Mannheimer Manuskripte 212/96 July 1996

On the Dynamics of Continuous Distributions of Dislocations

Nr.212/96 E.BINZ, G. SCHWARZ, J. WENZELBURGER*

> Lehrstuhl für Mathematik I Universität Mannheim D - 68131 Mannheim Germany

Current adress. University of Bielefeld, Department of Economics, P.O. Box 100131, D-33501 Bielefeld, Germany.

On the Dynamics of Continuous Distributions of Dislocations

Ernst Binz, Günter Schwarz, and Jan Wenzelburger *

University of Mannheim Dept. of Mathematics and Computer Science D-68131 Mannheim Germany

July 1996

Abstract

For materials with a continuous distribution of dislocations, equations of motion are derived from a symplectic structure on an appropriate configuration space. The proposed dynamics generalizes from elasticity.

Mathematics Subject Classification: 53C80, 58A10, 58A14.

1 Introduction

A mathematical framework for the dynamics of an elastic material is given by the space of all embeddings $E(M; \mathbb{R}^3)$ of a reference body M into the physical space \mathbb{R}^3 . The constitutive law determining the equations of evolution can be given in terms of a virtual work functional on this phase space, cf. [8]. The invariance of the system under rigid global translations implies that the differential dj of the embedding $j \in E(M; \mathbb{R}^3)$ is the essential quantity for the constitutive behaviour of the material, cf. [3]. In classical terms this differential is precisely the deformation gradient of the actual configuration of the system. Mathematically the deformation gradient dj may be considered as an exact (\mathbb{R}^3 -valued) differential one-form in $\Omega^1(M; \mathbb{R}^3)$.

*Current Address. University of Bielefeld, Department of Economics, P.O. Box 10 01 31, D-33501 Bielefeld, GERMANY.

In the continuum theory of defects one describes dislocations by a torsion density on the reference body, cf. [9, 15, 19]. This torsion density may be identified with an exact (\mathbb{R}^3 -valued) differential two-form $d\gamma \in \Omega^2(M; \mathbb{R}^3)$. The corresponding Burgers vector computes as the integral of $d\gamma$ over a bounded surface $S \subset M$, cf. [20].

To incorporate this describtion of dislocations into the framework of elasticity, the Helmholtz decomposition theorem is utilized which claims that any differential form may be uniquely decomposed into a gradient and a divergence-free part. A generalised configuration space for a material with dislocations $\mathcal{V}(M; \mathbb{R}^3)$ is defined as a submanifold of $\Omega^1(M; \mathbb{R}^3)$. Each generalised configuration $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ splits into an elastic or gradient part dj, where $j \in E(M; \mathbb{R}^3)$ is an embedding, and into a so-called plastic part β describing the dislocation density, cf. [20].

The main objective of this paper is to derive a dynamics for a material with a continuous distribution of dislocations. This is done by introducing a symplectic structure Ω and a kinetic engergy functional \mathcal{E} on the tangent space $T\mathcal{V}(M; \mathbb{R}^3)$ of the configuration space $\mathcal{V}(M; \mathbb{R}^3)$. The constitutive behaviour of such a system is described by a virtual work functional F on $\mathcal{V}(M; \mathbb{R}^3)$. The resulting principle of virtual work determines weak equations of motion for the generalised configurations γ .

Using the Helmholtz decomposition theorem, these equations split into a part which determines the evolution of the elastic parts dj of a generalised configuration γ and into a part which determines the evolution of the plastic parts β . The equations for the elastic parts are just the well-known equations in classical elasticity. Thus, for purely elastic materials, this approach covers the classical theory.

2 Differential Forms

Since in this approach towards a dynamics of dislocations, differential forms provide a convenient framework, a brief introduction is given. Let M be the body manifold in the sense of elasticity. Assume that M is a smooth connected 3-dimensional compact oriented Riemannian manifold with boundary which is embedable into the physical space \mathbb{R}^3 . A \mathbb{R}^3 -valued differential form $\omega \in \Omega^k(M; \mathbb{R}^3)$ of degree k is a smooth assignment of a skew-symmetric k-linear map ω_p on T_pM to each point $p \in M$, where

$$\omega_p: \underbrace{T_pM \times \cdots T_pM}_{k-times} \longrightarrow \mathbb{R}^3 \quad \forall p \in M.$$

In classical terms, differential forms may be considered as skew-symmetric two-point tensors of type (1, k) on the body manifold M which are well-known objects in continuum mechanics, cf. [12]. Of particular interest in our approach are the cases k = 0, 1, 2. For example, the deformation gradient and the first Piola-Kirchoff stress tensor are

 $\mathbf{2}$

considered here as \mathbb{R}^3 -valued one-forms on the body manifold M, i.e. as some $\omega \in \Omega^1(M; \mathbb{R}^3)$. Analogously, placements of M and force fields are elements in $\Omega^0(M; \mathbb{R}^3)$ which, by definition, is equal to $C^{\infty}(M; \mathbb{R}^3)$.

