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Abstract

Botnets, networks of compromised machines that can be remotely controlled by an attacker, are
one of the most common attack platforms nowadays. They can, for example, be used to launch dis-
tributed denial-of-service (DDoS) attacks, steal sensitive information, or send spam emails. A long-
term measurement study of botnet activities is useful as a basis for further research on global botnet
mitigation and disruption techniques. We have built a distributed and fully-automated botnet measure-
ment system which allows us to collect data on the botnet activity we observe in China. Based on the
analysis of tracking records of 3,290 IRC-based botnets during a period of almost twelve months, this
paper presents several novel results of botnet activities which can only be measured via long-term mea-
surements. These include. amongst others, botnet lifetime, botnet discovery trends and distributions,
command and control channel distributions, botnet size and end-host distributions. Furthermore, our
measurements confirm and extend several previous results from this area.

Our results show that the botnet problem is of global scale, with a scattered distribution of the
control infrastructure and also a scattered distribution of the victims. Furthermore, the control infras-
tructure itself is rather flexible, with an average lifetime of a Command & Control server of about 54
days. These results can also leverage research in the area of botnet detection, mitigation, and disruption:
only by understanding the problem in detail, we can develop efficient counter measures.

1 Introduction
The term botnet can be defined as a network of end-hosts infected by bots, a certain type of malware.
These networks are commonly organized through an one-to-many communication channel and all com-
promised machines are under the control of human operators, called botherders. Botnets first appeared
more than eight years ago with PrettyPark in 1999 as one of the first malware samples with an IRC-based
backdoor. Since then, botnets have developed into the first-choice attack platform for network-based
attacks. With the help of a botnet, an attacker has control over all compromised machines and this re-
mote control structure helps him to carry out his attacks more efficiently. Botnets are commonly used
for distributed denial-of-service (DDoS) attacks, identity theft, installation of additional malware on the
compromised machines, or additional mischief [18]. Usually, botnets use Internet Relay Chat (IRC [11])
as communication protocol, but also other protocols like HTTP or Peer-to-Peer-based protocols can be
used by the botherder to command the clients. Since IRC is still the common communication protocol
used by botnets today, we focus in this study on IRC-based botnets.

In this paper, we present the results of a long-term, large-scale measurement study on IRC-based
botnets in the wild. With the help of honeypots, a certain form of network decoys [14], we collect a
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large number of autonomous spreading malware. Based on an analysis of these malware samples, we can
detect botnets in an automated way. Furthermore, we also track these networks by sending a snoop into
the botnets that monitors all actions happening in the botnet from the inside. In total, our study is based
on a collection of about 90,000 samples of autonomous spreading malware, of which 5,645 are bots that
successfully connected to the botnet control channel during our analysis. By analyzing these samples, we
detected a total of 3,290 IRC-based botnets which we tracked during the measurement period between
June 2006 and June 2007. The results of our study characterize the current extent of the botnet problem.
We present typical features of botnet Command & Control (C&C) servers like the geographical location,
the TCP ports used for control channels, and the server software used. Furthermore, we measure botnet
properties like average lifetime, average size of a botnet, overlap between different botnets, and diurnal
patterns. We also describe botnet activities we have observed in the wild and present detailed results for
spreading, DDoS, and download activities caused by botnets.

These results can be used as a basis to develop techniques for detecting and mitigating IRC-based
botnets: only by understanding the problem in detail, we can develop efficient counter-mechanisms. Fur-
thermore, we studied the botnet phenomenon for about twelve months and can thus also infer long-term
trends in the development of botnets. These results can also be used to get a deeper understanding of the
phenomenon, which in turn can be used to develop tools and techniques for disrupting these networks.
During our study, we found evidence of about half a million infected IP addresses and therefore effective
counter measures are needed to stop this threat.

This paper is outlined as follows: Section 2 provides an overview of related work which studies the
global botnet phenomenon. In Section 3, we describe our measurement setup and give a brief background
on the tools and methods used during our study. We present the analysis results in Section 4, where we
focus on four different aspects of botnets. Finally, we conclude the paper in Section 5.

