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Abstract

[AM89] and [JNW94] present abstract concepts of bisimulation in terms of category

theory. This paper deals with the quest ion how these approaches are related. Futheron

it shows how different types of bisimulations on prime event structures can be modelIed
in terms of the abstract concepts.
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Intraduction

1 Introduction

1

Bisimulation was introduced by [MilSO] and [ParS 1] in order to identify processes that

cannot be distinguished by an external agent. Since then various notions of "bisimulation"

have been studied, e.g. on labelled transition systems by [DNMV90J, [MS92J, on event

structures by [GGS9J, [GKP92J, on petri nets by [GVS7J, [ABS91]. Recently attempts have

been made to develop an abstract characterization of the various not ions of bisimulation, see

for example [DDNM93] and [Mal95]. We focus here on the work of [AMS9] and [JNW94].

[AMS9] characterize bisimulation (AM-bisimulation) as a coalgebra relative to a functor

on the category Class. [JNW94] work with a general category IM of models with a distin-

guished subcategory IPof path objects. Two objects Xl and X2 are called IP-bisimular Hf

there is an object X in IM together with so-called IP-open morphisms Ii : X -+ Xi, i = 1,2.

We study here how AM-bisimulation and IP-bisimulation are related. To connect these

concepts we use the formalism of path-IP-bisimulation of [JNW94].

Starting in a setting where one may speak about path-IP-bisimulation we prove that

(strong) path-IP-bisimulation and (strong) AM-bisimulation are equivalent. As every IP-

bisimulation induces astrang path-IP-bisimulation we get the result: 1£one can introduce

the concept of IP-bisimulation in a category of models IM this bisimulation induces a strong

AM-bisimulation.

For the reverse direction - i.e. to characterize a given AM-bisimulation on a category IM of

models in terms of IP-bisimulation - numerous assumptions have to be made. In a first step

we switch from AM-bisimulation to path-IP-bisimulation. Therefore we have to construct

a suitable category IP of path objects. Using a theorem of [JNW94] which characterizes

the situations where strong path-IP-bisimulation coincides with IP-bisimulation one may

conclude that AM-bisimulation is a more general concept than IP-bisimulation.

As an application we study AM-bisimulation and IP-bisimulation on labelled event struc-

tures where we consider the concepts of interleaving, backward-forward (bf), step, pomset,

history-preserving and strong-history-preserving bisimulation.

2 Definition of the different bisimulation concepts

2.1 AM-bisimulation

A coalgebra for an endofunctor F on a category iC is a pair (A, a) where A is an object of

iC and a : A -+ FA amorphism. A morphism 7r : A -+ B in iC is called a homomorphism

between coalgebras (A, a) and (B, ß) Hf ß 0 7r = (F7r) 0 a holds. The coalgebras and

Categorical characterization of bisimulation
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2.1 AM-bisimulation 3

Figure 3: "Same behaviour" by choosing either So and to or SI and tl as initial states.

Figure 4: "Same behaviour" even in the not reachable parts.

2.1.1 An interpretation of AM-bisimulation

In order to relate two transition systems by AM-bisimulation it is not enough to require the

existence of a coalgebra (R,,) which makes the diagram of figure 1 commute. (R,,) = (0,0)
is an AM-bisimulation between any two coalgebras. To model a particular kind of bisim-

ulation as AM-bisimulation it is therefore necessary for the set R of the coalgebra (R,,)
to include a distinguished pair of states, e.g. the initial states of the transition systems.

The transition systems of figure 2, 3 and 4 demonstrate, how different the "information

content" of an AM-bisimulation may be:

(R,,) := ({ (SI, ton, 0) is an AM-bisimulation between the transition sytems SI and Tl
of figure 2. It say~: "Both transition systems include final states."

For the transition systems S2 and T2 of figure 3 one may take as AM-bisimulation (R,,)

the set R:= ({(so, to), (SI, td} together with the map ,(So, to) := {(a, SI, tIn. Here we get:

"If one chooses So and to as initial states the behaviour of the transition systems S2 and

T2 is identical. The same holds in the choice of SI and tl as initial states."

In case of the transition systems S3 and T3 of figure 4 it is possible to take (R,,) as AM-

bisimulation where R := {(so, to), (SI, tl), (S2, t2), (S3, t3n and ,(So, to) := {(a, SI, tIn,
'(S2, t2) := {(b, S3, t3n. This AM-bisimulation can be interpreted as: "Choose any state S
of S3 as initial state. Then there exists astate t of T3 such that taking t as inital state of

T3 the behaviour of the transition systems S3 and T3 is identical. The same holds jf one

Categorical characterization of bisimulation



4 Seetion 2: Definition of the different bisimulation concepts

chooses first an initial state in T3."

The transition systems of figures 2 and 3 show that an AM-bisimulation contains just

a "subset" of those transitions which are "common" to both coalgebras. This view on

AM-bisimulation justifies our observation that (0,0) is an AM-bisimulation between any

two coalgebras: The statement that all transitions which are contained in 0 are "common"

to any pair of coalgebras is true. As the discussion of the transition systems in figure 4

shows this "common part" is independent of a concept of "reachability" .

The question whether two transition systems share a special part is equivalent to the

quest ion whether there exists an AM-bisimulation between these transition systems which

"contains" this part. Such apart can be a whole transition system. We give just two

examples:

1. Does for any state S of a transition system S astate t in a transition system Texist
such that T started in ibehaves like S started in s? This quest ion may be coded as

AM-bisimulation: Does an AM-bisimulation (R, -y) exist such that the projection 11"1

on the coalgebra related to S is surjective?

2. Of course it is possible to reduce the first problem to that part of a transition system

which is reachable from astate So. This leads to the question: Does for any state S
of a transition system S which is reachable from So astate t in a transition system T
exist such that T started in t behaves like S started in s? Again this quest ion may be

coded as AM-bisimulation: Does an AM-bisimulation (R, -y) exist such that for the

projection 11"1 on the coalgebra related to S holds: So E.11"1 (R)?

These examples model "simulations": We asked whether T is able to show apart of the

behaviour of S. To describe "bisimulations" we have to formulate the conditions in a sym-

metrie manner. For the second example this could be: Assuming that both Sand T have

an intial state So resp. to we want to know whether there exists an AM-bisimulation (R,-y)

with So E 11"1 (R) and to E 11"2 (R). Another - more discriminating - possibility would be: Is

there an AM-bisimulation (R, -y) with (So, to) E R? This last formulation will be the one

we use to model different kinds of bisimulations as AM-bisimulation.

2.1.2 Some properties of AM-bisimulations

In case of AM-bisimulation the proof that for coalgebras (A,o:), (B, ß) and (R, -y) the

diagram of figure 1 commutes consists of two parts for each square: For the left square for

example one establishes first that (0: 0 1I"d(x, y) ~ (F1I"1 0 -y)(x, y) for all (x, y) E R, in a

Categorical characterization of bisimulation



2.1 AM-bisimulation 5

second step one proves the inclusion the other way round. The following lemma shows that

in order to establish the property strong the second step is not necessary:

Lemma 2.1

Let (R,,) be an AM-bisimulation between two coalgebras (A,a) and (B,ß). Then for all
(x', y') ER holds:

Proof: Let (l,x) E (F71"1 ° ,-)(x',y'). Then there exists some y E B with (l,x,y) E

,-(x',y'). Therefore we have (l,x',y') E ,(x,y). This implies (l,x') E (F71"1 o,)(x,y). As

(R, ,) is an AM-bisimulation we get (l, x') E (a ° 71"1)( x, y). Thus we may conclude that

(l, x') E a(x) which results in (l, x) E a- (x') = (a- 071"1)(X', y'). •

To translate the definition of a homomorphism between two coalgebras in terms of their

related transition systems we cite a lemma from [MCR96J:

Lemma 2.2

A morphism f : A -+ B in Set is a homomorphism between coalgebras (A, a) and (B, ß)
iff for the related transition systems T(A,a) and T(B,ß) holds:

(i) if x ~ y in T(A,a) then f(x) ~ f(y) in T(B,ß) and

(ii) ifr ~ 8 in T(B,ß) and r = f(x) then 8 = f(y) for some y E A and x ~ y in T(A,a)'

Furtheron we provide a useful property of AM-bisimulation which helps us to translate

different kinds of bisimulations into the setting of coalgebras.

Lemma 2.3

For an AM-bisimulation (R,,) on coalgebras (A,a) and (B,ß) holds:

• if x ~ y in T(A,a) where x = 71"1(r) for some r E R then there exists s ERsuch that

y = 71"1(8) and 71"2(r) ~ 71"2(8) in T(B,ß) and

• ifv ~ w in T(B,ß) where v = 71"2(r) for some rE R then there exi8t8 8 ERsuch that

w = 71"2(8) and 71"1(r) ~ 71"1(8) in T(A,a)'

Proof: If x ~ y in T(A,a) for some x E 71"1(R) then by (ii) of lemma 2.2 there exists

8 E R with r ~ 8 in T(R,'Y)' This induces by (i) of lemma 2.2 71"2(r) ~ 71"2(8) in T(B,ß)'

•
In this paper we are interested in AM-bisimulations, which contain a distinguished pair

of elements. For these one obtains transitivity:

Categorical characterization of bisimulation



6 Section 2: Definition of the different bisimulation concepts

Lemma 2.4
Let (Al, al), (A2, a2), (A3, a3) be coalgebras, let (Rb,d and (R2, '2) be (strong) AM-
bisimulations between (Al, ad and (A2, a2) resp. (A2, a2) and (A3, a3) with (x, y) E Rl
and (y,z) E R2. Then there exists a (strong) AM-bisimulation (R,,) between (Al,adand
(A3, a3) with (x, z) ER.

Proof: Let R := {er, t) E Al x A31:3 s E A2 (r, s) E Rl, (s, t) E R2}. Let for all

(r', t'), (r, t) ER

(l, r', t') E ,er, t) : ~ :3 s', sE A2 : (1, r', s') E ,l(r, s), (1, s', t') E '2(S, t).

Obviously holds (x, z) ER.
To prove that (R,,) is an AM-bisimulation between (Al, ad and (A3, a3) let (l, r') E

(al 01l"1)(r, t). As (r, t) ER there exists s E A2 such that (r, s) E Rl and (s, t) E R2. We get
(l,r') E (al o 1I"d(r,s) and as (Rl,'l) is an AM-bisimulation (l,r') E (F1I"1o'l)(r,s). Thus

there exists s' E A2 with (r',s') E Rl and (l,r',s') E 'l(r,s). This leads to (l,s') E (F1I"20
,der, s) and - again as (Rl"d is an AM-bisimulation - (l, s') E (a2 0 1I"2)(r,s). Therfore

(l, s') E (a201l"1)(S, t) and (1, s') E (F1I"10,2)(S, t). Thus there exists t' E A3 with (s', t') E R2
and (1, s', t') E '2(S, t) and we may conclude that (r', t') E Rand (1, r', t') E "I(r, t). Finally
we get (1, r') E (F1I"10 ,)(r, t).

Now let (1, r') E (F1I"10 ,)(r, t). Then there exists t' E A3 such that (l, r', t') E ,er, t).
By the definition of, there exist s',s E A2 such that (l,r',s') E '"n(r,s). Thus (1,r') E

(al 0 1I"d(r, s) = (al 0 1I"d(r, t).
To show that (R,"I) is strong if (Rl,"Id and (R2,"I2) are strang let (1,r) E (al 0

1I"d(r', t'). As (r', t') E R there exists s' E A2 such that (r', s') E Rl and (s', t') E R2.
For (r',s') holds: (l,r) E (al 0 1I"1)(r',s'). (Rl,"Id is strong. Therefore we know that

(l, r) E (F1I"10 'l)(r', s'). Thus there exists s E A2 with (r, s) E Rl and (1, r, s) E 'l(r', s').
This leads to (1, s) E (F 11"20 '1) (r' , s'). Using again the property "strong" of (R 1, '1) we

get (l, s) E (a2 0 11"2)(r' , s') = (a2 0 11"1)(s' , t'). As (R2, "(2) is strong this results in (l, s) E

(F1I"10 "(2)(s', t'). Thus there exists t E A2 with (s, t) E R2 and (1, s, t) E "12 (s', t'). This

leads to (r, t) ER and (l, r, t) E "I-(r', t') and we may conlude that (1, r) E (F1I"1o,-)(r', t'):
Lemma 2.1 proves the other inclusion. •

Remark 2.5
1. Let (A,a) be a coalgebra, let x E A. Then (R,"I) with R := A x A and (l,a',a') E

,Ca, a) : ~ (l, a') E a(a) is an AM-bisimulation between (A, a) and (A, a) with
(x, x) ER. (reflexivity)

Categorical characterization of bisimulation



2.1 AM-bisimulation 7

(R,"()

Figure 5: An AM-bisimulation (R, "() between transition system Tl and T2.

2. Let (R, "() be an AM-bisimulation between coalgebras (A, a) and (B, ß) with (x, y) ER.

Then (R,i) with R := {(b,a) I (a,b) E R} and (l,b',a') E i(b,a) : ~ (l,a',b') E

"((a, b) is an AM-bisimulation between (B, ß) and (A, a) with (y, x) ER. (symmetry)

2.1.3 A note on strong AM-bisimulation

The concept of strang AM-bisimulation is new. Looking on transition systems with initial

states example 2.6 shows that the strong and the non strang version of AM-bisimulation

differ:

Example 2.6

Consider the transition systems Tl and T2 of figure 5. Let (A, a) and (B, ß) be the related

coalgebras of Tl resp. T2. Figure 5 shows an AM-bisimulation (R, "() in SetF between Tl
and T2.

But there is no strong AM-bisimimulation between (R, i) between Tl and T2 which

includes (so,to) as state. For any such bisimulation (R,i) we get (S3,t3) ER: In Tl we

find the transition So ~ SI, thus we need as state (SI, tt}, furtheron we find in Tl the

transition SI ~ S3, therefore we have (S3,t3) ER. Assume that (R,i) is strong. Then it

has to include a transition (a,x,t2) E "(-(S3,t3) for some state (X,t2) ER. This implies

(a, x) E (F1r1 0 "(-)(S3, t3) and as (R, i) is strong (a, x) E (a- 0 1rt}(S3, t3)' Therefore we

have (a, S3) E a( x) - but there is no such transition for any state x in (A, a).

Categorical characterization of bisimulation



8 Section 2: Definition of the different bisimulation concepts

If one considers just trees any AM-bisimulation induces a strong one:

Theorem 2.7

Let 5 and T be trees with raot So resp. to. Let (R, ')') be an AM-bisimulation between 5 and
T with (so, to) E R. Then there exists astrang AM-bisimulation (R, i) between 5 and T

with (so, to) E R.

