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Abstract ‘

» For materials with a continuous distribution of dislocations, equations of mo-
- tion are derived from a symplectic structure on an appropriate configuration space
'The proposed dynamics generalizes from elasticity.
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"1 Introduction

A mathematical framework for the dynamics of an elastic material is given by the space
of all embeddings E(M;IR?) of a reference body M into the physical space IR3. The
constitutive law determining the equations of evolution can be given in terms of a virtual
work functional on this phase space, cf. {8]. The invariance of the system under r1g1d
global translations implies that the differential dj of the embedding j € E(M;R?) is
the essential quantlty for the constitutive behaviour of the material, cf. [3]. In classical
terms this differential is precisely the deformation gradient of the actual configuration
of the system Mathematically the deformation gradlent dj may be considered as an
exact (IR3-valued) differential one-form in Q'(M; R )
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In the continuum theory of defects one describes dislocations by a torsion density on

" the reference body, cf. [9, 15, 19]. This torsion densrty may be identified with an exact

(IR3-valued) differential two—form dy€ Q(M; R 3). The corresponding Burgers vector
computes as the 1ntegral of dy over a bounded surface S.C M, cf. [20].

To incorporate this describtion of vdrslocatlons into" the 'framework of elasticiﬁy, the

Helmholtz decomposition theorem is utilized which claims that any differential form

may be uniquely decomposed into a gradient and a divergence-free part. A generalised -

configuration space for a material with dislocations V(M; IR?) is defined as a submani-

.foldvo'f_Ql(M ; IR3). Each generalised conﬁguration v € V(M; R®) splits into an elastic
or gradient part dj, where j € E(M; R3 ’) is an embedding, and into a so- ~called plastlc

part 3 describing the d1slocat10n density, cf. [20].

The main obJectlve of this paper is to derlve a dynamlcs for a material w1th a continuous

- distribution of dislocations. This is done by introducing a symplectic structure Q and
a kinetic engergy functional £ on the tangent space TV(M ; IR3) of the configuration
-space V(M; IR®). The constitutive behaviour of such a system is described by a virtual

work functional F on V(M;IR®). The resulting principle of v1rtual work determines
weak equations of motion for the generalised configurations ~. :

Using the ‘Helmholtz decomposition theorem, these equations split-into a part which

determines the evolution of the elastic parts dj of a generalised configuration v and into -
a part which determines the evolution of the plastic parts B. - The equations for the

elastic parts are just the well-known equations in classical elasticity. Thus, for purely
elastic materials, this approach covers the classical theory

2 Differentia"l FOrms -

Since in ‘this approach towards a dynamlcs of dislocations, differential forms provide a

~ convenient framework, a ‘brief introduction is given. Let M be the body manifold in

the sense of elasticity. Assume that M is a smooth connected 3- dimensional compact
oriented Riemannian manifold with boundary which is embedable into the physical space
R®. A IR3-valued differential form w € QF(M; IR®) of degree k is a smooth assignment
of a skew-symmetnc k-linear map w, on T,M to each point p € M, where

Wy ::.FPM X .,‘.Tp]\/IJ———_—» R3 Vpe M
v k—;;nes'

In classical terms, differential forms may be considered as skew-symmetric two-point

tensors of type (1, k) on the body manifold M which are well-known objects in continuum
mechanics, cf. [12]. Of partlcular interest in our approach are the cases k = 0,1,2.

For example, the deformation gradient and the first Piola-Kirchoff stress tensor are
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" considered here as IR®-valued one-forms on the body manifold M lLe. as some w €
QY(M; R?). Analogously, placements of M and force fields are elements in Q°(M; R®)
- which, by deﬁmtlon is equal to C’°°(M R3):

Each Q*(M; R %) may be equlpped with a fibre metric by using the Riemannian metric
g on M and the standard scalar -product {:,-)zs on IR®. -For our purposes, it suffices
to consider the cases k = 0,1. Let Ey, Ey, E3 € [(TM) be a triple of vector fields -
orthonormal with respect to the metric g. A fibre metric on Ql(M ; IR®) is then defined

- by -

wm:ZMMJ)MSwnHNMﬂﬁ' W
The product (1) does only depend on the metric g but not on the chosen frame on M,
cf. [13]. Notice that (1) corresponds to the contraction of skew symmetric two-point
tensors. If e;, eq,e3 € IR? denotes the standard basis in R® and 6*,62,6° € Q'(M ) the
dual frame correspondmg to Fy, Ez,Eg, then in coordinates, any one-forms w and 7
may be written as w = Srawk ey, and n= 2“77, f'er. Thus (1) reads

3 o
w n)=.Z wint.

