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Abstract

Gabriele Steidri:

We are interested in minimizing funetionals with £2 data and gra-
dient fitting term and (absolute) £1 regularization term with higher
order derivatives in a diserete setting. We examine the strueture of
the solution in Id by reformulating the original problem into a eon-
taet problem which ean be solved by dual optimization teehniques.
The solution turns out to be a diserete polynomial spline whose knots
eoincide with the eontaet points. In 2d we modify Chambolle's algo-
rithm to solve the minimization problem with absolute £1 norm and
seeond order derivatives.' This requires the applieation of fast eosine
transforms. We demonstrate by numerieal denoising examples that the
£2 gradient fitting term ean be used to avoid both edge blurring and
staireasing effeets.

Short title: £1 regularized gradient fitting

AMS Subjeet Classifieation: 65KIO, 65F22, 65T50, 49M29

Key words: high er order f\ regularization, TV regularization, eonvex opti-
mization, dual optimization methods, diserete splines, splines with defect,
G-norm, fast eosine transform, sparse representation.

1 Introduction

In image denoising one is interested in removing noise while preserving or
even enhaneing important structures sueh as edges. While linear filters
typieally smooth edges some edge enhaneing methods ereate artifieial edges
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out of continuous gray valuc transitions. This effect is known as 'staircasing'.
In this context, we are concerned with minimizing discrete vers ions of the
functional

(1)

where lu(-r) I, I E N5 denotes the absolute value of appropriate higher order
derivatives of u. For IU(I,l)1 = lV'ul and a = 0 the functional (1) is the
frequently applied Rudin-Osher-Fatemi (ROF) model [20] which typically
shows the staircasing effect. Using higher order derivatives I one can avoid
this effect, see, e.g., [23J but the method tends to introduce some blurring
in regions of image edges. To cope with this disadvantage we propose to
add an additional gradient fitting term (a =I- 0) and examine its influence on
the solution. Other possible approaches, e.g., the application of Bregman
distances [17] are beyond the scope of this paper.

To get a better idea concerning the structure of the solution of the min-
imization problem, we first deal with the univariate setting, where the re-
gularization term contains only the £1 norm

(2)

Again, we focus on the discrete approach with forward differences instead
of derivatives. Note that in the continuous setting LI regularization in
connection with splines was treated in [6]with a careful handling of the non-
reflexive space LI' In this paper, we reformulate (2) as a contact problem
which can be solved via the dual formulation of (2). In case of an additional
gradient fitting term (a > 0) the computation requires the application of
fast discrete eosine transforms. We prove that the solution U of the contact
problem is a discrete polynomial spline of degree 2m - 1 with the contact
points as spline knots. For a = 0 this spline is 'smooth', i.e., has defect
(knot multiplicity) one, see also [24]' while for a > 0 it has defect three.
The solution u of (2) is directly determined by the solution U of the contact
problem and appears to be a discrete 'smooth' polynomial spline of order
m - 1 with knots related to the contact points. We do not present numerical
denoising exampIes in 1d since they only confirm the 2d findings. For a = 0
and various derivatives m denoising results are given in [24].

Having examined the structure of the solution in 1d, we turn to our orig-
inal 2d denoising problem. Here the regularization term includes an absolute
£1 norm which in contrast to the ordinary £1 norm leads to rotationally in-
variant solutions. We adapt an algorithm of Chambolle [2] which is also
based on the dual version of (1) to our setting. Again we have to apply
fast eosine transforms in case of an additional gradient fitting term. The
dual algorithms considered so far are based on the fact that the £1 regu-
larization functional is one-homogeneous so that the dual functional is the
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indicator function of a convex set. However, in variational image restoration
other regularizers, including non-convex ones were also applied. It seems
to be interesting to see how the additional gradient fitting term behaves
in connection with such penalizers. To this end, we include for numeri-
cal comparisons abrief consideration of more general functionals and their
numerical solution via the Euler-Lagrange equation and the corresponding
re action-diffusion equation. In our numerical examples we will focus on the
non-convex penalizer corresponding to the Perona-Malik diffusivity [18].

This paper is organized as follows: We start with the 1d part in Section 2.
First we provide our discrete setting in Subsection 2.1 . Then we reformulate
the discrete minimization problem as a contact problem and deal with its
solution via the dual formulation of the minimization problem in Subsection
2.2. Finally, we examine the structure of the solution both of the contact
problem and the original minimization problem in Subsection 2.3.

Section 3 deals with 2d images, where we focus on the practically rele-
vant regularization with at most second order derivatives in the regulariza-
tion term. After introducing the discrete settiag in Subsection 3.1 we turn
to the dual formulation and Chambolle's algorithm in connection with the
discrete cosine transform in Subsection 3.2. Subsection 3.3 briefiy describes
the numerical treatment of regularization functionals which are possibly not
one-homogeneous via the corresponding Euler-Lagrange equation. Finally,
Subsection 3.4 presents numerical denoising results demonstrating the infiu-
ence of the additional gradient fitting term.