Proof: In order to prove the theorem we define a new AM-bisimulation (R, i) from (R, ')').
Let (A,o:) denote the related coalgebra ofthe tree 5, (B,ß) the coalgebra related to T. Let

Ro .- {so,to},
RH1 .- {(s/,t/)ERI3(s,t)ERi,3lEL: s~s/,t~t/}, i~O,

R .- Ui2:0 Ri.

Let for all (s/, t/), (s, t) ER and all labels 1

(l, s/, t/) E i(s, t) :~ s ~ s/ in (A,o:) and t ~ t/ in (B, ß).

Obviously R ~ R.
We show first that (R, i) is an AM-bisimulation. Let (l, s') E (0: 0 7I"r)(s,t). (s, t) E R

implies (s, t) E R. As (R, ')') is an AM-bisimulation we get (l, s') E (F7I"10 ')')(s, t). Thus

there exists some t/ E B such that (l,s/,t/) E ')'(s,t). This implies t ~ t/ in (B,ß).
Therefore we get (s/, t/) E Rand (l, s', t/) E i(s, t) which induces (l, s') E (F7I"10 i)(s, t).
Now let (l,s/) E (F7I"1oi)(s,t). By the definition ofi we know that (l,s/) E o:(s) and thus

(l, s') E (0: 0 7I"l)(S, t).
To prove that (R, i) is strong let (l, s) E (0:- 0 71"1)(s/, t/). This implies that there exists

a transition s ~ s/ in 5. Thus s/ =1= So and therefore t/ =1= to by the definition of R. As

T is a tree we know that there exists exactly one transition which ends in state t/. Let

t ~ t/ be this transition. As 5 is a tree too s ~ s/ is only transition leading to s. On
the other hand we have (s/, t/) E R. Thus by definition of R we get 1 = l/ and therfore

(l, s', t/) E i(s, t). This implies (l, s) E (F7I"10 i-)(s', t/). Lemma 2.1 etablishes the other

inlusion. •

It is important to note that strong AM-bisimulation is not an "abstract ion" of the

concept of back and forth bisimulation which [DNMV90] introduce on transition systems

with initial state. If one does not consider the "silent action" T [DNMV90] prove that

the "usual" bisimulation on transition systems with initial state - which can be modelled

as AM-bisimulation, see section 3.3 - and back and forth bisimulation are equivalent.

Concerning strong AM-bisimulation example 2.6 showed that the strong and the non-strong

version of AM-bisimulation differ on transition systems with initial state.

Categorical characterization of bisimulation



2.2 IP-bisimulation and Path-IP-bisimulation 9

An instance of a strong AM-bisimulation can be found in [GKP92]. Among other

kinds of bisimulations they introduce the concepts of forward bisimulation ('" f-b) and

backward-forward bisimulation ("'bf-b) on prime event structures. For these bisimulations
the following strict inclusions holdl:

• ::: C "'bf-b,

• "'bf-b C "'wh-b C '" f-b and

• "'bf-b C "'r-b C '" f-b,

where ::: stands for isomorphism, "'wh-b for weak history-preserving bisimulation and "'r-b

for run bisimulation. The equivalences "'wh-b and "'r-b are not comparabel. [GKP92]

characterize forward bisimulation and backward-forward-bisimulation by temporallogics:

Two event structures are forward bisimilar iff their related models cannot be distinguished

by formulas of the logic S4N; backward-forward bisimulation can be characterized by the

logic POL - an extension of S4N by two modalities. In section 4.2.2 we show how one

can model interleaving bisimulation (this is just another term for forward bisimulation) as

AM-bisimulation. Backward-forward bisimulation (which we will call here bf-bisimulation)

arises as the strang case of this AM-bisimulation.

2.2 IP-bisimulation and Path-IP-bisimulation

To give an abstractcharacterization ofbisimulation [JNW94] choose a category 01ofmodels

and a subcategory IPof 01of "path objects". A path is a morphism p : P ~ X from an object

P inlP to an öbject X in 01. In 01a morphism f : X -+ Y is called IP-open, iff whenever

there are objects P, Q and a morphism m : P -+ Q in IPand paths p : P -+ X, q : Q -+ Y,

then there exists a path r : Q -+ X with rom = p and f 0 r = q. Figure 6 illustrates

this "path lifting condition". IP-open morphisms include all the identity morphisms and

are closed under composition. Two objects Xl and X2 of 01are called IP-bisimilar, i~ there

exists an object X in 01and IP-open morphisms h :X -+ Xl and h :X -+ X2.

To introduce the concept of path-IP-bisimulation [JNW94] assurne that IP IS a small

subcategory of 01and that IPand 01have a common initial object I. Two objects Xl and

X 2 of 01are called path-IP-bisimilar iff there is a set R of pairs of paths (PI, P2) with common

domain P, so PI : P ~ Xl is a path in Xl and P2 : P -+ X2 is a path in X2, such that

l[GKP92] consider just prime event structures without auto-concurrency where the related transition
systems exhibit only finite branching.

Categorical characterization of bisimulation



10 Seetion 2: Definition of the different bisimulation concepts

p P ~ X

Im If
Q

q ~ y

Figure 6: Path lifting condition

p

p~l~,
Q

q2

Figure 7: Path-lP-bisimulation, illustration for condition (i)o

(0) (lI, l2) E R, where II : I -+ Xl and l2 : 1-+ X2 are the unique paths starting in the

initial object,

and for all (PI,P2) ER and for all m : P -+ Q, where m is in lP, holds

(i) if there exists ql : Q -+ Xl with ql 0 m = PI then there exists q2 : Q -+ X2 with

q2 0 m = P2 and (ql, q2) ER (see figure 7) and

(ii) if there exists q2 : Q -+ X2 with q2 0 m = P2 then there exists ql : Q -+ Xl with

ql 0 m = PI and (ql,q2) ER.

Two objects Xl and X2 are strang path-lP-bisimilar iff they are path-lP-bisimilar and

the set R further satisfies:

(iii) If (ql, q2) ER, with ql : Q -+ Xl and q2 : Q -+ X2 and m : P -+ Q, then (ql 0 m, q2 0

m) ER, see figure 80

Sometimes we call the set R a (strong) path-lP-bisimulation between the objects Xl and

X2°

Categorical characterization of bisimulation



Relating the concepts

Figure 8: The new condition for strong Path-lP-bisimulation.

3 Relating the concepts

11

[JNW94] give the following relation between lP-bisimulation and strong path-lP-bisimulation:

Theorem 3.1

1. Let!l1 be a category 0/ models, let lP be a small subcategory 0/!l1 0/ path objects, such

that lP and !l1have a common initial object I. I/ two objects Xl and X2 0/!l1 are

lP -bisimilar then they are s,trong path-lP -bisimilar.

2. Let!l1 be the subcategory 0/ rooted presheaves in [lPop, Set]. Rooted presheaves Xl and

X2 are strong path-lP -bisimilar iff they are lP -bisimilar.

We show how the concept of (strong) AM-bisimulation fits into this picture. The first

step - from agiven path-lP-bisimulation to an AM-bisimulation - is easy, because we start

with an "abstract" concept to get a more "concrete" one: Even if we don't know of what

"type" the states and the labels of the transition system are, dealing with AM-bisimulation

means speaking about transition systems. The second step - from a given AM-bisimulation

to a path-lP-bisimulation - is more difficult: Here we have to introduce a concept just on

categories with no knowledge about (for example) how to define amorphism.

3.1 From path-IP-bisimulation to AM-bisimulation

Let !l1be a category of models, let lPbe a small subcategory of rn of path objects, such that lP
and!l1 have a common initial object I. Then we define for each object X of!l1 a labelIed tran-

sition system Tpath-IP(X) = (5,0") in SetF over the set of labels UP,QEIP {(m,P,Q) Im E

Mor(P, Q)} :

• 5:= {p : P ---+ X IP E lP,p E M or( P, X)}.

Categorical characterization of bisimulation
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x

P

01
Q

q

Figure 9: Defining the transitions of Tpath-IP'

Figure 10: The structure of Tpath-Bran (Td .

• (m, P, Q, q) E er(p) :~ q 0 m = p, see figure 9.

Example 3.2

To illustrate the operator Tpath-IP we consider the transition system Tl of figure 5 , where we
take So as initial state, as object of some category of transition systems Tran2. A morphism

er in Tran between two transition systems Tl = (SI, SI, --+d and T2 = (S2, 82, --+2) is a

mapping er : SI -7 S2 which satisfies: er(sl) = s2 and if x ~l y then er(x) ~2 er(y).

For !P take Bran the full subcategory of Tran whose objects are those acyclic transition

systems which consist only of one finite branch.

First we gather all path objects P E Bran with morTran(P, Tl) :j; 0 into sets: S0

consists of all transition systems of Bran with one state but no transition, Sa consists

of all transition systems of Bran with one transition labelled with a, Sab consists of all

transition systems of Bran with two consecutive transitions, the first labelled with a, the

second labelled with b, the sets Sb and Sba are defined similarly. The states ofTpath~Bran(Td

are the morphisms from an object P E (S0 U Sa U Sb U Sab U Sba) to Tl'

2The category Tran is described in detail in section 3.3.

Categorical characterization of bisimulation
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Figure 10 shows the structure 0/ the transitions in Tpath-Bran(Tr). An arrow between

two sets X and Y /rom S0, Sa, Sb, Sab and Sba means that taking any object P 0/ X and

any object Q 0/ Y there exists a transition P (rn'PofJ) q in Tpath-Bran (Tr), where P : P --+ Tl,
q: Q --+ QI and m : P --+ Q. As in this example alt morphisms /rom a path object to Tl are

uniquely determined we obtain a very simple structure 0/ the transitions in Tpath-Bran(Tr).

For the transition system T2 0/ figure 5 holds: Tpath-Bran(T2) = Tpath-Bran(TI).

Theorem 3.3

Let h1 be a category 0/ models, let IP be a sm alt subcategory 0/ h1 0/ path objects, such

that IP and h1 have a common initial object I. Then holds: Two objects Xl and X2 0/
h1 are (strong) path-IP-bisimilar ijj there exists a (strong) AM-bisimulation (R,1) between

(A, a) := Tpath-IP(Xr) and (B, ß) := Tpath-IP(X2) with (LI, L2) E R, where LI : I --+ Xl and
L2: 1--+ X2 are the unique pathes /rom I to Xl resp. X2.

Proof: Let Xl and X2 be path-IP-bisimilar. Then there exists a set R consisting of pairs

of paths (PI,P2) with common domain P. We define a map 1:R --+ FR and show that

(R,1) is an AM-bisimulation between (A,a) and (B,ß). Let for all (PI,P2), (ql,q2) E R,

Pi: P --+ Xi, qi: Q --+ Xi, i = 1,2, mE Mor(P,Q)

Let (m, P, Q, ql) E (ao7rI)(PI,P2). Then (m, P, Q, ql) E a(pr) and therefore ql om = PI.

As (pr, P2) E R this implies by condition (i) of the definition of path-IP-bisimulation that

there is some q2 : Q --+ X2 with q20m = P2 and (ql, q2) ER. Thus we have (m, P, Q, ql, q2) E

1(PI,P2) and hence (m,P,Q,qr) E (F7r1 01)(pI,P2).

Let (m, P, Q, qr) E (F7r1 ° 1)(PI,P2). Then there exists some q2 : Q --+ X2 such that

(m, P, Q, ql, q2) E 1(PI,P2). By the above definition of 1 this implies ql ° m = PI. By

definition of Tpath-IP(Xr) we get (m, P, Q, ql) E a(pr) and therefore (m, P, Q, ql) E (a °
7r1)(PI,P2).

Assurne furtheron that the set R is a strong path-IP-bisimulation between Xl and X2.

In order to provide that in this case the constructed AM-bisimimulation (R, 1) is strong it

is enough to show (a- ° 7r1) ~ (F7r1 °1-) - see lemma 2.1.

Let (m,P,Q,pr) E (a- ° 7rr)(ql,q2). Then we have (m,P,Q,pr) E a-(ql) and there-

fore (m, P, Q, ql) E a(PI). Thus by definition of (A, a) we get the equation qlo m = PI'

As (ql, q2) E R we get by (iii) that (ql ° m, q2 ° m) E R. By definition of 1we obtain

(m, P, Q, qr, q2) E 1'(ql °m, q2 °m). This implies (m, P, Q, ql °m, q2 °m) E 1-(ql, q2) and

we get finally by the equation ql °m = PI that (m, P, Q,PI) E (F7r1 ° 1-)(ql, q2).

Categorical characterization of bisimulation
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Now let (R, -y) be an AM-bisimulation between (A, a) and (B, ß), such that (LI, L2) ER.
As R may relate paths PI and P2 with different domains we define a subset of R to establisch

the path-IP-bisimilation:

Obviously we have (LI, L2) ER'. Now let (Pl,P2) ER', m E Mor(P, Q) for some object

Q in IP and ql : Q -+ Xl a path, such thatql ° m = PI' This implies (PI, P2) E R
and (m,P,Q,qd E (a ° 1l'"1)(PI,P2). As (R,-y) is an AM-bisimulation there exists some

q2 : Q -+ X2 with (m,P,Q,ql,q2) E -y(pl,P2)' Therefore we get (m,P,Q,q2) E ß(P2) and

thus by definition of (B,ß) we have q2 °m = P2. As ql and q2 have the same domain and

(ql, q2) E R we conclude (ql, q2) E R' and thus R' fullfills condition (i).

Assurne furtheron that the AM-bisimulation (R, -y) is strang. To show ~ondition (iii) let

(ql,q2) ER', i.e. ql and q2 are paths with the same domain Q, let m E Mor(P,Q). Then

ql om E Mor(P, Xd. By definition of the operator Tpath-rp we get (m, P, Q, qd E a(qIom).
This implies

Thus there exists some P2 : P -+ X2 such that (m, P, Q, ql °m,P2) E -y-(ql, q2)' As R is a

strang AM-bisimulation we get (m,P,Q,P2) E ß-(q2) and therefore (m,P,Q,q2) E ß(P2)'
With the definition ofTpath-rp we conclude q20m = P2. Thus (ql om, q2om) ER'. •

3.2 From AM-bisimulation to path-IP-bisimulation

Let L be a set of labels, let TL be the category of transition systems which consists of all

objects (A, a) of SetF which have an initial state iA E A and all states 8 E Aare reachable

from iA' Take as morphisms between two objects (A,a) and (B,ß) of TL the mappings

/ :A -+ Bwith P/ ° a S;;; ß 0/ and /(iA) = iB, where iA and iB are the initial states of

(A, a) resp. (B, ß). A morphism / : (A, a) -+ (B, ß) in SetF is amorphisms in TL if (A, a)

and (B, ß) are objects of TL and / preserves the initial state. But not all morphisms of

TL can be seen as morphisms of SetF' Reformulating lemma 2.2 for TL leads to: A map

/ : A -+ B is a morphism between (A, a) and (B, ß) in TL iff /(iA) = iB and whenever

there is a transition 8 ~ 8' in (A,a) then there is a transition /(8) ~ /(8') in (B,ß).

