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ABSTRACT'

In [his paper, we consider the problem of similarity between video sequences. Three basic questions are raised and
(partially) answered. Firstly, at "Yhattemporal du ration can video ~equences be compared? TheJrame, shot, scene
and video levels are identified. Secondly, given so me image or video feature, what are the requirements on its distance
measure and how can it be "easily" transformed into the visual similarity desired by the inquirer? Thirdly, how can
video sequences be compared at different levels? A general approach based on either a set or sequence representa-
tion with variable degrees oI aggregation is proposed and applied recursively over the different levels of temporal
resolution: It allbws the inquirer to fully control the importance of temporal ordering and duration. The general
approach is illustrated by introducing and discussing some of the many P9ssible image and video features. Promising
experimental results are presented.

1 Introduction
The daily growing number of video databases and their sheer volume placecontent-based search tools in high
demand. arie proven search tech,nique is query by video sampIe. The MoCA (Movie Content Analysis) project [7] at
the University of Mannheün is currently working on asystem called VisuaIGREP, whose query paradigm follows the
well-known UNIX "grep" cbmmand for text files. The user specifies a video sampie and 'the type of similarity he/she
is interested in, and VisualGREP searches the viCIeodatabase for similar video sequences. Prerequisite to the con.
struction of such asearch tool is the systematic analysis both of the various methods to compare video sequences and
of the distance m~asures between them, As for any kind of "grep", the query video sequence is inuch shorter than the
video database which is searched.

'Our paper presents~ systematicmethod to compare and retrieve video sequences at the four levels of temporal reso-
lution of videos: frame, shot, scene andvideo. At eacfr level, features are employed to transform the video sequences
into an appropriate representation. A normalized measure of distance between the representations oftwo video
sequence is defined to capture their similarity. To the authors' knowledge, this)s thefirst paper to present not only
clomain-independent methods to compare frames, shots or short sequences but also techniques to compare temporally
large entities such as scenes and full-Iength feature films for general video. A domain~specific approach has been pre-
sented in [19].

The paper is structured as follows. Following a review of related work,' Section 3 presents the types of similarities
between video sequences in which we are interested. Section 4 disc;usses the tequirements on tlie' features' distance
measures and how the distance measures can be "easily" transform'ed into the visual similarity judgement desiredby
the inquirer. It also introduces some "real" image. and video features in order to make the subsequent discussion more
concrete. These features are important components in Section 5, which goes through the foul' levels of temporal reso-
lution and presents and analyses various techh.iques of comparison, Seetion 6describes some aspects of how to com-
bine the various comparison methods, and Section 7 shows experimental result. Section 8 concludes the paper with an
outlook on future research.
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2 Relah~dWork

Image Databases, '.
Many content-based image indexing i:mdretrieval systems support querying the database by e~ample. Recently they
have extended their range to the video domain. To do so they have basically added cut detection and create for each
shot one or several representative frames, eitherby somekind of image mosaics [4] or by reference frame selection.
These images are then indexed as standard still~images. Öften motion information is added on a per-reference-frame
or shot basis. Well-knownexamples are QBIC [4], VisualSeek [18] and Virage [5]. However, since these systems
originated from still-image systems they do not go beyond the shot level to scenes or full-size videos. Möreover, they
map the video into the still-image domain, ignoring the temporal order. Besides these systems, White and lain have
developed a generalframework for efficient global and local matching in image databases. They call their framework
ImageGREP [20].

Video Abstracting
Yeo and Yeung have proposed ascheme to recover story units from video usingtime-constraiped clustering [21][22].
The basic idea is to assign thesamelabel to similar shots and analyze the 'patterns of the resulting strings. Three dif-
, fereht kinds of temporal events are extracted from those label patterns: dialog, action, and story unit. Each eventcan

.' .' , I .be regarded as' a scene of the vIdeo. Yeo and Ye.ung use the patterns only for abstractmg purposes, not to compare of
dialogs, actions, and story units. Such comparisons: however, are covered by our method.'Another way to retrieve the
scenes is described in [8]. Again; only for video abstracting purposes ..
Similarity Measures
Any rneasure of video similarity should imitate the human'visual judgement. A thorough investigation of the psycho'-
logical findings regarding human judgement of similarity can be found in [17], whose basic statements are the basis
for our design of distance measures.

Video QuerySystems
One of the few architectures designed exclusively for video retrieval by example is described in [3]. Consequently,
their proposed algorithms take thetemporal order of the [rames into accoimt. In a first step, a signature is derived for
each video sequence by using the DC coefficients üf window pairs and their motion components. Then, the distance
measure between a query videosequence and a database video sequence is defined by the average distances between
corresponding frames in thesignature representation.

3 Video Similarity
Wl).en aretwo videos similar? Thereis.no straightforwardanswer. Theaspects of video similarity are manifold and its
definition at t!}esemantic level vague. For example, let us assurne that one ,,:ideo shows the US president at a gala din-
ner. Would a s~cond video showing the president be similar, or a third video showing a family dinner? We conclude
that there is no absolute measure of similarity, instead one hasto let the user decide in the query what he/she is look-
ing for. This is somewhatsimilar to regular expressions the user has to specify in the UNIXgrep command.

In this paper, weconsider three orthogonal aspects ofvideo sequences:
• the lev.eIs of temporal resolution,
• the temporal order, and
• the temporal duration.

