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1 Introduction

Systems of linear equations
AN:B =b

with positive definite Hermitian Toeplitz matrices Ay arise in a variety of applica-
tions in mathematics and engineering (see [9] and the references therein). Along with
stabilization techniques for direct fast and superfast Toeplitz solvers, preconditioned
conjugate gradient methods (PCG-methods) and other iterative methods have at-
tained much attention during the last years. As essential computational effort, the
CG-method requires the multiplication of a vector with the matrix Ay in each itera-
tion step. For Toeplitz matrices Ay, the multiplication with a vector can be computed
with O(Nlog N) arithmetical operations by fast Fourier transforms (FFT). The num-
ber of iteration steps of the CG-method depends on the distribution of the eigenvalue
of Ay. In particular, it holds (see [1], p. 573)

Theorem 1.1. Let Ay be a positive definite Hermitian (V, N )-matrix which has p
and ¢ isolated large and small eigenvalues, respectively:

0</\1S/\2S---S)‘q < aSAq+1§...)\N_p_<_b
< Aveprt S M2 <. S Ay (0<a<b<oo)(11)

Let [z] denote the smallest integer > z. Then the CG-method for the solution of
Ayx = b requires at most '
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where ||z||4 := v/Z" Ay = and where x,, denotes the numerical solution after 7 iteration
steps.

Let {o)'}i_, be a sequence of real numbers and let vy(c) denote the number of those
among o’ (k = 1,...,N) which are outside the interval (p—¢, p+e). If v (g) < K(2).
where K (<) is independent of V, then we say that the values o) are clustered at P [29].
If the eigenvalues of a sequence of (V, N)-matrices Ay are clustered at 1, then the
CG-method converges superlinearly (see [11]).

For a sequence of (N, N)-Toeplitz matrices Ay = An(f) (N € N) generated by a
function f € Cj,, it is well-known that the eigenvalues are distributed as f [29, 186].
Let

fmin ==min{f(z) : £€[0,27)}, fmax = max{f(z) : z € [0,27)}.




Then the eigenvalues of An(f) are contained in [fuin, fmax)- If f > 0, then by Theorem -
1.1 the number of iteration steps of the CG~method is independent of N and the CG-
method requires only O(N log N) arithmetical operations.

The situation changes completely, if we allow f > 0 to have zeros. In this case, the CG-
method converges very slowly with increasing N. To accerelate the convergence of the
CG-method, several authors proposed preconditioners for Toeplitz systems. Clearly,
the multiplication with the preconditioned matrix should also only require O(N log N )
arithmetical operations. Therefore, two types of preconditioners were mainly exploited
for linear Toeplitz systems, namely so—called “Strang-preconditioners” (14, 27, 12]

. N-1
MN(SNf, FN) := Fy diag ((SNf) 2%)) FN, (1.2)
j=0

where Sy f denotes the (V — 1)-th Fourier sum of f and optimal preconditioners [13]
MIC?,(FN) = FN (5(FN AN FN) FN, (1.3)

where §(A) := diag(aks)p and ag are the diagonal entries of A. Here Fy denotes
the N—th Fourier matriz

Fy = i(e-Z-rrijk/N)N"l

\/N 7,k=0"*

If f > 0, then both preconditioners My are positive definite and the eigenvalues of the
preconditioned matrices M ' Ay are clustered at 1.

Unfortunately, if f has zeros, then the eigenvalues of the preconditioned matrices do
not fulfil (1.1). Moreover, the Strang-preconditioner may not be positive definite.
Therefore, E. E. Tyrtyshnikov [28] replaced the above preconditioners by improved
circulants. Other authors [5, 7, 8, 25] suggested banded Toeplitz matrices or multigrid
methods [15] as preconditioners.

In this paper, we propose simple preconditioners which are up to multiplications with
unitary diagonal matrices, again circulant matrices. In particular, if f(275/N) > 0 for
all 7 =0,...,N — 1, then we obtain our preconditioners by replacing Sy f in (1.2) by
f. In Section 3, we prove that our preconditioners lead to superlinear convergence of
the corresponding PCG-method.

Our idea can be extended to (real) symmetric Toeplitz matrices, non—Hermitian Toeplitz
matrices and doubly symmetric block Toepliz matrices with Toeplitz blocks. We sketch
the various generalizations in Section 4. Writing this paper, we became aware of the
preprint [19] of T. Huckle located at his home page, where the author suggests a trigono-
metric preconditioner with respect to the discrete sine transform of type I which is sim-
ilar to our trigonometric preconditioners in Section 4. However, our initial approach in
the complex case and our proofs are different from [19].

Numerical tests for Hermitian and symmetric Toeplitz matrices as well as for non—
symmetric Toeplitz matrices and doubly symmetric block Toeplitz matrices with Toeplitz
blocks in Section 5 demonstrate the quality of our new preconditioners.




2 Construction of preconditioners

Let Cyr and L}, (1 < p < o) denote the Banach spaces of 2m—periodic continu-

ous functions and of 27-periodic Lebesgue measurable functions with finite integral
2r

[ 1f(z)P dz, respectively. By oy, we denote the vector consisting of NV zeros and by
0

Iy the (N, N)-identity matrix.

We are interested in the solution of Hermitian Toeplitz systems

An(flz = b, An(f):= (a;-0)N, (2.1)

where the sequence {An(f)}%., of Toeplitz matrices is generated by a nonnegative
function f € Cy,, i.e.

