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Abstract

[AM89] and [JNW94] present abstract concepts of bisimulation in terms of category
theory. This paper deals with the question how these approaches are related. Futheron
it shows how different types of bisimulations on prime event structures can be modelled
in terms of the abstract concepts.
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Introduction . 1

1 Introduction

Bisimulation was introduced by [Mil80] and [Par81] in order to identify processes that
cannot be distinguished by an external agent. Since then various notions of “bisimulation”
have been studied, e.g. on labelled transition systems by [DNMV90], [MS92], on event
structures by (GG89], [GKP92], on petri nets by [GV87], [ABS91]. Recently attempts have
been made to develop an abstract characterization of the various notions of bisimulation, see
for example [DDNM93] and [Mal95]. We focus here on the work of [AM89] and [JNW94].

[AMB89] characterize bisimulation (4 M-bisimulation) as a coalgebra relative to a functor
on the category Class. [JNW94] work with a general category M of models with a distin-
guished subcategory P of path objects. Two objects X; and X, are called P-bisimular iff
there is an object X in M together with so-called P-open morphisms f; : X — X;, i =1,2.
We study here how AM-bisimulation and P-bisimulation are related. To connect these
concepts we use the formalism of path-P-bisimulation of [JNW94].

Starting in a setting where one may speak about path-P-bisimulation we prove that
(strong) path-P-bisimulation and (strong) AM-bisimulation are equivalent. As every P-
bisimulation induces a strong path-P-bisimulation we get the result: If one can introduce
the concept of P-bisimulation in a category of models M this bisimulation induces a strong
AM-bisimulation.

For the reverse direction - i.e. to characterize a given AM-bisimulation on a category M of
models in terms of P-bisimulation — numerous assumptions have to be made. In a first step
we switch from AM-bisimulation to path—ﬂ’—bisimulétion. Therefore we have to construct
a suitable category P of path objects. Using a theorem of [JNW94] which characterizes
the situations where strong path—[P-bisimulétion coincides with [P-bisimulation one may
conclude that AM-bisimulation is a more general concept than P-bisimulation.

As an application we study AM-bisimulation and P-bisimulation on labelled event struc-
tures where we consider the concepts of interleaving, backward-forward (bf), step, pomset,

history-preserving and strong-history-preserving bisimulation.

2 Definition of the different bisimulation concepts

2.1 AM-bisimulation

A coalgebra for an endofunctor F on a category C is a pair (A, @) where A is an object of
C and a: A —+ FA a morphism. A morphism 7 : A — B in C is called a homomorphism
between coalgebras (A,a) and (B,B) iff Bonm = (Fr) o « holds. The coalgebras and

Categorical characterization of bisimulation
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2.1 AM-bisimulation 3
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Figure 3: “Same behaviour” by choosing either sy and 3 or s; and #; as initial states.
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Figure 4: “Same behaviour” even in the not reachable parts.

2.1.1 An interpretation of AM-bisimulation

In order to relate two transition systems by AM-bisimulation it is not enough to require the
existence of a coalgebra (R, y) which makes the diagram of figure 1 commute. (R,v) = (0, 0)
is an AM-bisimulation between any two coalgebras. To model a particular kind of bisim-
ulation as AM-bisimulation it is therefore necessary for the set R of the coalgebra (R,~)
to include a distinguished pair of states, e.g. the initial states of the transition systems.
The transition systems of figure 2, 3 and 4 demonstrate, how different the “information
content” of an AM-bisimulation may be: ‘

(R,7) := ({(s1,t0)},0) is an AM-bisimulation between the transition sytems S; and T}
of figure 2. It says: “Both transition systems include final states.”

For the transition systems S3 and T of figure 3 one may take as AM-bisimulation (R, )
the set R := ({(so, %), (51,%1)} together with the map v(sg, to) := {(a, 51,t1)}. Here we get:
“If one chooses s and ¢p as initial states the behaviour of the transition systems S» and
T, is identical. The same holds in the choice of s; and ¢; as initial states.”

In case of the transition systems S3 and T3 of figure 4 it is possible to take (R, ) as AM-
bisimulation where R := {(so,to), (s1,t1), (s2,t2), (s3,t3)} and ~(so,t0) := {(a,s1,t1)},
v(s2,t2) := {(b, s3,t3)}. This AM-bisimulation can be interpreted as: “Choose any state s
of S3 as initial state. Then there exists a state ¢ of T3 such that taking t as inital state of

T3 the behaviour of the transition systems S3 and T3 is identical. The same holds .if one

Categorical characterization of bisimulation



4 Section 2: Definition of the different bisimulation concepts

chooses first an >initia1 state in T3.”

The transition systems of figures 2 and 3 show that an AM-bisimulation contains just
a “subset” of those transitions which are “common” to both coalgebras. This view on
AM-bisimulation justifies our observation that (,0) is an AM-bisimulation between any
two coalgebras: The statement that all transitions which are contained in @ are “common”
to any pair of coalgebras is true. As the discussion of the transition systems in figure 4
shows this “common part” is independent of a concept of “reachability”.

The question whether two transition systems share a special part is equivalent to the
question whether there exists an AM-bisimulation between these transition systems which
“contains” this part. Such a part can be a whole transition system. We give just two

examples:

1. Does for any state s of a transition system S a state t in a transition system T exist
such that T started in ¢ behaves like S started in s? This question may be coded as
AM-bisimulation: Does an AM-bisimulation (R, ) exist such that the projection m

on the coalgebra related to S is surjective?

2. Of course it is possible to reduce the first problem to that part of a transition system
which is reachable from a state sp. This leads to the question: Does for any state s
of a transition system S which is reachable from sy a state ¢ in a transition system T
exist such that T started in ¢ behaves like S started in s? Again this question may be
coded as AM-bisimulation: Does an AM-bisimulation (R,~y) exist such that for the

projection 71 on the coalgebra related to S holds: so € m1(R)?

These examples model “simulations”: We asked whether T is able to show a part of the
behaviour of S. To describe “bisimulations” we have to formulate the conditions in a sym-
metric manner. For the second example this could be: Assuming that both S and T have
an intial state sg resp. tp we want to know whether there exists an AM-bisimulation (R, 'y')
with sg € m(R) and ¢y € m2(R). Another — more discriminating — possibility would be: Is
there an AM-bisimulation (R,v) with (so,t9) € R? This last formulation will be the one

we use to model different kinds of bisimulations as AM-bisimulation.

2.1.2 Some properties of AM-bisimulations

In case of AM-bisimulation the proof that for coalgebras (4, a), (B,3) and (R,~) the
diagram of figure 1 commutes consists of two parts for each square: For the left square for

example one establishes first that (a o m)(z,y) C (Fm o y)(z,y) for all (z,y) € R, in a

Categorical characterization of bisimulation



2.1 AM-bisimulation 5

second step one proves the inclusion the other way round. The following lemma shows that

in order to establish the property strong the second step is not necessary:

Lemma 2.1 .
Let (R,v) be an AM-bisimulation between two coalgebras (A,a) and (B,B). Then for all
(z',y') € R holds:

(Frioy™)(@'y) € (a7 om)(2',y') and (Fma0v7)(z',y') € (87 o m)(e',y).

Proof: Let (I,2) € (Fm o~7)(«',y'). Then there exists some y € B with (I,z,y) €
v~ (',y'). Therefore we have (I,2’,y') € v(z,y). This implies (I,2') € (Fry o v)(z,y). As
(R,7) is an AM-bisimulation we get (I,z') € (a o m;)(x,y). Thus we may conclude that
(I,z') € a(x) which resultsin (I, z) € o= (z') = (a”om) (2, ¢/). ]

To translate the definition of a homomorphism between two coalgebras in terms of their

related transition systems we cite a lemma from [MCR96]:

Lemma 2.2
A morphism f : A — B in Set is a homomorphism between coalgebras (A, a) and (B, f3)
iff for the related transition systems Tia,a) and Tip gy holds:

(i) ifz -2 y in T(a,q) then f(z) 2 fly) in T(B,p) and
(ii) if r = s in Tip,p) and r = f(z) then s = f(y) for somey € A and * — y in Tia,0)-
Furtheron we provide a useful property of AM-bisimulation which helps us to translate
different kinds of bisimulations into the setting of coalgebras.

Lemma 2.3
For an AM-bisimulation (R,~v) on coalgebras (A, ) and (B, 3) holds:

o ifr - yin T(A,q) where x = m(r) for some v € R then there ezists s € R such that

y = m1(s) and ma(r) 25 ma(s) in Tgp) and

o ifv L win T(B,3) where v = ma(r) for some r € R then there exists s € R such that

w = ma(s) and my(r) = 71(s) in Tia,q)-

Proof: If z % y in T(4,q) for some z € m(R) then by (ii) of lemma 2.2 there exists
s € Rwithr 2 sin T(r,y)- This induces by (i) of lemma 2.2 ma(r) —= m(s) in T
, ]

In this paper we are interested in AM-bisimulations, which contain a distinguished pair

of elements. For these one obtains transitivity:

Categorical characterization of bisimulation



6 Section 2: Definition of the different bisimulation concepts

Lemma 2.4

Let (A1, 1), (A2, @2), (A3,a3) be coalgebras, let (Ry,v1) and (Rz2,7v2) be (strong) AM-
bisimulations between (A1, ;) and (Az, o) resp. (A2,a2) and -(Ag,a3) with (z,y) € R,
and (y,z) € Ry. Then there exists a (strong) AM-bisimulation (R,7) between (A1, 1) and
(As, a3) with (z,2) € R. ‘

Proof: Let R := {(r,t) € A; x A3|3s € A2 : (r,s) € Ry, (s,t) € Ry}. Let for all
(7‘,, tl)) (T7 t) E R

(L' t) € y(rt): <= 3, s€ Ar: (I,7,s') € m(r,s), (1,5, t) € ya(s,t).

Obviously holds (z, z) € R.

To prove that (R,<) is an AM-bisimulation between (A;,a;) and (A4s,a3) let (I,7') €
(azom)(r,t). As (r,t) € R there exists s € A; such that (r,s) € Ry and (s;t) € Ry. We get
(I,7") € (a1 om)(r, 8) and as (Ry,71) is an AM-bisimulation (I,7') € (Fm o v;)(r,s). Thus
there exists s’ € Ay with (r',s") € Ry and (I,7',s') € y1(r,s). This leads to (I,s') € (Fmp 0
7 )(r, 8) and - again as (R;,v;) is an AM-bisimulation — (I, s’) € (az o m3)(r, s). Therfore
(1,8") € (agom )(s,t) and (I, 8’) € (Fmoy,)(s,t). Thus there exists t’ € Az with (s',t') € Ry
and (1,s',t') € y2(s,t) and we may conclude that (r',¢') € R and (I,7’,¢') € y(r,t). Finally
we get (I,r') € (Fry07)(r,t). »

Now let (I,7') € (Fmy o«)(r,t). Then there exists ' € Az such that (I,7',t') € v(r, t).
By the definition of v there exist s’,s € Ay such that (I,7',s') € m1(r,s). Thus (|,r') €
(a1 o m)(r,s) = (g o m ) (7, t).

To show that (R,7) is strong if (R;,v1) and (R, ~y2) are strong let (I,7) € (af o
m)(r',t"). As (r',t') € R there exists s’ € Ay such that (r',s’) € R; and (s',t') € Ra.
For (r',s') holds: (I,7) € (a; o m)(r',s'). (R1,71) is strong. Therefore we know that
(I,7) € (Fmyovy )(r',s"). Thus there exists s € Ap with (r,s) € Ry and (I,7,s) € 77 (1, §').
This leads to (I,s) € (Fmp 0+ )(r',s’). Using again the property “strong” of (Ry,v1) we
get (1,8) € (ag om)(r',s") = (ay omi)(s',t'). As (Rz,72) is strong this results in (/,s) €
(Fr1 0 v5 )(s',#'). Thus there exists t € 4, with (s,t) € Rs and (I, s,t) € v5 (s',¢'). This
leads to (r,t) € Rand (I,7,t) € v~ (r',¥) and we may conlude that (I,r) € (Fryoy™)(r',t'):

Lemma 2.1 proves the other inclusion. |

Remark 2.5
1. Let (A,a) be a coalgebra, let © € A. Then (R,v) with R := A x A and (I,d',a’) €
v(a,a) : < (I,a') € ala) is an AM-bisimulation between (A,a) and (A, a) with
(z,z) € R. (reflexivity)

Categorical characterization of bisimulation



2.1 AM-bisimulation 7
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b 1a
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Figure 5: An AM-bisimulation (R, ) between transition system T; and T.

2. Let (R,~) be an AM-bisimulation between coalgebras (A, a) and (B, B) with (z,y) € R.
Then (R,%) with R := {(b,a)|(a,b) € R} and (I,¥,a’) € 4(b,a) : & (I,a',V') €
v(a,b) is an AM-bisimulation between (B, ) and (A, a) with (y,z) € R. (symmetry)

2.1.3 A note on strong AM-bisimulation

The concept of strong AM-bisimulation is new. Looking on transition systems with initial
states example 2.6 shows that the strong and the non strong version of AM-bisimulation
differ:

Example 2.6

Consider the transition systems Ty and Ty of figure 5. Let (A, ) and (B, 3) be the related
coalgebras of Ty resp. Ty. Figure § shows an AM-bisimulation (R,7y) in Sety between T3
and T5.

But there is no strong AM-bisimimulation between (R,%) between Ty and Ty which
includes (sg,t9) as state. For any such bisimulation (R,ﬁl) we get (s3,t3) € R:InT, we
find the transition s — s, thus we need as state (s1,t1), furtheron we find in Ty the
transition s; LN s3, therefore we have (s3,t3) € R. Assume that (R,4) is strong. Then it
has to include a transition (a,x,t2) € v (s3,t3) for some state (z,t3) € R. This implies
(a,z) € (Fm oy )(s3,t3) and as (R,7) is strong (a,z) € (o o 71)(s3,t3). Therefore we

have (a,s3) € a(x) — but there is no such transition for any state = in (4, ).

Categorical characterization of bisimulation



8 Section 2: Definition of the different bisimulation concepts

If one considers just trees any AM-bisimulation induces a strong one:

Theorem 2.7

Let S and T be trees with root sq resp. to. Let (R,~) be an AM-bisimulation between S and
T with (so,to) € R. Then there exists a strong AM-bisimulation (R,’y) between S and T
with (sg,to) € R.