Levels of Temporal Resolution
Video sequences can vary considerably in'length. They may range from several frames up to tens or hundreds ofthou-
sands of frames. Obviously, the type of similarity between rwo short video'sequences (several seconds in length) and
the assessm,ent procedure ought to differ from that between two long video sequences (several minutes in length).
Thus, video sequences have to be classified with respect to their temporal length before an appropriate compaiison
scheme can be applied. FoÜowing the standard .hierachical video model,we classify vißeo sequences intoshots,
scenes and video. A shot refers to a continuous calnera recording. In a query it can also be a subsequence of that. A
scenedenotes a video sequence that is longer than one shot and shorter than a video, exhibiting some characteristic
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shot feature pattern. The type of characteristic shot pattern is determined by the query video. This definition differs'
slightly from thedefinition in film art, where a'scene is "a segment in a narrative film that takes place in one time and
space or that uses crosscuttirtg to show two or more simultaneous actions" [2).Last but not least, a video denotes.a
full-Iength video production. At these four levels video similarity will be investigated using image and video (i.e,
motion) features.

Video

Scenes

Shots

Frames

G 'I
G ] J
G_]B

Figure 1: Standard video structuring model

Temporal Order
Video sequences consist of images. Hence, video sequences can be considered as a set of images and one can use the
similarity between image features to judge video similarity. The similarity betw'een two video sequences can then be
measured bythe number and amount of similar image features. We call such a view a set representationof a video
sequence. Note, this view ignores any temporal ordering of tne image features.
Often itis desirable to' consider the temporal ordering of video sequences by imposing the ordering constraint on the
still-image features. We call such a view a sequence reptesentat~on.

Temporal Duration .
The temporal duration in this context denotes to what extent thetemporal duration of a feature is jmportant. For'
instance, having a shot consistingbf two parts, a 3-second near still-image of a human who suddenly runs out of the
frame within 2 seconds raises the question ofhow important the temporal duration isoUsually we may represent such
a shot by one refe'rence frame on the still-images and five on the running human. Is it then acceptable to use these
ordered reference sequences. as a shot representation? Or should we also consider the time a reference frame covers?
That decision is independent.on the choice ofrepresentation.

It should be up to the user toset the importance of the temporal duration. In the case of the sequence representation,
for instance, one.user might'demand that the precisetemporal development be met; another user might be satisfied if
the video sequences have the same relative pace (slow-moiion / normal-motion); while a third user might only be
interested in the fact that a video sequence is developing: ignöring any pace. '

These three different orthogonal aspect will be discussed further in Section 5.

4 Features an,d their Distance Measures
Whenever comparing twl,) things of the same type, one has to specify the criteri"\ for the comparison. Usually the cri-
teria are den9ted as features in the fi~ld of image and video content analysis. The value of a feature can be any kind of
data such as a scalar value, a vector value, another image or a text string. In this article, features are derived from a set
or sequence of individ~al frames,sl1ots, scenes and videos.. '.
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Since thefeatures are employed tojudge the visual similarity of video sequences, it is crucial that these distance mea-
sures resemble human similarity/distance perception to' some extent. For some of the possible features such as color
and lightness there exist well-accepted perceptualIy'uniform distänce measures. However, for all other features, mea-
sures which model human perception tö some extent or - less pretenfiously - may be useful, have to be defined. Note
that each feature requires its'own distance measure:

4.1 . Some Image and Video Features
In order to make the subsequent discussion more concrete, we now introduce Some low-Ievelto high-level image and
video features together with reasonable distance measures for them. They represent onlya small set of all possible
features.

4.1.1 Color Atmosphere
The color atmosphere is an important feature of aframe and a frame.sequence. It is often viewed as a compact sum-
mary. In practice, it is usually measured by some sort ofrefined color histogram technique. The basic color histogram
H~ of a frame sequence FS/ is defined asthe vector «(hl), ... , (hn», where hj specifies the number of pixels of
color j in frame sequence FS/ normalized by the total number of pixels. Typically, onlya few of the most significant
bits ofeach component of a color representation in some color spaceare used to calculate the color histogram. Since
we are interested in measures which approximatehuman perception, the CIE L*a*b* color space is used. It was
designed for perceptual uniformity [11].

A refined and thus better color histogram technique is the color coherence vector (CCV) [12]. It ~akes uSe ofthe spac
tial coherence and isthus much more discriminative. It outperforms the basic color histogram in similarity retrieval in
largeimage database. Instead of counting only the number of pixels of a certain color, the CCV additionally distin- .
guishes between coherent and incoherent pixels withineach color class j depending on the size of the color region .
they belong to. If the region (i.e. the connected 8-neighbor component of that color) is larger than threshold tccv' a
pixel is regardedas coherent, otherwise as incoherent. Thus, there are two values associatedwith each color j:

• Cl. ., the number of coherent pixels of color j and.1 •

ß. , the number of incoherent pixels of color j..1

Then, the color coh~rence vector CCVi is defined as the vector «(<i~, ß~), ... , (Cl.~,ß~) normalized by the number of
pixels. Two CCVsCCV] and CCV2 are compared by

~ ( 1Cl.~'-Cl.~1 + Iß~- ß~IJ
.L., I 2 I 2.
j=l Cl.j +Cl.j + 1 ßj+ßj+l

In experimental resultsthis measure outperforms the Euclidean distance [12]. Thedistance values range fromO to
about in.

4.1.2 Lightness. (
The luminance of mise-en-scenes plays an important role in filmcraft, usually varying significantly in different seg-
ments of the video: Actions, for instance, can be performed ih the dark Ce.g. at night, under water, or,in ,the under-
ground) or in the light (e.g. on a California beach).

