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ABSTRACT

Inthis paper, we consider the problem of similarity between video sequences. Three basic questions are raised and
(partially) answered. Firstly, at what temporal duration can video sequences be compared? The frame, shot, scene
and video levels are identified. Secondly, given some image or video feature, what are the requirements on its distance
measure and how can it be “easily” transformed into the visual similarity desired by the inquirer? Thirdly, how can
video sequences be compared at different levels? A general approach based on either a set or sequence representa-
tion with variable degrees of aggregation is proposed and applied recursively over the different levels of temporal -
resolution. It allows the inquirer to fully control the importance of temporal ordering and duration. The general
approach is illustrated by introducing and discussing some of the many possible image and video features. Promising
' experimental results are presented. .

i

1 Introduction _ , ,
. The daily growing number of video databases and their sheer volume place content-based search tools in high

~demand. One proven search technique is query by video sample. The MoCA (Movie Content Analysis) project [7] at

the University of Mannheim is currently working on a system called Visual GREP, whose query paradigm follows the

well-known UNIX “grep” command for text files. The user specifies a video sample and the type of similarity he/she

is interested in, and VisualGREP searches the video database for similar video sequences. Prerequisite to the con-

struction of such a: search tool is the systematic analysis both of the various methods to compare video sequences and -
of the distance measures between them. As for any kind of “grep”, the query video sequence is much shorter than the

video database which is searched ‘

. "Our paper presents a systematic method to compare and retrieve video sequences at the four levels of temporal reso-

lution of videos: frame, shot, scene and video. At eachr level, features are employed to transform the video sequences
into an. appropriate representation. A normalized measure of distance between the representations of - two video.
sequence is defined to capture their similarity. To the authors' knowledge, this is the first paper to present not only
domain-independent methods to compare frames, shots or short sequences but also techniques to compare temporally
large entities such as scenes and full-length feature films for general video. A domain-specific approach has been pre-
sented in [19]

The paper is ‘structured as follows Followmg a review of related work, Section 3 presents the types of snmllarltles
between video sequences in which we are interested. Section 4 discusses the requirements on the features’ distance
measures and how the distance measures can be “easily” transformed into the visual similarity judgement desired by
- the inquirer. It also introduces some “real” ifage and video features in order to make the subsequent discussion more
concrete. These features are important components in Section 5, which goes through the four levels of temporal reso-
lution and presents and analyses various techhiques of comparison. Section 6 describes some aspects of how to com-
bine the various comparlson methods, and Section 7 shows experimental result. Section 8 concludes the paper with an
outlook on future research. ' Do
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2 ' Related Work

Image Databases ‘ , :
Many content-based image mdexmg and retrieval systems support querymg the database by example Recently they -
have extended their range to the video domain. To do so they have basically added cut detection and create for each

shot one or several representative frames, either by some kind of image mosaics [4] or by reference frame selection.’
These images-are then indexed as standard still-images. Often motion information is added on a per-reference-frame

or shot basis. Well-known examples are QBIC [4], VisualSeek [18] and Virage [5]. However since these systems’
originated from still-image systems they do not go beyond the shot level to scenes or full-size videos. Moreover, they

map the video into the still-image domain, ignoring the temporal order. Besides these systems, White and Jain have

.developed a general.framework for efficient global and local matchmg in 1mage databases. They call their framework

ImageGREP [20]. : '

" Video Abstracting
Yeo and Yeung have proposed a'scheme to recover story units from video using time- constralned clustermg [21][22]).
The basic idea is to assign the same label to similar shots and analyze the patterns of the resulting strings. Three dif-
ferent kinds of temporal events are extracted from those label patterns: dialog, action, and story unit. Each event ¢an
be regarded as a scene of the video. Yeo and’ Yeung use the patterns only for abstracting purposes, not to compare of
dialogs, actions, and story units. Such comparisons, however, are covered by our method. Another way to retrieve the
scenes is described in [8]. Again, only for video abstractmg purposes.

Similarity Measures ‘

. Any measure of video similarity should imitate the human visual Judgement A thorough 1nvest1gat10n of the psycho-
logical findings regarding human judgement of s1m11ar1ty can be found in [17], whose basic statements are the basis
- for our demgn of distance measures.

Video Query Systems : ‘ :

One of the few architectures designed exclusively for video retrieval by example is described in [3] Consequently,
their proposed algorithms take the temporal order of the frames into account. In a first step, a signature is derived for
each video sequence by using the DC coefficients of window pairs and their motion components. Then, the distance ’
measure between a query video sequence and a database video sequence is deﬁned by the average distances between
correspondlng frames in the signature representatlon

3 Video Slmllarlty

When are two videos similar? There is.no straightforward answer. The aspects of vrdeo similarity. are mamfold and its
definition at the semantic level vague. For example, let us assume that one video shows the US president at a gala din- -
" ner. Would a second video showing the president be similar, or a third video showing a family dinner? We conclude

that there. is no absolute measure of similarity, instead one has to let the user decide in the query what he/she is look-

ing for. This is somewhat similar to regular expressions the user has to specify in the UNIX grep command. o

In this paper, we consider three orthogonal aspects of video sequences:
* the levels of temporal resolution, ' '
* the temporal order, and
* the temporal duration.

