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Abstract .

 In this paper we study a class of parabolic equations with a non-
linear gradient term. The system is disturbed by wh;te noise in time.
We show that the solution of this problem can be represented as the -
Wick product between a normalized random variable of exponential
form and the solution of a nonlinear parabolic equation. We allow

‘ random initial data which might be anticipating. A relation between .
the Wick product with a normalized exponential and translation is
proved in order to establish our results

1 Introduction

In recent years there has been a growing interest in stochastic partial differential
equations. Within the White Noise Analysis, many authors have been studying
" several kinds of partial differential equations involving noise. We mention here
just a few works: Potthoff [P1,P2], Lindstrgm et. al. [L@U1,L@U2], Gjessing
[G] and Benth-[B2]. The main advantage of the white noise framework, are
the S-transform and the Hermite-transform. The philosophy behind these two
transformations is to map stochastic problems mto determlmstc problems, where
classical theory can be invoked. ‘ o
~ In this paper we 1nvest1gate a nonlinear parabolic problem of the form

$i(t,z,w) + (f(t, 2, 9(t, z, w))) = Vea(t, z,w) + o(D)4(t 7,0) - Wi(w) (1)

Here Wt (w) is white noise in time. We are going to precise the intérpretation ‘
‘of the noise term in section 2 and 4. Time will be assumed to run over 2 finite -
intervall [0, T, and the space varlable z € IR. We recognxze the equa.tlon as a




Burgers equation with noise in the case when f(t,z,u) = Ju®. However, in this
paper we will restrict ourselves to functions f which are of uniform Lipschitz
type. The usual technique within the white noise framework is to transform
the stochastic problem into a deterministic one, using either the S-transform
or, the Hermite-transform. However, due to the nonlinear gradient term, this
transformation technique seems to fail. '
To solve equation (1), we will use a reduction method introduced by Gjessing
in [G] for ordinary stochastic differential equations. To motivate our method,
consider the stochastic process : ' ’

u(t, x,w) = v(t, z,w) o X(¢,w)
. where X and v are solutions of the problems

X(t,u_;) =1+ /tX(s,w)st(w)'
0 .

‘and )
v(,2,w) = vz (L, T,w)
(0, z,w) = vo(z,w)
For a definition of the Wick product, see section 2 and Hlda et. al. [HKPS].

Observe that 4(0,z,w).= vo{z,w). Moreover, dlﬁ'erentxatlon of u(t,z,w) with
respect to ¢ (on a forma,l level) gives:

ut(t,-z,w) = u(t, r,w) o X(t,w) + v(t,z,w) ¢ g—X(t,w) v

= Uz (t, 2, w) © th, w) + v(t,‘:z:, w)o X(t,wj —Bt(w)

= Uz (t, z,w) + ult, z,w) - 4‘—1-‘Bt(w)

dt
Hence, the solutio‘n of the problem' (written on Ito form)

du(t, z,w) = ug4(t, z, w)dt + u(t, z,w)dB(w)

‘u(O,a;‘,w) = vp(z,w)

can be split into the solution of a (deterministic) heat problem and an ordinary
stochastic differential equation. There are reasons to expect that the solution
of (1) also can be represented in a similar way. However, the heat equation part
of the solution will now include a nonlinear term which is a modlﬁcatlon of the
f in (1). The reduced equatlon has the form -

Cabe(t, T, w) + X(t,w + tn)_1 (f(t,:z:,X(t,w + 01) '¢(i, :z:-,w))) = V'ﬁl’w(t T,w)
| . ' | (2)



oy is the function ' o

' ‘ Ut()—l[()t)()() e -

In sectlon 4 we will study equation (2), and show tha.t it has a solutlon with the

correct regularity propertles - v
To be able to reduce problem (1), we w1ll use a formula telling us the relation

between the Wick product w1th a normalized exponential, and translation. Such

a formula is worked out in section 3." If we denote ‘ExpW, = e<«">~ 30 the

normahzed exponentlal where n € L2(IR), we show that -

~ExpW,0®=T_,%- ExpW,,

® is a generalized random variable, and T denotes (generalized) translation.
The product on the right hand side makes sense, since the exponential will be .
a smooth random variable in our setting. In section 3. we define translation of .
generalized random variables. ‘

