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ABSTRACT. A certain dass of stochastic partial differential equations of parabolic type
is studied within white noise analysis.

1. Introduction

In [Ch 89], P.L. Chow proposed stochastic partial differential equations of the form

.~ u(t,x)..,..; Lu(t,x) == ~(t,x)V'u(t,x), (1.1)

as a model for the transport of a substance in a turbulent medium. L is an elliptic second
order differential operator acting in the space variable x E JRd. Thus the left hand side
of (1.1)describes the diffusion (governed by L) of the density u(t,x) (at x and at time
t > 0) of the substance. The right hand side of (1.1) expresses the coupling of the velocity
field of the substance to a random field ~(t, x), which models the turbulent velocity field
of the medium. This field is the noise of 7](t, x) which will be assumed to be of the form
7]( t, x) = J: (1( S, x) dB( s) where (1 is a deterministic funetion and B is a d-dimensional
Brownian motion.

As Chow observed in [Ch 89], generalized random variables arise quite naturally in
the discussion of (1.1), and therefore white noise analysis [HK, 93] seems to be a natural
frameworkfor this type of equation. In fact, as weshall see in Seetion 4, the coupling of the
gradient of u to ~ brings a singularity into the corresponding integral equation, which does
not aHow(at least not in a straightfoward manner) for ~ for~ulation in the conventional
framework of the Ho calculus. On the other hand, equation (1.1) can indeed be formulated
and solved within white noise analysis. In the present paper, explicit solutions for (1.1)
will be found and studied for a special choice of Land (1 (Section 3), and existence and
uniqueness of weak solutions of (1.1) will be proved in the one-dimensional case (Section
4). The necessary ingredients from white noise analysis will be collected in Seetion 2.
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I want to remark that a very large amount of work eoncerning stoehastic partial
differential equations (SPDE's) within white noise analysis has been done by the group
around B. 0ksendal in the recent years. The interested reader is referred to 0ksendal's
contribution in this volume.

In the present article, I did not try to present the most general mathematieal results
eoncerning (1.1). Rather, it was my aim to showwith a minimal technical effort how
classieal fixed point theorems combine with some of the tools of white noise analysis (S-
transform, charaeterization theorem, and differential operators), to give existence and
uniqueness of solutions. Moreover, Iwanted to point out the peculiar behaviour of the
solutions of (1.1) with respeet to different interpretations ("Ho versus Stratononvich") of
the noise term (cf. Seetion3). A more general theory along the lines of this paper will be
published elsewhere [DP 94].

2. Review of White Noise Analysis

S4>(e) := ((<1>,: e(.,e> :)), (2.1)

which makes sense because for e E S(lR), the normalized exponential w 1----+: exp( (w, e)) :_
exp( (w, e)~ tlelD, w E S'{lR), belongs to (S). (We denote by (.,.) the dual pairing between
S'(lR) and S(lR), by I. 12 the norm of L2(lR).) Indeed, it turns out that the funetion (2.1)
on S(lR) has very nice properties, namely, it is a function of the following type.

Definition 2.1. Consider a mapping F from S(lR) into (D. Fis calleda U-funetional if.it
satisifes the following two properties:

C.1. Fis everywhere ray entire on S(JR), i.e., for all 'f/, e E S(JR), the mapping .x .1----+
F( 'f/ + .xe), .x E lR, has an entire extension,
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C.2. there exist constants K}, K2 > 0 and a continuous norm I . Ion S(IR) so that
for all e E S(1R), z E <C,

(2.2)

The space of all such mappings is denoted by U.

Remark. It is interesting to note that F E U implies that F has an entire extension to
the complexified Schwartz space Sc(lR) (Le., F extends to afunction on Sc(JR) which is
continuous and such that C.l holds for complex TJ,Ü. This has been proved in [KL 94]~
The following theorem [PS 91] (cf. also [KL 94]) shows that the elements in (S)* are
characterized by their S-transform and U-functionals.

'1'heorem 2.1. The S-transform is abijeetion from (S)* onto U.

There are many variants, generalizations and extensions of this result. The interested
reader is referred to [HK 93, KL 94] and the references quoted there. In passing, I want to
mention a result in [BT 94] which says that U can be equipped with a topology (arising
naturally from (2.2» so that the S-transform becomes even a homeomorphism.

Next we discuss differential operators aeting on funetions on the white noise space.

Let <p be a complex valued funetion on S'(1R), and (}E S'(1R). The Gateaux derivative
De'P(w) of'P indireetion (}at w E S'(1R) is given by

whenever the derivative exists. It can be shown (e.g., [HK 93, Chap. 5]) that for all (}E
S'(IR), De extends to a continuous operator on (S). For the special choice (}= 6t, t E lR,
this operator will be denoted also hy 8t• 8" t E lR, can be considered as a gradient on the
white noise space.

