
Reihe Informatik
1 / 1998

Small Materialized Aggregates:
A Light Weight Index Structure

für Data Warehüusing
Guido Moerkotte '

1

Small Materialized Aggregates:
A Light Weight Index Structure für Data Warehüusing

Guido Moerkotte

Lehrstuhl für praktische Informatik III
Universität Mannheim
Seminargebäude A5
68131 Mannheim

Germany
moer@pi3.inforrpatik.uni-mannheim.de

Abstract
'.

Small Materialized Aggregates (SMAs for short) are considered a highly flexible
and versatile alternative for materialized data cubes. The basic idea is to compute
many aggregate values for small to medium-sized buckets of tupies. These aggre-
gates are then used to speed up query processing. We present the general idea and
present an application of SMAs to the TPC-D benchmark. We show that applica-
tion of SMAs to TPC-D Query 1 results in a speed up of two orders of magnitude.
Then, we elaborate on the problem of query processing in the presence of SMAs.
Last, we briefly discuss some furt her tuning possibilities for SMAs.

1 Introduction

Among the predominant demands put on data warehouse management systems (DWMSs)
is performance, Le., the highly efficient evaluation of complex analytical queries. A very
successful means to speed up query processing is the exploitation of index structures.
Several index structures have been applied to data warehouse management systems (for
an overview see [2, 17]). Among them are traditional index structures [1, 3, 6]' bitmaps
[15]' and R-tree-like structures [9].

Since most of the queries against data warehouses incorporate grouping and aggregation,
it seems to be a good idea to materialize according views. The most popular of this
approaches is the materialized data cube, where. for a set of dimensions, for all their
possible grouping combinations, the aggregates of interest are materialized. Then, query
processing against a data cube boils down to a very efficient lookup. Since the complete
data cube is very space consuming [5, 18]' strategies have been developed for materializing
only those parts of a data cube that pay off most in query processing [10]. Another
approach-based on [14]-is to hierarchically organize the aggregates [12]. But still the

Zugangsnummer: 2 .A5 ..t 0 \~\\.
Signatur:

I UNiVERSITÄT MANNHEI~I Br;:reichsbibliothek Mathema.tik und InformatIK
~"~--,~.•

mailto:moer@pi3.inforrpatik.uni-mannheim.de

storage comsumption can be very high, even for a simple grouping possibility, if the
number of dimensions and/or their cardinality grows. On the user side, the data cube
operator has beenproposed to allow for easier query formulation [8]. But since we deal
with performance here, we will throughout the rest of the paper use the term data cuhe
to refer to a materialized data cuhe used to speed up query processing.

Besides high storage consumption, the biggest dis advantage of the data cube is its inflex-
ibility. Each data cube implies a fixed number of queries that can be answered with it.
As soon as for example an additional selection condition occurs in the query, the data
cube might not be applicable any more. Furthermore, for queries not foreseen by the
data cube designer, the data cube is useless. This argument applies also to alternative
structures like the one presented in [12]. This inflexibility-together with the extrordinary
space consumption-maybe the reason why, to the knowledge of the author, data cubes
have never been applied to the standard data warehouse benchmark TPC-D [19]. (cf.
Section 2.4 for space requirements of a data cube applied to TPC-D data) Our goal was
to design an index structure that allows for efficient support of complex queries against
high volumes of data as exemplified by the TPC-D benchmark.

The main problem encountered is that some queries refuse the application of a (traditional)
index structure (like B-Trees [1, 3] and Extendible Hashing [6]) due to efficiency reasons.
A typical situation is, when e.g. more than one tenth of a relation qualifies for a selection
predicate. Then the only effect of using an index is to turn sequential 1/0 into random
1/0 (in the presence of a non-clustered index). Even worse, some queries are designed
such that the use of an index structure is prohibitively expensive. An example of such
a query is Query 1 (cf. Fig. 3) of the TPC-D Benchmark [19]. Its low selectivity-95%-
97% of all tuples qualify-forbids the use of an index, and a sequential scan is the only
possibility to "efficiently" evaluate this query. Taking a look at the TPC-D benchmark
results1 it becomes clear that Query 1 is among the two or three2 most time consuming
TPC-D queries.