2 Related Work
In the last few years, the botnet phenomenon got the general attention of the security research community.
One of the first systematic studies was published in March 2005 by the Honeynet Project, that studied
about 100 botnets during a period of four months [18]. A more methodical approach was introduced by
Freiling et al., who used the same amount of botnet data for their study [8]. Cooke et al. outlined the
origins and structure of botnets and present some results based on a distributed network sensor system and
honeypots [6]. They do not give detailed results that characterize the extent of the botnet problem. Rajab
et al. used DNS data and monitoring of C&C control activity to get a better understanding of botnets [15].
Their study was based on data collected by monitoring 192 botnets during a period of more than three
months. Compared to all these studies, our study is based on data of one magnitude more botnets (3,290
botnets) collected in a period of about one year. We can observe trends and long-term effects of the botnet
phenomenon like the average lifetime of a botnet not possible with previous studies.

A transport layer-based botnet detection approach was introduced by Karasaridis et al. [12]. They
use passive analysis based on flow data to characterize botnets and were able to detect several hundred
controllers over a period of seven months. However, such a flow-based approach can not provide insight
into the botnet and the control structure itself. In our study, we can also observe the commands issued
by botherders, the malware binary executables used, and similar inside effects of a botnet. Canavan [4]
and Barford and Yegneswaran [2] presented an alternative perspective on IRC-based botnets based on
in-depth analysis of bot source code. We also analyzed the source code of several bot families such as
SdBot and Agobot, which can be freely downloaded from the Internet, to get a better understanding of
some of the effects we monitored during our observations.

In our study, we focus only on IRC-based bots. Botnets that use Peer-to-Peer based protocols have
also been observed in the wild [9]. The general approach outlined in this paper can be extended to also
study this kind of botnets, which we plan as part of our future work.
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Figure 1: General overview of measurement approach for botnet study

3 Measurement Setup
Our methodology follows a standard botnet measurement method based on honeypot technology and bot-
net snooping, similar to previous studies in this area [8, 15, 18]. We extend this methodology with an
additional approach for malware collection (Section 3.1) and malware analysis (Section 3.2). Further-
more, our approach is fully automated and has proven to run stable for several months. On the one hand,
this allows us to perform a long-term study of the botnet phenomenon, and on the other hand we can
perform such a measurement study on a large-scale basis.

As depicted in Figure 1, our botnet measurement methodology consists of three phases:

1. Malware collection: with the help of nepenthes [1] and HoneyBow (Section 3.1), we collect sam-
ples of bots in a fully automated way.

2. Malware analysis: a behavior-based analysis engine called HoneyBox is used to extract information
about the botnet command and control infrastructure from the captured bot samples (Section 3.2).

3. Botnet tracking: the extracted information is used to send a snoop into the control channel of the
botnet who tracks what is happening within the botnet (Section 3.3).

All malware collected during these phases is stored in a central malware sample library. Furthermore,
all extracted information and all botnet tracking records are stored in a central database. We developed
a web interface to access the library and the database. In addition, this interface provides a central man-
agement console for all phases, and it enables the monitoring of the status of all sensors, browsing of the
collected information, and similar tasks.

3.1 Malware Collection
In the first phase, we collect samples of bot binaries with a honeynet approach. A common method
for bots to propagate further is exploitation of remote vulnerabilities. With the help of a honeypot, we
pretend to be a vulnerable system, but in reality, we are just a decoy, waiting to be exploited. We use
two different types of honeypots. As a low-interaction honeypot, we use nepenthes [1]. A low-interaction
honeypot provides only limited interaction for an attacker. By design, it is not meant to represent a fully
featured system and usually cannot be completely exploited. Nevertheless, such a honeypot allows us to
capture known exploitation attempts and quantitative information like the top attacked ports on a given
network. Nepenthes implements this idea and emulates known vulnerabilities in network services: the
tool detects incoming exploitation attempts, and sends data back to the attacker similar to a vulnerable
machine. Based on an automated analysis of the attack payload, nepenthes extracts enough information
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to actually download a binary copy of the attacking malware. The complete process is fully automated
and we can collect autonomous spreading malware which spreads by exploiting common vulnerabilities
in network services. We use a default setup of nepenthes with 21 different vulnerability modules.