By 8:, t E IR, we shall denote the adjoint of 8, which acts on (S)*. It is remarl<able
(though easy to prove) that both operators have very simple intertwining relations with
the S-transform:

6
S8,<p(Ü = 6e(t) S'P(O,

S8;~(e) = e(t)S~(O,

(2.3)

(2.4)

where <p E, (S), ~ E (S) *, and 6e~t) denotes the Frechet funetional derivative with respect
to e. '

It is well-known (e.g., [HK 93, Chap. 8]) that 8: implements a stochastic integral,
the Hit,~uda-Skorokhod integral, with respect to Btownian motion which extends the Ito
integral. Heuristically speaking, the reason is that for ~ E (S)*, 8:~is eq~al to the Wick
product [HK 93] (cf. also the contributionof B. 0ksendal to this volume) B(t)<>~. of white
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1IR X(t)dB(t):= 1IR a;X(t)dt,

= 1IRX(t) 0 iJ (t ) dt
where the last two integrals are in the sense of Pettis and belong to (S)* (e.g., [HK 93]).
From (2.4) we obtain

noise B(t) E (S)* with cIJ (which is again in (S)*). If X is a mapping from IR into (S)*
such that t ....-..a;X (t) is weakly integrable (with respect to Lebesgue measure), then we
denote

S( 1IR X(t) dB(t») (0 = 1IR SX(t)(Oe(t)dt, e E S(IR). (2.5)

Thus the S-tranform turns the dB(t)-integral into one with respect to e(t) dt. Relation
(2.5) and Theorem 2.2 will be at the basis of our strategy to solve equations of the type
(1.1).

3. Explicit Example

We consider the following spatially homogeneous case of the turbulent transport SPDE
(1.1)

~ u(t, x) - ~v(t)~u(t, x) = ~(t) * V'u(t, x), (3.1)

with (t,x) E IR+ x IR and v E Lloc(IR+,dt),v > O,u E Lfoc(IR+,dt), and the initial
value u(O,.) = ho, i.e., the Dirac distribution at the origin. (Without loss of generality
for the following computations, we consider only the case of one space dimensions.) The
* indicates that we shaIl use as weIl a Stratonovich interpretation ("* = 0") as an Ho
interpretation ("* = 0") of (3.1). First we consider (3.1) in Stratonovich sense. Then its
Ho form is given by

a 1 2 •
8t u( t, x) - 2(v(t) + u(t) )~u(t, x) = u(t)B(t) 0 V'u(t, x). (3.2)

Let the S-transform of u be denoted by u, then (3.2) becomes for eE S(IR) (cf. (2.4»,

~ u(t, x )(e) ~ ~(v(t) + u(t)2)~u(t, x )(0 = O"(t)e(t)V'u(t, x )(e). (3.3)

Now applythe Fourier transform F (in the space variable x), and denote Fu by u, then
we get the foIlowingequation

~u(t,p)(O + ~(v(t) + u(t)2)p2u(t,p)(e) - ipu(t)e(t)u(t,p)(O, (3.4)

(t,p) E IR+ x IR. We have u(O) = (27r)-t, and the solution of (3.4) is readily computed.
If we let r(t) := J:(v(s) + u(s)2)ds, t E IR+, then we obtain

u(t,p)(O = (27r)-t exp (-~p2r(t) + ip lt u(s)e(s) ds), . (3.5)
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as the solution of the initial value problem for u. It is easy to invert the Fourier transform
in (3.5) with the result

Su(t, x )(e) = Pr(t) (x, (O't, e)L2(Dl»)

= (21rr(t))-t exp ( - (2r(t))-1(x -11 0'(s)e(s)ds)2),
(3.6)

where Pt(X, y) is the usual heat kernel of the Laplacian and O't = 0' • 1[o,t). In the next
step we would like to invert the S-transform in (3.6). To this end we use the following
more general result. We let X. denote the canonical coordinate process on L2(lR), i.e., the
continuous extension of X. : S(IR) ~(L2), Xe(w) = (w,e), w E SJ(IR), to L2(lR),

Lemma 3.1. Let A1,A2 E <17,1,9 E L2(JR). Assumethat lAd 111;2 < 1. Then for e E
S(IR),

where

(3.7b)

(3.7t)

(3.7d)

The relations (3.7) help to find the inverse S-transforms of exponentials like on the
right hand side of (3.7a) via the following. For given a,1 and G,one finds

\ _ a \ 1
/\1 - 2' /\2 = ,

1+ a 1/12
- G - a(G,f) 1

9 - 2 •
1+alfl2

(3.8a)

(3.8b)

The proof of Lemma 3.1 is a str~ghtforward calculation (it seems to be of advantage
to decompose 9 orthogonally in L2(IR) along 1). Relations (3.8)ifollowfrom trivial algebra.

. . .

Corollary 3.2. Let r > 0, x E IR, 1 E L2(JR). Then for e E SclR),
(3.9)

(3.9) followsfrom (3.7) by a simple,computation.
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Now we are in position to compute the inverse S-transform of (3.6): from (3.9) we
. . t

can read off that f = (1t, and with I'(t) = Jo v(s)ds,

u(t,x) = P-y(t)(x,XO't)

= (27l"I'(t))-t exp (- (21'(t))-1(x -lt
u(s)dB(s))2).