1 [ .
a = a(f) = o J, f(z)e7*=dz .
Then it holds for u = (Uj);vz_ol € CV that
N-1 N-1 ] M=l oN- o
HAvHu = 3N tues = 523 Y g | f@)e 0P

© j=0 k=0 T =0 k=0 0
1 2r N-1 -

= ikz >
o J, > we*? f(z) dz >0 (2.2)

k=0

such that the Toeplitz matrices Ay (f) are positive semidefinite. Moreover, if f > 0
on a set of positive Lebesgue measure, then following lemma states that the matrices
" An(f) are positive definite such that (2.1) can be solved by the CG—method.

Lemma 2.1. Let f € L} be a nonnegative function, where the set {z € [0,27] :
f(z) > 0} has a positive Lebesgue measure. Then the corresponding Toeplitz matrices
An(f) are positive definite.

Lemma 2.1 was proved in [7]. However, the proof is very short such that we include it
in this paper.

Proof. Let NV € N be fixed. By the above considerations, it remains to show that 0
Is not eigenvalue of Ay (f). Assume that Ay(f) has eigenvalue 0. Then there exists
u € CV u # oy) such that
1 2w N-1 .

u' A = — uge'*e(? dr =0.

wavfu =5 [ > wl 1) as
Since the integrand is nonnegative almost everywhere, the integrand must be zero al-
most everywhere. Consequently,

N-1
I Z uke‘k’| =0
k=0
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on the set {z € [0,2n] : f(z) > 0} of positive Lebesgue measure. But this implies the -
contradiction u = oy. [ ]

By Theorem 1.1, the convergence of the CG-method depends on the distribution of the
eigenvalues of Ay(f). Unfortunately, if the generating f € Cy, has zeros, then the CG-
method converges very slowly. To accelerate the convergence of the CG-method we are
looking for a suitable preconditioners M y(f) of Ay (f). Having Theorem 1.1 in mind,
we want to find a Hermitian positive definite matrix M y(f) such that the number
of isolated eigenvalues of M y(f)"'An(f) is independent of N. If in addition the
multiplication with M y(f)~! requires only O(N log N) arithmetical operations, then
(2.1) can be solved by the PCG-method with O(N log N) arithmetical operations.
For the construction of M y(f) we consider (2.2). In the following, we assume that f
has only a finite number of zeros. Then we can choose an equispaced grid

27 2r
x = ]—V"f"w ('LUE[O,TV—), l—O,...,N—l)
such that
flz) >0 ({=0,..., N-1). (2.3)

Approximating the integral on the right-hand side of (2.2) by the trapezoidal rule with
respect to the above grid, we obtain

1 2w N-1 . )
@ An(flu = o ) > ue®e? f(z) dz
k=0
1 N—-1 N-1
~ ]_v__ ,Z U exkz,l'.) f(xl)
=0 k=0
N-1 1 Nl - .. 1 N-1 . .
— E:f(a:l)_W ﬂje—2ml]/Ne—1]w> = < ukeZMkl/Neka) (24)
=0 1=0 k=0
= (Fy Wya) DyFy Wyu
= 11’ MN(f) u

with the diagonal matrices

Wy = diag (e'ikw);::ol ., Dy = diag (f(z))jg"
and with
Mn(f) = Mny(f,Fn) == WNyFyDy FyWy. (2.5)

By (2.3), the matrix M y(f) is Hermitian and positive definite. Setting v := M y(f)/? u,
we get
o My(f)™? An(f) My(f) Vv =~ 3'v



such that by properties of the Rayleigh quotient, M ~(f) seems to be a good precon- -
ditioner of Ay(f). Indeed, using FFT, the multiplication with

MN(f)—l-'—'WNFND;,l FNWN

takes only O(N log N) arithmetical operations. In the next section, we prove that the
eigenvalues of M y(f)~! An(f) are clustered at 1.

We mention that our preconditioner M y(f) is closely related to the Strang-precondi-
tioner M n(Sy f) = My(Snf, Fy) in (1.2). By orthogonality of the functions e’ (j €
Z) in L},, it is easy to check that (2.2) can be replaced by

=1 1 o ikz|2
wAn(Hu = | lkZ w e (Syf)(z) dz
with
N_l ..
(Snf)z) = D oe.
J==(N-1)

Now the above quadrature formula (2.4) with w = 0 and with Sy f instead of f leads
to the Strang—preconditioner. Clearly, if f is a trigonometric polynomial of degree < N
and if f(27I/N) >0 (I=0,... ,N — 1), then My(Syf) = My(f).

However, for arbitrary nonnegative functions f € C,,, the matrix M ~(Snyf) may be
not positive definite. This is one reason for the introduction of M y(f).

-3 Clustering of the eigenvalues of My (f)"*Ax(f)

We rewrite (2.4) as

z
L
=

-1
’l_tl AN(f) u =

g

Uj Uk Aj_k

2z w
ol
_— O
T
|

_ o

&

ﬁjukdj_k = ﬂ'MN(f)u (31)

“
Il
=)
o

=0

with
N-~1

~ ~ 1 —=2milk/! —ikw
ar = ag(f) := * Z F(a))e= 2/ =ik
=0

and ask for the approximation error. Assume that f € Cy, is a function of bounded




variation. Replacing f(z;) by the Fourier series of f at z;, we obtain

1 N-1
~ il § : Zaj elizt e—21rxlk/N e ikw

=0 jez

N-1 1 N-1
— aj e—lwlr. exw] il e—21rxlk/N e21nl]/N
2 < N £

o
x
I

2

bl

-1 N-1
L Z aj+rNe-iwk eiw(j+rN) (j_if o= 2milk/N e21rilj/N)
J=0 reZ\{0}

l=
= ax + Z Qkrn PN
reZ\{0}

o

This is the well-known aliasing effect. Set

be = be(f) = Y araen(fleY.