Each $\Omega^k(M; \mathbb{R}^3)$ may be equipped with a fibre metric by using the Riemannian metric g on M and the standard scalar product $\langle \cdot, \cdot \rangle_{\mathbb{R}^3}$ on \mathbb{R}^3 . For our purposes, it suffices to consider the cases k = 0, 1. Let $E_1, E_2, E_3 \in \Gamma(TM)$ be a triple of vector fields orthonormal with respect to the metric g. A fibre metric on $\Omega^1(M; \mathbb{R}^3)$ is then defined by

$$\langle \omega, \eta \rangle := \sum_{i} \langle \omega(E_i), \eta(E_i) \rangle_{\mathbb{R}^3}, \quad \omega, \eta \in \Omega^1(M; \mathbb{R}^3).$$
(1)

The product (1) does only depend on the metric g but not on the chosen frame on M, cf. [13]. Notice that (1) corresponds to the contraction of skew symmetric two-point tensors. If $e_1, e_2, e_3 \in \mathbb{R}^3$ denotes the standard basis in \mathbb{R}^3 and $\theta^1, \theta^2, \theta^3 \in \Omega^1(M)$ the dual frame corresponding to E_1, E_2, E_3 , then, in coordinates, any one-forms ω and η may be written as $\omega = \sum_{L,l} \omega_l^L \theta^l e_L$ and $\eta = \sum_{L,l} \eta_l^L \theta^l e_L$. Thus (1) reads

$$\langle \omega, \eta
angle = \sum_{L,l=1}^{3} \omega_l^L \eta_l^L$$

With the help of the Riemannian volume element μ induced by g, the space $\Omega^1(M; \mathbb{R}^3)$ is now endowed with an L^2 -product \mathcal{G} , given by

$$\mathcal{G}(\omega,\eta) := \int_{M} \langle \omega,\eta \rangle \mu, \quad \omega,\eta \in \Omega^{1}(M; \mathbb{R}^{3}).$$
⁽²⁾

For k = 0 the corresponding L^2 -product \mathcal{G} is just the usual one. Let ∇ denote the Levi-Civita connection on M associated to g. Then ∇ induces a covariant derivative on $\Omega^1(M; \mathbb{R}^3)$, given by

$$(\nabla_Y \omega)(X) = D[\omega(X)](Y) - \omega(\nabla_Y X), \quad X, Y \in \Gamma(TM).$$

Here, the first term of the right hand side means the directional derivative of the \mathbb{R}^3 -valued function $\omega(X)$ in direction of the vector field Y. For k = 0 the second term of the right hand side of the above expression vanishes. The covariant derivative allows to write the exterior derivative $d: \Omega^1(M; \mathbb{R}^3) \longrightarrow \Omega^2(M; \mathbb{R}^3)$ as

$$d\omega(X,Y) = (\nabla_X \omega)(Y) - (\nabla_Y \omega)(X), \quad X,Y \in \Gamma(TM).$$

For k = 0 the exterior derivative corresponds to the gradient. The co-differential δ : $\Omega^1(M; \mathbb{R}^3) \longrightarrow \Omega^0(M; \mathbb{R}^3)$ may be defined by

$$\delta\omega := -\sum_{i=1}^{3} (\nabla_{E_i} \omega)(E_i).$$

Notice that the co-differential δ , unlike the exterior derivative, depends on the chosen Riemannian metric g. In classical tensor notation, δ corresponds to the divergence of a tensor field.

Let \mathcal{N} denote the outward pointing unit normal field on the boundary ∂M of M. A differential one-form ω is called *parallel* to ∂M iff its normal component vanishes, that is $\omega(\mathcal{N}) = 0$. Define the space of all divergence-free and parallel one-forms by

$$\mathcal{D}(M; I\!\!R^3) := \left\{ \omega \in \Omega^1(M; I\!\!R^3) \mid \delta \omega = 0 \text{ and } \omega(\mathcal{N}) = 0 \right\}.$$

We are now able to state the *Helmholtz decomposition* for the special case of \mathbb{R}^{3} -valued one-forms. For a general proof see [17].

Theorem 2.1 HELMHOLTZ DECOMPOSITION

Let M be a compact, oriented Riemannian manifold with boundary. Then for any $\omega \in \Omega^1(M; \mathbb{R}^3)$ there exist $\theta \in \Omega^0(M; \mathbb{R}^3)$ and $\beta \in \mathcal{D}(M; \mathbb{R}^3)$ such that $\omega = d\theta + \beta$. Moreover, $d\theta$ and β are mutually L^2 -orthogonal with respect to the inner product (2), that is the decomposition

$$\Omega^{1}(M; \mathbb{R}^{3}) = d\Omega^{0}(M; \mathbb{R}^{3}) \oplus \mathcal{D}(M; \mathbb{R}^{3})$$

is direct and L^2 -orthogonal.

3 The Kinematics of Dislocations

Let $j : M \longrightarrow \mathbb{R}^3$ be a smooth embedding of the body manifold M into the Euclidean space \mathbb{R}^3 , and $E(M; \mathbb{R}^3)$ denote the space of all such embeddings¹. In pure elasticity $E(M; \mathbb{R}^3)$ constitutes the configuration space of the system; in classical terms its elements j are called placement (or transplacement) fields. The displacement fields $u \in C^{\infty}(M; \mathbb{R}^3)$ compute as $u = (j - j_0)$, where j_0 is a reference configuration.

This section is aimed at generalising the classical configuration space $E(M; \mathbb{R}^3)$ in such a way that the description of the kinematics of dislocations is included. We introduce a configuration space for an elastic solid whose internal structure is characterised by a frame, i.e. a triple of linear independent vector fields on M

$$Y_1, Y_2, Y_3 \in \Gamma(TM). \tag{3}$$

Physically, these vector fields describe lattice vectors of a continuised crystal as worked out in [9]. We denote the standard basis of \mathbb{R}^3 by e_1, e_2, e_3 . Since M is embedable

 $^{{}^{1}}E(M; \mathbb{R}^{3})$ is an open subset in the Fréchet space $C^{\infty}(M; \mathbb{R}^{3})$, see [2] for details.