(3.10)

Of course, it is the same result as in [Ch 89]' obtained there in a slightly different way.

Let us return to equation (3.1) and now take * = 0, i.e., we consider (3.1) in Ho sense.
In:the preceding calculations this amounts to replacing (v(t) + (1(t)2) by v(t). Thus, in
this case we find for the S-transform of the solution instead of (3.6) the formula

and v solves the equation

f) 1
-f) v(t, Xj e) - -v(t)6v(t, Xj 0 = u(t)e(t)Vv(t, Xj 0,t 2

(3.11)

(3.12)

for every e E S(JR). We can still apply Corollary 3.2 to find theinverse S-transform of
(3.11), but this time only ij J: v(s)ds- J; (1(s)2ds > O. In that case,

u{t,X) = PK(t) (x, lt
u(s)dB(s»), (3.13)

where ~(t) = J;v(s)ds - J; (1(s)2ds. If J; v(s)ds = Jot (1(s)2ds, we recognize (3.11) as the
S-transform of Donsker's delta funetion:

(3.14)

In view ofthe characterization theorem, Theorem 2.2, we see that also for ~(t) < 0, (3.11)
has an inverse S-transform (in (S)*). However, it is no longer given by (3.13): for ~(t) < 0
this expression is no longer real, but since (3.11) is, so must be u( t, x) E (S) *. I have tried
a numberof times to find an explicit expression for u(t,x) but did not succeed (although
it is not hard to write down its chaos expansion).

Note that for t E JR+ with ~(t) > 0 we get a very smooth solution: u(t, x) E LP(p,)
for all p ~ 1, whith for ~(t)l 0 becomes Donsker's delta of XO't' and then - as K(t)
gets negative - hecomes a generalized random variable: one can prove that u(t, x) does
not belong to LP(p,) for any P ~ 1. Of course, we can arrange the coefficients v and (1

such that u(t, x) "oscillates" in any given way between being a smooth and a genuinely
generalized random field, each timepassing through a Donsker delta.

This quite different behaviour of the solution with respect to the interpretation of the
multiplication by the noise in (3.1) might be ofhelp concerning questions of modelling
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In the remainder of this section we study in more detail, the question, in which sense
u(t, x) = S-lV(t, x) is a solution of (3.1) with *= <> (which we assume from now on).
Obviously we have that for ( E Sc( lR),

v(t, X; Cl = (2"I'(t))- t exp ( - 21'~t)(x - 1.' q(s )«s) ds) 2),
is continuously differentiable in t E (0, +00) for all x E lR, and for t E (0, +00) it is
Goo in x E lR, and all derivatives are continuous on (0, +00) x lR. It is also obvious
that :t v( t, Xj .), ~ v( t, Xj .), ::2 v( t, Xj .) belong to G1u«0, +00) x IRjU), where this space
is defined in Appendix 1. It foIlowsfrom Lemma A.1.3, that

-1 0 a
S 8t v(t,x) = 8t u(t,x)

1 0 0
S- ox v(t,x) = ox u(t,x)

-1 82 82

S 8x2v(t,x) = 8x2u(t,x),

where the right hand sides denote weak derivatives in (S) * ,and they are all weakly con-
tinuous funetions from (0, +00) x lR into (S)*. The fact that v(t, Xj () solves for every
e E S(lR) equation (3.12) means that u(t,x) solves (3.1) weakly on the dense subspace e
which is the (complex) linear span of {exp« .,e »,e E S(lR)}. But then u(t,x) solves
(3.1) weakly on (S). Now we consider the weak limit of u(t, x) as t falls to zero. Let
J E S(lR) and consider for e E S(lR),

J J( x )v( t, Xj e) dx = (271")- t J J(-y(t) t x) e- t(Z-'Y(t)-;' J: t7(s)(s)ds)2 dx.

Obviously, the last expression converges to J(O) as t !O. Moreover, for t > 0, z E ~, e E
S( lR), we find

as weIl as
Iv(t, Xj zOI :::;(271"1'(t»-t e tlzI2'Y(t)-1(Jo

l
t7(u)(u) du)2.

In view of Lemma A.1.1, the last estimate shows that for t > 0, {u(t, x), x € lR.} is bounded
in (SL for some pEIN o. Moreover, for t> 0, X 1----+ v(t, Xj e) is continuous for everye E S( ih. Thus, by Lemma A.1.2, x 1---+ u( t, x) is weakly con~inuous,and therefore

J J(x)u(t,x)dx

exists as a Pettis integral (actuaIly as a Bochner integral), and its S-transform is given by



But this expression converges to J(O) as t !0 fpr every e, which entails that J J(x )u(t, x) dx
converges weakly to J(O) on f. On the other hand the estimate on IJ J( x )v( t, Xi zO dx I
above proves that (Cf. Lemma A.1.1) J J( x )u( t, x) dx is bounded in some (SLp' pEIN 0, as
t 1o. Hence it converges weakly to J(O). In this sense, u(t, x) admits the initial condition
u(t, .) - 60 as t 1O.