2 Higher order £1 regularization In Id

2.1 Discrete setting

In this section, we deal with a discrete version of (2). To this end, let

-1 1 0 0 0 0
0 -1 1 0 0 0

DI,N := E JRN-I,N (3)
0 0 0 -1 1 0
0 0 0 0 -1 1

be the first order forward difference matrix and

D '- D D D E mN-m,Nm,N.- I,N-(m-I)' ... ' I,N-I I,N m..

the m-th order forward difference matrix. If the size N of a difference matrix
Dm,N is clear from the context we will skip the second index and write only
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Dm. Then it is weH known that

N(Dm,N)

N

{j E JRN : 2:.FI(j) = 0, r = O, ... ,m -I},
j=l

span {(F)f=l : r = 0, ... , m - I} ,

Le., the range R(D; m) of D; m consists of the vectors with m vanishing
moments while the kernel N(bn,m) of Dn,m is just given by the discrete
polynomials of degree ::; m - 1.

We are inter ested in minimizing the discrete counterpart of (2)

1 2 a 2
F(u) = 2111- ul12 + "2IIDlf - D1ul12 + ßllDmulh (4)

which can be rewritten as

1 T TF(u)=2(j-u) (IN+aD1D1)(j-u) + ßIIDmulh. (5)

We will see by (21) that the matrix

A=A(a) :=IN+aDID1

is positive definite. Setting BT B := A and L := Dm the functional (5)
becomes

1
F(u) = 211B(j - u)ll~ + ßIILulll' (6)

The minimizer of (6) can be computed in various ways. In the next subsec-
tion, we propose to minimize (6) using its dual formulation. This is closely
related to the reformulation of (6) as a contact problem and serves as our
basis to gain some insight into the structure of the solution u.

2.2 Contact problem and dual formulation

(7)1
F(u) = 211B(j - u)ll~ + ßIILulll,

In this subsection, we focus on minimizing strictly convex functionals of the
form

where B E jRN,N and L E JRN-m,N are arbitrary matrices of fuH rank.
In particular, we are interested in our special setting from the previous
subsection.

Decomposition related to N (L). Since the regularization term becomes
zero if u is in N(L) we want to restrict ourselves to those parts of u which
are in a certain sense orthogonal to N (L). The matrix B has fuH rank such
that A := BT B is positive definite and

(U,V)A = (Au,v) = vT Au.
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defines an inner product on ]RN. Corresponding to the A orthogonal decom-
position

every vector u E ]RN has a unique decomposition as

(8)

Using this decomposition for 1and u, we obtain in (7),

F(u) =

It is easy to check that 11 = A-1LTKLI, where

Note that K exists since L has full rank. Consequently, to solve (7), we can
set Uo := 10 = 1 - 11 and search for U1 E R(A-1 LT) minimizing

1 2"2IIB(j1 - ur)112 + ßIILurll1.

In the following, we assume that 1 E R(A-1LT) such that 11 = 1 and
U1 = u.

Reformulation as contact problem. For the solution u of (7) it is
necessary and sufficient that ON is an element of the sub differential 8F(u):

T Lu
ONEA(u-j)+ßL ILul'

where the quotient is meant componentwise and

(9)

1:1 := { -~
[-1,1]

This can be rewritten as

if x> 0,
if x< 0,
if x = O.

u E

Lu E

1- ßA-1LT Lu
ILul'

LI - ßLA-1 L
T I~~I.
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Since j, u E R(A-1LT) there exist F, U E ]RN-m such that

j=A-1LTF, u=A-1LTU.

Conversely, we have that

F = KLj, U = KLu.

Multiplying (10) by K and using (12) we obtain the inclusion

K-1U
UE F-ß--.IK-1UI

Hence (7) can be reformulated as the following contaet problem:

Find U E ]RN-m so that

(11)

(12)

• IIF - Ulloo ::; ß.
U lies in a tube around F of width 2ß .

• if (K-1U)j > 0 we have a lower contact point Uj = Fj - ß,
if (K-1U)j < 0 we have an upper contact point Uj = Fj + ß.

Far an illustration of a contact problem see Fig. 1 (right).
To get an idea concerning the structure of U and u in the next subsection

let us write
U=Kc,

so that by (11)
u=Kc,

with K :=A-1 LTK. Then the contact problem reads as follows:

Find c E ]RN-m so that

• IIF - K clloo ::; ß.
• if Cj > 0 we have a lower contact point Uj = Fj - ß,
if Cj < 0 we have an upper contact point Uj = Fj + ß.

Let
3 := {j E {O, ... ,N - m - 1} : Cj # O}

(13)

(14)

(15)
be the (sub )set of contact point indices. If #3 is small, then C becomes sparse
and (13) (resp. (14)) are sparse representations of U (resp. u) determined
qy the corresponding columns of K (resp. K). In the next subsection we
will have a doser look at these columns.

In general the solution of the contact problem is not straightforward.
Only for the special case that B = IN and L = D1 there exists the so-called
'taut~string' algorithm [4] which is based on a convex hull algorithm and
requires only O(N) arithmetic operations. Concerning tube algorithms see
also [7J.

We will solve the problem via the dual approach to (7).
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Dual formulation. To give the dual formulation of (7) we apply that
J(u) := IILulh is one---homogeneous so that its conjugate J* is the indicator
function of the convex set

SL := {v E R(LT) : (v, w) :S J(w) 't:/wE JRN} . (16)

It is easy to check that

(17)

Then the inclusion (9) can be rewritten as

1ßA(J - u) E 8J(u)

which is equivalent to

u E 8J* (~A(J - u))
and with v := A(J - u), Le., u = f - A-1v to

f-A-IVE8J*(~).

