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Abstract
-,

In this paper we study a dass of parabolic equations with a non~
linear gradient term. The system is disturbed by whjte noise intime.
Weshow that the solution of thisproblem can be represented as the
Wiek product between a normalized random variable of exponent~al
formand the solution of a nonlinear parabolic equation. We allbW
random initial data whieh might be anticipating. A relation between
the Wiek product with a normalized exponendal and translation is
proved in order to establish our results.

1 Introd uction
In recent years there has-been a growing interest in stocha.Sticpartial differential
equations. Within the White NoiseAnalysis, many authors have been studying
several kinds of,partial differential equations involving noise. We mention here
just afew works: Potthoff [Pl,P2J, Lindstr0m et. a1. [L0Ul,L0U2], Gjessing
[G] and Benth [B21. The mainadvantitge of the white hoise framework, are
the S-transform and the Hermite-transform. T,he philosophy behind these two
transformations is to map stochastie problems into deterministc problems, where
dassieal theory can be invoked. ,

In this paper we investigate a nonlinear parabolic problem of the form

4Jt(t, x, w) + (J(t, x, 4J(t, x, w)))x = v4Jxx( t, x, w) + a-(t)4J(t, x, w) . Wt(w) (1)

Here, Wt(w) is white noi'sein time. We are going to precise the interpretation
of the noise term in section 2 and 4. Time will be assumed to run over a finite
intervall [0,Tl, and t,he space variable x E IR. We recognize 'the equatiön as a
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Burgers equation with noise in the ease when f(t,x,u) = !u2• However, in this
paper we will restrict ourselves to functions f which are of uniform Lipsehitz
type. The ustial teehniquewithin the white noise framework is to transform
the stoehastic problem into a deterministic one, using either the S-transform
o~~the Hermite-transform. However, due to the nonlinear gradient term, this
transformation teehnique seems t'o fail. . ,

To solve equation (1), we will use a reduetion method introduced by Gjessing
in [13] for ordinary stoehastic differentiai equations. To motivate ourmethod,
eonsider the stoehastic proeess

u(t,x,w) = v(t,x,w) oX(t,w)

where X and v are solutions of the problems

X(t,w) = 1+lt
X(s,w)dBs(w)

o '

,and
Vt(t,x,w) = vxx(t,x,w)

v(O,x,w) = vo(x,w)

For adefinition oi the Wiek produet, see s~etion 2 andHida et. al. [HKPS].
Observe that u(O,x,w) = vo(x,w). Moreover, differentiation of u(t,x,w) vJith
respeet to t (on a formal level) gives:

d
Ut(t,x,w) = Vt(t"x,w) oX(t,w) +v(t,x,w) 0 dtX(t,w)

, , d= vxx(t,x,w) oX(t,w) + v(t,x,w) o~(t,w) " dtBt(w) ,

d
== uxx(t, x, w) + u(t, x, w) . dt'J3t(w)

Henee, the so~ution of the problem (writtenon Ito form)

du(t, x, w) = uxx(t, x, w)dt + u(t, x, w)dBt(w)

u(O,x,w) = vo(x,w)

ean be split into the solution of a (deterministic) heat problem and an ordinary
stoehastie differential equation. There are reasons to expeet that thesolution
of (1) also ean be represented in asimilar way. However, the heat equation part
of the solution will now include a nonlinear term which is a modifieationof the
f in (1). The redueed equation haS the form'

'l/Jt(t, x, w) + X(t, w+ lTt}-l (f(t, x, X(t, w + lTt) . 'l/J(t,x, w)))x'~ v'l/Jxx(t, x, w)
(2)1
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O't is the function
O't(-) = l[o,t)(-)O'(')

In section 4 we will study equation (2), and show that it has a solution with the
correct regularity properties.

To be able to reduceproblem (1), we will use a fO,rmulatelling us the relation
between the Wickproduct with a normalized exponential, and translation. Such
a 'formula is worked out in "section 3.' If we denote 'ExpW'1 = e<w''1>-!1'112

, tlie
normalized exponential, where 11 E L2(JR), we show HIat

,ExpW'1 0<1> =T_'1<1>.ExpW'1

<I>is a generalized random variable, and T denotes (generalized) translation.
The product on the righthand side makes. sense, since the exponential will be
a smooth random variable in our setting. In section 3 wedefine' translation of .
generalized random variables.