In the case of a general equation of type (3.1) our strategy will be to solve an associated
integral equation. Let us investigate the concept of a weak solution for the integral equation
of( 3.1), in order to prepare the next section.

The fundamental solution qt,s(x, y) of. %t ....,. ~v(t)ß is given by

qt,s(x, y) = P')'(t)-')'(s)(x, y),

where as before Pt(x,y) is the heat kerne!. Thus the initial value problem for (3.1) (* =
0) with u(O,.) = Uo (deterministic again, for simplicity) is reformulated as the integral
equation (cf. also [eh 89])

(3.15)

(Ptf(x) = J Pt(x,y)J(y)dy). Taking informally the S-transform of (3.15) we arrive at the
integral equation

(3.16)

Let again Uo == 60, so that the first term on the right hand side of (3.16) becomes P')'(t) (0, x).
It is not hard (though a bit tedious and .certainly no surprise) to verify that v( t, Xi 0 given
in (3.11) solves (3.16). S-Iv(t, x) = u(t, x) is the weak solution of(3.15), as we shall argue
now. We had already seen in our previous discussion that for t > 0, u ( t, x) is Cl in t
and Coo in x, and that V' and the S-transform commute, i.e. S-IV'v(t,x) =Vu(t,x). In
order to show that the integral (P')'(t)_')'(s)V'u(s, .))(x) exists as a Pettis integral in (S)*,
we estimate v(s, Xi zO for s > 0, x E IR, z E d'J, e E S(IR), as follows:

lV'v( s, Xi ze)1 = I,(s )-1(x - z( 0"s, 0)(271",(s))- ~ exp ( - ~1'(S)-1(x - z( 0"s, e»2) I
~ (271""Y(S)3)-~(lxl + Izll(O"s,e)l),

. exp ( - ~,(s)-I(x2 - 2Ixllzll(O"s,e)I-I.zI2 (O"s,02),

where we denoted o"s = 0"' l[o,s)' Now apply the inequality :f:2ab ~ ca2 + c-1b2,c > 0,
with c = .~:

2Ixllzll(O"s,OI ~ ~x2 + 21z12 (O"s,e?
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so that

IVv(s,xjze)1 ::; (27r,(S)3)-~(lxl + Izll(l7s,ODe-t-y(s)-tx'e~-y(s)-tlzI2(D'.,()2

~ (27r)-~,(S)-1 (1+ ,(s)-~ Izll(l7s, 01) eh(s)-tlzl'(D'.,()'.

The last estimate shows that for s > 0, Vv(s,. j -} E G~(1RjU) (cf. Appendix 1), and so by
Lemmas A.1.1, A.1.2, for s > 0, x ~ Vu(s, x) is weakly continuous and bounded in sorne
(SLp' pEIN o. Consequently, this mapping is Pettis integrable against a finite measure on
the real axis, and hence (P-y(t)--y(s) Vu(s, .»(x) exists as a Hida distribution. Now consider
the ds-integral in (3.16). For 0 ::; s < t we have

which is obviously in G~([0, tJ; U) in the s~variable for x E IR, t > O. Therefore, by
a similar argument as above (zO"( s )e( s) is trivially taken into account) we have that for
u( t, x) = S-1 v( t, x) the integral on the right hand side of (3.15) is a well-defined expression
in (S)*. (3.16) implies that (3.15) holds weakly on a total subspace of(S), and consequently
u(t,x) solves (3.15) in weak sense.

4. The One-Dimensional Case

Let n denote IR or a domain in IR. Consider D := [0,1] x n and denote typical elements
in D by (t,x),(s,y), etc. where t,s E [0,1], x,y E n. We are interested in second order
differential operators L of the following type in n

Lf(x) =a(t,x)f"(x)+b(t,x)f'(x), fE C2(n), (t,x) E D.

We assume that L is uniformly elliptic: there exists c > 0 so that for all (t, x) E D, a( t, x) >
c. We also need a smoothness assumption on the coefficients a, b, and for convenience we
suppose that they are in Cr(D). Under these conditions, the heat equation :t - L = 0
for L has a fundamental solution pet, Xj s, y) which admits the following bounds (see, e.g.,
[Fr 83]): for t > s ~ 0,

where K and ,\ are appropriat~ stri~t1y positive constants.

, We shall also write for f E eben) and a kerne! q on D x D.

(Qt",f)(x) :=,fn q(t,x;s,y)f(y)dy,
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and for u E Cb(D)

(Qu)(t,x):= lt(fn q(t,XjS,y)u(s,y)dy)ds.