Obviously, v fulfills this inclusion if and only if it minimizes the functional

(18)

By (17) this is the case if and only if v = LTV and V solves the minimization
problem

IIBf - (B-1)T LTVII~ -7 min, S.t. 11V11oo:Sß. (19)
This is actually a quadratic optimization problem with linear constraints
which can be solved by standard optimization techniques. Finally, we obtain

Up to now we have not used the decomposition (8) for the solution.
To see the relation to the contact problem, we assume again that f E

R(A-1 LT). Then, using (11), we can reformulate (19) as

II(B-l)TLTUII~ = 11U11K-1-7 min, S.t. IIF - Ulloo:S ß (20)

and with (13) as

cTK c -7 min, S.t. IIF - K clloo :Sß.
Thus, the vector U in our contact problem solves the minimisation problem
(20).

In the following, we are interested in the structure of u and U for the
special matrices Band L from Subsection 2.1.
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2.3 Spline character of the solution

We want to examine the structure of the solution of our minimization pro-
blem for our original setting L = Dm and

To get some intuition Fig. 1 illustrates the solution of (4) and of the corre-
sponding contact problem for the WaveLab signal 'Heavisine' with N = 64
points, see [11] for WaveLab. The solution was computed using the 'quad-
prog' procedure of the MATLAB optimization toolbox.

Figure 1: Solutions of the minimization problem (4) and the corresponding
contact problem (20) for m = 2 and ß = 50. Left: Original signal fand
solutions u for a = 0 (top) and a = 2 (bottom). Right: Corresponding
tubes around Fand solution U of the contact problem. Here '0' illustrate
the spline knots corresponding contact points.

We will see that U and u are discrete polynomial splines of degree m - 1
and 2m - 1, respectively, where U has some higher defect in case a > O. Let
us recall the basic spline notation.
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Discrete polynomial splines. A real-valued function s defined on [a, b]
is a polynomial spline of order m with knots a < Xl < ... < Xr < b if

r

s(m) = L CkO(' - Xk),
k=l

where odenotes the delta-distribution. In other words, s is a polynomial of
degree :::;m - 1 on each interval [Xk,Xk+1], k = 0, ... , r; Xo := a, Xr+1 := b
and s E em-2[a, bj. These smoothest polynomial splines are also called
splines with defect 1 or with knot multiplicity 1.

Let n := lm/2 J. Then we can analogously define the discrete polynomial
splineson {O,... ,N -I} of orderm with knotsj1 +n, ... ,jr+n E {n, ... ,N-
r~l} as the vectors s E JRN satisfying

r

Dms = LCjkejk'
k=l

where ej E JRN-m denotes the j-th unit vector. Material on discrete splines
can be found, e.g., in [22] and in connection with optimization problems
different from the one considered here in [12, 13j.

For 0: > 0, we have to consider splines with higher defects. A real-valued
function s defined on [a, bj is a polynomial spline of order m with knots
a < Xl < ... < Xr < band defect (knot multiplicity) 3 if

r

s(m) = L CkO(' - Xk) + c~o'(. - Xk) + c%o''(- - Xk).
k=l

In other words, s is of lower smoothness, namely s E em-4[a, bj. Here we
may restrict our interest to the discrete counterpart of splines with defect 3
satisfying

r

s(m) = LCk(O(' - Xk) + 0:0''(- - Xk)).
k=l

We say that s E JRN is a discrete polynomial spline on {O,... ,N - I} of
order m with knots j1 + n, ... , jr + n E {n, ... ,N - r~l} and o:-defect 3 if
s satisfies

r

Dm S = L cjk(ejk + o:ejk) ,.
k=l

where ej := (Oj-1, -1,2, -1, 0N_m_2_j)T for j = 1, ... ,N - m - 2, e~ :=
(2, -1, 0N_m_2)T and e'N-m-1 := (ON-m-2, -1, 2)T.
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Spline structure of u. Based on the sparse representations (13) and (14)
of U and u it seems to be useful to have a closer look at the matrices K and
K. First, we verify that for our special case

K = Km(a) = (DmA(a)-lD;:r1 ,

K = Km(a) = A(a)-l D;:Km(a).

Now we see by definition that

Consequently, we obtain the following corollary concerning the structure of
u.

Corollary 2.1 The k-th column of Km(a) is a fundamental discrete poly-
nomial spline of order m with knot k + n. The solution u of (7) is a discrete
polynomial spline of order m with knots 3+n, where 3 is given by the indices
of the contact points (15).

Fig. 2 illustrates the fundamental spEnes given by the columns of Km(a)
for various values of m and a.

..
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.J: ••••t0' ;
• ' i .
, ~ . .

.••.•..••.•• ' . "i .
.. "1", •. .

," . ". . .

",-0" ,." '" " '"

.
" " '0 •• '" -"0

.

.

...

.

"f\, .
,: ....

" \

...,f./ = -'=C
. '\ .

f."" ....;/.ff . "'- V
., t -.;;+."- +1 .tl' .......

