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ABSTRACT. A certain class of stochastic partial differential equatlons of parabolic type
is studied within whlte noise analysis.

1. Introduction

In [Ch 89], P.L. Chow proposed stochastic partial differential equations of the form
| ¥ , |
ou(t,z) - Lu(t, 2) = 1i(t,2)Vu(t, ), BRNERY

as a model for the transport of a substance in a turbulent medium. L is an elliptic second
order differential operator acting in the space variable z € IR?. Thus the left hand side
of (1.1) describes the diffusion (governed by L) of the density u(t,z) (at z and at time
t > 0) of the substance. The right hand side of (1.1) expresses the coupling of the velocity
field of the substance to a random field 7(¢,z), which models the turbulent velocity field
of the medium. This field is the noise of n(t,z) which will be assumed to be of the form
n(t,z) = fot o(s,z)dB(s) where o is a deterministic function and B is a d-dimensional
Brownian motion.

As Chow observed in [Ch 89)], generalized random variables arise quite naturally in
the discussion of (1.1), and therefore white noise analysis [HK 93] seems to be a natural
framework for this type of equation. In fact, as we shall see in Section 4, the coupling of the
gradient of u to 7 brings a singularity into the corresponding integral equation, which does
not allow (at least not in a straightfoward manner) for a formulation in the conventional
framework of the It6 calculus. On the other hand, equatlon (1. 1) can indeed be formulated
and solved within white noise analysis. In the present paper, explicit solutions for (1.1)
will be found and studied for a special choice of L and o (Section 3), and existence and
uniqueness of weak solutions of (1.1) will be proved in the one-dimensional case (Section
4). The necessary ingredients from white noise analysis will be collected in Section 2.
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I want to remark that a very large amount of work concerning stochastic partial -

differential equations (SPDE’s) within white noise analysis has been done by the group
around B. @ksendal in the recent years. The interested reader is referred to @ksendal’s
contribution in this volume.

In the present article, I did not try to present the most general mathematical results
concerning (1.1). Rather, it was my aim to show with a minimal technical effort how
classical fixed point theorems combine with some of the tools of white noise analysis (S-
transform, characterization theorem, and differential operators), to give existence and
uniqueness of solutions. Moreover, I wanted to point out the peculiar behaviour of the
solutions of (1.1) with respect to different interpretations (“Itd versus Stratononvich”) of
the noise term (cf. Section3). A more general theory along the lines of this paper will be
published elsewhere [DP 94].

2. Review of White Noise Analysis

In this section I give a sketch of white noise analysis which is suited for the applications
which are intended in later sections. For a general account on white noise analysis, the
interested reader is referred to [HK 93], the references quoted there and to the contribution
of L. Streit in this volume.

Consider the white noise probability space (S'(IR), B, 1) where §'(IR) is the Schwartz
space of tempered distributions, B is its weak Borel o-algebra and u is the centered
Gaussian measure on B whose covariance is given by the inner product of L2(IR, dt) (where
dt denotes Lebesgue measure). As is well-known, this probability space is a model for the
time derivative of Brownian motion. We denote by (L?) the L*-space over this probability
space.

(L?) contains a dense subspace (S) of smooth random variables which carries a certain
metric topology (e.g., [HK 93]). Its dual (§)" is called the space of Hida distributions.
(8)" is sufficiently large to contain many generalized random variables which arise in
applications. The canonical bilinear pairing between (S)* and (S) will be denoted by
{(*,-)- In order to give elements in (S)* a “visualization”, we introduce the S—transform:
for ® € (S)*, ¢ € S(IR), we set

S®(£) := (®,: 9 1)), (2.1)

which makes sense because for { € S(IR), the normahzed exponential w —: exp( (w,8)) :=
- exp((w, &) = 3|€3), w € S'(IR), belongs to (S). (We denote by (-, -) the dual pairing between
- S'(R) and S(R) by | - |2 the norm of L?(R).) Indeed, it turns out that the function (2.1)
on S(IR) has very nice properties namely, it is a function of the following type.

Definition 2.1. Cons1der a mapping F from S(R) into €. F is called a U- ~functional if it
satisifes the follOng two properties:

- C.1. F is everywhere ray entire on S (R) i.e., for all 77, € € S(IR), the mapping A —>
F(n+ Xf), A € R, has an entire extensxon,
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. C.2. there exist constants K;, K; > 0 and a continuous norm | - | on S(IR) so that
for all { € S(R), z € C, :

|F(2§)| < Ky exp (Ka|2|*|€]*). (22)
The space of all such mappings is denoted by .

Remark. It is interesting to note that F € U/ implies that F has an entire extension to
the complexified Schwartz space S¢(IR) (i.e., F extends to a function on Sg(IR) which is
continuous and such that C.1 holds for complex 7, €). This has been proved in [KL 94]

The following theorem [PS 91] (cf also [KL 94]) shows that the elements in (8)* are
characterized by thelr S—transform and U-functionals.

Theorem 2.1. The S-transform is a bijection from (S)* onto U.

There are many variants, generalizations and extensions of this result. The interested
reader is referred to [HK 93, KL 94] and the references quoted there. In passing, I want to
mention a result in [BT 94] which says that ¢ can be equipped with a topology (arising
naturally from (2.2)) so that the S-transform becomes even a homeomorphism.

