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Abstract

This paper is concerned with the fast summation of radial func-
tions by the fast Fourier transform for nonequispaced data. We
enhance the fast summation algorithm proposed in [20] by intro-
ducing a new regularization procedure based on the two-point Tay-
lor interpolation by algebraic polynomials and estimate the corre-
sponding approximation error. Gur error estimates are more so-
phisticated than those in [20]. Beyond the kerneis Kß(x) = l/lxlß
(ß E N) we are also interested in the generalized multiquadrics
which play an important role in the approximation of functions by
radial basis functions.

K ey words and phrases: fast discrete summation, fast Fourier transform
at nonequispaced knots, generalized multiquadric
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1 Introduction

The computation of sums of the form

N

L akK(Yj - Xk)
k=l

for j = 1, ... ,N with O(N2) arithmetic operations appears as bottleneck
in many applications where the number of knots N is large. Typical ex-
amples are the simulation of particle motion in potential fields [13]' the
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approximation of curves and surfaces by linear combinations of radial
basis functions (RBFs) [22] and, in a slightly different form, the solution
of integral equations or partial differential equations via boundary inte-
gral methods [16]. The most famous algorithm for the fast evaluation of
these sums with only O(N) arithmetic operations is the fast multipole

--meÜl0cC(FMM)"Tiltrocl1.lceclbyGreengard -and Rokhliil [13, i2]'e-:g.for ---
the kernel K(x) = log lxi in ]R2. Here and in the following I . I denotes
the Euclidean norm in ]Rd.

The panel clustering method developed by Hackbusch et al. [16] at
the same time in the context of the numerical solution of integral equa-
tions and its more recent generalization, the 1-{-matrix arithmetic [14, 15]
as well as the mosaic-skeleton approach of Tyrtyschnikov et al. [23, 24]
follow similar ideas as the FMM. During the last years the FMM was
further adapted to various kernels, e. g. to various RBFs by Beatson et
al. [4, 3]. Recently, Potts and Steidl [20, 19] have proposed a fast sum-
mation algorithm based on the fast Fourier transform for nonequispaced
knots (NFFT) which requires O(N logN) arithmetic operations and has
the following advantages:

- it resembles the well-known algorithm for the fast multiplication
of vectors with Toeplitz matrices based on the FFT,

- the incooperation of new kernels is very simple,

- it has a simple structure consisting of the blocks FFT - NFFT -
fast summation.

The so-called NFFT and its relative, the NFFTT, are approximative
algorithms. Let I~ := {k E Zd I - ~ :S k :S ~} with componentwise
inequalities, and Ck := ckl ... Ckd, where

if l = :I::~,

otherwise.
(1.1)

Then, for arbitrary Wj in the torus ]'d := [-~, ~)d, the NFFT(n) com-
putes sums of the form

fj := L ckik e-21Tikwj

kEI~

(j = 1, ... ,M),
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and the NFFTT (n) sums of the form

M

h' .- co '"" f' e27l"ikwjk ,-c-kD J

j=l

(kE I~)
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with only O(nd log n+M) arithmetic operations. Meanwhile there exists
a rich literature on NFFTs, where the algorithms are described in de-
tail and where the reader can find estimates of the approximation error
versus the complexity of the algorithm, see e. g. [8, 5, 21] and the ref-
erences therein. Moreover, free NFFT software packages are available,
e. g. [18, 9].

In this paper, we furt her develop the ideas from [20]. We intro-
duce new regularization techniques with B-splines and algebraic poly-
nomials. Based on the approach with algebraic polynomials we prove
error estimates for our approximative summation algorithm. These er-
ror estimates are more sophisticated than those for the regularization
with trigonometrie polynomials in [20]. The later still involve numerical
computations and consequently are only valid for a bounded number of
parameters. In [20] only kerneis of the form

1
Ko(x) = log lxi, Kß(x) = Ixjß (ßE N) (1.2)

were considered. In this paper we add estimates for the parameter-
dependent generalized multiquadrics

K_1(x; c) = (lxl2 + c2)~, Kß(x; c) = (lxl2 + c2)-~ (ß E N; odd)
(1.3)

which play an important role in the approximation of functions by linear
combinations of RBFs [11].