Small materialized aggregates (SMAs) are designed such that they are useful even for
queries where traditional indexes fall short. They differ from traditional indexes in three
important aspects:

• They exhibit a very simple sequential organization.

• They directly reflect (and exploit) the physical organization of the indexed table .

• A single SMAis rarely useful, but in most situations a set of SMAs is required to
answer a query efficiently.

SMAs share the first property with the lately introduced projection indexes [16]. In fact,
SMAs can be seen as a generalization of projection indexes. In a projection index on
a certain attribute, for all tuples in the relation to index, the attribute value is stored
sequentially in a file. SMAs generalize this approach in that an aggregate value is stored
for a set of tuples instead of mere projection values.

The above differences result in several advantages:

lsee http://www.tpc.org
2Depending on the platform.

3

http://www.tpc.org

• SMAs can be used where traditional index structures fail.

• SMAs are very space efficient.

• SMAs are easy to implement.

• SMAs are cheap to maintain.

• SMAs are amenable to bulkloading.

The latter point is especially important for applications like data warehousing. Although
there is this overwhelming set of advantages, there also exists a slight disadvantage: query
processing-especially the generation of query execution plans-becomes a little more
complex. Hence, we devote one section to this problem.

The rest of the paper is organized as follows. Section 2 presents the basic version of
SMAs. This section also illustrates the usage of SMAs for processing Query 1 of the
TPC-D benchmark and presents benchmark results for Query 1. Section 3 introduces
query processing techniques exploiting SMAs. Section 4 briefly discusses furt her tuning
measures and improvements of SMAs. Section 5 conc1udes the paper.

2 The Idea of SMAs

2.1 Definition of simple SMAs

We assume the relations for which SMAs are computed to be physically organized into
a sequence of buckets. Examples of buckets are single pages or consecutive sequences of
pages. A bucket must reflect the physical organization of the relation since the order of
the entries in the SMA will directly correspond to the physical order of the buckets on
disco Hence, buckets can only be sets of consecutive tuples on disko In this respect, SMAs
are similar to projection indexes [16].
The main idea of SMAs is to compute and materialize a single value (or a set of values) for
each bucket of tupies. These values will be aggregates. For all buckets, the resulting values
are materialized in aseparate SMA-file. The SMA-file is sequentially organized: the value
for the first bucket is the first value in the SMA-file, the second value is the second value
in the SMA-file and so on .. Contrary to traditional index structures, a SMA-file does not
contain any other additional information.

The above situation is illustrated in Figure 1. It contains three buckets with three tu-
pIes each. Every tuple contains one attribute L-SHIPDATE, whose value is specified
in the figure. Two SMA-files materialize the minimum and maximum value found for
L_SHIPDATE in each bucket. Further, there is one SMA-file materializing the number of
tuples in each bucket.

SMAs can be specified by a simple SQL query and a specification of the bucket. However,
there is one major point to obey:

• The select c1ause may contain only a single entry.

4

SMA-File 1: min 197-02-02 197-04-01 197-05-02

SMA-File 2: max 197-04-22 197-05-07 197-06-03

SMA-File 2: count 1 3 1 3 I 3

97-03-11

97-04-22

97-02-02

Bucket 1

97-04-01

97-05-07

97-04-28

Bucket 2

Figure 1: Buckets and SMA-Files

97-05-02

97-05-20

97-06-03

Bucket 3

Another restriction we apply for the moment is that we forbid joins. Hence, we allow only
for a single entry within the from clause. This restriction will be relaxed in Section 4.
Further, we do not allow an order specification. The use of grouping is defered until the
next subsection, the specification of bucket sizes until Section 4.