Suchdifferences can be capturedby lightness. It is defined as the perceptual response to luminance and denoted by L *
[11]. Luminance,denoted Y, is defined as the radiantpow~r weighted by a spectral sensitivity function that is characc
teristic of human vision [11]. QIE defines L * as:
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Thisfonnula states that lightness percepti6n is roughly logarithrriic. L*ranges from 0 to 100. SinceL * is perceptually
uniform, two lightnes~ values are compared by rrieans of their difference. The Lightness of a frame'sequence f is the
average of the lightness of all pixels of the frame sequence. '

4.1.3 Motion Intensity , .
,Motion intensityis another impöitant feature of a frame sequence. If describes whether or not there is much motion
present: either object motion or cameramotion. The shortest possible sequencefor which motion intensity makes
sense is aseqiJence of two contiguous frarries. In this paper motion intensity is measured by meansof the edge change
ratio (EeR) [23]. In our experience, ECR seems to be a little more reliable than the block m6tiön vectors and faster to
calculate.

Let O'n be thenumber of edge pixels ,in frames n, and Xn
in and Xn_lout the number of the entering and exlting edge

pi~els in frames n and n-J, respectively. Then the edge change ratio ecrnbetween frainen-l and'n is defined as

" " (Xin 'Xi!utJn n-1
ecrn = max -,,-' -'

(Jn (Jn-'1

and ranges from 0 to 1. In order to make the measure robustagainst small movements, pixels in oneimage which
have pixels nearby in the other image (e.g. within 6 pixels' distance) donot count as entering or exiting pixels., Notice
that unlike [23], the edge change ratio here is not used to detect scene breaks, and no global motion compensation is
performed befme the ECR's ca1culation.,

TheECR 6f a frame sequence f isdefined as the average of the ECR values over all frames in the sequence: The
ad vantage of the ECR as ,a characteristic parameter is that it registers structural changes in the sequence such as enter-
'ing, exiting and moving objects, as weil as fast camera operations. However, it is somewhat independent of variations
in color and intensity sinee it relies on sharp edges only. '

. ,. '.

4.1.4 FrontalFaces
, .

In most video' genres the people are an essential or even the ipost important part of a video. Thus, a face detector and
a method of identifying facesof the sam~ person within the same shot/scene/video and across videos is"highly desir-,
able. Such a feature is ,arich resource of semantics as we will 'see in Section 5. "

One of the, most reliableface detectors' in digital image research was developed by Rowley, Baluja, and Kanade [13].
Their system recognizes about 90% of all upright and frontal faces while only sporadically mistakenly identifying

, "

non-face' areas 'as faces. Theref9re,we have recreated their proposed neural network-based frontal face classification
system for arbitrary images as a basis for our frontal face detedor in video sequences. To widen the range of detect- .
able faces, our detectbr also searches for slightly tiltedJrotated [aces (+30' degree). This is necessary because the faces
of the people in motion pictures are eilwaysmoving; as opposed to the faces in typicalstill images such as portrait and
sports team photographs, which are usually depicted upright. However, this more general face secir,chincreases by a
factor of three the number ofpatterns wh ich have to be tested in each.image. To speed up processing, the number of
ca'ndidate frontal face locations isdrastieally reduced by an, extremely fast pre-filtering step: Only locations whose
pixel colors approximate human skin colors [6] and which show, some structure (such as nose, mouthandeyes) in'
their local neighborhood are passed to the face detector. This pre-filter reouces the number of candidate.facelocati~ns
by 80%. Moreover, o~ly every third frame of the video sequence is investigated.
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~ Each face detected is described by the vecto; (t';, xpos' Ypos' s, y).1t sp~cifies the frame t~, in which a face of size s (in
pixels) was detected, as well as the x- and y-coordinates (xpos' Ypos) of its center and itsangle of incline y.

Two faces F] and F2 are compared according to one of the following three features: size, position and visual similar-
ity. The size difference measureis given <;IS the ratio between the larger and the smaller face, i.e.as max{s] /s2s2/ sI} ,
the spatial distance is measured by means of the Euclidean distance between their centers, and the visual distance is
measured by means of the Euclidean distance of their eigenface representation, i.e. üf their projection into the face
space [9][16]. Gur face space was determined from a training set of 1247 frontal images of faces', thesame set used to '
train the neural frontal face detectoL '

4.1.5 Type ofFraming
There exist two different kinds of framing of frame sequences, especially shots: static framing and mobile framing.

STATICFRAMING: Static framing of the objects in a video shot gives us a sense of the camera distance, i.e. of being
far away from or close to the mise-en-scene. Based on the position and size 'of their frontal views offaces, shots can
~cl~lli~~~ '

• a long shot: the whole human figure is visible
• an American shot: the human figur,e is framed from the knees Up:
• a medium shot: human bodies are framed from the waistup, or as
• a close-up: just the head is visible.

This classification is commonly used in film art. For shots with frontal face appearances the camera distance can be
estiinated. The ranges of the face positions and sizes far the different classes may be determined empirically basedon

, experimental inquires. However, for the query by video paradigm the closeness of two frame sequences with respect
to their types of static framing is evaluated based on the similarity of theaverage size of the largest face in each frame
of a frame sequence. .

MOBILEFRAMING:Mobile framing Usually denotes the dominant camera motion such as pan/dolly,tilt and zoom.
Extracti,on of that motion is a complex tqsk and algorithms have been propOsed in[l4], [1] and [24]. Gnce extracted,
camera motions can be cömpared logicaily based on their classes and within the same classes, based on their distance
measure. However, their integration into the VisualGREP is an open task for the future.