' Wlth the help of the Riemannian volume element p 1nduced by g, the space Ql(M R %),
is now endowed with an Lz—product G, given by ,

G = [ (ol wm € BOHRS) e

For k = 0 the corresponding L%-product G is just the usual one Let V denote the
Levi-Civita connection on M assoc1ated to g. Then V induces a covariant derivative.on
.Ql(M IR?), given by '

(Vyw)(X) D[ul)(X)](‘ w(VYX) X, Y eT(TM).

"Here, the ﬁrst term of the right hand side means the dlrectlonal derlvatlve of the ]R3

valued function'w(X) in direction of the vector field Y. For k = 0 the second term of
~ the right hand side of the above expression vanishes. The covariant derivative allows to.
write the exterior derivative d : Q*(M; R3) — Q*(M; R®) as

dw(X,Y) = (va)(Y) (Vyw)(X) X, Y eT(TM).

For k = 0 the exterior derivative corresponds to the gradient. The co- dzﬁerentml 6
(M, R3) — QO(M; R?) may be defined by "

w = - ZI(VE’M)(EJ




Notice that the co-differential 8, unlike the exterior derivative, dependson the chosen
Riemannian metric g. In classmal tensor notation, 6 corresponds to the divergence of a

* tensor field. _
Let N denote the outward pointing‘unit normal'ﬁeld on the boundary OM of M . A

differential one-form w is called parallel to OM iff its normal component vanishes, that
is w(N) = 0. Define the space of all divergence-free and parallel one-forms by

D(M; R —-{wte (M; R3)|6w—0 and w(./\/')-()}

A

~ We are now able to state the Helmholtz decomposztzon for the specral case of R3-valued

one-forms. For a general proof see [17].

Theorem 2 1 HELMHOLTZ DECOMPOSITION
Let M be a compact oriented Riemannian mamfold with boundary Then for any

w € QY(M; R®) there exist 8 € Q°(M; R®) and § € D(M; IR®) such that w = df + 3.

. Moreover, df and 3 are mutually L2-orthogona1 with respect to the inner product (2),

that is the decomposition _
Q' (M; R ) dO(M; R®) & D(M; R®)

is dlrect and L2-orthogonal

3

N

3 | The Kihematics'. of DiSlocations.

Let j : M — IR® be a smooth embeddmg of the body mamfold M into the Eu-
'clidean space IR®, and E(M;IR®) denote the space of all such embeddings'. In pure

élasticity E(M; IR®) constitutes the conﬁguratlon space of the system; in classical terms
its elements j are called placement (or transplacement) fields. The displacement fields

u € C*°(M; R*®) compute as u = (j — jo), where jo is a reference configuration.

This section is aimed at generalising the classical configuration space E(M;IR?) in'such
a way that the description of the kinematics of dislocations is included. We introduce
a configuration space for an elastic solid whose internal structure is characterised by a
frame, i.e. a triple of linear independent vector fields on M : '

nnneraM. @)
Physically, these vector fields descrlbe lattice vectors of a contlnulsed crystal as worked

out in. [9]. « We denote the standard basm of R3 by ey, eq, 3. Since M is embedable

YE(M;R?) is an open subset-in the Fréchet space C°°(M R3 ), see (2] for details.
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dy. computes as the integral

into IR?®, for any arbltrary frame (3) ‘there exists a uniqﬁe_ fibrewise one-to-one map

. I TM — R3 such that

Mathematically, 7 is a ]R3-valued one-form y € Q'(M;IR*) on M which is fibrewise
one-to-one. The set of all these one- forms is defined by ' o

I(M,R )= {'y,e QI(M,B )[fy,, .M —>R3 is one-to-one, p € M}

"Consider a fixed v € Z(M; R*). Then 7(X) € 'C°°(M;R ) is aismooth function for

each X € I(TM). Let D(y(X))(Y) denote the directional derivative of 7(X) into the

" direction of some Y’ € I'(T'M). A connection V[y] on TM associated with y € Z(M; R 3)
. is then defined by e ‘ o .