We use the category TL as a link between SetF and [J1in the following sense: given

a functor from [J1to TL statisfying the conditions which we present in remark 3.5 we

construct for a given path-IP-bisimulation in [J1an AM-bisimulation in TL and vice versa.

An AM-bisimulation in TL is an AM-bisimulation in SetF as the projections are morphism

Categorical characterization of bisimulation



3.2 From AM-bisimulation to path-lP-bisimulation 15

in both categories. If there is an AM-bisimulation (R, ')')between (A, a) and (B, ß) in SetF
\

where (R,')'), (A,a) and (B,ß) are objects in TL and (iA,iB) E R then (R,')') is an AM-

bisimulation between (A,a) and (B,ß) in TL. Call an AM-bisimulation (R,')') between

(A,a) and (B,ß) strong in TL Hf (R,')'-) is an AM-bisimulation between (A,a-) and

(B, ß-) in SetF.

In order to translate the concept of AM-bisimulation into path-lP-bisimulation we have

to introduce an abstract formulation of AM-bisimulation:

Definition 3.4

Let ll1 be a category 0/ models. Let mt be an operator which turns an object X 0/ ll1 into
a coalgebra mt X in TL - i. e. a transition system over a suitable set 0/ labels L. GaU two

objects Xl and X2 0/ ll1 (strong) AM-bisimilar relative to mt ijj mt Xl and mt X2 are

(strongJ AM-bisimilar in TL.

Remark 3.5

As morphisms in TL map initial states to inital states an AM-bisimulation (R,')') in TL
between (A, a) and (B, ß) includes the pair (iA, iB).

For the rest of this section we assume the following conditions:

1. The operator mt evolves into a functor from ll1to TL.

2. There is a small subcategory lP in 1l1,such that lP and D1have a common initial object
I.

3. For objects P in lP holds: The transition system mt P has a unique final state, which

is reachable from all other states in mt P.

4 F d" h 12 In-1 f . . . T . t. or any envatlOn SI -:...t S2 -:...t ... --+ sn 0 a transltlOn system In L eXlS s an

object P of lP such that in mt P exists a derivation tl Ä t2 ~ ... In-~ tn, where

t1 is the initial state of mt P, tn is the final state of mt P. For this object P holds
f h Wh h . b' X f M . h h 12 In-l .urt eron: enever t ere eXlsts an 0 ject 0 U I Wlt U1 -:...t U2 ~ ... --+ un In

mt X, where U1 is the inital state of mt X, then there exists a morphism p : P ---t X
in 1l1,such that (mtp)(td = Ui, i = 1,2, ... ,n.

5. For the transition system in TL which consists of just one state and no transition the

initial object I of lP is one of the objects condition 4 speaks about.

6. Let P and Q be objects of lP,X be an object of 1l1,p : P ---t X, q: Q ---t X, m : P ---t Q
h. . M lP L t 11 12 In-l b cl' .. P hmorp lms In U I resp. . et 1 -:...t t2 ~ '" --+ tn e a envatlOn In mt , w ere

Categorical characterization of bisimulation



16 Section 3: Relating the concepts

tl is the initial and tn the final state of mt P. Then we have:

qom=p ~ 'v'1~i~n:(mtqomtm)(td=(mtp)(ti).

Theorem 3.6

Assume the above described conditions, let Xl and X2 be objects 0/ lt1. Xl and Xl are

AM-bisimilar relative to mt ijj Xl and X2 are path-fP-bisimular.

Proof: Let (R,'Y) be an AM-bisimulation between (A,a) := mt Xl and (B,ß) := mtX2.

For any element (s, t) E R exists a derivation from the initial state (SI, tl)

in (R, 'Y). Condition 4 implies that there exists .an object P of IP such that mt P includes
d" h 12 In-~ U . h .. d k ha envatlOn ul .---"-+ U2 ---"-+ ... Uno SIng t e proJectlOns 1l"1 an 1l"2 we now t at
11 12 In-1 d h 12 In-1 d'.' X XSI ---"-+ S2 ---"-+ ... --+ Sn an tl ---"-+ t2 ---"-+ ... --+ tn are envatlOns In mt 1 resp. mt 2.

Thus there exist morphisms Pi : P -+ Xi, i = 1,2, with (mtPl)(Uj) = Sj and (mtp2)(Uj) =

tj, j = 1,2, ... ,n. Let M(s, t) denote the set of all pairs of morphism (Pl,P2), which can be

obtained in this way from astate (s, t) of (R, 'Y), i.e. we look for any derivation which ends

in (s, t), for any object P which corresponds to this derivation and for any pair of morphims

(Pl,P2) which embeds mtP in mt Xl resp. mtX2 in the described way. We claim that

R':= U M(s, t)
(s,t)ER

is a path-IP-bisimulation between Xl and X2.

Taking the initial state (SI, tt} of (R, 'Y) condition 5 ensures (LI, L2) E R', where Li : I -+
Xi, i = 1,2, are the uniquely determined morphisms from the initial object I to Xi.

Let P and Q be objects from IP,Pi : P -+ Xi, i = 1,2, ql : Q -+ Xl and m : P -+ Q

morphisms with ql 0 m = PI and (Pl,P2) ER'. As (Pl,P2) E R' we know that there exists
d . t. ( t) h ( ) 12 In-1 ( t). (R ) d" 11 12a enva lOn SI, 1 ---"-+ S2, t2 ---"-+ ... --+ Sn, n In ,'Y, envatlOns SI ---"-+ S2 ---"-+

In-1 d h 12 In-1 . (A) (B ß) d.. h 12... --+ Sn an tl ---"-+ t2 ---"-+ ... --+ tn In ,a resp. , ,a envatlOn Ul ---"-+ U2 ---"-+

... In-~ Un in mtP. By the construction of R' holds: (mtpt}(uj) = Sj,j = 1,2, ... ,n,

and (mt p2)(uj) = tj, j = 1,2, ,n. As mtm is a morphims in TL we find a derivation

(mtm)(ud ~ (mtm)(u2) ~ ~ (mtm)(un) in mtQ. Let / be the final state of

mt Q. By condition 2 we know that there exists a derivation (mt m)( un) ~ VnH In+f
In+k-1 / . Q C b.. b h d. . h 12 In-1--+ Vn+k = In mt . om InIng ot envatlOns we get SI ---"-+ S2 ---"-+ --+

Sn ~ (mt ql)( VnH) In+~ ... In+k)1 (mt qt}(vn+k) in (A, a). As (R, 'Y) is an AM-bisimulation
fi d d.. h 12 In-1 In t In+1 In+k-1 t . (B ß) £we n envatlOn tl ---"-+ t2 ---"-+ ... --+ tn ---'-'-+ n+l --+ . .. --+ n+k In , or some
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states tn+l,"', tn+k E B. Thus by condition 4 there exists a morphism q2 : Q -+ X2

with (mtq2)((mtm)(uj)) = tj,j = 1,2, ... ,n and (mtq2)(vn+j) = tn+j,j = 1,2, ... ,k.

Condition 6 ensures q2 0 m = P2 and by construction (q1, q2) ER'.
Let R' be a path-lP-bisimulation between Xl and X2, let (A, a) := mt Xl and (B, ß) :=

mtX2. Let P be an object from lP, f the final state of mtP, X an object from IM and

P : P -+ X amorphism. final(p, P, X) := (mtp)(J) denotes the image of the final state of

mt P under mt p. Let

R:= {(s, t) I 3P E lP, (P1,P2) ER' :
PI : P -+ Xl, P2 : P -+ X2,

S =final(P1,P,Xt}, t =final(P2,P,X2)},

Let (SI, tt}, (S2, t2) E R, let P,Q be objects of lP, (P1,P2), (q1, q2) E R' such that SI
final (PI, P, Xl), t1 = final (P2, P, X2), S2 = final (qI, Q, Xt}, t2 = final (q2, Q, X2). Define

iff there exists a morphism m : P -+ Q such that

• PI = q1 0 m,

• P2 = q2 0 m and

• (mtm)(J) ~ gis a derivation in mtQ, where f is the final state ofmtP and 9 the

final state of mt Q.

As R' is a path-lP-bisimulation we have (tl, t2) E R', where I is the initial object of IM

and lP and ti : I -+ Xi, i = 1,2, are the uniquely determined morphisms. Therefore

we get (final(t1,I,X1),final(t2,I,X2)) E R, where final (ti, I, Xi) are the initial states of

mtXi,i=1,2.Let.

• R:= {(s, t) ER I (s, t) is reaehable in (R,.:y) from (final (tl, I, Xt},final (t2, I, X2))},

{
R -+ P(L x R)

• "'(:= (s,t) H {(a,s/,t/) E.:y(s,t)l(s',t') ER}.

Then (R,"'() is an object of TL.

Let (a, S2) E (a 0 7l"l)(Sl, tt}. As (SI, tt} E R there exists an object P E lP and mor-

phisms PI : P -+ Xl, P2 : P -+ X2 such that SI = final (PI, P, Xt}, t1 = final(P2,P,X2)
and (PI,P2) E R'. Let U1 ~ U2 ~ ... ln-~ Un be a derivation from the intial state U1 to
the final state Un in mtP. Then (mtp1)(ut} ~ (mtpt}(u2) ~ ... ~ (mtpt}(un) = SI

Categorical characterization of bisimulation
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is a derivation for SI in (A,o). Combining it with (a,s2) E O(SI) we get (mtpl)(ut} .-!4
(mtpl)(u2) ~ ... ln-~ SI ~ S2. By condition 4 there exists an object Q in IP such

h 11 12 ln-~ a . d' .. Q h . h . .t at VI -"-+ V2 -"-+ ... Vn --t Vn+l IS a envatlOn In mt , w ere VI IS t e InI-

tial and Vn+1 is the final state. Further there exist a morphism m : P -+ Q with

(mtm)(uj) = Vj,j = 1,2, ... ,n, and a morphism ql : Q -+ Xl with (mtql)(Vj) =
(mt Pl)(Uj), j = 1,2, ... , n and (mt ql)(Vn+1) = S2. By condition 6 this implies ql 0m = PI'

As R' is a path-IP-bisimulation there exists a morphism q2 : Q -+ X2 with q2 0 m = P2

and (ql,q2) ER'. Therefore we have (jinal(qI,P,Xt},final(q2,Q,X2)) E R, where S2 =

jinal(ql,Q,Xt}, and (a,s2,jinal(q2,Q,X2)) E 'Y(SI,tt}. As (SI,tl) is reachable in (R,i) so

is (jinal(ql, P, Xt},jinal(q2, Q, X2)). Thus we get (a, S2) E (F7rl 0 ')')(Sl, S2).

Let (a_,S2) E (F7rl 0 ')')(SI, tt}. Then there exists some t2 E B such that (a, S2, t2) E

')'(SI, tt}. By the definition of Rand')' we get: there exist objects P and Q of IP,morphisms

Pi: P -+ Xl, qi : Q -+ Xi, i = 1,2, and a morphism m : P -+ Q, which fullfiH the

above described conditions. EspeciaHy we have (mt m)(f) ~ 9 in mt Q, where 1 is

the final state of mt P and 9 the final state of mt Q. This implies SI = (mt pt} (f) =
(mtqt}((mtm)(f)) ~ (mtql)(g) = S2 in (A,o) and therefore (a,s2) E (00 7rt}(SI,tt} .

•
Corollary 3.7

Let IM be a category 01 models, let mt be an operator such that conditions 1 to 6 hold, let

IPbe the subcategory 01 IMlrom condition 2, let Xl and X2 be objects 01 IM.Xl and X2 are

AM-bisimilar relative to mt iff Xl and X2 are AM-bisimilar relative to Tpath-rp.

3.3 A first application: transition systems

For traditional models of concurrency like transition systems, event structures and petri

nets various notions of bisimulation have been studied. It is an interesting quest ion to

what extent the frameworks of [AM89] and [JNW94] are capable of modelling these various

notions. As a first application we consider transition systems.

Let States be a "universal" set of states. Take as category IM the category Tran which

has as objects transition systems (5, s, --t) over some set of labels L, where 5 ~ States is

a set of states, S E 5 is the initial state and --t ~ 5 x L x 5 is the transition relation. The

existence of an initial state implies 5 =F 0. A morphism (J in Tran between two transition

systems Tl = (51, SI, --tl) and T2 = (52, s2, --t2) is a mapping (J : 51 -+ 52 which satisfies:

(J(Sl) = s2 and if x ~1 y then (J(x) ~2 (J(Y). For IPtake Bran the fuH subcategory of

Tran whose objects are those acyclic transition systems which consist only of one finite

branch. Take as functor mt from Tran to TL the map which restricts a transition system

Cat~gorical characterization of bisimulation



3.3 A first applieation: transition systems 19

to its reaehable states. In this setting all six eonditions hold and therefore theorem 3.6

translates AM-bisimulation into path-Bran-bisimulation.

Corollary 3.8

Let Tl = (81, SI, ~d and T2 = (82, S2, ~2) be transition systems in Tran. The foZlowing

are equivalent:

1. Between Tl and T2 exists an AM-bisimulation (R,1) in Setp with (SI, S2) ER.

2. Between Tpath-Bran(Td and Tpath-Bran(T2) exists an AM-bisimulation (R, 1) with
(tl, t2) ER.

3. Between Tpath-Bran (Tl) and Tpath-Bran (T2) exists a strong AM-bisimulation (R, 1)
with (tl, t2) E R.

4. Tl and T2 are path-Bran-bisimilar.

5. Tl and T2 are strong path-Bran-bisimilar.

6. Tl and T2 are Bran-bisimilar.

Proof: Theorem 3.6 praves the equivalenee of 1. and 4. In [MCR96] we showed 1. {:} 6.

Furtheran theorem 3.1 (whieh we eite after [JNW94]) yields 6. implies 5. The equivalenees

between 2 and 4,3 and 5 are due to theorem 3.3. •

Rernark 3.9

Obviously Milner's notion of bisimulation on transition systems coincides with AM-bisi-

mulation. Hence this concept can be modelled by both approaches and yields equivalent
results.