Our paper is organized as follows: the next section describes our
summation algorithm in 1D. One essential step of this algorithm cün-
sists in an appropriate kernel regularization which we consider in detail
in Sectiün 3. Error estimates für our algorithm with regularization by
algebraic polynomials and the consequences for the choice of the param-
eters of the algorithm are derived in Section 4. Section 5 briefly sketches
the generalization of the algorithm to the multivariate setting. Finally,
Section 5 contains numerical results, mainly in 2D.
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2 Fast Summation at One-dimensional Knots

In this section, we recall the idea of the fast summation algorithm in-
troduced in [20J. Our aim consists in the fast evaluation of sums

N

f(x) :=L cxkK(X - Xk),
k=l

(2.1)

at M knots Yj (j = 1, ... ,M) for kerneIs K(x) = K(lxl), i. e., in 1D for
even kerneIs. The kernel function K is in general a non-periodic function,
while the use of Fourier methods requires to replace K by a periodic
version. Without loss of generality we may assume that the knots are
scaled, such that IXkl, IYjl < ~- ~ and consequently IYj - xkl < ~- cB.
The parameter cB > 0, which we specify later, guarantees that K has
to be evaluated only at points in the interval [-~ + CB, ~ - cB]. This
simplifies the later consideration of a 1-periodic version of K. Beyond
a special treatment of K near the boundary :l::~,we have to take care
about properties of K in the neighborhood of the origin. The kerneIs
(1.2) considered in [20J are Coo except of the origin, where they have a
singularity. The parameter-dependent kerneIs K = Kß(x; c) in (1.3), or
its derivatives in case ß = -1, have a singularity at zero if c -+ O.

To deduce a fast summation algorithm for (2.1) we replace the kernel
K by a 1-periodic smooth kernel k by modifying K near the boundary
and near the origin:

for xE [-CI, cI],
for x E [- ~, - ~ + CB] U [~ - CB, n
else,

(2.2)

where 0 < cl < ~ - CB < ~. The functions KI and KB will be chosen
such that k is in the Sobolev space HP(1r) for an appropriate parameter
p > 0 which controls the smoothness of k. Various regularizations k
of Kare proposed in Section 3. If p is large enough, then we may
assume that k can be approximated with sufficiently small error by the
trigonometrie polynomial

~(k)(x) :=L clbl e271"ilx,
lEIA

(2.3)
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where

(l E I~).

Now the original kernel K can be decomposed as

K = (K - K) + (K - Tn(K)) + Tn(K), (2.4)

where the summand in the middle becomes small for a sufficiently large
parameter n E N which we will specify later. We neglect this summand
in (2.1) and approximate f by

N N
J(x) :=L Clk(K - K)(x - Xk) +L Clk Tn(K)(x - Xk). (2.5)

k=l k=l

Instead of f we evaluate J at the knots Yj (j = 1, ... ,M). Indeed this
can be done in a fast way by the following two steps:

1) Near field computation (first sum in (2.5))
To achieve the desired complexity of our algorithm we suppose that
either the N points Xk or the M points Yj are "sufficiently uniformly
distributed", i. e., we suppose that there exists a small constant v E N
such that each subinterval of [-~,~] of length 2CI contains at most v
of the points Xk or of the points Yj, respectively. This implies that cl

depends linearly on l/N, respectively l/M. In the following we restrict
our attention to the case

a
cl = N' (2.6)

where a «N is independent of N. Then, since IYj - xkl < ~ - cE and
- 1 1supp(K - K) n [-2 + cE, 2 - cE] = [-cI, cI], the evaluation of

N

L Clk(K - K)(Yj - Xk)

k=l

(j = 1, ... , M)

requires ::; vM, i. e. O(M) arithmetic operations.
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2) NFFT based summation (second sum in (2.5))
By (2.3), the evaluation of the second sum in (2.5) can be rewritten as

N NL ak T(K)(Yj - Xk) = L ak L Elbl e27fil(Yj-xk)

k=l k=l lEIk

=L Elbl (t ak e-27fiIXk) e27fiIYj.

lEIk k=l

This expression can be handled based on the NFFT as follows:

1. The sums
N

al =L ak e-27filxk

k=l

can be obtained by an NFFTT (n).

2. Then we compute the products

(l E I~)

dl = blal (l E I~).

3. Finally we use the NFFT(n) to compute

L EI dl e27filYj
lEIk

(j = 1, ... ,M).

These three steps require 0 (M +N+ n log n) arithmetic operations.

In summary, our summation algorithm requires

O(M + N + nlogn)

arithmetic operations. The relation between M, N and n determined by
the approximation error of the algorithm will be specified in Section 4.