In connection to the stochastic’ partial dlfferentlal equa.tlons whlch we are
going to study, 7 will naturally be an element of L*(RR), and not a Schwartz
function. This means that we cannot work with the usual white noise spaces
of Hida test functions and Hida distributions since normalized exponentials will
not be test functions when 7 € L2(IR). Using a dual pair of spaces studxed by
Potthoff and Timpel in [PT], we can allow 7 € L3(R). . .

One of the advantages with our, method, is that. the initial condition of
(1), ¢o(z,w), does not have to be independent of the driving white noise. We
- can allow for anticipating initial conditions, and still obtain existence results.
This opens for initial conditions which are functions of the Brownian motion, |
for instance. We remark that Buckdahn [Bul-5] has done similar work within
_the Malliavin Calculus. We refer to GJessmg [G] for further comments and '
references. -

In section 5 we state the existence and regularlty results for problem (1).
We ﬁnally look at a concreté example. ‘

2 Some Mathematic'al Preliminaries \
We start with some preliminaries from the white noise analysis. For a complete
~account on this theory, we refer to the excellent book by Hida et. al. {HKPS].
See also Kondratiev et. al. [KLPSW] and Potthoff and Timpel [PT]
Let
(S'(R), B, ) \
be our proba.bxhty space.. ‘We deriote Lr(S'(R), B, u) by (L”) Now cons1der
the Ormstein-Uhlenbeck or the number operator-N. Denote by P the algebra of
polynomials in (L?). For an element ¢ € P we have the chaos expansion

e=Ye™
. n=1



for finitely many non-zero <p(") Hence e*Vp € (LZ) for each /\ € R, and we _
"denote by G the completion of P under the norm _ ‘ -

lella = Jle* -‘P”(LZ)

B!y usual construction, G is the i)rojective limit of Gy; and hence becor’ﬁes a
countably Hilbert space (see [GV]). G* is the dual of G, and equals

=Ug,\

AeR

Hence, we have the triplet '
_ Gc(L)cg

For more information about these spaces, the interested reader should confer
[PT].

. We define the Wick product:” Let &, T be two elements of G* with" chaos
decompositions {f(™,n € INo}, {g™,n € INo} respectively. Then the Wick. - T
~product between ®, ¥, denoted ® ¢ ¥, has the chaos decomposxtlon {h(") n €

No} where \

n

B = Z f(ﬂ~m)(§,g(771) o

‘m=0

It can be shown (cf. [PT] ) that both G and G* are closed under the Wick
product

" Later in this section we will need the S-transform, (see [HKPS]) Since G*
is a subspace of (S)", the S-transform is well defined on G*. It is defined as
follows: Let ® € G*. Then for £ € S(R) ' .

| 58(€) = (2, ExpWy)

‘Here, (-,-) is the dual pairing between G and G*, and ExpWE is called the Wick
exponential of the coordinate process We(w) =< w,& >. We have.

EXpW5 — e<w,5>'—%|f|2

‘It is known that the S-transform transforms Wick products into ordmary prod-
ucts, (see [HKPS]): If &, ¥ € G*, then , v _ y

5(® 0 W)() = S¥(E) - S¥(E)

There exists a natural deﬁn'itidn of a Brownian motion in'G: Define
Bt(w) {w; 10,¢))

o K There exists a continuous version of B;, which will be a standard Browma,n
motion. (We denote both processes by B.). One can show that for v € L2(IR)

| /R +(8)dBu(w) = (w,7) = Wiy (&)




s o ) . ’ o ,
We define integration of parametrized G* elements, (see [HKPS,PT]): Let
. ®(z) € G* for each z € A, where (A, A)isa measure space. If