Theorem 3.6 only provides an equivalenee between AM-bisimulation and path-IP-bisimu-

lation. Coneerning the strong variants of those bisimulation eoneepts example 3.10 shows,

that in general strang path-IP-bisimulation does not imply strong AM-bisimulation:

Exarnple 3.10

Consider again the transition systems Tl and T2 from figure 5. Let (A,o:) and (B, ß) be

the related coalgebras of Tl resp. T2. Figure 5 shows an AM-bisimulation (R, 1) in Setp

between Tl and T2. Thus with corollary 3.8 we may conclude that Tl and T2 are strong path-

Bran-bisimilar. But as we have seen in example 2.6 there is no strong AM-bisimimulation

(R,1') between Tl and T2 which includes (so, to) as state.
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4 Illustrating the concepts in terms of event structures

Let Act be a set of actions. A (prime) event structure £ = (E,~,~, l) over the set of

actions Act consists of a set of events E, a causal dependency relation ~ ~ E x E, which
is a partial order, an irreflexive and symmetrie conflict relation ~ ~ E x E and a labelling

function 1 : E -+ Act, which together satisfy:

1. For all e E E the set -!. (e) := {e' E Eie' ~ e} is finite and

2. for all d, e, fEE holds: if d ~ e and d~f then e~f.

We call a set X ~ E a configuration of £ iff X is a finite set, leftclosed in E and for all

e, fEX holds: --,e~f. Sometimes we look at a configuration X not just as a set but as

a labelled poset. In this case X inherits the causal dependency relation and the labelling

function from £ :X = (X, ~ n (X xX), 0, llx), Conf(£) denotes the set of all configurations

of an event structure £. We call two events el, e2 E E concurrent, el co e2, iff they are not

related by ~ or ~.

For a configuration X of an event structure £ = (E,~,~, l) the set ~dX) := {f E

E 13e EX: e~J} includes all events of £ which are in conflict with an element of X. Let

E' := E\(X U ~dX)). £\X := (E', ~ n (E' x E'), ~n (E' xE'), llEI) denotes the "sub-

event structure" of £ including all events which may be added to X in order to get a larger
configuration.

The category EAct has as objects the prime event structures £ = (E,~,~, l) over a fixed

set of actions Act, where E ~ Ev for some "universal" set of events Ev. This condition

ensures that EAct is small and therefore all subcategories IPof EAct which we introduce

to define some kind of path-IP-bisimulaton are small. Let £ = (E, ~E,~E, lE) and F =

(F, ~F,~F, lF) be objects of EAct. A total map 1] : E -+ F is a morphism from £ to F iff

• for all e E E: lE(e) = IF(1](e)),

• VX E Conf(£) : 1](X) E Conf(F) and

• VX E Conf(£) Ve, e' EX: 1](e) = 1](e') =} e = e'.

Lin denotes the full subcategory of EAct which consists of conflict free event structures

(E,~, 0, 1), where E is a finite set and the dependency relation is a total order.

Let £ = (E, ~E, 0, lE), M = (M, ~M, 0, lM) be finite event structures with E n
M = 0 and ~M= {(m, m) Im E M}. Then F := £;M denotes the event structere

(E U M,~F,0,lE U lM), where e ~F f iff e = f or (e E E and f E M) or e ~E f.
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Call an event structure
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a step, where Mi = (Mi, '5oM., 0, ld are event structures, Mi are finite sets, Mi are pairwise

disjoint and '5oM.= {(m, m) Im E Md. For an event e of an event structure £ let

{
I -J- {e} = {e}

depthde) :=
1+ max{ depthdf) I f E-J- {e}, f 1= e} otherwise.

Let S := MI; M2; ... ;Mn, be a step, where all Mi are different from the empty event

structure, let e be an event of S. Then e E Mi {:::=} depths(e) = i, i E {1, 2, ... , n}. Thus

the representation of a step by nonempty event structures Mi is uniquely determined.

Step denotes the full subcategory of EAct which consists of steps as objects.

Call Porn the full subcategory of EAct which has as objects those conflict free event

structures (E, '50; 0, l) where E is a finite set.

A pomset [£] is the equivalence dass of an event structure £ from Porn where we

take isomorphism as equivalence relation. P denotes the set of all pomsets which can

be derived from EAct. A pomset [£ = (E, '5oE,0, lE)] is less sequentiell than a pomset

[T = (F, '5oF,0,lF)l, [£] '50 [Tl, iff there exists a map f : E -+ F which is bijective and a

morphims in EAct.

4.1 Notions of bisimulation on event structures

In order to introduce some not ions of bisimulation on event structures we define different

transition relations on the configurations of an event structure. Let £ = (E, '50, ~, l) be an

event structure over Act, let X, X' E Conf(£) be configurations of £.

• X ~ X', iff a E Act, X ~ X', X/\X = {e} .

• X ~ X' iff 'lvI E Ntct, X ~ X', \;;je,f E X'\X: e 1= f =? ecof and

Va E Act : M(a) = I{e E X'\X Il(e) = a}l .

• X ~ X' iffp E P, X ~ X' andp = [X'\X].

Definition 4.1

Let £1, £2 be event structures.

1. A relation R ~ Conf(£l) x Conf(£2) with (0,0) ER is calted

interleaving bisirnulation ijj for alt (X, Y) E R, a E Act holds:
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• ij X ~ X' in Conj(£d then y ~ Y' in Conj(£2) jor some Y' E Conj(£2)

with (X', y') ER and

• ij Y ~ Y' in Conj(£2) then X ~ X' zn Conj(£d jor some X' E
Conj(£d with (X', y') ER.

bf-bisirnulation (this definition is due to [GKP92j, they eall this relation baekward-

jorward bisimulation) ijj it is an interleaving bisimulation and jor all (X', y') E

R, a E Act holds:

• ij X ~ X' in Conj(£d then Y ~ Y' in Conj(£2) jor some Y' E Conj(£2)

with (X, Y) E Rand

• ij Y ~ Y' in Conj(£2) then X ~ X' zn Conj(£d jor some X' E
Conj(£d with (X, Y) ER.

step bisirnulation ijj jor all (X, Y) E R, M E INfet holds:

• ij X ~ X' in Conj(£d then Y ~ Y' in Conj(£2) jor some Y' E Conj(£2)
with (X', Y') ER and

• ij Y ~ Y' in Conj(£2) then X ~ X' zn Conj(£d jor some X' E
Conj(£d with (X', y') ER.

pornset bisirnulation ijj jor all (X, Y) ER, pEP holds:

• ij X ~ X' in Conj(£d then Y ~ y' in Conj(£2) jor some Y' E Conj(£2)
with (X', y') E Rand

• ij Y ~ y' in Conj(£2) then X ~ X' zn Conj(£t} jor some X' E
Conj(£d with (X', y') E R.

2. A set R oj triples (X, Y, f) where X E Conj(£t}, Y E Conj(£2) and j : X -+ Y is

an isomorphism in Porn is ealled

history preserving bisirnulation ijj jor all (X, Y,f) ER, pEP holds:

• ij X ~ X' in Conj(£t} then Y ~ Y' in Conj(£2) jor some Y' E

Conj(£2), j' : EI -+ E2 with (X', y', j/) ER, j(x = j and

• ij Y ~ Y' in Conj(£2) then X ~ X' in Conj(£t} jor some X' E
Conj(£d, f' :EI -+ E2 with (X', y', j') E R, j(x = f.

strong history preserving bisirnulation ijj R is a history preserving bisimula-

tion and satisfies jurther

• (X', Y',j') ER and X<;;; X' jor some configuration X E Conj(£t} implies

(X, Y, f) E R jor some Y <;;; Y' and j = j(x and
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• (X', Y', /') E Rand Y ~ Y' for some configuration Y E Conf(eI) implies

(X, Y, f) E R for some X ~ X' and f = f(x'

For these bisimulations the following strict inclusions hold:

~ C "'bf-b C "'shp-b C "'hp-b C "'pom-b C "'step-b C '""int-b,

where ~ stands for isomorphism, '""bf-b for bf-bisimulation, "'shp-b for strong history pre-

serving bisimulation, "'hp-b for history preserving bisimulation, '""pom-b for pomset bisim-

ulation, "'step-b for step bisimulation and "'int-b for interleaving bisimulatioiJ.3.

4.2 Modelling with the abstract concepts

We are again considering the suitability of the two frameworks for handling the various

notions of bisimulation.

In a first approach we might - for a given bisimulation type - attempt to formulate a suit-

able subcategory IPof EAct and model this bisimulation as path-IP- or as IP-bisimulation. If

we succeed we might proceed and apply theorem 3.3 to obtain transition systems Tpath-lP(e)

and an AM-bisimulation. This approach has two drawbacks: First it might be impossible

to find an adequate path-IP-modelling, see section 4.3, second, even if we found a suitable

modelling in the framework of [JNW94], the highly abstract transition systems and the

AM-bisimulation provided by theorem 3.3 are probably not the ones we are aiming for.

Most notions of bisimulation induce in a natural way transition systems. Hence one

might in a second attempt model this "natural way" by an operator mt and invoke theorem

3.6. As it turns out, however, there are interesting types of bisimulation for which mt does

not extend to a functor, so this approach will not work either.

In the following we first study two different strategies to associate a transition system

with an event structure. In section 4.2.2 we model interleaving, bf, step and pomset

bisimulation as AM-bisimulations. We also show that bf-bisimulation can only be modelled

by one of the two strategies. In section 4.2.3 we use our results on the relations between the

abstract bisimulation concepts 'to model interleaving, step and pomset bisimulation in the

framework of [JNW94]. (Strong) history preserving bisimulation is considered in section

4.2.4.

3The relation ~bf-b C ~shp-b is due to [GKP92], who consider just prime event structures without

auto-concurrency where the related transition systems exhibit only finite branching.
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4.2.1 Defining transition systems related to an event structure

We will discuss two types of transition systems which one can associate with an event

structure: The first one takes the configurations of the event structure as the states of a

transition systems. This approach corresponds to the definition of occurence transition

systems (OTS) in [GKP92]. We will define three operators Iint, Tstep and Tpom where

each of them makes of an event structure a transition systems over a particular set of

labels. Another possibility to translate an event structure into a transition system can be

found in [LG91] or [BMC94]: Here one takes event structures as states. Again we define

three operators, this time TEint, TEstep and TEpom. The two types of transition systems

represent different views on event structures:

• Taking configurations as states means to distinguish between "situations" in an event

structure which arise from different histories: Two states, i.e. two configurations of an

event structure, are different, iff they differ in at least one event. The computational

possibilities of astate, i.e. its future, are not considered. Therefore a transition system

based on configurations may have more than one final state.

• Taking event structures as states means to collect in astate all "situations" in an

event structure which have the same future: Two configurations, i.e. histories, lead

to the same state, iff the same sets of events may be added to them in order to

obtain a larger configuration, i.e. both configurations have the same "computational

possibilities". The different histories which may lead to one state are not considered.

Thus a transition system of this type has at most one final state.

Common to both approaches is that they respect different names of events, i.e. isomorphie
/

histories resp. eomputational possibilities are not identified.

Comparing both types of transition systems we show that for any prime event strueture

£ there exist AM-bisimulations (R, "1*)between T*(£) and TE*(£) with (0, £) E R, where
* E {int, step,pom}.

For an event structure £ = (E,::;,~, 1) of EAct we construct different coalgebras, i.e.

transition systems, Iint(£) = (Conj(£), aind, Tstep(£) = (Conj(£), astep) and Tpom(£) =
(Conj(£),apom) in SetF, where the functor F:= P(L x _). They consist all ofthe same

set Conj(£) in the first component but are defined over different sets of labels L. In case
of

Iint(£) we choose L := Act and define (a, X') E aint(X) iff

X ~ X', X'\X = {e} and l(e) = a.
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Figure 11: Tpom is not a functor to Tp.

Tstep(£) we choose L := rN~ct and define (M, X') E O:step(X) iff

X ~ X', Ve,1 E X'\X: e:/= I ~ ecol and

Va E Act : M(a) = I{e E X'\X Il(e) = a}l.

Tpom(£) wechoose L := P and define (p, X') E O:pom(X) iff

X ~ X' and p = [X'\X].

IThus for the above defined maps 0:. holds: (l, X') E o:.(X) {=:::> X ~ X', where

*_E {int, step, pom} and l is a label of appropriate type. Neglecting the different types of the

labels L, i.e. looking at an action a as a multiset with M(a) = 1 and for x :/= a : M(x) = 0

resp. on a multiset M as a pomset [£ = (E, :SE, 0, lE)], where Va E Act : M(a) = I{e E

E Il(e) = a}l, :SE= {(e, e) leE E}, we get the following relations between the above

introduced transition systems: VX E Conl(£) : O:int(X) ~ O:step(X) ~ O:pom(X).

In section 4.2.2 we will show that the operators T. are suitable to model some of the

above defined bisimulations on event structures as AM-bisimulation. Thus we are interested

to invoke theorem 3.6 in order to obtain from an AM-bisimulation a path-IP-bisimulation.

One condition of theorem 3.6 is that a choosen operator evolves into functor.

Let £ and :F be prime event structures, TJ: £ -+ :F a morphism in EAct. To obtain from

TJ a morphism in TAct define Tint(TJ)(X) := TJ(X) for configurations X E Conl(£). It is

easy to see that with this definition the operator Iint evolves into a functor from EAct to

TAct. Concerning the operator Tstep we take again Tstep(TJ)(X) := TJ(X) for configurations

X E Conj(£). With this definition Tstep evolves into a functor from EAct to TIN5'-ct - for a

proof see corollary 4.14. The operator Tpom is not a functor from EAct to Tp, see example
4.2. The reason is that an event structure morphism may map causal dependent events

on concurrent events. But the operator Tpom is able to distinguish between these different

concepts: As we will see in section 4.2.3 pomset bisimul~tion can be modelled using the

operator Tpom.
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/ Example 4.2

Let £ and F be the event structures from figure 11. In Tpom(£j we find the transition

on{eI, e2} while there is no transition labelled with [£] in Tpom(F). Thus in Tp exists

no morphism from Tpom(£) to Tpom(F). On the other hand TJ: £ -t F with TJ(ed = !I and
TJ(e2) ~ h is a morphims between £ and F in EAct. Therefore the operator Tpom cannot
evolve into a functor.

In order to introduce the operators TEint, TEstep and TEpom we define transition re-

lations ~. between the objects of EAct, where * E {int, step,pom} and l is a label of

appropriate type. Let £ = (E,:SE,~E,lE) and F = (F,:SF,~F,lF) be prime event struc-
tures.

£ ~int F iff:Je E E: -!- (e) = {e}, l(e) = a, F = £\{e}.

£ ~step F iff there exists a configuration X E Conf(£) such that

• Ve, fEX: e co f,

• M E ll\J~ctwith Va E Act: M(a) = I{e E X JlE(e) = a}1 and

• F = £\X.

£ ~pom F iff there exists a cpnfiguration X E Conf(£) such that p = [X] and F = £ \X.

The set

Reach.(£) .- {FEEActl :Jk~O,:J£O,£I,' .. ,£kEEAct:

£0 = £, £k = F, £i ~* £HI for i < k}

includes all event structures which can be derived from £ by a finite number of steps with

~., where * E {int, step, pom} and l is an element of Act, ll\J~ct resp. P.