Next we discuss differential operators acting on functions on the white noise space.

Let ¢ be a complex valued function on &' (R),.and 8 € S'(RR). The Gateaux derivative
Dgp(w) of ¢ in direction 8 at w € S'(IR) is given by '

d.

Dep(w) := —p(w + A9) K
whenever the derivative exists. It can be shown (e.g., [HK 93, Chap. 5]) that for all 8 €
S'(IR), Dy extends to a continuous operator on (S). For the special choice § = &, t € IR,
- this operator will be denoted also by 8;. , t € IR, can be considered as a gradient on the
white noise space.

By 37, t € IR, we shall denote the adjoint of 8; which acts on (S)*. It is remarkable
(though easy to prove) that both operators have very simple intertwining relations with
the S—transform:

50p(6) = 52755(6), (23)
Soe(E) =652, (24

where ¢ € (5), @ € (S)", and 2 6€(t) denotes the Fréchet functlona.l derivative with respect
toé.

It is well-known (e.g., [HK 93, Chap. 8]) that 3 implements a stochastic integral,
the Hitsuda-Skorokhod integral, with respect to Brownian motion which extends the Ito
integral. Heuristically speaking, the reason is that for ® € (S)*, 9} ® is equal to the Wick
product [HK 93] (cf. also the contribution of B. @ksendal to this volume) B(t) o ® of white
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noise B(t) € (8)* with & (which is again in (§)*). If X is a mapping from R into (S)"
such that ¢t — 87 X(t) is weakly integrable (with respect to Lebesgue measure), then we
denote

/ X(t)dB(t) := / ar X (t) dt,
R R
=/ X(t)o B(t)dt
R

where the last two integrals are in the sense of Pettis and belong to (S)* (e.g., [HK 93]).
From (2.4) we obtain

s( [ x®dB@)© = [ sx@y@ewd, ¢ e S0, (2.5)
R R

Thus the S—tranform turns the dB(t)-integral into one with respect to {(¢)dt. Relation
(2.5) and Theorem 2.2 will be at the basis of our strategy to solve equations of the type

(1.1).
3. Explicit Example

We consider the following spatlally homogeneaus case of the turbulent transport SPDE

(1.1)
?—u(t,x) - —V(t)AU(t, z) = 1j(t) * Vu(t, 2), (3.1)

with (t,z) € R4+ x R and v € L} (Ry,dt),v > 0,0 € L _(IR4,dt), and the initial
value u(0,-) = &, i.e., the Dirac distribution at the origin. (Without loss of generality
for the following computations, we consider only the case of one space dimensions.) The
* indicates that we shall use as well a Stratonovich interpretation (“x = o”) as an It
1nterpretatlon (“x = 0”) of (3.1). Flrst we consider (3.1) in Stratonovich sense. Then its
It6 form is given by

(,%u(t,x) - %(V(t) +a()))Au(t, z) = o(t)B(t) o Vu(t, z). | (3.2)

Let the S—transform of u be denoted by #, then (3.2) becomes for £ € S(R) (cf. (2.4)),

28(6,2)(E) ~ 5(00) + oO)AUL D)) = SWEDTVAL O (33)

Now apply the Fourier transform F (in the space variable z), and denote Fu by %, then
we get the following equation

05t 0)(€) + (1) + o)L PNE) = ipo (DT BNE),  (34)

(t,p) € R4 x IR. We have #(0) = (27)~7, and the solution of (3. 4) is readily computed
If we let T(t) = fo(v(s) + 0'(5)2 Yds,t € R+, then we obtain : :

_a(t,p)(s):(zw)—iexp,(—§p () +ip / o()e(s)ds),  (35)
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as the solution of the initial value problem for #. It is easy to invert the Fourier transform
in (3. 5) with the result
Su(t, 2)(€) = pr(y (2, (00, O)12(w)) o
' -1 1 ! 2 (3.6)
= @rr(t) "} exp (= (2r(8) " (z - / o()E(s) ds)”),
0

where pi(z,y) is the usual heat kernel of the Laplacian and o¢ = o - 1jg¢). In the next
step we would like to invert the S-transform in (3.6). To this end we use the following
more general result. We let X. denote the canonical coordinate process on LZ(RR), i.e., the

continuous extension of X. : S(IR) —(L?), X¢(w) = (w, &), w € S'(R), to L2(R).

Lemma 3.1. Let A\,A; € €, f,g € L?>(R). Assume that |1\1Hf|2_2 < 1. Then for £ €

S(R),
S(exp(z M X} + 1 X))(€) = COu o, fo)exp (Salf £ +(G,6),  (37a)
where
1 ) 1 A /\2 1 .
COuAe f9) = (1= MIfR) Fexp (5T (£ + 3010 ), (37)
M
= 3.7¢)
1- M\ Ifls (379
= T (f,9)f + A (374)
1— /\1 lf|2 v g 29 . .

The relations (3.7) help to find the inverse S—transforms of exponentials like on the |
right hand side of (3.7a) via the following. For given a, f and G, one finds

a

= -———-———Tf—lz— , /\2 = 1, ' (38&)
g=G- laii I;)lz f | (3.8b)

The proof of Lemma 3.1 is a straightforward calculation (it seems to be of advantage
to decompose g orthogonally in Lz(R) along f). Relations (3. 8) follow from trivial algebra.