, (
4.2 Normalization of Distance Measures
In [17] Santiniand Jain presented a thorough investigation of the psychological findings regarding human similarity
judgement. Although there still exists no generally accepted model of similarity perception and their proposed mOdel
requires the estimatiOn of too many parameters in order to be practically usable, some basic mIes nevertheless
emerge. From a cogniti>;e point of view, it is essential

(1) to find the range ofdistance values to which,humans are sensitive (with respect to a query) and
(2) to achieve saturation of the distance values outside these regions.

Saturation is a vitalpoint since itprevents a large dissimilarity with respect to one individual feature value from dom-
inating the whole distance measure. It also slippresses small distances that are often the result of noise. Note that the
degreeof human sensitivity to dissimilarity is very adaptive: It differs greatly between a set of similar images on the
one hand, and a set of in~homogeneous and diverse images on the other hand.

For a moment let us assume that the range (al'~2] represents the rangeof distance' values ofafeature to which an
inqtiirer is sensitive with respect to his/her query. Then, his/her similarity judgments can be modeled by a simple

,. .

fuzzy rriembership function as depicted in Figure 2. It normalizes the distance measures of the chosen feature. Note
that such a function can always be approximated by an infinite]y differentiable 'function, the so-called logistic func-
tion [17].

The next question is abou'thow or by which means shall we let theinquirer specify his/her desiredsimilarity judge-,
ments? Essentially there exist two kinds of features: Th,e first kind comprises all features whose desired similarity
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Figure 2: Prototype of the normalized feature distanee funetion

judgements usual1y should not vary fromquery to query. Consequently, default values can be'determined that are suit-
'able for most queries. Examples are face similaritya~d CCv. Their: default parameters are determined by presenting ..
Harnes 01' framesequences to users and letting them assess their similarity with' respeet to the feature. In oUr experi-

, ments users answered the questions by means of the position of a slider ranging from complete agreement (0 = yes,
differences are not significant) to complete disagreement (1 '= no, differentes are toogreat; the objeets have nothing
in common). When users formulate a new query they can use these default values 01' modify them cautiously. A us~ful
andintuitive tool would show some examples from the video database which lie at the distanee values specified for a l'
anda2' '.

In contrast to that, the desired similarity ]udgement of the second kind offeatures differs considerablyfrom query to
query. Default values can be speeified, however, they are generally re-set, since their values arecontext dependent.
Examples arethe lightness and lightness differenee, as well as face loeation and size.For eaeh such feature a visually
intuitive way of specifying one's similarity judgmentsshould be founl Forinstance, one's spatiallocations similarity .
judgement can easily be speCified by showing two frames of the query frame sequence. The user then specifies his/
her similarity preference by drawing the lower and upper distange boundaries upon these frames. Any distance 1ess
than or equal to the lower boundary (so,..cal1ed"don't care" distance) will be regarded as the same position, while any
distanceequal to 01' larger than the upper boundary will be regaided as eompletely different. (see Figure 3). '

Figure 3: An ei<qmple of a visually intuitive way to speeify one's similarity judgments with respeet to tolerable
spatial deviations in the loeation of objeets.

5 Comparisori of Motion Picture Sequences
In thissection a newand: general video comparison approach is proposed and applied reeursively over the different
levels of temporal resolution; It is based on either aset 01' sequ'ence representation with a variable degree of aggrega-
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tion. The comparisonstrategy at each level of temporal resolution works as folIows: the featuresof levels of higher
'temporal resolution are employed to represent the video sequences appropriately; two video sequences are then com-
pared by means of a normalized distance measure which in turn is computed from the distahces of the employed fea-
tures. - , ,

Without loss of generality, we will use only one feature in the following. Section 6 describes how the representations
• • I •

derived from different features can be combined.

5.1 At Frame Level
Frames may be compared byany image feature whose defined distance measure' fulfills the requirements stated in
Section 4. Such a distance measure should be constructible for most image feature. Applicable in addition are video
features such as the optical flow which can bederived from a sequence of frames and assigned to an individual frame.

5.2 1\t Shot Level
Shots are represen~ed by theJeatur<:s derived from their respective fraines. A feature can be derived from one or sev-
eral frames, and is assigned to that or those frames. If a feature is ca1culated for each frame in theshot, such a feature
description is called nori-aggregateq. If a feature is derived from a set/sequenceofframes, such a feature,description
is called partially 'aggregated. If at thevery most,only one featureis derived for the whole shot, it is called com-
pletelyaggregated.

Along with the degree of aggregation goes th~ importance o(duration of theindividual feature values. Non-aggre-
gated representations capture the precise temporal duration of afeature. Thus, twonon-aggregated representations are
only judged as similar (be sides 'Other requirements) if the duration of the individuat feature values are ahnost identi-
cal. For completely aggregated representations the duration Is irrelevant. Again, partially aggregated representations
allow to control the degree of importance of duration of individual featurevalues.