As a second sensor for malware collection, we developed the high-interaction honeypot HoneyBow.
A high-interaction honeypot is a conventional computer system, deployed to be probed, attacked, and
compromised. Such a system has no production task in the network and no regularly active users. Thus it
should neither have any unusual activities on the system nor generate any network traffic. These assump-
tions aid in attack detection: every interaction with the honeypot is suspicious by definition. HoneyBow
uses this idea and is an approach to collect malware with high-interaction honeypots. Compared to ne-
penthes, this has the advantage that we do not need any signatures: we can use a conventional machine,
patch it to an arbitrary patch-level, deploy the honeypot, and wait for successful compromises. The key
concept is that a malware binary usually installs a binary copy of itself after a successful compromise.
If we thus monitor the changes of the filesystem, we can detect an infection attempt and also obtain a
binary copy of the malware sample itself. We observe the filesystem activity in real-time by monitoring
all changes to the filesystem at the operating system level with the help of a tool we developed. Changes
can for example include addition, deletion, or modification of files.

HoneyBow consists of the following three components: MwWatcher is the first part of the malware
collecting tool. It is based on the essential feature of honeypots – no production activity – and watches
the filesystem for suspicious activity caused by malware infections in real time. The tool itself is executed
within a virtual machine (virtual honeypot), so that we can stop the virtual machine and then operate on
an image of the filesystem: once MwWatcher detects a change to the filesystem, this is a clear sign of an
intrusion attempt and the virtual machine is stopped. The disk image of the machine is then examined by
the next tool: MwFetcher. This tool first generates a listing of all files from a hard disk image of an infected
system detected by MwWatcher. Then this listing is compared to a file list from a clean system and all
modified files are extracted since they could be an artifact of a successful intrusion. All binaries detected
by MwFetcher are then submitted by MwSubmitter to the central malware sample library. The biggest
advantage of such a high-interaction approach is that we do not need signatures of attacks. For example,
we could capture samples of bots that use new attack vectors (e.g., Mocbot which uses MS06-040 for
propagation [17]) which were not caught by nepenthes. This combined setup of two different honeypot
sensor thus allows us to collect on the one hand samples that use well-known vulnerabilities (nepenthes)
and on the other hand we can also collect malware samples that use new exploits (HoneyBow).

Because malware for the Windows operating system constitutes the vast majority of malware in the
wild, we implemented HoneyBow only for Windows. On other platforms such as Linux or FreeBSD,
the mechanism of real-time filesystem monitoring behind MwWatcher can also be implemented. The
implementation details differ, but the principle is the same.

3.2 Malware Analysis
In the second phase, we want to automatically analyze the malware samples we have collected during
the first phase. We need automation since we need to react on new threats in a timely manner. Two
aspects are interesting to us: information about the botnet communication infrastructure and detection
rates of common antivirus engines. To achieve these goals, we implemented HoneyBox, a fully automated
malware analysis platform. The first component is MwSniffer, a behavior-based analysis tool similar to
CWSandbox [20] and TTAnalyze [3]. The malware binary is executed and during runtime, the behavior
of the application is observed with the help of a technique called API hooking: we intercept all API calls
we want to monitor and insert our hooking function, which instruments the execution flow [10]. The
technical implementation of API hooking is achieved via inline code overwriting, a common technique
for this kind of analysis. The observations by MwSniffer include for example changes to the filesystem,
access to the Windows registry, and network communication. Furthermore, we also limit some activities
of the malware behavior (e.g., excessive network communication) within the hooking function to con-
tain malicious behavior of the malware sample during the analysis process. One of the main aspects of
MwSniffer is the identification of botnet communication channels. From the analysis reports, we extract
all IRC-related information like username, channel name, and passwords together with the DNS- and IP-
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related information and store it in the botnet tracking database. Please note that we let the bot connect to
the actual C&C server, since this allows us to get detailed information about the communication protocol,
e.g., we can also monitor botnets that use non-standard IRC servers.

The second component of HoneyBox is MwScanner, a tool that examines the detection rates of com-
mon antivirus (AV) engines for the collected malware samples. Nine major AV engines (e.g., Kaspersky,
Trend Micro, and some local vendors such as Rising) are used for this test. Each collected sample is
scheduled to be scanned several times: immediately after collection, after 1 day, after 3 days, after 2
weeks, and finally after 1 month. These results allow us to study the response rates of common AV
engines to this kind of threat.

3.3 Botnet Tracking
In the third phase, we use the information extracted by MwSniffer to actually track the botnet. We
implemented HoneyBot to perform this snooping on botnets. This tool is comparable to drone [18],
botspy [13] and IRC Tracker [15]. Similar to these tools, we also join the channel used for Command &
Control and monitor what is happening inside the botnet. Furthermore, the tool collects statistics about
the botnet server (e.g., number of connected clients as reported by the server), the botherder (e.g., which
commands were issued by whom), and status reports by bots. All collected information is stored in the
botnet tracking database for further analysis.