Vhly X =7 DOOON), xyer@m. @

In a coordmate system on M, the Chrlstoﬂel symbols of (5) read

Z (’y Lal7m

| It is easy to verlfy that the curvature of this connection vanishes, i.e. the connection (5)

is flat. Conversely, it is shown in’ [20] that for any flat connection V. on TM, there is

“some v € I(M; R 3Y with V =. V[y]. The torsion TV of an arbitrary connectlon V is
defined by S

TV(X Y)= Vy'X VxY - [X,Y] VX,Y € F(TM)._

“In partlcular if T'[7] denotes the torsion of V['y] it follows from (5) and the definition

of the extenor derlvatlve d that

(X, Y) = (ThI(X,Y), XY e N(TM).

" In classical terms, the torsion of a connection describes the dzslocatzon denszty or the‘
“material inhomogeneity of a material." Since 7 is fibrewise one-to-one, the discussion
" shows that T[y] = y~'dy. Therefore, the dislocation density T['y] might as well be:

measured by the exterior derivative of the one-form v € I(M; R?). Hence, the two-
form dv will be referred to as a dlslocatl_on density of the material. In particular, ‘

dy=0 < Thl=0,

‘ 1mp1y1ng that the matenal is defect-free if and only if v is closed e dy = 0 The

Burgers vector b of an arbitrary surface S C M associated with the dislocation den51ty ‘

b= /S dr.
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The cruc1al observatlon is that according to the Helmholtz decomposztzon Theorem 2.1,

eachyeZ (M IR®) uniquely splits into

y=dv+f, where dved(M;R®), B € D(M; R%). (6)

Since d? = 0, only the divergence-free part 8 € D(M; R®) of 4-contributes to the dislo-
cation density. In particular dy = dg, i.e. the dislocation density is uniquely determined
by the so-called non-exact component ,B

As far as classxcal elasticity is concerned, the essentlal quantlty for the constitutive
behaviour of a material is the deformation gradient dj € Q'(M;R?) of an actual em-

. bedding j € E(M;R®). It is shown in [3] that the set of all such gradients

dE(M; R®) = {4 Ije”E(M-R‘“)}' -

is an open subset of the Fréchet space of all one-forms QI(M R %). Since diﬁereﬁ-_
tials of embeddings are fibrewise one-to-one, we have dE(M; R®) ¢ Z(M;R?). Each

‘ deformatlon gradient dj € dE(M; R3) defines a frame X1, Xp, X3€ I‘(T M ) by solving

d](Xl)—-el, 1=1,2,3. " : o . (7)

Since d? = 0, it follows from (4) 4) that this triple of vector fields characterises a defect-free
material. Therefore, a placement j € E(M;IR3) will be called integrable configuration
of the body manifold M; an arbltrary v € I(M; R®) will be referred to as a genemlised
conﬁgumtzon of M. \

According to [18] the evolution of defects is held responSIble for the discrepancy between
the macroscopic deformation and the behaviour of the lattice. Therefore, we think of the
component 8. € D(M; R?) as a quantity by which the frame Xl, X, X; is zncompatzbly
deformed. The vector fields ' .

(dj + B)(Xy), (dj + B)(Xa), (dj + ﬂ)(X:s)

constitute a frame on j(M) C IR?if and only if dj + 3 is injective. For ﬁ 7é 0, this frame '
represents a dislocated lattice on the embedded body

The general idea is that only the integrable part, i.e. the gradient part of a generahsed
configuration v.€ TI(M; R?) becomes visible as a placement of the body manifold in
Euclidean space. Thus, we consider generahsed conﬁguratlons vy = dj +B€I(M;R?
whose integrable part dj stems from a placement j € E(M;R®) and whose non-

integrable part 8 hes in D(M; IR®). The set of all such conﬁguratlons is denoted by -

V(M; R®) = {dj + 5 € I(M; R®) | j € E(M; IR®), 5 € D(M; R’)}.

 Observe that by constructlon V(M; R%) c I(M; R?), where the exact parts of gen—

eralised conﬁguratlons vy € V(M; R3) are restricted to embeddmgs j € E(M;R?). i
Since V(M;R®) is an open Fréchet submanifold of Q!(M; IR?), we take V(M;R®) as
a configuration space for an elastic material which possibly may be dislocated, cf. [20].
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4 ‘The,Geofn‘etry of V(M; R?)