In-addition, as mentioned above, we distinguish between a sequen,ce and a set representation. In a sequence represen-
tation; the features are 'over iim~. If the feature values are computed for each frame, ordering is scalar. The ordering
becomes increasingly ordimiL with increasing aggregation since we allow the aggregation to be adaptive throughout
the shot. Contnirythereto, set representation ignores the temporal order.'It only considers the amount and degree of
similarity between the feature values. At the highest level ,of aggregation, both sequence and setrepresentation
degrade to acomp1etely' aggregated representation: the shot is described by only one feature value. '

Theinterdependencies among these three representations are summarized in Figure 4. Note that transitions are con-
tinuous. The meaning of the threshold value shown in thatfigure will be explained shortly. 'j

t < 0

t-too

non-aggregated
sequence descfiption

. partially aggregated

set

.non-aggregated •.
.setdeseription

strength 6f
aggregation

importance
of tempo-
ralorder

importance
of duration

. Figure 4: Interdependencies among the possible frame sequence representations. The
width of the arrows indicates the strength/importance of its describing attribute.
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5.2.1 Sequence Representation

Non-aggregated Sequence
The aim of tbis representation is to preserve the precise temporal development of a shot. Therefore, a shot is repre.
sented by. the sequence of the feature values calculated per frame. Then, each value is regarded as a eharaeter, the
domain of possible values as an alphabet, and the sequence of characters as astring . Two sequences can now be com-
pared by applying weIl-known string searching algorithms suchas the approximate substring matching and longest
common subsequencesearch. They are defined as Iollows:

. ApPROXIMATE SUBSTRING MATCHING: Given a query string A of length P and a longer subject string B of length N,
the approximate substring matching asm(A,B) finds the substring of B that aligns with A with minimal substitutions,
deletions and insertions of characters [15]. The minimal number of substitutions, deletions and insertions transform-
ingA into B is called the minimal distanee D between A and B. A cast of 1 is assigned to deletions and insertions,
while the cost of transforming a character from a to b is weighted by the normalized distance multiplied bY2. This
metric is called the edit distanee.

The usage of the similarity measure between two feature values as the variable cost function forsubstitutions allows
the ranking of two sequences with respect to similarity. Two sequences A and Bare regarded as identical if the mini-
mal distance D between query string A and subject string B does not exceed the threshold tASMJ and as completely
different if it exceeds the threshold tASM2' These thresholds are used to construct the normalized feature distance
function and are determinedempirically. In oULexperiments they are 'set to 5% and 90%, respectively, of the length of
the query string A.

LONGEST COMMONSUBSEQUE!'.)'CE: Given two strings A and B of length M and N, respectively, their longest common
subsequence les(A,B) of A and B is the longest subsequehce which is common t6 both strings [15]. This algorithm is
used to determine the parts two strings have in com~on,as weIl as to evaiuate their similarity by the length of the
Ics(A,B), denoted Iles(A,B)1. The maximum of Ilcs(A,B)1 is the minimum of lAI and IBI.Thus the distance measure is~~u . .

1 _ Ilcs(A, B)I
, min(IAI,IBI)

It is 0 if the shorter sequence is a subsequence of the longer one and.l if they have nothing in com'mon. Since identi-
cal subsequen'ces carning from different video sources Me likely to differ in the precise feature values and, in addi-
, tion, we also want to retrieve similar scenes, subsequences are allowed to differ from each other up to a threshold tLCS

which was empirically set to 5% of min(lAI, IBI). Hence, small differences are tolerated within the les. Again, in our
,experiments the parameters of the normalized distance function are setto 5% and 90%.

Both normalized sequence measures, one based onJhe asm and the other on the [es, have their own strengths and
weaknesses. The asm measurejudges similarity based on the whole shorter string, i.e. nothing is left out ofthe com-
parison, while th'e les m~asure uses only the longest common subsequence and sets its length inta relation to the
length of the, shorter string. Therefore, the asm is usuallymore appropriate in query-by-video sampIe applications
where the query video contains only and all aspects import~nt to the user. Moreover, the computation of theasm is
less expensive than that of the les. ,Both measures also determine the position of the subsequences' which led to that
distance judgement, an aspect important to the presentation of the result list in query-by-~ideoapplications.

Examples of ge~eric questions which can be answered by the asmand the les with respect to same feature in the case
of non-aggregated sequences are:

• Ar~ two shots identicaJ?
• Is one shot a subsequence of the other?
• Do two shots have a subsequence in common?

This information has many useful applications./Por instance,
• the CCV feature can be used to automatically set up hyperlinks between identical shots ~uch as. .
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between original news footage from news agf:lleies broadeast at different times on different ehanneJs
during newseasts, ,

• the lightness or lightness differenee feature used together with a fade sequenee as the query sequenee
ean be used to retrieve other fade sequences with similar absolute or relative temporal changes in light-
ness, and

• , the similarity between faces and their positions can be used to determine all shots in a video database
showing the same"person(s) i~ a spatial and temporal setup similar to those in the query shot.

Non-aggregated sequences do not toleratemajor deviations in the rate at whieh a feature develops. Therefore, in most
eases partially aggregated frame sequences are more appropriate.

Partially Aggregated Frame Sequence
This representation aims to preserve the rough temporal development of a"shot by means of a few representative
frames, so-called r-fram~s. The level of"roughness" ean be controlled. The less important the precise temporal suc-
cession ofthe framesis, the fewer r-frames areneeded. In,our work, temporal precision is controlled by the maxImum
allowed feature distance between two contiguous r-frames, specified by thresholdteature' Simultaneously the visual
precision of the representation of the sequence decreases with the increase' of the threshold since each r~frame covers
a larger area of tolerated "visual" differences. The use of a negative threshold resultsin a non-aggregated sequence
representation. Note also that ? threshold of zero aggregates still-image sequences.