... ....,

Figure 2: Fourth column of Km(a) for m = 1,2,3 (left to right) and a = 0
(top), a = 10 (bottom), where N = 30.
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Spline structur of U. To get some insight into the strueture of the solu-
tion U of the eontact problem, we need some teehnieal preparations. Let

C'
a, aN_2

"N-' )a, aD aN_3 UN_2

T(a) .-
aN'_2 UN_3 aD a,
aN_l UN_2 a, aD

CO a, aN_2 UN_l )a, a2 UN_l aN_2

H(a)
UN_2 UN_l a2 a,
aN_l aN_2 a, aD

be the symmetrie Toeplitz matrix and persymmetrie Hankel matrix gener-
ated by the veetor a E JRN. By

(
2)1/2 ( 'k7r)N-1SN-1:= - sin _J- E JRN-1,N-1
N N j,k=1

we denote the transform matrix of the sine-I transform of length N - 1 and
by '_ (!)1/2 (. j(2k+1)1r)N-1 N,N

CN.- N cJ eos N E JR
2 j,k=O

with co := 1/V2 and Cj := 1 for j # 0 the matrix of the eosine-II transform
oflength N, cf. [19]. Both matriees are orthogonal, i.e., SN-1 SN-1 = IN-1
and C"£CN = IN. Moreover, the veetor multiplieation with SN-1 and CN
ean be realized in an FFT-like manner with only O(N log N) arithmetie
operations.

It is weIl known that these transforms are strongly related to Toeplitz
plus Hankel matriees in the following sense, see, e.g., [19]:

Lemma 2.2 The following relations hold true

SN-1 diag (dj)f=]l SN-1

C"£ diag (dj)f=ü1 CN

where

T(ao, , aN-2) H(a2, , aN-2, 0, 0),

T(ao, ,aN-1) + H(a1, ,aN-1,0),

In partieular, it follows by Lemma 2.2 that

DI D1 = T(2, -1, 0N-2) + H( -1,ON-d = C"£A2CN,

where

. ( .)22 2 N 1 2 . J1r . J1r
A := diag (,X)j=Ü' )..j:= 2 - 2 eos N = 2 sm 2N

11



and consequently

(21)

We introduce the cutoff matrix

R '- (0 I 0 ) TD>N-m,N-m+2nn.- N-m,n, N-m, N-m,n E Jl'\" •

Multiplication of a vector with Rn cuts off the first and last n vector com-
ponents.

Lemma 2.3 Let bk := (_l)k (~:\)! k = 0, ... ,m be the eoeffieients of the
2m-th binomial filter multiplied by (_l)k. Let A := diag (Aj )f=t/! A :=

diag (Aj )f~]l, where Aj := 2 sin fit. Then the following relations hold true:

i)
-2m

SN-lA SN-1

dhA2mCN
T(bo, , bm, ON-m-2) - H(b2, , bm, ON-m) ,

T(bo, , bm, ON-m-1) + H(b1, , bm, ON-m).

ii) T(bo, ,bm, 0N-2m-d,
T(bo, , bm, 0N-2m-d,

for m = 2n + 1,
for m = 2n.

Proof. i) By Lemma 2.2 we have that

where dj := bo+ 22:;;=1 bk cos i!j;-. It remains to show that

m 'k ( 'k )m
bo+ 2L bk COS JN

1f
= 2 - 2 cos J; ,

k=l

i.e., that

j = 1, ... ,N - 1

m
bo+L h(eix + e-ix) = (2 _ eix _ e-iX)m ,

k=l

j1f
x:= N'

This can easily be verified by induction on m. The second assertion of i)
follows in a similar way.
ii) By i) the Hankel matrix summand influences only the first and last n

-2m T 2rows and columns of SN-lA SN-1 and CNA mCN, respectively. Thus we
obtain ii). D
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for m = 2n + 1,

for m = 2n,

where the quotient is defined componentwise.

Proof. By Lemma 2.3i) it is easy to check that

-2n
(_1)n RnSN-1A SN-1,

(-lt RnChA2nCN'

(22)
(23)

First, let m = 2n. Then we obtain by (21) and (23) that

K;;/(a) = Dm Ch (IN + aA2)-1 CN D;,

A2m
Rn Ch 2 CN RJ.

IN +aA

Assume now that m = 2n + 1. By (21) we have that

K11(a) = D1 Ch (IN + aA2)-1 CN DI.

Straightforward computation gives

(N
2)1/2 ( (j(2k+3)'71' j(2k+1)7r))N-2,N-1D1 Ch = Sj cos ---- - cos ----

2N 2N k,j=O

(
2)1/2 ( . j(k+1)7r . j7r)N-2,N-1
- -2s.sm----sm -
N J N 2N k,j=O

- (ON-1,1, SN-1) A

and consequently

(ON-1,1,sN-1) A (IN + aA2)-1 A (ON-1,1, SN_1)T
}.,2

SN-1 -2 SN-1.
IN-1 +aA

Using this relation and (22) we obtain

K;;,1(a) Dm-1,N-1 D1 (IN + aA2)-1 DI D;'-1,N-1
-2mA T

RnSN-1 -2 SN-1Rn.
IN-1 + aA

This completes the proof.

13
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A2m
Theorem 2.5 Let zT denote the n-th row of C'Jr I A2 CN RJ Km(a)

N+a
-2m

ifm = 2n and the n-th row of -SN-l A -2 SN-IRJ Km(a) ifm =
IN_1+aA

2n + 1. By Zrev we denote the reversed vector z. Then our kernels Km (a)
fulfill

(24)

Proof. We restriet our attention to even m = 2n. The proof for odd
m = 2n + 1 follows the same lines. By Lemma 2.3ii) we have that

Using Lemma 2.4 and regarding the tridiagonal structure of C'Jr(I N+aA2) C N
this can be rewritten as

T(bo, ... , bm, ON-2m-l)

= T(l + 2a, -a, ON-m-2) K;;,l(a) - a ( ~;-m-2,N-m ) ,
arev

A2mwhere aT denotes the n-th row of C'Jr I A2 CN RJ. Multiplication with
N+a

Km(a) results in

T(l + 2a, -a, 0N-m-2) .