~

Proof: In order to prove the theorem we define a new AM-bisimulation (R, ¥) from (R, 7).
Let (A, @) denote the related coalgebra of the tree S, (B, ) the coalgebra related to T Let

Ry = {so,t0},
Riyi = {(8,¢)eR|As,t)€R,TIel: s—s t—L3t'} i>0,

Let for all (s',t'), (s,t) € R and all labels {
(U, 8", t') € 4(s,t) &= s 4 s'in (A,a) and ¢ st in (B, ).

Obviously R C R.

We show first that (R,4) is an AM-bisimulation. Let (I,s') € (o m1)(s,t). (s,t) € R
implies (s,t) € R. As (R,~) is an AM-bisimulation we get ({,s') € (Fm o v)(s,t). Thus
there exists some t' € B such that (I,s',t') € v(s,t). This implies ¢ s ¢ in (B, B).
Therefore we get (s',t') € R and (I,s',t') € %(s,t) which induces (I,s') € (Fmy o ¥)(s,t).
Now let (I,s') € (Fm o4)(s,t). By the definition of 4 we know that (!, s') € a(s) and thus
(1,") € (aom)(s,t).

To prove that (R, #) is strong let (I,s) € (o™ o m1)(s, ). This implies that there exists
a transition s — s’ in S. Thus s’ # s and therefore ¢’ # to by the definition of R. As
T is a tree we know that there exists exactly one transition which ends in state #'. Let
¢t - ¢ be this transition. As S is a tree too 5 — &' is only transition leading to s. On
the other hand we have (s',t') € R. Thus by definition of R we get ! = I’ and therfore
(1,s',t') € %(s,t). This implies (I,s) € (Fry 0 57)(s',t'). Lemma 2.1 etablishes the other
inlusion. [ ]

It is important to note that strong AM-bisimulation is not an “abstraction” of the
concept of back and forth bisimulation which [DNMV90] introduce on transition systems
with initial state. If one does not consider the “silent action” 7 [DNMV90] prove that
the “usual” bisimulation on transition systems with initial state — which can be modelled
as AM-bisimulation, see section 3.3 — and back and forth bisimulation are equivalent.
Concerning strong AM-bisimulation example 2.6 showed that the strong and the non-strong

version of AM-bisimulation differ on transition systems with initial state.

Categorical characterization of bisimulation



2.2 P-bisimulation and Path-P-bisimulation , 9

An instance of a strong AM-bisimulation can be found in [GKP92]. Among other
kinds of bisimulations they introduce the concepts of forward bisimulation (~f-p) and
backward-forward bisimulation (~bf—p) on prime event structures. For these bisimulations

the following strict inclusions hold!:
® = C ~pfb,
® ~pfbpC~uwhpC ~f_p and
4 ":bf—b C~pp Crpy,

where ~ stands for isomorphism, ~,_; for weak history-preserving bisimulation and ~,_,
for run bisimulation. The equivalences ~qyj_p and ~,_; are not comparabel. [GKP92].
characterize forward bisimulation and backward-forward-bisimulation by temporal logics:
Two event structures are forward bisimilar iff their related models cannot be distinguished
by formulas of the logic S4N; backward-forward bisimulation can be characterized by the
logic POL - an extension of S4N by two modalities. In section 4.2.2 we show how one
can model interleaving bisimulation (this is just another term for forward bisimulation) as
AM-bisimulation. Backward-forward bisimulation (which we will call here bf-bisimulation)

arises as the strong case of this AM-bisimulation.

2.2 P-bisimulation and Path-P-bisimulation

To give an abstract characterization of bisimulation [J NW94] choose a category M of models
‘and a subcategory P of M of “path objects”. A path is a morphismp : P — X from an object
P in P to an object X in M. In M a morphism f : X — Y is called P-open, iff whenever
there are objects P, Q and a morphism m : P — Q in P and paths p: P — X, q:Q =Y,
then there exists a path r : @ — X with rom = p and f or = q. Figure 6 illustrates
this “path lifting condition”. P-open morphisms include all the identity morphisms and
are closed under composition. Two objects X; and X, of M are called P-bisimilar, iff there
exists an object X in M and P-open morphisms f; : X — X; and f5: X — Xo.

To introduce the concept of path-P-bisimulation [JNW94] assume that P is a small
subcategory of M and that P and M have a common initial object I. Two objects X; and
X3 of M are called path-P-bisimilar iff there is a set R of pairs of pﬁths (p1,p2) with common
domain P,so p; : P — X; isapathin X; andpy: P - Xy is a path in X5, such that

'{GKP92] consider just prime event structures without auto-concurrency where the related transition

systems exhibit only finite branching.

Categorical characterization of bisimulation



10 Section 2: Definition of the different bisimulation concepts

p

P —mMm - X

q

Q —m— Y

Figure 6: Path lifting condition

P
pl/nt D2
X1 Q X2
q1 q2

Figure 7: Path-P-bisimulation, illustration for condition (i).

(0) (t1,t2) € R, where ¢; : I — X; and ¢y : I — X, are the unique paths starting in the

initial object,
and for all (p1,p2) € R and for all m : P — Q, where m is in P, holds

(i) if there exists ¢; : @ — X; with ¢, o m = p; then there exists ¢» : Q — X, with
g2 om = pp and (q1,¢2) € R (see figure 7) and

(ii) if there exists g2 : @ — X> with g2 o m = p; then there exists q; : Q — X; with
qgrom =p; and (q1,¢2) € R.

Two objects Xl and X, are strong path-P-bisimilar iff they are path-P-bisimilar and
the set R further satisfies: ‘

(iii) If (q1,92) € R, withq; : Q > Xy and ¢2: Q — X2 and m : P — Q, then (q; om, gz ©
m) € R, see figure 8.

Sometimes we call the set R a (strong) path-P-bisimulation between the objects X; and
Xs.

Categorical characterization of bisimulation



Relating the concepts 11

P

QIom/n qgom

X1 * Q > Xs
q1 q2

Figure 8: The new condition for strong Path-P-bisimulation.

3 Relating the concepts

[JNW94] give the following relation between P-bisimulation and strong path-P-bisimulation:

"Theorem 3.1
1. Let M be a category of models, let P be a small subcategory of M of path objects, such
that P and M have a common initial object I. If two objects X1 and X2 of M are

P-bisimilar then they are strong path-P-bisimilar.

2. Let M be the subcategory of rooted presheaves in [P°P, Set]. Rooted presheaves X; and

Xo are strong path-P-bisimilar iff they are P-bisimilar.

We show how the concept of (strong) AM-bisimulation fits into this picture. The first
step — from a given path-P-bisimulation to an AM-bisimulation — is easy, because we start
with an “abstract” concept to get a more “concrete” one: Even if we don’t know of what
“type” the states and the labels of the transition system are, dealing with AM-bisimulation
means speaking about transition systems. The second step — from a given AM-bisimulation
to a path-P-bisimulation - is more difficult: Here we have to introduce a concept just on

categories with no knowledge about (for example) how to define a morphism.

3.1 From path-P-bisimulation to AM-bisimulation

Let M be a category of models, let P be a small subcategory of M of path objects, such that P
and M have a common initial object I. Then we define for each object X of M a labelled tran-
sition system Tpaen—p(X) = (S,0) in Setr over the set of labels Upgcp {(m, P,Q)|m €
Mor(P,Q)} :

e S:={p: P> X|PeP,pe Mor(P,X)}.

Categorical characterization of bisimulation
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Figure 9: Defining the transitions of Tpan—p-

A

Figure 10: The structure of T’ path— Bran(7T1)-

e (m,P,Q,q) € g(p) :<=> qgom = p, see figure 9.

Example 3.2

To illustrate the operator Tpen—p we consider the transition system Ti of figure 5 , where we
take so as initial state, as object of some category ‘of transition systems Tran®. A morphism
o in Tran between two transition systems Ty = (51,51, —1) and T = (S2,55, —2) is a
mapping o : Sy — Sy which satisfies: o(s1) = s2 and if x —> y then o(z) —24 o(y).
~ For P take Bran the full subcategory. of Tran whose objects are those acyclic transition
systems which consist only of one finite branch.

First we gather all path objects P € Bran with morqy.q, (P, T1) # 0 into sets: S
consists of all transition systems of Bran with one state but no transition, S, consists
of all transition systems of Bran with one transition labelled with a, S, consists of all
- transition systems of Bran with two consecutive transitions, the first labelled with a, the
second labelled with b, the sets Sy and Sy, are defined similarly. The states of Tpath—Bran(T1)
are the morphisms from an object P € (SpU Sg U Sy U Sap U Spe) to Th. :

*The category Tran is described in detail in section 3.3.

Categorical characterization of bisimulation
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Figure 10 shows the structure of the transitions in Tpath—Bran(T1). An arrow between
two sets X and Y from Sy, Sa, Sp, Sap and Spa means that taking any object P of X and

(m —’—')Q) q 10 Tpath—Bran(T1), wherep: P — Ty,

any object Q of Y there ezists a transition p
q:Q — Q1 andm: P — Q. As in this ezample all morphisms from a path object to Ty are
uniquely determined we obtain a very simple structure of the transitions in Tpath—Bran(T1).

For the transition system Ty of figure 5 holds: Tpath—Bran(T2) = Tpath—Bran(T1).

Theorem 3.3 :

Let M be a category of models, let P be a small subcategory of M of path objects, such
that P and M have a common initial object I. Then holds: Two objects X; and X, of
M are (strong) path-P-bisimilar iff there exzists a (strong) AM-bisimulation (R,7y) between
(A, @) := Tpan—p(X1) and (B, B) := Tpatn—p(X2) with (11,t2) € R, where v; : I — Xy and
12 : I = X5 are the unique pathes from I to X, resp. X,.

Proof: Let X; and X, be path-P-bisimilar. Then there exists a set R consisting of pairs
of paths (p1,p2) with common domain P. We define a map v : R — FR and show that
(R,7) is an AM-bisimulation between (A, a) and (B, ). Let for all (py,p2), (q1,42) € R,
pi:P—>X;,¢::Q— X;,i=1,2, me€ Mor(P,Q)

(m,P,Q,q1,q2) € ¥(p1,p2) : &= qrom =p1 Agzom = ps.

Let (m, P,Q,q1) € (aom)(p1,p2). Then (m, P,Q,q1) € a(p1) and therefore g; om = p;.
As (p1,p2) € R this implies by condxtlon (i) of the definition of path-P- blslmulatlon that
there is some g2 : Q@ — X3 with ggom = p2 and (g1, ¢2) € R. Thus we have (m, P, Q q1, q2) €
¥(p1,p2) and hence (m, P,Q,q1) € (Fry 0 7)(p1,p2)-

Let (m,P,Q,q1) € (Fm o v)(p1,p2). Then there exists some g2 : Q — X5 such that
(m, P,Q,q1,q2) € ¥(p1,p2). By the above definition of v this implies ¢; o m = p;. By
definition of Tpain_p(X1) we get (m, P,Q,q1) € ap1) and therefore (m,P,Q,q1) € (ao
m)(p1,P2)- .

Assume furtheron that the set R is a strong path-P-bisimulation between X; and X».
In order to provide that in this case the constructed AM-bisimimulation (R, ) is strong it
is enough to show (@~ om) C (F'mr oy~ ) - see lemma 2.1.

Let (m,P,Q,p1) € (o~ om)(q1,q2). Then we have (m, P,Q,p1) € a~(g1) and there-
fore (m, P,@,q1) € a(p1). Thus by definition of (4, «) we get the equation ¢, o m = p;.
As (q1,92) € R we get by (iii) that (g1 o m,g2 o m) € R. By definition of v we obtain
(m, P,Q,q1,92) € 7(q1 ©m, g2 om). This implies (m, P,Q,q1 o m, g2 om) € v (q1,¢2) and
we get finally by the equation g, o m = p; that (m, P,Q,p1) € (Fr1 oy )(q1,q2). .

Categorical characterization of bisimulation



14 Section 3: Relating the concepts

Now let (R, ) be an AM-bisimulation between (A, &) and (B, 8), such that (¢1,¢3) € R.
As R may relate paths p; and p; with different domains we define a subset of R to establisch
the path-P-bisimilation:

R :={(p1,p2) € R|3P € P: p; € Mor(P, X1), p2 € Mor(P, X2)}.

Obvibusly we have (¢1,t2) € R'. Now let (p1,p2) € R, m € Mor(P,Q) for somé_ object
Q in P and ¢ : @ — X; a path, such that ¢ o m = p;. This implies (p1,p2) € R
and (m,P,Q,q1) € (ao m)(p1,p2). As (R,7) is an AM-bisimulation there exists some
g2 : @ = Xz with (m, P,Q, q1,¢2) € v(p1,p2). Therefore we get (m, P,Q,q2) € B(p2) and
thus by definition of (B, 3) we have ¢ o m = ps. As ¢; and g2 have the same domain and
(g1,92) € R we conclude (q1,¢2) € R’ and thus R’ fullfills condition (i).

Assume furtheron that the AM-bisimulation (R,~) is strong. To show condition (iii) let
(q1,42) € R', i.e. q; and g9 ére paths with the same domain Q, let m € Mor(P,Q). Then
grom € Mor(P, X1). By definition of the operator Tpein—p we get (m, P,Q, q1) € a(g1om).
This implies ‘ '

(m,P,Q,q10om) € a™(q1) = (@™ o m)(q1,42) = (Fm 077 )(q1,42)

Thus there exists some pp : P — X5 such that (m, P,Q,q1 o m,p2) € v (q1,92). As Ris a
strong AM-bisimulation we get (m, P,Q,p2) € 87 (¢2) and therefore (m, P, Q, q2) € B(p2)-
With the definition of Tpqs,—p we conclude gaom = py. Thus (gom, gaom) € R'. [ |

3.2 From AM-bisimulation to path-P-bisimulation

Let L bev a set of labels, let T 1 be the category of transition systems which consists of all
objects (A, a) of Setr which have an initial state i4 € A and all states s € A are reachable
from i4. Take as morphisms between two objects (A, ) and (B, ) of T, the mappings
f:A— Bwith FfoaC B0 f and f(ia) = tp, where i4 and ip are the initial states of
(A, a) resp. (B, 3). A morphism f : (A,a) — (B, ) in Setr is a morphisms in Ty, if (4, a)
and (B, B) are objects of T and f preserves the initial state. But not all morphisms of
T can be seen as morphisms of Setp. Reformulating lemma 2.2 for Ty, leads to: A map
f : A — B is a morphism between (A4, a) and (B,3) in T iff f(i4) = ip and whenever
there is a transition s — s’ in (A4, @) then there is a transition f(s) = f(s') in (B, B).
We use the category T as a link between Setr and M in the following sense: given
a functor from M to T statisfying the conditions which we present in remark 3.5 we
construct for a given path-P-bisimulation in M an AM-bisimulation in T and vice versa.