Once the basic idea of the algorithm is clear, it remains to specify
the regularization procedure and to give estimates of the approximation
error introduced by omitting K - Tn(K) in the kernel approximation.
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3 Kernel Regularization

7

Sinee K is even, we have that K(j) (x) = (-1)j K(j) ( - x). To ensure that

{

KI(X) for x E [-CI, cI],
K(x):= KB(x) for x E [-~, -~ + cB] U [~ - CB, n

K(x) else,

is in HP(1I'), we need that the function KI fulfills the eonditions

K;j)(CI)

KY)(-cI)

K(j)(CI ),

K(j)(-cI) = (-1)jK(j)(cI)
(3.1)

and the function KB the eonditions

K(j) (~ - CB) , (3.2)

K(j) (-~+CB) = (-1)jK(j) (~-CB)

for all j = 0, ... ,p - 1. Then, the periodicity of K follows by setting

(x E [0, cB])'

As simple regularizing functions KI and KB we propose

- algebraie polynomials,

- trigonometrie polynomials,

- splines.

The regularization by trigonometrie polynomials was eonsidered in [20].
However the error estimates in [20]are not satisfaetory sinee they involve
numerieal eomputations which ean be done only up to a fixed number
p E N. In this paper we briefly sketch the spline approach and eonsider
the regularization by algebraie polynomials in more detail.
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'_1
m-, m

Figure 1: B-splines B~.

mH

3.1 Regularization by spline interpolation

The normalized cardinal B-splines Np of degree p are recursively defined
by

No(x) := {I for x E [0,1),
o otherwise

and
x p+l-x

Np(x) := kNp-l(x) + k Np-l(x - 1) (p E N).

Note that suppNp = [O,p + IJ.
In our application we deal with intervals [m - r, m + rJ (r > 0), more

precisely with [-EI, EIJ and [~-EE, ~+EEJ. At the interval [m-r, m+rJ
we choose the equispaced knots ß := {tk =m-r+ ~ k : k = -p, ... , 2p}
and introduce the dilated and translated versions of Np with respect to
these spline knots

see Figure 1.
The set of B-splines {Bnr:~p forms a basis of the spline space

Sp(ß) := {s E Cp-l[m - r, m + rJ : Sl[tk,tk+d E IIp, k = O,... ,p - I}.

Proposition 3.1 (Spline interpolation) For given aj, bj (j = 0, ... ,p-
I) there exists a unique spline S E Sp(ß) which satisfies the interpola-
tion conditions

(j=O, ... ,p-l)
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at the endpoints of an interval [m - r, m + r] (r > 0). This spline can
be written as

p-l

S(x) = I: ckB~(x)
k=-p

where the coefIicients Ck are the solution of the two p x p linear systems

p

I:c-k(B~k)(j)(m - r) aj,
k=l
p

I:Ck-l(B~k)(j)(m - r) = (-l)jbj
k=l

with the same coefIicient matrix.

(j=0, ... ,p-1)

The proposition is a direct consequence of [6, Theorem 1] and the
fact that

(B~k)(j)(m-r) = (-1)j(BL1)(j)(m+r).

Since our kernels are even, we have by (3.1) and (3.2) for our ap-
plication that aj = (-l)j bj. Hence it remains to solve only one p x p
system to obtain all coefficients Ck. Of course, for large pE N, this sys-
tem is ill-conditioned. However, we will only need small values of p in
our algorithm, and, for p ::; 16, the corresponding systems can be solved
without substantial errors.

Finally note that the fast evaluation ofthe spline S (x) can be realized
by the de Boor algorithm [7].

3.2 Regularization by polynomial interpolation

To construct polynomials K[ and KB of degree 2p - 1 which fulfill the
2p Hermite interpolation conditions (3.1) and (3.2), respectively, we use
the following two-point Taylor interpolation, see e. g. [2, Corollary 2.2.6]:

Proposition 3.2 (Two-point Taylor interpolation) For given aj, bj
(j = 0, ... ,p - 1) there exists a unique polynomial P of degree 2p - 1
which satisfies the interpolation conditions

(j=0, ... ,p-1) (3.3)
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l

at the endpoints oi an interval [m - r,m + r] (r > 0). This polynomial
can be written as

p-lp-l-j
P(x) =?= L (p - ~ + k)

J=O k=O

( (x - n: + r )j (x - m - r) p (x - m + r) k a .
J! -2r 2r J

+ (x - n: - r )j (x - m + r) p (x - m - r) \ .) .
J! 2r -2r J

(3.4)

As in the spline case, the representation (3.4) can be furt her simpli-
fied if we have even kerneIs and (3.1), (3.2) in mind.

Corollary 3.3 For given aj and bj = (-I)j aj (j = 0, ... ,P - 1) the
unique polynomial P oi degree 2p - 1 which satisfies (3.3) at the end-
points oi an interval [m - r,m + r] (r > 0) is given by

p-l

P(x) = 2~L "'(j(1 - y2)j ((1 - y)P-j + (1 + y)P-j), (3.5)
j=O

where y := x-;.m and

j (p - 1+ l) rj-1
"'(j := ~ 1 21(j -l)! aj-l.