‘Levels of Temporal Resolutlon S .
Video sequences can vary considerably in'length. They may range from several frames up to tens or hundreds of thou-
sands of frames. Obviously, the type of similarity between two short video sequences (several seconds in length) and
the assessment procedure ought to differ from that between two lorig video sequences (several minutes in length).
Thus, video sequences have to be classified with respect to their temporal length before an approprlate comparlson
scheme can be applied. Following the standard -hierachical video model, we classify v1deo sequences into ‘shots,
scenes and video. A shot refers to a continuous camera recording. In a query it can also be a subsequence of that. A
scene .denotes a video sequence that is longer than one shot and shorter than a vrdeo exhibiting some characterrstlc



. Y . . )
shot feature pattern. The type of characteristic shot pattern is determined by the query video. This definition differs”
slightly from the definition in film art, where a'scene is “a segment in a narrative film that takes place in one time and
‘space or that uses crosscutting to show two or more simultaneous actions” [2]. Last but not least, a video denotes.a .
full-length video production. At these four levels v1de0 similarity will be 1nvest1gated usmg image and video (1 e.
motion) features.

Video

Scenes

Shots

Frames

Figure 1: Standard video structuring model

Temporal Order - ‘

Video sequences consist of images. Hence, video sequences can be considered as a set of images and one can use the
similarity between image features to judge video similarity. The similarity between two video sequences can then be
measured by the number and amount of similar image features. We call such a view a set representation of a video -
sequence. Note, this view ignores any temporal ordering of the i image features. o
Often itis desirable to consider the temporal ordering of video sequences by i imposing the ordermg constramt on the
still-i 1mage features. We call such a view a sequence representation.

Temporal Duration : :

The temporal duration in this context denotes to what extent the- temporal duration of a feature is 1mp0rtant For‘
instance, having a shot consisting of two parts, a 3-second near still-image of a human who suddenly runs out of the
frame within 2 séconds raises the question of how important the temporal duration is. Usually we may represent such
“a shot by one reference frame on the still-images and five on the running human. Is it then acceptable to use these
ordered reference sequences. as a shot representation? Or should we also consider the time a reference frame covers‘7
That dec151on is independent.on the choice of representation. '

It should be up to the user to set the importance of the tempora] duration. In the case of the sequence representatlon

for instance, one user might' demand that the precise temporal development be met; another user might be satisfied if
the video sequences have the same relative pace (slow-motion / normal-motion); while a thlrd user mlght only be
interested in the fact that a video sequence is developmg, 1gnor1ng any pace

These three different orthogonal aspect will be dlscussed further in Sectlon 5.

4 Features and their Dlstance Measures

"~ Whenever comparing two things of the same type, one has to specify the criteria for the comparison. Usually the cri-
teria are denoted as features in the field of image and video content analysis. The value of a feature can be any kind of
data such as a scalar va]ue ~a vector value, another image or a text string. In this artlcle features are derived from a set
or sequence of 1nd1v1dual frames shots, scenes and v1deos : '
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Since the features are employed to judge the visual similarity of video sequences, it is crucial that these distance mea-
sures resemble human similarity/distance perception to' some extent. For some of the possible features such as color
and lightness there exist well- -accepted perceptually uniform distance measures. However, for all other features, mea-
sures which model human perception to some extent or - less pretentlously may be useful, have to be deﬁned Note.
that each feature requlres its'own distance measure: '

4. 1 'Some Image and Video Features
+ In order to make the subsequent discussion more concrete, we now introduce some low-level to high-level i 1mage and

video features together with reasonable drstance measures for them They represent only a small set of all possible
features !

4.1.1 Color Atmosphere

The color atmosphere is an important feature of a frame and a frame sequence. It is often viewed as a compact sum-
mary “In practice, it is usually measured by some sort of refined color histogram technique. The basic color histogram
H of a frame sequence FS -is defined as the vector ((h,), ..., (h,)), where h; specifies the number of pixels of
color j in frame sequence F S normalized by the total number of pixels. Typrcally, only a few of the most significant
bits of each component of a color representation in some color space are used to calculate the color histogram. Since
© we are mterested in measures which approximate human perception, the CIE L*a*b* color space is used. It was
' desi gned for perceptual umformrty [11].

A refined and thus better color histogram technique is the color coherence vector (CCV) [12]. It makes use of the spa-
tial coherence and is thus much more discriminative. It outperforms the basic color histogram in similarity retrieval in
. large image database. Instead of counting only the number of pixels of a certain color, the CCV additionally distin-
guishes between coherent and mcoherent pixels within each color class j depending on the size of the color region
they belong to. If the region. (i.e. the connected 8- neighbor component of that color) is larger than threshold t.,, a
“pixel is regarded as coherent, otherwise as incoherent. Thus, there are two Values associated with each color j:

* o, the number of coherent pixels of color j and

. B ; » the number of incoherent pixels of color j.

Then, the color coherence vector CC V is defined as the vector <(0(], B ) (oci, B;)) normalized by the number of
pixels. Two CCVs CCV, and CCV, are compared by :

joj-aq gl le]
j;l(ot +0t +1 [3+[3+l

In experrmental results: this measure outperforms the Euclidean distance [12]. The distance values range from’ 0 to
_about 2n.