In connection to the stochastic' partial differential equations which we are
going to stucly, 11 will naturally be an element of L2(JR), and not a Schwartz
function. This means,that we cannot work with the usual whitenoise spaces
of Hida test functions, and Hida'distributions since normalized exponentials will
not be test functions when 11 E L2(JR). Using a dual pair of spaces studied by
Pott hoff and Timpel in [PT], we can allow 11 E L2(JR).

One of the advantages with our,method, is that the initial condition of
(1), <Po(:r;,w), does not have to be independent ofthe driving white noise.We
can allowfor anticipating initial conditions, and still pbtain existence results.
This opens for initial conditions which are functions of the Brownian'motion,
for instance. We remark that Buckdahn [Bu1-5] has done similar work wlthin
the Ma1liavin Calculus. We refer to Gjessing [G]for furt her comments and'
references. ",

In section.5 we state the existence and regularity results for problem (1).
We finallylook at a concrete example.

2 Some Mathematical Preliminaries
Westart with some preliminarles from the white noise analysis. Fqr a complete
account on this theory, we refer to the excellent book by Hida et.al. [HKPS].
See also Kondratiev et. ,al. [KLPSW] and Potthoff and Timpell [PT].

Let '
(Si (IR), ß, JL)

be our probability space. We denote U(S'(JR), ß, JL)' by (LP). Now consider
the Ornstein-Uhlenbeck or the number operatorN. Denote by P the algebra of
polyno~ials in (L2). For an element rpE -p, we have thechaos expansion
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for finitely many non-zero <p(n). Hence e>'N<p E (L2) for each A E IR, and we
<fenote by 9>. the completion of P undet the norm

1I<p1I>.:= lIe>'N<pIl(L2)
By usual construction, 9 is the projective limit of 9>." and hence becomes a
countably Hilbert space (see [GV]). 9* is the dualof 9, 'and equals

9* = U 9>.
>'ER

Hence, we have the triplet
9 C (L2

) C 9*
For more infor~ation about these spaces, the interested reader should confer
[PT].

We define the Wiek produet:' Let ep,W be two elements of 9* withchaos
decom positions {f(n) ,n E .ovo}, {g( n) ,n E .ovo} respectively. Then the Wiek
product between ep,W, denoted ep<> W, has the chaos decomposition {Mn),n E
.ovo}, ",here '

n

h(n) = L j(n-m)09(m)

m=O

It can be shown (cf. [PT]) that both 9 and 9* are closed under the Wiek
product.

,"Later in this section we will need the S-transform, (see [HKPS]). Since 9*
is a subspace of (S)*, the S-transform is well defined on 9*. It is defined as
follows: Let epE 9*. Then for e E S(IR)

Sep(e) = (ep,ExpW~)

Here, (-,.) is the dual pairing between 9 and 9*, and ExpW~ is called the Wiek
exponential of the coordinate process W~(w) =< w, e >. We have,

ExpW~ = e<w,~>-!1~12

It is known that the S-transform transforms Wiek products into ordinary prod-
ucts, (see [HKPS]): Ifep, W E 9*, then '

S(ep <> w)(e) = Sep(e) . Sw(O

There exists a natural definition of a Brownian motion in 9: Define

There exists a contiilUous version ofBt, whieh will be a standard Brownian
motion. (We denote both proeesses by Bt). One can show that for "Y E L2(IR)

Im "Y(s)dBs(w) = (w,"Y) = W,(w) ,

4
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We define integration of parametrized g* ~lements, (see fHKPS,PTJ): Let
, cp(x) E g* for each x E A, where (A, A) is a measure space. If

(cp(x),</J)E L1(A,A)

.for all </JE g, we definethe (Pettis) integral of cp(x), JA cp(X)dA(X), as the unique
g*-element

(l cp(X)dA(X),~) = l(</J(X), </J)dA(X)