Proof. By (3.4) we obtain for our special setting that

P(x) = ~ ~ p~j (p - 1+ k) r
j
aj ((I+y)Hk(l-y)P+(I-y)Hk(l+y)P).

2P ~ 6 k 2k j!
J=O k=O

Now the change of the summation order results in the desired formula

1 ~ ~ (p - 1+ l) rj-1 a. I' .
P(x) = 2P ~ 6 1 2l ('~-l)! ((I+y)J(1-y)P+(I-y)J(I+y)P).D

J=O 1=0 J

In the next section we will estimate the approximation error intro-
duced by our fast algorithm. For this purpose we will need an estimate
for the pth derivative of Kr and KB, respectively.
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Theorem 3.4 For p E N, the pth derivative oE the polynomial P in
(3.5) can be estimated by

max Ip(p)(x)1 :S;p! (~)Pr-PT'
xE[m,m+rJ 2

where
p-2 (p _ 1+ l) rP-1-1

T :=I: 1 21(p _ 1 -l)! lap-l-t1.
1=0

Proof. Since the two-point Taylor interpolation polynomial reproduces
polynomials of degree at most 2p - 1, we obtain for the polynomial == 1
by Corollary 3.3 that

p-l ( ') ( 2) .~I: p - 1+ J 1 - ~ J ((1 _ y)P-j + (1 + y)P-j) = 1. (3.6)
2P j 2J

j=O

On the other hand, if we reorder the sum in (3.5) with respect to the
coefficients al (l = O, ... ,p - 1), then ao is just the coefficient of (3.6).
Thus, ao does not appear in the pth derivative of any polynomial P of
the form (3.5).

Now, since d~ y = ~,the pth derivative of (3.5) can be written as

(
1) P p-l dP . . .

p(p)(x) = - '" 'Y'- [(1 - y2)J ((1 - y)P-J + (1+ y)P-J)], (3.7)2r ~ JdyP
j=l

where
_ j-l (p _ 1+ l) rj-1
Tj := I: 1 21(j -l)! aj-l.

1=0

We consider Qj(Y) := dC;P [(1 - y2)j 2Rj(y)J with

Rj(Y) :=~ ((1 - y)P-j + (1+ y)P-j)

=1+ (p ; j) y2 + (p ~ j) y4 + ...

+ {yP-j . for p - j even,
(p - j)yp-J-l for p - j odd.
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Obviously Rj (y) is an even polynomial in y of degree at most p - j with
positive coefficients and therefore

(3.8)

By applying the Leibniz rule we get

and furt her by the Rodrigues formula (A.1) of the Legendre polynomials
p.

J

Qj(Y) = (-1)j2j+lj! t (~)pY-j)(Y)R)P-k)(y).
k=J

By Lemma A.1, we know that maxyE[O,l]IPY-j)(y)1 = p}k-j)(1). Con-
sequently, we obtain together with (3.8) that

max IQ .(y)1 = 2j+l j! f-- (p) p(k-j) (1)R\P-k) (1) = IQ '(1)1. (3.9)
YE[O,l] J f;;; k J J J

On the other hand we conclude by the Leibniz rule that

Qj(Y) =d~P [(1 - y2)j [(1- y)P-j + (1+ y)P-j]]

dP ..
=- [(1 - y)P(1 + y)J + (1- y)J (1+ y)P]dyP

~p! tam (0(-1)' ((1 - y)'(1 + y)j-k( -1)'

+ (1+ y)k(1 _ y)j-k) .
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Now IQj(l)1 can be easily estimated by

IQ;(I)1 = p! t,m(0HJ' ('k,O2;-> (-1)P + 2k'k,;)
= p! i( -1)p2j + e)2j( -l)jl
= 2j p! I( -l)j (~) + (-l)P I
~ 2j p! ( (~) + 1) .

13

Here 6k,j denotes the Kronecker symbol. Combining this with (3.7) and
(3.9), we obtain for x E [m, m + r] that

P p-l

IP(p)(x)1 ~ C1r) ~ lijIIQj(l)/
J=1

~ p! (~)P (~ (~)2j +~ 2j) '_max _ lijl2r . J . J-l, ...,p 1
J=1 J=1

= p! (~)P ((1 + 2)P - 2P + 2P - 3) . max lijl
2r J=I, ...,p-l

(
3 )P<p! - . max lijl.
2r J=I, ...,p-l

It remains to estimate max lij I. By definition of ij it follows

j-l (p _ 1+ l) rj-l

~ 1 2l(j -l)! aj-l

j-l (p _ 1+ l) rj-l

< ~ 1 2l(j -l)! laj-tI =: Sj.