into $\mathbb{I}\!R^3$, for any arbitrary frame (3), there exists a unique fibrewise one-to-one map $\gamma: TM \longrightarrow \mathbb{I}\!R^3$ such that

$$\gamma_p(Y_i(p)) = e_i, \quad i = 1, 2, 3 \quad \forall p \in M.$$

$$\tag{4}$$

Mathematically, γ is a \mathbb{R}^3 -valued one-form $\gamma \in \Omega^1(M; \mathbb{R}^3)$ on M which is fibrewise one-to-one. The set of all these one-forms is defined by

$$\mathcal{I}(M; \mathbb{R}^3) := \left\{ \gamma \in \Omega^1(M; \mathbb{R}^3) \mid \gamma_p : T_p M \longrightarrow \mathbb{R}^3 \text{ is one-to-one, } p \in M \right\}.$$

Consider a fixed $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$. Then $\gamma(X) \in C^{\infty}(M; \mathbb{R}^3)$ is a smooth function for each $X \in \Gamma(TM)$. Let $D(\gamma(X))(Y)$ denote the directional derivative of $\gamma(X)$ into the direction of some $Y \in \Gamma(TM)$. A connection $\nabla[\gamma]$ on TM associated with $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$ is then defined by

$$\nabla[\gamma]_Y X = \gamma^{-1} D(\gamma(X))(Y), \quad X, Y \in \Gamma(TM).$$
(5)

In a coordinate system on M, the Christoffel symbols of (5) read

$$\Gamma_{lm}^k = \sum_{L=1}^3 (\gamma^{-1})_L^k \partial_l \gamma_m^L.$$

It is easy to verify that the curvature of this connection vanishes, i.e. the connection (5) is flat. Conversely, it is shown in [20] that for any flat connection $\widetilde{\nabla}$ on TM, there is some $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$ with $\widetilde{\nabla} = \nabla[\gamma]$. The torsion T^{∇} of an arbitrary connection ∇ is defined by

$$T^{\nabla}(X,Y) = \nabla_Y X - \nabla_X Y - [X,Y] \quad \forall X,Y \in \Gamma(TM).$$

In particular, if $T[\gamma]$ denotes the torsion of $\nabla[\gamma]$, it follows from (5) and the definition of the exterior derivative d that

$$d\gamma(X,Y) = \gamma(T[\gamma](X,Y)), \quad X,Y \in \Gamma(TM).$$

In classical terms, the torsion of a connection describes the dislocation density or the material inhomogeneity of a material. Since γ is fibrewise one-to-one, the discussion shows that $T[\gamma] = \gamma^{-1} d\gamma$. Therefore, the dislocation density $T[\gamma]$ might as well be measured by the exterior derivative of the one-form $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$. Hence, the two-form $d\gamma$ will be referred to as a dislocation density of the material. In particular,

$$d\gamma = 0 \quad \Longleftrightarrow \quad T[\gamma] = 0,$$

implying that the material is defect-free if and only if γ is closed, i.e. $d\gamma = 0$. The Burgers vector b of an arbitrary surface $S \subset M$ associated with the dislocation density $d\gamma$ computes as the integral

$$b = \int_S d\gamma.$$

The crucial observation is that according to the *Helmholtz decomposition*, Theorem 2.1, each $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$ uniquely splits into

$$\gamma = dv + \beta, \quad \text{where} \quad dv \in d\Omega^0(M; \mathbb{R}^3), \quad \beta \in \mathcal{D}(M; \mathbb{R}^3).$$
(6)

Since $d^2 = 0$, only the divergence-free part $\beta \in \mathcal{D}(M; \mathbb{R}^3)$ of γ contributes to the dislocation density. In particular $d\gamma = d\beta$, i.e. the dislocation density is uniquely determined by the so-called non-exact component β .

As far as classical elasticity is concerned, the essential quantity for the constitutive behaviour of a material is the deformation gradient $dj \in \Omega^1(M; \mathbb{R}^3)$ of an actual embedding $j \in E(M; \mathbb{R}^3)$. It is shown in [3] that the set of all such gradients

$$dE(M; IR^{3}) = \{ dj \mid j \in E(M; IR^{3}) \}$$

is an open subset of the Fréchet space of all one-forms $\Omega^1(M; \mathbb{R}^3)$. Since differentials of embeddings are fibrewise one-to-one, we have $dE(M; \mathbb{R}^3) \subset \mathcal{I}(M; \mathbb{R}^3)$. Each deformation gradient $dj \in dE(M; \mathbb{R}^3)$ defines a frame $X_1, X_2, X_3 \in \Gamma(TM)$ by solving

$$dj(X_l) = e_l, \qquad l = 1, 2, 3.$$
 (7)

Since $d^2 = 0$, it follows from (4) that this triple of vector fields characterises a defect-free material. Therefore, a placement $j \in E(M; \mathbb{R}^3)$ will be called *integrable configuration* of the body manifold M; an arbitrary $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$ will be referred to as a generalised configuration of M.

According to [18] the evolution of defects is held responsible for the discrepancy between the macroscopic deformation and the behaviour of the lattice. Therefore, we think of the component $\beta \in \mathcal{D}(M; \mathbb{R}^3)$ as a quantity by which the frame X_1, X_2, X_3 is *incompatibly* deformed. The vector fields

$$(dj+\beta)(X_1), (dj+\beta)(X_2), (dj+\beta)(X_3)$$

constitute a frame on $j(M) \subset \mathbb{R}^3$ if and only if $dj + \beta$ is injective. For $\beta \neq 0$, this frame represents a dislocated lattice on the embedded body.