The following is a typical definition of a SMA called min:

define sma min
select min(L.BHIPDATE)
from L.LINEITEM

For every page, the minimum of all shipdates of tuples on that page is materialized. The
consequence of this SMA definition is that a single SMA-file is created which is filled with
the minimum values of shipdates found among the tuples in a bucket. Besides min, we
allow for the aggregate functions max, sum, and count in the select clause of a SMA
definition.

Some of the advantages of SMAs become clear already, They are very space efficient.
Assume that a bucket corresponds to a 4K-page and a single date field can be stored in
32 bits, then the size of a single SMA-file is only 1/1000th of the size of the original data.
Hence, many SMA-files can easily be supported. Further, due to the direct correspondance
between SMA-file entries and buckets (via the order), SMA-files are easy to update. The
algorithms behind are simple and very efficient. At most one additional page access is
needed for an updated tuple. Last not least, bulkloading aSMA-file requires only simple
algorithms and is very efficient. For every bucket the aggregate can easily be computed
and storing this aggregate is cheap: only one page access is needed for 1000 pages of

5

tupies. Since nothing else has to be done (unlike in conventional index structures where
pointer updates, splitting and the like occur) bulkloading and updating are both very
simple and efficient operations.

2.2 Use and motivation of simple SMAs

In general, SMAs are used for two purposes. Given a query, SMAs are used

• to evaluate the selection predicate and

• to compute the aggregate values specified in the select c1ause of the query.

Whereas the usefulness of SMAs for the computation of aggregate values is quite obvious,
the question arises how and when SMAs can be used to evaluate selection predicates. For
the case where a bucket contains exactly a single tuple, a SMA degenerates to a projection
index. Hence, we refer the reader to [16] for this case.

Although we defer the general answer to this question to Section 3, we give an important
use of SMAs for selection predicate evaluation which is based on the exploitation of
c1ustering. We base our discussion on implicit c1ustering since (1) we think this is the
predominant application area of SMAs and (2) this case motivates SMAs quite nicely.
Nevertheless, the following discussion applies to other c1ustering strategies as weIl.

Implicit c1ustering-sometimes called c1ustering by time of creation (TOC)-is often found
in the data warehouse context where dates (times) of all kinds are of high importance.
,Examples of important dates are dates of order, shipment, arrival of items at eustomers,
sending the bill, and payment [11, 13]. The TPC-D benchmark takes this fact into account
by exhibiting four of these dates. In almost every of its queries at least one of these dates
is referenced.

A time-of-creation c1ustering strategy is now (often implicitly) applied if new orders are
stored in the data warehouse by appending them to the old orders. Note that this will
be the case in most data warehouses. This kind of implicit c1ustering (which in practice
is often imperfect but still exploitable) results in an implicit c1ustering on order dates.
Since old orders will be processed earlier than new orders, a similar argument applies
to shipdates and all the other dates mentioned before. Note however, that this does
not result in a strict c1ustering or even ordering on orderdate or shipdate. Instead, this
c1ustering is only approximated by reality: due to not available parts, a shipdate can be
deferred, some shops might be late in providing their order information and so on. But
the bottom line is that most likely there is some c1ustering effect of this kind, especially
since data warehouses often contain data comprising several years. Figure 2 visualizes
the effect of implicit c1ustering. For every order tuple, it contains one point. The x-value
of a tuple is the date of its introduction into the data warehouse and the y-value is its
order date. Since order tuples are typically introduced into the data warehouse after their
arrival (order) date, all points lie to the right of the diagonal. Since all data points are
c1ustered around the diagonal or at least some line c10se to it, we call this diagonal data
distribution. In practice, there will be an average time needed before the data is entered
into the database and the real intervals needed will exhibit a normal distribution around

6

orderdate diagonal

x
x

x

x
xx

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

// X X
// X

/
/

/

date of introduction
into the data warehouse

Figure 2: Diagonal Data Di,stribution

this average time. Consequently, the clustering effect becomes manifest. (Note that the
TPC-D benchmark is not very realistic in this respect: it applies uniform distribution
within an interval.) The same aPI?lies to shipdate. Assuming a certain average time
needed to prepare the shipment, the actual times needed will be normally distributed
and, again, the clustering effect becomes manifest. Of course, this clustering effect can
also occur for non-date values, imprinted by seasonal effects, promotions and the like.