An AM-bisimulation in Ty, is an AM-bisimulation in Setr as the projections are morphism

Categorical characterization of bisimulation



3.2 From AM-bisimulation to path-P-bisimulation 15

in both ca}egories. If there is an AM-bisimulation (R, v) between (4, @) and (B, 3) in Sety
where (R,7), (A, a) and (B, B) are objects in Ty, and (i4,ig) € R then (R,~) is an AM-
bisimulation between (A4,a) and (B, ) in Ty. Call an AM-bisimulation (R,7) between
(A,a) and (B, p) strong in Ty iff (R,y~) is an AM-bisimulation between (A4,a~) and
(B,B~) in SetF. ‘

In order to translate the concept of AM-bisimulation into path-P-bisimulation we have

to introduce an abstract formulation of AM-bisimulation:

Definition 3.4

Let M be a category of models. Let mt be an operator which turns an object X of M into
a coalgebra mt X in Tp - i.e. a transition system over a suitable set of labels L. Call two
objects X, and X3 of M (strong) AM-bisimilar relative to mt iff mt X; and mt Xo are
(strong) AM-bisimilar in Tp.

Remark 3.5
As morphisms in T map initial states to inital states an AM-bisimulation (R,v) in Ty

between (A, a) and (B, B) includes the pair (ia,ig).
For the rest of this section we assume the following conditions:
1. The operator mt evolves into a functor from M to T.

2. There is a small subcategory P in M, such that P and M havé a common initial object
I

3. For objects P in P holds: The transition system mt P has a unique final state, which

is reachable from all other states in mt P.

. . l l In— .. . .
4. For any derivation s; —* s — ... 223 s, of a transition system in T exists an

object P of P such that in m¢ P exists a derivation #; LN to by l"——_—i tn, where
t1 is the initial state of mt P, ¢, is the final state of mt P. For this object P holds
furtheron: Whenever there exists an object X of M with u; LN Ug Ly l"——i Upn ID
mt X, where u; is the inital state of mt X, then there exists a morphism p : P — X
in M, such that (mtp)(¢;) =u;, i1 =1,2,...,n.

5. For the transition system in Tz which consists of just one state and no transition the

initial object I of P is one of the objects condition 4 speaks about.

6. LetPandeeobjectsoflP,Xbea.nobjectofM,p:P—>X,q:Q—+X,m:P—>Q

In—

morphims in M resp. P. Let ¢; i—) ta —12—-> it t, be a derivation in mt P, where
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16 Section 3: Relating the concepts

t; is the initial and ¢, the final state of mt¢ P. Then we have:
gom=p & V1<i<n:(mtqgomtm)(t;) = (mtp)(t:).

Theorem 3.6
Assume the above described conditions, let X1 and X, be objects of M. X1 and X, are
AM-bisimilar relative to mt iff X1 and X, are path-P-bisimular.

Proof: Let (R,7v) be an AM-bisimulation between (4, @) := mt X; and (B, 8) := mt Xs.

For any element (s,t) € R exists a derivation from the initial state (sq,%;)
In_
(s1,t1) =5 (s2,2) 2> ... 224 (50, tn) = (5, 8)

in (R, ). Condition 4 1mplxes that there exists an object P of P such tha.t mt P includes
a derivation uy J——) U -————> .. —§ un Using the projections m; and w2 we know that
81 l—) S -l—2> l—-—) S$n and —> to ——) I——-) t, are derivations in mt X3 resp. mt Xs.
Thus there exist morphisms p; : P — X, ¢ = 1,2, with (mt p1)(u;) = s; and (mt ps)(u;) =
tj, 3 =1,2,...,n. Let M(s,t) denote the set of all pairs of morphism (p;, p2), which can be
obtained in this way from a state (s,t) of (R,~), i.e. we look for any derivation which ends
in (s, t), for any object P which corresponds to this derivation and for any pair of morphims

(p1,p2) which embeds mt P in mt X; resp. mt X5 in the described way. We claim that

U M(s,t)
(s,t)ER
is a path-P-bisimulation bétween X1 and Xs.
Taking the initial state (s1,¢1) of (R, ) condition 5 ensures (¢1,t2) € R', where ¢; : I —
X;, © = 1,2, are the uniquely determined morphisms from the initial object I to X;.
Let P and @ be objects from P, p; : P - X;,i=1,2,¢q:: Q - Xy andm: P - Q
morphisms with ¢; o m = p; and (pl,pz) € R'. As (p1,p2) € R we know that there exists

ln- . . . {
a derivation (sl,tl) LN (52,t2) —) .25 (sp,tn) in (R,~), derivations s; — s LN

In— ln- . . 4 4
.23 s, and £ BTN ty LT tn in (A, a) resp. (B, ), a derivation u; — uy —

by un in mt P. By the construction of R' holds: (mtp)(u;) = 55,5 = 1,2,...,n,

and (mtp2)(u;) = t;, 7 = 1,2,...,n. As mtm is a morphims in T, we find a derivation
(mtm)(uz) Ay (mt m)(us) N 1 (mtm)(un) in mt Q. Let f be the final state of
mt Q. By condition 2 we know that there exists a derivation (mt m)(uy) LN Un41 oty

. Itk Upek = [ In th Combining both derivations we get s; A, 89 Ly l"—_i

= (mt q1)(vns1) s S e it =" (mt ql)(vn+k) in (A4, a). As (R, ) is an AM-bisimulation

.. { l Inyy lntk—1
we find derivation ¢; — to —» ... 23 ¢, —> thel —5 ... 5 tn+k in (B, 3) for some
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3.2 From AM-bisimulation to path-P-bisimulation 17

states tn41,...,th4x € B. Thus by condition 4 there exists a morphism ¢ : Q — X,
with (mt g2)((mtm)(u;)) = t;, 7 = 1,2,...,n and (mtq2)(Vn+j) = tatjr j = 1,2,... k.
Condition 6 ensures g o m = p; and by construction (q1,q2) € R'.

Let R’ be a path-P-bisimulation between X; and X, let (4,a) := mt X, and (B, 8) :=
mt X3. Let P be an object from P, f the final state of mt P, X aﬁ object from M and
p: P — X a morphism. final(p, P, X) := (mtp)(f) denotes the image of the final state of
mt P under m¢ p. Let

R:={(s,t)| 3P€P,(p,p2) €R:
p]_:P—)X]_,pg:P—)XQ,
s = final(p1, P, X1), t = final(p2, P, X5)}.

Let (s1,t1), (s2,t2) € R, let P,.Q be objects of P, (p1,p2), (¢1,92) € R’ such that s; =
ﬁnal(Pl,P, X1)7 tl = ﬁnal(P%P, X2)’ 52 :ﬁnal(QI,Q’Xl): to =ﬁnal(q2)Q1X2)' Define

(a,s2,t2) € §(s1,t1)
iff there exists a morphism m : P — Q such that
¢ pr=qom,
® p2 =¢gzom and

o (mtm)(f) = g is a derivation in mt Q, where f is the final state of m¢ P and g the
final state of mt Q.

As R’ is a path-P-bisimulation we have (i1,t2) € R/, Whefe I is the initial object of M
and P and ¢; : I - X;,t = 1,2, are the uniquely determined morphisms. Therefore
we get (final(1, I, X1), final (12, I, X3)) € R, where final(1;,I, X;) are the initial states of
mt X;,1=1,2. Let

e R:={(s,t) € R|(s,t) is reachable in (R,%) from (final(e1, I, X1), final (12, I, X2))},

\.7: R - P(L x R) |
' (5,t) — {(a,s',t') € 4(s,t)| (s, ¢) € R)}.

Then (R,~) is an object of T.
Let (a,s2) € (a o m)(s1,t1). As (s1,t1) € R there exists an object P € P and mor-
phisms p; : P — Xy, ps : P — X; such that s; = final(p1, P, X1), t1 = final(p2, P, X3)

ln_ . .
and (p1,p2) € R'. Let u L L N u, be a derivation from the intial state u; to

the final state u, in mt P. Then (mtp;)(u;) 4, (mt p1)(u2) Loy (mtp1)(un) = 51
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is a derivation for s; in (A4, a). Combining it with (a, 32) € a(s) we get (mtp;)(uy) LN

(mt p1 )} (ug) Ly l‘# 81 — s;. By condition 4 there exists an object @ in P such
that vy LN Vg E-) "—_i Uy — Up+1 is a derivation in mtQ, where v; is the ini-

tial and v,4; is the final state. Further there exist a morphism m : P — Q with
(mtm)(u;) = vj,j = 1,2,...,n, and a morphism ¢; : @ — X; with (mtg1)(v;) =
(mtp1)(u;), j =1,2,...,n and (mtq;)(vn+1) = s2. By condition 6 this implies ¢, om = p;.
As R' is a path-P-bisimulation there exists a morphism g2 : @ — X, with g om = P2
and (q1,¢2) € R'. Therefore we have (final(q1, P, X1), final(g2, @, X2)) € R, where sy =
final(q1,@Q, X1), and (a, s2, final(gz2, @, X2)) € 4(s1,t1). As (s1,t1) is reachable in (R,’y) S0
is (final(q1, P, X1), final(g2, @, X2)). Thus we get (a, s2) € (Fry 0 7)(s1, s2).

Let (a,s2) € (Fm o v)(s1,t1). Then there exists some ¢ty € B such that (a,sq,t3) €
7(31, t1)- By the definition of R and «y we get: there exist objects P and Q of P, morphisms
pi: P — X1,¢,: Q@ = X;,7 = 1,2, and a morphism m : P — Q, which fullfll the
above described conditions. Especially we have (mtm)(f) -2+ g in mtQ, where f is
the final state of mt P and g the final state of mt Q. This implies s, = (mtp)(f) =
(mt q1)((mtm)(f)) = (rﬁtql)(g) = s2 in (A, ) and therefore (a,s2) € (o m1)(s1,%1).

|

Corollary 3.7
Let M be a category of models, let mt be an operator such that conditions 1 to 6 hold, let
P be the subcategory of M from condition 2, let X1 and X, be objects of M. X1 and X5 are

AM-bisimilar relative to mt iff X1 and Xy are AM-bisimilar relative to Tpath—p-

3.3 A first application: transition systems

For traditional models of concurrency like transition systems, event structures and petri
nets various notions of bisimulation have been studied. It is an interesting question to
what extent the frameworks of [AM89] and [JNW94] are capable of modelling these various
notions. As a first application we consider transition systems.

Let States be a “universal” set of states. Take as category M the category Tran which
has as objects transition systems (S, s, —) over some set of labels L, where S C States is
a set of states, s € S is the initial state and — C S x L x § is the transition relation. The
existence of an initial state implies S # 0. A morphism ¢ in Tran between two transition
systems T7 = (S, s1, —1) and Tp = (S3, 82, —2) isa mdpping c:85 > 9, which satisfies:
&(sl) = 57 and if £ —%; y then o(z) —53 o(y). For P take Bran the full subcategory of
Tran whose objects are those acyclic transition systems which consist only of one finite

branch. Take as functor mt¢ from Tran to T the map which restricts a transition system
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to its reachable states. In this setting all six conditions hold and therefore theorem 3.6

translates AM-bisimulation into path-Bran-bisimulation.

Corollary 3.8 _
Let Ty = (S1, 81, —1) and Ty = (S2, s2, —>2) be transition systems in Tran. The following

are equivalent:
1. Between Ty and Ty exists an AM-bisimulation (R,~y) in Setp with (s1,s2) € R.

2. Between T, ... Bran(T1) and T, ., Bran(T2) ezists an AM-bisimulation (R,~) with
(Lh L2) € R.

3. Between T, ., Bran(Ti) and T, oth—Bran(T2) ezists a strong AM-bisimulation (R, )
with (t1,t2) € R.

4. T1 and T are path-Bran-bisimilar.

5. Ty and Ty are strong path-Bran-bisimilar.

D

. 11 and Ts are Bran-bisimilar.

Proof: Theorem 3.6 proves the equivalence of 1. and 4. In [MCR96] we showed 1. < 6.
Furtheron theorem 3.1 (which we cite after [JNW94]) yields 6. implies 5. The equivalences
between 2 and 4, 3 and 5 are due to theorem 3.3. n

Remark 3.9
Obviously Milner’s notion of bisimulation on transition systems coincides with AM-bisi-
mulation. Hence this concept can be modelled by both approaches and yields equivalent

results.

Theorem 3.6 only provides an equivalence between AM-bisimulation and path-P-bisimu-
lation. Concerning the strong variants of those bisimulation concepts example 3.10 shows,

that in general strong path-P-bisimulation does not imply strong AM-bisimulation:

Example 3.10 ‘

Consider again the transition systems T\ and Ty from figure 5. Let (A,a) and (B,3) be
the related coalgebras of Ty resp. Ta. Figure 5 shows an AM-bisimulation (R,v) in Setp
between Ty and T,. Thus with corollary 3.8 we may conclude that Ty and T are strong path-
Bran-:bisimz'lar. But as we have seen in ezample 2.6 there ts no strong AM-bisimimulation

(R,‘/) between Ty and Ty which includes (sg,ty) as state.
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4 Illustrating the concepts in terms of event structures

Let Act be a set of actions. A (prime) event structure £ = (E,<,},1) over the set of
actions Act consists of a set of events F, a causal dependency relation < C E x E, which
is a partial order, an irreflexive and symmetric conflict relation f C E x E and a labelling

function { : E — Act, which together satisfy:
1. For alle € E theset | (e) := {e’ € E|€e' < e} is finite and
2. for alld, e, f € E holds: if d < e and djif then efff.

We call a set X C E a configuration of £ iff X is a finite set, leftclosed in E and for all
e, f € X holds: —eff. Sometimes we look at a configuration X not just as a set but as
‘a labelled poset. In this case X inherits the causal dependency relation and the labelling
function from £ : X = (X, < N(XxX),0,!|x). Conf(£) denotes the set of all configurations
of an event structure £. We call two events e;, es € E concurrent, e; coey, iff they are not
related by < or §.

For a configuration X of an event structure £ = (E, <,f},!) the set f(X) = {f €
E|3Je € X : eflf} includes all events of £ which are in conflict with an element of X. Let
E' := E\(X Ullg(X)). E\X := (E', < N(E' x E"), {n (E' x E"), l|gr) denotes the “sub-
event structure” of £ including all events which may be added to X in order to get a larger
configuration.