For a mathematical formulation of a dynamic ‘theory of dislocated materials, a metric
on the configuration space V(M;R?) is needed: ‘Following [6], we first introduce an
-appropriate metric on dE(M; R?%). Let p: M — IR be a strictly positive real-valued
function which physically may be thought of as the mass distribution of the material.
Since E(M; R®) is open in C*°(M; IR®), the tangent manifold of E(M; R*)'is trivial

TE(M; R?) = E(M; R®) x C*(M; R?).
Identifying each taﬁgeht vector with its pfincipél part, a metric on E (M; R®) is defined
by setting , : ’
gp(ul,’uz) = /M p(u1, ug) pafh, U1, U € CM(M;R3)- ’ (8)
Usmg (8) each JE E(M R3) and each u € C°°(M IR?) may be decdmposed ih’qo
j=3j 0+ C;, where 'C,eR"’ G,(4%c)=0 Vc€R3 ' |

and ‘ . L ( - ’
“u=1"+C,, where C, € R? G,(u’,¢c)=0 Vce R’
respectlvely The sets _ :
Eo(MlR ) ={J€E(MIR I / pju—O}
-and _
| Co(M; R?) = {u € C*(M:RY) | [ oun= o}

are Frechet manifolds which are naturally 1somorphlc to dE(M R?) and dQ°(M; R®)
respectlvely, cf. [3, 4]. Since dE(M; R®) C dQ°(M; R?) is open,

(dE(M R® )) dE(M;R®) x dQO(M R?®).

| Configurations in j € EO(M R %) are such that the center of mass is kept fixed, C; = 0.
A metric on dE(M; IR3) naturally induced by this construction is given by

g (dul,‘duZ) = /M (u‘l’,ug)ms’}l, 'dul,dug € d(M; R%), (9)
where we identify tangent vectors with thelr principal parts. - '

As the conﬁguratlon space V(M R3) is an open subset of QI(M IR?), the tangent
manifold TV(M; R*®) of V(M; R ) is trivial :

TV(M; R®) = V(M; R3) x Q'(M; R3):

Applymg Theorem 2.1, tangent vectors n € TV(M; R3) allows to equip the conﬁgura—
tion space V(M IR®) with a metric as follows.
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" Definition 4.1 Let v € V(M; R?). be‘ah arbitrary geheralised cohﬁgu’ration. For each
‘palr anTV(M R?),i=1,2, let | : o

-—vdu, +vz Wlth du, € dQO(M R3) Vi € D(M R?®) A

be the respectlve Helmholtz decomposmons A metnc Gy on the conﬁguratlon space
~V(M R 3) is defined by settmg - ‘ :

gv [7](771, 772) (e) [7](d’u1, duz) + g(p) [’)’](Ui, va).
The elastzc part of (9 is given by ‘
(e)['y](dul,du2) -QE(dul,duz),v ' du,lr, duj € dQO(M;]R:‘);
where Gg is defined in (9) Thev plastic part of Gy is given by -
6P (v, v0) = [ o (o, v, vi,vs € DM RY),
Where o€ C® (M ).is a strictly_posi_tiVe reol-valued function. |
Notice that physmally, the function o appearing in the above metric may be thought of
. as the density of inertia of the dislocations.” For sake of simplicity-we assume that the

" density ¢ is independent of the actual configuration. This means that all dlslocatlons
-respond to a force action by the same specific: 1nert1a ' : .

© Let T Ty T2V(M R?®) — T V(M R3) denote the tangent map of the canonical pro—,

jection 7y and V(TV(M; R?)) = kerT7y the vertical bundle. Moreover, let VX €

V(TV(M; R®)) denote the vertical component of any vector X € TZV(M IR?). The

 metric Gy given in Definition 4.1 defines a natural weakly nondegenerate symplectic
'two-form Q on TV(M R?) by : , :

Qle](x, ) —gvm(vy Try¥) - GubI(V Y, Tny) (10)

for all X,) € TgTV(M R3), 5 € T,V(M; R %, v € V(M R?®). Thus TV(M R )‘
endowed with §2 becomes a symplectic mamfold Since TV(M; R®) i is trivial, in COOI'dl—«
" nates one has : .

= (1€, 51,52) and V= (%f,m,nz) |

 which in turn yields

Q€6 ), ) = Gyl 1) — vl ).