4.1.2 nghtness : : ¢

The luminance of mise-en-scenes plays an 1mportant role in filmcraft, usually varying significantly in different seg- .
ments of the video: Actions, for instance, can be performed in the dark (e.g. at night, under water, or fln the under- -
) ground) or in the light (e.g. ona California beach). ‘ ’

Such differences can be captured by lightness. It is defined as the perceptual response to luminance and denoted by L
~. [11]. Luminance, denoted Y, is defined as the radiant power weighted by a spectral sensitivity functlon that is charac-
teristic of human vision [1 1] CIE defines L as:
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This. formula states that lightness perceptron is roughly logarlthmlc L ranges from 0to 100 Since L is perceptua]ly
uniform, two hghtness values are compared by means of their difference. The nghtness of a frame sequence f is the'
average of the hghtness of all p1xe1s of the frame sequence

4.1.3 Motion Intensnty

Motion intensity is another 1mportant feature of a frame sequence. It describes whether or not there is much motion
' present: either object motion or camera motion. The shortest possible sequence for which motion intensity makes
‘Sense is a sequence of two contiguous frames. In this paper motion intensity is measured by means of the edge change
ratio (ECR) [23]. In our experrence ECR seems to be a ]1ttle more reliable than the block motion vectors and faster to
calculate. : : ‘

Let o, be the number of edge pixels in frames 7, and Xnin and X, ;°" the number of the entering and exiting edge
pixels in frames  and n-1, respectively. Then the edge change ratio ecr,, between frame n-1 and'n is defined as

Cin e out. o . . .
" Xn X::—l' . ’ ' ' A
ecr, = max| —,: R . . : ; o S : .
6,0, o . \ R

~ and ranges from O to 1. In order to make the measure robust against small movements, pixels'in one image which
have pixels nearby in the other image (e.g. within 6 pixels’ distance) do'not count as entering or exiting pixels. Notice
that unlike [23], the edge change ratio here is not used to detect scene breaks and no global motion compensatron is
performed before the ECR’s calculation. :

The ECR of a frame sequence f is defined as the'average of the ECR va]ues over all frames in the sequence The
advantage of the ECR as,a characteristic parameter is that it registers structural changes in the sequence such as enter-
‘ 'mg, exiting and moving ObJCCtS as well as fast camera operations. However, it is somewhat independent of variations
in color and 1nten81ty sirice 1t relies on sharp edges only

4.1.4 Frontal Faces

. In most video genres the people are an essential or even the most 1mportant part of a video. Thus, a face detector and
a method of identifying faces of the same person within the same shot/scene/VJdeo and across videos is"highly desir- ..

able Such a feature is a rich resource of semantics as we will see in Section 5. - :

One of the most rehab]e face detectors in dlgltal image research was developed by Rowley, Baluja, and Kanade [13].

Their system recognizes about 90% of all upright and frontal faces while only sporadically mistakenly identifying:
" non-face areas'as faces. Therefore, we have recreated their proposed neural network- based frontal face classification
system for arbitrary images as a basis for our frontal face detector in video sequences. To widen the range of detect-
able faces our detector also searches for slightly tilted/rotated faces (30 degree). This is necessary because the faces
of the people in motion pictures are always moving; as opposed to the faces in typical still images suchi as portrait and
sports team photographs, which are usually depicted upright. However, this more general face search increases by a
factor of three the number of patterns which have to be tested in each.image. To speed up processing, the number of
. candidate frontal. face locations is drasfically reduced by an extremely fast pre-filtering step: Only locations whose
prxel colors approximate human skin colors [6] and which show, some structure (such as nose, mouth and: eyes) in’
their local neighborhood are passed to the face detectot. This pre-filter reduces the number of candidate face locatrons ‘
by 80%. Moreover, only every third frame of the v1deo sequence is 1nvest1gated ' '




5 Each face detected is described by the vector (t 7 Xpow Y pos S V) It specifies the frame / > in whrch a face of size s (in
plxels) was detected as well as thé x- and y-coordinates (x Xpos» ypm) of its center and its angle of incline vy.

‘ Two faces F; and F, are compared accordmg to one of the following three features: size, position and visual similar-
ity. The size difference measure-is given as the ratio between the larger and the smaller face, i.e. as max{s,/$55,/5,} ,
the spatial distance is measured by means of the Euclidean distance between their centers, and the visual distance is
measured by means of the Euclidean d1stance of their eigenface representation, i.¢. of their projection into the face
space [9][16]. Our face space was determmed from a training set of 1247 frontal images of faces, the same set used to -
train the neural frontal face detector. :

N " 4.1.5 Type of Frammg :
2 * There exist two different kinds of framrng of frame sequences especrally shots: static framing and mobile frammg

STATIC FRAMING: Stat1c frammg of the objects in a video shot gives us a sense of the camera distance, i.e. of being
far away from or. close to the mise-en-scene. Based on the posrtlon and size of their frontal views of faces, shots can
be classified as [2] ' ‘ :

*- along shot: the whole human figure is v151ble .

* an American shot: the human ﬁgure is framed from the knees i up. S

‘e a medium shot: human bodies are framed from the waist. up, or as- '

* aclose-up: Just the head is visible.

~ This classification is commonly used in film art. For shots with frontal face appearances the camera distance can be

* estimated. The ranges of the face positions and sizes for the different classes may be determined empmcally based.on

. experimental inquires. However, for the query by video paradigm the closeness of two frame sequences with respect

- to their types of static frammg is evaluated based on the similarity of the average size of the largest face in each frame
of a frame sequence

MOBILE- FRAMING: Mobile framing usually denotes the dominant camera motion such as. pan/dolly, tilt and zoom.
Extraction of that motion is a complex task and algorithms have been proposed in [14], [1] and [24]. Once extracted,
camera motions can be compared logically based on their classes and within the same classes, based on their distance
measure. However, their integration into the VisualGREP is an open task for the future.
" B . (/ .
4.2 Normallzatlon of Dlstance Measures . l
In [17] Santini-and Jain presented a thorough 1nvest1gat10n of the psychological ﬁndmgs regardmg human srm11ar1ty
Judgement Although there still exists no generally accepted model of similarity perception and their proposed model
_requires the estimation of too many parameters. in order to be practrcally usable, some basic rules nevertheless
emerge. From a cognitive point of view, it is essential
(1) to find the range of distance values to which humans are sensitive (with respect to a query) and

2) to achieve saturation of the distance values outside these regions.