Now we can enlarge (-1)mT(bo, ... , bm, 0N-2m-r) by 2m rows and columns
to (_l)m D2m,N+m to obtain

(

OmN-m )
(_l)m D2m,N+m K:n(a)

Om,N-m

T(l + 2a, -a, 0N-m-2).
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Since the first coefficient in the Toeplitz matrix (_l)m D2m,N+m is equal to
1, this can be rewritten in the form (24). D

By Theorem 2.5 we have for a = 0 that the k-th column of
(ON-m,m, Km(a), ON-m,m) is a discrete polynomial spline of order 2m on
{O,... ,N +m-1} with knot m+k and (0;;', UT, 0;;') is a discrete polynomial
spline of order 2m with knots 3 + m.

For arbitrary a :::::0, we obtain by Theorem 2.5 the following corollary.

Corollary 2.6 Let z be given as in Theorem 2.5 and let

[

azTe )
Om-l

Uext := U
Om-l

azrevcT

Then the k-th eolumn of K~(a) is a diserete polynomial spline on {O, ... ,
N + m - I} with a-defeet 3 and knot m + k and Uext is a diserete polynomial
spline with a-defeet 3 and knots 3 +m.

The fundamental splines given by the columns of the kernel are illus-
trated in Fig. 3.

.

" 00

~ :: .. r .: ·1\. ":./\ , , .
::~I \ ,~iJl' \
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r/ \"
'" . "",." ""
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m

~ : .......~.... . ...•.. ~... : .....................

'" ..... .... .. ..... " ......... / ..

"
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•....... ." .... ...... " I

" I \ - ,f \" j '"
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I
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Figure 3: Fourth column of K~t(a) for m = 1,2,3 (left to right) and a = 0
(top), a = 10 (bottom), where N = 30.
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3 Second order absolute £1 regularization In 2d

3.1 Discrete setting

For simplicity, we restrict our attention to quadratic (n, n) images and re-
shape them column by column into a vector f of length N := n2. As discrete
counterpart of (1) we are interested in minimizing strictly convex functionals
of the form

As in the univariate case, D1 will be a discrete partial derivative operator
of first order and Dm a discrete partial derivative operator of lligher order.
Here we mainly focus on second order derivatives D2.

In contrast to the univariate case we do not use the lt norm in the
regularization term but a so-called absolute lt norm which we introduce
next. This guarantees that the solution becomes rotationally invariant. We
mention that 11 norm regularizations without the absolute inner value were
treated with respect to first order derivatives in [9] and for second order
derivatives in [10]. Fig. 4 illustrates the influence of the rotation invariance.

Let the vectors V E ]RpN, wherep,N E N, p;::: 2, and IVI E]RN be given
by

_ ( (Vj1~j':(/)
V - : ,

(VP)N-1
J J=O

Then, by Lemma A.1,

N-1

111V1111= L IVlj,
j=O

11IVI 1100= _ max IVlj
J=0,---,N-1

(26)

are dual norms on ]RpN. For given p, we callilIVll11 the absolute 11 norm of
V.

We introduce the partial difference matrices D1, D2 using the Kronecker
product notation. To this end, we use the difference matrix D1 = D1,n

defined by (3) and set

- (D1)D1:= 0 .
1,n

The multiplication with D1 mimics just a discrete gradient operator, where
the upper N rows correspond to the derivation in x direction and the lower N
rows to the derivation in y direction. Moreover, IDdl is a discrete version
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of the absolute value of the gradient 1\711= (1; + 1;)1/2. For a more
sophisticated discretization of 1 \71I see, e.g., [26]. Further , let

fE {0,1}.

be our discrete version of the second order partial derivative operators 8xx,
8yy, 8yx, 8xy (top rows to bottom rows) , where the mixed derivatives only

appear in case f = 1. Note that DI D1 = bibI' Then we see that IV211 is
the discrete version of the Frobenius norm of the weighted Hessian

\721:= (1xx f1xy).
f 1yx 1yy

For a variational method including the Hessian see also [8]. Gf course other
discretizations of second order derivatives are possible and sometimes also
necessary, for example if integral identities have to be preserved, see, e.g.,
[28].

The functional (25) can be rewritten for m = 1,2 as

1
F(u) = 211B(1- u)ll~ + ßII ILul 111

with L E {VI, V2} and A = BT B,

A = A(a) := IN + aVIV1.

(27)

The matrix vIv1 is just the central difference discretization of the Laplacian
with Neumann boundary conditions which can be diagonalized by Kronecker
products of the eosine transform matrices Cn' More precisely, we obtain that

(28)

(
. ) n-l

with A~ = A2
i8l In + In i8l A2

, A:= diag 2sin ~ j=O'

3.2 Dual formulation

Since J(u) := IIILulill is one-homogeneous the functional (27) can be miil-
imized as in 1D by switching to the dual minimization problem

(29)

where J* is again the indicator function of the set

(30)
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cf. (16) and u is related to v by u = f - A-1v. By Lemma A.2 this set is
also given by

(31)

For L := VI, the norm Ilvllc:= min 11IVI 1100 is just a discrete version
v=LTV

of Meyer's G-norm which is known as dual norm of the BV norm on the
closed subspace SV of functions of bounded variation with gradient in LI'
Concerning higher order derivatives and G-norm see also [16].