The category E 4 has as objects the prime event structures £ = (E, <, §,1) over a fixed
set of actions Act, where E C Ev for some “universal” set of events Fv. This condition
ensures that E. is small and therefore all subcategories P of E 4.; which we introduce
to define some kind of path-P-bisimulaton are small. Let £ = (E,<g,lg,lg) and F =
(F,<FplF,lr) be objects of Egct. A total map n: E — F is a morphism from £ to F iff

o foralle € E: Ilg(e) = lp(n(e)),
o VX € Conf(€) : n(X) € Conf(F) and
e VX € Conf(E)Ve, e’ € X :n(e) =n(e) > e=¢.

Lin denotes the full subcategory of E 4.; which consists of conflict free event structures
(E,<,0,1), where E is a finite set and the dependency relation is a total order.

Let £ = (E,<g,0,lg), M = (M,<u,0,l5) be finite event structures with E N
M = 0 and <py= {(m,m)|m € M}. Then F := &£; M denotes the event structere
(BEUM,<p0,lgUly), wheree <p fiff e = for(e € Eand f € M) or e <p f.
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Call an event structure
S:i=My; My ... ; My, n>0,

a step, where M; = (M;, <u,,0,1;) are event structures, M; are finite sets, M; are pairwise

disjoint and <pr,= {(m,m)|m € M;}. For an event e of an event structure £ let

1 L e} = {e)

depth =
epthe(e) { 1+ max{depthe(f)| f €l {e}, f # e} otherwise.

Let § := My;My;...; My, be a step, where all M; are different from the empty event
structure, let e be an event of S. Then e € M; <= depths(e) =4, 7€ {1,2,...,n}. Thus
the representation of a step by nonempty event structures M; is uniquely determined.
Step denotes the full subcategory of E 4., which consists of steps as objects.

Call Pom the full subcategory of E 4.; which has as objects those conflict free event
structures (E,<;0,!) where E is a finite set.

A pomset [£] is the equivalence class of an event structure £ from Pom where we
take isomorphism as equivalence relation. P denotes the set of all pomsets which can
be derived from E4q;. A pomset [£ = (E,<g,0,lg)] is less sequentiell than a pomset
[F = (F,<r,0,lF)], [] < [F], iff there exists a map f : E — F which is bijective and a

morphims in E 4.

4.1 Notions of bisimulation on event structures

In order to introduce some notions of bisimulation on event structures we define different
transition relations on the configurations of an event structure. Let £ = (E, <,},!) be an

event structure over Act, let X, X" € Conf(€) be configurations of £.
e X -5 X' iffa € Act, X C X', X'\X = {e}.

o X M X'if MeNAC X C X' Ve, feX"\X:e#f= ecof and
Va € Act : M(a) = |{e € X'\X |l(e) = a}|.

e X L X'iffpe P, X C X' and p = [X'\X].

Definition 4.1

Let &1, £ be event structures.

1. A relation R C Conf(&1) x Conf(E2) with (0,0) € R is called
interleavingA bisimulation f for all (X,Y) € R, a € Act holds:
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e if X =5 X' in Conf(£1) then Y -2 Y' in Conf(&s) for some Y' € Conf(E,)
with (X', Y') € R and :
e if Y -5 Y’ in Conf(£) then X -2 X' in Conf(£) for some X' €
Conf(&1) with (X',Y') € R.
bf-bisimulation (this definition is due to [GKP92], they call this relation backward-
forward bisimulation) iff it is an interleaving bisimulation and for all (X', Y') €
R, a € Act holds:
o if X %5 X' in Conf(&;) then Y = Y in Conf(&;) for some Y' € Conf(E,)
with (X,Y) € R and
e if Y -5 Y’ in Conf(&;) then X -2 X' in Conf(E1) for some X' €
Conf(&1) with (X,Y) € R.
step bisimulation iff for all (X,Y) € R, M € N&¢t holds:
o if X X5 X' in Conf(£)) thenY 25 Y in Conf(&;) for some Y' € Conf(£s)
with (X',Y') € R and
e if Y X Y in Conf(&) then X X X' in Conf(E1) for some X' €
Conf (&) with (X',Y') € R.
pomset bisimulation iff for all (X,Y) € R, p € P holds:
o if X 25 X' in Conf(E1) thenY 25 Y in Conf(&;) for some Y’ € Conf(&E;)
with (X',Y') € R and ‘
o if Y -5 Y in Conf(&y) then X 25 X' in Conf(£,) for some X' €
Conf(&1) with (X',Y') € R.

2. A set R of triples (X,Y, f) where X € Conf(£1),Y € Conf(£s) and f : X — Y s

an tsomorphism in Pom is called

history preserving bisimulation iff for all (X,Y,f) € R, p € P holds:
o if X 25 X' in Conf(&) then Y 2 Y' in Conf(&) for some Y' €
Conf(&2), f': By — E with (X', Y', f') € R, f|/x = f and
o if Y -5 Y' in Conf(&;) then X 25 X' in Conf(£1) for some X' €
Conf(&1), f': B1 = E» with (X', Y', f') € R, f|/x = f.
strong history preserving bisimulation iff R is a history preserving bisimula-

tion and satisfies further

e (X',Y',f') € R and X C X' for some configuration X € Conf(E;) implies
(X7Y7f) S Rfor some Y g Y’ and f — flIX and
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e (X'Y'.f') € Rand Y C Y’ for some configuration Y € Conf(£;) implies
(X,Y,f) € R for some X C X' and f = fl’X'

For these bisimulations the following strict inclusions hold:
= C ~pfp C ~shp—b C ~hp—b C ~pom—b C ~step—b T ~int—bs

where = stands for isomorphism, ~¢_; for bf-bisimulation, ~shp—b for strong history pre-
serving bisimulation, ~p,_; for history preserving bisimulation, ~pom—b for pomset bisim-

ulation, ~ep—p for step bisimulation and ~;n_p for interleaving bisimulation3.

4.2 Modelling with the abstract concepts
We are again considering the suitability of the two frameworks for handling the various

notions of bisimulation.

In a first approach we might - for a given bisimulation type — attempt to formulate a suit-
able subcategory P of E 4.; and model this bisimulation as path-P- or as P-bisimulation. If
we succeed we might proceed and apply theorem 3.3 to obtain transition systems Tpatn—p(€)
and an AM-bisimulation. This approach has two drawbacks: First it might be impossible
to find an adequate path-P-modelling, see section 4.3, second, even if we found a suitable
modelling in the framework of [JNW94|, the highly abstract transition systems and the
AM-bisimulation provided by theorem 3.3 are probably not the ones we are aiming for.

Most notions of bisimulation induce in a natural way transition systems. Hence one
might in a second attempt model this “natural way” by an operator m¢ and invoke theorem
3.6. As it turns out, however, there are interesting types of bisimulation for which mt does
not extend to a functor, so this approach will not work either.

In the following we first study two different strategies to associate a transition system
with an event structure. In section 4.2.2 we model interleaving, bf, step and pomset
bisimulation as AM-bisimulations. We also show that bf-bisimulation can only be modelled
by one of the two strategies. In section 4.2.3 we use our results on the relations between the
abstract bisimulation concepts to model interleaving, step and pomset bisimulation in the
framework of [JNW94]. (Strong) history preserving bisimulation is considered in section

4.2.4.

3The relation ~pf—p C ~gnp—sp is due to [GKP92], who consider just prime event structures without

auto-concurrency where the related transition systems exhibit only finite branching.
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4.2.1 Defining transition systems related to an event structure

We will discuss two types of transition systems which one can associate with an event
structure: The first one takes the configurations of the event structure as the states of a
transition systems. This approach corresponds to the definition of occurence transition
systems (OTS) in [GKP92]. We will define three operators Tins, Tstep and Tpom where
each of them makes of an event structure a transition systems over a particular set of
labels. Another possibility to translate an event structure into a transition system can be
found in [LG91] or [BMC94]: Here one takes event structures as states. Again we define
three operators, this time TFE;,;, TEgep and TE,om. The two types of transition systems

represent different views on event structures:

e Taking configurations as states means to distinguish between “situations” in an event
structure which arise from different histories: Two states, i.e. two configurations of an
event structure, are different, iff they differ in at least one event. The computational
possibilities of a state, i.e. its future, are not considered. Therefore a transition system

based on configurations may have more than one final state.

e Taking event structures as states means to collect in a state all “situations” in an
event structure which have the same future: Two configurations, i.e. histories, lead
to the same state, iff the same sets of events may be added to them in order to
obtain a larger configuration, i.e. both configurations have the same “computational
possibilities” ) The different histories which may lead to one state are not considered.

Thus a transition system of this type has at most one final state.

Common to both approaches is that they respect different names of events, i.e. isomorphic
histories resp. computational possibilities are not identified.

Comparing both types of transition systems we show that for any prime event structure
& there exist AM-bisimulations (R,~.) between T.(£) and TE, () with (0, &) € R, where
* € {int, step, pom}. v :

For an event structure & = (E,<,4,1) of E4. we construct different coalgebras, i.e.
transition systems, Tint(€) = (Conf(£), ctint), Tstep(€E) = (Conf(E), astep) and Tpom(E) =
(Conf(€), apom) in Setr, where the functor F := P(L x _). They consist all of the same

set Conf(€) in the first component but are defined over different sets of labels L. In case
of

Tint(€) we choose L := Act and define (a, X') € ajni(X) iff
X CX', X'\X = {e} and l(e) = a.
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Figure 11: Tyom is not a functor to Tp.

Tstep(E) we choose L := Ng'* and define (M, X') € apep(X) iff
XCX Ve, feX'\X:e# f= ecof and
Va € Act : M(a) = [{e € X'\X |l(e) = a}|.

Tpom(€E) we choose L := P and define (p, X') € apom(X) iff
X C X' and p = [X'\X].

Thus for the above defined maps «, holds: ([, X') € a,(X) < X Ly X', where
* € {int, step, pom} and [ is a label of appropriate type. Neglecting the different types of the
labels L, i.e. looking at an action a as a multiset with M(a) =1 andforz #a: M(z) =0
resp. on a multiset M as a pomset [£ = (E,<g,0,lg)], where Ya € Act : M(a) = |{e €
E|l(e) = a}|, <g= {(e,e)|e € E}, we get the following relations between the above
introduced transition systems: VX € Conf(€) : aint(X) C step(X) C apom(X).

In section 4.2.2 we will show that the operators T, are suitable to model some of the
above defined bisimulations on event structures as AM-bisimulation. Thus we are interested
to invoke theorem 3.6 in order to obtain from an AM-bisimulation a path-P-bisimulation.
One condition of theorem 3.6 is that a choosen operator evolves into functor.

Let £ and F be prime event structures,  : £ — F a morphism in E 4.;. To obtain from
7 a morphism in T et define Tine(n)(X) := n(X) for configurations X € Conf(£). It is
easy to see that with this definition the operator Tin\t evolves into a functor from E 4. to
T 4ct- Concerning the operator Ty, we take again Tstep(n)(X ) := n(X) for configurations
X € Conf(£). With this definition Ty, evolves into a functor from E 4. to TNS‘“ — for a
proof see corollary 4.14. The operator Tpom is not a functor from E ¢ to Tp, see example
4.2. The reason is that an event structure morphism may map causal dependent events
on concurrent events. But the operator Tporm is able to distinguish between these different
concepts: As we will see in section 4.2.3 pomset bisimulation can be modelled using the

operator Tpom.
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_.Example 4.2
Let £ and F be the event structures from figure 11. In Tpom(E) we find the transition

] ﬂ) {€e1,e2} while there is no transition labelled with [€] in Tpom(F). Thus in Tp ezists
no morphism from Tpom(E) to Tpom(F). On the other hand n: € — F with n(e;) = f; and
n(esz) = f2 is @ morphims between £ and F in Ey. Therefore the operator Tpom cannot

evolve into a functor.

In order to introduce the operators TE;n;, TEstep and TEp,y, we define transition re-
lations —[n between the objects of E 4., where % € {int, step,pom} and ! is a label of
appropriate type. Let £ = (F,<g,#g,lg) and F = (F,<p,Hir,lr) be prime event struc-

tures.
£ i Fiff3e € E: | (e) = {e}, l(e) =a, F = £\{e}.
£ step F iff there exists a configuration X € Conf(€) such that

e Ve, feX: ecof,

o M € N§'“ with Va € Act: M(a) = |{e € X|ig(e) = a}| and

o F=E\X. '
& L5 pom F iff there exists a configuration X € Conf(€) such that p = [X] and F = £\ X.
The set

Reach,(€) = {F€Bax| 3k>0, 38,81, ..,6 € Bau :
Eo=E E=F, & o, €y for i < k)

includes all event structures which can be derived from £ by a finite number of steps with

L5, where € {int, step,pom} and ! is an element of Act, N4\ resp. P.

Lemma 4.3

Let £ = (E,<g,ig,lg) be a prime event structure.

1. Let &' := E\X for some configuration X € Conf(€), £" := EX' for some configu-
ration X' € Conf(E'). Then X U X' is a configuration of £ and £" = E\(X U X").

2. For all event structures £ € Reachint(E) holds: There exists a configuration X €
Conf(&) such that &' = £\ X.

3. For all X € Conf(€) holds: €\X € Reachim(£).

4. Reachint(€) = Reachsep(E) = Reachpom (£).
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5. Let &', £" € Reachini(E). For all labels a, M, p holds:

(a) 8/ 'i)int E" =4

AX', X" € Conf(E): £ =E\X', € = E\X", X' Zrins X"
(6) €& s pep E" = |

IX', X" € Conf(€): € =E\X', & =E\X", X' s pp X
(c) € Lrpom E" ==

3X', X" € Conf(€): £ =E\X", E"=E\X", X' L5 ,0m X"

6. Let X', X" € Conf(€) with X' C X". Define £’ := E\X', &" := E\X" and X :=
X"\X'. Then X is a configuration of &' and £" = E'\X.

7. Let X', X" € Conf(E.) For all labels a, M, p holds:

(@) X' ine X" == E\X' Loy E\X"
(6) X' s gep X" = E\X' My 0y E\X"
(c) X' Drpom X" => E\X' 2o E\X"

Proof:

1. Let X € Conf(£), & = E\X = (E', <, {,l'), let X' € Conf(E'). We first prove
that X U X' € Conf(£). As X and X' are finite sets so is X U X’. As X is a
configuration of £ it contains for all e € X their predecessors. Consider now the set
{é <ge|é e E, eec X'} of all predecessors which the events from X' have in E. We
have to show that this set is contained in X U X"'. Let é <g e for some event e € X',
where é € E. If ¢ € E' we know é € X’ because X' is leftclosed. If é ¢ E' either
é € X or é € §¢(X). In the first case we are done again. In the second case exists
some event f € X with éff¢ f. This implies flice and thus e ¢ E' - contradiction. To
show that X U X' are conflictfree with respect to g let e, e2 € XU X'. If both events
are in X they are not in conflict as X is a configuration of £. Let e; € X and e; € X',
assume e1figez. Then ez € f§g(X) and therefore e; ¢ X’ — contradiction. Finally let
e1, e2 € X', assume e;jfige;. As &£ inherits its conflict relation from & this leads to

e1f'ez — contradiction to X' € Conf(E').