Saturation is a vital point since it prevents a large dissimilarity with respect to one individual feature value from dom- |
inating the whole distance measure. It also suppresses small distances that are often the 'result of noise. Note that the
- degree of human sensitivity to dissimilarity is very adaptive: It differs greatly between a set of similar images on the
one hand, and a set of in-homogeneous and diverse images on the other hand.
For a moment let us assume that the range [a,a,] represents the range of distance valués of .a feature to which an
inquirer is sensitive with respect to his/her query. Then, his/her similarity judgments can be modeled by a simple
fuzzy membership function as depicted in Figure 2. It normalizes the distance measures of the chosen feature. Note
that such a function can always be approximated by an infinitely drfferentlable function, the so- called logistic func-
tion [17]. , .

The next question is abou't' how or by which mean.s shall we let the jinquirer specify his/her desired similarity judge-.
ments? Essentially there exist two kinds of features: The first kind comprises all features whose desired similarity




feature
>distance

!

. L L
- Figure 2:. Prototype of the normalized feature distance function
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Judgements usually should not vary from query to query. Consequently, default values can be'determined that are suit-

" ~able for most queries. Examples are face similarity and CCV. Their default parameters aré determined by presenting - *

2 frames or frame sequences to users and lettmg them assess their similarity with respect to the feature. In our experi-

P " ~ments users answered the questions by means of the position of a slider ranging from complete agreement (0 = yes,

‘differences are not significant) to complete disagreement (1 = no, differences are too great; the ‘objects have nothing

- in common). When users formulate a new query they can use these default values or modify them cautiously. A useful

* . andintuitive tool would show some examples from the video database which lie at the distance Values specrﬁed fora ;

oo anday -

. In contrast to that, the desired similarity Judgement of the second kind of features drffers consrderably from query to
query. Default values can be specified, however, they are generally re-set, since their values are context dependent.
‘Examples are the lightness and lightness difference, as well as face locat1on and size. For each such feature a visually

" intuitive way of specifying one’s similarity judgments should be found For.instance, one’s spatial locations similarity -
Jjudgement can easily be specified by showing two frames of the query frame sequence. The user then specifies his/

her srmllarrty preference by drawing the lower and upper distance boundaries upon these frames. Any distance less

;- than or equal to the lower boundary (so-called “don’t care” d1stance) will be regarded as the same position, while any

©distance equal to or larger than the upper boundary will be regarded as completely different. (see Figure 3).

Vi

Flgure 3 An example of a visually intuitive way to spec«fy one’s S|m|Iar|ty judgments with respect to tolerable
spatlal deviations in the location of objects.

5 Comparison of Motion Picture Sequences

" In this section a new and- general video comparlson approach is proposed and applied recurswely over the d1fferent
levels of temporal resolution. It is based on either a set or sequence representation with a variable degree of aggrega-




tion. The comparison strategy at each level of temporal resolution works as follows: the features of levels of higher
“temporal resolution are employed to répresent the video sequences appropriately; two video sequences are then com-
pared by means of a normalized distance measure which in turn is computed from the distances of the employed fea-
tures. : o k )
Without loss of generahty, we will use only one feature in the followmg Section 6 describes how the representatlons
derived from different features can be combmed S _ ‘

5.1 At Frame Level

Frames may be compared by any image feature whose defined distance measure fulfills the requ1rements stated in
Section 4. Such a distance measure should be constructible for most image feature. Applicable in addition are video
features such as the optical ﬂow which can be derived from a sequence of frames and assigned to an individual frame.

5.2 At Shot Level

Shots are represented by the. features derived from their respective frames. A feature can be derived from one or sev- ,
eral frames, and is assigned to that or those frames. If a feature is calculated for each frame in the shot, such a feature -
description is called nori-aggregated. If a feature is derived from 4 set/sequence of frames, such a feature description
is called partially ‘aggregated. If at the | very most only one feature is derived for the whole shot, it is called com-
pletely aggregatea’ '

Along with the degree of aggregation goes the'importance of duration of the individual feature values. Non-aggre-
gated representations capture the precise temporal duration of a feature. Thus, two non- aggregated representations are
only judged as similar (besides other requirements) if- the duration of the individual feature values are almost identi-
cal. For completely aggregated representations the duration is irrelevant. Again, partially aggregated representations :
allow to control the degree of i importance of duration of individual feature values.

In addition, as mentioned above, we distinguish between a sequence and a set representation. In a sequence represen-
tation; the féatures are over time. If the feature values are computed for each frame, ordering is scalar. The ordering
becomes increasingly ordinal, with increasing aggregation since we allow the aggregation to be adaptive throughout
the shot. Contrary thereto, set representation ignores the temporal order. It only considers the amount and degree of
similarity between the feature values. At the highest level of aggregation, both sequence and set representation
degrade to a completely aggregated representation: the shot is described by only one feature value. :

The interdependencies among these three representations are summarized in Figure 4. Note that transitions are con-
tinuous. The meaning of the threshold value shown in that figure will be explained shortly. .
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' Figure 4: Interdependencies among the possible frame sequence representations. The
' width of the arrows indicates the strength/importance of its describing attribute.