The general idea is that only the integrable part, i.e. the gradient part of a generalised configuration $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$ becomes visible as a placement of the body manifold in Euclidean space. Thus, we consider generalised configurations $\gamma = dj + \beta \in \mathcal{I}(M; \mathbb{R}^3)$ whose integrable part dj stems from a placement $j \in E(M; \mathbb{R}^3)$ and whose non-integrable part β lies in $\mathcal{D}(M; \mathbb{R}^3)$. The set of all such configurations is denoted by

$$\mathcal{V}(M; \mathbb{I\!R}^3) = \left\{ dj + \beta \in \mathcal{I}(M; \mathbb{I\!R}^3) \mid j \in E(M; \mathbb{I\!R}^3), \beta \in \mathcal{D}(M; \mathbb{I\!R}^3) \right\}.$$

Observe that by construction $\mathcal{V}(M; \mathbb{R}^3) \subset \mathcal{I}(M; \mathbb{R}^3)$, where the exact parts of generalised configurations $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ are restricted to embeddings $j \in E(M; \mathbb{R}^3)$. Since $\mathcal{V}(M; \mathbb{R}^3)$ is an open Fréchet submanifold of $\Omega^1(M; \mathbb{R}^3)$, we take $\mathcal{V}(M; \mathbb{R}^3)$ as a configuration space for an elastic material which possibly may be dislocated, cf. [20].

4 The Geometry of $\mathcal{V}(M; \mathbb{R}^3)$

For a mathematical formulation of a dynamic theory of dislocated materials, a metric on the configuration space $\mathcal{V}(M; \mathbb{R}^3)$ is needed. Following [6], we first introduce an appropriate metric on $dE(M; \mathbb{R}^3)$. Let $\rho: M \longrightarrow \mathbb{R}$ be a strictly positive real-valued function which physically may be thought of as the mass distribution of the material. Since $E(M; \mathbb{R}^3)$ is open in $C^{\infty}(M; \mathbb{R}^3)$, the tangent manifold of $E(M; \mathbb{R}^3)$ is trivial

$$TE(M; \mathbb{R}^3) = E(M; \mathbb{R}^3) \times C^{\infty}(M; \mathbb{R}^3).$$

Identifying each tangent vector with its principal part, a metric on $E(M; \mathbb{R}^3)$ is defined by setting

$$\mathcal{G}_{\rho}(u_1, u_2) := \int_M \rho \langle u_1, u_2 \rangle_{\mathbb{R}^3} \mu, \quad u_1, u_2 \in C^{\infty}(M; \mathbb{R}^3).$$
(8)

Using (8), each $j \in E(M; \mathbb{R}^3)$ and each $u \in C^{\infty}(M; \mathbb{R}^3)$ may be decomposed into

$$j = j^0 + C_j$$
, where $C_j \in I\!\!R^3$, $\mathcal{G}_{\rho}(j^0, c) = 0 \quad \forall c \in I\!\!R^3$

and

$$u = u^0 + C_u$$
, where $C_u \in \mathbb{R}^3$, $\mathcal{G}_{\rho}(u^0, c) = 0$ $\forall c \in \mathbb{R}^3$

respectively. The sets

$$E_0(M; I\!\!R^3) := \left\{ j \in E(M; I\!\!R^3) \mid \int_M \rho j \ \mu = 0 \right\}$$

and

$$C_0^{\infty}(M; I\!\!R^3) := \left\{ u \in C^{\infty}(M; I\!\!R^3) \mid \int_M \rho u \ \mu = 0 \right\}$$

are Fréchet manifolds which are naturally isomorphic to $dE(M; \mathbb{R}^3)$ and $d\Omega^0(M; \mathbb{R}^3)$ respectively, cf. [3, 4]. Since $dE(M; \mathbb{R}^3) \subset d\Omega^0(M; \mathbb{R}^3)$ is open,

$$T(dE(M; \mathbb{R}^3)) = dE(M; \mathbb{R}^3) \times d\Omega^0(M; \mathbb{R}^3)$$

Configurations in $j \in E_0(M; \mathbb{R}^3)$ are such that the center of mass is kept fixed, $C_j = 0$. A metric on $dE(M; \mathbb{R}^3)$ naturally induced by this construction is given by

$$\mathcal{G}_E(du_1, du_2) := \int_M \rho \langle u_1^0, u_2^0 \rangle_{\mathbb{R}^3} \mu, \quad du_1, du_2 \in d\Omega^0(M; \mathbb{R}^3), \tag{9}$$

where we identify tangent vectors with their principal parts.

As the configuration space $\mathcal{V}(M; \mathbb{R}^3)$ is an open subset of $\Omega^1(M; \mathbb{R}^3)$, the tangent manifold $T\mathcal{V}(M; \mathbb{R}^3)$ of $\mathcal{V}(M; \mathbb{R}^3)$ is trivial

$$T\mathcal{V}(M; \mathbb{R}^3) = \mathcal{V}(M; \mathbb{R}^3) \times \Omega^1(M; \mathbb{R}^3).$$

Applying Theorem 2.1, tangent vectors $\eta \in T\mathcal{V}(M; \mathbb{R}^3)$ allows to equip the configuration space $\mathcal{V}(M; \mathbb{R}^3)$ with a metric as follows.