3.4 Sensor Deployment
In total, we have deployed 17 malware collection nodes in 16 provinces of China. This unique network
of sensors in one of the fastest growing networks allows us to study the botnet phenomenon from a
completely different point of view compared to previous studies in this area. The distributed nodes have
the following configuration: each node runs one nepenthes sensor, and two or three high-interaction
Windows honeypots with Win2000 Pro, Windows XP, or Windows 2003 Server as an operating system.
In total, we have thus about 50 sensors. The high-interaction honeypots are virtual honeypots, i.e., they are
executed as virtual machines within VMware. Typically, only one IP address is assigned to each honeypot.
However, on several nodes with extra IP resource, we assign 2-4 IP addresses from different ISPs to the
honeypots. Furthermore, each sensor node also contains a Honeywall. A Honeywall is a transparent
bridge used for containment purposes in order to minimize the risk associated with honeypots [19]. We run
a customized version based on Roo v1.1-hw1, the official version released by the Honeynet Project.
The first node is in production mode since June 19, 2006 and since July 2006, the complete distributed
sensor network is up and running. We have two HoneyBot instances running to track IRC-based botnets.
Every instance is able to track about four to five hundred IRC-based C&C channels and stores all collected
raw information in the botnet tracking database for further statistical analysis.

4 Results
With the help of the botnet measurement setup described in the previous section, we have discovered
3,290 unique botnets on the China public Internet during the twelve month period between June 19, 2006
and June 10, 2007. Uniqueness is defined in this context as a unique combination of DNS name, port
number and channel name. We have tracked these botnets throughout their lifetime, starting with the
point in time where we first detected them. Based on these tracking data, we present several measurement
results in the following paragraphs to give a detailed overview of the botnet phenomenon nowadays.

These results are complete within the scope our measurement setup was able to observe or capture.
It reflects the current botnet phenomenon to a certain degree, but it does not represent a global snapshot
of all botnets, bots, spreading mechanisms, or DDoS attacks found on the Internet. An open research
question is still how many sensor nodes need to be deployed, and at which locations they should listen
for what kind of malicious traffic [5]. For the future, we plan to increase the range and density of the
distributed honeynet, and integrate it with a backbone threats measurement system. However, we think
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that the sensor locations within one of the fastest growing, but traditionally opaque networks, gives our
results a unique position not reported in any botnet-related study before. Furthermore, our results are
based on almost one year of data, thus our measurements are based on solid data sources.

4.1 Malware Discovery Trends
Using nepenthes and our HoneyBow malware collecting tool, we are able to capture on average about
2,800 malware samples per day with the help of the 50 malware sensors distributed at 17 nodes. Figure 2
illustrates the number of collected samples per day for the period of almost twelve months. In the first
few weeks, the complete system was still in the setup phase, and thus the number of collected samples
was below 1,000. Since middle of July 2006, all sensor nodes are up and running. Between 2,000 and
4,000 samples are usually captured per day, with peak points of more than 7,000 samples. These peaks are
mainly caused by outbreaks of new malware variants or polymorphic worms, as shown in later statistics
in this section. On average, nepenthes collects 1925 binaries per day and HoneyBow 856.

Figure 2: Temporal analysis of total number of collected malware binaries with all malware sensors
between June 19, 2006 and June 10, 2007

Based on unique MD5 hash value, we have collected about 90,000 samples during the overall mea-
surement period. The distribution of unique binaries collected per day is depicted in Figure 3. The spikes
in the figure are mainly caused by polymorphic worms: in each iteration, such a worm changes certain
parts of itself and thus the MD5 hash value is different. On average, we collect about 45 unique sam-
ples with nepenthes and 208 unique samples with HoneyBow every day. HoneyBow thus yields a higher
number of unique malware samples, mainly because it does not rely on signatures.