For (implicitly) clustered data, SMAs can be used very effectively to select those buckets
in which qualifying tuples can be found. Consider the query

select count(*)
from L.LINEITEM
where L_SHIPDATE < 97-04-30

and assume that the attribute values shown in Fig. 1 are L_SHIPDATE values. Then, by
inspecting the max SMA-file, it is easy to see that all the tuples in Bucket 1 qualify. By
inspecting the min SMA-file, we see that none of the tuples in Bucket 3 qualify. Bucket 2
is called ambivalent since it does not quaJify due to its max value and it does not disqualify
due to its min value.

To answer the query we inspect the count SMA-file to retrieve the total count of qualifying
tuples of Bucket 1 and add the number of qualifying tuples of Bucket 2. The latter we
only get by inspecting the bucket itself. This example nicely illustrates the exploitation
of diagonal data distribution: only the original tuples contained in ambivalent buckets
have to be investigated. For clustered data, these ambivalent buckets are rare.

7

SELECT L_RETURNFLAG, L_LINESTATUS,
SUM(L_QUANTITY) AS SUM_QTY,
SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE,
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT» AS SUM_DISC_PRICE,
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX» AS SUM_CHARGE,
AVG(L_QUANTITY) AS AVG_QTY,
AVG(L_EXTENDEDPRICE) AS AVG_PRICE,
AVG(L_DISCOUNT) AS AVG_DISC,
COUNT(*) AS COUNT_ORDER

FROM LINEITEM
WHERE L_SHIPDDATE <= DATE '1998-12-01' - INTERVAL '[delta]' DAY
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS

Figure 3: Query 1 of the TPC-D Benchmark

2.3 Grouping SMAs

Letus consider Query 1 of the TPC-D benchmark (cf. Fig. 3). This query involves a
grouping. In order to be useful, a SMA has to reflect the grouping of the query or a finer
grouping ([10]). This is done by specifying a group by clause in the specification of the
SMA.

For every possible group, there will be a single SMA-file containing the aggregated values
for this group. For example, Query 1 results in four groups. Hence, there will be four
SMA-files, one for each combination of L.RETURNFLAG and L-LINESTATUS values.
In order to process Query 1 soleley on the basis of SMAs, eight SMA definitions are
necessary. They are given in Figure 4 where we took the liberty to abbreviate some
of the attribute names. The SMAs min and max do not need a grouping and are of
the kind discussed before. All the other attributes need a grouping with the attributes
L.RETURNFLAG and L-LINESTATUS. Hence, each of these SMAs will be materialized
in four SMA-files, one for each possible group. As a total there will be 26 SMA-files which
seems to be quite high a number, but the next subsection will reveal that the time to
build them as weIl as their storage costs are quite low.

Query 1 can now be answered by these aggregates in the following way. First, the SMAs
min and max are used to classify the pages of the relation LINEITEM into qualifying,
disqualifying and ambivalent pages. Second, for each qualifying page, for every group, the
accordingvalues are extracted from the remaining SMAs and summed up in a per-group-
wise fashion. For every ambivalent page, the page is visited and the needed aggregates
are computed from the tuples contained in the page. These two steps are performed "in
sync". That is, all the SMAs are scanned sequentially and at the same time: for every
page in the LINEITEM file, the corresponding SMA values in all SMA-files are considered
and the according action of the second step is taken. Note that this results in a sequential
scan of the ambivalent pages of the LINEITEM file. In a last step, the average aggregates
are computed from the sum aggregates by dividing by the count aggregate.