The metric Gy ‘induces the kinetic energy fﬁnctional E: TV(M;R® — IR of the
dislocated material by setting

\s(e: 3. ©) CETVOGRY, 7 eV RY) - Can

If £ = du + v denotes the Helmholtz decomposmon then accordmg to Deﬁmtlon 4.1,
the kmetlc energy £ of a dislocated materlal splits into an elastic part :

£ i= 36 bl(au, du) s

»correspondmg to the k1net1c energy assoc1ated with the materlal mass densrty, and into
a plastic part

£o (5 ) = g@” P, v),

corresponding to the kinetic energy of the dlslocatlon density. By constructron the
metrlc gv is constant in “, that 18

ng[’)’](’?) =0 VneT V(M R?), v € V(M; R?).
Therefore, the corresponding Eule‘r s equations yield | -
Gyl ®OI(3(2),m) =0, VneTV(M;R?).

as weak equations of motion. The geedesics of Gy are analogously to elasticity straight
line segments, cf. [4, 6]. An inertial motion follows by definition the geodesics of gv '
motion under non-vamshmg forces will devrate from these- geodesrcs

5 The Principle of Virtual Work

In our setting, a work functronal on the space of generahsed conﬁguratxons V(M R?)
is understood to be a continuous linear functional - :

F TV(M;B.):V(M;R 3 x QI (M; R3)—>R

on the tangent bundle T V(M ; IR®). We assume that for each conﬁguratron'y'e V(M; R?)
the functional F' admits an integral representation with respect to the metric G given
n (2), such that o o

Fpln) = [ {eblms WeTYMGRY. (1)

The constitutive law of the continuum M is encoded in the functional dependence of -
the 1ntegral kernel a[7] € QI(M IR*®) on the configuration . This dependence will, in
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general, be non-linear and possibly also non-local. More precisely, the integrel kernel «

 may be thought of as a smooth section into the tangent bundle TV(M; IR3), where each _

aly] is identified with its principal part. The one-form o will becalled stress form; in
classical elasticity, o corresponds to the first Piola-Kirchhoff stress tensor, cf. [5, 16].

-For each v € V(M; R?), the Helmholtz decomposition of afy] reads
| o] = dhpr +7[], (13)

where dh‘['y] € dQ%(M; R®) is a gradient and 7[y] € D(M; R?) is divergence-free. The
decompositions are understood with respect to a fixed reference metric. g. Writing
1 = du + v, the orthogonality of the Helmholtz decomposition implies ’

Glaf,m) = G(dhly], du) + G(7],v).

Therefore for each generalised configuration v € V(M;R?), the work functional F
splits into an elastic part F© and a plastic part F ®) je.

F['V](") = Fv(e)['y](du + FPR|(v) Vp=du+ve T.,V(M-;R3). C (14) |
The elastic parﬁ—» is given by | . | | . |
F<e>[7] du) / (dh[y),du)p  Vdu e dQO(M; R%), (15) -

and the plastlc part by E | |
FOplw):= [ (thlve  WweDOLRY. (1)

Since the Helmheltz decomposition ie vo'rthogohal, | - | \
F=F9 <«  ap]=dhh] VreV(M;R®).

It was first observed in [3] that in pure elasticity, only the exact part dh[y] of the stress
form afy] contributes to the work functional. In fact, F(*) is the well-known work
functional of elasticity, cf. [1, 7, 14].. The work functional (12) thus becomes a natural
generalisation of the notion of work in classical elasticity.

Notice that both components dh[v] and 7[v] of the stress form a['y] = dh[y] + 7[7] will,

in general depend on the integrable part dj as well as the plactic. part § € D(M;R?)
of v = dj + 8. From the elastic point of view, 7 marks a gauge freedom, cf. [5]. Hence,
“the choice of 7 describes the plastic part in view. -

Next, we implement the work functional (12) in the d’Alembert principle of virtual werk.
According to [13], an exterior force acting on a general mechanical system is given by a

* horizontal one-form on the tangent manifold of the corresponding configuration space.

10




Recall that, using the ‘tangentvmap‘ Try T*W(M; R®) — TV(M; R®) of the canonical
projection 7y, a vector field ’y,on TV(M; R?) is by definition vertical iff Tr,(Y) = 0. .

" A one-form F on TV(M; R?) is horizontal iff F(Y) = 0 for all vertical vector fields .

Thus, an exterior force in the above sense acting on dislocated matenal is given by a -
honzontal one-form 7 on TV(M; R®). :

'If y is a vertlcal vector ﬁeld and Q is the symplectlc two-form- deﬁned in (10) then

WY, 2) = —gv[ (62 TTvZ) VZ € F(T2V(M R ))
Therefore the 1nduced one-form 12 glven by }-

12Q(Z) = Q(y,Z) VZ e I"(T2 (M;R%)

~ is horizontal?. On the other hand, using the tangent map Ty of the canonical projection

Ty, the work functional F' defined in (12) induces an exterior work one-form ]-' in the

above sense by settlng _
| = (Tw)'F.. S (17)

Due to the pull-back construction, F is horlzontal leen the kinetic energy functional }

- £ and an exterior work one-form (17), the d’Alembert principle of v1rtual Work now -
_states that the Euler vector ﬁeld X is determmed by the.equation '

4E(2)- 1y 2) = Tn)F(E) VEETTVOLRY). ()

6 The Equ:at'ions of V’Motion .

In order to formulate a dynamlcs on our configuration. space V(M R?), consider a
motlon glven by a smooth curve : '

N

o B —+V(M R®), t };-q(t).