= l\Qt,su(s, .))(x)ds,

and- use similar notations for kerneis p, r etc. and their associated integral operators
Pz,s, P, Rt,s, R etc.

Let r,(t, x) denote the (informal) noise of

TJ(tix):= 1
t

u(s,x)dB(s), (t,x) E D,

where B is a Brownian motion, u E Ct(D).

Our main interest is to study the informal equation

~ u(t,x) - Lu(t,x) = r,(t,x) ~u(t,x), (t,x) E D, (4.1)

for some random function u on D. Obviously, (4.1) needs interpretation, and the exam-
pIes and computations in Bection 3 suggest to allow also for generalized random fields
u(t,x), (t,x) E D. The "multiplication" by the noise r, in (4.1) will be interpreted in
Hitsuda-Skorokhod sense throughout the present section: r,(t, x)w _ u(t, x )B(t) 0 w for
any (generalized) random variable w. Moreover, I was not able to show that the solution
u which will be constructed below is differentiable in x. Thus we reformulate this equation
in a way thatcan be given a proper sense. For simplicity, we shall consider here onlyinitial
conditions for (4.1) which are given by a deterministic function Uo E Coo(n). (Here and in
the following Coo(X), X locally compact, is the space of continuous functions (with values
in m or <D)which vanish outside every compad, Le., if f E Coo(X), then for given € > 0
there exists a compact C in X withlf(x)J < c for all x E ce. In particular, every such f
is uniformly continuous.) As in [eh 89J, we rewrite (4.1) as an integral equation:

. [ 1t
[ au(t,x) = 1nP(t,x;0,y)uo(y)dy+ 0 1n P(t,x;s,y)r,(s,y)ayu(s,y)dyds,

or

u(t, x) :;::(Pt,ouo)( x) +1t
(Pt,su(s,. )\lu( s,.))( x) dB( s). (4.2)

Due to the above mentioned difficulties about the different iability of u, we doan informal
integration by parts in the convolution with P, and write this as .

u(t,x) = (Pt,ouo)(x)+ 1t(Q~su(s,.))(x)dB(s),

10
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where Qf,s has the ker,nel:

. (), ()
qO'(t, x; s, y) = - (p( t, Xj s, y) ()y 0'( S, y) + ({)yp( t, Xj s, Y)O'( s, y)] . (4.3b)

Using the above given estimates on p(t, Xj s, y) and its y-derviative, we can bound the
kernel by

(4.4)

Here and below, 1.100 denotes the sup-norm (on D or on 0, depending on the context).
Note that for S '" t, qO' produces a singularity of the type (t - s)- t ,which is not square-
integrable in s. (The other factör (t - s)-t is for the "normalization" ofthe Gaussian'
kerne!. Also, the case L = A shöws that this singularity does not arise from the lack of
a better estimate.) Hence the stochastic integral in (4.3a) cannot be interpreted easily in
the usual sense, and we shall interprete in Hitsuda-Skorokhod sense.

We shall say that a mapping u : D ~ (S)* is a weak solution of (4.1) in Coo(Dj (S)*),
if forevery <p E (S), (u,<p) E Coo(D), and if (4.3a) holds. Here, we define

Qf,su(s, .)(x)

as the element in (S)* which for t.p E (S) is given by (t >s)

(Qf,su(s,. )(x), t.p) = lqO'(t, Xj s, y)(u(s, y), t.p) dy,

i.e., by the integral operator Qf,s with an integral in the sense of Pettis.

We study (4.3a) by taking its S-transform. Let e E S(JR) and Su(t,x) == u(t,x).
Then the S-transform of (4.3a) at e is

(4.5)

It will be useful to consider (4.5) tor fixed e but to generalize to e E Sc(JR) and amore
general "initial" value vo(t, x). I.e., we consider (the e-dependence of v being suppressed
to simplify the notation): Vo E Coo(D) and the equation

t \

v(/, x) ,."0(/, x) +1(R",v(x,,)~ (x )€(s) ds, (4.6)

,
for fixed e E Sc(IR) and a kernel r(t,xjs,y) of Rs,t which is continuOllSon D x D \
{diagonal} (the diagonal in D x D is the subset {(t, Xj 8, y), t = 8, X = y}), which satisfies

(4.7)
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where KI is some constant. We are going to solve (4.7) by a fixed point method on the
(complex) space Coo(D). Due to the facts that the kernel r has an integrable singularity,
and that it falls off rapidly at infinity, it follows by standard estimates that Rs,t maps
Coo(D) into itself. Thus the mapping Te defined by

(4.8)

maps Coo(D) into itself, and the solution of (4.6) is a fixed point of Te. In order to show
that Te has a unique fixed point in Coo(D), we equip Coo(D) with the following norm

Iwle.oo:= sup Iw(t, x}1 tPi""I(t:) (t),
. (t,x)ED ,P ".

where tPI,p<e) > 0 is the unique solution of

(4.9)