In the last part of this section we look at some relations fQr,stochastic in-
tegrat~on in g*: In Hida et. al. [HKPS], Lind~tr0m et. al. [L0U2Jand Benth
[BI] thl:) following relation between theSkorohod integral and thewhite noise
integral is discussed: . .

lt 'ft ,
o XsbEs =)0 Xs 0 Wsds (3)

The right hand side is to be understood as the Hitsuda-Skorohod integral (see
fHKPSJ). For a discussion of Skorohod integration, see Nualart and Zakai [NZ].
Wt is the singular white noise defined by the S-transform I

We rerriark that Wt is ¥ element of (S)*. In Pott hoff and Timpel [PT] it is
proved that the Hitsuda-Skorohod integral generalizes Skorohod integration for
g* elements: '
We show an integration by parts 'formula for Pettis integrals in g* which will

be usefullater: We remark that this forinula is given iIi [G].However, we will
here prove it in a slightly different way:

Proposition 1 Ass,!-£me CP., Ws> J; Wudu 0 cp sand JosCPudu 0 Ws are Pettis
integrable elements 01 g* on [0, t]. Theri

ltcpsds 0lt
Wsds =lt

CPs 0 ( r wudu)ds+ lt
Ws 0 (ls cpudu)ds

o 0 0 Jö 0 0

Proof:The proposition follows by theS~transform together with theclassical
integration by parts formula:

S(lt cpsdso lt

Wsds)(ü~ ltSCPs(Ods lt

SlJ!s(~)ds

.=lt
SCPs(O (lS

SWuWdU) ds +lt

SWs(O (lS

SCPu(OdU) ds

=lt

S (CPs 0 (ls WsdU)) (~)ds +lt

S (Ws 0 (18~~dU)) (O~s
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•
We end this diseussion of integration with a lemma deseribing the linearity

of the Pettis integral under the Wiek produet:

Lemma 2 Assume XE 9*, and <Ps, X <><Psare Pettis integrable on [O,tj. Then

X<>lt<psds =ltX <> <psds
o ,0

Proof: The S-transform yields

SX(~) ltS<Ps(Ods =ltSX(~)S<ps(e)ds
o ' 0

, . ..
This last lemma has an interesting eonsequenee for the Skorohod integral. It is
well-known that the Skorohod integral is not linear under ordinary produet (see
Nualarl and Zakai (NZ}). But, by the above lemma, we see that under the Wiek
produet it is linear: Assume X E (L2) and <Ps,X<> <PsSkorohod integrable on
[0,tj. Then

3 Translation and the Wiek Produet with a Nor-
malized Exponent'ial

\
1.'0 produee Ö\ir reduetion formul<t for stochastie partial differential equations,
we will need a conneetion between the Wiek produet and the ordinary produet
when Wiek exponentials are involved. We now investigate this topie in more
detail:
Defipe for eaeh rJ E L2(JR) the translation operator

T'1:9 ~9
by

T'14>(W) = 4>(w + rJ)
From [PT] we know that this is a linear anel eontinuous operator on 9. We
define the adjoint of the translation operator:

T; : 9* ~ 9*

by
(T;<P,4» = (<p, T'14» ,

The adjoint of the translation operatorhas an explicit representation:
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Lemma 3 Foreach TJ EL2(JR)

Proof: The S-transformand prop.2.3 in [HKPS] ~ve

S(T;~)(e) = (T;~,ExpWe) = (~~TryExpWe)

(q), e(l1,e)ExpWe) = e{7WS~(e) = S(EXpWl1)(e)S~(e)

, .
This lemma immediately implies a Cameron-Martin-Girsanov type of result.