Definition 4.1 Let $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ be an arbitrary generalised configuration. For each pair $\eta_i \in T_{\gamma}\mathcal{V}(M; \mathbb{R}^3)$, i = 1, 2, let

$$\eta_i = du_i + v_i \quad \text{with} \quad du_i \in d\Omega^0(M; \mathbb{R}^3), \ v_i \in \mathcal{D}(M; \mathbb{R}^3)$$

be the respective Helmholtz decompositions. A metric $\mathcal{G}_{\mathcal{V}}$ on the configuration space $\mathcal{V}(M; \mathbb{R}^3)$ is defined by setting

 $\mathcal{G}_{\mathcal{V}}[\gamma](\eta_1,\eta_2) := \mathcal{G}_{\mathcal{V}}^{(e)}[\gamma](du_1,du_2) + \mathcal{G}_{\mathcal{V}}^{(p)}[\gamma](\upsilon_1,\upsilon_2).$

The *elastic* part of $\mathcal{G}^{(e)}$ is given by

$$\mathcal{G}^{(e)}_{\mathcal{V}}[\gamma](du_1,du_2):=\mathcal{G}_E(du_1,du_2), \quad du_1,du_2\in d\Omega^0(M;{I\!\!R}^3),$$

where \mathcal{G}_E is defined in (9). The *plastic* part of $\mathcal{G}_{\mathcal{V}}$ is given by

$$\mathcal{G}_{\mathcal{V}}^{(p)}[\gamma](\upsilon_1,\upsilon_2) := \int_M \sigma \langle \upsilon_1,\upsilon_2 \rangle \mu, \quad \upsilon_1,\upsilon_2 \in \mathcal{D}(M; \mathbb{R}^3),$$

where $\sigma \in C^{\infty}(M)$ is a strictly positive real-valued function.

Notice that physically, the function σ appearing in the above metric may be thought of as the density of inertia of the dislocations. For sake of simplicity we assume that the density σ is independent of the actual configuration. This means that all dislocations respond to a force action by the same specific inertia.

Let $T_{\tau_{\mathcal{V}}}: T^2\mathcal{V}(M; \mathbb{R}^3) \longrightarrow T\mathcal{V}(M; \mathbb{R}^3)$ denote the tangent map of the canonical projection $\tau_{\mathcal{V}}$ and $V(T\mathcal{V}(M; \mathbb{R}^3)) := \ker T\tau_{\mathcal{V}}$ the vertical bundle. Moreover, let $V\mathcal{X} \in V(T\mathcal{V}(M; \mathbb{R}^3))$ denote the vertical component of any vector $\mathcal{X} \in T^2\mathcal{V}(M; \mathbb{R}^3)$. The metric $\mathcal{G}_{\mathcal{V}}$ given in Definition 4.1 defines a natural weakly nondegenerate symplectic two-form Ω on $T\mathcal{V}(M; \mathbb{R}^3)$ by

$$\Omega[\xi](\mathcal{X},\mathcal{Y}) := \mathcal{G}_{\mathcal{V}}[\gamma](V\mathcal{Y},T\tau_{\mathcal{V}}\mathcal{X}) - \mathcal{G}_{\mathcal{V}}[\gamma](V\mathcal{X},T\tau_{\mathcal{V}}\mathcal{Y})$$
(10)

for all $\mathcal{X}, \mathcal{Y} \in T_{\xi}T\mathcal{V}(M; \mathbb{R}^3), \xi \in T_{\gamma}\mathcal{V}(M; \mathbb{R}^3), \gamma \in \mathcal{V}(M; \mathbb{R}^3)$. Thus, $T\mathcal{V}(M; \mathbb{R}^3)$ endowed with Ω becomes a symplectic manifold. Since $T\mathcal{V}(M; \mathbb{R}^3)$ is trivial, in coordinates one has

$$\mathcal{X} = (\gamma, \xi, \xi_1, \xi_2) \text{ and } \mathcal{Y} = (\gamma, \xi, \eta_1, \eta_2)$$

which in turn yields

$$\Omega[\gamma,\xi]((\xi_1,\xi_2),(\eta_1,\eta_2))=\mathcal{G}_{\mathcal{V}}[\gamma](\eta_2,\xi_1)-\mathcal{G}_{\mathcal{V}}[\gamma](\xi_2,\eta_1).$$

The metric $\mathcal{G}_{\mathcal{V}}$ induces the kinetic energy functional $\mathcal{E} : T\mathcal{V}(M; \mathbb{R}^3) \longrightarrow \mathbb{R}$ of the dislocated material by setting

$$\mathcal{E}(\xi) := \frac{1}{2} \mathcal{G}_{\mathcal{V}}[\gamma](\xi,\xi), \quad \xi \in T_{\gamma} \mathcal{V}(M; \mathbb{R}^3), \quad \gamma \in \mathcal{V}(M; \mathbb{R}^3).$$
(11)

If $\xi = du + v$ denotes the Helmholtz decomposition, then, according to Definition 4.1, the kinetic energy \mathcal{E} of a dislocated material splits into an *elastic part*

$$\mathcal{E}^{(e)}(\xi) := \frac{1}{2} \mathcal{G}_{\mathcal{V}}^{(e)}[\gamma](du, du),$$

corresponding to the kinetic energy associated with the material mass density, and into a *plastic part*

$$\mathcal{E}^{(p)}(\xi) := \frac{1}{2} \mathcal{G}_{\mathcal{V}}^{(p)}[\gamma](\upsilon, \upsilon),$$

corresponding to the kinetic energy of the dislocation density. By construction, the metric $\mathcal{G}_{\mathcal{V}}$ is constant in γ , that is

$$D\mathcal{G}_{\mathcal{V}}[\gamma](\eta) = 0 \quad \forall \eta \in T_{\gamma}\mathcal{V}(M; \mathbb{R}^3), \ \gamma \in \mathcal{V}(M; \mathbb{R}^3)$$

Therefore, the corresponding Euler's equations yield

$$\mathcal{G}_{\mathcal{V}}[\gamma(t)](\ddot{\gamma}(t),\eta) = 0, \quad \forall \eta \in T\mathcal{V}(M; \mathbb{I}\!\!R^3)$$

as weak equations of motion. The geodesics of $\mathcal{G}_{\mathcal{V}}$ are analogously to elasticity straight line segments, cf. [4, 6]. An inertial motion follows by definition the geodesics of $\mathcal{G}_{\mathcal{V}}$. A motion under non-vanishing forces will deviate from these geodesics.