All binaries were analyzed with MwScanner to collect further information with the help of common
antivirus engines. In general, the detection rates are rather low. Even the best engine in our test detected
only 92.8% of the samples. The detection rates vary between 50.4% and 92.8% for the nine engines. We
also analyzed the distribution of malware families, as detected by the best antivirus engine in our test.
Table 1 provides an overview of the results. Polymorphic worms like Virut and Allaple dominate our
collection set. This is mainly due to our weak measurement of uniqueness: by using MD5 hash values,
even slight differences in two binaries cause a completely different hash value. Thus we collect a large
amount of cuplicates for polymorphic worms: for example, we collected 37,342 samples of Virut.a/Virut.b
and 28,859 samples of Allaple, two common polymorphic malware families. All these samples have a
unique MD5 hash value since each iteration of these worms is different.

For the four antivirus engines that detected most samples, we also analyzed the long-term trends in
malware detection. We scan a collected malware binary after fixed time intervals with MwScanner as
explained in Section 3.2. Figure 4 shows the temporal trend in detection rates for these four engines.
With time, the detection rates grow, but none of the engines ever reaches complete detection.
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Figure 3: Temporal analysis of unique number of collected malware binaries with all malware sensors
between June 19, 2006 and June 10, 2007

Malware Family Number of Samples Percentage
Virut 37,342 41.4 %
Allaple 28,859 32.0 %
Rbot 2,946 3.3 %
Parite 1,861 2.1 %
SdBot 1,101 1.2 %
Tenga 922 1.0 %
Agent 888 1.0 %
Expiro 673 0.8 %
Others 15,534 17.2 %

Table 1: Distribution of malware families spreading in the wild

Since the malware samples we collected comprise worms, bots, and other forms of autonomous
spreading malware, we need to identify all bots in order to study the corresponding botnets. Since our
study focuses on IRC-based bots, we can identify these bots during the behavior-based analysis with
MwSniffer: if we detect a successful connection to an IRC server during the analysis process, we have
identified a bot and its corresponding botnet. In total, we could identify 5,645 IRC-based bots this way, a
rate of 6.3% of the overall samples we collected. We also found many bot samples that could not establish
a connection to the C&C server, mainly because mitigation took already place or other causes.

Bot Family Number of Samples Percentage
Rbot 1174 26.4 %
Virut 664 15.9 %
SdBot 335 7.5 %
Parite 187 4.2 %
Bobic 149 3.6 %
IRCBot 134 3.0 %
PoeBot 127 2.9 %

Table 2: Overview of the top seven bot families spreading in the wild with alive control infrastructure

We analyzed the bot families with the help of the antivirus output to get a rough overview of the
distribution of bot families in the wild. Table 2 presents the top seven bot families identified this way.
Rbot, Virut and SdBot are responsible for about 50 percent of the botnets we found in the wild. Since the
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Figure 4: Trend in detection rate for four antivirus engines

source code of these bot families is publicly available, it is easy for an attacker to customize a bot and
begin to spread a new variant. Therefore, thousand of variants exist for these bots and antivirus engines
have a hard time to detect all of them. The discrepancy in Table 1 and 2 for families like Virut or Rbot is
caused if a malware sample can not connect to the C&C server during the analysis phase with MwSniffer.

4.2 Botnet Command and Control Server Distribution
All 5,645 IRC-based bot samples were analyzed with MwSniffer to extract information about the com-
munication channel used by botnets. In total, we could extract information about 3,290 unique botnet
C&C channels this way. Figure 5 presents the trend in detection of botnet C&C channels for the whole
measurement period. In the following, we present several statistics in order to characterize the distribution
of the botnet control structure.

Figure 5: Temporal analysis of the number of detected and new botnet control channels for the period
between June 19, 2006 and June 10, 2007
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Figure 6a depicts the geographical distribution of discovered botnet C&C servers, generated with the
help of the Geo-IP solution IP2Location. About 38.8% of them are hosted in the United States, taking
the leading place. China, Korea, Germany and the Netherlands follow, and their percents range between
7.5% and 4.9%. The geographical diversity of the control servers is rather high, with more than 37.8% of
all C&C servers hosted in other countries. These measurements are accurate to the extend of the Geo-IP
software, which claims to have an accuracy of more than 99% on country level.

(a) Geographical distribution of C&C servers (b) Distribution of network ports used for botnet C&C channel

Figure 6: Characteristics of 3,290 detected IRC-based botnet Command and Control servers

As shown in Figure 6b, about 36.1% of the discovered botnets use the standard IRC port 6667 to host
the C&C channel. This confirms the trend that botnets move more and more away from using a standard
configuration. Instead, most botnets nowadays use other TCP port for the communication channel. This
helps the botherders to evade simple port-based detection and inspection tools. About 1.3% of the botnets
we monitored even use TCP port 135, a port commonly used by Windows for file sharing.