Corollary 3.2. Let Tt >0,z € R f € L*(R). Then for E € S(R),

Spe(, X5 )(§) = Pryys2(2, (f, )2 (m))- - (3.9)

(3.9) follows from (3.7) by a simple.computation.
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Now we are in pos1t10n to compute the inverse S—-transform of (3.6): from (3.9) we
can read off that f = oy, and with y(t) = fo (s)ds,

u(t, z) = pyy(z, Xo,)

1 t ) 3.10
= (2my(t)~F exp ( ~ (29(8) 7} (2 - / o(s)dB(s))"). (10

Of course, it is the same result as in [Ch 89], obtained there in a slightly different way.

Let us return to equation (3.1) and now take * = ¢, i.e., we consider (3.1) in It6 sense.
In"the preceding calculations this amounts to replacing (v(t) + o(¢)?) by v(t). Thus, in
this case we find for the S—transform of the solution instead of (3.6) the formula

v(t,:c)(ﬁ) = p‘y(t)(xv(atag)Lz(R))v : (311)
and v solves the equation
%v(t,x; €) — %u(t)Av(t, z;€) = o(t)¢(t)Vu(t, z; £), | (3.12)

for every £ € S(IR). We can still apply Corollary 3.2 to find the inverse S— transform of
(3.11), but this time only if fo (s)ds — fo o(s)?ds > 0. In that case,

u(t, z) :px(,) (x,/ o(s) dB(s)), (3.13)

where k(t) = fo v(s)ds — fo o(s)?ds. If fo v(s)ds = fo (s)%ds, we recognize (3.11) as the
S-transform of Donsker’s delta function:

u(t,z) = 5,,(/0 o(s)dB(s)). -' (3.14)

In view of the characterization theorem, Theorem 2.2, we see that also for x(t) < 0, (3.11)
has an inverse S-transform (in (§)*). However, it is no longer given by (3.13): for x(t) <0
this expression is no longer real, but since (3.11) is, so must be u(t,z) € (S)*. I have tried
a number of times to find an explicit expression for u(¢,z) but did not succeed (although
it is not hard to write down its chaos expansion).

Note that for ¢t € IRy with k() > 0 we get a very smooth solution: u(t,z) € LP(p)

for all p > 1, which for «(¢) | 0 becomes Donsker’s delta of X,,, and then — as «(t)
gets negative — becomes a generalized random variable: one can prove that u(t,z) does
not belong to L”(y) for any p > 1. Of course, we can arrange the coefficients v and o
such that u(t,z) “oscillates” in any given way between being a smooth and a genuinely
generahzed random field, each time passing through a Donsker delta.

This quite different behaviour of the solution with respect to the interpretation of the
multiplication by the noise in (3.1) might be of help concerning questions of modelling
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In the remainder of this section we study in more detail the question, in which senee
u(t,z) = S~'v(t,z) is a solution of (3.1) with * = o (which we assume from now on)
Obviously we have that for C € S¢(R),

v(t,:z; C) = (27:'7(t))_ 2 exp ( ~3 l(t) (z - /t a(s)¢(s) ds)é),

is continuously differentiable in ¢t € (0,400) for all z € IR, and for t € (0 +00) it is
C®inz € R, and all derxvatlves are continuous on (0,+o00) x IR. It is also obvious
that 2 2oty z;-), 2 = v(t,z;°), 25 v(t z;-) belong to G? . ((0,+00) x R;U), where this space
is deﬁned in Appendix 1. It follows from Lemma A. 1 3, that

s-! %v(t, z) = gt—u(t, z)

s-1 —a—v(t, T) = b-a;u(t, z)

2 2
16 (s :c)-- 9 u(t ),

5~
where the right hand sides denote weak derivatives in (S)*, and they are all Weakly con-
tinuous functions from (0, 400) x IR into (§)*. The fact that v(t,z;¢) solves for every
¢ € S(R) equation (3.12) means that u(t,z) solves (3.1) weakly on the dense subspace £
which is the (complex) linear span of {exp(< -,¢ >),£ € S(IR)}. But then u(t,z) solves
(3.1) weakly on (S). Now we consider the weak limit of u(t,z) as ¢ falls to zero. Let
f € S8(IR) and consider for £ € S(RR),

/ f@)v(t, z;€)dz = (2m)7* / fr(t)¥z)e b1 ot g,

Obviously, the last expression converges to f(0) as ¢ | 0. Moreover, fort >0,z € €, £ €
S(RR), we find

|/ F@yolt,z: 26) da| < [f], eFH7O7 U e o)

as well as ‘
|v(t, z; 2€)| < (27v(t))"2 1O T[] o (w)E(u) du)?

In view of Lemma A.1.1, the last estimate shows that for t > 0, {u(t,z),z € IR} is bounded
in (S)_, for some p € ]N 0. Moreover, for ¢t > 0, z — v(¢,z; ) is continuous for every
£es (R) Thus, by Lemma A.1.2, z +— u(2, z) is weakly contlnuous and therefore

/f(:c)u(t, r)dz

exists as a Pettis integral (actually as a Bochner integral), and its S-transform is given by

/ f(@)v(t,z;€)dz, € € S(RR).