5 The Principle of Virtual Work

In our setting, a work functional on the space of generalised configurations $\mathcal{V}(M; \mathbb{R}^3)$ is understood to be a continuous linear functional

$$F: T\mathcal{V}(M; \mathbb{R}^3) \equiv \mathcal{V}(M; \mathbb{R}^3) \times \Omega^1(M; \mathbb{R}^3) \longrightarrow \mathbb{R},$$

on the tangent bundle $T\mathcal{V}(M; \mathbb{R}^3)$. We assume that for each configuration $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ the functional F admits an integral representation with respect to the metric \mathcal{G} given in (2), such that

$$F[\gamma](\eta) = \int_{M} \langle \alpha[\gamma], \eta \rangle \mu \quad \forall \eta \in T_{\gamma} \mathcal{V}(M; \mathbb{R}^{3}).$$
(12)

The constitutive law of the continuum M is encoded in the functional dependence of the integral kernel $\alpha[\gamma] \in \Omega^1(M; \mathbb{R}^3)$ on the configuration γ . This dependence will, in

general, be non-linear and possibly also non-local. More precisely, the integral kernel α may be thought of as a smooth section into the tangent bundle $T\mathcal{V}(M; \mathbb{R}^3)$, where each $\alpha[\gamma]$ is identified with its principal part. The one-form α will be called *stress form*; in classical elasticity, α corresponds to the *first Piola-Kirchhoff* stress tensor, cf. [5, 16].

For each $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$, the Helmholtz decomposition of $\alpha[\gamma]$ reads

$$\alpha[\gamma] = dh[\gamma] + \tau[\gamma], \tag{13}$$

where $dh[\gamma] \in d\Omega^0(M; \mathbb{R}^3)$ is a gradient and $\tau[\gamma] \in \mathcal{D}(M; \mathbb{R}^3)$ is divergence-free. The decompositions are understood with respect to a fixed reference metric g. Writing $\eta = du + v$, the orthogonality of the Helmholtz decomposition implies

$$\mathcal{G}(\alpha[\gamma],\eta) = \mathcal{G}(dh[\gamma],du) + \mathcal{G}(\tau[\gamma],v).$$

Therefore, for each generalised configuration $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$, the work functional F splits into an *elastic part* $F^{(e)}$ and a *plastic part* $F^{(p)}$, i.e.

$$F[\gamma](\eta) = F^{(e)}[\gamma](du) + F^{(p)}[\gamma](\upsilon) \quad \forall \eta = du + \upsilon \in T_{\gamma}\mathcal{V}(M; \mathbb{R}^3).$$
(14)

The elastic part is given by

$$F^{(e)}[\gamma](du) := \int_{M} \langle dh[\gamma], du \rangle \mu \qquad \forall du \in d\Omega^{0}(M; \mathbb{R}^{3}),$$
(15)

and the plastic part by

$$F^{(p)}[\gamma](\upsilon) := \int_{M} \langle \tau[\gamma], \upsilon \rangle \mu \qquad \forall \upsilon \in \mathcal{D}(M; \mathbb{R}^{3}).$$
(16)

Since the Helmholtz decomposition is orthogonal,

$$F = F^{(e)} \iff \alpha[\gamma] = dh[\gamma] \quad \forall \gamma \in \mathcal{V}(M; \mathbb{R}^3).$$

It was first observed in [3] that in pure elasticity, only the exact part $dh[\gamma]$ of the stress form $\alpha[\gamma]$ contributes to the work functional. In fact, $F^{(e)}$ is the well-known work functional of elasticity, cf. [1, 7, 14]. The work functional (12) thus becomes a natural generalisation of the notion of work in classical elasticity.

Notice that both components $dh[\gamma]$ and $\tau[\gamma]$ of the stress form $\alpha[\gamma] = dh[\gamma] + \tau[\gamma]$ will, in general, depend on the integrable part dj as well as the plactic part $\beta \in \mathcal{D}(M; \mathbb{R}^3)$ of $\gamma = dj + \beta$. From the elastic point of view, τ marks a gauge freedom, cf. [5]. Hence, the choice of τ describes the plastic part in view.

Next, we implement the work functional (12) in the d'Alembert principle of virtual work. According to [13], an exterior force acting on a general mechanical system is given by a horizontal one-form on the tangent manifold of the corresponding configuration space. Recall that, using the tangent map $T\tau_{\mathcal{V}}: T^2\mathcal{V}(M; \mathbb{R}^3) \longrightarrow T\mathcal{V}(M; \mathbb{R}^3)$ of the canonical projection $\tau_{\mathcal{V}}$, a vector field \mathcal{Y} on $T\mathcal{V}(M; \mathbb{R}^3)$ is by definition vertical iff $T\tau_{\mathcal{V}}(\mathcal{Y}) = 0$. A one-form \mathcal{F} on $T\mathcal{V}(M; \mathbb{R}^3)$ is horizontal iff $\mathcal{F}(\mathcal{Y}) = 0$ for all vertical vector fields \mathcal{Y} . Thus, an exterior force in the above sense acting on dislocated material is given by a horizontal one-form \mathcal{F} on $T\mathcal{V}(M; \mathbb{R}^3)$.