(4.10)

with p(e) := 1+ K2leloo, K2 some constant which wechoose below. In Appendix 2 it is
shown that 1.le,oo is equivalent tothe usual Bup-norm. In particular, (Coo(D), 1.le,oo) is
a Banach space, and we only need to prove that Te is a strict contraction with respect to
1'le,oo' But this follows fromthe following estimation for v,w E Coo(D): let (t,x) E D,
then



where we used tPl,p(e) > 0 (cf. Lemma A.2.2), and equation (4.10) in the last equality.
Thus we get

ITev - Tewle,oo $Kt/f leloop(e)-llv -'-wle,oo

and it suflices to choose K2 = K1 VI so that Te is a strict contraction. (Recall that
K1 = K(IVO'loo + 10'100) in our original problem.) Hence we have proved the following

Lemma 4.1. For every e E Sc(JR), (4.6) has a unique solution u(t, Xj e); which - a.s a
funetion of (t;x) E D - belongs to Coo(D).

Nextwe study u as a funetion of e E Sc(JR) in more detail. First we derive an estimate
of Gronwall type. Similarly as in the proof that Te is a contraetion, we can bound u(t, x)( e)
as folIows:

lu(t,x)(e)1 $lvoI00+K11(100 l\t-s)~~lu(s,.)(e)loods L(t-s)-ie->'("',--'/ dy

= Ivoloo+Kl/fleloo lt(t-s)~t'U(S,.)(e)'oodS,

and hence we have

Since (t,x) ~ ti(t,x)(e) is for every e E Sc(JR) in Coo(D), it follows that t ~
lti(t, .)(e)loo is continuous on [0,1]. Thus we may apply Lemma A.2.4 in Appendix 2
to conclude the following result.

Lemma 4.2. For every t E [0,1],e E Sc( JR), the ünique solution of (4.6), u(t,x)( e), adIIiits
the following bound

(4.11)

In particular, far some constants K3, K4 > 0, one has

(4.12)

Now let e be of the form e ='7 + z(, '7,(E S(JR), z E (D; and write

u(t,X)(e) = ti(t,Xjz).

We are interested in the analytic properties of z ~ ti( t, Xj z). If Z = Zl + iz2, Zl, Z2 E JR,
it is not hard to use the same methods as before to show that

~i ti(t,Xjz), i = 1,2, (t,x) E D,

13



exist.But then : ../ii( t, xi z )satisfies

:Zu(t, xi z) = 1t
[Qr.A:Z u(s,. iz))(O] (x )~(s) ds,

'and hence Lemma 4.2 implies that :zu(t, Xi z) = O. In other words:

Lemma 4.3. For an (t,x) E D,TI,( E S(JR), the mapping

Z t---+ u( t, x)( TI + zC)

is entire.

By Theorem 2.2, it followsthat u( t, x) is the S-transform of an element u( t, x) E (S)*.
Using the bound (4.12) and the continuity of (t, x) .....-+ u(t, Xi 0, ~E S(JR), we can now
apply the same reasoning as at the end of Section 3 to obtain the final result:

Theorem 4.4. For every initial condition Uo E Coo(D), equation (4.1) has a unique weak
solution in Coo(Di (S)*).

It is clear that Theorem 4.4 can be generalized in many ways. Für instance, one can
choose more geperal initial conditions, the conditions on the coefficients a, b, (1,can be
improved, the method of proof generalizes to d-dimensional domains and certain non-
linear terms can be added to (4.1). Moreover, the arguments leading to Theorem 4.4 can
also be used to discuss other equations, such as anticipating stochastic differential and
stochastic Volterra equations (cf. also (CL93]). All this will be worked out in forthcoming
papers [DP 941. '

Appendix 1: Weak Differentiability

In this appendix we establish some results concerning the calculus of Hida distributions
which depend on a variable in JRd. The notions of continuity and differentiability used
here are formulated in the weak topologhy of (S)*, although most of what is stated here
holds also (with a little more care in the arguments) for the strong topology;

Let 0 be an open set in JRd, and consider a mapping f from 0 inta (S)*'. Let Xo E 0
and k E {I, ... ,d}. We shall say that f has a weak partial derivative in direetion k at Xo,
if there exists an element in (S)* denoted by (DkJ)(XO), so that

converges weakly in (S)* to (DkJ)(XO) as h converges to zero. (ek is the unit vector in
JRd in direetion k.) If f has at an points x E 0 weak partial derivatives in all directions
k .. 1, ... ,d, such that far an k = 1, ... , d,x t---+ Dkf(x) is weakly continuous from 0
into (S)*, we say that J is weakly continuouslydifferentiable in O. The space of all such
mappings will be denoted by C~(O;(S)*). Obviously,if f E C~(Oi(S)*); then for all
<p E (S), X t---+ (J(x),<p) belongs to C1(O).