- 5.2.1 Sequence Representation

Non-aggregated Sequence .
The aim of this representation is to preserve the precise temporal development of a shot. Therefore, a shot is repre-
sented by the sequence of the feature values calculated per frame. Then, each value is regarded as a character, the
domain of possible values as an alphabet, and the sequence of characters as a.string. Two sequences can now be com-
pared by applying well-known string searching algorithms such ‘as the approximate substring matchrng and 1ongest
. common subsequence search. They are defined as follows

i

. APPROXIMATE SUBSTRING MATCHING: Given a query string A of length P and a longer subject string B of length N,
- the approximate substring matching asm(A, B) finds the substring of B that aligns with A with minimal substitutions,
deletions and insertions of characters [15]. The minimal number of substitutions, deletions and insertions transform-
ing A into B is called the minimal distance D between A and B. A cost of 1 is assigned to deletions and insértions,
while the cost of transforming a character from a to b is weighted by the normalrzed dlstance multiplied by 2. This
metric is called the edit distance. : ‘

The usage of the similarity measure between two feature values as the variable cost function for substitutions allows
the ranking of two sequences with respect to similarity. Two sequences A and B are regarded as identical if the mini-
mal distance D between query string A and subject string B does not exceed the threshold #, sy, and as completely
different if it exceeds the threshold #4gys,. These thresholds are used to construct the normalized feature distance
function and are determined empirically. In our;experrments they are set to 5% and 90%, respectively, of the length of
the query string A. ‘

LONGEST COMMON SUBSEQUENCE leen two strmgs A'and B of length M and N, respectrvely, their longest common
subsequence lcs(A,B) of A and B is the longest subsequence which is common to both strings [15]. This algorithm is
used to determine the parts two strings have in common, as well as to evaluate their similarity by the length of the
les(A,B), denoted llcs(A,B)l. The maxrmum of lics(A,B)| is the mrmmum of 1Al and IBI. Thus the distance measure is
defined as ) o o .
_lles(A, B)| - , ‘ o _ o -
" min(lAl, |B]) ' ' '

It is O if the shorter sequence is a subsequence of the longer one and. 1 if they have nothmg in common. Slnce identi-
cal subsequerices coming from different vrdeo sources are likely to differ in the precise feature values and, in addi-
 tion, we also want to retrieve similar scenes, subsequences are allowed to differ from each other up to a threshold #; ¢
which was empirically set to 5% of min(IAl,1Bl). Hence, small differences are tolerated within the lcs. Again, in our
_experiments the parameters of the normalized distance functlon are set to 5% and 90%. S .

: : A

Both normalized sequence measures, one based on'the asm and the other on the lcs have their own strengths and
weaknésses. The .asm measure'judges similarity based on the whole shorter string, i.e. nothing is left out of the com-
parison, while the lcs measure uses only the Jongest common subsequence and sets its length into relation to the
length of the, shorter string. Therefore, the asm is usually more appropriate in query-by-video sample applications
where the query video contains only and all aspects important to the user. Moreover, the computation of the.asm is
less expensive than that of the ics. Both measures also determine the position of the subsequences which led to-that
distance Judgement an aspect important to the presentatlon of the result list in query-by-video - apphcatlons

Examples of generic questions which can be answered by the asm and the les with respect to some feature in the case
of non- aggregated sequences are:

* Are two shots identical? )
* Is one shot a subsequence of the other? . ‘
o Do' two shots have a subsequence in common? . o

'Thls mformatlon has many useful apphcatlons For instance, . :
* the ccv feature can be used to automatically set up hiyperlinks between 1dentlca1 shots such as

11



. between original news footage from news agencies broadcast at different times on different channels
during newscasts, ' '

.» the lightness or lightness difference feature used together with a fade sequence as the query sequence
can be used to retrieve other fade sequences with similar absolute or relative temporal chan ges in light-
ness, and :

.+ . the similarity between faces and their positions can be used to determlne all shots in a video database

showing the same person(s) in a spatial and temporal setup similar to those in the query shot

‘Non-aggregated sequences do not tolerate major dev1at10ns in the rate at which a feature develops Therefore, in most
cases partially aggregated frame sequences are more appropriate.

Partially Aggregated Frame Sequence

This representation aims to preserve the rough temporal development of a’shot by means. of a few representative
frames, so-called r-frames. The level of “roughness” can be controlled. The less important the precise temporal suc-
cession of the frames is, the fewer r-frames are needed. In.our work, temporal precision is controlled by the maximum
allowed feature distance between two contiguous r-frames, specified by thresholdg,,y,y,. Simultaneously the visual
precision of the representation of the sequence decreases with the increase of the threshold since each r-frame covers
"a larger area of tolerated “visual” differences. The use of a negative threshold results in a non- aggregated sequence
representation Note also that a threshold of Zero aggregates still-image sequences.