" rez\{0}
Then it follows by (3.2) that
An(f) = My(f) + By(f), Bu(f) = — (b0 -
Thus
My(f)'AN(f) = In + My(f)"'Bu(f).

Note that

a-n(f) k=1,... N—-1,

be(Snf) = aren(f) k=-1,...,1-N,
0 k=0,

which describes the approximation error in case of the Strang—preconditioner.

(3.2)

(3.3)

(3.4)

(3.5)

Lemma 3.1. Let p, be a nonnegative trigonometric polynomial of degree < s, where

2s < N. Then at most 2s eigenvalues of M y(p,) "' Ay(p,) differ from 1.

Proof: By (3.3), it follows that b, = 0 for [k| < N — 1 — 5. Consequently, By (f) has

rank 2s. Now the assertion follows by (3.5).

For the proof of our main theorem we need the following

Lemma 3.2. Let g € Cp, be nonnegative functions, where the set {z € [0,27] :
f(z) > 0} has a positive Lebesgue measure. Furthermore let A € C,, be a positive
function with hmiz > 0 and let f := gh. Then, for any N € N, the eigenvalues of

An(g)"*An(f) lie in the interval [Amin, hmax].




Lemma 3.2 was proved for example in [5]. We want to give a different simple proof
based on the theorem of mean.

Proof: Applying the theorem of mean in

1 2n N_l .
~ / - ikz )2
@ An(flu = 27 ), I; ug €| f(z) dz ,
we obtain that
1 2 N-1 .
=7 — il ikz|2
(7} AN(f)y = h, o /o Ig u, €%|* g(z) dz

with A. € [Amin, Amax)- This can be rewritten as
@ An(flu = h, @ Ax(g)u.

By Lemma 2.1, the matrix Ay(g) is positive definite such that for « # oy

b= @ AN(f)u
T @ An(g)u
By properties of the Rayleigh quotient this yields the assertion. |

In the following, we restrict our attention to nonnegative functions f € Cy, having a zero
_ of even order 2s (s € N) in z = 0. The clustering of the eigenvalues of My(f)"LAN(f)
~ for arbitrary functions

f@) = (z—z)™ .. (z~zn)"" f(z), (f>0)

follows in a similar way.
With f € Cy, or better with the order 2s of the zero z = 0 of f, we associate the
nonnegative trigonometric polynomial

ps(z) == (2—-2cosz)’ = (2 e — eIz (3.6)
of degree s which has a zero of the same order 2s in z = 0.

Now we can prove our main result.

Theorem 3.3. Let f € C,, be a nonnegative function with a zero of order 2s (s € N)
in z = 0. Let Ay(f) denote the corresponding Toeplitz matrices with preconditioners
M n(f) defined by (2.5). Then the matrices M y(f)"*An(f) have the following prop-
‘erties:

1) The eigenvalues of M y(f) ' An(f) are clustered at 1.

ii) Let p, denote the associated trigonometric polynomial (3.6) of f and let h := f/ps.
Then, for N > 2s, at most 2s eigenvalues of M y(f)"'Ax(f) are not contained in the

8




interval [fmin Amax]

Amax’ Amin

Proof: In this proof, we denote by Ry(m) arbitrary (N, N)-matrix of rank m.

1. To prove ii), we use the decomposition [4]

ﬁ’AN(f)u = ﬁIAN(f)u ﬁ.’AN(p,)’U. ,ﬁ,MN(p,)’U, (’U.#O ) (37)
@My(flu ~ @Ay(p)u wMy(p)u @My(flu N

By (3.4) and Lemma 3.1, it holds that

AN(ps) = Mny(p:) + Ry(2s).

The Hermitian matrix Ry(2s) can be written as

Ry(2s) = Q' D.Q + Q' D_Q = Ry(s1) + Ry(2s — sy) (3.8)

. where @ denotes a unitary matrix and where D, D_ are diagonal matrices containing

the s; positive eigenvalues and the 2s — s, negative eigenvalues of Ry(2s) as diagonal
entries, respectively. Setting

@ AN(f)u @' Mpy(ps)u
= ey ™™ T T
we obtain by (3.7) and (3.8) that
U Ay(flu @' Ry(s))u ' Ry(2s — s1)u
YN a(u) m(u) + a(u) TMaFa (})u a(u) a/ng Fra

By Lemma 3.2 and by construction of My, it follows for all u € CV (u # oy) that

(1) € (brmins hmas] s () € [, ]

max hmin

Since for all u € CV (u # oy)

'l_l,RN(Sl)‘U. 'ELIRN(QS—Sl)u <0
@ My(flu = WMy(flu T
we get
ﬁ/AN(f)u < hma.x + ﬂl [hma.xRN(sl)+hminRN(23“Sl)]u
ﬂ’MN(f)u - hmin ’ELIMN(f)‘u,

and further

u' [AN(f) - (hmaxRN(Sl) + hminRN(2s - 31))] u < Amax
ﬂIMN(f)u - hmin .