Now one can easily check that Sj ~ Sj+l for 1 ~ j ~ p - 2. Thus,
. max lij I ~ Sp-l = 'Y and we are done. 0
J=I, ...,p-l

Now we apply Theorem 3.4 and Corollary 3.3 with respect to our
special polynomials Kj and KB, i.e. we consider the intervals [-Cj,Ef]
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and [~ - CB, ~ + cB] and set aj := KU)(-cI) = (-1)jKU)(cI) and
aj := KU)(~ - cB), respectively. The result can be summarized as
follows:

Corollary 3.5 The polynomials KI and KB which satisfy (3.1) and
(3.2), respectively, are given by (3.5) with y = c~, y = x~~/2 and,j =
,FB, respectively, where

"'J~ .- ~ (p - 1+ l) (-1)j-1ci-1 KU-I)( )
I LJ 1 21( . -l)! cl ,

1=0 J

"'JI? := ~ (p - 1+ l) (-1)j-1c1-1 KU-I) (_~ + c )
I LJ 1 21( . -l)! 2 B.

1=0 J
The polynomials fulEll the estimates

max IK~P)(x)1 < p! (~2)Pc7 ,I, (3.10)
xE [O,E:] ]

flax 1 IK1f)(x)1 < p! (~2)Pcil,B (3.11)
XE[2"-cB'2"]

with

,./ ._ ~ (p -1+ l) c~-1-1 IK(p-l-I)()1 (3.12)
LJ 1 21(p - 1_ l)! cl ,
1=0

,B ._ ~ (p - 1 + l) ciJ-l-1 IK(P-l-l) (~ _ c ) 1(3.13)
LJ 1 21(p - 1 - l)! 2 B
1=0

4 Error Estimates

Beyond the well-known errors appearing in the NFFT computations
which are discussed for example in [20], our algorithm intro duces the
errors 1!(Yj) - j(Yj) I (j = 1, ... ,M). By (2.4), (2.5) and (2.1), we
obtain for Iyj ~ ~ - c.f that

N

I!(y) - j(y) I = L ak (K(y - Xk) - Tn(K)(y - Xk))
k=l
N

< L laklllKerrlloo,
k=l
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where

15

IIKerriloo := max IKerr (x) I , Kerr(x):= K(x) - J;,(K)(x). (4.1)
Ixl:S~

Lemma 4.1 Let K be an even kernel and let K E HP(1f) be defined by
(2.2). Then, for 2 ~ p « n, the following estimate holds true:

1
2"

C J -()IIKerriloo ~ ( ) -1 IK P (x)1 dx.p - 1 7rPnP
o

Proof. The proof follows by standard arguments. By Fourier expansion
of K and (2.3) we obtain for x E [-~,~] that

Kerr(x) =L ck(K) e27rikx - L clbl e27rilx

kEZ lEn

and furt her by the aliasing formula B.1 that

Kerr(x) = L CkL ck+rn(K) e27rikx(e27rirnx -1).
kEIA rEZ

r:;i:O

Since K is even, we can estimate
00

IIKerriloo ~ 4 L Ck ICk(K)I.
k=~

By construction we have that K E HP(1f) which implies that

ck(K) = (27rik)-P cdK(p))

so that
1

IIK=lIoo <; 4 (~ ek (2WWP) l'k(P) (x) Idx.
2

For p ~ 2 the above sum can be estimated by an upper integral
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Since p ~ n, this implies the assertion with a constant C :::::::4. 0

Now we obtain by the definition of k that

J Ik(P)(x) Idx ~ J 1K't\x) Idx + 'fesiK(P) (x) Idx + J IKjj) (x) Idx
o 0 CI ~-cB

and for the polynomials KI and KB in Corollary 3.5 by (3.10), (3.11)

1 l-CB

2 ( )P 2
/ Ik(p)(x)1 dx ~ p! ~ (E}-P'l + E1-p,B) + / IK(p)(x)1 dx.

o cI

(4.2)
It remains to estimate K(p) and the values ,I, ,B which depend on

KU)(EI) and KU)(~ - EB), respectively. Therefore we have to estimate
the derivatives of K.

For the kerneIs (1.2) and JEN we have

iKU)(x)1 = (j + ß - I)! ixl-U+ß)
ß (ß - I)!

where we set (-I)! := 1 in case ß = O.

