+O

S'(JR)

!Icl~+ lim 6 log Sep ( ~c)
e-+O \/6

Finally we can give another dass of funetionals on S' (IR) for which the large deviations
principle holds:

Theorem 3.10 Let ep E (S)~ such that the funetion A -+ Sep(AC) is of order strictly less
than 2 for any C E S(IR), that is there exist Cl, C2 > 0, pEIN 0 and 8 < 2 with

Then for the corresponding measures {ve} the strong large deviations principle holds with
the good rate funetion

lex) = {~xl~
Proof: Again we only have to show that

x E L2(IR)
otherwise

lim 6 log J e<x,~> dve(x)
e-+O

S'(JR)

But with the assumed bound for ISep(AC)1 this is an easy computation.
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