Corollary 4 I/ ~ E Q* and TJ E L2(JR)', then

(ExpWl1 o~, </J)=!(~, Tl1</J)

I/ ~ E Q, then

, r </J(w)(ExpWl1 o~)(w)d/l(w)= r ~(w)</J(w + TJ)d/l(w)
JSI(JR) ,JSI(JR)'"

Proof: T,he proposition follows from

(ExpWl1, 0 ~,</J)i= (T;~, </J)= (~, Tl1</J)

, .
Observe th'at when ~ ~ 1, we recover the Cameron-Martin-Girsan~)V for!Uula

r </J(w)ExpWl1(w)d/l(w) = r <fi(w + TJ)d/l(w)
JSI(JR) JSI(JR)

. ,]he adjoint translation operator has 'the following property:

~orollary 5 For TJ,a E L2(JR), we have

Proof: This follows immediately from lemma 3, and the identity

ExpWl1+O' = Exp(Wl1 + WO') = ExpWl1 o ExpW,,:-

•
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Lemma 6 Assume ~ E g. Then

(4)

Proof: Direct calc::ulatio~gives

l q,(w)(ExpW~ <> ~)(w)djL(w) = r ~(w)q,(w'+ 1])djL(w)
JS'(IR) '. JS'(IR) .'

= t ~(w -1] + 1])q,(w+ 1])djL(w)= r ~(w -1])q,(W)EXPW71(~)djL(w)
J S'(IR) J S'(IR)

We have used the Cameron-Maitin-Girsanov theorem in the last equality. Since .
this is valid fot all q,E g,(4) folIows. •
We generalize formula (4) to g*: Note that for 1] E L2(JR), ExpW71 E g. Observe
that since 9 is closed under ordinary product (see [PT]), T; is a continuous linear

.operator froIn 9 into g. We then define generalized translation T71 of g* -elements
as follows: Let ~. E g*. Then

(T71~'<P) = (~,T;<p)

Observe that T71,;" T71on g. Since 9 is sequentially dense in g* , it is easily seen
that (4) extends to g*, i.e. 'for 1] E L2(JR) and ~ Eg* we have '

, (5)

We understand the product on the left hand side of (15)as folIows: If IJI EQ*, 'l/J E
g, define IJI. 'l/J E g* by

\ (IJI '1/;, q,) :::;: (IJI, 'l/J • q,)
see [HKPS].

From corollary 5, we observe that

when 1], (T E L2(JR).
Animportant quest ion is on which (LP)-spaces do generalized translation

Try and classical translation T; coincide? To help us answering this question,
. consider the following lemma:

Lemma 7 Let pE (1;00]. Assume ~ E (L3p). Then T71~E (L3p/2).

Proof: Observe that IT71~13P/2 E (L2). Hence,by the translation formula for
Gaussian measures, we have
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Cauchy-Schwarz implies

:5 (l 1lf?(w)/3PdJL(w))!( f., (ExpW'7(w))2dJL(w))! = 1Ilf?1I~:/2I1ExpW'7112
lS'(JR) . ls'(JR)' .'. "

which proves the lemma. _ I '.

From Corollary 4.14 in [HKPS]' we have that (LP) C g* for p E (1,00]. -Note
that lf? E (LI) cannot be considered as a gerieralized functional. Consider
lf? E (L3p) for p E [1,00]: We can find a sequence (4)n)'Il.EiNc 9 such that
4>'11. - lf?in (L3p). Recall that the translation operatoris a mapping from 9 into
g.Hence, (r'74>n)nEiN C g. By the translationformula forGaussian measures, .
it is easy to show that r'74>n '-+ r'7lf?in (L3p/2). Moreover, usingthat T'7 = r'7 on
g: .

(T'7lf?, 'IjJ) ::;:-(lf?,r;'IjJ} = li~(<Pn,r;'IjJ}

= lim(T'74>n,'IjJ} = (r'7lf?,'IjJ)
'11.

. Therefore, we have that T'7 = r'7 'on (LP), for p E [3,00].
In the last proposition, we study how regularity is preserved' under Wiek

product with a:norqlalized exponential. We will need this result in the last
section, in order to assure that our solution is a stochastic yariable, andnot a
generalized one. -

Proposition 8 Put
,X = ExpW'7

for a TI E L2(JR). Ifp E [1,00) and Y E(L3p), we have

.•..-.

- Moreover

\ x 0 Y E(LP)

. IIX 0 Yllp :5 eK(p)I'7I~ 1IYI13p
where K(p) =H3p - 1) + 1:f3p.

If Y E (LOO), then
x oY E (Lq)

for alt qE [1,00). Moreover, (6) holds for X 0 Y for alt such q.