7




But this expression converges to f(0) as ¢ | 0 for every £, which entails that [ f(z)u(t,z)de
converges weakly to f(0) on £. On the other hand the estimate on | f(z)v(t, z; z£) dx|
above proves that (cf. Lemma A.1.1) [ f(z)u(t,z) dz is bounded in some (S)_ » P € INo,as
t | 0. Hence it converges weakly to f(0). In this sense, u(t,r) admits the initial condition
u(t,) > bpast]O. '

In the case of a general equation of type (3.1) our strategy will be to solve an associated
integral equation. Let us investigate the concept of a weak solution for the integral equation
of (3.1), in order to prepare the next section.

The fundamental solution ¢ s(z,y) of ;% - %V(t)A is given by

Qt,s(fﬂ, y) = p'y(t)—'y(s)(xv y)a

where as before p(z,y) is the heat kernel. Thus the initial value problem for (3.1) (* =
o) with u(0,-) = uo (deterministic again, for 31mp11c1ty) is reformulated as the integral
equation {cf. also [Ch 89])

u(t,z) = (P,,(t)uo)(:z:) +/ (P7(t)_7(,)Vu(s, ‘-))(m)a(s) © dB(s), (3.15)

(P f(z) = f pe(z,y)f(y)dy). Taking 1nformally the S- transform of (3 15) we arrive at the
1ntegral equatxon

o(t,2:€) = (Pyyuo)(e) + / (Pyg—rta)Vols, 3 ) (@) (s)E(s) ds.  (3.16)

Let again ug = 8o, so that the first term on the right hand side of (3.16) becomes p.(4)(0, z).
It is not hard (though a bit tedious and certainly no surprise) to verify that v(t, z; {) given
in (3.11) solves (3.16). S™'v(t,z) = u(t, x) is the weak solution of (3.15), as we shall argue
now. We had already seen in our previous discussion that for ¢ > 0, u(t,z) is C' in ¢
and C*® in z, and that V and the S-transform commute, i.e. S™!Vu(t,z) = Vu(t,z). In
order to show that the integral (P,(y—(s)Vu(s,"))(z) exists as a Pettis integral in (S),
we estimate v(s,z;2£) fors >0,z € R, 2z € C, £ € S(R), as follows:

905,25 20)] = [1(9)" (& = 200, )@r1() ™ exp (= 21(9)7 (2 - (00,6)?)|
< (27y()°)” ¥ (|2l + |2 (o0, ©)))-
exp (= 570970 = 2lal el [0, O] = |2 (04, )7),

where we denoted o5 = 0 - 1jp ;). Now apply the inequality +2ab < ea? + 1%, > 0,

withe =1:°

™

2J2] |21 (00, )] < 22?4+ 2|2 (00 €)°
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so that
Vs, 23 26)] < (27()*) ™ (2] + |2] (05, §)]) e~ ¥7 T " B () T el (en,0)®
< @07 ) T (14 ()7 H 2l (04, €)] ) BT 1o 0"

The last estimate shows that for s > 0, Vu(s,-;-) € GZ(IR;U) (cf. Appendix 1), and so by
Lemmas A.1.1, A.1.2, for s > 0, £ — Vu(s, z) is weakly continuous and bounded in some
($ )__ ,P € INy. Consequently, this mapping is Pettis integrable against a finite measure on
the real axis, and hence (Py(4)—(s)Vu(s,-))(z) ex1sts as a Hida distribution. Now consider
the ds— 1ntegral in (3.16). For 0 < s <t we have

(Pyy=2(9) V¥ (3,3 26))(2) = —v(t) (= - 2(0376))p7(t) (z,2(0s,8)),

which is obviously in G%([0,t];U) in the s-variable for z € IR,t > 0. Therefore, by
a similar a.rgument as above (z0(s){(s) is trivially taken into account) we have that for .
u(t m) ~lu(t, z) the integral on the right hand side of (3.15) is a well-defined expression
in (S)*. (3 16) implies that (3.15) holds weakly on a total subspace of (S), and consequently
u(t, z) solves (3.15) in weak sense.

4. The One-Dimensional Case

Let © denote IR or a domain in JR. Consider D :=[0,1] x  and denote typical elements
in D by (t,z),(s,y), etc. where t,s € [0,1], z,y € . We are interested in second order
differential operators L of the following type in Q

Lf(z) = a(t,z)f"(z) + b(t,z)f'(z), fe€C*Q),(t,z)eD.

We assume that L is uniformly elliptic: there exists ¢ > 0 so that for all (¢,z) € D, a(t,z) >
. We also need a smoothness assumption on the coefficients a, b, and for convenience we
suppose that they are in Cg°(D). Under these conditions, the heat equation (—% —-L=0
for L has a fundamental solution p(t, z; s,y) which admits the following bounds (see, e.g.,
[Fr 83]): fort > s > 0,
2
plt,2i,0)) S K (2= o),

I%P(t,w;s,y)l < K(t — s) e

: r~y)%
[Pzl < Kt )*uL

where K and X are appropriate stricfly positive constants.