8

define sma max define sma dis
select max(L.BHIPDATE) select sum(L.J)ISCOUNT)
from L-LINEITEM from L-LINEITEM

group by L..RETFLAG, L-LINESTAT

define sma min define sma ext
select min(L.BHIPDATE) select sum(LEXTENDEDPRlCE)
from L-LINEITEM from L-LINEITEM

group by L_RETFLAG, L-LINESTAT

define sma count define sma extdis
select count(*) select sum(EXTPRICE * (I-DIS))
from L-LINEITEM from L-LINEITEM
group by L..RETFLAG, L-LINESTAT group by L..RETFLAG, L-LINESTAT

define sma qty define sma extdistax
select sum(LQUANTITY) select sum(EXTPRlCE * (I-DIS)
from L-LINEITEM * (I+TAX))
group by L..RETFLAG, L-LINESTAT from L-LINEITEM

group by L..RETFLAG, L-LINESTAT

Figure 4: The SMAs needed for Query 1 of TPC-D

Of course, these aggregates are specifically tailored for Query 1. In this respect the
situation is not different from computing a data cube for it. However, the data cube's
definition must include all possible selection attributes within its grouping clause. Hence,
if order dates, shipment dates, and receipt dates are of interest, they must be present in
the group specification-resulting in higher storage requirements. If one is forgotten, the
data cube is of no use anymore. Not so for SMAs, new SMAs can be easily added for new
attributes of interest. Hence, they are much more flexible than data cubes. Further, they
are more versatile. If another query with restrictions on any of the attributes aggregated
in some SMA occures, the SMA can be used to more efficiently answer the query.

2.4 Performance

In this section we briefly report on some experiments highlighting the crucial questions
concerning the performance of SMA-based query processing: space requirements, creation
time and query processing time. Before we give the actual performance figures let us
recall some basic properties of SMA-files that justify why a brief performance evaluation
is sufficient. First note that SMA-file sizes are linear in the number of buckets. Further,
exactly one bucket summary has to be computed for every bucket. Its computation is
independent of other buckets. Hence, there is no problem in scaling SMAs to very large
data warehouses. Since creation and query processing times are also linear in the number
of buckets, it suffices to give the performance for a single sufficiently large database. We

9

do so by discussing the performance for TPC-D Query 1 at a database size of 1 GB, the
smallest allowed size of the TPC-D benchmark. The reason is a lack of disk space at our
institution.

In order to process this query, the eight SMA files given in the last section are needed.
The creation times and space requirements are summarized in the following table3:

sma file count max mm qty dis ext extdis extdistax
creation time 117s 116s 103s 104s 100s 101s 95s 99s
S1ze 736p 184p 184p 1468p 1468p 1468p 1468p 1468p

For counts and dates, 4 bytes are needed. For all other aggregate values we used 8 bytes.
The total space requirement of alt SMA-files amounts to 8444 4 K-pages or 33.776 MB.
In our system, the LINEITEM relation consumes 733.33 MB. Hence, the accumulated
size of all SMAs is only ab out 4 % of the total space. This shows that though several
SMA files are needed in order to answer a single query, they are still very space efficient.
The creation time for every SMA (not only a single SMA-file) is less than 2 minutes.
In comparison, a B+ tree on shipdate (though of no use for Query 1) consumes about
230 MB. Its creation time is far beyond the 15 minutes needed to create all SMAs.

Next, we compare the space requirements of SMAs to the space requirements of a ma-
terialized data cube. For Query 1, 6 aggregates of 8 bytes are necessary. Hence, every
entry in the data cube is 48 byte wide. For the two flags, 4 possibilities exist. Every date
attribute of LINEITEM (L-SHIPDATE, L_COMMITDATE, L-RECEIPTDATE) has a
range of seven years or 2556 days. Hence, for the data cube we get a total storage
requirement [5, 18] of about

• 479.25 KB = 25561 * 4 * 48 B if only one date is used as a dimension,

• 1196.25 MB = 25562 * 4 * 48 B if two dates are added as dimensions, and

• 2985.95 GB = 25563 * 4 * 48 B if all three dates are added as dimensions.