(2(z),¢) € L'(A,X)

forall ¢ € G, we deﬁne the (Pettls) mtegral of <I>(:v ) Ja <I>(m d/\(x) as the umque.
g*-element

s, - [ @900

In the last part of this section we look at some relations for stochastic in-
‘tegration in G*: In Hida et. al. [HKPS], Lindstrgm et. al.. [LOU2] and Benth
[B1] the following relation between the Skorohod mtegral and the white noise -
" integral is discussed: - o

Coqt oo \
/ X5633=/7X3<>Wsds o (3)
o] Jo ' :

_The right hand side is to be understood as the Hitsuda-Skorohod integral (see
[HKPS]). For a discussion of Skorohod integration, see Nualart and Zakai [NZ]
Wt is the singular white noise defined by the S-transform

SWi(§) = E(t)

We remark that W; is an element of (S)*. In Potthoff and Timpel [PT] it is
proved that the Hltsuda-Skorohod mtegral generalizes Skorohod mtegratlon for
G* elements. ) s

We show an mtegratxon by parts formula for Pettis integrals in G* which w111
be useful later. We remark that this formula is given in [G]. However, we will
here prove it in a slightly dlfferent way:

1

Prop081tlon 1 Assume ®,, Vs, fo ¥,du ¢ ‘I> and fo <I> du ¢ ¥, are Pettis
integrable elements of g* on [0,2]. Then. .

/<I>ds<>/\Ilds-/d)o/\llduds+/lllo/‘1>du

" Proof: The proposition follows by the S—transform together w1th the classical
: mtegratlon by parts formula:

5(/ <1>ds<>/ ¥ ds)(g) /5@ ds/ ST, (€)ds

= /0 S8.,(¢) ( /0 Swu(g)d&) ds + /0 Slws(g) ( /o S@u(g)du> dsT'
-/ s (2.0 /0 ’ lIls‘du/)> ©as+ [ s (2.0 /0 s\,@;du)) (s




=‘sk/0t és <>-(/0s Y, du)ds)(€) + 5:(/(: v, °(/Os ‘I’;du);is)(é) " v

We end this discussion of integration with a lemma. descnbmg the linearity
of the Pettis integral under the Wick product:

Lemma 2 Assume X € g*, and ®,, X o9, are Pettis integrable on [O,t] Then

t t
'Xo/ <I>sds=/ X o ®,ds
0 - Jo

Proof: The S-transform yields

x(e) [ sv.(00s = [ sx(©)s8.(6)as

This last lemma has an interesting consequence for the Skorohod integral. It is
well-known that the Skorohod integral is not linear under ordinary product (see
Nualart and Zakai [NZ]). But, by the above lemma, we see that under the Wick
. product it is linear: Assume X € (L?) and ®,, X o ®, Skorohod integrable on

[o, t] Then : :

Xo/ <I>3533=/ X’o(psé'Bs
0 0

'3 Translation and tﬁ'e Wick Product with a Nof- ’
mahzed Exponential |

To produce our reductlon formula for stochastic partlal differential equations,
we will need a connection between the Wick product and the ordinary product
when Wick exponentials are 1nvolved We now mvestlgate this. toplc in more
detail:

Define for each n € L2(IR) the translation operator

» Ty GG
by
Tad(w) = (w + 1)

From [PT] we know that this is a linear and continuous operator on G. We
define the adjoint of the translation operator:

T,’,‘:Q*——»Q*

by.
(17 @, 9) = (@, Tn¢)

The adjoint of the translation operator: ‘has an exphc1t representatlon




Lemma 3 For each 7 IG'L’(R) |
 rd=EnpW,0®
~ Proof: The S-transform and pfo;i.2.3 in V[HKPS] éive _ o ' o
: S(T,‘,‘@)(ﬁ) = (7, ®,ExpW) = (®, 7, ExpW¢)

3 <:<1>,‘e<"'f5Expr> = e 5%(¢) = S(ExpW,)(£)S2(¢E)

" This lemma immediately implies a Cameron-Martin-Girsanov type of result. _ o |

‘Corollary 4 If® €G* andne L(R), then

| (EcpW, 0 8,) = (8, 78)
Ifoeg, then |
[ S B 0 )w)duw) = [ B}l + mdu(w)
s s - ’