Next we show fg(X) U e/ (X') = (X U X’). As any conflict in £’ is inherited from &
the inclusion “C” holds. To prove the other direction let f € §(X U X'). Then there
exists some event e € X U X' such that effgf. If e € X we are done. If e € X’ and
f € E' we get f € fie(X'). Now consider the situation f ¢ E’ : Then either f € X of
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f € #(X). In the second case we are done again. In the first we get e € §(X) and

therefore e ¢ X' — contradiction. With this equation we get
E" = E'\(X'Ufe(X")
(B\(X Ufe(X))\ (X" Uter(X')
E\(X U X" Ufe(X) U e (X')
= E\((XUX')Ule(X U X")

and may conclude £” = £\(X U X').

. Let &' € Reachint(E). We show the existence of a configuration X € Conf(€) with

&' = €\ X by induction on the length n of a shortest derivation from &£ to £’

If n = 0 take X := 0 as configuration: & =v£\X = &' Now let £ be an event
structure in Reachin:(E) with a shortest derivation from £ of length n + 1. Then
there exists an event structure £’ € Reachin:(€) such that £” —25,,; £ and £” can
be derived from £ in n steps. By the induction hypothesis there exists a configuration
X C E with £&" = E\X. Let e be the event with £” = £'\{e}. From part 1 of this

lemma we know that X U {e} is a configuration of £ and £’ = E\(X U {e}).

. Let X be a configuration of £. If X = 0 then E\X = &E\0 = £ € Reachin(£).

IfX #90 we consider the configuration X as lposet. As X is finite there exists
a total order <;C (X x X) such that e <g f = e <; f for all e,f € X. Let
e1 <t ez <¢ ... <; e, be the order on the elements of X, a; = lg(e;), 1 < ¢ < n. Let
E=Eandforl1<i<n: &:=E\{e,ey,...,ei}. For & and £11, 0 < 7 < n, holds:
Eiv1 = &\{ei}. Therefore £ = & Byt &1 rint E2 “Brine . i En=E\X isa
derivation of £\ X and £\ X € Reachin:(&).

. Obviously Reachint(£) C Reachsiep(E) C Reachpom(€) : Any single action can be

viewed as multiset, any multiset is a special case of a pomset.

As a partial order on a finite set can always be linearized, it is possible to “simu-
late” any transition & -2 E" between event structures £ and £” of Ex by a
y pom
. .- a a a Gn+41
finite number of transitions & —jn: £ —2int - —>int En —int €". Therefore

Reachpom(€) € Reachini(€).

. Let & = (F',<g, g, lp) and £" = (E”,SE",ﬁE",‘lE”) € Reachin:(£).

(a) If & 250 £ we know that £” = £'\{e} for some e € E with l);(e) = a. As
E' € Reachins(€) there exists a configuration X’ € Conf(€) such that & = E\X'.
Let X" := X' U {e}. From the part 1 of this lemma we know that X" is a
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configuration of £ and we get: £" = (E\X')\{e} = E\(X' U {e}) = E\X" and
X i X, |

(b) and (c) Let &' ﬂmep E" resp. &' ,om E". In both cases we know from
part 2 of this lemma that there exists a configuration X € Conf(€) such that
&' = £\X. By definition of both transition relations there exists a configuration
X' € Conf(&') with " = £'\X'. Let X" := X U X'. X" is a configuration of
€, E\X" = &". If we start with a multistep the elements of X’ = X"\ X are

concurrent in £, if we start with a pomset X’ is a Iposet.

6. Let X', X" € Conf(€) with X' C X". Let &' := E\X' = (E', <p', g, p) and £" :=
E\X" = (E",<prHgn,lgr). Let X :== X"\X'. If X = () obviously X € Conf(E£') and
&=£.

Now let X # (. First we show that X is a configuration of £. Let e € X. Then
e € X" and therefore for all f € X" holds —(effgf). Thus e € E\(X' U X’) and we
get X C E'. X is finite as it is a subset of X”. In order to prove that X is leftclosed
in &' let e € X. Consider an f € E with f <g e. As X" is a configuration of £ we get
fEX" If f e E then f € X' and thus f € X = X""\X" X is conflict-free because
X" is. .

In order to prove £ = £'\X we first establish #¢(X") = fe(X') Ule(X). Let f €
fie (X"). Then we find an element e € X” with fiize. As X" = X'UX we get: e € X'
or e € X. The first case implies f € §¢(X’). In the second case we know that f ¢ X"
and thus f ¢ X’. This leads to f € E' and fige - which means: f € ﬁg: (X) - or to
f & E' which implies f € f¢(X'). To prove the reverse direction let first f € fg(X").
Then obviously f € #¢(X"). Now consider f € #¢(X). Then f € #¢(X) and thus
f € te(X").

With this equation we get:

E' = B\(X"Ufe(X")
E\(X" U fs(X') Uter(X)

((BAX) \ $e(X7) \X) \ fer (X)
= E\(X Uf(X).

As the causality relation, conflict relation and label function are inherited from &£

these equations on sets of events lead to £” = £\ X.
7. Let finally X', X" € Conf(£). If
(a) X' i)ing X”,
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(b) X' s ep X" o1

() X' Espom X"

we get X' C X" and we may conclude with part 6 of this lemma: X := X"\X'
is a configuration of &' := E\X' and &" = E\X" = £'\X. In the first case the
configuration X consists of one element labelled with a, in the second X corresponds

to a multiset M and in the third to an object p of P. |

With lemma 4.1 we can define the operators TFE, on an event structure £ as fol-
lows: TEin(€) := (Reachini(E), &int), TEstep(E) := (Reachint(E), astep) and TEpom (£) :=

(Reachin(E), &pom ), Where
o (a,E") € Ging(E) I &' Loins E,
o (M,E") € bigtep(E") iff €' s pep £ and
o (9,E") € Gpom(E') iff &' Lspom E".

As for the operators T, one obtains: Gint(X) C Gstep(X) C Gpom (X).

As example 4.4 shows the operators TEinta T Estep and T Ep oy, fail to evolve into functors
from E4. to Tp, where L is choosen from {Act, N§®, P}. The reason is that an event
stucture morphism 7 : £ — F cannot “control” all computing capabilities of F : The
execution of events ey, ez in £ may lead to the same computational capabities in £, while
the execution of the event n(el) in F leads to a “future” different from the one after the
execution of n(ez2) in F. An event f ¢ 7n(E) may be in conflict with n(e;) but not with

n(ez). This “splits” one state in TE,(£) into two states in TE,(F).

Example 4.4

Consider the event structures £ and .7-' in the initial nodes of the transition systems T Ein(E)
and TEiq:(F) of figure 12. Obuiously the map n : {e1,e2} — {f1, f2, f3} with n(e1) =
f1 and n(ez) = f2 is an event structure morphism. But there is no morphism in T gq
between TEni(E) and TEjni(F). As —intC—stepC—rpom there are no morphisms in
Tyaee resp. Tp between TE.(€) and TE.(F) for = € {step,pom}.

Example 4.5

The transition systems Tini(E) and TEini(E) of an event structure £ are in general not
isomorphic. Consider the event structure of figure 13. Figure 14 shows both transition
systems. - While Tint(E) has two final states TE;n:(E) has just one final state. As the

operators Tstep, Tpom, TEstep and TEpom lead to the same final states as Ting Tesp. TEing
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Figure 12: No morphism between TE;,,+(£) and T E;pn(F).

we may conclude that in general transition systems of type T and of type TE are not

isomorphic.

Theorem 4.6 ‘

Let & be an event structure. Then for the transition systems obtained by the operators of
type T resp. TE holds: There ezists an AM-bisimulation (R,~) with (0,€) € R between
T.(€) and TE.(E), where x € {int, step, pom}.

Proof: Let £ be a prime event structure, (4, @) := T.(€) and (B, B) := TE,(£), where * €
{int, step, pom}. Let R:= {(X,£')| X € Conf(E), & = E\X}, let for all (Y,E"),(X,E") €
" ;

(LY, ") ery(X, €)= (I,Y) € a(X), (,E") € B(E,
where | is a label of appropriate type, i.e. an action, a multiset or a pomset. We claim
that (R, ) is an AM-bisimulation between (4, &) and (B, 3). As the transition relations of

(A, @) and (B, 3) are defined in a different way, this time we have to prove
(i) (@om) C (Fm o),
(i) (Fmyov) C(aom),
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e ‘ eg
£ :
[ ]
e}

Figure 13: The event structure £.

(iii) (Bomp) C (Frg0) and
(iv) (Fmpoy) C (Bom).

Let (I,Y) € (ao 7r1)(X, &'). Then (I,Y) € a(X) and £ = E\X. Define £"” := £\Y. Part
7 of lemma 4.1 provides (I,£") € B(€'). This results in ([,Y,£") € v(X,£’) and we may
conclude (I,Y) € (Fry ov)(X,E").

Let (I,Y) € (Fm o 4)(X,€"). Then there exists some event structure £” such that
(I,Y,E") € 4(X,E"). By definition of v we may conclude ([,Y) € o(X) and get: (I,Y) €
(aom)(X,E). ‘

Let (I,€") € (B om)(X,E'). Then we get (I,E") € B(E'), i.e. there exists some con-
figuration Y € Conf(£’) such that £’ = £'\Y. With lemma 4.1, part 1, we know that
XUY € Conf(€) and £" = E\(X UY). Thus we obain (X UY,£&") € R. By definition of
the operators T, we get (I, X UY) € a(X) and therefore ([, X UY,£") € v(X,E’"). Thus we
have: (I,&") € (Fra 0o y)(X,E&").

Let (1,€") € (Fmg 0v)(X,E'). Then there exists some configuration Y € Conf(€) such
that (1,Y,&") € (X, £'). This implies (I,£") € B(£') and we get: (I,E") € (Bom)(X,E').

We finally remark that by definition holds: (0,£) € R. |

Remark 4.7

The projections 7y : R — A and o : R — B in the proof of theorem 4.3 are both surjective.
7y is even injective: If m(X,E\X) = mo(Y,E\Y) then X =Y, therefore E\X = E\Y and
thus (X,E\X) = (Y,E\Y).

Example 4.8

As the event structure from figure 13 shows there is in general no strong AM-bistmulation
with (0,€) € R between T,(E) and TE.(E), see figure 14: Any AM-bisimulation between
Tint(€) and TE;n(E) with (B,€) € R has to contain ({e1,e3},0}. In TE;n () there are two
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a )

{er}: ; {e2}

NN

{e1, es} {e1,e2}

Tint(€) TEint(€)

Figure 14: T;,4(€) and TEin(€) for the event structure from figure 13.

arcs leading to the state 0 : one labelled with “a”, the other labelled with “b”. But the state
{e1,e3} of Tint(€) is reachable only with a transition labelled “b”.

In order to model some kind of bisimulation on event structures as AM-bisimulation
theorem 4.6 together with the transitivity result of lemma 2.4 says that it is enough to study
Jjust one type of transition systems related to prime event structures: Let £ and .F be event
structures, let (R,v) be an AM-bisimulation between T,(£) and T.(F) with (§,0) € R,
where * € {int, step, pom}. By theorem 4.6 we know that there exists AM-bisimulations
(51,01) and (S2,02) between T,(€) and TFE,(£) with (0,£) € S resp. between T, (F) and
TE.(F) with (8, F) € S;. Applying lemma 2.4 on these three AM-bisimulations we get an
- AM-bisimulation (R, %) between TE,(£) and TE,(F) with (£,F) € R. The same holds
for the other direction. But as example 4.8 shows it_is necessary to study both types of

operators, if we deal with strong AM-bisimulation.

4.2.2 Modelling interleaving, bf, step and pomset bisimulation as AM-bisimu-

lation

With lemma 2.3 we can translate the definition of interleaving, step, pomset and bf-bisi-

mu-lation directly into AM-bisimulations:
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Theorem 4.9

For event strucures £, F holds:

1. € and F are interleaving bisimilar iff there exists an AM-bisimulation (R,7y) between
II:mt(g) and T'znt(}-) with (@,@) € R.

2. € and F are bf-bisimilar iff there ezists a strong AM-bisimulation (R,v) between
Tint(€) and Tins(F) with (0,0) € R.

3. £ and F are step bisimilar iff there exists an AM-bisimulation (R,~) between Tytep(E)
and Tyep(F) with (0,0) € R.

4. € and F are pomset bisimilar iff there exists an AM-bisimulation (R,~v) between
Tpom(E) and Tpom(F) with (0,0) € R.

Proof: We prove the theorem only for interleaving and bf-bisimulation.

Let £ and F be interleaving bisimilar. Then there exists an interleaving bisimulation
R C Conf(€) x Conf(F). Let Tint(E) = (Conf(€),a) and Tipn(F) = (Conf(F), 3) be the
related coalgebras. Let for all (X,Y), (X', Y') e R

(a,X',}/") €EY(X,Y) e (a,X') € a(X), (a,Y') € B(Y).

Let (a,X") € (Fmyov)(X,Y). Then there exists Y’ such that (a, X',Y’) € v(X,Y). By the
definition of v this implies (a, X') € a(X) and hence (a,X') € (@ o m)(X,Y). To prove
the inclusion the other way round let (a, X') € (aom)(X,Y). This implies (a, X') € a(X)
and as R is an interleaving bisimulation there exists some Y’ such that (a,Y’) € B(Y) and
(X',Y') € R. Therefore we get (a, X', Y") € ¥(X,Y) and finally (e, X') € (Fm o v)(X,Y).
Lemma 2.3 proves the other implication. '

Now let R be an bf-bisimulation between £ and F. Then R is especially an interieaving
bisimulation and from the prove above we know that there exists a map v such that (R, )
is an AM-bisimulation. We claim that (R,~) is strong. Due to lemma 2.1 we have only to
prove that (a” om) C (Fmpoy7).