With v := LTV problem (29) is equivalent to

This is a quadratic minimization problem with quadratic constraints (if
squared). The problem can be solved for example by an algorithm pro-
posed by Chambolle [2]. For oUf setting with L = V2, this algorithms reads
as follows:

Algorithm.
Input: u(O) := fand V(O) := 04N.

Repeat for k = 0 until a stopping criterion is reached

W(k) .- V2u(k)

C rIW(k)1 ~W~k) oW~k)

V(k+l) .- (14N + ~ (14 0IW(k)I)) -10 (V(k) + TW(k))

u(k+l) .- f - A-1vIv(k)

k k+ 1,
where the inverse is taken componentwise and 0 denotes the componentwise
vector product.
Output: u := u(k+l).

Chambolle proved that u(k) converges to the solution u if

T::; 1/II(B-l)TLTII~ = 1/IILA-1LTI12.

Now we have obviously that IIA-1112::; 1, IIVIII~ = 8 and IIV2(O)II~ ::; 32.
Further, we see by applying Gerschgorin's theorem that IIV2(1)11~::; 64.
Hence we have to choose

{

1/8
T ::; 1/32

1/64

forL=V1,

for L = V2(O),
for L = V2(1).
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For computational purposes it is useful to rewrite the Kronecker product
notation in the algorithm regarding the following relation: if F is the orig-
inal image, f the corresponding column vector and R, S are matrices of
appropriate sizes, then

(R 0 S)f = S F RT .

Then, using (28), the algorithm can be rewritten as folIows:

Algorithm.
Input: u(O) := f and V~O) := ON, r = 1, ... ,4.

Repeat for k = 0 until a stopping criterion is reached

W(k) .- DTD1u(k)1
W(k) .- u(k)DTD12
W(k) .- fhu(k)fh3
W(k) iJT (k)iJT

4 1u 1
4

IW(k)1 .- L (W~k) 0 W~k)) 1/2
r=1

V(k+1) .- (IN + ~ (14 0IW(k)I)) -1 0 (V~k) +TW~k)), r = 1, ... ,4r

x(k+l) .- DT D1vik) + V~k)DT D1 + iJ'[ V~k)iJ'[ + iJ1 V~k)iJ1

u(k+l) .- f-CT( 1 o(C x(k+l)CT))Cn I A2 n n n,
n +a 2

k k + 1,

where the inverses is taken componentwise.
Output: u := u(k+l).

Since the difference matrices are sparse and the vector multiplication
with Cn can be performed in O(nlogn) arithmetic operations, one step of
the algorithm requires only O(n2log n) arithmetic operations.

3.3 Regularization with more general cost functions

Up to now we have considered convex functionals with one-homogeneous
regularization terms. However, besides the £1 regularization term it is very
common to use other penaliser functions in variational image restoration
methods [25, 15, 3, 21]. We are interested to see at least numerically how
other regularizers, in particular non-convex ones, behave in conjunction with
£2 data and gradient fitting terms. ,

Here we consider a functional similar to (1), namely
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where IIH(u)ll} = u~x + U~y + u~x + U~y is the sum of all squared partial
derivatives of order 2. To form the corresponding Euler-Lagrange equation
we assurne that the penalizer cp is differentiable. In contrast to the previ-
ous methods, the £1 norm can only be used as penalizer in an approximate,
differentiable version cp(82) = Vc2 + 82 with a small additional regulariza-
tion parameter c, cf. [1]. On the other hand, non-convex penalizers like
cp(82) = ),2 In (1 + ~) can be involved. This penalizer is closely related

to nonlinear diffusion methods with a diffusivity 1/(1 + 82/),2) proposed
by Perona and Malik [18]. While the absence of convexity rises theoretical
problems, penalizers of this type allow for interesting praetical properties,
for example enhancement of image features [5].

Under the assumption of sufficient smoothness of u we can write the
Euler-Lagrange equation corresponding to (32) as

o = u - f - a~(u - f) + 0xx (cp'(IIH(u)II})uxx)
+ 20xy (cp'(1IH(u) II})uxy) + Oyy (cp'(1IH(u) II})uyy) (33)

To solve this equation numericaIly, we introduce an artificial time variable
t and use the initial data u(., 0) = f as starting point. Then we understand
the solution of (33) as the steady state of the higher order diffusion-reaction
equation

Ut u - f - a~(u - 1) + 0xx (cp'(IIH(u)II})uxx)
+2oxy (cp'(IIH(u)II})uxy) +Oyy (cp'(IIH(u)II})uyy) , (34)

where we impose natural boundary conditions. For our numerical examples
we have discretized this equation with finite differences in the space variable
as described above combined with a simple Euler forward scheme in the time
variable.

3.4 Numerical examples

In this seetion, we present some numerical examples for the denoising of
grey value images in 2d. Since for a human observer as weIl as for some
computer vision systems edges are a very important source of information
in an image, one of the major goals of denoising algorithms is to preserve
or even enhance edges. In practice especially edge enhancement can lead
to the creation of artificial edges out of continuous grey value transitions.
This so-called staircasing effect is one of the most prominent shortcomings
of many weIl-established image denoising algorithms, e.g., the ROF model.
It creates an oversegmentation of the image into artificial parts. To avoid
these artifacts one can involve higher order derivatives into the model which
would prefer not only piecewise constant, but also piecewise linear results
[27, 10]. Unfortunately, these higher derivative methods tend to introduce
some blurring in the region of the image edges.
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The main reason for introducing the additional gradient fitting term
consists in avoiding the staircasing effect on the one hand and on the preser-
vation of edges and discontinuities on the other hand. Image edges can be
characterised as regions where the gradient is high. Thus the gradient fit-
ting term is intended to force the solution to be similar to the initial image
especially near edges.