" Proof: The proposition follows from o
(ExpW, 08, ¢) = (77 8,6) = (8,76)
Observe that when @ =1, we recover the Cameron-Martin-Girsanov formula

[ semeW, @) = [ oo+ ndutw)
S'(R) - : - Jsum) o -

", The adjoint translation operator has the following property:
Cofollary 5 Forn,0 € L>(R), we have

* S %
Toto = TpTe = ToT,

Proof: This follows ‘i'mmedia,tely frofh lemma, 3, and the identity

ExpWi+o = Exp(W, + W) = ExpW, o ExpW,,




Lemma 6 Assume ® € G. Then .

1 n®(w) - EopW,(w) = ®(w) o ExpWp(w) 4)
Proof: Direct ca.léulatioh gives

[ s @, 0 0)@hutw) = [ 8@blw+ndutw)
S'(R) - Js'(R) o

‘=/"¢@—n+nM@¥nﬂmwﬁ=/ B(w — )¢ (w)ExpWy (w)dp(w)
S'(R) - S'(R)

We have used the Cameron-Martin-Girsanov theorem in the last equa.hty Since
this is valid for all ¢ € G, (4) follows. ]
"We generahze formula (4) to G*: Note that for n € L2(RR), ExpW, € G. Observe
that since G is closed under ordinary product (see [PT]), 7; is a continuous linear
" operator from G into G. We then define generalized tra.nslatlon T, of G*-elements
as follows: Let & € G*. Then ‘

@@wrﬂéf@

-Observe that T, = 7',7 on G. Since g is sequentially dénse in G*, it 1s easﬂy seen
that (4) extends to G*, i.e. for n € L*(R) and & € G* we have

T-1® - ExpW, = ® o ExpW, - (5)

We understand the product on the left hand side of (5) as follows If ¥e g* LN
g, deﬁne\Il z/;eg* by '
see [HKPS] ‘

From corollary 5, we observe that

Tyio = T,T, = T, T,

When n,a € L2(R) ‘

An important question is on which (LP)-spaces do generahzed translation
. T, and classical translation 7',, coincide? To help us answering thlS question,
' con31der the following lemma: '

Lemma 7 Letp € [1 ). Assume ® e (L%). Then 7,® € (L3”/2)

Proof: Observe that |7, @3/ € (L?). Hence, by the translation formula for
Gaussian measures, we have : o ‘

Im@I5zfe = [ (8 mlP/dute) = [ 8 ExpW w)du(w)
- ey SRy




Cauchy-Schwarz implies
s(/ T l3”du(w) (/ (ExpWi () 2du< ))z—uén”""llExpw e

which proves the lemma. n

From Corollary 4.14 in [HKPS], we have that (L”) C G* for p € (1, oo] Note

that ® € (L') can not be considered as a generalized functional. Consider ’ ;

® € (L%) for p € [1,00]: We can find a sequence (#n)nenw C G such that '

¢n — @ in (L37). Recall that the translation operator is a mapping from G into

G. Hence, (Ta®n)nev C G. By the translation formula for Gaussian measures,

. it is easy to show that 'r,,qbn “ 7, in (L%%/2). Moreover usmg ‘that T, = 7, on
Gg. ,
- (T, d)) (@, 2¥) = lim(gn, )

= lim(rydn, ¥) = (2, )

- Therefore, we have that T, = 7, on (LP), for p € [3, c0].
In the last proposition, we study how regularity is preserved under Wick
_ product with a normalized exponential. We will need this result in the last
section, in order to assure that our solution is a stochastlc variable, and not a
E generalized one. :

Proposition 8 Put S
C ,»_,X = Eszn
for an € L*(R). If p€ [1,00) and Y € (L°P), we have
“ , X oY e(L?)
- Moreover . "
o [|X oy”p < eK(P)l"ﬂz”Y”a ) - (6)

~ where K(p) = (3p -1) + 1/3p
IfYe (L°°) then
XoY € (LY

B for all q€ [1 00). Moreover, (6) holds for X oY for all such q

Proof: Recall that X € (L7) for all g>1 IfY e (L*) for p € [1,00),
: estxma.txon using Cauchy-Schwarz gives . B