Let (X',Y') € R, let (a,X) € (o™ om)(X',Y'). Then (a,X) € a™(X’) and thus
(e, X')ea(X). AsRisa bf-bisimulation this implies that there exists ¥ € Conf(F) with
(a,Y') € B(Y) and (X,Y) € R. By definition of v we get (a, X', Y’) € y(X,Y), therefore
(a,X,Y) € v~ (X', Y") and finally (a, X) € (Fry oy~ )(X',Y"). ,

Let (R,v) be a strong AM-bisimulation between £ and F with (0,0) € R. Then we
know that R is an interleaving bisimulation between £ and F. In order to prove that R is

a bf-bisimulation consider a transition (a, X') € a(X) in Tin(€), where (X', Y') € R. We
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£ F:
&—9o
2 3
° ° o— o
7 eb f{’ b4

Figure 15: Two interleaving bisimilar event structures.

Tint(g) : T%nt(}-) :

0 0

a/ \b a/ \b
{ei} {e2} {hy {fs}
b\ /a bl la

{e1,e2} {f1, f2} {f3, fa}

Figure 16: The transition systems T;,:(€) and Tine(F).

get (a,X) € a™(X') and (a,X) € (@™ om )(X',Y’). As (R,~) is strong we may conclude:
(a,X) € (Fmp oy~ )(X',Y'). Thus there exists some configuration Y € Conf(F) such that
(a,X,Y) € y~(X',Y’). This implies (X,Y) € R. Using again the property strong of (R,~)
we get (a,Y) € B7(Y”) and finally (a,Y’) € B(Y). 0=

Remark 4.10
It 15 important to note that bf-bisimulation cannot be modelled as AM-bisimulation using
the operator TE;,; :

Consider the event structures £ and F of figure 15. Figure 16 shows the transition sys-
tems which one obtains by applying the operator T;,;. They are isomorphic to the transition

systems we discussed in example 2.6 to show that strong and non strong AM-bisimulation

Categorical characterization of bisimulation



36

Section 4: Illustrating the concepts in terms of event structures

iR f3
6o—  +o
e 2

TEint(£) T Eint(F)

Figure 17: TE;n(€) and TE;,(F) for the event structures from figure 15. (
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£ F
,®
23
e— o faé—-—>o
e$ .ted L. 13
'Y ®
fi

Figure 18: Pomset-bisimilar event structures.

are different concepts. Therefore £ and F are interleaving bisimilar but not bf-bisimilar.
Now consider the transition systems T E;n(€) and TE;n(F). As figure 17 shows they are

wsomorphic and thus there exists a strong AM-bisimulation between them. .

Two event structures, which are interleaving, step or pomset bisimilar, are in general

not strong AM-bisimilar:

Example 4.11
Take as event structeres £ and F from figure 18. The set

R:={ (0,0),{er}, {f1}), ({er}, {fa}), ({e2}, {f2}),
({61, 63}7 {f17f3})’ ({61, 62}1 {flv fB})v ({617 63}, {f27 f4})’ ({61)82}7 {f2; f4})}

is a pomset bisimulation between £ and F and therefore equally a step and an interleaving
bisimulation (this bisimulation-ezample is due to [Vog93)).

Let (A,a) = T.(€), (B,B) = Tu(F), where * € {int, step, pom}. Let (R,v) be some
AM-bisimulation between (A, ) and (B,[3). As we find the transition § 2> {f1} in (B,3),
we get ({e1},{f1}) € R. In (A, a) we find the transition {e;} N {e1,e2}. Therefore R has
to contain ({e1, ez}, {f1, f3})-

Assume that (R,7) is strong. As in (A,a) we find the transition {es} -2+ {e1,e2} we
get by (@~ om)({e1, e2}, {1, f5}) = (Fryov™)({er, 2}, {1, £3)) a transition (a, {e2}, Y) €
v~ ({e1,e2},{f1, f3}) and thus a transition ¥ -2+ {f1, fs} in (B, B). But there is no such

configuration Y € B. Therefore no AM-bisimulation between £ and F can be strong.
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4.2.3 Modelling interleaving, step and pomset bisimulation in the framework
of [JNW94]

[JNW94] studied history preserving and strong history preserving bisimulation on event
structures to show the suitability of their framework. We show in this section that in-
terleaving bisimulation a.nd‘ step bisimulation can also be modelled by choosing suitable
subcategories P. To obtain the result of step bisimulation we use theorem 4.9 and theorem

3.6. We also discuss pomset bisimulation.

Theorem 4.12

Two event structures &1 and & are Lin-bisimilar iff they are interleaving bisimilar.

Proof: Let & = (E1,<i,f1,01) and & = (Es, <s,f2,l2) be Lin-bisimilar, i.e. there exists
an event structure £ = (E, <,#,!) and Lin-open maps p; : £ — &;, ¢ = 1,2. We claim that

R:={(p1(X),p2(X)) | X € Conf(£)}

is an interleaving bisimulation between £; and &. As @ € Conf(E) we have (0,0) € R.

Consider the element (p;(X),p2(X)) of R for some configuration X € Conf(£). Let
p1(X) -2+ Y’ be a transition in Tjn(&1).

Make from the configuration p;(X) € Conf(€1) an event structure P = (P, <p,f{p,lp)
as follows: P:= X, <pisa linearization of <1 N(X x X), fp =0 and I, := Iy x. Let &
be the event in which py(X) and Y’ differ, i.e. {é} = Y'\p1(X). Let Q := (@, <0, 0,l0),
where Q := PU{é},letVec Q: e<géandVe,f e P:e<gf:<= e<p f,lig:=0
and Ve € P :lg(e) := lp(e) and lg(é) := a. Obviously P and Q are objects of Lin.

We define morphismp: P - & m:P - Qand g: @ — & by:

e Ve P: p(e) :=e,
e Vee P: m(e):=eand
e Ve € P: g(e) :=pi(e), q(é) =é.

Obviously we have: p;op = gom. As p; is Lin-open, there exists a morphim r : @ — £ such
that rom = p and pyor = q. Therefore Y := r(Q) = XU{r(é)} € Conf(£), p1(Y) =Y’ and
X -5 Y is a transition of Tj(€). Therefore p(X) —= pa(Y) is a transition of Tjne(E2).
Furtheron by definition of R we have (p1(Y),p2(Y)) = (Y, p2(Y)) € R.

Now let £ and &, be interleaving bisimilar. In theorem 4.9 we constructed an AM-
bisimulation (R, ) between Tin:(£1) and Tine(E2) with (0,0) € R. We claim that. unfolding
this coalgebra (R, ) to a tree S and constructing from S an event structure £ with mor-

phism p; : £ — &;, i = 1,2, makes a & and & Lin-bisimilar.
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First unfold (R,~v) interpreted as transition system with initial state (@,0) to a tree
S = (S1,41,Trany) : Take as states all nonempty, finite sequences of elements of R, i.e. the

one element sequence ((,0)) is the initial state 7; of S, a sequence

((Xlw}/l)v (X21 },Z)a RS (Xn,Yn»

is an element of Sy iff (X;,Y;) =5 (X2,Y2) 22y .. 5 (Xn,Yy) is a derivation in (R, )
and (X1,Y7) = (0,0). There is a transition

((X].,},l)’ (X21}/2)w crey (Xn’ Yn)) i) ((Xlaifl)a (X27Y2)7 A (Xn,Yn), (Xn+1,Yn+1)>

in Tran, between two states of S iff (X, Yn) — (Xn+1, Yee1) in (R, 7).

Now construct from S = (Sy,i1,Tran;) an event structure £ = (E, <,{,1). Define
o E:=S5\{i1},

e e< f:<= (e f) € Tran}, where Tran} denotes the reflexive transitive closure of
{(e, )| (e, a, f) € Tran; for some label a},

e eff = —(e<fVf<e) and

e lle)=a:+= e=((X1,Y1),(X2,Y2),.. ., (X0, Vo)) A (Xn—1, Y1) =5 (X, V).
Define maps p; : € — &, p2: £ = £ by

o p1({(X1, Y1), (X2, Y2), ..., (X0, Yp)) ) := e iff {e} = X,,\ Xn_1 and

o p2( (X1, 1), (X2, Y2),..., (X0, Y3))) = e iff {e} = Yo \Yro1.

We claim that p; and p; are Lin-open morphisms.
By the construction of (R,7v) we get: (X,Y) - (X',Y’) implies X -2+ X' and
Y —%5 Y'. Therefore p; and p, preserve labels. As all events of £ are in conflict iff they are

not related by <g a configuration C with n > 1 elements of £ is a set

C={ (0,0),(X2,Y2)),
((0,0), (X2,Y3), (X3,Y3)),

((0a 0)7 (X27‘Y'2)7 (X31 Y3)7 ceey (Xn+1, Yn+1)>}.

Applying py on such a configﬁration C € Conf(€) results in:

n+1
(C) = |J Xi\Xi_1 = Xn41 € Conf(&).
=2
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Let e,€e’ be events of a configuration C € Conf(£) with p;(e) = pa(e’). Then there exist
configurations X; C X, and X3 C X4 of & with pi(e) = pi(e') = é, where X\ X, =
X4\ X3 = {€}. Let w.olg. e <g €. Assume e # €. Then Xo C X3 and pi(e) = p(¢') €
X3 € X4 - contradiction to p;(e’) € X4\ X3. Thus e = ¢’ and we may conclude that p1 and
p2 are morphisms.

Finally we prove that p; is Lin-open. Let P = (P, <p,0,lp) and Q = (@, <0,0,l0) be
objects of Lin, let p: P =+ &, m : P - Q, ¢: Q@ — £; be morphism with gom = p; op.
In case of P = Q = ( there exists obviously a morphism r : @ — £ with p = r o m and
g = p1 o r. Thus we assume P,Q # 0. We prove the existence of the morphism r : Q — £
by induction on the difference n :=|{Q| — | P|.

If n == 0 the morphism m is bijective: P € Conf(P), m restricted to configurations is an
injection, and as |P| = |Q| the morphism m is also surjective. As the map m™! preserves
labels, maps configurations of Q on configurations of P and is injective on Q it is especially

a morphism in E 4¢;. Thus we may define r :=pom™ and get: rom=pom™lom=p

andpior=piopom™l=gqg,asqom=pjop.
Now let |Q| — |P| = n+ 1. Let é be the largest event of Q. Let Q' := (@Q',<',0,1')
with Q" := Q\{&}, <"'=<o N(Q' x Q"), ' :=lg|g- Let m' : P — Q' the morphism with
m/'(e) := m(e) for all e € P and ¢’ : @' — &; be the morphims with ¢'(e) := g(e) for all
e € @'. Then obviously ¢ o m' = p; o p and thus by induction hypothesis there exists a
morphism 7' : @' — £ withp=r'om’ and ¢ = p; o7’
Consider the image of Q' under the morphism 7’ : This is a configuration C of £ and

has therefore the form

C= { ((070)1 (X27Y2)>a
((0,0), (X2,Y3), (X3,Y3)),

((0,0),(X2,Y2),(X3,Y3), ..., (X1, Yer1 ) }

where k = |Q'|, p1(C) = Xi41 and ¢'(Q) = p1(r'(Q)) = Xi11. The transition Q' —— Q
in Tins(Q) implies that there is a transition ¢(Q') = Xj11 — ¢(Q) in Tin(E1). As R is
an interleaving bisimulation and (Xy41,Yx+1) € R there exists a configuration Y’ € C(&;)
such that (¢(Q),Y”) € R and Y31 — Y is a transition in Tjn(€2). Thus by definiton of
v we get the transition (Xii1, Yis1) — (¢(Q),Y") in (R,7) and therefore an event

fi= ((®7 @)7 (X27 Y2)7 (X3y },3)7 ce (Xk+17 Yk-i—l)) ((Q(Q)7 YI)>

in the event structure £. Define Ve € Q' : r(e) := r'(e) and 7(é) := f. This map r is the

desired morphism. ]
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Corollary 4.13

Let £, & be event structures in E 4.t The following are equivalent:
1. & and &; are interleaving-bisimilar.
2. There ezists an AM-bisimulation (R,~) between Tin: (1) and Tint(E2) with (0,0) € R.

3. There exists an AM-bisimulation (R,7) between T uth-Lin(61) and Tutn-Lin(€2)
with (¢1,¢2) € R.

4. There exists a strong AM-bisimulation (R, ) with (11,12) € R between Tpath—Lin(gl)
and Tpath—Lin(g2)'

5 & and & are path-Lin-bisimilar.
6. £ and &, are strong path-Lin-bisimilar.
7. &1 and &5 are Lin-bisimilar.

Proof: Theorem 4.9 proves the equivalence of 1 and 2, applying theorem 3.6 results in the
equivalence of 2 and 5. In theorem 4.12 we find the equivalence of 1 and 7, with theorem
3.1 we may conclude that 7 implies 6. Thus 5 and 6 are equivalent. Theorem 3.3 gives us
the equivalences between 3 and 5 resp. 4 and 6. [ |
One should note that the strong AM-bisimulation of corollary 4.13 is between transition
systems of type Tpath—Lin and not of type Tin;.
Looking on step bisimulation we get the following characterization in terms of path-P-

bisimulation:

Corollary 4.14

Two event structures of E st are step bisimilar iff they are path-Step-bisimilar.

Proof: We prove the equivalence using the characterization of step bisimulation in terms
of AM-bisimulation in theorem 4.9. On this AM-bisimulation we apply theorem 3.6 in
order to translate it into a path-Step-bisimulation. Therefore we have only to show that
all six conditions are fullfilled. We choose Setp with F = 'P([N()“Ct X _), TNaqct as the above

described “link”-category, M=E 4. and P=Step.

Condition 1: Let mt € := Typ(E). Let f : £ — F be a morphism between event struc-
tures. Define mt f : mt € - mt F, X v f(X), where X € Conf(€). Let X M, X' be
a transition in Tep(€). As f is an event structure morphism, f(X), f(X') € Conf(F)
and f is injective on X'. Therefore ‘we find a transition f(X) M, F(X') in Tep(F).

As furtheron (mt f)(#) = 0 we may conclude that mt f is a morphims in TN(/);C:.
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Obviously we have mtids = idpmis, where £ is an event structure from E 4., and
mt(f og) = (mt f) o (mtg) for all morphism f:E — &3, g: & — E2 of E 4¢.

Condition 2: Take as initial object I the empty event structure. As E 4. is small so is

Step.