We shall also write for f € Cy(2) and a kernel g on D x D.

@fe) = [ atzisn) )y,
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and for u € Cy(D)
(Qu)(t,) = / ( /Q ot 23 5, y)u(s, y)dy)ds.
B /o (Qu,su(s, -~))(w)ds, |

and “use similar notations for kernels p,r etc. and their associated integral operators

P,s, P, R:s, R etc.
Let r'](t,.:z:) denote the (informal) noise of

n(t,z) = / o(s,z)dB(s), (t,z)€ D,

where B is a Brownian motion, ¢ € C; (D).

Our main interest is to study the informal equation
2u(zt x) — Lu(t,z) = 9(t :c)—(z-u(t z), (t,z)€D ‘(4 1)
6t ? ’ - n b az ) b * b .

for some random function u on D. Obviously, (4.1) needs interpretation, and the exam-
ples and computations in -Section 3 suggest to allow also for generalized random fields
u(t,z), (t,2) € D. The “multiplication” by the noise 5 in (4.1) will be interpreted in
Hitsuda—Skorokhod sense throughout the present section: 7(t,z)w = o(t, z)B(t) o w for
any (generalized) random variable w. Moreover, [ was not able to show that the solution
u which will be constructed below is differentiable in z. Thus we reformulate this equation
in a way that can be given a proper sense. For simplicity, we shall consider here only initial
conditions for (4.1) which are given by a deterministic function ug € Coo(£2). (Here and in
the following Coo(X), X locally compact, is the space of continuous functions (with values
in IR or €) which vanish outside every compact, i.e., if f € Co(X), then for givene > 0 .
there exists a compact C in X with |f(z)] < € for all z € C*¢. In particular, every such f
is uniformly continuous.) As in [Ch 89], we rewrite (4.1) as an integral equation:

o St . 0
u(t,z) = /Q p(t, 730, y)uo(y) dy + / L P(t,7i5,)i(s,y) 5ou(s,y) dy ds,

or

u(t,z) = (Prouo)(z) + / (Pr,s0(s,-)Vu(s,-))(z) dB(s). (4.2)

Due to the above mentioned difficulties about the differentiability of u, we do an informal
integration by parts in the convolution with P, and write this as

u(t, z) = (Prouo)(x) + / (Q3,u(s,))() dB(s), (4.32)
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where Qf ; has the kernel:

q°(t,z;s,9) = —[p(t, 7; s,‘y)a—i&(% y) + (a—zp(t,w; $,¥))o(s,y)]. (4.3b)

Using the above given estimates on p(t,z;s,y) and its y-derviative, we can bound the

kernel by

lg° (¢, z; 3, y)| < K( 1e™2%5

Voo +lofeo)(t —5) e

Here and below, | - | denotes the sup-norm (on D or on , dependmg on the context).

Note that for s ~ t, g% produces a s1ngulanty of the type (t — s)~ %, which is not square-
integrable in s. (The other factor (¢ — s)~ % is for the normahzatlon of the Gaussian
kernel. Also, the case L = A shows that this singularity does not arise from the lack of
a better estimate.) Hence the stochastic integral in (4.3a) cannot be interpreted easily in
the usual sense, and we shall interprete in Hitsuda-Skorokhod sense.

We shall say that a mapping u : D — (S)* is a weak solution of (4.1) in Coo(D; (S)*)
if for every ¢ € (S), ( ) € Coo(D), and if (4.3a) holds. Here, we define

(4.4)

Q7 u(s, )(=)

as the element in (S)* which for ¢ € (S) is given by (t > s)

Q7 su(s, )(z), ) = ]n ¢° (6,23 5,9)(u(s,v), @) dy,

i.e., by the integral operator QJf , with an integral in the sense of Pettis.

We study (4.3a) by taking its S-transform. Let { € S(IR) and Su(t,z) = u(t z).
Then the S-transform of (4.3a) at £ is

a(t, 2)(€) = (Poouo)() + / (@235, )(E)) (2)€(s) ds. (45)

It will be useful to consider (4.5) for fixed £ but to generalize to £ € S¢(IR) and a more
general “initial” value vo(t,z). lLe., we consider (the {-dependence of v being suppressed
to simplify the notation): v € COO(D) and the equation

o(t,7) =, vo(t,%) ¥ / (Roco(z, ))(x)ﬁ(S) ds, (49

for fixed £ € S¢(IR) and a kernel r(t z;8,y) of Ry, whlch is continuous on D x D\
{diagonal} (the diagonal in D x D is the subset {(t,z;3,y), t = s, ¢ = y}), which satisfies

(2,25, 9)| < Ki(t — s)~ e 252 (4.7)
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where K is some constant. We are going to solve (4.7) by a fixed point method on the

(complex) space Coo(D). Due to the facts that the kernel r has an integrable singularity,

and that it falls off rapidly at infinity, it follows by standard estimates that R, maps
Co(D) into itself. Thus the mapping T¢ defined by