(6)

Proof: Recall that XE (Lq) for allq 2: 1. If Y E (L3P) for p E [1,00),
estimation using Cauchy-Schwarz gives '

Since y3p/2 E (L2), we can usethetranslationnile for Gaussian measures:
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? IIxll~pIIExpW_'7I1~/3 . (E[IYI3PP/2)2/3 = IIxlI~pIIExpW_'7I1~/3I1YII~p

To find the IIXllq and IIExpW-'7112, we use the identity,

x = EHWry ;= e(w,'7)-tl'7l~

The rest is then standard c,alculation.
For the case Y E (Loo), we have that Y E (Y) for all q E [1,00]. Hence"

using the above calculations, the second conclusion in the proposition folIows .

•
4 The Parabolie Problem and it8 Redueed Ver-.

810n

This section is split into two. We start with aprecision of problem (1), and state
the conditions which we need. Then 'we look at the so-called reduced version
ofour parabolic problem. Existence and uniqueness of (LP)-solutions will be
proved using a fixed point technique.

We interpret (1) in weak integral form

ifJ(t,x,w) ~ (Gt * ifJo(',w))(x) + lt (G~_s;" f(s,', ifJ(s, .,w)))(x)ds

+lt a(s)(Gt-s * ifJ(s, .,w))(x) <> Wsds (7)

Gt(x) denqtes the heat kernel associated to the differential operator v6., and
,G~(x) its derivative with respecttox. By * we understand the convolution
product with respect to x. Recall that when <Ps isSkorohod integrable, we,have

t <psbBs = t <Ps<>WsdsJa ' Ja
This means that the la.st integral term in (7) really is a (generalized) Skorohod
integral.

We make the following as:;;umptions:

a: f ismeasurable in (t, x), and Lipschitz in the following sense: There exists
a positive function C( t, x) such that

If(t, x, u) -J(t, x, v)1 ::; C(t, x)lu - vi

and
sup IC(t,x)1 < 00
t,x

10



11t
X(t,w) ~ Exp( 0 a(s)dBs(w))

b: .f is zero in zero, i. e.
f(t,x,O)=o

for all.(t, x)

c: 4Jo is meast,uable inx and w, and a(t) is bounded on [0,T]

In the next section, we will prove that the solution of (7)can be written as

4J(t,x,w) ='l/J(t,x,w) oX(t,w)

where

/

and 'l/J satisfles a reduced version of (7):

'l/J(t,x,w) = (Gt *4Jo(',w))(x)
t . c

+1(X(s,w+as))':-l (G~_s*f(s,.,X(s,w+as)''l/J(s,x,w)))(x)ds . (8)

This rest of this section is devoted to the study of the reduced equation (8).
l'4oreover, we will generalize- this problem, and study the equation:, .

u(t,x,w) = (Gt * ~o(.,w))(x) + lt'(G~_s * g(s, ',W, u(s; .,w))) (x)ds' (9)

We make the following assumptions fora given (in advance) pE [1,00]:

1: gis measurable in (t, x, w), and Lipschitz in the following sense: There exists
\ a positive K(t,x,w) such that

. \

Ig(t,x,w,u) - g(t,x,w,v)1 ~ K(t,x,w)lu - vi
'and'

K :=. sup(IIK(t, x, .)1100) < 00
t,x

2: g is zero in zero, i. e.
g(t,x,w,O) = °

for all t,x,w:

.3: Uo is measurable in x and w, and

sup lIuo(x, .) Ilv< 00
x .