Table 3 illustrates the distribution of the software used by the botherders to host the C&C server. The
majority of botnets use unreal, a well known open source IRC server. Commonly, the tool was used in
versions between v3.2.0 and v3.2.6, with v3.2.5 being the most used version in the wild. We also found
other free IRC daemons such as ircu, bahamut and hybrid, but their frequencies are quite small
compared to unreal. About 16% of active botnet C&C servers did not provide information about the
software tool they were running. Benign IRC servers typically uses other IRC servers, e.g., freenode uses
hyperion, IRCnet uses IRCD, and QuakeNet uses Asuka.

C&C Server Software Number Percentage
unreal 947 57.5 %
ircu 128 7.8 %
bahamut 117 7.1 %
hybrid 39 2.4 %
ratbax 15 0.9 %
Others 143 8.1 %
N/A 266 16.2 %

Table 3: Distribution of IRC server software used by botnets

Our long-term measurement also allows us to study the lifetime of a botnet, i.e., how long a C&C
server is typically used by the botherders. This time is mainly influenced by two events: mitigation and
alteration. Mitigation means that the C&C server is taken offline, e.g., with the help of hosting providers
or law enforcement. Alteration means that the botherder himself changes the structure of his botnet, e.g.,
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by “moving” the bots to another server. The lifetime of a C&C server is an indicator of the flexibility
of the command infrastructure. Figure 7 presents the distribution of C&C server lifetime we observed
during our study. We start to count the lifetime once HoneyBot enters the control channel and starts with
tracking. If we detect either mitigation or alteration of the server, we stop our measurement. The figure
shows that a large percentage of servers last for a long time, i.e., several months or even longer. We found
an average lifetime of about 54 days for the C&C servers we monitored. From the 3,290 botnets we found
during our study, 378 are still alive in the middle of June 2007.

Figure 7: Measured lifetime of C&C servers

4.3 Botnet Size Distribution
The size of a botnet is an important metric to evaluate the threat posed by it. In general, it is hard to
measure the real size of a botnet since attackers can obfuscate this information by modifying the C&C
server or other means [16]. To obscure the size of the botnet, botherders can modify the C&C server
to discard the responses of the IRC /list users and /list #channel commands. In addition,
botherders can set the user mode of the bots to be invisible: the status messages of the bots are then not
visible for all members of a channel. In such situations, the size of these botnets is hard to estimate.

The status information was not obscured by 1,904 of the 3,290 (57.9%) botnets we tracked in the
wild. For these servers, we can estimate the number of online visible users on a C&C channel by keeping
track of joining and leaving bots. In total, we observed about 1,520,000 distinct bot IDs in all botnet
channels. From the 1,904 botnets, another 1,110 botnets (33.7% of total number) did not obfuscate the IP
address by displaying an ID, but showed the actual IP address of a bot joining the control channel. This
allows us to estimate the number of infected machines. In total, we observed about 700,700 distinct IP
addresses. The biggest botnet we tracked during this period has controlled more than 50,000 hosts. Please
note that these numbers do not take churn effects caused by DHCP or NAT into account and are thus only
a rough estimate. Nevertheless, these numbers confirm the threat posed by botnets. An interesting finding
is that we observed about 32,000 of the total 420,000 IP addresses (7.6%) in at least two different botnets,
implying that these IP addresses are infected by at least two different bots.

We also actively queried the botnet C&C server to determine the botnet size. This measurement may
not be accurate since the botherder can obfuscate the size information returned by the server. Table 4
shows the reported number of bots for the queries /list users and /list #channel and the
status information reported by the C&C server on connect. Not all C&C servers responded to these
queries, but we can get an overview of the typical size of a botnet with the help of such a query.
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/list users /list #channel status information
current online visible reported by

global users users in channel C&C server
5K+ 64 4 57

2K - 5K 107 20 57
501 - 2K 214 65 164

101 - 500 121 141 257
11 -100 93 338 428

2 - 10 16 259 623
1 6 79 319

Table 4: Botnet size determined by actively querying C&C server

To determine the overlap between bot IP addresses and black lists, i.e., a list of misbehaving IP
addresses which for example send out spam mails, we used the black list from Spamhaus1. In total, about
61,500 of the botnet IPs were also listed in the blacklist, corresponding to a coverage of about 8.8%.