If \mathcal{Y} is a vertical vector field and Ω is the symplectic two-form defined in (10), then

$$\Omega(\mathcal{Y}, \mathcal{Z}) = -\mathcal{G}_{\mathcal{V}}[\gamma](\mathcal{Y}, T\tau_{\mathcal{V}}\mathcal{Z}) \quad \forall \mathcal{Z} \in \Gamma(T^{2}\mathcal{V}(M; I\!\!R^{3})).$$

Therefore, the induced one-form $\imath_{\mathcal{Y}}\Omega$ given by

$$\boldsymbol{\imath}_{\mathcal{Y}}\Omega(\mathcal{Z}) := \Omega(\mathcal{Y}, \mathcal{Z}) \quad \forall \mathcal{Z} \in \Gamma(T^2 \mathcal{V}(M; \mathbb{R}^3))$$

is horizontal². On the other hand, using the tangent map $T\tau_{\mathcal{V}}$ of the canonical projection $\tau_{\mathcal{V}}$, the work functional F defined in (12) induces an exterior work one-form \mathcal{F} in the above sense by setting

$$\mathcal{F} := (T\tau_{\mathcal{V}})^* F. \tag{17}$$

Due to the pull-back construction, \mathcal{F} is horizontal. Given the kinetic energy functional \mathcal{E} and an exterior work one-form (17), the d'Alembert principle of virtual work now states that the Euler vector field \mathcal{X} is determined by the equation

$$d\mathcal{E}(\mathcal{Z}) - \iota_{\mathcal{X}} \Omega(\mathcal{Z}) = (T\tau_{\mathcal{V}})^* F(\mathcal{Z}) \quad \forall \mathcal{Z} \in \Gamma(T^2 \mathcal{V}(M; \mathbb{R}^3)).$$
(18)

6 The Equations of Motion

In order to formulate a dynamics on our configuration space $\mathcal{V}(M; \mathbb{R}^3)$, consider a motion given by a smooth curve

$$\gamma: I\!\!R \longrightarrow \mathcal{V}(M; I\!\!R^3), \quad t \longmapsto \gamma(t).$$

Using the exterior work functional (17), the curve $\gamma(t)$ describes a motion subject to the d'Alembert principle of virtual work (18), if it satisfies the weak equations of motion

$$\mathcal{G}_{\mathcal{V}}[\gamma(t)](\ddot{\gamma}(t),\eta) = F[\gamma(t)](\eta) \quad \forall \eta \in \Omega^{1}(M; \mathbb{R}^{3}).$$
⁽¹⁹⁾

According to Helmholtz, each $\gamma(t)$, $t \in \mathbb{R}$ decomposes into $\gamma(t) = dj(t) + \beta(t)$. The orthogonality of the splittings of the work functional $F = F^{(e)} + F^{(p)}$ and the metric

²In the case where Ω is regular, the converse also holds true: for any horizontal one-form \mathcal{F} , there is a vertical vector field $\mathcal{Y}_{\mathcal{F}}$ such that $\mathcal{F} = \imath_{\mathcal{Y}_{\mathcal{F}}} \Omega$.

 $\mathcal{G}_{\mathcal{V}} = \mathcal{G}_{\mathcal{V}}^{(e)} + \mathcal{G}_{\mathcal{V}}^{(p)}$ given in Definition 4.1, respectively, implies that (19) is equivalent to the system of equations

$$\mathcal{G}_{\mathcal{V}}^{(e)}[\gamma(t)](d\ddot{j}(t), du) = F^{(e)}[\gamma(t)](du) \quad \forall du \in d\Omega^{0}(M; \mathbb{R}^{3})$$
(20)

and

$$\mathcal{G}_{\mathcal{V}}^{(p)}[\gamma(t)](\ddot{\beta}(t),\upsilon) = F^{(p)}[\gamma(t)](\upsilon) \quad \forall \upsilon \in \mathcal{D}(M; \mathbb{R}^3).$$
(21)

Thus, the dynamical equations derived from the principle of virtual work split into an *elastic part* (20) and into a *plastic part* (21). In absence of all external volume and surface forces, the equations of motion³ induced by (20) and (21) are given in the following theorem.

Theorem 6.1 Let $\alpha[\gamma] = dh[\gamma] + \tau[\gamma]$ be the Helmholtz decomposition of a stress form for a dislocated material. Then the equations of motion are given by

$$\left\{ \begin{array}{rll} \rho \ddot{j}(t) &=& \Delta h[\gamma(t)] \\ \sigma \ddot{\beta}(t) &=& \tau[\gamma(t)] \end{array} \right.$$

where $\gamma(t) = dj(t) + \beta(t)$ is the Helmholtz decomposition of $\gamma(t)$ and $\Delta := \delta \cdot d$ is the Laplace operator on functions in $C^{\infty}(M; \mathbb{R}^3)$.

The first equation in Theorem 6.1 is nothing but the well-known equation of motion in elasticity: since $\delta\tau[\gamma] = 0$, the divergence of the stress form $\alpha[\gamma]$ corresponding to the first Piola-Kirchhoff stress tensor can be represented as the Laplace operator on functions, i.e. $\delta\alpha[\gamma] = \Delta h[\gamma]$. The second one is an evolution equation for the nonintegrable parts of the deformation $\gamma(t)$. The equations of motion are coupled via the Helmholtz decomposition. The motion of dislocations may, in general, be accompanied by dissipative effects, cf. [11].

In a static setting, $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ is an equilibrium configuration if and only if

$$F[\gamma](\eta) = 0 \quad \forall \eta \in T_{\gamma} \mathcal{V}(M; \mathbb{R}^3)$$

which according to (14) is equivalent to

 $F^{(e)}[\gamma](du) = 0 \quad \forall du \in d\Omega^0(M; I\!\!R^3) \quad \text{and} \quad F^{(p)}[\gamma](v) = 0 \quad \forall v \in \mathcal{D}(M; I\!\!R^3).$

³The equivalence of the weak equations and the strong equations follow from the fact, that the space of smooth differential forms is dense in an appropriate L^2 -completion, cf. [17].