11



Above, 11. IIp denotes the (LP)-norm. Using these ass~mptions, we show that
(9) has a unique solution in (LP):

We first prove that (9) attains a local solution, Le., th'at wecan find a to for
which our problem has a unique solution: This will be done by u~ing a fixed
point principle. Define the space

Bp = {u :C([P, to]; Coo,p)ICoo,p is the bounded and

uniformly continuous functions from IR into(L.P)}

with norm
1I,IIBp:= sup 1I'.lIp

(t,~)E[O,tolxlR
I

Bp is a Banach space. Define the (contraction) map

Cu(t, x,w) = (Gt * uo)(x) + lt (G:_.* g(s, ',W, u(s, .,w))) (x)ds

We show that C is a mapping from Bp intO itself:' Note that by condition 3 we
have that Gt * Uo is bounded uniformly continuous. Moreover, if u is bounded
uniformly continuous in x, then g( u) is bounded and uniformly continuous by
conditions 1 and 2. Hence, Cu is bounded uniformly continuous. We need to
.esÜmate the Bp-norm of Cu: Let K1 be the constant such that

. .
If u E Bp, we get by standard estimation using the Lipschitz property of 9

\ .

ICu(t, x,~)1 ~ (Gt * luol)(x) +ltIG:~.I* (Iu(s, ',w)IK(s, .,w))(x)ds

, By th. 6.19 in [F]' and Cauchy-Schwarz, we have

. IICu(t,x, ,)lIp ~ Gt*lIuo(x, .)lIp(x)+ t sup IIK(t,x, ')llooIG:_.I*lIu(s", .)lIp(x)dsJo t,x

.~ s~p lIuolip +K. KdlullBp ltIt - sl-tds
, 1

~ sup lIuollp + K. K1llullBp2tJ
x

Hence, C is a mapping from Bp into itself. Cho?se

12



and hence

..•.. , \

, .

With tnis to, we show tha~ C ,is a contraction: Bysimilar arguments as above,
~e estimate with u, v E Bp,

. '., . 1

IICu - Cvllp :52KKdlu - vllBp . t6

.' ' 1
IICu-CvIlBp:5 2""u-vIIBp

By Bariachs fixed pOInt theorem, (9) hasa unique solution in Bp• The solution
cannow be constructed on [0,1;] by standard techniques, since to is chosen as
a constant. Using u(to) as an initial co~dition, we obtain a solution on [to, 2to].
Continuing this process, we will obtain a imique solution on the whole' time
interval after afinite number üf steps. Hence, we have the following existence
and uniqueness theorem: ' .

Theorem 9 Assume conditions 1-3for 9 and Uo. There exists a unique solution
'u(t,x,w) of (9) which is continuous in t, and bounded and uniformly continuous
in x. Moreover, for each (t,x) we have .

u(t,x, ')E (LP)

•
5 Existence of a Solution
We have the following result, which is a generalization of the theorem in Gjess-
ing, [GJ: .

\
Theorem 10 Assume the conditions a-c in section 4 for f, 0' emd </Jo.If, for
pE [1,00),

sup.ll</Jolb < 00
x.

then there exists a solution </J(t, x, .) E (LP) of (7) represented as

. </J(t,x,w) = 'IjJ(t,x,w) 0 EXp(lt O'(s)dB.(w))

where 'IjJ(t,x, w)satisfies (8) .. Moreover,

rT 2
sup 1I</J(t,x,')llp:5 eK(p)Jo ~ (.)d. 'lI'IjJIIB3P

(t,x)E[O,T]x./R

13
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1f
sup l14>olle:,< 00
x

/

then we have a solution 4>(t,x,') E (Lq) for all q E [1,00). Moreover, the
estimate (10) is valid for all q E [1,00).
K(p) is given in proposition 8.

Proof: In the proo~, we have defined

and.

Let p E [1,00). Put

Xt(W) := Exp(t(1(s)dBs(w»Jo ,

Put

. .

g(t,x,w,'l/J) = (Tu,Xt}-lf(t,x, (Tu,Xt)'l/J)

Then we see that

Ig(t, x, w, u) - g(t, x, w, v)1 ::; C(t, x)Ju - vi
where C(t,x) is the Lipschitz constant to f (recall condition a in section 4).
Hence, theorem 9 gives a soluticlll 'l/J of the reduced equation belonging to (L3p).
Since p 2:: 1,' we are garanteed that 4> =.'l/J 0 X are well-defined and belongs to
g*. Moreover, by the proposition 8, we get that 4>(t,x,w) E (LP), and satisfies '
(10). For the case p = 00, the same argument applies for each q 2:: 1.