Adding SMAs for the two missing dates would require an additional 17.34 MB amounting
to a total of 51.12 MB of storage. Comparing 51.12 MB to 2985.95 GB, the low storage
overhead of SMAs compared to materialized data cubes becomes manifest.

For query response time, two aspects are of interest. First, the optimal case, that is when
the relation is sorted on the restricted attribute. If LINEITEM is sorted on shipdate, the
query processing time is

Query 1 without SMAs (cold & warm)
128s

with SMAs (cold)
4.9s

with SMAs (warm)
1.9s

Processing Query 1 with SMAs becomes two orders of magnitude faster!

This is the optimal case. The question remains what happens if the number of ambivalent
buckets grows. This question is answered by Figure 5. The x-axis shows the percentage
of buckets that have to be investigated and the runtime of

3Measured on a Spare Ultra I, 167 Mhz, with two Barraeuda 4GB disks, running Solaris 5.5 using our
AODB data warehouse management system configured at 8MB intertransaction buffer, 1MB intratrans-
action buffer.

10

140 r-----r---,-----,,-----.----,..----,-.-------r---
,,,-1------ ------.f----- __

o
o 0.05 0.1

.
0.15 0.2 0.25

.
0.3

exec __t
~

0.35 0.4

Figure 5: Runtime dependent on percentage of buckets to be processed

1. Query 1 without SMAs

2. Query 1 with SMAs (warm)

The breakeven point is at about 25% of the total number of buckets. That is, if more
than 25% of all buckets are ambivalent and hence have to be accessed, then SMAs don't
payanymore. However, even if SMAs are erraneously applied-e.g. due to a bad decision
of the query optimizer-the overhead remains small with less than 2% of the total run
time.

3 Query Processing

This section discusses the problem of how to exploit SMAs for query processing. Since
they differ considerably from traditional index structures, the generated plans will look
different. As a side effect of discussing plan generation, the versatility of SMAs will
become clear: SMAs can be exploited in many ways. This iscontrary to data cubes.

We attack the problem of query plans in three steps. First, we partition all the buckets
of a relation R into three sets: qualifying buckets, disqualifying buckets, and ambiva-
lent buckets. This partitioning will then be summarized into a procedure grade. The

11

procedure grade will then be used within two new algebraic operators SMA_Scan and
SMA_GAggr which the query processor can apply for evaluating queries involving selec-
tions and grouping with aggregates.

3.1 Partitioning the Buckets of a Relation R

Let us start by considering atomic selection predicates. They can be of different form:

• A = c

• A ~ c (A < c)

• A 2: c (A > c)

• A ~ B (A < B)

where A and B are attributes of a single relation Rand c is a constant. The first goal is
to divide the buckets of R into qualifying, disqualifying and ambivalent buckets. This will
be done for a single atomic selection predicate, and a single SMA. This information can
then be used in order to evaluate more complex selection predicates involving and and or
operations. These boolean connectives can also be used if more than a single SMA can
be exploited.

Let BU denote all the buckets of relation R, BUi the i-th buckets of relation R. Given a
SMA max(A), maxi(A) denotes the maximum of all values of attribute A found in bucket
BUi, analogously, mini(A) denotes the minimum value. Given an atomic predicate, a
single SMA, and a bucket i, we can assess bucket BUi as follows:

• For A = c

- if c < mini(A) then BUi E BUd

- if c > maxi(A) then BUi E BUd

- else BUi E BUa

• For A ~ c

- if maxi(A) ~ ethen BUi E BUq

- if mini(A) > ethen BUi E BUd

- else BUi E BUa

• For A 2: c

- if mini(A) 2: ethen BUi E BUq

- if maxi(A) < ethen BUi E BUd

- else BUi E BUa

.A~B

12

- if maxi(A) ::; mini(B) then BUi E BUq

- if mini(A) > maxi(B) then BUi E BUd

- else BUi E BUa

where BUq denotes the qualifying buckets, BUd denotes the disqualifying buckets and BUa
denotes the ambivalent buckets. The else case is also applied if the max/min aggregates
are not defined. The correctness of the above mIes should be obvious.