Condition 3: Let § = (S, <,#,1) = M;Ms;...; My, n > 0, be a step, where M; =
(M, <m;,0,5;). S 1s the final state of Tstep(S). Let X be a configuration of S. Then
holds: S\X = R U U?=k+1 M;, R C My, for some k € {1,2,...,n}. Let A(a) :=|{e €

R|l(e) = a}|, Ai(a) |{e€M,+1|l(e =a}] i—kk-l—l,...,n—l,aEAct,be
multisets over Act. Then X - UE, M 25 Uk i, .. 2% S is a derivation

from X to S in Tsep(S).

A
2% s, be a derivation in some transition system

Condition 4: Let s Ay 89 Ay
in T. Let § = (5,<,4,1) = My;Ms;...; Mu_1,n > 1, be a step, where M; =
(M, <m,,0,5), <m,= {(m,m)|m € M;}, M; pairwise disjoint Va € Act : A; (a) =
{e € M;|l;(e) = a}|. In Tyep(S) we find the derivation @ A M1 A5 My UM, 2

. A—> S, where 0 is the initial and S the final state of mtS.

Let £ = (E E,ﬂE,lE) be an event structure from E 4.; with a derivation X, =
0 A% x, A2 x; A% 22 ¥ in mt&. For the above introduced M; and X1\ X;
holds: Va € Act : i(a) = |[{e € M;|li(e) = a}| = [{e € Xin\Xi|lg(e) = a}|.
Thus there exist bijective mappings p; : M; — X;11\X;, ¢ = 1,2,...,n — 1, with
lg(pi(e)) = l;(e) for all e € M;. We claim that p := ;-’:_11 p; is a morphism between &
and €. Obviously p fullfills the label condition and is injective on every configuration
Y of §. As X, is conflictfree p(Y) C Xn is conflictfree for all Y € Conf(S). Thus
it remains to prove that the image of a configuration Y € Conf(S) is leftclosed
in E. Let e € p(Y) for some configuration ¥ € Conf(S). Let ¢/ <p e. As X, is
leftclosed, we have €' € X,,. ¢ <g e implies that for some j € {1,2,...,n — 1} we
have ¢’ € Xj,e ¢ X;. Thus for the elements f, f' € S with p(f) = e, p(f’) = €’ holds:
f' <s f. As Y is a configuration we get f' € Y and therefore p(f') = € € p(Y).
Obviously holds: V1 <i < mn: (mtp)(UjQ- M;) = Xit1-

Condition 5: mt [ is the transition system with @ as its only state and no transition.

Condition 6: Let S; and S, be steps, let £ be an event structure, let m : §; — S2, p
Xn_
81— &, and q : 83 — € be morphisms. Let § = X i)Xl iz—%Xz o N X,

be a derivation in S;, where X,, is the final state of S;. Let VO < i < n: (mtqgo
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mtm)(X;) = (mtp)(X;). This implies especially (mt gomt m)(X,) = (mtp)(X,) and
therefore for all e € X, we get: (gom)(e) = p(e). Thus gom = p. [ |

Example 4.15

While for the path category Lin the strong and the non strong version of path-P-bisimulation
coincide this does not hold for path-Step-bisimulation and strong path-Step-bisimulation:
Consider the event structures £ and F from figure 19. The dotted lines between the circles
around the events mean that all events inside one circle are in conflict with all event inside
the other circle. For ezample the events ey, ey and e3 are in conflict with all events e;,
where 1 > 4.

Figure 20 shows the transition systems Tstep(E) and Tspep(F). A label “a” ~ which we
find for example in the transition system Tstep(E) on the arc from O to {e;} - stands fof the
multiset M with M(a) = 1 and M(z) = 0 for all z € Act with T # a. Similarly a label “ab”
— which we find for example in the transition system Tistep(E) on the arc from 9 to {e1,e2}
~ stands for the multiset M with M(a) =1, M(b) = 1 and M(z) = 0 for all © € Act with
z ¢ {a,b}. Figure 21 shows an AM-bisimulation (R,7) between Tyiep(E) and Tytep(F) with
(0,0) € R. Thus £ and F are step-bisimilar and by theorem 4.9 and corollary 4.14 we know
that they are path-Step-bisimilar.

Assume that there exists a strong path-Step bisimulation R between € and F. Consider
an event structure O := ({91,92},0,0,10) with two concurrent events g, and g2, where
lo(91) := a, lo(g2) := b. Obviously O is a step. The maps o1 : O — £ with o1(gy) =
e1,02(92) := ey and 0 : O = F with 01(g1) := f1,02(92) := f2 are morphisms in E 4.
Thus (01,02) € R for any path-Step-bisimulation R. Let P := ({4'},0,0,1p(q') := a) be an
event structure with just one event labelled with a. Define a morphism my : P — O with
mi(g') := g1. As R is strong we get (0 omy,030my) € R. Let Q := ({97,95},<0,0,l0) be
an event structure with two events gy’ and g3, where lg(gy) := a, Ig(g4) = ¢ and g} <o df.
Let finally my : P — Q the morphism which maps the event g’ on gi. For the morphism
9 - Q — & with q1(g7) := e1 and q1(g4) := e3 holds: q o my = (01 o my), but there ezists
no morphism g2 : Q — F with q2(9Y) = f1 - contradiction to the closure property (i) of

path-P-bisimulation.

Concerning pomset bisimulation it is not possible to apply theorem 3.6 on the equivalent
characterization as AM-bisimulation from theorem 4.9: The operator Tpom () fails to evolve
to a functor as one can see in example 4.2. This coincides with a result of [JNW94], which we
will present in theorem 4.16: Path-Pom-bisimulation is equivalent with history preserving

bisimulation.
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The event structure € :

LR R R R A N A N A e R R R
.
.
.

- 7 ~N -

® o
ef elz’ eﬁ e7
v
) ® ° )
c b
€3 eg €6 €g

The event structure F :

D R R I I I R I S A A I I I AT AT A AP
.
.
.

- N ~ -

it 3 2 i
Y
® [ ] ® [ ]
f3 5 b4 18
- NS _
:
fs

Figure 19: Step-bisimilar event structures £ and F.
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Ts1ep(€) 0
e b/ ab/ a b
{a} (&) fes) fes}
¢/ b b\ a b af ac| o
{e1,es} {e1,e2} {69‘:610} {es, €5} {ed,e6}
D c c p a
{61:"62763} {69,6‘10,611} {64,‘:35,66}
Tytep(F) : ) |
b "o/ ab/ b \
{fz} {fi} {}9} {fa}
¢/ ad a\ b a e/ be| D
Uafs) | (k) {forfu} Unfsd | s ds)
c c D c
AN 5 {Fon fr00 fir) Ui for )

Figure 20: The transition systems Titep(€) and Tipep(F)-
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(R,v) : . ({es, €6}, {f2, f3}) a\
({ea}, {£2) = ({es, €5, €6}, {f1, f2, f3})

e =

({64,65}, {f17f2})

({e2}, {fo}) === ({e1, e2}, {fo, fr0}) — ({e1, e2, €3}, { fo, fr0, f11})

(0,0) (Heve2h, {f1 f2}) = (ev,e2,e8h, {1, fo. f3})

({e1,e2}, {fa, f6}) ¢

N

({er}, {fah -2 ({er, ez, es}, {fu, fs fo})

\ /
({e1, 63}, {fs, f5})

({eo}, {fl})i’ ({eg, ex0}, {f1, f2}) —— ({eo, €10, €11}, {f1, fo, f3})

a b

Figure 21: An AM-bisimimulation (R, ) between Tysep(€) and Tep(F).
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' 4.2.4 Modelling (strong) history preserving bisimulation

[JNW94] give the following characterizations of (strong) history preserving bisimulation on

event structures with consistency relation:

Theorem 4.16

Two event structeres £ and &, are
e strong history preserving bisimular iff they are Pom-bisimilar.
e (strong) history preserving bisimilar iff they are (strong) path-Pom-bisimilar.

Applying theorem 3.3 on the second result we get a characterization of (strong) history
preserving bisimulation in terms of AM-bisimulation on event structures with consistency

relation as well as on prime event structures.

Corollary 4.17
Event structures €1 and £; are (strong) history preserving bisimilar iff there ezists a (strong)

AM-bisimulation (R,v) between T oth_Pom(€1) and T ot Pom(E2) with (11,e2) € R.

In corollary 4.17 we used transition systems of kind Tpath—p(E). Choosing the operator
Tpom leads to an alternative characterization:
Theorem 4.18

Let £ = (E,<p,8E,lg), F = (F,<p,ir,lp) be event structures, Toom(E) = (Conf(€),a)
and Tpom(F) = (Conf(F),B) be their related coalgebras. Let

M :={f e mor(X,Y)| X € Conf(€),Y € Conf(F),

X = (X7SE ﬂ(X X X)7lE|X)1
V=X, <r0(Y xY),lgy)}
Let P(M) be the powerset of M.
1. & and F are history preserving bisimular iff there ezists an AM-bisimulation (R,7)
between Tpom (€) and Tpom (F) with (0,0) € R, such that there exists a mapping Isom -
R — P(M) with
(0) Isom (X,Y) #0, all f € Isom (X,Y) are isomorphisms,

(i) if (0, X", Y') € v(X,Y), (p,X') € a(X) and f € Isom(X,Y) then there ezists
Y" € Conf(F), f' € Isom (X', Y") with fi = f, (0, X',Y") € v(X,Y) and

(ir) if (p, X", Y') € v(X,Y), (p, Y}) € B(Y) and f € Isom(X,Y) then there exists
X" € Conf(£), f' € Isom(X",Y") with fl’X =f, (p, X", Y') e y(X,Y).
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2. The event structures £ and F are strong history preserving bisimular iff there exists
a strong AM-bisimulation (R,~) between Tpom(E) and Tpom(F) with (0,0) € R such
that there exists a mapping Isom : R — P(M) which satisfies (o), (i) and (i) and
for which furtheron holds:

(i) if (p, X,Y) € v~ (X', Y'), (p,X) € a(X') and f' € Isom(X',Y"') then there
ezists Y € Conf(F), f € Isom(X,Y") with fi = f, (p, X,Y") € v~ (X', Y")
and

(w) if (p,X,Y) € v~ (X",Y'), (p,Y) € B~ (Y') and f' € Isom(X' Y') then there
exists X" € Conf(€), f € Isom (X",Y) with fi = f, (p, X", Y) € v~ (X', Y").

Proof: Let £, F be history preserving bisimular. Then there exists a history preserving
bisimulation R’ which is a set of triples (X,Y, f) where X € Conf(£), Y € Conf(F) and
f:X — Y is an isomorphism in Pom. Let

e R:={(X,Y) € Conf(€) x Conf(F)|(X,Y, f) € R'} and

o Isom(X,Y):={f|(X,Y,f) e R'}.

Let for all (X,Y), (X',Y") € R’
(2, X Y) ey(X,Y) = (p,X') € a(X), (p,Y') € B(Y),
Af € Isom(X,Y), f' € Isom(X",Y') : f[,X =f.
The definitions of Isom and v imply (8,0) € R and (o). Thus it remains to prove that
(R,7) is indeed an AM-bisimulation and that Isom fullfills (i) and (ii).

Let (p, X’) € (oo m)(X,Y). This implies (p, X') € a(X). By definition of R there
exists an f : B} — Ej; such that (X,Y, f) € R'. As R’ is a history preserving bisimulation
we get (p,Y') € B(Y), (X', Y',f') € R and fIIX = f for some Y’ € Conf(E>) and some
f': Ey — E3. Thus (p, X', Y') € v(X,Y) and hence (p, X') € (Fm o y)(X,Y).

Let (p,X') € (Fm o ¥)(X,Y). Then for some Y’ € Conf(F) we have (p, X', Y') €
v(X,Y). This implies especially (p,X') € a(X) and therefore we get (p,X') € (a o
m)(X,Y). '

To prove (i) let (p, X', Y’) € v(X,Y), (p, X') € a(X) and f € Isom(X,Y). By definition
of R and Isom this implies (XY, f) € R.AsR is a history preserving bisimulation
there exists (p,Y") € B(Y) such that (X', Y", f') € R’ with fl,X = f. Therefore we have
f' € Isom (X', Y") and hence (p, X', Y") € v(X,Y).

Now let (R,v) be an AM-bisimulation with (§,0) € R between (Conf(£),a) and
(Conf(F), B) which fullfills (0),(i) and (ii). Let

R :={(X,Y,f)|(X,Y) €R, f € Isom(X,Y)}.
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Let (X,Y,f) € R/, let (p, X') € &(X). Then (X,Y) € R, (p, X') € (aom )(X,Y) and there-
fore (p, X') € (Fm107)(X,Y). Thus there exists some Y’ € Conf(E>) such that (p, X', Y"') €
Y(X;Y). By condition (i) we find some Y” € Conf(F) and some f' € Isom (X', Y") such
that f|'x = f and (p, X",Y") € 7(X,Y). Thus we have (X', Y", f') € R'. As (R,7) is a
bisimulation we get finally (p,Y") € B(Y).

Now let £, F be strong history preserving bisimular. Then there exists a strong history
preserving bisimulation R'. Choose the coalgebra (R,~) and the mapping Isom as above.

In order to show that (R, ) is strong let (p, X) € (@~ om)(X’,Y’). Then we get (p, X) €
a~(X') and from the definition of R follows: There exists f’ such that (X", Y' fY e R.
As R’ is a strong history preserving bisimulation there exists (X,Y,f) € R’ such that
YCY' and f = fl’X' As X and Y are isomorphic, X’ and Y’ are isomorphic and for the
isomorphisms holds f = f/ we may conclude that p = [X'\X] = [Y'\Y] and therefore
(p,Y) € B~(Y"). By definition of v we get (p, X,Y) € v~ (X’,Y’) which results in (p,X) €
(Fmyoy™ )(X', Y").

To prove (iii) let (p, X,Y) € v (X',Y'), (p,X) € a~(X') and ' € Isom (X' Y").
By definition of Jsom this implies (X',Y’, f') € R'. As R’ is a strong history preserving
bisimulation there exist Y € Conf(F) and an isomorphism f : X — Y such that (p, Y" ) €
B~ (Y"), (X, Y",f) € R and f = f|’X‘ Thus we get (X,Y") € R, f € Isom(X,Y") and
(0, X, Y") ey~ (X', Y'). ’

Let finally (R, ) be a strong AM-bisimulation together with a mapping Isom such that
the conditions (o) — (iv) are fullfilled. We know that conditions (o), (i) and (ii) ensure that
the above constructed set R’ is a history preserving bisimulation. We claim that R’ is strong.
Let (X',Y', f') € R, let X C X' for some conﬁguratioﬁ X € Conf(€),1e. (p,X) € a™ (X)
for p = [ X"\ X]. By construction of R’ we get (X’,Y’) € R, f’ € Isom (X', Y") and therefore
(p,X) € (a7 om)(X',Y’). As (R,v) is strong this implies (p, X) € (Fm oy X', Y).
Thus there exists some configuration Y ¢ Conf(F) with (p,X,Y) € v~ (X', Y’). With
condition (iii) we may conclude that there exist Y” € Conf(F) and f € Isom (X,Y") such
that f = f['X and (p, X,Y") € y7(X',Y’). Using again the property strong of (R,~) we get
(p,Y") € B7(Y') and therefore Y C Y". [ ]

4.3 Synopsis

Figure 22 summerizes the above results on modelling different types of bisimulation on
prime event structures with (strong) AM-bisimulation, (strong) path-P-bisimulation and
P-bisimulation.