The matrix Anax Ry (51) + hmin RN (2s — s1) has again s; positive and 2s — s, negative
eigenvalues. Thus, by properties of the Rayleigh quotient and by Weyl's theorem [17],
p. 184, at most s, eigenvalues of M y(f)"'An(f) are larger than %‘:ﬁ: .

9



Similarly, we obtain that

' [An(f) - (hmin Ry (s1) + hmax R (25 — 51))] u > Pmin
@' My(f)u

"~ hmax

Thus, at most 2s — s, eigenvalues of M y(f )"'An(f) are smaller than f‘m Conse-
quently, at most 2s eigenvalues of M n(f)~'An(f) are not contained in [fmm-, Bmax)

hmin
2. By definition, h = f/p, is a continuous positive function. Since the trigonomet-

ric polynomials are dense in Cy,, for all ¢ > 0, there exist a positive trigonometric
polynomial g of degree n = n(e) such that

1) = 5 hmin < h(z) < 9(@) + & ehay (39)
for all z € [0, 27). Thus, since p, > 0,
1 ' 1
9Ps = S €hminps < f < gps+ 5 €hmin ps - (3.10)
Regarding (2.2), we obtain by the inequality of the right-hand side
@ AN(f)u < @ Anlgp)u + 5 chund An(p.)u,

and further, since M y(f) is positive definite, for all u € CN (u # oy)

' An(f)u <« WAN(gp)u 1 ' Ay(p,)u

TMy(fu S TMyDe e O
Now it holds by (3.4) and Lemma 3.1 that |
An(ps) = My(ps) + Rn(2s). (3.12)
Moreover, we have by [3] that |
An(gps) = An(q) An(ps) + Ry(2n+2s).
By (3.12), this can be written as
An(gps) = (Mx(q) + Rv(2n)) (My(p,) + Ry(25)) + Ry(2n + 2s)
= Mny(q) Mn(p,) + Ry(m) (3.13)

with a Hermitian matrix Ry(m) of rank m < 4n + 4s + min{2n,2s}. Substituting
(3.12) and (3.13) in (3.11), we obtain

o An(f)u < ' My(q) My(p,) u + o' Ry(m)u
@ My(flw ~ @ Mny(f)u @ My(f)u
1 @' My (p,) u 1 u' Ry(25)u

F e T My(Hu T 2 T M) u

10



and since

‘l-l.' MN(p,)u < 1
@ My(fl)u = hmin

@' [An(f) — Ry()|u < U Mn(gMpy(p)u 1

@ Mny(f)u T W Mny(f)u 2

with m < m+2s. Setting v := My (p,)"/*u and using that My (f) = My(h) My (p,),
we get

further

@' [An(f) = By(R)]u _ o My(g)v | 1
TMy(Hu S o Myh)o T 2% (3.14)

Fmally, we have by (3.9) and by definition of My, for all v € CN (v # oy) that

B Mpy(g)v < ¥ My(h)v + %s hmin ' v
and further siﬁce 0< vy < ! that
v’ MN(h) v T hgin
o' My(q)v
v’ MN(h) v

Using the above inequality in (3.14), we obtain
@' [An(f) = Ry(m)]u

' MN(f) u

Similarly, we conclude from the left-hand inequality of (3.10) that

@ [Ay(f) - Ru(i)]u

1
<1 - .
_+2e

<1+ c¢.

1 — ¢.
@My(Hu = °
Consequently, at most 7 eigenvalues of M ~(f)"*An(f) are not contained in
[1 —¢e,1+¢]. This completes the proof. ||

By Theorem 3.3, Theorem 1.1 and construction of M y(f) in (2.5), our PCG-method
converges superlinearly and requires only O(N log IV) arithmetical operations.

Remark: Unfortunately, we cannot find a similar proof for nonnegative functions
f € C having not only zeros of even order. The reason therefore is that there does
not exist a nonnegative trigonometric polynomial which has a zero of odd order in
z = 0. Consequently, we cannot produce an equivalent of (3.6). Our numerical tests
show that our preconditioners work well also in the odd case. However, for the matrices
An(f) generated by the function

fz) =v2—2cosz = |2 sin§| §

the number n of eigenvalues of M5'(f)An(f) which are not contained in the interval
(1 —¢,1+¢) grows as follows:

11




N 32 |64 | 128 | 256 | 512
e=10"| 7] 8 91 10| 11
e=10"°[10]12] 13| 15| 17

At first glance it seems that the eigenvalues of M y(f)~'Ay(f) are not clustered at 1.
' O

4 Generalizations of the preconditioning technique

In this section, we sketch how our preconditioners can be generalized to the following
settings:

- An(f) are (real) symmetric Toeplitz matrices,

- An(f) are non-Hermitian Toeplitz matrices,

- Apn(f) are doubly symmetric block Toeplitz matrices with Toeplitz blocks.

First, we suppose in addition to Section 2 that the generating function f € Cj, of the
matrices Ay (f) is even. Then

ar = ax(f) = % /f(.’L‘) coskxda‘:
' 0

and the Toeplitz matrices Ay(f) € R are symmetric. In this case, the multiplica-
tion of a vector with A y(f) can be realized using fast trigonometric transforms instead
of fast Fourier transforms. See the remark after Lemma 4.1. In this way, in the iter-
~ ative solution of (2.1), complex arithmetic can be completely avoided. This is one of
the reasons to look for preconditioners of type (2.5), where the Fourier matrix Fyis
replaced by trigonometric matrices corresponding to fast trigonometric transforms.