Lemma 4.3

Let £ = (E, :SE, ~E, lE) be a prime event structure.

1. Let £' := £\X for some configuration X E Conf(£), £/1 := £'\X' for some configu-

ration X' E Conf(£'). Then X UX' is a configuration of £ and £/1 = £\(X UX').

2. For all event structures £' E Reachint(£) holds: There exists a configuration X E

Conf(£) such that £' = £ \X.

3. For all X E Conf(£) holds: £\X E Reachint(£).

4. Reachint(£) = Reachstep(£) = Reachpom(£).
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5. Let £', £" E Reachint(£). FOT all labels a, M, p holds:

(a) £' ~int £" ==>

3X',X" E Conl(£): £' = £\X', £" = £\X", X' ~int X".

(b) £' ~ step £" ==>
3X',X" E Conl(£): £' = £\X', £" = £\X", X' ~step X".

(c) £' ~pom £" ==>

3X',X" E Conl(£): £' = £\X', £" = £\X", X' ~pom X".

27

6. Let X', X" E Conl(£) with X' ~ X". Define £' := £\X', £" := £\X" and X .-

X"\X'. Then X is a configuration 01£' and £" = £'\X.

7. Let X', X" E Conl(£.) FOT all labels a, M, p holds:

(a) X' ~int X" ==> £\X' ~int £\X"

(b) X' M) step X" ==> £\X' M) step £\X"

(c) X' ~pom X" ==> £\X' ~pom £\X"

Proof:

1. Let X E Conl(£), £' := £\X = (E', 5.', ~',1'), let X' E Conl(£'). We first prove

that X U X' E Conl(£). As X and X' are finite sets so is X U X'. As X is a

configuration of £ it contains for all e E X their predecessors. Consider now the set

{e 5.E eie E E, e EX'} of all predecessors which the events from X' have in E. We

have to show that this set is contained in X UX'. Let e 5.E e for some event e E X',
where e E E. If e E E' we know e E X' because X' is leftclosed. Ife ~ E' either
e E X or e E ~c(X). In the first case we are done again. In the second case exists

some event 1 E X with e~t:f. This implies I~t:e and thus e ~ E' - contradiction. To

show that X UX' are confiictfree with respect to ~E let el, e2 E X UX'. If both events

are in X they are not in confiict as X is a configuration of £. Let el E X and e2 E X',
assurne el~Ee2. Then e2 E ~C(X) and therefore e2 ~ X' - contradiction. Finally let

el, e2 E X', assurne el~Ee2. As £' inherits its confiict relation from £ this leads to

el~'e2 - contradiction to X' E Conl(E').

Next we show ~C(X) U~t:,(X') = ~C(X UX'). As any confiict in £' is inherited from £
the inclusion "~" holds. To prove the other direction let 1E ~C(X UX'). Then there

exists some event e E X U X' such that e~Ef. If e E X we are done. If e E X' and

1E E' we get 1E ~t:'(X'). Now consider the situation 1~E' : Then either 1E X of
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j E ~dX). In the second case we are done again. In the first we get e E ~dX) and

therefore e fI. X' - contradiction. With this equation we get

E" = E' \ (X' u ~e'(X')

= (E\(X U~dX))\ (X' U ~e'(X')

= E\(X UX' U ~e(X) U ~e'(X')

E\«X U X') U ~e(X U X'))

and may conclude £" = £\(X u X').

2. Let £' E Reaehint(£). We show the existence of a configuration X E Conj(£) with

£' = £\X by induction on the length n of a shortest derivation from £ to £'.

If n = 0 take X := 0 as configuration: £ = £\X = £'. Now let £' be an event

structure in Reaehint(£) with a shortest derivation £rom £ of length n + 1. Then

there exists an event structure £" E Reaehint (£) such that £" ~int £' and £" can
be derived from £ in n steps. By the induction hypothesis there exists a configuration

X ~ E with £" = £\X. Let e be the event with £" = £'\ {e}. From part 1 of this

lemma we know that X U {e} is a configuration of £ and £' = £\ (X u {e} ).

3. Let X be a configuration of £. If X = 0 then £\X = £\0 = £ E Reaehint(£).

If X I- 0 we consider the configuration X as lposet. As X is finite there exists

a total order :St ~ (X x X) such that e :SE j => e :St j for all e, j E X. Let

el :St e2 :St ... :St en be the order on the elements of X, ai = lE(ed, 1 :S i :S n. Let

£0= £ and for 1 :S i :S n: £i:= £\{el, e2, ... , ed. For £i and £Hl, 0 :S i < n, holds:

£i+! = £i\{ei}. Therefore £ =£0 ~int £1 ~int £2 ~int ... ~int £n = £\X is a

derivation of £\X ,and £\X E Reaehint(£).

4. Obviously Reaehint(£)' ~ Reaehstep(£) ~ Reaehpom(£) : Any single action can be

viewed as multiset, any multiset is a special case of a pomset.

As a partial order on a finite set can always be linearized, it is possible to "simu-

late" any transition £' ~pom £" between event structures £' and £" of EAet by a

fi . b f . . (" al (' a2 an (' an+l (''' Th £nIte num er 0 transItIOns C ---"-+intCl ---"-+int... ~int cn ~int c... ere ore

(a) If £' ~int £" we know that £" = £'\{e} for some e E E with l~(e) = a. As

£' E Reaehint(£) there exists a configuration X' E Conj(£) such that £' = £\X'.

Let X" := X' U {e}. From the part 1 of this lemma we know that X" is a
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configuration of £ and we get: £" = (£\X')\{e} = £\(X' u {e}) = £\X" and
XI a X"---tint .

(b) and (c) Let £' !!4step £" resp. £' ~pom £". In both cases weknow from

part 2 of this lemma that there exists a configuration X E Conj(£) such that

£' = £\X. By definition of both transition relations there exists a configuration

X' E Conj(£') with £" = £'\X'. Let X" := X U X'. X" is a configuration of

£, £\X" = £". If we start with a multistep the elements of X' = X"\X are

concurrent in £, if we start with a pomset X' is a lposet.

6. Let X', X" E Conj(£) with X' ~ X". Let £':= £\X' = (E',::;EI,~E"lEI) and £":=
£\X" = (E",::;EI,~E",lEI). Let X:= X"\X'. If X = 0 obviously XE Conj(£') and
£" = £'.

Now let X i= 0. First we show that X is a configuration of £'. Let e E X. Then
e E X" and therefore for all j E X" holds -,(e~Ef). Thus e E E\(X' U ~£X') and we

get X ~ E'. X is finite as it is a subset of X". In order to prove that X is leftclosed

in £' let e E X. Consider an j E E with j ::;E e. As X" is a configuration of £ we get

j E X". If fEE' then f rf- X' and thus fEX = X"\X'. X is conflict-free because
X" iso

In order to prove £" = £I\X we first establish ~dX") = ~dX') u ~£' (X). Let f E
~£ (X"). Then we find an element e E X" with f~Ee. As X" = X' UX we get: e E X'
or e E X. The first case implies f E ~dX'). In the second case we know that f rf- X"
and thus f rf- X'. This leads to f E E' and j~E,e - which means: f E ~£I(X) - or to

f rf- E' which implies f E ~dX'). To prove the reverse direction let first f E ~dX').
Then obviously f E ~dX"). Now consider f E ~£,(X). Then f E ~dX) and thus

f E ~dX").

With this equation we get:

Eil E \(X" u ~dX"))
E \(X" u ~£(X') U ~£,(X»)
(((E \X') \ ~dX')) \X) \ ~£,(X)
E'\(X u ~~(X»).

As the causality relation, conflict relation and label function are inherited from £
these equations on sets of events lead to £" = £'\X.

7. Let finally X', X" E Conf(£). If

(a) x, a X"---tint ,
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(b) X' ~step X" or

(c) X' ~pom X"

we get X' ~ X" and we may conclude with part 6 of this lemma: X := X"\X'

is a configuration of £' := £\X' and £" := £\X" = £'\X. In the first case the

configuration X consists of one element labelIed with a, in the second X corresponds

to a multiset M and in the third to an object p of P. •

With lemma 4.1 we can define the operators TE. on an event structure £ as fol-

lows: TEint(£):= (Reachint(£), aint), TEstep(£) := (Reachint(£), astep) and TEpom(£) :=

(Reachint(£), apom), where

• (a, £") E aint (£') iff £' ~int £",

• (M, £") E astep(£') iff £' ~step £" and

• (p, £") E apom(£') iff £' ~pom £".

As for the operators T. one obtains: aint(X) ~ astep(X) ~ apom(X).

As example 4.4 shows the operators TEint, T Estep and T Epom fail to evolve into functors

from EAct to TL, where L is choosen from {Act,lN~ct,P}. The reason is that an event

stucture morphism TJ : £ ~ F cannot "control" all computing capabilities of F : The

execution of events el, e2 in £ may lead to the same computational capabities in £, while
the execution of the event TJ(el) in F leads to a "future" different from the one after the

execution of TJ(e2) in F. An event f tJ. TJ(E) may be in conflict with TJ(ed but not with

TJ(e2). This "splits" one state in TE.(£) into two states in TE.(F).

Example 4.4

Consider the event structures £ and F in the initial nodes of the transition systems T Eint(£)

and TEint(F) of figure 12. Obviously the map TJ : {eI, e2} ~ {h, 12,h} with TJ(ed =

hand TJ(e2) = 12 is an event strueture morphism. But there is no morphism in TAct

between TEint(£) and TEint (F). As --+int~--+step~--+pom there are no morphisms in

TtNAct resp. Tp between TE.(£) and TE.(F) for * E {step,pom}.
o

Example 4.5

The transition systems Tint(£) and TEint(£) of an event structure £ are in general not

isomorphie. Consider the event strueture of figure 13. Figure 14 shows both transition

systems. While Tint(£) has two final states TEirit(£) has just one final state. As the

operators Tstep, Tpom, TEstep and TEpom lead to the same final states as Tint resp. TEint
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Figure 12: No morphism between TEint(E) and TEint(F).
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we may eonclude that in general transition systems of type T and of type TE are not
isomorphie.

Theorem 4.6

Let E be an event structure. Then for the transition systems obtained by the operators of

type T resp. TE holds: There exists an AM-bisimulation (R, "() with (0,E)E R between

T*(E) and TE*(E), where * E {int, step,pom}.

Proof: Let E be a prime event structure, (A,a) := T*(E) and (B,ß) := TE*(E), where * E

{int, step, pom}. Let R := {(X, E') I X E Conf(E), E' = E\X}, let for all (Y, Eil), (X, E') E

R

(l, Y, Eil) E "((X, E') : <;::::::::} (l, Y) E a(X), (l, Eil) E ß(E'),

where l is a label of appropriate type, i.e. an action, a multiset or a pomset. We claim

that (R, "() is an AM-bisimulation between (A, a) and (B, ß). As the transition relations of

(A, a) and (B, ß) are defined in a different way, this time we have to prove

Categorical characterization of bisimulation
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• ~.
e~ • b• e3

£:

•
e~

Figure 13: The event structure £.

Let (l, Y) E (a 0 7I"d(X, £'). Then (l, Y) E a(X) and £' = £\x. Define £" := £\Y. Part

7 of lemma 4.1 provides (1,£") E ß(£'). This results in (l, Y, £") E ')'(X, £') and we may

conclude (l, Y) E (F7I"10 ')')(X, £').
Let (1, Y) E (F7I"10 ')')(X, £'). Then there exists some event structure £" such that

(l, Y, £") E ')'(X, £'). By definition of')' we may conclude (l,y) E a(X) and get: (l, Y) E

(a 0 7I"d(X, £').
Let (l, £") E (ß o 71"2)(X, £'). Then we get (l, £") E ß(£'), i.e. there exists some con-

figuration Y E Gonf(£') such that £" = £'\Y. With lemma 4.1, part 1, we know that

X U Y E Gonf(£) and £" = £\(X U Y). Thus we obain (X U Y, £") E R. By definition of

the operators T* we get (l, X U Y) E a(X) and therefore (l, X U Y'£") E ')'(X, £'). Thus we

have: (l, £") E (F7I"20 ')')(X, £').
Let (l, £") E (F7I"2 0 ')')(X, £'). Then there exists some configuration Y E Gonf(£) such

that (l, Y,£") E ')'(X,£'). This implies (l,£") E ß(£') and we get: (l,£") E (ß 0 7I"2)(X,£').
We finally remark that by definition holds: (0, £) E R. •

Remark 4.7

The prajections 71"1: R ~ A and 71"2: R ~ B in the proof of theorem 4.3 are both surjective.

71"1is even injective: If 71"1(X, £\X) = 7I"2(Y,£\Y) then X = Y, therefore £\X = £\Y and

thus (X, £\X) = (Y, £\Y).

Example 4.8

As the event structure from figure 13 shows there is in general no strang AM-bisimulation

with (0, £) E R between T*(£) and TE*(£), see figure 14: Any AM-bisimulation between

Tint(£) and T Eint(£) with (0, £) E R has to contain ({eI, e3}, 0}. In T Eint(£) there are two
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Figure 14: Tint(£) and TEint(£) for the event structure from figure 13.

ares leading to the state 0 : one labelledwith "a", the other labelled with "b". But the state

{eI, e3} 0/ Tint (£) is reaehable only with a transition labelled "b".

In order to model some kind of bisimulation on event structures as AM-bisimulation

theorem 4.6 together with the transitivity result of lemma 2.4 says that it is enough to study

just one type of transition systems related to prime event structures: Let £ and F be event

structures, let (R, ')') be an AM-bisimulation between T*(£) and T*(F) with (0,0) E R,

where * E {int, step, pom}. By theorem 4.6 we know that there exists AM-bisimulations

(SI, 0"1) and (S2,0"2) between T*(£) and TE*(£) with (0,£) E SI resp. between T*(F) and

T E*(F) with (0, F) E S2. Applying lemma 2.4 on these three AM-bisimulations we get an

AM-bisimulation (R/y) between TE*(£) an:d TE*(F) with (£,F) E k The same holds

for the other direction. But as example 4.8 shows it is necessary to study both types of

operators, if we deal with strong AM-bisimulation.

4.2.2 Modelling interleaving, bf, step and pomset bisimulation as AM-bisimu-
lation

With lemma 2.3 we can translate the definition of interleaving, step, pomset and bf-bisi-

mu-lation directly into AM-bisimulations:
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Theorem 4.9
For event strucures £, F holds:

1. £ and F are interleaving bisimilar ijj there exists an AM-bisimulation (R,,) between

Tint(£) and Tint(F) with (0,0) ER.

2. £ and F are bf-bisimilar ijj there exists astrang AM-bisimulation (R,,) between

Tint(£) and Tint(F) with (0,0) E R.