(Tew)(t, z) := vo(t, x) +/0 (Rs,w(s,"))(x)é(s)ds : (4.8)

maps Coo(D) into itself, and the solution of (4.6) is a fixed point of T¢. In order to show
that T¢ has a unique fixed point in Coo(D), we equip Coo(D) with the following norm

ol = R [w(t, )| ¥, ) (), - (49

IWhere ¥1,p(¢) > 0 is the unique solution of

’pl,p(&)(t) =1+ P(f)/o (t - 5)—%%,;:(5)(3) ds, ' (4.10)

with p(¢) := 1 + K3|€|eo, K2 some constant which we choose below. In Appendix 2 it is
shown that | - |¢,co is equivalent to the usual sup—norm. In particular, (Coo(D), | |¢;00) is
a Banach space, and we only need to prove that T is a strict contraction with respect to
| - |¢,0o- But this follows from the following estimation for v,w € Cuo(D): let (¢,z) € D,
then

ITeo(t, z) Tew(t,z)| =
= / Rus(0(s,7) = 05, )) (E() s
< Kil€loo / / (1 = ) e o, ) — (s, )] dy ds

;ﬁ

<K|€loo/(t—s )~ Elu(s, ) = w(s, )loods/(t—s)" Ay

= Koy fF e [ =706, — (s, s

= Ko/ Fleke [ (6= ) Bt (6 b (oo )~ s, Yo ds
\f Elecl — wle.co /(t—s) wl,p(e)(s)ds |
- x0T el — b€ (1s0(0) ~

< Ko/ elon© o = w2
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where we used 1, ,¢) > 0 (cf. Lemma A.2.2), and equation (4.10) in the last equality.
Thus we get

' n -
e~ Tewlgon < Ky Ild©) o = wle e

and it suffices to choose K; = Klv\/g so that T¢ is a strict contraction. (Recall that
K; = K(|Vo|s + |0|oo) in our original problem.) Hence we have proved the following

Lemma 4.1. For every { € S¢(IR), (4.6) has a unique solution u(t,z;£), which — as a
function of (t,z) € D - belongs to Coo(D).

Next we study ¥ as a function of £ € S¢(IR) in more detail. First we derive an estimate
of Gronwall type. Similarly as in the proof that T is a contraction, we can bound #(t, z)(€)
as follows: '

]ﬁ(t,z)({)l < |v0|oo + K]I&loo/o (t - 8 _%Iﬁ(s, )(E)Ioo ds L(t - 3)"%3_'\1‘;_——?1(13/ _

— [voloo + K \/§ el [ (6= ) Halo, YOl do

and hence we have

00t WOl < vl + Ky el [ (¢ = 5)Hale, N E)hen o

Since (t,z) ~— @(t,z)(£) is for every ¢ € Sg(R) in Coo(D), it follows that t +—
[t(t, - )(€)|oo is continuous on [0,1]. Thus we may apply Lemma A.2.4 in Appendix 2
to conclude the following result.

Lemma 4.2. Foreveryt € [0,1],¢ € S¢(IR), the unique solution of (4.6), @(t, z)(¢), admits
the following bound

~ t t
0t o < ool(1+ K€y [+ expl(REn7 L 1), (a11)
In particular, for some constants K3, K4 > 0, one has

[8(E)loo < Kslvolooe™ ¥l (4.12)

Now let £ be of the form ¢ = 9 + 2(,n,( € S(IR), z € €, and write

u(t, z)(€) = u(t, z; 2).

We are interested in the analytic properties of z — u(t,z;2). If z = z1 + 12y, 21,22 € R,
it is not hard to use the same methods as before to show that

_ %ﬂ(t,x;z}, 1 =1,2, (t,z) € D,
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exist. But then 5 L 7(t, z; z) satisfies

(2 = [ (07,5500, 5O @E) s

‘and hence Lemma 4.2 implies that -Z4(t,;z) = 0. In other words:-

Lemma 4.3. For all (t,z) € D,n,( € S(IR), the mapping
s s 2ty 27 + 20)

1s entire.

By Theorem 2.2, it follows that @(t, r) is the S—transform of an element u(t,z) € (§)*.
Using the bound (4.12) and the continuity of (¢,z) = u(t,z;€), £ € S(IR), we can now
apply the same reasoning as at the end of Section 3 to obtain the final result:

Theorem 4.4. For every initial condition ug € Co(D), equation (4.1) has a unique weak
solution in Coo(D; (S)*).

It is clear that Theorem 4.4 can be generalized in many ways. For instance, one can
choose more general initial conditions, the conditions on the coefficients a, b, o, can be
improved, the method of proof generalizes to d-dimensional domains and certain non-
linear terms can be added to (4.1). Moreover, the arguments leading to Theorem 4.4 can
also be used to discuss other equations, such as anticipating stochastic differential and
stochastic Volterra equations (cf. also [CL 93]). All this will be worked out in forthcoming
papers [DP 94].

Appendix 1: Weak Differentiability

In this appendix we establish some results concerning the calculus of Hida dlstrlbutlons
which depend on a variable in IR?. The notions of continuity and differentiability used
here are formulated in the weak topologhy of (§)*, although most of what is stated here
holds also (with a little more care in the arguments) for the strong topology.