We prove that 4>(t,x,w) solves (7): The proof follows the idea of Gje~sing,
[G): Note that Xt(w) solves the following stochasticdifferential equation:

'. ,

Wt,s = (Xs(w + (1:.»-1 (G~_s ~ fes, x, Xs(w+ (1s) . 'l/J»)(x)

Since the' Wiek product obeys the standard calculus mIes, we get

'l/J0 Xt = (Gt * 4>o)(x)+lt Wt,sds

t . t t

+ f (Gt*4>o)(x)O(1(s)XsOWsds+l Wt,sdsol (1(s)XsoWsdsJo' 0 o.
By the integration byparts formula we obtain

= (Gt *.4>o)(x)+ ltWt,sds +lt
(1(s)(Gt *~o)(x?; Xs 0 w..as

14



+lt

Wt,s 0, (l
S

a(u)Xu 0 W;dU) d8 +lt

a{s)Xs o(l
S

Wt,udU) d8

:;(Gt*<Po)(X)+ltxsOWt,sd8+ Ita(8)XsO (Gt *~o)(x) +l
s

Wt,udU) OWsd~

, We considerthe last two integrals: Recall. that T"I = T"I on' g, and that
T"II+"12 = T~~T"I2' Using. the relation (5) between the Wiek exponential and
translation, we obtain the following: " . I ,

Xso Wt,s = XsT~u. Wt,s = XsT_<t. {( T~.Xs)-! ( G:_s* f(8,', (Tu.Xs)1/J)) (x) }

= XsX;l (G:~s *, J(8;', Xs . T-u.1/J») (x) = G:_s * f(8, .',Xs o'1/J)(x)
An easycalculation shows the following relation for the derivative of the

heatkernel:

Hence, we have

Gt-s * Ws~u= Gt-s * {(TuuXu)-l (G~_u * f(8,', (TuuXu)1/J{u))) (x)}

= (TuuXu)-l (G:_u * f(8,', (TuuXu)1/J(u»)) (x) = ~t,u

whieh implies,

Gt-s,* 1/J(8) = Gt * <Po+ 18

(Gt-s* ws,u)du == Gt * <Po+ 18

Wt,udu

This proves that
<p(t,x,w)= 1/J(t,x,w) oXt(w)

is a solution ofproblem (7). •
Remark.~. Westress that in theorem 10 we have not assumed any nonanticipation
conditions on the initial condition <,bo(x,w).
We have an equival~ntrepresentation of the solution:

Corollary 11 Underthe conditions in theorem 10, we can write the solution
<,b(t,x,w) of (7) im product form:

I

\1

': 'lt ' 11t<,b(t, x, w) = 1/J(t,x, w - at) . exp( . a(8)dBs (w) - 2' a2 (s )ds)
o . 0

where 1/J(t;x,w) solves (8).. ,

15
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•
Proof: .By formula (5) and theorem 10, we see that the solution can be written

\. fjJ(t,x,w) = T_u,'IjJ(t,x,w). Exp(fot er(s)dBs(w)

•
ExpW"'( = exp(W"'(- ~bl~)

The corollary follows.

I

Since 'IjJ(t,x,.) E (LP) for p ?: 3,generalizecl translation and or9inary trans-
lation coincide. Recall also from section 2 that the Wiek exponentialhas the
representation

!
i',

!
lt,

We end this paper with an example:
Example: A £lux function whieh is often used in model studies; is

. u2'

f(u) = u2 + (1 - u)2

(see for instance the numerical example by Holden and Risebro.in IHR]). This
function is uniformly Lipschitz. Moreover, .

If(u) - f(v)1 ~ 21u"": vi
I

Hence, t~estochastie initial value problem
2 .

Ut + (u2 +~_u)2 ) x = IIUxx + u. Wt

has a soluti~n u(t,x,w)in (LP), when the initial condition Uo is in (L3p): We
can write the solution as'."

-.

. 1
u(t,x,w) = 'I/;(t,x,w -I[o,t))' exp(Bt(w)- 2t)

wl1ere '1/;( t, x, w )is the solution of the problem.

This problem can be looked upon as a deterministie parabolic equation, consid-
ering the equation for each path of the Brownian motion.
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