In our experiments we assurne an additive noise model: Let f E ]Rnxn be
a noisy version of the initial image g E ]Rnxn, degraded with additive noise
'rJ,i. e. Jij = gij + 'rJij. As a quality measure we now use the Signal-to-Noise
Ratio defined as

where fL := ~ L~j=l gij denotes the mean value of g. The SNR is a widely
used measure in image processing and essentially gives the same information
as an f!2 distance.

The Chambolle-like algorithms were implemented in MATLAB. while
the diffusion-reaction approach (34) was implemented in C.

Fig. 5 displays the test image used for the 2d experiment. Table 1shows
the parameters and the error measures of the resulting images. Sections of
the results are displayed in Fig. 6. Here TV2 denotes the approach (25);
DR stands far the diffusion-reaction type equation (34) with the non-convex

penaliser rp(s2) = .x21n (1 + ~) and .x = 1.0. The error measures show that
adding a gradient fitting term to variational denoising with second-order
derivatives enables us to improve the results. Further we notice that the
non-convex penalizer can also lead to improvements in practical examples.
The resulting images in Fig. 6 give a similar impression. While the ROF
model leads to staircasing artifacts, the pure ~econd order methods suffer
from blurred edges. The additional gradient fitting can help to avoid both
types of problems. We mention that the whole 256 x 256 image related to
the depicted part in the middle left of Fig. 6 looks more cloudy than the
whole image belonging to the bottom left part. Moreover it should be noted
that some noise pixels survive in the image at the bottom right.

A Appendix

Lemma A.l The norms 111'1111 and 111.11100 defined by (26) are dual norms
on ]RpN.

Proof. By applying the Schwarz inequality to (Vn~=l' (Vr)~=l for
j = 0, ... ,N - 1we obtain

I(V', V)I ::; (lV'I, IV!),
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____ Im a ß I SNR Ilu - 1111.10-5

Noisy image - - - 11.16 10.00
ROF 1 - 50 22.74 2.08
TV2 2 0 20 22.15 1.77
TV2 2 0 50 19.92 1.97
TV2 2 1.2 50 22.98 1.74
DR 2 1 1000 24.78 1.59

Table 1: Denoising experiment in 2d: Parameters and error measures.

where equality arises if V = (Ip 129 D)V' with some diagonal matrix D E
JRN,N. Further, we have

where equality arises for !VI = c(6jo,j )f=r/ with some constant c E JR and
an index jo with !V'ljo := max{!V'lj : j = 0, ... ,N - 1}. To get equality in
both estimates we may set D:= diag(6jo,j)';:ü1. 0

Of course, the lemma can be extended to arbitrary lp-lq norms with
~+ i = 1, 1 ::; p, q ::; 00. By the following lemma, we see that the sets in
(30) and (31) are equivalent.

Lemma A.2 Let L E JRpN,N. Then

I (V', Lw)1 .
sup IIIL 111 = mm IIIUllloo'wEßl.N w 1 LTU=LTV'

Proof. Let v:= :E1N 'i,~~~,~~'.Then we obtain by the same considerations

as in the proof of Lemma A.1 and since I(v', Lw)1 = I(LTV', w)1 = I(U, Lw)j
for all U E JRpN with LTV' = LTU and all w E JRN that

(35)

To show the reverse direction we consider the subspace ß := R(L) of JRpN
equipped with the norm!11 . 1111. The mapping lv,(Lw) := (V',Lw) is
a linear functional on ß which has exactly the norm v. By the Hahn-
Banach Theorem this functional can be extended to a linear functional l on
(JRPN, 111.Illd with Illll= Illv,ll. Consequently, there exists V E JRpN such
that l(V) = (V, V) for all V E JRpN and

(V, Lw) = (V', Lw) Vw E JRN.

Since this can be rewritten 'as
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the vector V must fulfil LTV = LTV'. By Lemma A.1 we see that

Illv,11 = Illll = 11IVI 1100'

Together with (35) this yields the assertion. o

Acknowledgements. This work has been partially funded by the
Deutsche Forschungsgemeinschaft (DFG).

References

[1] R. Acar and C. R. Vogel. Analysis of bounded variation penalty meth-
ods for ill-posed problems. Inverse Problems, 10:1217-1229, 1994.

[2] A. Chambolle. An algorithm for total variation minimization and ap-
plications. Journal of Mathematical Imaging and Vision, (20):89-97,
2004.

[3] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. Two de-
terministic half-quadratic regularization algorithms for computed imag-
ing. In Proc. 1994 IEEE International Conference on Image Processing,
volume 2, pages 168-172, Austin, TX, Nov. 1994. IEEE Computer So-
ciety Press.

[4] P. L. Davies and A. Kovac. Local extremes, runs, strings and multires-
olution. Annals of Statistics, 29:1-65, 2001.

[5] S. Didas, J. Weickert, and B. Burgeth. Stability and local fea-
ture enhancement of higher order nonlinear diffusion filtering. In
W. Kropatsch, R. Sablatnig, and A. Hanbury, editors, Pattern Recogni-
tion, volume 3663 of Lecture Notes in Computer Science, pages 451-458.
Springer, Berlin, 2005.