Given a shot S consisting of n frames f}, ... fn and the maximum allowed feature distance between two r-frames by

‘ thresholdfea,u,e, r-frames are generated as follows: :

1. i:=1;rNo:=1; rFrame.y, =f

2. while ((i <= n) && (distance(rFrame,NO,f) <( 0 5% thresholdfeatu,e))

A 21, i+

3. rFrame,y, =f_;

4. ‘while (i<=n). '
4.1.  if (distance(rF rame o, H>C05 *thresholdfeatwe))

rNo++

, rFrame,y, :=f; ,
4.2. i++ ' o o o ¥

The algorithin is visualized in Figure 5.

| v‘ ].v 20'3 4¥L
I S Y N

dlstance(referenceF ramere/N,), fo>(05%* thresholdfeuture)

F|gure 5. The r-frame generatlon process

Note that for each feature or feature combination we demand an 1 individual reference frame selection process. Very
often r-frames are selected as a visual abstract forf users and then afterwards mis-used for feature extraction. From the
features' point of view this two- -step approach with different goals in different steps is likely to cause many errors
since the r-frames selection process is neither tailored to nor suited for most features :

. Employing approximate string matching the following questions can be answered
» Isoneshot a slow motion of the other? (using CCV)
« If the query sequence is a fade-in sequence, find all fade-in sequences 1n the database, mdependent of
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their precise temporal development (using lightness). :
* Find all shots-where persons moves srmllar to the one in the current shot (using the position of frontal
faces) :

5.2.2 Set Representation : ,

The aim of this model is to preserve the static content of a shot by means of a few representative frames. Temporal
development and temporal order are of no interest here. Obv1ous1y, if we are tolerant in classifying similar frames
“there is no need to use all frames. On the other hand, one r-frame per shot will not suffice. By employing the r-frame
- generation process introduced in Section 5.2.1 and depicted in Figure'5, the distance between some reference frame
of §; and S will be at most 2*thresholdfea,u,e if the distance between some frame in shot S; and some frame in S, is
less than or equal to thresholdy,,y,,,. As a result, we lose some precision by concentrating only on the reference
frames, while reducing 51gn1ﬁcantly the computatronal cost of comparlson and storage.

i

2 eees f2 they are compared based on the fo]lowmg sets
T

Grven{wo shots T {fr: .. f‘} and S, = {fl, . f } and their respective r-frame sets' R, = {fll; ...»,fll} and
rl r )

R/ MR, = {f[] I.i‘e {r},...', r,ll},je {ri...,ff}', dist‘ance(f f )<2 thresholdﬁamre}

¢

2| 1o 2
RyMR = {fj’r €f{ry.,r},je {rl,.. rz} dlstance(f f )2 thresholdfwmre}
Note that R, N R, does not specify the usual set mtersectron and is not commutative.

To derive a normalized distance measure four cases have to be investigated: )
1. For every reference frame of shot S/ we can find at least one similar reference frame of shot S2 and vice versa, .
ie. (R N Ry =R) A (Ry "Ry = Ry). Thus, the two shots are identical with respect to the static feature.

2. For every reference frame of shot S/ we can find at least one similar reference frame of shot S2, but for some ref-
erence frames of S2 we cannot find a similar one in §7, i.e (R N R2 =R (R, N Ry cRy). Thus, S7 is a subset

~-of S2 with respect to the static feature. :

3. For every reference frame of shot S2 we can find at least one similar reference frame of shot S1, but for some ref-
erence frames of S/ we cannot find a srmllar onein 82, i.e. (R, a R,cR ) A (RyN R, =R,). Thus, S2 is a subset
of S/ with respect to the static feature. ‘

4. There exists at least one reference frame for §1 and S2 that is not similar to any reference frame of the other shot,
ile. (R mchR JA(RyNM R CR,).

" Based on these four cases two.normalized distance measures are defined: An asymmetrrc dlstance by
|R1 AR, '

dist, (R, Ry) = |R|

asym

o

and a symmetrrc distance by ‘
[Ry N Ry * |[Ry NRy|
[Ry[ + [Ry|

dist (R;Ry) = 1-

“sym

They are 0 if R ; and R, are 1dentrca1 and 1 if they have nothing in. common. Note that the total temporal duration of -

the feature values influences the result to some extent. If the temporal duration should be ignored the normalized dis-
tances may be defined as the minimum of all pair-wise normalized dlstances between all elements of R; and R5:

dzst(Rl,Rz) = mm{dfwmre(r], rz)lr € Ry, r2€ R2} -

523 Completely Aggregated Set or Sequence

This representation describes a shot as one completely aggregated unit. As mentroned above there is no difference

between the completely aggregated sequence and set representation. Characterlstrc features are only computed for the
- compléte shot. They may result from the sequence or set representation by setting the feature threshold to infinite.

Another pOSSlbl]lty might be to use the shot labelling approach proposed in [2]] All mformatron is contained in a sin-
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gle feature value. The shots are compared direCtly by the feature’s normalized distance function.

By mieans of the features described in Section 4.1 the following shot 1nformat10n can be extracted and compared
* type of static framing (long shot, American shot medium shot close-up),
* type of mobile framing (i.e. dominant camera operatron)
¢ amount of action (motion intensity), v _ v
. strength of average luminance (lightness), - ‘ ‘ .
* - shot length, and , '
* number and list of faces. ‘

'5.3 “At Scene Level

A scene can be represented as a sequence or set of features at some aggregation level, too. The basic units (or charac-
. ters in string matching terminology), however, are the shots. They in turn are compared based on the concepts devel-
oped in Section 5.2, resulting in a recursive computation scheme. -

Examples of queries that can easily be formulated are: Find all frame sequences which are similar to
* acertain spatial'layout of frontal faces over the course of time (e.g. a dialog with speaker A to the left
of the image center in shot 1 and 3 and speaker B to the right of the i image center in shot 2 and 4), '
* a given dialog with specific people :
* a typical shot length pattern (e.g. a -scene with shots of decreasing length from Hltchcock s “The
- Birds”), or :
* " atypical action pattern (e.g. a scene of alternating calm and action-loaded shots).

Shot length and action patterns are often summarized under the term film rhythm.