In practice, four discrete sine transforms (DST) and four discrete cosine transforms
(DCT) were applied (see [30]). Any of these eight trigonometric transforms can be
realized with O(/Vlog N) arithmetical operations (see for example [2], [26]). Likewise,
we can define preconditioners with respect to any of these transforms. Here we refer to
the extensive examinations in [22]. In this paper, we restrict our attention to the so-
called DST-II and DCT-II, which are determined by the following transform matrices:

2 1/2 . 2k 1 N-1
DCT-II CIIVI = (,—) (&-;V cos 3( + )71') e RV,
N 2N k=0
2\ G+ 1)k + Dr\ V! .
DST—II : S{J = (N:) (sﬁ-l sin ( SV >.k 0 € RN’N,
J’ =

where e := 2712 (k=0,N)andel :=1 (k=1,...,N — 1). Moreover, we use the
DCT-I with transform matrix

Choi = (eM)? cos gkm )
N+1 -— k N

7,k=0

12




The matrices C}, and S¥ are orthogonal and

~ ~ N
Chs1Chy = 0} Iy, v (4.1)

The eight trigonometric transforms are closely related to Toeplitz matrices [23]. In
particular, it holds for the DCT-II and the DST-II:

Lemma 4.1. Let stoep a’ and shank @’ denote a symmetric Toeplitz matrix a.nd a per-

symmetric Hankel matrix with first row a’, respectively. Then there exist the following
relations between trigonometric transforms and symmetric Toeplitz matrices:

1 1
(Cf,,’)' D Cfv’ = - stoep(ag,...,ay_1) + = shank(a;,... ,ay-1,0),

2 2
~ 1 1
(s) DsY = 5 stoep(ag, ... ,an—1) — 5 shank(ay,... ,ay_;,0)

with
D := diag(do,...,dn-1), D :=diag(dy,...,dy),
: -
d = (do,... ,dN), = CN (ao,... ,aN_l,O)'. .

Proof: .We restrict the proof to the DCT-II. To simplify the notation, we drop the
index N and set C := ZNC{V[, and D := diag d with =

Z?V = (IN, ON) € RVAN+L

" Then, by

1
cosa cosfB = 5 cos(a — ) + % cos(a + ),

the (u,v)-entry of the matrix C'DC is

. N-1 N-1

12 (u—v)kr 1 2 (u+v+1)kn
C’ = - = M2 g — 42 cM2 4 —
(¢'nc),, = 5N 2 (e} ) dy cos w + 5N 2 (er )* di cos N ,

or equivalently, since —(—1)*""dy = (—1)**"*ldy for arbitary dy € R,

N N
, 12 N12 (u—v)kr 1 2 - (u+v+ 1)kn
= - = d AL ! T I R
(¢'nC),, 5N ,;:o (e ) dy cos I + 5N kE=O (e¢ )? dy cos ~

Choosing dy € R such that
N
D (P de(-1)* =0,
k=0

we get by symmetry properties of cosine function that

1 1
C'DC = 3 stoep(ag, ... ,ay_1) + 5 shank(a;,...,ay_1,0),

13




where

(0, an-1,0) = 5 Gy d,

2
: N
i.e. by (4.1), .
d =C§V+1 (ao,...,aN_l,O)'. [ |
Remark: By Lemma 4.1, it follows that
stoep(ag, ... ,an-1) = (C¥)' D CH + (s¥)' D s¥.

Thus, if the vector d is precomputed by the DCT-I, then the multiplication of a vec-
tor with a symmetric Toeplitz matrix of size (N, N ) requires two DCT-II, two DST-II
and 2N real multiplications and can therefore be realized in O(Nlog N) arithmetical
operations (see also [23]). O

Since for even f € Cy, the (N ~ 1)-th Fourier sum can be written as

N-1
(Svf)@) =2 ) (ef) ax cos(kz),
k=0

we obtain by Lemma 4.1 that
An(f) = (CY) (2D)C¥ - shank(a,...,ay_1,0)

.\ N-1
= (CV) diag <(8N f)(ZI ) Cfvl — shank(a, ... ,ay_1,0), (4.2)

N’'J.
An(f) = (S (2D) st + shank(ay, ... ,an_1,0)
= (SYY diag ((SN f)(%)) SN + shank(a),...,an_1,0). (4.3)
i=1

Consequently, we introduce the Strang-type-preconditioners by [24]:

. N-1
. T
DCT -1I:  Muy(Sy f,CY) = (CUY diag (SN f(%)) ci,

=0

N (4.4)
~ . rin -
DST —1II: My (Sy f,8Y) = (SY) diag <5Nf({v)) st
j=1

See also [20]. Again, if f has zeros, then it can not be assured that the Strang-
type-preconditioners are positive definite. Therefore, we define similar to (2.5) the

preconditioners
’ . N-1
DCT-1II:  Mny(f,CY) = (CYY diag (f(%)) cy,
2 (4.5)
DST - 1I: My(f,SY) = (S¥) diag <f(J7V75)> S
J=1
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If f(jm#/N) > O forall j =0,...,N -1, then My (f, C,’v’) is positive definite. If -
f(Gm/N) >0 forall j =1,...,N, then My(f, S¥) is positive definite. :
Note that independent of our results, T. Huckle [19] suggested a preconditioner of type
(4.5) with respect to the DST-I.