E[|XoY|F] = E[IXI” Y|P} < B[ X[V - Elr_,|Y|*/?]2/3
Since Y3/2 ¢ (L?), we can use the translation rule for Gaussian measures:

E[X oY P] < |IX|5, - E[ExpW_, - [V /2123




< 1x|5 uExpW-num E[IYI“”]”"' 23 = uxus,,uExpw_nnmnyns,,
To find the || X||, and ||ExpW_,,||2, we use the identity

X =ExpW; = elwm—4ni

The rest is then standard calculation. o )
For the case Y € (L™), we have that Y € (L?) for all ¢ € [1 oo] Hence, .
using the above calculations, the second conclusion in the proposition follows..

4 The Parabohc Problem and its Reduced Ver-
smn ‘

This section is split into two. We start with a precision of problem (1), and state
the conditions which we need. Then we look at the so-called reduced version
of our parabolic problem. Existence and uniqueness of (LP) solutlons w111 be
proved using a fixed point technique.

We interpret (1) in weak integral form

8t,7,) = (Ger do())@) + [ (oo fls,blow(edds

+ [ o) Gos # s, )@ o Weds ™
i |

Gt(w) denotes the heat kernel associated to the differential operator vA, and '
G, (z) its derivative with respect to z. By # we understand the convolution
product with respect to . Recall that when ®, is'Skorohod mtegra.ble we. have

/<I>5633=/ ®, o W,ds

This means that the last 1ntegral term in (7) really is a (generalized) Skorohod
integral.
We make the following a.ssumptlons

a: f is measurable in (¢,z), and LlpSChltZ in the folloWing sense: There exists
a positive function C(¢,z) such that '

F(t,w) = F(t20)| < Ol ) — o]
© and

sup |C(¢, m)| < o0
t,x




b: .f is zero in zero, i e - o
' o f(t,z,0) =
for all {t, z).
c: do i_s measurable in z and w, and o(t) is bounded.o‘n [0,T]

In the next section, we will prove that the sollution‘of (7) .can be written as

#(t, 2,w) =9(t,5,0) 0 X (t,w)

"~ where _

X(t,w) Exp(/ 3)dB; (w)) .

P

'a.nd w satisfies 2 reduced version of (7):

¢(t, z‘,w) (Gt * ¢0( ’w (17

+ (Xl + o) (G, # 165 X(suta) o zw) @ds (@)
o o

This rest of this section is devoted to the st‘ﬁdy of the reduced equat;iOn (8).
Moreover, we will generalize this problem, and study the equation:

Ut = G w @) + [ (G gloratoino) @5 ©)

‘We make the following assumptions for'a giveh (in adva.nce )p€E [1 00]:

1: g is measurable in (¢, z, .u) a.nd Lipschitz in the following sense: There exists
a posmve K(t,z, w) such that

Ig(t,:v,‘w,u) g(t T,w, ’U)| < K(t T, w)|u—v]
‘and

K = sup(|K (1,2, )eo) < 00

2: g is zero in zero, i. e. ,
. '\ g(t,z,w,0)=0
for all ¢, z,w.

3z ug is measurable in z and w, and

- suplug(z, )l < oo
z

11



Above, || - ||, denotes the (L?)-norm. Using these assumptions, we show that
(9) has a unique solution in (L?):

We first prove that (9) attains a local solution, i.e., that we can find a to for
which our problem has a unique solution, This will be done by using a fixed
point principle. Define the space

B, = {u: C([0,0]; Coo.p)|Coo p is the bounded and

uniformly continuous functions from IR into (L?)}

with norm » . '

’ s, == sup -l
- (t,2)€[0,to] X R

B, is a Banach space. Define the (confraction) map

Cu(t,z,w) = (Gt *uo)(z) + / (Gt_s * g(s,-,w,u(s, -,w))) (z)ds
. 0 ‘ . .
We show that C is a mapping from B, into itself: Note that by condition 3 we
have that G * ug is bounded uniformly continuous. Moreover, if u is bounded
uniformly continuous in z, then g(u) is bounded and uniformly continuous by

conditions 1 and 2. Hence, Cu is bounded uniformly continuous. We need to
estimate the B,-norm of Cu: Let K be the constant such that :