5.4 At Video Level : : : : - . B
At this level frame sequences consisting of several scenes up to full video productlons such as feature films, docu-
mentaries, sitcoms, etc. are compared. Questions of the following type can be answered:

« If both input videos are different versions of the same feature film, what are the differences? This is a
reasonable question since for many feature films one can find short and long versions as well as special
versions edited for video cassettes, alrhnes and countries.

» If two videos have several shots or scenes in common, do these appear in the same temporal sequence ‘
or is the temporal structure completely dlfferent perhaps 1nd1cat1ng a re-purposing of existing mate-
rial? .

* With regard to the characteristic shot patterns found at the scene level, do two vrdeos share a similar

_ temporal structure?

We use two normalized measures: the correspondence measure and the re- seguenczrzzg measure. C0n51der two videos
video; and video, given by their list of entities E' (El, E ) and E = (El.... EN ), respectlvely The entities can
either be the shots or the scenes composing the video. In pr1n01ple the entities could also represent the individual
- frames, though at that level their consideration does not seem to make much sense and is therefore omitted here.

. In afirst step, the entities are compared against each other in order to construct a graph where nodes represent entities
and edges entities similar with respect to some feature. Two entities are considered to be similar if their feature dis-
tance is below a specified threshold (see sample graph in Flgure 6). Then, the following useful measures can be com-
puted

CORRESPONDE’NCE MEASURE: The correspondence measure specifies the percentage of the entities of video ; which
are similar to entities in video,. It is formally defined as
|E ' E2l

Correspondernce(videol, video?2) = I ll
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Figure 6: Similarity graph constructed to calculate the correspondence measure and the re-sequencing
measure :

© with |E NE I denoting the cardinality of the set of entities of E' for which at least one similar entity could be found
in E?. Note again that the correspondence measure is not symmetrrcal i.e. exchanging the roles of video; and video,.
usually * affects its value. For example, if Correspondence(video;video,)=0.9 . and  Correspon-
dence(video,,video;)=0.5, the conclusmn can-be drawn that video is a shortened version of video,.

‘

~ RE-SEQUENCING. The re-sequencing measure analyzes whether the entities two videos have in common appear in the
same sequence or in a reordered sequence. Such a mieasure can be used, for instance, to judge whether some video
source material has been compiled in.a content-, context- and structure-preserving manner. A low re- sequencmg/
value indicates that the material is mainly used in its original structure, thus preserving the content and context; a high
re-sequencing value signals that the context of the shot has been changed by editing. Most probably this will resultin
a new content; thus, a high re-sequencing value can indicate a re- purposmg of the source material. The re- sequencmg
measure is calculated as follows: ,

1. countReOrderings := 0 // count the number of re- orderings found

2. countOrderAgreements :=0 . // count the number of order agreements

3o ij=Li=1 . -" // indices into video,; and video,; pointing to the first entlty
4. while (i <=N,) '

4.1. iy :=find index of next entity of video, linked to video ] starting from iy

4.2. Ifemp -= find index of earliest linked entity in video, to i, starting from i,

4.3, if (i ==9) ' '

B countReOrdermgs++

i; :=find index of earliest connected entity in vzdw] to 12, N
else . -

countOrderAgreements++;
4.4. ] = ltemp +1 '
5. Resequencmg(vtdeo 1, video,) = countReOrdermgs / (countReOrdermgs + countOrderAgreements)

The algorlthm determines the number of minimum relative re- orderings necessary to transfer-the sequence of cross-
video-linked entities of video, into a sequence with the samne ordering as the sequence of cross-video-linked entities
of video,. In the worst case, the ordering is reversed, resulting in N-1 re-orderings. The measure ranges from 0 (same

ordering) to 1 (reversed ordering). An example is given in Figure 6: The thick lines show the edges ‘selected by the
algorlthm No re-ordering was necessary.
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- SET AND SEQUENCE REPRESENTATION: Obviously, the set and sequence algorithms are also applicable. In this case
appropriate shot and scene representation are considered as.the basic unit or characters and the cost of transforming
~'these features is given by the normalized distance between them. For instance, given a trailer of a movie, the original
feature film can be found by using the shof set representation and comparmg shots based on a non-aggregated set rep-
_ resentation of CCVs - , . v

6 Combining Features into a Query ' S

Each feature captures only a specific aspect of a video frame or v1deo sequence and is usually not sufficient tO'
describe the similarity judgement desired by an inquirer. Therefore, several features are usually combined to a new
- feature in a query to capture the desrred srmrlarlty Judgement more accurately

A new feature and its distance measure is defined either by a logical expression or by a weighted sum of exiting fea-
tures and their normalized distance measures. The weighted sum allows to formulate queries such as: “Find all shots
- which are similar to the query video with respect to the ECR and CCV. The importance of ECR is 30% and of CCV., -
70%. This method of combining feature is often used in image retrieval database systems (e.g. [4] and [5]). Logical
expressions of features allow similar queries. Since the membership functions are inverted here, unlike usual mem-
bership functions (a value of O stands for fully belonging to the set instead of a value of 1), a logical AND is defined
- as the maximum over all distance values of the distances of the various features-and a logical OR as its minimum. A
‘logical NOT remains one minus the distance value ) '

Currently, the user has to specify the method of combination. In future, we w1ll pr0v1de a set of pre -defined combina- -
tions for specific semantic domains.