Clearly, if f is a trigonometric polynomial of degree < N, then the Strang-type-
preconditioners (4.4) coincide with our preconditioners (4.5). Moreover, we have by
(4.2) and (4.3) for trigonometric polynomials f = p of degree < s (2s < N) that

An(p) = My(p,CY) - Ry(25) = Mn(p, S¥) + Ry(25).

Thus, we can prove in a completely similar way as in Section 3 the following

Theorem 4.2. Let f € Cj, be an even nonnegative function with a zero of order 2s
(s€N)in z=0. Let Ay(f) denote the corresponding Toeplitz matrices with precon-
ditioners M y(f) = M y(f, S}) defined by (4.4). Then the matrices My(f)"tAn(f)
have the following properties:

i) The eigenvalues of M n(f) ! An(f) are clustered at 1.

ii) Let p, denote the associated trigonometric polynomial (3.6) of f and let h := f/ps.
Then, for N > 25, at most 2s eigenvalues of M y(f)~ Ay(f) are not contained in the
interval [fmia, Amax]

The PCG~method with our preconditioners can be realized in a more efficient way than
the PCG-method with banded Toeplitz matrices as preconditioners:

Remark: Our PCG-method requires only two DCT-II, two DST-II and O(N) real
- multiplications in each iteration step. This can be seen for the preconditioner M ~n(f, Cf\f )
as follows: Instead of

(CHyECY ((CyDCY + (SHYDSY) = = (CYYECY b

.\ N-1
with E := diag <f(%r)> , we solve

7=0
E (D + c{V’(s{J)'Dsg(c{Vf)') i=b

with & := C'J[\,(:z: and b := E~'C¥ b. The vectors d, b and z can be precomputed and
postcomputed, respectively. See also [18, 19]. _ O

Next, we are interested in the solution of systems of linear equations A ~(f)z = b with
regular, but non-Hermitian Toeplitz matrices Ay(f). We intend to solve the normal
equation

AN(HAn(flz = Ay (f)b (4.6)
using the PCG-method. By [3], it holds that
AV(HAN) = AN(f1) + Ry + Uy,
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with a low rank matrix Ry and a matrix Uy of small spectral norm. If f=pisa
trigonometric polynomial of degree < s (2s < N), then ‘ ‘

AN(HAN() = AN(If®) + Ru(2s).

Assume that |f| € Cy, has only a finite number of zeros. Then we define our precondi-
tioners by
N-1

My(IfI*, Fn) := Wy Fy diag (lf(g'y + ‘w)lz) FyWy (welo, 2"/N)j

j=0
if An(|f|?) is Hermitian and If(3 +w)| >0forall j=0,..., N—1 and by

. N-1
Mu(S1CH) = (ofy aing (11CGDF) o,
1=0
. N
Ma(S1 ) = (st ding (1GDP) st (4.7
j=1

if Ay(]f|?) is symmetric and lf(%l)l >0forall j =0,..., N~ 1 and for all j =
1,..., N, respectively.

Finally, the generalization of our results to doubly symmetric block-Toeplitz systems
with Toeplitz blocks is straightforward. We consider systems of linear equations

AM,NIC = b,

 where A~ denotes a positive definite doubly symmetric block-Toeplitz matrix with
Toeplitz blocks (BTTB matrix), i.e.

AM,N ‘= (,élr__s)M—1 with A, := (a,,j_k)fk_:lo

r,.s=0

and a,; = aj,;. We assume that the matrices Ay n are generated by a real-valued
2m—periodic continuous even function in two variables, i.e.

27 2w
1 o
ajk :=m//cp(s,t)e“(’“”‘)dsdt.
0 0 -

Lemma 4.1 can be extended to BTTB matrices as follows:

Aun = (CHocl)y D (Cioc) +(SiLecClyD,(s!eCl)
+ (Cit® SV) D3 (Cif @ SY) + (Sif ® SY) D4 (53  5Y)

with
: = \N-1,M-1 , : = \N-1,M
D, := diag (col(aw-)j’,=0 ) , D, := diag (col(a,yj)jzo,rzl) ,
D; := diag (col_(&,,j);y;fr_:lo) , D, = diag (col(&,,j);yz'f{rzl) ,
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(dr,j)fr’go = éfw-n ((ar,j);'?r'ro) (éfwl)l,

arv =0 (r=0,...,M)and ap; :=0(j =0,...,N). Here col: RVM _, RMN i
defined by

N-1,M- - .
col (:cj-k)j=0,k=01 = ( ,.):vi]: ' with TkN+j = Tjk -

Consequently, the multiplication of a vector with a BTTB matrix requires only
O(MN log(MN)) arithmetical operations. For details see [24]. We define our so—called
“level-2" preconditioners by .

- jﬂ_ N-1,M-1
) )(Cl & Cl),

My(p,ClL @ C)) = (CI @ CUlY diag(col (w(’”ﬁ, I

J,k=0
. N.M
. rm JImw
Mi(e,SloSi) = (Sho sfydag(co (o7, 20) ) (sl o 5.
Jik=1

Using the same arguments as in the remark after Theorem 4.2, we see that our PCG—
- method requires per iteration step only M N multiplications more than the conventional
CG-method.