14



Assume that for all x E 0, k = 1, ... , d, Dkf(x) E (S)* exists. Then we can repeat
the preceding considerations: for nEIN we shall say that f : 0 -.-.+ (S)* is n times
weakly continuouslydifferentiable in U, if for every multi-index Q'= (Q'l, .•. , Q'd) of length
IQ'I = Q'l +...+Q'k ~ n, the weak partial derivative Dj(x) = (D~l .•. D~" f)(x) exists for all
x E 0, and is a weakly continuous function in 0 with values in (S)*. The dass of all such
mappiIigs Is denoted by C::'(Oj (S)*). C~(Oj (S)*) ~ CU/(Oj (S)*) is the space of all weakly
continuous mappings from 0 into (S)*, C;:(Oj (S)*) the space ofthose f : 0 -.-.+ (S)*, such
that for every nEIN, JE C::'(Oj(S)*).

In the fo11owing we shall give criteria for when a U-functional which depends on x E 0
has an inverse S-transform in C::'(Oj (S)*). First we make the following definitions.

Let v be a mapping from 0 into the space U of U-functionals (cf. Section 2). We say
that v is locally of uniform growth les8 than two, if every x E 0 has a neighborhood 0x in
0, such that there exist K}, K2 > 0 and pEIN~, so that for all x' E Ox, e E S(JR), z E C,
we have the estimate

The space of a11mappings from 0 into Uwhichare locally of uniform growth less than
two will be denoted byG~u(OjU). !fOx above can be chosen as 0 for every xE 0, then
we simply say that v i8 uniformly 01 growth le88 than two, and denote the corresponding
space by G; (Oj U).

The fo11owing is a re-statement of a result in [PS 91] (cf. also [KL 94]).

Lemma A.l.l. Assume that vE G;(OjU). Then the family {f(x) = S-lv(x)j X E O} of
Hida distributions is bounded in (SLq fOTsome q E JNo.

Next we prove a criterium for weak continuity of a family of Hida distributions. Denote
by C'u(Oj U) the subspace of G~u(OjU) consisting of those v so that for all e E S(JR), x 1-+
v(Xj {) is continuous from 0 into dJ.

Lemma A.l.2. If v E C'u(OjU), then S-lv E CU/(Oj (S)*).

Proo£. Let x E O. Then v E G;(Ox,U) for some neighborhood 0x of x. By Lemma A.1.1
we know that {f(x')j x' E 0x} is bounded in some (SLq, say by M > O.

Let £ be the (complex) linear span of {exp«(.,e)j e E S(JR)}, which is a densesub •.
space of (S). By hypothesis, for every 1/J E £, the mapping x 1--+ (f(x),1/J) is continuous.
Now let £ > 0 and cp E (S) be given. Choose 1/J E £ so that IIcp -1/J1I2,q < 4~' Choose
li > 0 sma11 enough, so that {x'j Ix - x'l < li} C Ox, and such that Ix - x'l < li implies

£
1(f(x),1/J) - (f(x'), tI')1 < 2'

Then

l(f(x), cp) - (f(x'), cp)1 :s; l(f(x), tI') - (f(x'), 1/J)1 + 2M IIcp -1/J1I2,q
< c.

15
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Now we turn to weak differentiability. Let nEIN and consider the subspace el:l (0; U)
of G~u(Ojzj) which consists of thosev such that: (i) for every ( E Sc(IR), x 1----+ v(x; ()
belangs t() Cn(O), and (ii) foreverymultiindex a, lai ~ n, Dcrv E Gru(OjU).

Lemma A.3. Assumethat v E er:'(Oj U), nEIN or n = +00. Then S-lv E e~(Oj(S)*).

ProoE. .We only prove the case n = 1, the general case follows by iteration. Denote
Dkf := S-lDkV, k = 1, ... , d. By assumption and Lemma A.1.2 we know that Dk! E
ew( Oj (S)*). It remains to show that for all x E 0, cp.,E (S), k = 1, ... , d, we have

l~ [h-1((f(x + hek),cp) - (f(x,cp»)') -(Dkf(x),cp)] = 0,

and our hypothesis implies that this holds for all <p E £. We can therefore conclude the
argument as in the proof of Lemma A.l.2, ifwe ean show that there exists 8 > 0, so that

is bounded in (S) _q for some q E IN o.

Let xE 0 and Ox;k a neighborhood of x so that DkV E G~(Ox,kjU). Choose 8 > 0
smaUenough such that 0 < Ihl < 8 implies x + hek E Ox,k. Let zE <V, ~ E S(IR), then

for some x' E Ox k by the mean-value theorem. But the last expression is ofuniform
growth less than t~o on Ox,k' Thus {h-1(f(x + hek) - fex)); 0 < Ihl < 8} is bounded iil
(SLq, for some q E IN 0, by Lemma A.l.l. 0

Remark. . The criteria for weak continuity and for weakeontinuous differentiability are
not quite "symmetrie" with respeet to the role of the Schwartz spaee variable; Perhaps
one can combine the results in [KL 94] with a Vitali type argument so that in the last
lemma eontinuous differentiability of x I---t v(x; 0, for real ~ E S(IR) is suffieient.