(x =I- 0; ß E No), (4.3)

Theorem 4.2 For ß E No, let K = Kß be defined by (1.2) and k by
(2.2) with KI and KB given by Corollary 3.5, where EI ~ min{EB, ~ -
EB}' Then, for 2 ~ P ~ n, the error IIKerrlloo in (4.1) can be estimated
by

II
K 11 <C (p+ß-2+<5o,ß)! 3Perr 00 - ß p+ß-l 7fPnP-1

EI

with a constant Cß independent ofp,n and EI.

(4.4)

Proof. We consider the summands in (4.2). By (4.3) we obtain that

'lB1K(P)(x)i dx

CI

~-CB

(p+ß-1)! J 11-(p+ß)d
(ß - I)! x X

CI

< (p + ß - 2)! -(p+ß-l)
(ß - I)! EI .
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Since cl ~ min{cB, ~ - cB} it follows by (3.12), (3.13) and (4.3) that
,Bc1-P ~ ,Ic;-P. Thus it remains to estimate ,Ic;-P. By (3.12) and
(4.3) we get

I I-p < 1 ~ (p - 1+ l) (p - 2 -l + ß)! 2-1

, CI ~-l+ß L; l (ß - l)!(p - I-l)!
I 1=0

< 1 (p - 2 + ß) ~ (p - 1 + l) Tl
cp-l+ß ß - 1 L; l '
I 1=0

where we set C\) := 1 in case ß = O. Using y = 0 in (3.6) we see that
the last sum equals 2P-1 so that

I (3)P Il-p p(p+ß-2+60,ß)!3P -(p+ß-l)
p. 2" ,cI ~ 2(ß _ I)! CI .

Combining these estimates with (4.2) and Lemma 4.1 we obtain the
assertion. 0

Of course, for small c, the derivatives of the generalized multiquadrics
Kß(x; c) behave similar to those of Kß(x). The following lemma esti-
mates the derivatives of the generalized multiquadrics by taking c into
account.

Lemma 4.3 The derivatives oE

(ß E N; odd)

ean be estimated by

Proof. We usethe well-known formula [22]
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By differentiation we obtain

18

l
i

Using the Rodrigues formula of Hermite polynomials (A.4) we can rewrite
this as

Now we substitute y = x v:; and obtain

Since the integrand is even, this is equal to

By the Cauchy-Schwarz inequality we get

By the normalization of the Hermite polynomials (A.5) the first integral
is equal to 2j j!ft . To evaluate the second integral we set a2 := 1+ ~c;
and use that
00

/

_a2y2 2(j+ß-l) d _ 1 r(' ß_l) 1 (' ß- )'e y y - a2(j+ß)-1 J + 2 ~ a2(j+ß)-1 J + 1 ..
-00
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Combining these estimates we arrive at

19

Theorem 4.4 For odd ß E Nu {-I}, let K = Kß('; c) be denned by
(1.3) and k by (2.2) with KI and KB given by Corollary 3.5, where
cl ::;min{cB, ~ - cB}' Further, let 0< c::; cl. Then the errar IIKerrlloo
in (4.1) can be estimated by

II
K 11 < C (p + ß - 2+ 2L1,ß)! (3 V2)Perr 00 - ß p+ß-I p p-l

(cJ + c2) 2 7r n

with a constant Cß independent of p, n and cl.

Proof. The proof follows the same lines as the proof of Theorem 4.2.
First we obtain for ß E N by Lemma 4.3 and since c2 ::; cJ that

EI

~-EB

C (p + ß - l)!V2P J ( 2 + 2)-(p+ß)/2 d
r(fl.) x c X

2 EI

< C (p + ß - 2)!V2p+l ( 2 + 2)-(P+ß-l)/2
r(*) CI c .

",I c1-p <
I I -

Next we have for ß E N by (3.12) and Lemma 4.3 that

Cp-l
--------xr(*) (cJ + c2)(p+ß-l)/2

~ (p - 1+ l) (p - 2 -l + ß)! (JcJ + c2) / (4.5)
/=0 l (p - 1 -l)! 2V2cI

and since c2 ::; cJ furt her
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This results in

,(~)P I c1-p < C p (p + ß - 2)' (3V2)P ( 2 + 2)-(p+ß-1)/2
p. 2 'C I - ß 2V2 cI C .
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Substituting of these estimates in (4.2) and applying Lemma 4.1 we
obtain the assertion for ß E N.

The case ß = -1 follows similarly by using the fact that the Hardy
multiquadric K_1(x;c) = (x2 + c2)~ fuHills

KU)(x' c) = c2 KU-2)(x. c)-1 , 3' (j=2,3, ... ). o

Note that the right-hand side of (4.5) also converges under the
weaker condition c2 < 7c7 so that one can prove similar estimates with
dP, d > 3V2, instead of (3V2)P assuming weaker conditions than c2 < c7.