5 Numerical Examples

In this section, we show the efficiency of our new preconditioning technique by various
numerical examples. The fast computation of the preconditioners and the PCG-method
~ were implemented in MATLAB, where the C—programs for the fast Fourier transform
and the fast trigonometric transforms were included by cmex. The algorithms were
tested on a Sun SPARCstation 20. ‘

As transform length we choose N = 2" and as right-hand side b of (2.1) the vector
consisting of IV entries “1”. The PCG-method started with the zero vector and stopped
if |7D||5/|7®]|, < 1077, where #() denotes the residual vector after j iterations.

We begin with Hermitian ill-conditioned Toeplitz matrices Ay (f) arising from the gen-
erating function

i) fx) =(z/2—7/4)* (z€]0,2m)).

The second column of Table 1 shows the number of iterations of the CG-method with-
out preconditioning. The columns 3 and 4 contain the numbers of iterations of the
PCG-method with the optimal preconditioner M$(f, Fy) given by (1.3) and with our
preconditioner M y(f, Fy) defined by (2.5) with w := /N, respectively.

Next, we consider symmetric Toeplitz matrices Ay. We compare the Strang-type—
preconditioners (4.4), our preconditioners (2.5) and (4.5) and the optimal trigonometric
preconditioners defined by

DCT-I.  MR(CY) = (CY)é(Cy Ax (CY)) CY,
DST-II: M8 = (SYYys(S¥ Ay (SY)) s
17




n| In [ MS(Fy) [ My(f,Fx)
4 26 17 11
5 85 36 13
6 349 67 17
7 1570 154 22
8 | > 3000 377 26
9 | > 3000 995 35
10 | > 3000 2220 46

Table 1: f(z) = (z/2 - 7/4)* (z € [0,27))

See for example (6, 10, 23]., Our test matrices correspond to the following generating
functions:

ii) (see [25]): f(z):= (22 ~1)? (z € [-m,7)).
In (2.5), we set w := 7/N.
iii) (see [25, 7, 8]): f(z):=z* (z €[-m, 7).
In (2.5), we set w := n/N.

- The Tables 2 and 3 present the number of iteration steps for different preconditioners.
The asterix emphasizes that the corresponding preconditioners are not positive definite.
Our new preconditioners lead to the best results. Compare also with [25, 7, 8]. Note
that by the remark after Theorem 4.2, our PCG-method requires per iteration step
only few arithmetical operations more than the conventional CG—method.

Our next test is related to non-symmetric Toeplitz systems. As generating function of
An(f) we choose

iv) f(z) =22 € (z € [-7,7)).

Then, the matrices Ay(f) have real entries such that we restrict our attention to
trigonometric preconditioners. Table 5 compares the PCG-method applied to the nor-
mal equation (4.6) with

- the optimal preconditioner of Aly(f)Ax(f)

Mg = Oy 5(OyAy(f)An(f)OY) Oy,
- the optimal preconditioner of Ay/(|f|?)
M = Oy 5Oy Ax(If[)OY) Oy,

- the Strang-type-preconditioner M y(Sn(|f|?), On)
and our preconditioner M n(|f|2, S) defined by (4.7).
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My(Snf,On) | MG(On) || Mn(f,On)
n| Iy cy | SV |ci|si|t sU | Fy
5| 25 9* 8 17 |10 || 5 5
6 | 69 9 8 || 21 |11 [ 5 6
7 | 190 10 | 10° || 26 |14 | 7 7
8 | 457 10 | 10° || 33 | 16 | 8 8
9 [>1000] 11 9 319 9 9
10 [>1000 | 10° | 10° || 59 | 24 | 7 7

Table 2: f(z) = (2* - 1) (z € [-7, 7))

Mny(Snf,On) | MR(On) || Mn(f,On)
n| Iy cy | si cy (s s¥ | Fu
5| 33 12 | 107 18 |10 6 6
6 | 116 18 | 15 30 | 13 || 7 6
7| 487 | 27 | 21 54 | 16 | 8 8
8 | >1000 | 40 | 33 155 | 19 || 9 | 11
9 | >1000 | 115 | 63 || 37 |25 9 | 13
10 | >1000 || 218* | 165° || >1000] 32 || 10 | 15

Table 3: f(z) =2* (z € [-m,7))

Finally, let us turn to BTTB matrices Ay y. In our two examples, the matrices Ay v

are generated by the functions
v) (see [21]) w(s,t) = s* t* and ¥(s,t) = (2 +2)2 (s,t € [—m, 7)) .

Both matrices are ill-conditioned and the CG-method without preconditioning, with
Strang-type—preconditioning or with optimal trigonometric preconditioning converges
very slowly (see {21, 24]). Our preconditioning determined by (4.7) leads to the number
of iterations in Table 5. Again, our PCG-method requires per iteration step only few

arithmetical operations more than the conventional CG-method.
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0%

n | In ) MRER) | MG (s || M) | MR(SH) || Mu(Sn(P), C) | Mu(Su(17), ST || Ma(fP. ST
5 84 29 - 21 " 34 18 22* 19* 11
6 311 52 26 64 22 32* 26* 11
7 1226 116 33 139 27 56* 44* 14
8 5220 256 40 324 39 96* 76* 16
9 | >10000 664 74 865 55 200* 157* 19
10 | >10000 1758 101 2546 78 466* 357 21

Table 4: f(z) := z? i*

(z € [-m, 7))




N || My(p, SH ® S¥) | My(v, S @ SH
8 13 9

16 16 12

32 22 14

64 39 19

128 36 ' 25

256 3 35

512 52 19

Table 5: ¢(s,t) = s* t* and ¥(s,t) = (s> + t2)? (s,t € [-7, 7))

References

[1]
2l

[3]

[9]

110]

O. Axelsson. [terative Solution Methods. Cambridge University Press, Cambridge,
1996.

G. Baszenski and M. Tasche. Fast polynomial multiplication and convolution re-
lated to the discrete cosine transform. Linear Algebra Appl., 252:1 - 25, 1997.