Having two partitionings BUi ' BUJ, BU~ and BUg, BUJ, BU~ for a some predicate/SMA
combination, we can compute the partitioning if the two combinations are conjunctively
or disjunctively connected:

and

BUI nBU2
q q

BU"j UBUJ
BU \ (BUq U BUd)

or

SMAs with min and max aggregates can also be exploited for the evaluation of selection
predicates if their definitions contain a group by clause. Consider SMA definitions of
the following form:

define sma
select
from
group by

name
max(A)
R
BI, ... ,Bn

The mIes to derive a partitioning of BU are similar to those stated above except that we
have to consider the maximum value of A for all groups. The case for min is analogous.

But not only min and max aggregates are useful for selection predicates. If A is the only
grouping attribute in a count SMA, like in

define sma
select
from
group by

name
count(*)
R
A

13

then we can use this information to evaluate selection predicates on A. Let countA,i[x]
denote the number of tuples in bucket i exhibiting a value x for attribute A. Then we
can partition BU by the following rules. For every possible value of x, we compute a
partitioning BUx as follows:

• For A = c

- if x = c and countA,i[x] > 0 then BUi E BU:
- else BUi E BU:

• For A ::; c

- if x ::;c and countA,i[x] > 0 then BUi E BU:
- else BUi E BU:

• For A 2 c

- if x 2 c and countA,i[x] > 0 then BUi E BU:
- else BUi E BU:

We then integrate the partitions BUx into a single partitioning of BU by applying the
following rules:

BUq nBU:
x

BUd nBU:
x

BUa BU \ (BUq U BUd)

Summarizing, whenever we have a selection predieate involving.an attribute A of a relation
Rand a SMA-definition in which A occurs, we can eompute a partitioning of the buckets
of relation R into qualifying, disqualifying and ambivalent buckets. Let us integrate this
procedure into a function grade that for a given bucket and predieate returns qualifies ,
disqualifies or ambivalent. This function will be used within the next two algegebraic
operators implementing a SMA-Scan and a SMA-GAggr exploiting SMAs.

3.2 SMA-Scan

The SMA_Scan operator is an operator of the physical algebra and implements the iterator
eoneept [7]. The three parameters of the iterator are the relation R to be scanned, the
predicate to be evaluated on its tuples and a set of SMAs useful for partitioning the
buckets of R.
The iterator is implemented as a class and provides an init procedure that initializes the
internal data structures and eomputes the number of the first qualifying or ambivalent
bucket. Additionally, the bucket is fetehed from disko This is summarized in a subroutine
getBucket. Successive calls to the function next then return pointers to qualifying tupies.
A tuple qualifies if it is in a qualifying bucket er if the predicate applied to the tuples
yields true. The pseudo code of SMA_Scan is given in Figure 6.

14

class SMA_Scan {
SMA_Scan(R,pred,smas);

initO {
currBucketNo = -1; getBucket();

}

Tuple* next 0 {
while(buckets left) {
if(there is an unseen tuple in bucket) {

get this tuple;
if(currGrade == qualifies)

return tuple;
else if (pred(tuple))

return tuple;
else

getBucket();
}

}

getBucket() {
do {

advance currBucketNo; advance all smas;
currGrade = grade(currBucketNo, pred);

}
while(currGrade != qualifies and currGrade != ambivalent)
read bucket currBucketNo;

}
};

Figure 6: The SMA-Scan Iterator

15

3.3 SMA-GAggr

The SMA-GAggr operator computes the GAggr operator of Dayal [4] in the presence
of SMAs. The GAggr operator performs a grouping together with the computation of
aggregates. The SMA-GAggr uses some SMAs-called selection SMAs-for selecting
qualifying buckets and tupies. Hence, it encompasses the SMA-Scan operator. However,
more aggregates-the aggregate SMAs-are used to compute the queried aggregates. For
qualifying buckets, the aggregate values are readily available within the aggregate SMAs.
Ambivalent buckets must be inspected explicitly and the tuples must be grouped in or-
der to compute the aggregate values. As for the SMA_Scan operator, the' SMA-GAggr
operator scans the relation and all SMAs in parallel.