Let O be an open set in IR?, and consider a mapping f from O into (S)*. Let o € O
and k € {1,...,d}. We shall say that f has ¢ weak partial derivative in direction k at xo,
if there ex_istslan element in (S)* denoted by (Dx f)(wo), so that

R (f(zo + her) = f(20)

converges weakly in (S)" to (D f)(zo) as h converges to zero. (e is the unit vector in
~ R%in direction k.) If f has at all points z € O weak partial derivatives in all directions
k=1,...,d, such that for all k = 1,...,d, z — D f(z) is weakly continuous from O
into (8)*, we say that f is weakly continuously differentiable in O. The space of all such
mappings will be denoted by CL(0;(S)*). Obviously, if f € CL(0;(S)*), then for all
¢ €(8), z — (f(z), ) belongs to C'(0).
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Assume that for all z € O, k = 1,...,d, D¢ f(z) € (S)" exists. Then we can repeat
the preceding considerations: for n € IV we shall say that f : O — (S)* is n times
weakly continuously differentiable in U, if for every multi-index a = (ay,...,aq) of length
la| = a1+...+ax < n, the weak partial derivative D(z) = (D" - -- Dg* f)(z) exists for all
z € O, and is a weakly continuous function in O with values in (S )*. The class of all such
mappings is denoted by C2(0; (S)*). C2(0;(8)*) = Cw(0;(S)") is the space of all weakly
continuous mappings from O into (S§)*, C2(0;(8)*) the space of those f : O — (S) , such
that for every n € IV, f € Cy =(0;(8)” )

In the following we shall give criteria for when a U —functlona.l which depends onz € 0
has an inverse S-transform in C%(0;(8)"). First we make the following definitions.

Let v be a mapping from O into the space U of U—-functionals (cf. Section 2). We say
that v 1s locally of uniform growth less than two, if every z € O has a neighborhood O; in
O, such that there exist K3, K5 > 0 and p € IN, so that for all z' € O,, E € S(R), z € C,
we have the estimate : ‘

IU(IB - 26)| < Klekzlzl €13,

The space of all mappings from O into U which are locally of uniform growth less than
two will be denoted by G,(O;U). If O, above can be chosen as O for every z € O, then
we simply say that v is unzformly of growth less than two, and denote the corresponding

space by G2(0O;U).

The following is a re-statement of a result in [PS 91] (cf. also [KL 94)).
Lemma A.1.1. Assume that v € G%(O;U). Then the family {f(z) = S~'v(z);z € O} of
Hida distributions is bounded in (S)_ . for some q € INg.

Next we prove a criterium for weak continuity of a family of Hida distributions. Denote
by C:u(O U) the subspace of G?,(O;U) consisting of those v so that for all £ € S(R), T —

v(z; ) is continuous from O 1nto cC.

Lemma A.1.2. If v € C1y(O;U), then S~tv € CyW(0;(S)%).

Proof. Let z € O. Then v € G%(O,,U) for some neighborhood O, of z. By Lemma A.1.1
we know that {f(2');2' € O;} is bounded in some (S)_,, say by M > O.

Let £ be the (complex) linear span of {exp({(-,£)); ¢ € S(IR)}, which is a dense sub-
space of (S). By hypothesis, for every ¢ € £, the mapping ¢ — (f(z), 1/:) is continuous.
Now let € > 0 and ¢ € (S) be given. Choose ¢ € £ so that [lp — ¢, , Choose
6 > 0 small enough, so that {z';|z — z'| < §} C O,, and such that |z — z | < 5 1mphes

(f(2),9) — (F(") ¥l < 2
Then
[(f(z), ) = (f(="), o) < [f(2),9) = (F(" ), )| +2M |l — ¥l ,

<E€..... a
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'Now we turn to weak differentiability. Let n € IV and consider the subspace C}%,(O; U)
of G ' (O;U) which consists of those v such that: (i) for every ( € S¢(R), x — v(z;()
belongs to C‘"(O), and (ii) for every multiindex «, |a| < n, D*v € G},(0O;U).

Lemma A.3. Assume that v € C[L(O; U),n € IN or n = +oo. Then S™'v € C2(0;(5)™).

Proof. 'We only prove the case n = 1, the general case follows by iteration. Denote
Dif := S Dyv, k = 1,...,d. By assumption and Lemma A.1.2 we know that Dy f €
C.(0;(S)"). It remains to show that for all z € O, ¢.€ (S), k =1,...,d, we have

tim [ (((x + hex), o) — (F(z,9)) — (Daf(@), )] =0,

and our hypothesis implies that this holds for all ¢ € £. We can therefore conclude the
argument as in the proof of Lemma A.1.2, if we can show that there exists § > 0, so that

RS+ hex) — £(2); 0 < bl < )

is bounded in (§)_, for some g € INo.
Let £ € O and OI,k a neighborhood of z so that Dyv € Gﬁ(O‘,,k;U).‘ Choosé §>0
small’enough such that 0 < |h| < & implies z + hex € Oz k. Let z € €, € € S(IR), then

|h ™ (o(z + hex; 2€) — v(x; 2€))| = [(Drv)(z'; 26))

for some z' € O, by the mean—value theorem. But the last expression is of uniform
growth less than two on O, x. Thus {A~(f(z + hex) — f(z)); 0 < |h| < &} is bounded in
(S)_ q,for somquNo,by LemmaAll - o m]