3. £ and F are step bisimilar ijj there exists an AM-bisimulation (R,,) between Tstep(£)

and Tstep(F) with (0,0) E R.

4. £ and F are pomset bisimilar ijj there exists an AM-bisimulation (R,,) between

Tpom(£) and Tpom(F) with (0,0) E R.

Proof: We prove the theorem only for interleaving and bf-bisimulation.

Let £ and F be interleaving bisimilar. Then there exists an interleaving bisimulation

R ~ Conf(£) x Conf(F). Let Iint(£) = (Conf(£), a) and Iint(F) = (Conf(F), ß) be the

related coalgebras. Let for all (X, Y), (X', y') E R

(a,X', y') E ,(X, Y):{:=:} (a,X') E a(X), (a, y') E ß(Y).

Let (a, X') E (F7rl o,)(X, Y). Then there exists y' such that (a, X', y') E ,(X, Y). By the

definition of, this implies (a, X') E a(X) and hence (a, X') E (a 0 7rl)(X, Y). To prove

the inclusion the other way round let (a, X') E (a 0 7rl)(X, Y). This implies (a, X') E a(X)

and as R is an interleaving bisimulation there exists some Y' such that (a, y') E ß(Y) and

(X', Y')E R. Therefore we get (a, X', y') E ,(X, Y) and finally (a, X') E (F7rl 0 ,)(X, Y).

Lemma 2.3 proves the other implication.

Now let R be an bf-bisimulation between £ and F. Then R is especially an interleaving

bisimulation and from the prove above we know that there exists a map , such that (R,,)

is an AM-bisimulation. We claim that (R,,) is strong. Due to lemma 2.1 we have only to

prove that (a- 07rt} ~ (F7rl 0,-).
Let (X', y') E R, let (a,X) E (a- 0 7rt}(X', Y'). Then (a,X) E a-(X') and thus

(a, X') E a(X). As R is a bf-bisimulation this implies that there exists Y E Conf(F) with

(a, y') E ß(Y) and (X, Y) E R. By definition of, we get (a, X',y') E ,(X, Y), therefore

(a, X, Y) E .,,-(X', y') and finally (a, X) E (F7rl 0 ,-)(X', Y').

Let (R,,) be a strong AM-bisimulation between £ and F with (0,0) E R. Then we

know that R is an interleaving bisimulation between £ and F. In order to prove that R is

a bf-bisimulation consider a transition (a,X') E a(X) in Iint(£), where (X', y') ER. We
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Figure 15: Two interleaving bisimilar event structures.

Figure 16: The transition systems Tint(£) and Tint(F).

get (a,X) E o:-(X') and (a,X) E (0:- 0 7l"I)(X', Y'). As (R,,) is strang we may conclude:

(a, X) E (F7l"l 0 ,-)(X', Y'). Thus there exists some configuration Y E Conf(F) such that

(a,X, Y) E ,-(X', Y'). This implies (X, Y) E R. Using again the property strong of (R,,)
we get (a, Y) E ß-(Y') and finally (a, y') E ß(Y). •

Remark 4.10

It is important to note that bf-bisimulation eannot be modelled as AM-bisimulation using

the operator TEint :

Consider the event struetures £ and F of figure 15. Figure 16 shows the transition sys-

tems whieh one obtains by applying the operator Tint. They are isomorphie to the transition

systems we diseussed in example 2.6 to show that strong and non strong AM-bisimulation
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Figure 17: T Eint(£) and T Eint(F) for the event structures from figure 15.
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Figure 18: Pomset-bisimilar event structures.

are different eoneepts. Therefore £ and F are interleaving bisimilar but not bf-bisimilar.

Now etmsider the transition systems TEint(£)' and TEint(:F). As figure 17 shows they are

isomorphie and thus there exists a strong AM-bisimulation between them.

Two event structures, which are interleaving, step or pomset bisimilar, are in general
not strong AM-bisimilar:

Example 4.11

Take as event structeres £ and F from figure 18. The set

R:= { (0,0), ({eI}, Ud), ({ed, U4}), ({e2}, {h}),
({eI, e3}, {fI, h}), ({eI, e2}, {fI, h}), ({eI, e3}, {h, f4}), ({eI, e2}, {h, fd)}

is a pomset bisimulation between £ and Fand therefore equally a step and an interleaving
bisimulation (this bisimulation-example is due to (Vog93j).

Let (A,a) = T*(£), (B,ß) = T*(F), where * E {int, step, pom}. Let (R,"() be some

AM-bisimulation between (A, a) and (B, ß). As we find the transition 0 ~ U~} in (B, ß),

we get ({ed,UI}) ER. In (A,a) wefind the transition {eI} ~ {el,e2}. Therefore R has
to eontain ({el,e2},{fI,h}).

Assume that (R,"() is strang. As in (A,a) we find the transition {e2} ~ {el,e2} we

get by (a- 07l"1)({eI, e2}, {fI, h}) = (F7l"1 0"(-)( {eI, ed, {fI, h}) a transition (a, {e2}, Y) E

"(-({el,e2},{fI,h}) and thus a transition Y ~ {fI,h} in (B,ß). But there is no sueh

eonfiguration Y E B. Therefore no AM-bisimulation between £ and F ean be strang.
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4.2.3 Modelling interleaving, step and pomset bisimulation in the framework

of [JNW94]

[JNW94] studied his tory preserving and strong history preserving bisimulation on event

structures to show the suitability of their framework. We show in this section that in-

terleaving bisimulation and step bisimulation can also be modelIed by choosing suitable

subcategories !P. Tc>obtain the result of step bisimulation we use theorem 4.9 and theorem

3.6. We also discuss pomset bisimulation.

Theorem 4.12

Two event structures EI and E2 are Lin-bisimilar iff they are interleaving bisimilar.

Proof: Let EI = (EI, ~I, ~1, lt) and E2 = (E2, ~2, ~2, 12) be Lin-bisimilar, i.e. there exists

an event structure E = (E,~,~, I) and Lin-open maps Pi : E -+ Ei, i = 1,2. We claim that

R:= ((P1(X),P2(X)) I X E Conf(E)}

is an interleaving bisimulation between EI and E2. As 0 E Conf(E) we have (0,0) E R.
Consider the element (P1(X),P2(X)) of R for some configuration X E Conf(E). Let

P1(X) ~ y' be a transition in Tint(Et}.
Make from the configuration P1(X) E Conf(E1) an event structure P = (P, ~p, ~p, Ip)

as folIows: P:= X, ~p is a linearization of ~1 n (X x X), ~p := 0 and Ip := 1tlx. Let e
be the event in which P1(X) and Y' differ, i.e. {e} = Y'\p1(X). Let Q := (Q,~Q, 0, lQ),
where Q := Pu {e}, let Ve E Q: e ~Q e and Ve, f E P: e ~Q f : ~ e ~p f, ~Q := 0
and Ve E P : lQ(e) := Ip(e) and lQ(e) := a. Obviously P and Q are objects of Lin.

We define morphism p: P -+ E, m : P -+ Q and q : Q -+ EI by:

• Ve E P: p(e) := e,

• Ve E P: m(e):= e and

• Ve E P: q(e):= p1(e), q(e) = e.
Obviollsly we have: P10P = qom. As PI is Lin-open, there exists a morphim r : Q -+ E such

that rom = P and PI or = q. Therefore Y := r(Q) = XU{r(e)} E Conf(E), P1(Y) = Y' and

X ~ Y is a transition of Tint(E). Therefore P2(X) ~ P2(Y) is a transition of Tint(E2).
Furtheron by definition of R we have (p1(Y),P2(Y)) = (Y',P2(Y)) ER.

Now let EI and E2 be interleaving bisimilar. In theorem 4.9 we constructed an AM-

bisimulation (R, ')') between Tint(E1) and Tint(E2) with (0,0) ER. We claim that unfolding

this coalgebra (R,')') to a tree Sand constructing from S an event structure E with mor-

phism Pi : E -+ Ei, i = 1,2, makes a EI and E2 Lin-bisimilar.
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First unfold (R, "() interpreted as transition system with initial state (0,0) to a tree

8 = (81, il, Tranl) : Take as states all nonempty, finite sequences of elements of R, i.e. the
one element sequence ((0,0)) is the initial state il of 8, a sequence

is an element of 81 iff (Xl, Yd ~ (X2, Y2) a2
) •.• ~ (Xn, Yn) is a derivation in (R,"()

and (Xl, Yd = (0,0). There is a transition

in Tran1 between two states of 8 iff (Xn, Yn) ~ (Xn+1, Yn+d in (R,"().

Now construct from 8 = (81, i1, Trand an event structure E = (E,~,~, 1). Define

• E:= 81\{iI},

• e ~ f : -{:=:} (e, f) E Trani, where Trani denotes the reflexive transitive closure of

{(e, f) I (e, a, f) E Tranl for some label a},

• e~f : -{:=:} -,(e ~ f V f ~ e) and

Define maps PI : E -+ EI, P2 : E -+ E2 by

We claim that PI and P2 are Lin-open morphisms. '
I

By the construction of (R,"() we get: (X, Y) ~ (X', Y') implies X ~ X' and

Y ~ y'. Therefore PI and P2 preserve labels. As all events of E are in conflict iff they are

not related by ~E a configuration C with n ~ 1 elements of E is a set

C = { ((0,0), (X2, Y2)),

((0,0), (X2, Y2), (X3, Y3)),

Applying PIon such a configuration C E Conf(E) results in:

n+1

Pl(C) = U Xi\Xi-1 = Xn+l E Conf(Ed.
i=2
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Let e,e/ be events of a configuration C E Conj(£) with pl(e) = P2(e/). Then there exist

configurations Xl ~ X2 and X3 ~ X4 of £1 with pl(e) = pl(e') = e, where X2\X1 =

X4\X3 = {e}. Let w.o.l.g. e 5:.E e'. Assume e :j:. e'. Then X2 ~ X3 and pl(e) = pl(e') E

X3 ~ X4 - contradiction to pl(e') E X4\X3. Thus e = e' and we may conclude that PI and
P2 are morphisms.

Finally we prove that PI is Lin-open. Let P = (P, 5:.p,0,lp) and Q = (Q, 5:.Q,0,lQ) be
objects of Lin, let P : P -+ £, m : P -+ Q, q : Q -+ £1 be morphism with q 0 m = PI 0 p.
In case of P = Q = ° there exists obviously a morphism r : Q -+ £ with P = rom and

q = PI 0 r. Thus we assume P,Q :j:. O. We prove the existence of the morphism r : Q -+ £
by induction on the difference n := IQI-IPI.

If n = 0 the morphism m is bijective: PE Conf(P), m restricted to configurations is an

injection, and as IPI = IQI the morphism m is also surjective. As the map m-1 preserves

labels, maps configurations of Q on configurations of P and is injective on Q it is especially

a morphism in EAct. Thus we may define r :=po m-1 and get: rom = po m-1 0 m = P
and PI 0 r = PI 0 P 0 m -1= q, as q 0 m = PI 0 p.

Now let IQI-IPI = n+ 1. Let e be the largest event of Q. Let Q' := (Q',5:.',0,l')
with Q' := Q\{e}, 5:.':=5:.Q n (Q' x Q'), l' := lQIQ" Let m' : P -+ Q' the morphism with

m'(e) := m(e) for all e E P and q' : Q' -+ £1 be the morphims with q'(e) := q(e) for all

e E Q'. Then obviously q' 0 m' = PI 0 P and thus by induction .hypothesis there exists a

morphism r' : Q' -+ £ with P = r' 0 m' and q' = PI 0 r'.
Consider the image of Q' under the morphism r' : This is a configuration C of £ and

has therefore the form

c = { ((O, O), (X2, Y2)),

((O, O), (X2, Y2), (X3, Y3)),

where k = IQ'I, Pl(C) = Xk+1 and q'(Q) = pl(r'(Q)) = Xk+l' The transition Q' ~ Q

in Tint( Q) implies that there is a transition q(Q') = Xk+1 ~ q(Q) in Tint(Er). As R is

an interleaving bisimulation and (Xk+1, Yk+r) E R there exists a configuration y' E C(£2)
such that (q( Q), y') E Rand Yk+1 ~ Y' is a transition in Tint(£2)' Thus by definit on of

, we get the transition (Xk+1, Yk+l) ~ (q(Q), y') in (R,,) and therefore an event

in the event structure £. Define \:je E Q/ : r(e) := r'(e) and r(e) := f. This map r is the

desired morphism. •
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Corollary 4.13

Let £11 £2 be event structures in EAct. The lollowing are equivalent:

1. £1 and £2 are interleaving-bisimilar.

41

2. There exists an AM-bisimulation (R, "() between Tint(£d and Tint(£2) with (0,0) ER.

3. There exists an AM-bisimulation (R,"() between Tpath-Lin(£d and Tpath-Lin(£2)
with (LI, L2) ER.

4. There exists a strong AM-bisimulation (R,"() with (Ll,L2) ER between Tpath-Lin(£l)

and Tpath-Lin(£2).

5. £1 and £2 are path-Lin-bisimilar.

6. £1 and £2 are strang path-Lin-bisimilar.

7. £1 and £2 are Lin-bisimilar.

Proof: Theorem 4.9 proves the equivalence of 1 and 2, applying theorem 3.6 results in the

equivalence of 2 and 5. In theorem 4.12 we find the equivalence of 1 and 7, with theorem

3.1 we may conclude that 7 implies 6. Thus 5 and 6 are equivalent. Theorem 3.3 gives us

the equivalences between 3 and 5 resp. 4 and 6. •

One should note that the strong AM-bisimulation bf corollary 4.13 is between transition

systems of type Tpath-Lin and not of type Tint.

Looking on step bisimulation we get the following characterization in terms of path-lP-
bisimulation:

Corollary 4.14

Two event structures 01EAct are step bisimilar iff they are path-Step-bisimilar.

Proof: We prove the equivalence using the characterization of step bisimulation in terms

of AM-bisimulation in theorem 4.9. On this AM-bisimulation we apply theorem 3.6 in

order to translate it into a path-Step-bisimulation. Therefore we have only to show that

all six conditions are fullfilled. We choose SetF with F = P(tN~ct X _), T Nitet as the above

described "link" -category, Il1=EAct and lP=Step.

Condition 1: Let mt £ := Tstep(£). Let I :£ ---+ F be a morphism between event struc-
Mtures. Define mt I : mt £ ---+ mt F, X H- I(X), where X E Conl(£). Let X ~ X' be

a transition in Tstep(£). As I is an event structure morphism, I(X), I(X') E Conl(F)

and I is injective on X'. Therefore we find a transition I(X) ~ I(X') in Tstep(F).

As furtheron (mt J) (0) = 0 we may conclude that mt I is a morphims in T NAct.
o
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Obviously we have mtidc = idmtc, where £ is an event structure from EAct, and

mt(J og) = (mt!) 0 (mtg) for all morphism f: £2 -+ £3, g: £1 -+ E2 ofEAct.