[6] S. D. Fisher and J. W. Jerome. Spline solutions to hextremal problems
in one and several variables. Journal of Approximation Theory, 13:73-
83, 1975.

[7] W. Hinterberger, M. Hintermüller, K. Kunisch, M. von Oehsen, and
O. Scherzer. Tube methods for BV regularization. Journal of Mathe-
matical Imaging and Vision, 19:223 - 238, 2003.

[8] W. Hinterberger and O. Scherzer. Variational methods on the space of
functions of bounded Hessian for convexification and denoising. Tech-
nical report, University of Innsbruck, Austria, 2003.

23



[9] W. Hintermüller and K. Kunisch. Total bounded variation regulariza-
tion as a bilaterally constrained optimization problem. SIAM Journal
on Applied Mathematics, 64(4):1311-1333, May 2004.

[10] M. Lysaker, A. Lundervold, and X. Tai. Noise removal using fourth-
order partial differential equations with applications to medical mag-
netic resonance images in space and time. IEEE Tmnsactions on Image
Processing, 12(12):1579 - 1590, 2003.

[11] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San
Diego, second edition, 1999.

[12] O. L. Mangasarian and L. L. Schumaker. Discrete splines via mathe-
matical programming. SIAM Journal on Contra I, 9(2):174-183, 1971.

[13] O. L. Mangasarian and L. L. Schumaker. Best summation formulae
and discrete splines via mathematical programming. SIAM Journal on
Numerical Analysis, 10(3) :448-459, 1973.

[14] S. Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization, 2(4):575-601, 1992.

[15] N. Nordström. Biased anisotropie diffusion - a unified regularization
and diffusion approach to edge detection. Image and Vision Computing,
8:318-327, 1990.

[16] A. Obereder, S. Osher, and O. Scherzer. On the use of dual norms in
bounded variation type regularization. Technical report, Department
of Computer Science, University of Innsbruck, Austria, 2004.

[17] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative
regularization method for the total variation based image restoration.
Multiscale Modeling and Simulation, 4:460-489, 2005.

[18] P. Perona and J. Malik. Scale space and edge detection using anisotropie
diffusion. IEEE Tmnsactions on Pattern Analysis and Machine Intel-
ligence, 12:629-639, 1990.

[19] D. Potts and G. Steidl. Optimal trigonometrie preconditioners for
nonsymmetrie Toeplitz systems. Linear Algebm and its Applications,
281:265-292, 1998.

[20] L. 1. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D, 60:259-268, 1992.

[21] O. Scherzer. Denoising with higher order derivatives of bounded varia-
tion and an application to parameter estimation. Computing, 60:1-27,
1998.

24



[22] L. L. Schumaker. Spline Funetions: Basie Theory. Wiley and Sons,
New York, 1981.

[23] G. Steidl. A note on the dual treatment of higher order regularization
functionals. Computing, 76:135-148, 2005.

[24] G. Steidl, S. Didas, and J. Neumann. Splines in higher order tv regu-
larization. International Journal of Computer Vision, to appear, 2006.

[25] A. N. Tikhonov. Solution of incorrectly formulated problems and
the regularization method. Soviet Mathematies Doklady, 4:1035-1038,
1963.

[26] M. Welk, G. Steidl, and J. Weickert. Locally analytic schemes: A link
between diffusion filtering and wavelet shrinkage. Technical report, IMA
Preprint, University of Minnesota, 2006.

[27] Y.-L. You and M. Kaveh. Fourth-order partial differential equations for
noise removal. IEEE Transaetions on Image Proeessing, 9(10):1723-
1730,2000.

[28] J. Yuan, C. Schnörr, G. Steidl, and F. Becker. A study of non-smooth
convex flow decomposition. In Proe. Variational, Geometrie and Level
Set Methods in Computer Vision, volume 3752 of LNCS, pages 1-12.
Springer, 2005.

25



Figure 4: Top left: Original image. Top right: Relevant part of the im-
age. Bottom left: Solution of (25) with m = 1, oe = 0 and ß = 10
(classical ROF setting) by Chambolle's algorithm applied to the dual
quadratic problem with quadratic constraints. Bottom right: Solution of
F(u) = ~llf - ull~ + ßIIV1Ulil1 with the same parameters. This solution
was computed by applying the ILOG CPLEX barrier Optimizer version 7.5
to the dual quadratic problem with linear constraints.. The routine uses
a modification of the primal-dual predictor-corrector interior point algo-
rithm described in [14]. Due to the lack of rotation invariance vertical and
horizontal directions are stressed .
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Figure 5: Denoising experiment in 2d. Left: Original image (size 256 x 256).
Right: Image with additive Gaussian noise, SNR 11.16.
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Figure 6: Denoising experiment in 2d. Sections with 120 x 100 pixels of the
resulting images. Top left: Noisy input image. Top right: Denoised image
with ROF model. The staircasing effect is clearly visible. Middle: Denoising
with second order model, m = 2, a = 0, left: ß = 20, right: ß = 50. No
staircasing effect, but the edges are blurred. Bottom left: Denoising with
second order model and gradient fitting term, m = 2, a = 1.2, ß = 50, yields
better edge preservation. Bottom right: Second order model with gradient
fitting term and Perona-Malik type diffusivity, m = 2, a = 1, ß = 1000 with
sharp edges and smooth grey value transitions.
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