We will use the estimates in the Theorems 4.2 and 4.4 to specify the
parameters CI, P and n of our algorithm. Since both cases can be handled
in the same way, we restrict our attention to Theorem 4.2. Replacing
cl in (4.4) by the condition CI = a/N in (2.6) which is necessary for the
near field computation with linear complexity, we obtain

II
K 11 <C Nß(P+ß-2+0o,ß)! (3N)P-1

err 00 - ß ßa a7rn

This implies that the degree n of our trigonometrie approximation of K
which is at the same time the length of our NFFTs should be chosen
proportional to N. In our numerical examples we set n = N. In this
case we can rewrite the error estimate by using the Stirling formula
p! ::; 1.1 y'27rp (~)P as follows

(p+ß-2+OO,ß)! J2 ( - 1)
(p-1)! 7r P

aß

Note that the last fraction contains at most ß factors in the numerator.
Thus choosing a such that 3?7r-;) < 1, our error decays exponentially in
p. In our numerical examples we choose a = p. Note that the relation
between a and p was numerically examined in [20J.
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5 Fast Summation at Multidimensional Knots

In this section we briefly explain how to extend our one-dimensional
scheme to higher dimensions and rotation-invariant kerneIs lC(x) = K(lxl).
We focus on the fast computation of

N N

f(Yj) :=L cxklC(Yj - Xk) =L cxkK(IYj - xkl)
k=l k=l

(j = 1, ... ,M).

8imilar as in 8ection 3 we regularize lC near 0 and near the boundary of
[-~, ~)d to obtain a smooth periodic kernel K:

K(x) :=

KI(lxl)
KB(lxl)
KB (~)

K(lxl)

if lxI:::; cl,
if ~ - cB < lxi < ~,
if lxi 2: ~,
otherwise.

Here we choose KI as in Corollary 3.3. But instead of (3.2) the polyno-
mial KB has to satisfy

(j) (1 ) (')(1 )KB "i-cB =KJ "i-cB

(j) (1) _ (1)K B "i - OO,j K "i '

(j=0, ... ,p-1),

(j = 0, ... ,p - 1).
(5.1)

The unique solution KB of (5.1) is given by Theorem 3.2, but now it
does not have the symmetry of Corollary 3.3.

Then we approximate K by the Fourier series

~(K)(x) := L c1bl e21filx,

IEI~

where
bl := ~ " c.K (t) e-27rijl/nd

nd L.J J n
jEI~

Now we can decompose the original kernel as

(l E I~).

lC = (lC - K) + (K - ~(K)) + ~(K)
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and, by neglecting the summand in the middle, we approximate f by

N N

j(x) :=LC¥k(JC - JC)(x - Xk) +L C¥k 7;(JC) (x - Xk). (5.2)
k=l k=l

Instead of f we evaluate j at the knots Yj (j = 1, ... ,M) by the following
two steps:

1) Near field computation (first sum in (5.2))

To achieve the desired complexity of our algorithm we suppose that
either the N points Xk or the M points Yj are "sufficiently uniformly
distributed" in the ball with radius ~ - E:B, i. e., we suppose that there
exists a small constant v E N such that each ball with radius E:1 contains
at most v of the points Xk or of the points Yj, respectively. This implies
that E:1 depends linearly on N-1/d, respectively M-1/d. In the following
we restrict our attention to the case

a
E:1 = Nl/d'

where a « N is independent of N. Then, as in the one-dimensional
case, the computation of the first sum requires only O(M) arithmetic
operations.

2) NFFT based summation (second sum in (5.2))

The evaluation of the second sum in (5.2) is done exactly in the same
way as in one dimension, but with d-dimensional NFFTs now, which
really involve a multidimensional setting.

6 Numerical Examples

Gur algorithms were implemented in C using double precision arithmetic
and tested on an AMD Athlon(tm) XP 1800+, 512MB RAM, SuSe-
Linux 8.2.

Throughout our experiments we apply the NFFT jNFFTT package
[17]with Kaiser-Bessel functions, truncation parameter m = 8 and over-
sampling factor er = 2.

For simplicity we have chosen M = N in our summation algorithm
and randomly distributed knots Yj = Xj (j = 1 ... ,N) in {x Ilxl :s; 372}'
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Figure 2: Error E in dependence on p = a for various kernels in 2D with
N = 5122, n = 512; regularization by spline interpolation (left) and by
polynomial interpolation (right).

i. e. CB = 1/16. The coefficients ak were randomly distributed in [0,1].
Moreover, we set a = p.