/ G, (2)lde < Ku(t—s)}
[ Ic

If u € By, we get by standard estimation using the Lipschitz property of )g '
\ . . B -

Cult 2, < (Ge+uo)(@) + [ 1611 » fule, ) K s, ) (e)ds

\

'By th. 6.19 in [F], and Cauchy-Schwarz, we have

; ,
iCu(t, 2, )lly < Gexlluo(z, ')Ilp(z‘)+/0 sup | K (£, 2, )| oo| G [ #lluls, -, )l p(2)ds

. ‘ Tt B
. N

< sup fuolly + K - Kullulls, / It s|~Hds

..z ) 0 .

. ) 1
< sup ||uollp + K - Ki|lull 5, 2¢5

Hence, C is a'mapping from B, into itself. Choose

1

fo = (4KK1)?

©12



With thls to, we show that C is a contractlon By s1m11ar arguments as above,
we estlmate w1th u,v € By

N

" llcu — Colly < 2K K [u~ 5, - £

and hence

ICu - Cvllﬂp_2||u vl|s,

By Ba.nachs ﬁxed point theorem, (9) has a unique solution in B,. The solution '

~ can now be constructed on [0,7]} by standard techniques, since tp is chosen as
a constant. Using u(t) as an initial condxtlon, we obtain a solution on [to, 2¢o].
Contmumg this process, we will obtain a unique solution on the whole time
interval after a finite number of steps Hence, we have the followmg existence
.and umqueness theorem:

Theorem 9 Assume conditions 1-8 for g and ug.. There exists a unique solution
u(t, z,w) of (9) which is continuous in t, end bounded and uniformly continuous
n xz. Moreover, for each (¢, z) we have

’lL(t,.’L‘,') v (Lp)

5 Ex1stence of a Solutlon

We have the following result, Wthh isa generahzatlon of the theorem in Gjess-
mg, [G]:

Theorem 10 Assume the condztzons a-¢ in sectzon 4 for f, o and ¢0 1f, for

" p€[l,00)
sup{dollsp < 0
o

then there exists a solution é(t, T, -) € (LP) of (’7) represented as
o(t, z, w) Y(t, z, w) oEzp(/ cr(s YdB; (w))
'wheré d}(‘t;‘x,w') “satisfies (8). Moreover, v

sup 6l )np<e""’)f 7 (s nzpnss,, (10)
(tz)e[OT]le ) :

13




If

sup [|golleo < 00
x

then we have a solution ¢(t,z,:) € (L") for aH q € [1,00). Moreovei‘, ‘the
~ estimate (10) is valid for all g € {1, 00). »
K (p) is given in proposition 8.

Prodf: In the proof, we have defined

o (s) :%'l[o,t)(S)é(S)

and. e :
Xo(w) = Exp% " o(s)dBs(w))

Let p € [1,00). Put

9t,3,w,%) = (70, X) T (8,2, (70, X))

Then we see that

lg(t,z,w,u) = gt z,w,v)] < C(t, 2)lu — vl

[

where C(t,z) is the Lipschitz constant to f (recall condition a in section 4).
Hence, theorem 9 gives a solution 1 of the reduced equation belonging to (L3P).
Since p > 1, we are garanteed that ¢ = 9 o X are well-defined and belongs to
G*. Moreover, by the proposition 8, we get that ¢(t, z,w) € (L?), and satisfies '
(10). For the case p = oo, the same argument applies for each ¢ > 1. o

We prove that ¢(t,z,w) solves (7): The proof follows the idea of Gjessing,
[G]: Note that X¢(w) solves the following stochastic differential equation:

\ Xi(w)=1 + /t o(8)Xs(w)dB;s(w)
: 0
Put - - ) , .
Voo = (X + )7 (Gros # S0, Xu(w 4 0) ) (3)

Since the Wick product obeys the standard calculus rules, we get

, : t
o X, = (Ge * do)(z) + / ¥, ,ds

. 0 ‘

t .