Again, we determined the countries / regions that the individual bots belong to. The geographical
distribution of all bots is shown in Figure 8. For our measurement setup, most bots are located in Brazil
(15.1%). Following, several Asian countries / regions including China, Malaysia, and Chinese Taiwan
host most of the compromised hosts. This indicates to some degree that the network security situation of
developing countries is worse compared to developed countries. In addition, we see a scattered distribu-
tion and a wide diversification of infected hosts all over the world with 197 countries / regions total.

Figure 8: Geographical location of 420,000 bots, corresponding to the location of the victims

Figure 9 plots the number of online visible bots versus time for a typical botnet. As shown in the
figure, the size of a botnet is changing over time. It ranges from only about 1,000 bots to more than 8,000
in this example. These dynamic changes can be observed in all botnets we tracked. Another observation
is the strong daily diurnal pattern: the size of botnets follows daily patterns, caused by infected machines
being powered on and off. This observation is consistent with the bot propagation model by Dagon et
al. [7] and implies that the size of a botnet is constantly changing.

4.4 Botnet Activities Analysis
With the help of our botnet tracking tool HoneyBot, we monitored the C&C channels of the tracked
botnets during their lifetime, and observed all commands issued by the botherders. Based on the observed

1http://www.spamhaus.org/
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Figure 9: Diurnal patterns observed for estimated size of a given botnet

botnet activities, we classify botnet commands into the following eight command categories: spreading,
download and update, DDoS, information theft, server hosting, bot login, bot control, and botnet cloning.

The absolute number of commands issued across all tracked botnet is summarized in Table 5. Spread-
ing commands are the most popular since botherders commonly try to compromise additional machines to
grow the size of the botnet. The DDoS category includes flooding-related commands used to attack other
computers on the network. These attacks are very efficient with botnets and the second most commonly
command issued. Botnet cloning is a special form of DDoS attacks where the controller orders each bot
to connect a large number of clones to the victim IRC network. This kind of attack is efficient against
other IRC servers. Download and update commands are used to distribute new malware or upgrade bots
to new software versions. These four categories of botnet commands are the most commonly used in the
wild, thus we give further results based on our analysis in the following sections.

Command Category Number of Events
spreading 10,891
DDoS attacks 9,755
botnet cloning 5,621
download/update 5,583
information theft 3,809
bot login 1,863
server hosting 398
bot control 780
Other 107

Table 5: Distribution of commands issued by botherders for 3,290 monitored botnets

4.4.1 Spreading Activities

A typical botnet spreading command looks like .advscan asn1smb 200 5 0 -r. The first dot is
called command prefix, it is used to identify commands issued by a botherder. advscan is a frequently
seen spreading command, and the parameters includes the module name used to exploit target hosts, the
number of concurrent scanning threats, amount of time between scanning threats, the time to scan (0
means forever) and the scanning tactic (-r indicates random propagation attempts).

60.8% of the 10,891 spreading events we observed use advscan and its abbreviation asc as the spread-
ing command. This observation is consistent with our finding from the source code analysis of several
popular bot families. Furthermore, about 9.7% of the botnets use .root.start or .ntscan (5.5%) /
.scan (4.5%) as spreading command.

The top six most commonly used spreading modules by our tracked botnets are shown in Table 6.
The module names indicate what vulnerabilities are exploited during the propagation attempts. Vulner-
abilities like asn1 (MS04-007), dcom (MS03-026), lsass (MS04-011), wks (MS03-049/MS05-12), and
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pnp (MS05-039) are rather old and patches are available for a long time, but nevertheless these exploits
are still very popular for botnet spreading. In addition, weak passwords are another main cause of bot
infections and used by the botherders to infected users.

Module Name Number Percentage
asn1 3310 30.4 %
dcom 1213 11.1 %
lsass 759 7.0 %
ntscan (weak password) 643 5.9 %
wks 40 0.3 %
pnp 33 0.3 %

Table 6: Distribution of exploitation attempts used by botherders

4.4.2 DDoS Activities

When the size of botnet increases to a certain range, it is often used by the botherders to launch attacks,
e.g., to perform DDoS attacks against other systems. A typical DDoS command issued by a botherder
looks like: .syn 76.X.X.X 6667 5 20000 This command performs a SYN flood attack on TCP
port 6667 for an amount of 20,000 seconds with 5 threads in parallel against the specified target.