7 Experiments

7.1 Methodology

The performance of any indexing and retrieval system is usually measured by its recall and precision values In our
case, recall specifies the ratio of the number of relevant video sequences found to the total'number of relevant video

" sequences in the database. Precision specifies the ratio of the number of relevant video sequences to the total number
of returned video sequences. Since in our experiments the search result list always consists of the ten most similar
video sequences, the definition of precision here is changed in the case where all relevant video sequences in the data-
base are retrieved. In that case precision is defined as the ratio of the number of all relevant video 'sequences to the '
rank of the least relevant video sequence in the result list. The ground truth, i.e. the decision whether a video sequence
is relevant or not, has to be determined by humans. Naturally the measure forrelevance is the human similarity judge-
ment

~ Analogous to the evaluation of performance of i 1mage or text databases tens of thousands of ‘shots and scenes are
needed to evaluate the performance of any video comparison algorithms reliably. Unfortunately, building up such a
large video database and determining the ground truth presently exceeds the possibilities of our multimedia lab Thus
we had to restrict our experlments to amuch smaller database. /

7.2" Setup

The proposed recursrve comparlson scheme as well as all feature computations have been 1mplemented in. C++ using
. its template mechanism. Experrments were performed wrth the following setup :

DATABASE. The video database consisted of 4 hours of video from various sources. ‘They were digitized from German
TV as M-JPEG of size 360x270. In detail, the video database-consisted of the feature films “Groundhog Day” and
“True Lies”, the newscast “Tagesschau”, the series “Baywatch” as well as several TV commercials and live concert
recordings. For each of them we calculated the features listed in Section 4.1 and stored them in a large database file.
One of these videos, namely “Groundhog Day”, is, very peculiar and very well suited for evaluating our algorithms: It
consists of many very similar but not identical scenes repeating throughout the whole movie.
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QUERIES. In preparation for our experiments we watched all-the videos several times and made a note whenever we
,thought we saw similar shots or scenes with respect to some feature, Based on these video sequences we constructed

five queries at the shot level and one query at the scene level. They are hsted in Table 1. All query sequences were'
taken from “Groundhog Day”. '

Query 1 Ja putative old acquaintance meets the main actor on the street|shot  |5. ’ : cev
Query 2 |main dctor behind a shower curtain - : S shot |2 - JAcev
Query 3 |building on the street w1th ared and white strlped awmng in |shot |2 cev
' ‘| the front . \ ’
Query 4 |main actor looks down the street out of the window shot |2 cvv
Query'S |main actor looks down the street out of the window .. |shot- " [2 cev +
R S ) ' . |motion _
Query 6 [Dialog between the main actors e scene {10 . " |face position

Table 1: List of queries

7. 3 Results

The exper1mental results with non-aggregated’ v1deo sequence representatrons (e. with a feature threshold ]ess than

zero) are summarized in Table 2 and those with a feature threshold of 0.5% of the maximal possrb]e feature distance
' in Table 3. They show two properties: Firstly, the sequence representation performs better on sequences with motion

since it takes the temporal development into account. For calm scenes, however, the set and sequence representations -

perform similar. oni our queries. Secondly, there seem to be no dlfference in retrleval performance for non- aggregated
and slightly aggreoated sequences

Query 1 - 108 0.44 s 0.8 . - |04

- [Query 2. 0.5 01 |05 0.1 : o .
Query3 05 . - o1 |05 - |01 o , -
Query4 |1 05 - T 04 B - '
Query 5 T 066 - T |1
Query 6 |09 . 09 09 09

Table 2: Expenmental results with thresholdy, ., < O a;=0,a,=10%

Query 1" - 0.8 - 1044 10.8 04 ]

Query2 |05 |01 05 o1 B
. {Query 3 0.5 R (V5 05 . 0.1

Query4 = |1 0os - .1 0.4
[Querys |1 |06 1 T

Query 6 0.9 |09 09 v09

Table 3: Experimental résults with threshola’,eum,e = 0.5% of maximal possnb|e feature d|stance ay= 0 ay;=10%

Durmg our experiments we observed that the results of the v1deo comparison algorithms 1mproved with the-size of -
the database. This su ggests that the proposed al gorlthms are: approprlate for large video archlves of thousand of hours.
, .




-8 Conclusion

We have proposed a general method for similarity matching of video sequences of different lengths and.at different
. levels of temporal resolution. Four levels are considered: frame, shot, scene and video. At each level the features of

~

, the level of higher temporal resolution are employed, leading to a- recurswely defined video sequence similarity mea-

sure. The temporal ordering and duration can be fully controlled by the user via the type of representation (sequence
or set) and the level of aggregatlon (non-aggregated, partially aggregated or completely aggregated). At the video
level we have also introduced two new specialized comparison metrics: the correspondence and resequencing mea-
sure. Moreover, we showed how a feature’s d1stance measure can be eas1ly adjusted to the actual desired similarity
judgements of a user. - :

The experlmental results on our video database of four hours of vrdeo are very promising. The expern‘nents suggest
that the proposed algorithms scale with the size of a video database with respect to retrieval ‘quality. In-the next few
years we plan to build up a large database of thousands of hours of video with some broadcasting stations. This will -
enable us to evaluate the proposed and other video comparison schemes more thoroughly

Generally, v_1deos are aud1o-vrsual streams. In this paper we have concentrated on the visual part only. Our approach'

is general enough to be used for an AudioGREP or an AudioVisualGREP. Assuming that audi6 features such as

amplitude, frequency, pitch, onset and offset are available together with their distance measures the AudioGREP
would work just like the VideoGREP. For instancé, given an explosion as the query audio, other explosions can be

retrieved from an audio database [lO] Therefore we plan to add audio features to our VlsualGREP resulnng in an
AudlonsualGREP
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