Condition 2: Take as initial object I the empty event structure. As EAct is small so is

Step.

Condition 3: Let S = (S,::;,~, L) = MI; M2; ... ;Mn, n 2: 0, be a step, where Mi =

(Mi, ::;M;,0, Ld. S is the final state of Tstep(S). Let X be a configuration of S. Then

holds: S\X = R u Ui=k+l Mi, R ~ Mk, for some k E {I, 2, ... , n}. Let A(a) := I{e E

R IL(e) = a}l, Ai(a) := I{e E Mi+lIL(e) = a}l, i = k, k + 1, ... , n - 1, a E Act, be

multisets over Act. Then X Ä Uf=1 Mi Ak) u:~lMi Ak) ••• An) S is a derivation

from X to S in Tstep(S).

C dOtO 4 L t Al A2 An-l b d' . . ..on 1 lOn : e 81 --=:.t 82 --=:.t ... -----t 8n e a envatIOn In some transItIOn system

in T. Let S = (S,::;,~, l) = MI; M2; ... ;Mn-I, n 2: 1, be a step, where Mi =
(Mi, ::;M;, 0, Li), ::;M;= {(m, m) Im E Md, Mi pairwise disjoint, Va E Act: Ai(a) =
I{e E Mi ILi(e) = a}l. In Tstep(S) we find the derivation 0Ä MI A2) MI UM2 A3)
... ~ S, where 0 is the initial and S the final state of mt S.

Let £ = (E,::;E,~E,LE) be an event structure from EAct with a derivation Xl
oÄ X2 A2) X3 A3) ... ~ Xn in mt £. For the above introduced Mi and Xi+! \Xi
holds: Va E Act : Ai(a) = I{e E Mi ILi(e) = a}1 = I{e E Xi+! \Xi IIE(e) = a}l.
Thus there exist bijective mappings Pi : Mi -+ Xi+! \Xi, i = 1,2, ... , n - 1, with

LE(pi(e)) = Li(e) for all e E Mi. We claim that P := u7:l Pi is a morphism between S
and £. Obviously P fullfills the label condition and is injective on every configuration

Y of S. As Xn is conflictfree p(Y) ~ Xn is conflictfree for all Y E Conf(S). Thus

it remains to prove that the image of a configuration Y E Conf(S) is leftclosed

in E. Let e E p(Y) for some configuration Y E Conf(S). Let e' ::;E e. As Xn is

leftclosed, we have e' E Xn. e' ::;E e implies that for some j E {I, 2, ... ,n - I} we

have e' E Xj, e tj. Xj' Thus for the elements f, f' E S with p(J) = e, p(J') = e' holds:
f' ::;5 f. As Y is a configuration we get f' E Y and therefore p(J') = e' E p(Y).
Obviously holds: VI::; i ::;n: (mtp)(Uj<i Md = Xi+!'

Condition 5: mt I is the transition system with 0 as its only state and no transition.

Condition 6: Let SI and S2 be steps, let £ be an event structure, let m : SI -+ S2, p :
S £ d S £ . 0 Al A2 X A3 Xn-l X1 -+ , an q: 2 -+ be morphlsms. Let = Xo --=:.t Xl --=:.t 2 --=:.t ... -----t n
be a derivation in SI, where Xn is the final state of SI. Let '10 ::; i ::;n: (mt q 0
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mt m)(Xd = (mtp)(Xd. This implies especially (mt qomtm)(Xn) = (mtp)(Xn) and

therefore for all e E Xn we get: (qom)(e) = p(e). Thus qom = p. •

Example 4.15

While for the path eategory Lin the strong and the non strong version of path-fP -bisimulation

eoincide this does not hold for path-Step-bisimulation and strong path-Step-bisimulation:

Consider the event structures e and :F fromfigure 19. The dotted lines between the circles

around the events mean that all events inside one eircle are in conftict with all event inside

the other eircle. For example the events e1, e2 and e3 are in conftiet with all events ei,
where i 2: 4.

Figure 20 shows the transition systems Tstep(E) and Tstep(:F). A label "a" - whieh we

find for example in the transition system Tstep(E) on the are from ° to {eI} - stands for the

multiset M with M(a) = 1 and M(x) = 0 for all xE Act with x i= a. Similarly a label "ab"

:...whieh we find for example in the transition system Tstep(E) on the are from ° to {eI, e2}
- stands for the multiset M with M(a) = 1, M(b) = 1 and M(x) = 0 for all xE Act with

x tf. {a, b}. Figure 21 shows an AM-bisimulation (R, 'Y) between Tstep(E) and Tstep(:F) with

(O, O) E R. Thus E and:F are step-bisimilar and by theorem 4.9 and eorollary 4.14 we know
that they are path-Step-bisimilar.

Assume that there exists a strong path-Step bisimulation R between E and:F. Consider

an event strueture 0 := ({gI, g2}, 0, O, 10) with two eoneurrent events gl and g2, where

10(gl) := a, 10(g2) := b. Obviously 0 is a step. The maps 01 : 0 ~ E with 01(gt} :=

e1,02(g2) := e2 and 02 : 0 ~ :F with 01(gl) := fI,02(g2) := h are morphisms in EAct.

Thus (01,02) ER for any path-Step-bisimulation R. Let P:= ({g'}, 0, O, lp(g') := a) be an

event strueture with just one event labelled with a. Define a morphism m1 : P ~ 0 with

m1(g') := gl. As R is strong we get (01 om1,02 om2) E R. Let Q:= ({g~,gn, 'S.Q,0,lQ) be

an event strueture with two events g~ and g~, where lQ(gD := a, lQ(g~) := e and g~ 'S.Q g~.

Let finally m2 : P ~ Q the morphism whieh maps the event g' on g~. For the morphism

q1 : Q ~ E with q1(gD := e1 and q1(g~) := e3 holds: q1 0 m2 = (010 mt}, but there exists

no morphism q2 : Q ~ :F with q2(gD = fI - eontradietion to the closure property (i) of
path-P -bisimulation.

Concerning pomset bisimulation it is not possible to apply theorem 3.6 on the equivalent

characterization as AM-bisimulation from theorem 4.9: The operator Tpom(E) fails to evolve

to a functor as one can see in example 4.2. This coineides with a result of [JNW94J, which we

will present in theorem 4.16: Path-Pom-bisimulation is equivalent with history preserving
bisimulation.
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The event structure E :

• • • •
e1 j eb e\j~ e¥ j2

• • • •
e~ ea e~ ei j5

•
e~

The event structure F :

• • • •
ff J~ j !fj~ Nj

• • • •
/3 /5 /g Jg j

•
f9

Figure 19: Step-bisimilar event structures E and F.

Categorical characterization of bisimulation

r-



4.2 Modelling with the abstract concepts

Figure 20: The transition systems Tstep(£) and Tstep(:F).
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(R,-y) :

Section 4: Il1ustrating the concepts in terms of event structures

b c
({eg}, Ud) - ({eg, elO}, {h, h}) - ({eg, elO, ell}, {h, 12,h})

Figure 21: An AM-bisimimulation (R, -y) between Tstep(£) and Tstep(F).
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4.2.4 Modelling (strong) history preserving bisimulation

47

[JNW94] give the following characterizations of (strong) history preserving bisimulation on

event structures with consistency relation:

Theorem 4.16

Two event structeres £1 and £2 are

• strong history preserving bisimular ijj they are Pom-bisimilar.

• (strong) history preserving bisimilar ijj they are (strong) path-Pom-bisimilar.

Applying theorem 3.3 on the second result we get a characterization of (strong) history

preserving bisimulation in terms of AM-bisimulation on event structures with consistency

relation as well as on prime event structures.

Corollary 4.17

Event structures £1 and £2 are (strong) history preserving bisimilar ijj there exists a (strong)

AM-bisimulation (R,"() between Tpath-Pom(£d andTpath_Pom(£2) with (L1,L2) ER.

In corollary 4.17 we used transition systems ofkind Tpath-IP(£)' Choosing the operator
Tpom leads to an alternative characterization:

Theorem 4.18

Let £ = (E, :SE, ~E, lE), F = (F, :SF, ~F, IF) be event structures, Tpom(£) = (Conf(£), 0:)
and Tpom(F) = (Conf(F), ß) be their related coalgebras. Let

M := {J E mor(X, Y) I X E Conf(£), Y E Conf(F),

X = (X,:SE n (X x X),lEIX)'

Y = (Y,:SF n (Y x Y), LEW)}'

Let P(M) be the powerset of M.

1. £ and F are history preserving bisimular ijj there exists an AM-bisimulation (R, "()

between Tpom(£) and Tpom(F) with (0,0) E R, such that there exists a mapping Isom :
R --t P(M) with

(0) 1som(X, Y) i- 0, all fE 1som(X, Y) are isomorphisms,

(i) if (p, X', y') E "((X, Y), (p, X') E o:(X) and f E 1som (X, Y) then there exists

Y" E Conf(F), l' E 1som (X', Y") with f'x = f, (p, X', Y") E "((X, Y) and

(ii) if (p, X', y') E "((X, Y), (p, Y') E ß(Y) and f E 1som (X, Y) the~ there exists

X" E Conf(£), f' E Isom(X", y') with f(x = f, (p,X", Y') E "((X, Y).

Categorical characterization of bisimulation



48 Section 4: Il1ustrating the concepts in terms of event structures

2. The event structures £ and F are strong history preserving bisimular ijj there exists

a strong AM-bisimulation (R, ')') between Tpom(£) and Tpom(F) with (0,0) ERsuch

that there exists a mapping Isom : R -+ P(M) which satisfies (0), (i) and (ii) and

for which furtheron holds:

(iii) if (p,X, Y) E ')'-(X', y'), (p,X) E a-(X') and f' E Isom(X', y') then there

exists Y" E Conl(F), I E Isom (X, Y") with l'x = I, (p, X, Y") E ')'- (X', y')
and

(iv) if(p,X,Y) E ')'-(X',Y'), (p,Y) E ß-(Y') andf' E Isom(X',Y') then there

exists X" E Conf(£), fE Isom (X", Y) with l'x = I, (p, X", Y) E ')'-(X', Y').

Proof: Let £, F be history preserving bisimular. Then there exists a history preserving

bisimulation R' which is a set of tripies (X, Y,J) where X E Conf(£), Y E Conf(F) and

f :X -+ Y is an isomorphism in Porno Let

• R:= {(X, Y) E Conf(£) x Conl(F) I (X, Y,J) ER'} and

• Isom (X, Y) := {J I (X, Y, J) ER'}.

Let for all (X, Y), (X', y') ER'

(p, X', y') E ')'(X, Y) :~ (p, X') E a(X), (p, y') E ß(Y),

3f E Isom(X, Y), f' E Isom(X', Y'): I(x = f.

The definitions of Isom and ')' imply (0,0) E Rand (0). Thus it remains to prove that

(.R, ')') is indeed an AM-bisimulation and that Isom fullfills (i) and (ii).

Let (p, X') E (a 0 JrI)(X, Y). This implies (p, X') E a(X). By definition of R there

exists an I :EI -+ Ez such that (X, Y, J) ER'. As R' is a history preserving bisimulation

we get (p,Y') E ß(Y), (X',Y',/') ER' and I(x = I for some Y' E Conf(Ez) and some

f' : EI -+ Ez. Thus (p, X', y') E ')'(X, Y) and hence (p, X') E (FJrI 0 ')')(X, Y).

Let (p,X') E (FJrI o')')(X,Y). Then for some Y' E Conf(F) we have (p,X',Y') E

')'(X, Y). This implies especially (p, X') E a(X) and therefore we get (p, X') E (a 0

Jrd(X, Y).

To prove (i) let (p, X', y') E ')'(X, Y), (p, X') E a(X) and f E Isom (X, Y). By definition

of Rand Isom this implies (X, Y, J) E R'. As R' is a history preserving bisimulation

there exists (p, Y") E ß(Y) such that (X', Y", I') E R' with I(x = f. Therefore we have

f' E Isom (X', Y") and hence (p, X', Y") E ')'(X, Y).

Now let (R, ')') be an AM-bisimulation with (0,0) E R between (Conl(£), a) and

(Conl(F), ß) which fullfills (o),(i) and (ii). Let

R':= {(X, Y,J) I (X, Y) ER, I E Isom(X, Y)}.
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Let (X, Y, f) ER', let (p, X') E a(X). Then (X, Y) ER, (p, X') E (ao7l"d(X, Y) and there-

fore (p, X') E (F7l"l 0"Y)(X, Y). Thus there exists some Y' E Conl(E2) such that (p, X', y') E

"Y(Xj Y). By condition (i) we find some Y" E Conl(F) and some /' E Isom (X', y") such

that I(x = 1 and (p, X', y") E "Y(X, Y). Thus we have (X', y", I') ER'. As (R, "Y)is a

bisimulation we get finally (p, y") E ß(Y).

Now let £, F be strang history preserving bisimular. Then there exists a strong history

preserving bisimulation R'. Choose the coalgebra (R, "Y)and the mapping Isom as above.

In order to show that (R, "Y)is strong let (p, X) E (a- 07l"d(X', Y'). Then we get (p, X) E

a-(X') and from the definition of R follows: There exists I' such that (X', y', /') ER'.
As R' is a strong history preserving bisimulation there exists (X, Y, f) E R' such that

Y ~ Y' and 1 = I(x. As X and Y are isomorphic, X' and y' are isomorphic and for the

isomorphisms holds 1 = I(x we may conclude that p = [X'\XJ = [Y'\YJ and therefore

(p, Y) E ß- (Y'). By definition of"Ywe get (p, X, Y) E "Y-(X', y') which results in (p, X) E
(F7l"l ° "Y-)(X', Y').

To prove (iii) let (p, X, Y) E "Y-(X', y'), (p, X) E a-(X') and /' E Isom (X', Y').
By definition of Isom this implies (X', y', I') ER'. As R' is astrang history preserving

bisimulation there exist Y" E Conl(F) and an isomorphism 1:X -+ Y" such that (p, y") E

ß-(Y'), (X, y", f) E R' and 1 = I(x. Thus we get (X, y") E R, f E Isom(X, y") and
(p, X, y") E "Y-(X', Y').

Let finally (R, "Y)be astrang AM-bisimulation together with a mapping Isom such that

the conditions (0) - (iv) are fullfilled. We know that conditions (0), (i) and (ii) ensure that

the above constructed set R' is a history preserving bisimulation. We claim that R' is strang.