In total, we observed 3,766 distinct victim IP addresses located in 76 countries which were attacked
via DDoS commands. Figure 10a shows the geographical distribution of these victims. Most victims are
located in the United States (31.8%) or Italy (11.7%). The other top countries include Kuwait, Germany,
Slovenia, Saudi Arabia, and Great Britain. There are only six victim IP addresses located in China.
Further analysis showed that the DDoS attacks targeting victims located in Kuwait, Slovenia, and Saudi
Arabia are mainly launched by a small number of botnets. This distribution result cannot really reflect the
general situation of DDoS attacks, but is an artifact of our monitoring scope.

(a) Geographical location of DDoS victims (b) Distribution of DDoS attacks

Figure 10: Characteristics of observed Distributed Denial-of-Service attacks

Figure 10b presents the distribution of DDoS attacks types. TCP flooding, SYN flooding (a special
form of attacks against TCP), and UDP flooding have quite close frequencies with 32.3%, 28.3% and
21.6%, respectively. The commands we observed most commonly are !tcp (8.8%), .tcpflood (8.3%), and
.wisdom.udp (5.2%). The most active botherder attacked 335 distinct victims in 18 different countries
during a period of about two months. On the other hand, we observed a victim that was attacked by nine
different botnets during the whole measurement period.
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4.4.3 Download and Update Activities

A typical download and update command is for example:
!d0wnl0ad http://.../sp4mb0ts/XXX.jpg C:\hook.exe 1

The command word is the obfuscated word download and the download files are commonly uploaded to
free webspace providers. The third parameter is the local filename used for the downloaded file and the
last parameter instruct the bot to also execute the binary once the downloaded has finished.

The most common download and update commands include download / dl (71.1%), update / upd
(10.9%), and wget (8.7%). In total, we observed 5,583 events, which resulted in 2,219 unique URLs that
we also downloaded. The geographical distribution of these update URLs is as follows: 41.8% are located
within the US, 22.0% could be observed in China itself, and 5.9% are located in Russia.

Via this update mechanism, a botherder can for example install a new version of the bot. This new
version commonly includes only small modification, e.g., a different executable packer to evade detection
of antivirus engines or a new C&C server to move the bots to a new infrastructure. Furthermore, the
botherder can install additional malware like keyloggers or SOCKS proxies on the victim’s machine to
use it for other nefarious purposes. We also monitored 129 visit commands, which causes a bot to visit a
certain website. These commands are typically used for click-fraud.

5 Conclusion and Future Work
Botnets have become the first-choice attack platform for network-based attacks during the last few years.
These networks pose a severe threat to normal operations of the public Internet and affect many Internet
users. With the help of a distributed and fully-automated botnet measurement system, we were able to
discover and track 3,290 botnets during a period of almost twelve months. Based on the analysis of the
collected information, we gave a broad overview of the current botnet phenomenon and presented several
characteristics and features of IRC-based botnets observed in the wild. This information can be used to
get a deeper understanding of the threat posed by these networks. Furthermore, these results can also
leverage research in the area of botnet detection, mitigation, and disruption: only by understanding the
problem in detail, we can develop efficient countermeasures.

Our results show that the botnet problem is of global scale, with a scattered distribution of the control
infrastructure and also a scattered distribution of the victims. Furthermore, the control infrastructure itself
is rather flexible, with an average lifetime of a C&C server of about 54 days. We thus need automated
counter measures to stop this threat.

In the future, we need to extend such a measurement study for non-IRC-based botnets to also un-
derstand that phenomenon in more detail. Botnets seem to shift away from IRC to protocols like HTTP,
Peer-to-Peer-based protocols, or custom protocols. We also need to study these types of remote control
networks in order to be able to develop efficient counter measures for these threats.

Measuring the size of a botnet is still an open research problem. By counting the joining and leaving
bots within a channel or querying the IRC server for this information, we can at least estimate the actual
size as presented in this study. But if the botherder modifies the server, this kind of information is often not
available. Measurements like DNS snooping can be used to get a rough overview of the botnet size [15],
but the reliability and accuracy of these measurements is still not clear.
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