We are interested in the error

E:= max
j=l, ...,N

Ij(Xj) - j(Xj) I
Ij(xj)1

(6.1)

Figure 2 shows the behaviour of E in 2D for various kernels in (1.2)
and (1.3) with spline regularization (left) and regularization by algebraic
polynomials (right). Here we have chosen N = 5122 points, n = VN
and c = l/VN as parameter of the generalized multiquadrics. First
we observe that the error E with spline regularization is slightly better
than the error with regularization by algebraic polynomials. Further ,
the results confirm the exponential error decay with increasing a = p
proved in the Theorems 4.2 and 4.4. In the following we will always use
regularization by polynomial interpolation.

Figure 3 presents the 1D error E in dependence on p for the Hardy
multiquadric (left) and the inverse Hardy multiquadric (right) with vari-
ous scaling parameters c. Here we took n =N= 1024. As expected, for
decreasing c, the error increases until c = J:v, where it is approximately
the same as for c = 0 in both cases. For c = 1, the error is about the
same for both multiquadrics. In this case, we can also apply the algo-
rithm without inner regularization, i. e. without near field computation.
The corresponding curve is drawn with symbol 6. Note that without
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Figure 3: Error E in dependence on p = a for the Hardy multiquadric
(left) and the inverse multiquadric (right) in 1D with various parameters
c and n = N = 1024. Here c = 1* denotes the algorithm without near
field computation.

inner regularization n does not depend on N and the complexity of our
algorithm becomes linear in N.

Finally, Figure 4 compares the computational time in dependence on
the number N of two-dimensional points for the direct computation of
(2.1) and for our algorithm. As kernel function we have used K(x) =
log lxi. The parameters for our algorithm were n = Viii and p = 4 to
achieve an accuracy of E ::;10-6. The direct computation of the two
cases with N 2: 106 was only estimated based on the computational
time and error for the first 1000 points, since the direct computation
would have taken about 66 hours for N = 220 ~ 106, respectively 44
days for N = 222 ~ 4 . 106. Comparing these times with about 4.5
minutes, respectively 19 minutes, for our algorithm, the time saving for
large problem sizes N becomes clear.

A Legendre and Hermite polynomials

In the following we collect some properties of Legendre polynomials and
Hermite polynomials which are used in the proofs of this paper.

The Legendre polynomials are defined for j = 0,1, ... by the Ro-
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Figure 4: Computational time versus the number N of points in 2D
for the direct summation and our algorithm with n = VN, p = 4 and
K(x) = log lxi.

drigues formula

. 1 dj 2 .
Pj(x) = (-l)J 2jj! dxj [(1 - x FJ.

Their derivatives satisfy the recurrence relation [10, p. 172J

P~(x) = 0, p{ (x) = 1,

(A.1)

PJ+l(x) = PJ-l(X) + (2n + l)Pj(x)

Moreover, it is well-known [1, p. 345J that

(j = 1,2, ... ). (A.2)

max JP'(x)1 = P.(l) = 1.
XE[O,l] J J

Further , we can prove the following lemma.

(A.3)

Lemma A.l For all j, m E No the Legendre polynomials Pj fulfi.ll

max IP~m)(x)1 = p(m)(l) 2: O.
xE[O,l] J J

Proof. We apply induction on m and j.
By p}m)(x) = 0 for m > j and p~)(x) = const., the assertion follows
for j ::;m. For m = 0 and JEN, the assertion follows by (A.3).
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(A.4)

Assume now that the assertion is true for k ::;m and all j E No and
for k = m + 1 and l ::; j. Then we conclude by (A.2) that

max IP}':1+1
) (x)1 = max IP}~l+l)(X) + (2j + I)Pj(m) (x)1

xE[O,l] xE[O,lj

and furt her by our assumption that

The H ermite polynomials are defined by the Rodrigues formula

. 2 dj 2
Hj(x):=(-I)Jex -d .[e-xJ.

xJ

They fulfill the orthogonality relation

/

00 2 {o for j -I- m,
e-x Hj(x)Hm(x) dy = ..

2J]!J1f for j = m.
-00

B Aliasing Formula

(A.5)

Theorem B.I (Aliasing formula) Let 9 be a I-periodic function with
absolutely convergent Fourier series and Fourier coeHicients

1
2

Ck(g) := / g(x) e-27rikx dx.
1-2

For even n E N and Cj given by (1.1) define an approximation
n

gk := ~ .t
n

Cjg (~) e-27rijkjn
J=-7:

of Ck (g) by using the trapezoidal quadrature rule. Then the following
relation holds true:

gk = Ck(9) +L Ck+rn(g).
rE:£::
r;i:O
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