0

By the integration by parts formula we obtain .

' : ’ ot ¢
+/ (G * do)(z) 00(s)Xs 0 Weds + / U, sds <>/ o(8) X o Wids
' 0 0 ‘ '

. t t . L o
= (Gt *»¢0)($) +A ,‘I’t,sds -+ ‘/0 O'(S)(Gt * ¢0)(1‘y) OXS O.ngs ‘

14




Tt s : . ‘ ‘ s |
+/0 P50 (/0 o(e)Xu oW,_‘du) ds + /Dt q’(s)Xs o'(/o_ \Ilt,udu> ds
. ‘ " ‘ ‘7 ot . . K - .
=-(G't*¢0)(z)+/ Xso\Ilt,sds+/.cr(s)Xso((Gt * ¢o)(z) +/ \Ilt,udu) oWeds -
- e 0 ' 0 ;

We consider the last two integrals: Recall that T,, = 7, on' G, and that
Ty4ne = Ty Ty,. Using. the relation (5 between the W1ck exponentla.l and
translatlon we obtain the followmg

X < \I’t s = =X T—o’, ‘I't s = X T—cr, {(Ta va) (Gt— ‘ f(s,'-, (la,Xs.)lb)) (.’L‘)}

= XX (G (51 X, T_,,«m) (@) = Gy  F(s, 4 Xs 00)(@)

An easy calculation shows the followmg relation for the derivative of the
heat kernel:
- G’t*Gs = Gt+.§_

Hence,'vwe have . ; )
Guar U= Gey# { (70 X (Gl # Flo, (n XJ0(0))) ()

| = (o X (Gorn S0 (1 X >w(u>>) (2) = Vo

which implie’s ‘ - : ) -
Gt_s*’R/J(s) Gt*¢o+/ (Gt s *\Ilsu)du— Gt*¢o+/ \Iltudu

This proves that

8(6,2,0) = ¥t 2,0) 0 Xe(w)

is a solution of problem (M. \ A ’ '

Remark: We stress that in theorem 10 we have not assumed any nona.ntlmpatlon
- conditions on the initial condition ¢o(z,w). '

We have an eqmvalent representatlon of the solutxon

Corollary 11 Under the conditions in theorem 10, we can wrzte the solution
(¢, z, w) of (7) on product form: .

¢(t zT,w) = w(t T,w—o0y): exp(/ s)dB, w) - -1-/0 o?(s)ds) : (11)

where w(t z,w) solves (8) o o . . - ' -

!
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Proof: By formula (5) and theorem 10, we see that the solution can be written |

\

é(t’x’w) = T—mw(tazaw) : Exp(/t U(s)dés(w)
0

Since P(t,z, ) € (L” for p > 3, generalized translation and ordinary trans-
lation coincide. Recall also from section 2 that the Wick exponential has the
representation

' ExpW,, = exp(W, — §|7|‘;’)
The corollary follows. ' ' ‘ - N
We end. this paper with an example: ‘
Ezample: A flux function which is often used in model studies, is
\ , :

f(u)=7ﬁf—55

(see for mstance the numemcal ezample by Holden and stebro in [HR]). This

function is uniformly Llpschltz Moreover,
£ @) ~ F@)] < 2fu ol

Hence, the stochastic initial 'value problem

. ‘ 'u,2 ‘ ’
._____ P .W ,
ut+<u2+(1—u)2)z VUgy + U t

has a solution u(t,z,w) in (LP), when the initial condition uo is in (L%?). We
- can write the solution as : '

u(t’r’é‘)) =(t, 7w - 1i0,t)) ‘G*P(Bt(w) -_ét) |

- where ¢(t, x,g)) is the solution of the problem .

P? _, :
+ (exp(B:(w) + %t) — )2 )—r = Uze

Y: + exp(B:(w) +%t) ‘("/’2

This problem can be looked upon as a deterministic parabolic equation, consid-

ering the equation for each path of the Brownian motion.
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