The second Piola-Kirchhoff stress tensor $S[\gamma]$ associated with the stress form $\alpha[\gamma] \in \Omega^1(M; \mathbb{R}^3), \gamma \in \mathcal{V}(M; \mathbb{R}^3)$ is given by

$$\boldsymbol{S}[\gamma](X,Y) := \langle \alpha[\gamma](X), \gamma(Y) \rangle_{\mathbb{R}^3}, \quad X,Y \in \Gamma(TM).$$

In pure elasticity, there is a gauge freedom in choosing the stress form. Since only the integrable part $dh[\gamma]$ of a stress form $\alpha[\gamma]$ contributes to the work functional of elasticity $F^{(e)}$, any stress form $\tilde{\alpha}[\gamma] = \alpha[\gamma] + \xi[\gamma]$ with arbitrary $\xi[\gamma] \in \mathcal{D}(M; \mathbb{R}^3)$ will give the same work functional $F^{(e)}$ and hence determine the same dynamics of the system, cf. [3]. In particular, one may chose $\xi[\gamma]$ such that the stress tensor \tilde{S} corresponding to $\tilde{\alpha}[\gamma]$ is symmetric, cf. [16].

In the dislocated case, this gauge freedom ist lost. Since the divergence-free part τ of the stress form α appears explicitly in the principle of virtual work (19), the stress tensor may not chosen to be symmetric. The concept of decomposing configurations $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ and stress forms $\alpha[\gamma] \in \Omega^1(M; \mathbb{R}^3)$, $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ is completely analogous to the concept of strain spaces and stress spaces in [10]. The integrable part of the deformation is the dual quantity to the integrable part of the stress, the non-integrable part of the deformation is the dual quantity to the non-integrable part of the stress.

References

- Antman, S.S., Osborne, J.E.: The Principle of Virtual Work and Integral Laws of Motion. Arch. Rat. Mech. An. 69, 231-262 (1979)
- [2] Binz, E., Śniatycki, J., Fischer, H.: Geometry of Classical Fields. Mathematics Studies 154, North-Holland 1988
- [3] Binz, E.: Symmetry, Constitutive Laws of Bounded Smoothly Deformable Media and Neumann Problems. In: Symmetry in Science V, ed. B. Gruber, L.C. Biedenharn and H.D. Doebner, Plenum Press, New York, London, 1991
- [4] Binz, E.: Global differential geometric methods in elasticity and hydrodynamics. In: Differential Geometry, Group Representation and Quantization, ed. J.B. Hennig, W. Lücke, and J. Tolar, Lecture Notes in Physics 379, 1991, pp. 3-28
- [5] Binz, E.: On the Irredundant Part of the First Piola-Kirchhoff Stress Tensor. Rep. Math. Phys. 32, 175-210 (1993)
- [6] Binz, E., Schwarz, G.: The Principle of Work and a Symplectic Reduction of Non-local Continuum Mechanics. Rep. Math. Phys. 32, 49-69 (1993)

- [7] Epstein, M., Segev, R.: Differential Manifolds and the Principle of Virtual Work in Continuum Mechanics. J. Math. Phys. 21, 1243-1245 (1980)
- [8] Hellinger, E.: Die allgemeinen Ansätze der Mechanik der Kontinua. Enzykl. Math. Wiss. 4/4 (1914)
- [9] Kröner, E.: Continuum Theory of Defects. Les Houches, Session XXXV, 1980 -Physics of Defects, R. Balian et al., eds, North-Holland 1981
- [10] Kröner, E.: Stress Space and Strain Space in Continuum Mechanics. Phys. Stat.
 Sol. (b) 144, 39-44 (1987)
- [11] Kröner, E.: A Variational Principle in Nonlinear Dislocation Theory. 2nd Intern. Congr. on Nonlinear Mechanics, Beijing, China, 23.-26. Aug. 1993, preprint
- [12] Marsden, J.E., Hughes, J.R.: Mathematical Foundations of Elasticity. Prentice Hall, Eaglewood Cliffs, New Jersey 1983
- [13] Marsden J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry Springer, New York 1994
- [14] Maugin, G.A.: The Method of Virtual Power in Continuum Mechanics: Application to Coupled Fields. Act. Mech., 35-70 (1980)
- [15] Noll, W.: Materially Uniform Simple Bodies with Inhomogeneities. Arch. Rat. Mech. Anal. 27, 1-32 (1967)
- [16] Schwarz, G.: The Euclidean Group in Global Models of Continuum Mechanics and the Existence of a Symmetric Stress Tensor. Rep. Math. Phys. 33, 397-412 (1993)
- [17] Schwarz, G.: Hodge Decomposition A Method for Solving Boundary Value Problems. Springer, Heidelberg 1995
- [18] Taylor, G.I.: The mechanism of plastic deformation of crystals, parts I and II. Proc. Roy. Soc. Lond. A 145, 362-387, 388-404 (1934)
- [19] Wang, C.-C.: On the Geometric Structures of Simple Bodies, a Mathematical Foundation for the Theory of Continuous Distributions of Dislocations. Arch. Rat. Mech. Anal. 27, 33-94 (1967)
- [20] Wenzelburger, J.: Die Hodge-Zerlegung in der Kontinuumstheorie von Defekten. Dissertation Universität Mannheim, Verlag Shaker, Aachen 1994

14 🦤