Let (X', y', /') ER', let X ~ X' for some configuration XE Conl(£), i.e. (p, X) E a-(X')
for p = [X'\XJ. By construction of R' we get (X', Y') ER, I' E Isom(X', y') and therefore

(p,X) E (a- ° 7l"l)(X', Y'). As (R,"Y) is strang this implies (p,X) E (F7l"l ° "Y-)(X', Y').
Thus there exists some configuration Y E Conl(F) with (p, X, Y) E "Y-(X', Y'). With

\

condition (iii) we may conclude that there exist Y" E Conl(F) and 1 E Isom (X, y") such

that 1 = I(x and (p, X, y") E "Y-(X', Y'). Using again the property strang of (R,"Y) we get
(p, y") E ß-(Y') and therefore Y" ~ Y'. •

4.3 Synopsis

Figure 22 summerizes the above results on modelling different types of bisimulation on

prime event structures with (strang) AM-bisimulation, (strang) path-IP-bisimulation and
IP-bisimulation.

Column "AM I" refers on modelling with AM-bisimulation where the transition systems
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I bisimulation ~ AM I I AM 11 I path-IP
interleaving Tint Tvath-Lin Lin Lin

step Tstep Tvath-Steo Step
pomset Tpom

history preserving Tpom + C Tvath-Porn Porn

strong Tpom + C + (s) Tpath-Porn + (s) Porn + (s) [Porn]

history preserving

Figure 22: Modelling bisimulations on event structures.

are different from Tpath-IP' Theorem 4.9 gives the first three rows: Choosing the transition

system of type Tint, Tstep resp. Tpom AM-bisimulation is equivalent to interleaving, step

resp. pomset bisimulation. As example 4.11 showed these bisimulations are not equivalent

with the respective strong variants of AM-bisimulation. Theorem 4.18 leads to the last

two rows: History preserving bisimulation is equivalent to AM-bisimulation on Tpom which

furt her fullfills certain conditions "C"; in case of strong history preserving bisimulation it is

necessary that the AM-bisimulation is furtheron strong which we denote by "(s)" in figure

22.

Column "IP" presents the results concerning IP-bisimulation: Theorem 4.12 shows that

interleaving bisimulation and Lin-bisimulation are equivalent. For the category of event

structures with consistency relation theorem 4.16 provides the equivalence between strong

history preserving bisimulation and Porn-bisimulation. As it is an open problem whether

this results holds too in the category of prime event structures we write [Porn] in figure

22. Concerning the flexibility of IP-bisimulation on event structures [JNW94] write:

It might be thought thatstrong history-preserving bisimulation, presented as

Porn-bisimilarity, is affected by restricting the category Porn to a smaller dass

of objects. However, no matter how much the objects in the path category

Porn are restricted, provided they indude all pomsets of the "stick" and

"lollipop" forms in the proof of Proposition 7, then the relation of bisimulation

that results will coincide with strong history-preserving bisimulation.

Thus one does not expect that step, pomset or history preserving bisimulat.ion can be

modelled as IP-bisimulation and only interleaving and strong history preserving bisimulation

fit in the concept of IP-bisimulation.

Column "path-IP" shows what kind of bisimulation on event structures we modelIed

by path-IP-bisimulation: Corollary 4.13 contains the equivalence of interleaving bisimula-
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tion, path-Lin-bisimulation and strong path-Lin-bisimulation. Corollary 4.14 provides the

equivalence of step-bisimulation and path-Step-bisimulation. History preserving bisimula-

tion is equivalent to path-Pom-bisimulation; in case of strong history preserving bisimu-

lation it is necessary that the path-Pom-bisimulation is furtheron strong which we denote

by "(s)" in figure 22. For event structures with consistency relation these two results can

be found in theorem 4.16. It is easy to see that they hold too for prime event structures.

Column "AM II" results from column "path-lP": Using theorem 3.3 we can translate

any (strong) path-lP-bisimulation into a (strong) AM-bisimulation.

Thus we can model all the mentioned types of bisimulation on event structures with

(strong) AM-bisimulation in a unifying way: Two event structures E and F are *-bisimilar,

iff there exists a (strong) AM-bisimulation (R, ,) with (il, i2) E R between T(E) and T(F),

where * E {interleaving, bf, step, pomset, history-preserving, strong-history-preserving},

(il, i2) is a distinguished pair of states and T is an operator which maps an event structure

on a suitable coalgebra. In case of interleaving, step and pomset bisimulation we choose

(il, i2) = (0,0) and one of the operators Tint, Tstep resp. Tpom. bf-bisimulation is modelIed

as strong AM-bisimulation with (il, i2) = (0,0) and T = Iint. For history preserving

bisimulation we take (il, i2) = (tl, t2) and the operator Tpath-Pom' for strong his tory

preserving bisimulation we make the same choice but take this time the strong version of
AM-bisimulation.
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(R, "() :

(0,0)a/~b
({ed,Ud) ({e2}, {h})

b ~ ~ a

({e1,e2},{h,h}) ({el,e2},{h,!4})

Figure 23: An AM-bisimulation between Tint(£) and 1int(F) from figure 16.

5 Different answers: what is abisimulation?

In order to discuss the differences between the abstract concepts (strong) AM-bisimulation,

IP-bisimulation and (strong) path-IP-bisimulation consider the interleaving bisimilar event

structures £ and F from figure 15. As we know from corollary 4.13 this type of bisimulation

can be modelIed by any of the three abstract concepts.

To establish an AM-bisimulation between £ and F we first have to transform the event

structures into transition systems. Therefore we use the operator Tint. The resulting tran-

sitions systems are shown in figure 16. Figure 23 shows an AM-bisimulation (R, "() between

1int(£) and Tint(F) with (0,0) ER. It relates those states from Tint(£) and Tint(F) which

show the same behaviour.

In order to show that £ and F are IP-bisimilar we choose as path category the category

Lin. As object X we take the event structure F, and define the morphism 91 : F -+ £ by
91(h) = 91(J4) := e1 and 91(12) = 91(h) := e2 and the morphism 92 : F -+ F as identity

on F. As we know from [JNW94] the morphism 92 is Lin-open. In order to show that 91 is

Lin-open too we consider the commuting square from figure 6, where X = F, Y = £ and P
and Q are objects of Lin. As all configurations of £ or F have no more than two elements,

the path objects P and Q may consist of maximal two events. We consider just one case:

Let P be an event structure with one event e labelIed with a. Then p(e) = h. In order to
make the square of figure 6 commute there are only two types of event structures possible

for Q. The first is that Q consists of one event e labelIed with a. In this case m(e) = e,
q(e) = e1 and we can define r(e) := h in order to obtain the desired morphism r. The

second type of Q consists of two events e1 labelIed with a and e2 labelIed with b, where
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el ~Q e2. This time we get m(e) = el, q(e1) = el and q(e2) = e2. Defining r(et} := fI and

r(e2) :=h we get a morphism with rom = P and 910 r = q.

The event structure X = F from the IP-bisimulation is isomorphie to the event structure

whieh we obtain from the AM-bisimulation (R, 'Y)of figure 23 if we first unfold (R, 'Y)into a

synchronisation tree and then transform the result into an event structure. We formalized

this technique to obtain a Lin-bisimulation from an AM-bisimulation between transition

systems of type Tint in theorem 4.12.

In case of path-IP-bisimulation we choose again the category Lin as path category and

take the empty event structure (0,0,0,0) as the common initial object I of Lin and EAct.

We define sets of event structures

• Sa : The set of all event structures of EAct which consist of just one event labelled
with a,

• Sb : The set of all event structures of EAct which constist of just one event labelled
with b,

• Sab : The set of all event structures of EAct whieh constist of two events, one event

labelled with a, the other labelled with b, where the event labelled with ais predecessor
of the event labelled with band

• Sba : The set of all event structures of EAct which constist of two events, one event

labelled with b, the other labelled with a, where the event labelled with b is predecessor
of the event labelled with a.

With these sets we define a path-Lin-bisimulation R between £ and F :

R := ((Pl,P2) IPI E mor(I, £),P2 E mor(I, F)} U

((PI,P2) IPI E mor(X'£),P2 E mor(X, F), X E Sa} U

((Pl,P2) IPI E mor(X, £),P2 E mor(X, F), X E Sb} U

{(Pl,P2) IPI E mor(X,£),P2 E mor(X,F),X E Sab} U

((PI,P2) IPI E mor(X, £),P2 E mor(X, F), X ESba} U

The argument why R is a path-Lin-bisimulation is similar to the proof that the morphism 91

is Lin-open: Again we argue that any path object P with mor(P, £) "# 0 and m()1'(P' F) "# 0
is either the initial object I or is element of one of the sets Sa, Sb, Sab or Sba' We consider

just one case: Let P be an event structure with one event e labelled a. Then Pl(e) = el
and p2(e) = fI. By definition of R we know that (Pl,P2) ER. If there is an event structure

Q E Lin such that there exist morphism m : P -+ Q and ql : Q -+ £ with ql 0 m = PI, see
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Figure 24: Path augementation in case of IP-bisimulation.

figure 7, then Q has to be an element of Sa or of Sab. In the first case Q consists of one

event e labelIed with a and m(e) = e. We define q2(e) := hand obtain q2 0 m = P2 and

(ql, q2) E R. Now let Q E Sab. Then Q consist of two events, one event el labelIed with

a and one event e2 labelIed with b, where el -:5:Q e2. For m we get: m(e) = el. We define

q2(el) := h, q2(e2) := hand obtain again: q2 0 m = P2 and (ql, q2) ER.
One should note that even in this simple example the set R includes infinitly many pairs

of morphisms, but that R is the finite union of morphism sets of the same type: Any of the

above mentioned subsets of R is parametrized by an isomorphism class of event structures.

With cOrOllary 4.13 we may conclude from any of the three above mentioned bisimula-

tions that the event structures £ and F are interleaving bisimilar.

The three abstract concepts give different answers on the question: "What is a (inter-

leaving) bisimulation between event structures £ and F?"

AM-bisimulation: In order to establish an AM-bisimulation we first have to construct
\

some kind of transition systems related to £ and F. For the event structures from fig-

ure 15 we chose Tint(£d and Tint(£2). These transition systems make the "dynamics"

of the event structures explicit. Abisimulation is then a transition system (R, 'Y)with

a "behaviour" common to Tint(£d and Tint(£2). The condition (0,0) ERensures that

the whole transition sytems are taken into account.

IP-bisimulation: Here bisimulation is expressed as an event structure X together with

IP-open morphisms h :X -+ £ and h :X -+ F. This construction ensures (see

figure 24): If a morphism P from a path object P into X can be augmented to a
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IP-bisimulation

:ü: (theorem 3.1)

strong path-IP -bisimulation

:ü: (theorem 3.3)

strong AM-bisimulation on Tpath-IP

.if (example 3.10)

strong AM-bisimulation on T # Tpath-IP

=} path-IP-bisimulation

:ü: (theorem 3.3)

=} AM-bisimulation on Tpath-IP

:ü: (theorem 3.6)

=} AM-bisimulation on T # Tpath-IP
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Figure 25: Relations between the different bisimulation concepts.

morphism q from a path object Q into £, i.e. there exists a morphism m : P -t Q

such that q 0 m = h 0 P, then this augmentation is possible with the same morphism

m for the event structure F : As h is IP-open, there exists a morphism r such that

rom = P and q = h 0 r. With r we get a morphism 12 0 r : Q -t F such that

(12 0 r) 0m = 12 0p. The same holds symmetrically for F. The event structure X from

the IP-bisimulation can be interpreted as the "image" of all path objects "common"

to £ and F. IP-openess of hand 12 guarantees that for any path augmentation of £
one can find a corresponding one of Fand vice versa.

path-IP-bisimulation: Abisimulation is a set 0/ morphism pairs R which fullfills some clo-
sure properties. The existence of an initial object together with the closure properties

ensure that R includes all pairs (Pi,P2), where P is a path object and Pi : P -t £ and

P2 : P -t F are morphism. Furtheron this type of bisimulation guarantees some kind

of "path augmentation" (see figure 7): If there are morphisms Pi and P2 from a path

object P to £ resp. F, the path Pi can be augmented to a path qi : Q -t £, i.e. there
exists a morphism m : P -t Q with qi 0 m = Pi, then there exists a path 'Q2 : Q -t F

with Q2om = P2. The same holds symmetrically for F. Thus a path-IP-bisimulation R
includes all pathes which can be derived by path augmentation (beginning with the

initial pathes) for both event structure £ and F.

6 Conclusion

Figure 25 summarizes the general relations between (strong) AM-bisimulation, (strong)

path-IP-bisimulation and IP-bisimulation. For simplicity wedo not mention the conditions

which are (sometimes) necessary to establish an equivalence.

On top 6ffigure 25 we find IP-bisimulation. Theorem 3.1 gives an equivalence with strong
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path-IP-bisimulation. Of course strong path-IP-bisimulation implies path-IP-bisimulation.

Theorem 3.3 shows that choosing suitable transition systems with the operator Tpath-IP

(strong) path-IP-bisimulation and (strong) AM-bisimulation are equivalent. Concerning

(strong) AM-bisimulation on arbitrary transition systems which are different from those

we get by the operator Tpath-IP the situation is more complicated: Theorem 3.6 provides

an equivalence between path-IP-bisimulation and AM-bisimulationj for the strong variants

example 3.10 showed that in general strong path-IP-bisimulation does not imply strong

AM-bisimulation.

Combining theorem 3.1 and theorem 3.3 we can conclude: If abisimulation between ob-

jects of a category of models lt1 can be modelled as IP-bisimulation for a suitable subcategory

IPof lt1 and the assumptions of theorem 3.1 are fullfilled, then this bisimulation can also be

modelled as strong AM-bisimulation where we choose the operator Tpath-IP to get a transi-

tion system. Applications of this combination are interleaving and strong history preserving

bisimulation on event structures, see section 4.2.3 resp. 4.2.4, and Bran-bisimulation on

transition systems which we discussed in section 3.3.

For the converse direction one obtains: If abisimulation can be modelled as AM-

bisimulation, the assumptions of theorem 3.6 are fullfilled, the AM-bisimulations on Tpath-IP

are always strong, the assumptions of theorem 3.1 are fullfilled, then this bisiu;lUlation

can also be modelled as IP-bisimulation. Applications of this equivalence are interleaving

bisimulation on event structures and AM-bisimulation on transition systems.

Applying these results to concrete models we showed: For transition systems the con-

cepts of AM-bisimulation, Bran-bisimulation and (strong) path-Bran-bisimulation coin-

cide (corollary 3.8). Differences arise for the more complex model of event structures:

Looking for an approach which is able to model various types of bisimulations on event

structures AM-bisimulation turned out to be the most flexible of the three concepts.

It is left as open quest ion how strong AM-bisimulation and strong path-IP-bisimulation

are related. In order to get more insight into the "nature" of bisimulation other types of

bisimulation on event strucures, bisimulations on other models of concurrency and other

abstract characterizations of bisimulation should be studied.

Categorical characterization of bisimulation
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