Appendix 2: On the Comparison Function

In this apendix we study properties of the solution 'l/Ja,b, the comparison function, of the
integral equation (a, bE IR)

f(t) == a + b(Kf)(t), tE [0,1],

where K is the integral operator given by

(A.2.1)

(A.2.2)

We willconsider K as an operator on C([O, 1]) (equipped with the sup-norm or an equiv-
alent norm, see below).

16



•

Lemma A.2.1. Let a, bE IR and set
00

tPa,b(t) := aL r(i+ 1)-1(b211't)~, tE [0,1].
R=O

(A.2.3)

•

Then tPa,b is the unique solution of (A.2.1) in G([O, 1]).

ProoE. First of all, note that the right hand side of (A.2.3) convergesuniformly in tE [0,1),
and hence it defines a continuous funetion: 'l/Ja,b E G([O,I)). For b =0 it is obvious that
'l/Ja,b = a solves (A.l.l). Let b f:. 0, and for n E lNo consider the integral

which is a beta function, and its value is equal to

Thus the series
00 . r'aL r(~ + 1)-1(b211')~ Jo (t - s)-\s~ ds
R=O 0

converges absolutely and uniformly in t E [0,1], and Fubini's theorem iInplies that it is
equal to (KtPa,b)(t). Hence we have

KtPa,b(t)= if: r(n; 1+ 1)-1(b211't)!!fl
R=O

1
= "b('l/Ja,b{t) - a),

by insertion of the value of the above integral. Thus tPa,b is a solution of (A.2.1).
If 1.1', tP are solutions of (A.2.1) in G([O, 1)), then their difference 9 E G([O, 1]) solves

g(t) = b(Kg)(t), t E [0,1],

and thus we have for a11nEIN, tE [0,1],

g(t) = bR(K"g)(t).

In particular, we get the estimates

Ig(t)1 ~ IgjoolbIR(KRl)(t)

for a11nE IN,t E [0,1]. (KRl)(t) can easily be computed by usingthe Laplace transform,
and the result is

17



Therefare we have far all nEIN,

Igloo ~ IgI00Ibln1l"~r( ~ + 1)-1.

COlisequentry 9 = 0, i.e~, .,pa,b is the unique solution of (A.2.1). o

o

Lemma A.2.2. Let a, b E IR. For all t E [0,1] the solution .,pa,b of (A.2.1) admits the
bounds

(A.2.4)

P'rooE Without loss ofgenerality let a, b ;:::0 so that .,pa,b ;:::o~.Then
00

.,pa,b(t) =a L r(~ + 1)-1(t1l"b2)t
n=O

00;:::aL ren + 1)-1(t1l"b2t
n=O

= a etll'b2

For the upper bound estimate as follows:
, 2 00 3 1

.,pa,b(t) = a(et7rb + L ren + 2)-1 (t1rb2}n+2 )

n=O
~ a(l + (t1rb2) ~ )etll'b2

•

On G([O, 1]) we define a family of norms {I. Ib,oo,b;::: O}by

IJlb,oo:= sup IJ(t).,p~~ (t)l.
tE[O,l]

By Lemma A.2.2 it is clear that for every b ;:::0, 1.16,00 is equivalent to the sup-norm.I.loo.

Next we derive a Gronwall type estimate.
Lemma A.2.3. Assume that J E C([O, l])satisfies for some b > 0 the inequality

J(t) ~ b(Kf)(t), tE [0,1]. (A.2:5)

Then J(t).~ 0 for allt E [0,1].
Proof. Since K has a positive kernei, (A.2.5) implies J(t) ~ b(K J+ )(t) für all t E. [0,1],
where J+ = max(f,O) E. G([O, 1]). Therefore (A.2.5) yie1ds for all c > 0,

J+(t) ~ b(KJ+)(t)
= b(K.,p1,c.,p1,~J+)(t)
~ blf+lc,oo(K.,pl,c)(t)

1
= blf+ Ic,oo~( .,pl,c(t) - 1). c

b
~ -If+lc,oo.,pl,c(t).

c

18



Hence we get for all c > 0,
b

lf+!c,oo ~ -l!+lc,oo'c

We only need to choose c = 2b to conclude If+lc,oo = 0, which entails f+ == O.
Lemma A.2.4. Let fE 0([0,1]) be non-negative andsatisfy

f(t) ~ a + b(KJ)(t), t E, [0, 1],

for a ~ 0, b ~ O. Then

(A.2.6)

(A.2.7)

ProoE. We assume that a, b > 0, otherwise the statement is trivial. Then we have by
hypothesis

f(t) -tPa,b(t) ~ b KU -tPa,b)(t).

By Lemma A.2.3, f(t) ~ tPa,b(t) for all t E [0,1]. o
Remark. Of course, estimate (A.2.7) can also be derived by iterationof (A.2.6), and an
application of the Laplacetransform to compute the multiple convolution integrals.
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