Column “AM I” refers on modelling with AM-bisimulation where the transition systems
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bisimulation AMI AMII path-P P
interleaving Tint Tpath-Lin Lin Lin
step Titep Tpath—step Step

pomset Toom

history preserving || Tpom + C T, h-Pom Pom

strong » Toom + C + (8) [ Tppsp_Pom + (s) | Pom + (s) | [Pom]
history preserving

Figure 22: Modelling bisimulations on event structures.

are different from Tpqsn—p. Theorem 4.9 gives the first three rows: Choosing the transition
system of type Tint, Tstep Tesp. Tpom AM-bisimulation is equivalent to interleaving, step
resp. pomset bisimulation. As example 4.11 showed these bisimulations are not equivalent
with the respective strong variants of AM-bisimulation. Theorem 4.18 leads to the last
two rows: Histqry preserving bisimulation is equivalent to AM-bisimulation on Tye, which
further fullfills certain conditions “C”; in case of strong history preserving bisimulation it is
necessary that the AM-bisimulation is furtheron strong which we denote byv “(s)” in figure
22.

Column “P” presents the results concerning P-bisimulation: Theorem 4.12 shows that
interleaving bisimulation and Lin-bisimulation are equivalent. For the category of event
structures with consistency relation theorem 4.16 provides the equivalence between strong
history preserving bisimulation and Pom-bisimulation. As it is an open problem whether
this results holds too in the category of prime event structures we write [Pom)] in figure

22. Concerning the flexibility of P-bisimulation on event structures [JNW94] write:

It might be thought that strong history-preserving bisimulation, presented as
Pom-bisimilarity, is affected by restricting the category Pom to a smaller class
of objects. However, no matter how much the objects in the path category
Pom are restricted, provided they include all pomsets of the “stick” and
“lollipop” forms in the proof of Proposition 7, then the relation of bisimulation

that results will coincide with strong history-preserving bisimulation.

Thus one does not expect that step, pomset or history preserving bisimulation can be
modelled as P-bisimulation and only interleaving and strong history preserving bisimulation
fit in the concept of P-bisimulation.

Column “path-P” shows what kind of bisimulation on event stfuctures we modelled

by path-P-bisimulation: Corollary 4.13 contains the equivalence of interleaving bisimula-
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tion, path-Lin-bisimulation and strong path-Lin-bisimulation. Corollary 4.14 provides the
equivalence of step-bisimulation and path—Stép-bisimulation. History preserving bisimula-
tion is equivalent to path-Pom-bisimulation; in case of strong history preserving bisimu-
lation it is necessary that the path-Pom-bisimulation is furtheron strong which we denote
by “(s)” in figure 22. For event structures with consistency relation these two results can
be found in theorem 4.16. It is easy to see that they hold too for prime event structures.

Column “AM II” results from column “path-P”: Using theorem 3.3 we can translate
any (strong) path-P-bisimulation into a (strong) AM-bisimulation.

Thus we can model all the mentioned types of bisimulation on event structures with
(strong) AM-bisimulation in a unifying way: Two event structures £ and F are *-bisimilar,
iff there exists a (strong) AM-bisimulation (R,v) with (¢1,42) € R between T(£) and T(F),
where * € {interleaving, bf, step, pomset, history-preserving, strong-history-preserving},
(i1,42) is a distinguished pair of states and T is an operator which maps an event structure
on a suitable coalgebra. In case of interleaving, step and pomset bisimulation we choose
(1,2) = (0,0) and one of the operators T}y, Tstep resp. Tpom. bf-bisimulation is modelled
as strong AM-bisimulation with (41,72) = (0,0) and T = Tjn;. For history preserving
bisimulation we take (71,72) = (¢1,¢2) and the operator T ath-Pom>- for strong history
preserving bisimulation we make the same choice but take this time the strong version of

AM-bisimulation.
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(R,7) :

(0,0)
a b

({er}, {A}) ({e2}, {fs})
bl la
({er,e2}, {f1, f2}) ({e1, €2}, {f3, fa})

Figure 23: An AM-bisimulation between T;n:(€) and Tint(F) from figure 16.

5 Different answers: what is a bisimulation?

In order to discuss the differences between the abstract concepts (strong) AM-bisimulation,
P-bisimulation and (strong) path-P-bisimulation consider the interleaving bisimilar event
structures £ and F from figure 15. As we know from corollary 4.13 this type of bisimulation
can be modelled by any of the three abstract concepts.

To establish an AM-bisimulation between £ and F we first have to transform the event
structures into transition systems. Therefore we use the operator T;,;. The resulting tran-
sitions systems are shown in figure 16. Figure 23 shows an AM-bisimulation (R, v) between
Tint(€) and Tipe(F) with (0,0) € R. It relates those states from Tin4(€) and Tine(F) which
show the same behaviour.

In order to show that £ and F are P-bisimilar we choose as path category the category
Lin. As object X we take the event structure F, and define the morphism g; : ¥ — £ by
91(f1) = g1(f4) := e1 and g1(f2) = 91(f3) := e2 and the morphism g; : F — F as identity
on F. As we know from [JNW94] the morphism g; is Lin-open. In order to show that g; is
Lin-open too we consider the commuting square from figure 6, where X = F,Y = £ and P
and @ are objects of Lin. As all configurations of £ or F have no more than two elements,
the path objects P and @ may consist of maximal two events. We consider just one case:
Let P be an event structure with one event e labelled with a. Then p(e) = f1. In order to
make the square of figure 6 commute there are only two types of event structures possible
for Q. The first is that @ consists of one event é labelled with a. In this case m(e) = é,
g(e) = e; and we can define r(é) := f; in order to obtain the desired morphism r. The

second type of @ consists of two events é; labelled with a and é; labelled with b, where
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é1 <@ é2. This time we get m(e) = &1, q(é1) = e, and ¢(&;) = e,. Defining r(é,) := f; and
r(é2) := f2 we get a morphism withrom =pand g, or = q.

The event structure X = F from the P-bisimulation is isomorphic to the event structure
which we obtain from the AM-bisimulation (R, ) of figure 23 if we first unfold (R, v) into a
synchronisation tree and then transform the result into an event structure. We formalized
this technique to obtain a Lin-bisimulation from an AM-bisimulation between transition
systems of type T, in theorem 4.12.

In case of path-P-bisimulation we choose again the category Lin as path category and
take the empty event structure (0,0, 0,0) as the common initial object I of Lin and E Act-

We define sets of event structures

® S, : The set of all event structures of E 4. which consist of Jjust one event labelled

with a,

e Sy : The set of all event structures of E 4.; which constist of Jjust one event labelled
with b,

o S,y : The set of all event structures of E 4., which constist of two events, one event
labelled with a, the other labelled with b, where the event labelled with a is predecessor
of the event labelled with b and

® Spa : The set of all event structures of E 4., which constist of two events, one event
labelled with b, the other labelled with a, where the event labelled with b is predecessor
of the event labelled with a.

With these sets we define a path-Lin-bisimulation R between £ and F :

R = {(p1,p2) | p1 € mor(I,E),p2 € mor(I, F)}U
{(p1,p2) | p1 € mor(X,E),p2 € mor(X,F),X € Sa U
{(p1,p2) | P1 € mor(X,E),p2 € mor(X,F), X € S} U
{(p1,p2) | p1 € mor(X, €),ps € mor(X, F), X € Sup} U
{(p1,p2) IP1 € mor(X,E),p2 € mor(X,F), X € Sy} U

The argument why R is a path-Lin-bisimulation is similar to the proof that the morphism ¢;
is Lin-open: Again we argue that any path object P with mor(P,€) # 0 and mor(P,F) # 0
is either the initial object I or is element of one of the sets S,, Sp, Sy or Sta. We consider
just one case: Let P be an event structure with one event e labelled a. Then pi(e) = e;
and pz(e) = f1. By definition of R we know that (py, p2) € R. If there is an event structure
Qe Lin such that there exist morphism m : P — Q and ¢, : Q — £ with g1 om = pi, see
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P_—"‘X

| N

Q £ f2

faor

Figure 24: Path augementation in case of P-bisimulation.

figure 7, then Q has to be an element of S, or of Sy. In the first case @Q consists of one
event é labelled with a and m(e) = é. We define ¢2(€) := f, and obtain ¢3 o m = p, and
(q1,92) € R. Now let Q € S,. Then Q consist of two events, one event &, labelled with
a and one event é; labelled with b, where é; <g é;. For m we get: m(e) = é;. We define
¢2(é1) := fi1, q2(é2) := fo and obtain again: gy o m = py and (q1,¢2) € R.

One should note that even in this simple example the set R includes infinitly many pairs
of morphisms, but that R is the finite union of morphism sets of the same type: Any of the
above mentioned subsets of R is parametrized by an isomorphism class of event structures.

With corollary 4.13 we may conclude from any of the three above mentioned bisimula-
tions that the event structures £ and F are interleaving bisimilar.

The three abstract concepts give different answers on the question: “What is a (inter-

leaving) bisimulation between event structures £ and F7”

AM-bisimulation: In order to establish an AM-bisimulation we first have to construct
some kind of transition systems related to £ and F. For the event structures from fig-
ure 15 we chose Tj,¢(£1) and Tint(€2). These transition systems make the “dynamics”
of the event structures explicit. A bisimulation is then a transition system (R,~) with
a “behaviour” common to Tj,¢(€1) and T;nt(E3). The condition (@, 0) € R ensures that

the whole transition sytems are taken into account.

P-bisimulation: Here bisimulation is expressed as an event structure X together with
P-open morphisms f; : X — £ and f» : X — F. This construction ensures (see

figure 24): If a morphism p from a path object P into X can be augmented to a
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P-bisimulation
{ (theorem 3.1)

strong path-P-bisimulation : = path-P-bisimulation
{ (theorem 3.3) { (theorem 3.3)
stfong AM-bisimulation on Tpeth—p = AM-bisimulation on Tpa¢n—p
| ¥ (example 3.10) { (theorem 3.6)

strong AM-bisimulation on T # Tpath—p = AM-bisimulation on T # Tpaen—p

Figure 25: Relations between the different bisimulation concepts.

morphism ¢ from a path object @ into £, i.e. there exists a morphism m : P — Q
such that gom = f; o p, then this augmentation is possible with the same morphism
m for the event structure F : As f; is P-open, there exists a morphism r such that
rom = p and ¢ = f; or. With » we get a morphism foor : @ — F such that
(faor)om = fyop. The same holds symmetrically for F. The event structure X from
the P-bisimulation can be interpreted as the “image” of all path objects “common”
to £ and F. P-openess of f; and f, guarantees that for any path augmentation of £

one can find a corresponding one of F and vice versa.

path-P-bisimulation:. A bisimulation is a set of morphism pairs R which fullfills some clo-
sure properties. The existence of an initial object together with the closure properties
ensure that R includes all pairs (p1,p2), where P is a path object and p; : P — £ and
p2 : P — F are morphism. Furtheron this type of bisimulation guarantees some kind
of “path augmentation” (see figure 7): If there are morphisms p; and p; from a path
object P to & resp. F, the path p; can be augmented to a path q; : Q@ — &, i.e. there
exists a morphism m : P — Q with ¢; o m = p;, then there exists a path'¢z : Q — F
with gz om = pa. The same holds symmetrically for F. Thus a path-P-bisimulation R
includes all pathes which can be derived by path augmentation (beginning with the

initial pathes) for both event structure £ and F.

6 Conclusion

Figure 25 summarizes the general relations between (strong) AM-bisimulation, (strong)
path-P-bisimulation and P-bisimulation. For simplicity we do not mention the conditions
which are (sometimes) necessary to establish an equivalence.

On top of figure 25 we find P-bisimulation. Theorem 3.1 gives an equivalence with strong
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path-P-bisimulation. Of course strong path-P-bisimulation implies path-P-bisimulation.
Theorem 3.3 shows that choosing suitable transition systems with the operator Tpain—p
(strong) path-P-bisimulation and (strong) AM-bisimulation are equivalent. Concerning
(strong) AM-bisimulation on arbitrary transition systems which are different from those
we get by the operator Tpgn_p the situation is more complicated: Theorem 3.6 provides
an equivalence between path-P-bisimulation and AM-bisimulation; for the strong variants
example 3.10 showed that in general strong path-P-bisimulation does not imply strong
AM-bisimulation.

Combining theorem 3.1 and theorem 3.3 we can conclude: If a bisimulation between ob-
jects of a category of models M can be modelled as P-bisimulation for a suitable subcategory
P of M and the assumptions of theorem 3.1 are fullfilled, then this bisimulation can also be
modelled as strong AM-bisimulation where we choose the operator Tpasn—p to get a transi-
tion system. Applications of this combination are interleaving and strong history preserving
bisimulation on event structures, see section 4.2.3 resp. 4.2.4, and Bran-bisimulation on
transition systems which we discussed in section 3.3. v

For the converse direction one obtains: If a bisimulation can be modelled as AM-
bisimulation, the assumptions of theorem 3.6 are fullfilled, the AM-bisimulations on Tp4s4--p
are always strong, the assumptions of theorem 3.1 are fullfilled, then this bisimulation
can also be modelled as P-bisimulation. Applications of this equivalence are interleaving
bisimulation on event structures and AM-bisimulation on transition systems.

Applying these results to concrete models we showed: For transition systems the con-
cepts of AM-bisimulation, Bran-bisimulation and (strong) path-Bran-bisimulation coin-
cide (corollary 3.8). Differences arise for the more complex model of event structures:
Looking for an approach which is able to model various types of bisimulations on event
structures AM-bisimulation turned out to be the most flexible of the three concepts.

It is left as open question how strong AM-bisimulation and strong path-P-bisimulation
are related. In order to get more insight into the “nature” of bisimulation other types of
bisimulation on event strucures, bisimulations on other models of concurrency and other

abstract characterizations of bisimulation should be studied.
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