F. D. Benedetto. Iterative solution of Toeplitz systems by preconditioning with
the discrete sine transform. In SPIE 2563, San Diego, 1995.

F. D. Benedetto and S. S. Capizzano. A unifying approach to abstract matrix
algebra preconditioning. Preprint, 1997.

F. D. Benedetto, G. Fiorentino, and S. Serra. C.G. preconditioning for Toeplitz
matrices. Comp. Math. Appl., 25:35 - 45, 1993.

E. Boman and I. Koltracht. Fast transform based preconditioners for Toeplitz
equations. SIAM J. Matriz Anal. Appl., 16:628 — 645, 1995.

R. H. Chan. Toeplitz preconditioners for Toeplitz systems with nonnegative gen-
erating functions. IMA J. Numer. Anal., 11:333 — 345, 1991.

R. H. Chan and K.-P. Ng. Toeplitz preconditioners for hermitian Toeplitz systems.
Linear Algebra Appl., 190:181 — 208, 1993.

R. H. Chan and M. K. Ng. Conjugate gradient methods of Toeplitz systems. SIAM
Review, 38:427 — 482, 1996.

R. H. Chan, M. K. Ng, and C. K. Wong. Sine transform based preconditioners for
symmetric Toeplitz systems. Linear Algebra Appl., 232:237 - 259, 1996.

21



(11} R. H. Chan and G. Strang. Toeplitz systems by conjugate gradients with circulant -

preconditioner. SIAM J, Sei. Statist. Comput., 10:104 - 119, 1989. |

(12] R. H. Chan and M.-C. Yeung. Circulant Preconditioners constructed from kernels.
SIAM J. Numer. Anal., 29:1093 - 1103, 1992. '

(13] T. F. Chan. An optimal circulant preconditioner for Toeplitz systems. SIAM J
Sci. Statist. Comput., 9:766 ~ 771, 1988.

[14] R.H. Chang and G. Strang. Toeplitz systems by conjugate'g:‘fa.divents with circulant 1
preconditioner. SIAM J. Sei. Statist. Comput., 10: 104 — 119, 1989.

[15] G. Fiorentino and S. Serra, Multigrid methods for Toeplitz matrices. Calcolo, 28:
283 ~ 305, 1992.

(16] U. Grenander and G. Szegd. Toeplitz Forms and Their Applications. University of
California Press, Los Angeles, 1958.

(17] R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University Press,
Cambridge, 1985.

(18] T. Huckle. Iterative methods for Toeplitz-like matrices, Report SCCM-94-05,
Stanford University, 1994.

[19] T. Huckle. Iterative methods for ill-conditioned Toeplitz matrices. Preprint, 1997.

[20] T. Kailath and V. Olshevsky. Displacement structure approach to discrete—
trigonometric—transform based preconditioners of G. Strang type and of T. Chan
type. Preprint, 1996.

21] M. K. N 8. Band preconditioners for block-Toeplitz —Toeplitz~block—systems. Lin-
ear Algebra Appl., 259:307 - 327, 1997.

[22] D. Potts. Schnelle Polynomtransformation und Vorkonditionierer fir Toeplitz-
Matrizen. PhD thesis, Univ. Rostock, 1998.

[23] D. Potts and G. SteidL Optimal trigonometric preconditioners for nonsymmetric
Toeplitz systems. Preprint, 1996.

[24] D. Potts, G. Steidl, and M. Tasche. Trigonometric preconditioners for block
Toeplitz systems. In Multivariate Approzimation and Splines, G. Nirnberger,
J. W. Schmidt, and G. Walz, (eds), Birkhiuser, Basel, 1997, 219 - 234.

[25] S. Serra. Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners
for asymptotically ill-conditioned positive definite Toeplitz systems. Math. Comp.,
66:651 — 665, 1997. |

[26] G. Steidl and M. Tasche. A polynomial approach to fast algorithms for discrete
Fourier—cosine and Fourier—sine transforms. Math. Comp., 56:281 - 296, 1991.

22




[30] Z. Wang. Fast algorithms for the d1sc

[27] G. Strang. A proposal for Toeplitz matrix ca.lculatxons Studz:”‘
74:171 - 176, 1986.

[28] E. E. Tyrtyshnikov. Circulant preconditioners with unbounded i ve
Algebra Appl, 216:1 - 23, 1995.

. Linear ‘

[29] E. E. Tyrtyshnikov. A unifying approach to some old and new_t' ;veorems on dlStl‘l—
bution and clustering. Linear Algebra Appl 232 1 43 1996. :

W tra.nsform a.nd for discrete Founer
transform. IEEE Trans. Acoust Speech Signal Process, 32:803 — 816, 1984

23




	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024