Remark. - The criteria for weak contmulty and for weak continuous differentiability are
not quite “symmetric” with respect to the role of the Schwartz space variable. Perhaps
one can combine the results in [KL 94] with a Vitali type argument so that in the last -
lemma continuous differentiability of z — v(z;€), for real £ € S(IR) is sufficient. '

Appendix 2: On the Comparison Function

In. this apendix we study properties of the solution ), 3, the comparison function, of the
integral equation (a,b € IR)

fy=a+MEAHE, tel, (A2.1)

where K is the integral operator given by

Kf(t) = /0 (t — 5)"2 f(s)ds. (A.2.2)

We will consider K as an operator on C([0,1]) (equipped with the sup—norm or an e(jui\}-
alent norm, see below).
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Lemma A.2.1. Let a,b € IR and set

Yab(t) := ai F(g +1)7Y(B*nt)%, telo,1]. - (A;2.3)

n=0
Then 1, b is the unique solution of (A.2.1) in C([0, 1}).

Proof. First of all, note that the right hand side of (A.2.3) converges.uniformly int €[0,1],
and hence it defines a continuous function: ¥, € C([0,1]). For b = 0 it is obvious that
Ya,p = a solves (A.1.1). Let b # 0, and for n € INq consider the integral '

/Ot(t—'s)_%s% ds

which is a beta funcfion, and its value is equal to

ﬁr(g- + 1)1‘("“2Ll +1)7 1,

Thus the series - ‘ ,
, a;’r(g + 1)-1(b27r)%/0 (t—s)"2s% ds

converges absolutely and uniformly in ¢t € [0,1], and Fubini’s theorem implies that it is -
equal to (K1, )(t). Hence we have :

Ko p(t) = %Z I(= ; 2 1) (5Pt
n=0
= %("/)a,b(t) - a)a

by insertion of the value of the above integral. Thus 1, is a solution of (A.2.1).
If ¢, ¢ are solutions of (A.2.1) in C([0, 1)), then their difference g € C([0, 1]) solves

g(t) = b(Kg)(t), telo,1],
and thus we have for all n € IV, t € [0, 1],
g(t) = b"(K"g)(2).
In particular, we get the estimates
19()] < lgloolBl™(K™1)(2)

forallne IN,t € [0,1]. (K™1)(t) can easily be computed by using the Laplace transform,
and the result is : .

(K"1)(t) = T(3 + 17 (x)¥.
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Therefore we have for all n € IN, -
n_- n -—
| l9lo0 < lgloolbf" 73 T(5 +1)7".
Consequently ¢ = 0, i.e., d)a';b is the unique solution of (A21) O
Lemma A.2.2. Let a,b € IR. For all ¢ € [0,1] the solution 9,4 of (A.2.1) admits the
bounds _ . ,
o S alet™ < ()] < lal(1+ BiVAt)e ™. (A.24)
Proof. Without loss of generality let a,b > 0 so that 94, > 0.. Then
oo n _ n
Yap(t) =a ) T(5 +1)7"(tnb?)?

n=0

>a i T(n + 1)~ (txb?)"

n=0
=a et"éz.
For the upper bound estimate as follows:

bas(t) = a(e™ +Y T(n+ g)“‘(tnbz)"f%)

n=0

< a(1 + (trb*)})er™ . | g
On. C([0,1]) we define a family of norms {| - [5,c0, b > 0} by
o Wleoi= sup 1)

t€fo,1
By Lemma A.2.2'it is clear that for every b > 0, |- |5,00 is equivalent to the sup—norm |- |.
Next we derive a Gronwall type estimate.
Lemma A.2.3. Assume that f € C([0,1]) ‘s'a‘tisﬁe.s for some b > 0 the ineqﬁality
| ) <WEH®), telo,1]. (A25)
Then f(t) <0 for all ¢ € [0, 1]. v ‘

Proof. Since K has a positive kernel, (A.2.5) implies f(t) < &K f4+)(t) for all t € [0, 1],
where fy = max(f,0) € C([0,1]). Therefore (A.2.5) yields for all ¢ > 0,

f+ () S WK f4)(?).
= b(K1,c97 2 f4+)(®)
< b f1]e,00(Kty,c)(t)

= Blfsleom(¥r,c() = 1)

b
S 'c"f+|c,oo¢’l,c(t)'
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' Hence we get for all ¢ > 0,

|f4+e,00 < g|f+|c,oo-
We only need to choose ¢ = 2b to conclude |fi|c,c0 = 0, which enta.ils. fy=0. | u]
Lemma A.2.4. Let f € C([0,1]) be non-negative and satisfy |

ft) Sa+b(Kf)E), telol, . (A26)
for a > 0,b > 0. Then
F(t) < tap(t) < a(l + bm)e‘"b’, t€[0,1]. : (a2 |

Proof. We assume that a,b > 0, otherw1se the statement is trivial. Then we have by
hypothes1s

| - f() = ap(t) SO K(f ~ ¢ ,,)(t) |
By Lemma A.2.3, f(t)<¢ab(t)forallte[0 1]. ' R o

Remark. Of course, estimate (A.2.7) can also be derived by iteration of (A.2.6), and an
application of the Laplace transform to compute the multiple convolution integrals.
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