.. Using the exterior work functional (17) the curve v(t) describes-a motion subject to
~ thed’ Alembert pr1nc1p1e of virtual work (18) if it satifies the weak equations of mot1on

Gl ®IGi®,m) = Fh®im) vneROGRY. (19)

’Accor'dmg to. Helniholtz, each v(t), t € R decomposes into 7(t) = dj(t) + B(t). The

orthogonahty of the sphttlngs of the work functlonal F=Fe4+F (7’) and the metric

~

2In the case where Q is regular, the converse also holds true: for any horizontal one-form F, there ‘
is a vertical vector ﬁeld y}- such that F = zny :

11




Gy = g(e) + g(” ) given in Deﬁmtlon 4. 1 respectlvely, ‘implies that (19) is equ1valent to
the system of equations : o

‘%(t)}(dg(t) dw) = FORM)dw) Vdued®(GRY) o (20)
and ‘ . \ , | | .
P18, 0) = FPR®)(v) Yo e DM;R®). (21)

Thus, the dynamical equations derived from the »principle of virtual work éplit into -

“an elastic part (20) and into a plastic part (21). In absence of all external volume -

and surface forces, the equatlons of motlon induced by (20) and (21) are given in the
following theorem. : . ,

- Theorem 6.1 Let a['y] dh[y]+7[7] be the Helmholtz decompos1t10n of a stress form
for a dislocated material. Then the equations of motlon are glven by

| { pi(t) = Ahl(e)] .
oBH) = Th)

where v(t) = dj(t) + B(t) is the Helmholtz decomposmon of 4(t) and A := 6-d is the
Laplace operator on functlons in C~(M; R ) , o

The first equatlon in Theorem 6.1 is nothmg but the well-known equation of motion
‘in elasticity: since 67[y] = 0, the divergence of the stress form afy] corresponding to
the first Piola-Kirchhoff stress tensor can be represented as the Laplace operator on
functions, i.e. afy] = Ah[y]. The second one.is an evolution equation for the non-
integrable parts of the deformation y(¢). The equations of motion are coupled via the
Helmboltz decomposition. The motion of dislocations may,. in general, be accompanied
by dissipative effects, cf. [11].

- In a static setting, 'y € V(M ; R3) is an equilibrium configuration if and only il
Fh)(m) =0 ¥ne T,V(M;R?)
which according to (14) is equivalent to 7

F©[](du) =0 Vdue dQO(M;R3) “and FP[y](v) =0 Vv e Z?(M;,Rg’). _

] 3The equivalence of the weak equations and the strong equations follow from the fact, that the space
of smooth differential forms is dense in an appropriate L2-completion, cf. [17].
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The ‘second Piola- Kzrchhoﬁ stress tensor S['y] assomated with the stress form a[v] €
QY M; R 3, vy e V(M; R? )1s given by

SHIX,Y) = @h)(X), /(¥ ms , XY € D(TM).

-In pure elasticity, there is a gauge freedom in choosing the stress form. Since only the
integrable part dh[y] of a stress form a[y] contributes to the work functional of elasticity
F(© any stress form &[y] = a[y] + &[] with arbitrary £[y] € D(M; R?) will give the
same work functional F®) and hence determine the same dynamics of the system, cf. [3].
In particular, one may chose £[y] such that the stress tensor S correspondmg to a[fy] is "~
symmetric, cf. [16]. :

In the dislocated case, this gauge freedom ist lost Since the d1vergence-free part 7 of the
stress form « appears explicitly in the principle of virtual work (19), the stress tensor may
“not chosen to be symmetric. The concept of decomposing configurations v € V(M; R %)
and stress forms afy] € QY(M;R?), v € V(M;R?) is completely analogous to the -
concept of strain spaces and stress spaces in [10]. The integrable part of the deformation
- is the dual quantity to the integrable part of the stress, the non-integrable part of the
deformation is the dual quantlty to the non-mtegrable part of the stress.
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