Given a shot S consisting of n frames!J, i •• ,fn and the maximum allowed feature distanee between two r-trames by
thresholdje~ture' r-trames are gene~ated asfollows: '

1. i:= 1; rNo := 1; rFramerNo :=h
2. while ((i <= n) && (dlstance(rFramerNo,j) < ( 0.5 * thresholdteature))

2.1. i++ '
3. rFramerNo:= h-J
4. while (i<= n)

4.1. if (distanee(rFramerNo,fi) > ( 0.5 *thresholdteature))
rNo++
rFramerNo :=fi

4.2. i++

" '

The algorithin,is visua:Iized in Figure 5.

distance(referenceFrame~etNo' fi) > ( b.5 * threshol1teature)

Figure 5: The r-frame generation process

Note that for each feature or feature combinationwe demand an individualreference frame selection proeess. Very
often r-frames'are seleeted as a visual abstract for users and then afterwards mis-used for feature extraction. From the
features' point of vie~ this two-step approach wirh different goals indifferent steps is likely to cause many errors
since the T-frames selection process is neither tailored tonor suited for mostfeatures.

Employing approxi.mate string matching the followi~g questions can be answe;ed
• Is oneshota slow motion of the other? (using CCV)
• If the query sequence is a fade-in sequence, find all fade~in sequences in, thp database, independent of
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their precise temporal development (using lightnes's).
• Find an shotswhere persons moves similar to the one in the current shot (using the position of fron,tal

faces).

5.2.2 Set Representation .
The aim of this model is to preserve the static content of a shot by means of a few representative frames. Temporal
development and temporal order are of no interest here. Obviously, if we are tolerant in classifying similar frames

. there is no need to \lse an frames. On the other hand, one r-frame per shot will not suffice. By employing the r-f.rame
. generation process introduced in Section 5.2.1 and depicted in Figure5, rhe distance between some reference frame

of S] arid S2 will !Je at most 2*threshold(eature if the distanee between some frame in shot S] and some frame in S2 is
less th~m or equal to thresholdfeature' As a result, we lose some preeision by eoneentrating only on the referenee
frames, while redueing significantly the computational eost of eomparison and storage.

GiVen{WO shots 1.] = U:' ..., f~} and 5z = ui, ...,f~} arid their respeetive r-frame, sets R)
,Rz = . i2' ...,i2 ;they are compared based on the following sets

rl rk

R] n Rz= {t~[i E {r:, , r~} , j E {ri, , ;~}, dis tance(fi' fj) ::::;,2' threshOldfeature}

RZnR) = {f~[iE {r:, ,r~},jE {r;, ,rJ,distance(fi,f;>::::;2.thresholdfeature}

'Note that R] n Rz does not speeify the usual set interseetion and is not commutative.

= {/\, "', f\}" and
'1 '1

T~ derive a normalized distanee meäsure four cases have to be investigated:
I. For every referenee frame of shot S1 we can find at least one similar referenee frame of shot S2 and vice versa,

i.e. (R] n Rz = R I) 1\ (Rz n R} = Rz). Thus, the two shots are identieal with respeet to the static feature.
, .

2. For: every reference frame of shot S1 we can find at least one similar referenceframe ofshot S2, but for some ref-
erenee frames of S2 we dmnot find a similär one in S1, i.e (R] nRz = R1) 1\ (Rz n' R) eRz). Thus, S1 is a subset
of S2 with respeet to the statie feature.

3. For every referenee frame of shot S2 we ean find at least one similar reference frame of shot S1, but for some ref-
erenee frames of S1 we cannot find a similar one in S2, i.e. (R] n Rz e R I) 1\ (Rz n R] = Rz) . Thus, S2 is ä subset
of S1 with ,respect to the 'static feature.

4. There exists at least one referenee frame for S1 and S2 that is not similar to any referenee frame of the other shot,
i.e. (R] nRZeR])I\(RznR] eRz) ..

Based on these four eases two.norrnalized distance m~asures are defined: An asymmetrie distance by

. IR] nRzl
dlstasym(Rp Rz) = 1 - . IRJi

anda symmetrie distanee by

. . .' IR]nRzl+IRZnR)1
dtst,ym(R); Rz) = 1 - I I I I' R) + Rz

They are 0 if R] and R2 are .identieal and 1 if they have nothing in eommon.Nüte that the total temporal duration of
the feature values influenees the result to SOmeextent. If the temporal duration.should be ignored the normalized dis-
tanees may be defined as the minimumof an pair-wise normalized distanees between an elements of R] and R2:

dist(R], Rz) = rnin{dfeatareCr], rZ)lr] ER], rz ERz} )

5.2.3 Completely Aggregated Set or Sequence
This representation deseribes a shot as one eompletely aggregated unit. As mentioned above, there is no differenee
between the eompletely aggregated sequenee and set representation. Charaeteristie features 'are only computed forthe

. eomplete shot. They may result from the sequenee or set representation bysettingthe feature thr~shold to infinite.
Another possibility might be to use the shot labelling approach proposed in [21]. All information is eontained in a sin-
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gle feature value. The shots are compared directly by the feature's normalized distance function.

By rrieans of the features described in Section '4.1 thefollowing shot information can be extracted and compared:
• type of static framing (long shot, American shot, medium shot, dose-up),
• type of mobile framing(i.e. dominant camera operation),
• amount of action (motion intensity),
• strength of average luminance (lightness),
• shot length, and
• number and list of/aces.

5.3 At Scene Level
A scene can be represented as a sequence or set of features at some aggregation level, too. The basic units (or charac-
ters in string matching terminology), however, are the shots. They in turn are compared based on the concepts devel-
oped in Sectiön 5.2, resulting in a recursivecomputation scheme.