The computation of the aggregates is performed in three phases in a rather standard
manner. For every group, a tuple wide enough to hold all the result aggregates is allocated.
If the result aggregates do not contain a count(*) and if averages are demanded by the
query, we add it. The aggregate values are initialized by 0 for sum, count, and avg
aggregates. For the latter, we first compute the sum and devide by the count in the
last phase. For min and max aggregates, the minimum and maximum value are used for
initialization. In the second phase, for every bucket these values are then advanced in the
obvious way. For example, for the sum aggregate the aggregate value of some qualifying
bucket is added. For ambivalent buckets, the according value is added for each tuple
contained in it. In the last phase, we devide the sums which should be averages by the
computed count.

The SMA-GAggr is a pipeline breaker. Within its init function, the result is computed.
The next function then merely returns one result after another. The pselldocode of SMA-
GAggr can be found in Figure 7.

4 Tuning Possibilities

There are several tuning possibilities to furt her enhance the performance of SMAs. The
first obvious tuning measure is the bucket size. Here, the following trade off must be in-
vestigated. If the bucket size is small, then the SMA-files will become very large and more
I/O for SMAs is the consequence. If the bucket sizes are large, then-due to imperfect
clustering-many ambivalent buckets occur and for these the original relation must be
accessed. Note that bucket sizes below a page size do not make sense.

This trade off can be mitigated by using hierarchical SMAs. Every SMA-file is again
partitioned into buckets and for each bucket a second level SMA is computed. The
advantage is that even for imperfectly clustered relations, the second level SMA is useful
for rat her high and rather low selectivities. If a second level bucket qualifies or disqualifies,
the first level SMA-file need not to have to be accessed, which saves some 1/0. If the second
level bucket is ambivalent, then the first level SMA-file can be exploited to inspect the
situation at a finer grain. Since second level SMA-files will be very small we do not think
that higher levels are useful. Also we think it is preferable to switch to hierarchical SMAs
instead of increasing the bucket size.

16

class SMA_GAggr {
SMA_GAggr(R, pred, aggregateSpec, groupSpec, selectionSMAs, aggregateSMAs);

init(const) { /* computes the result */
forall(bucket in buckets) {

switch(grade(bucket, pred)) {
case qualifies: advance the result aggregates using the

aggregate SMAs;
case disqualifies: do nothing
case ambivalent: advance aggregates by inspecting the

tuples within the bucket;
}

}
perform post processing for average aggregates;

}

Tuple* next() {return next unseen group;}
}

Figure 7: The SMA_Group Iterator

A last possibility to further enhance performance by SMAs is to generalize SMAs to
encompass semi-joins. To see this, consider queries containing the following pattern:

select R.*
from R, S
where R.A () S.B

where () is a comparison operator. If we can associate a minimax value of the B.B values
with each bucket of R, SMAs can be used to decrease the input to the semi-join.

5 Conclusion

We introduced SMAs as an alternative to data cubes. Unlike data cubes, SMAs are more
versatile to exploit in several kinds of queries. Performancewise, SMAs accellerate query
execution by two orders of magnitude. Further, they are proofed to be very space efficient
compared to data cubes, when the number of dimensions grows.

Some enhancements to SMAs were briefly discussed. Among them hierarchical SMAs
and SMAs encompassing semi-joins. We plan furt her investigations on these and possibly
other variations of SMAs.

17

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017