Examples of queries that can easily be formulated are: Find all frame sequenc;es which are similar to '
• a certain spatial'Iayout of frontal faces over the course of time (e.g. a 'dialog with speaker A. to the left

of the image center in shot land 3 and speakerB to the'right of the.image center in shot 2 and 4), ,
• a given dialog withspecificpeople,
• a typical shot length pattern (e.g. a scene with shots of decreasing length from Hitchcock's "The

Birds"),or .
• a typical action pattern (e.g. a scene of alternating calm and action-loaded shots).

Shot length aJ.1daction patterns are often summarized under the term film rhythm.

5.4 At.Video Level
At this level' frame sequencesconsisting of several scenes up to full video productions such as feature films, docu-
mentaries, sitcoms, ete. are compared. Ql,lestions of the following type can be answered:

• If both input VIdeos are different versions of the same feature film, what are the differences? This is a
reasonable question since for many feature films orie can find, short and longversions as weIl as special
versions edited for video cassettes, airlines and countries.

• If two videos ,have several shots or scenes in common, do these appear in the same temporal sequence
or is the temporal structure completely different, perhaps indicating a re-purposing of existing mate-

, .
rial?

• 'With regard tö the characteristic shot patterns found at the scene level, do two videos share a similar
, temporal structure?

We use two normalized measures: the correspondence measure and the re"se~uencing measure. Consider two videos
video J and video2 given by their list of entities EI = (E:"", E~ ) and E

2
= '(E1" .. , E~ ) , respectively. The entities can

I 2

either be the shots Or the scenes composing the video. In principle, the entities could also represent the individual
, frames, though at that level their considera_tion does not seem to make much sense and is therefore omitted here.

, ,

In a first step, theeiltities are compared against each other in order to construct a graph where nodes represent entities
and edges entities similar with respect to some feature. Two entities are considered to be similar if their feature dis-
tance is below a specified threshold (see samplegraph in Figure 6). Then, the following useful measures can be com-
puted:

CORRESPONDENCE MEASURE: The correspondence measure specifies the percentage of the entities of video J which
are similar to entitiesin videoz. It is formally defined as '

lEI (l E2
1Correspondence(video1, video2) = --- IEII

14 '



video],

// count the number of re-orderings found
// count the number of order agreements
// indices into video] and video2; pointing to the first entity

Figure 6: Similarity graph eonstrueted to ealeulate the eorrespondenee measure and the re-sequencing
measure

with lEI n E21 denoting ~he cardinality of the set of entities of £] for which at least one similar entity could be found
in £2. Note again that the correspondence measureis not syinmetricill, i.e. exchanging the roles of video] and video2
usually' affects its vahie. For example, if Correspondence(vide~j>video2)=Ö.9 and Correspon-
dence(video2' video] )=0.5, the conclusion can be drawn that video] is a shortened version of video2'

RE-SEQUENCING.The re-sequencing measure amilyzes whether the entities two videos have in commonappearin the
same sequence or in a reordered sequence: Such a measure Can be used,. for instance, to judge whether some video
source material has been compiled ina content-, context- and structure-prest1rving manner. A low re-sequencing.
value indicates that the material is mainly used in its original structure, thus preserving the content and context; a high
re-sequencing value signals that the context of the shot has been changed by editing. Most probably this will result in
a new content; thus, a high re-sequencing value can indicate a re-purposing of the source material. The re-sequencing
measure is calculated as folIows:

1. countReOrderings:= 0
2. countOrderAgreements :=0
3. i]:=1;i2=1
4." while (i2 <=N2)

4.1. i2 := find index of next entity of video2 linked to video] starting from i2
4.2. iiemp := find index of earlies,t lin~ed entity in video] to i2 starting from i]
4.3. if (itemp== 0)

countReOrderings++; .
i] := find index of earliest cön~ected entity in video] to i2; .

else
countOrderAg reements++;

4.4. i]:= i1emp+ 1
5. Resequencing(video], video2) = countReOrderings / (countReOrderings + countOrderAgreements)

The algorithm deterinines the [iumber of minimum relative re-orderings necessary to transferthe sequence of cross-
video-linkedentities of video] into a sequence with the same ordering as the sequence of cross-video-linked entities
of video2' In the worst case, the ordering is reversed, reslilting in N-l re-orderings. The measure ranges from 0 (same
ordering) to 1 (reversed ordering). An example is given in Figure 6: The thick lines show the edgesselected by the
algorithm. No re-ordering was necessary. .
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SET ANDSEQUENCEREPRESENTATION:Obviously, the set and sequence algorithms are also applicable. In this case
appropriate shot and scene representation are considered aS.the basic'unit pr characters and the cost of transforming
..these features is given by the normalized distance between them. For instance, given a trailer of a movie, the original
feature film can be found by using the shot set representation and comparing shots based on a non-aggregated.set rep-
resentationof CCVs. -

6 Combining Features into a Query
Each feature captures only a specific aspect of a video frame or video sequence, and is usually not sufficient to
describe the similarity judgement desired by an inquirer. Therefore, several features are usually combinedto a new
feature in a query to capture the desiredsimilarity judgement more accurately.

Anew feature and its distance measure is defined either by a logical expression or by a weighted sum of exiting fea-
tures and their normalizeddistance measures.The weighted sum allows to forrrmlate queries such as: "Find all shots
, whichare similar to the query video with respect to the ECR and CCV. The importance of ECR is 30% and of CCV,
70%. This method öf combinlng feature is often used in .image retrieval database systems (e.g. [4] and [5]). Logical
expressions of features allow similar queries.Sincethe membersh'ip functions are inverted here, unlike usual mem-
bership functions (a value of 0 stands for fully belonging to the setinstead of a value of 1), a logical AND is .defined
äs the maximum over all distance values of the distances of the various features,and a logicalOR as its minimum. 'A
logical NOT remains one minus the distance value.

Currently, the user has to specify the method of combination. In future, we will provide a set of pre-defined combina-
tions for specific semantic domains.

7 Experiments

7.1 Methodology
The performance of any indexing and tetrieval system is usually measured by its recall and precision values: In our
case, recal! speclfies the rati~ of the number of relevant video sequences .foundto the totalnumber of relevant video

, , sequences in the database. Precision specifiesthe ratio of the number of relevant video sequences to the total number
of returned ~ideo seqiIences ..Since in our experiments the search result list always consists of the ten most similar
video sequences, the definition of precision here is changed in the case where all relevant viqeo sequences in the data-
base are retrieved. In that case precision is defined as the ratio of the number of all ,relevant video 'sequences to the
rank ofthe least relevant video sequence in the result list. The grol,lnd truth, i.e. the decisiori whether a video sequence
is relevant or not, has to be deterlTlined by huinans. Naturally the measure forrelevance is the human similarity judge-
ment.

Analogous to the evaluation of performance of image or text databases tens of thousands ofshots and scenes are
needed to evaluate theperformance of any video comparison algorithms reliably. Unfortunately, building up such a
large videodatabase and determiningthe ground truth presently exceeds the possibilities of our multimedia lab. Thus
we had to restrict our experiments to a.much smaller database.

7.2' Setup ,
Theproposedrecursive comparison scheme as weIl as all feature computations have been implemented inC++ using
its template mechanism. Experiments were performed with the follow'ing setup:

DATABASE.The video database consisted of 4 hüurs of video from various sources. They were digitized from German
TV as M-JPEG of size 360x270. In detail, the video databaseconsisted of the feature films "Groundhog Day" and
"True Lies", the newsCast "Tagesschau", the series "Baywatch" as weIl as several TV commercials and live concert
recordings. For each of them we calculated the features listed inSection 4.1 and stored them in a large database file.
One of these videos, namely "Groundhog Day", is, very peculiar and very weIl siIited for evaluating our algorithms: It
consists of many very similar but not identical scenes repeating throughout the whole movie.
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QUERlES. In prepanition for our experiments we watched all.the videos several times and made a note whenever we
,though.t,we saw similar shöts or scenes with respect to some feature, Based on these video sequences we constructed. .. .,' .. .
five queries at the shot level and one qu~ry at the ,scene level. They are listed, in Table 1. All query sequences were'
taken from "Groundhog Day".

Query 6 Dialog between the main actors

Query 4
Query5

building on the street with a red and white striped awning in
, the front '

main actor looks down the street out of the window
main actor looks down the street OUt of the Window

ccv
ccv

shot 2 cvv
shot 2. ccv +

motion
scene 10 face position

Table 1: List of queries

7.3 Results
The experimental results with non-aggregated vid~o sequence representations :(i.e. with a feature threshold less than
zero) are summarized in Table 2 and those with a feature threshold of 0.5% of the maximal possible feature distance
in Table3. They show two properties: Firstly, the sequence representation performs better on~equences with motion
since it takes the temporal development into aC,count.For calrri ~cenes, however, the,set and ,sequence representations .
perform similar 011 our queries. Secondly, there 'seem to be no difference in retrieval'performance for non-aggregated
and slightly aggregated sequences. . ,

Query 1
Query 2
Query 3
Query 4
Query 5
Query 6

Table2: Experimental results with threshol~t'eature < O,a] = 0; a2= 10% .

Quer)' l'
Query 2
Query 3
Query 4
Query 5
Query 6

Table 3: Experimentalresultswiththresholdfeature = 0.5% of maximalpossible feature distance, a] =0, a2 = 10%

. During our experiments we observed that the results of the video comparison algorithms improved with the size of '
the database. This suggests that the 'proposed algorithJ?s' areappropriate for large video,ar~hives of thousand of hours.
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-8 Conclusion
We have proposed a general method forsimilarity rriatching of video sequences of different length~ andat differen't
, levels of tempOI;al resolution.Four levels are considered: frame, shot, scene and video. At each level. the features of
the level of higher temporal resolution are employed, leadingtoar~cursively definedvideo sequence similarity mea-
sure. The temporal ordering and duration canbe fully controlle.d bythe user via the type of representation (sequence
or set) and the level of aggregation (non"aggregated, partially aggregated or completely aggregated). At the video
level we have also introducedtwo new specialized comparison metrics: the correspondence and resequencing mea-
sure. Moreover, we showed how a feature's distance measure can be easily adjusted to the actual desired simi1arity
judgements of auser. .

The experimental results on our video database ofJourhours of video are very promising. Theexperiments suggest
that the proposed algorithms scale with the size of a video database with respect toretrieval quality. Inthenext few
y"ears we plan to build up a large database of thousands of hours of video with some broadcasting stations. This will
enable us to evaluate the proposed and other vjdeo comparison schemes more thoroughly.

denerally, videos are audio-visual streams. In this paper we have concentrated on the visual p:lrt only. Gur approach
is general enough to be used for an AudioGREP or an AudioVisualGREP. Assuming that audi6 features such as
amplitude, frequency, pitch, onset and offset are available togetherwith their distance measures the AudioGREP
would work just like the VideoGREP.For instance, given an explosionas the query audio, otherexplosions can be
retrieved from an audio database [10]. Therefore, we plan to add audio features to our VisualGREP resulting in an
Audio VisualGREP. .
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