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ical point of view with respect to their optimal values. Among other things, we prove that the
optimal value of a £low-classrelaxation (e.g. the multicommodity £lowor the dicut relaxation)
cannot be worse than the optimal value of a tree-class relaxation (e.g. degree-constrained span-
ning tree relaxation) and that the ratio of the corresponding optimal values can be arbitrarily
large. Furthermore, we present a new £lowbased relaxation, which is to the authors' knowledge
the strongest linear relaxation of polynomial size for the Steiner problem in networks.

Keywords: Steiner problem; relaxation; lower bound

1 Introduction

The Steiner problem in networks is the problem of connecting together, at minimum cost, a set
of required vertices in a weighted graph. This is a classical NP-hard problem (see [11, 10]) with
many important applications in network design in general and VLSI design in particular. For more
background information on this problem, its applications and its algorithmic aspects, we refer the
reader to the second part of the book of Hwang, Richards and Winter [10] on the Steiner problem.
The primary goal of this paper is to compare the linear rela.."Cationsof all classical, frequently cited
and some modified or new integer programming formulations of this problem with respect to their
optimal values. We present several new results, establishing very clear relations between relaxations
which have often been treated as unrelated or incomparable ones. We have also included some
known results to provide the reader with a wider view at one sight.
The results in this paper are not explicitly presented as polyhedral ones; the relationship to results
of this kind and polyhedral extensions of our results will be briefly discussed in section 7.2.
Also, the empirical study of the relaxations and the algorithmic aspects of their applicationäre riot
the subject of this paper. In another paper [19]' we report on our empirical study of some of these
relaxations and their algorithmic application, not only for computing lower bounds, but also as the
basis of empirically successful heuristics for computing upper bounds and sophisticated reduction
techniques, culminating in an exact algorithm which achieves impressive empirical results.
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1.1 Definitions

The Steiner problem in networks can be stated as follows(see [10]for details):
Given an (undirected, connected) network G = (V,E, c) (with vertices V = {V1, ... , Vn}, edges
E and edge weights Cij = c((Vi, Vj )) > 0) and a set R, 0 :I R ~ V, of required vertices (or
terminals), find a minimum weight tree in G that spans R.

For the ease of notation we assume R = {V1, ... , vr}. If we want to stress that Vi is a terminal, we
will write Zi instead of Vi.

We also look at two reformulations of this problem, because they are used in some relaxations.
One uses the directed version: Given G = (V, E, c) and R, find a minimum weight arborescence in
G = (V,A, c) (A:= {[Vi,Vj]'[Vj,Vi]I (Vi,Vj) E E}, c defined accordingly) with a terminal (say zd
as the root that spans R1 := R\ {Z1}.
The problem can also be stated as finding a degree-constrained minimum spanning tree Ta in a
modified network Go = (Va, Ea, co), produced by adding a new vertex Va and connecting it through
zero cost edges to all vertices in V\R and to a fixed terminal (say Z1). The problem is now equivalent
to finding a minimum spanning tree Ta in Go with the additional restriction that in Ta every vertex
in V\R adjacent to Va must have degree one. For more details on this reformulation, see [2, 3].
Again, a similar directed version for a network Go can be defined, this time by adding zero cost
arcs [va, Vi] (for all Vi E V\R) and [va, zd to G.

A cut in G = (V,A,c) (or in G = (V,E,c)) is defined as a partition C = {W, W} of V (0 eWe
Vj V = WÜW). We use 5-(W) to denote the set of arcs [Vi,Vj] E A with Vi E W and Vj E W. For
simplicity, we write 5- (Vi) instead of 5- ({Vi} ). The sets 5+(W) and, for the undirected version,
5(W) are defined similarly.A cut C = {W, W} is called aSteiner cut, if Z1 E W and R1 nW :10
(for the undirected version:Rn W :10 and Rn W :10).

In the integer programming formulations we use (binary) variables Xij for each arc [Vi, Vj] E A
(resp. Xij for each edge (Vi,Vj) E E), indicating whether an arc is in the solution (Xij = 1) or not
(Xij = 0). Let P1 be such a program. The corresponding linear relaxation is denoted by LP1. The
value of an optimal solution of the integer programming formulation (for given G and R), denoted
by v(Pd, is of course the value of an optimal solution of the corresponding Steiner arborescence
problem in G. Thus, in this context we are only interested in the optimal value v(LPd of the
corresponding linear relaxation, which can differ £rom v(P1).

In the following text, we will often define integer formulations or prove the relationships between
linear relaxations. The notations P1 (or LPd always denote the integer (or linear) program cor-
responding to an arbitrary, but fixed instance (G, R) of the Steiner problem (with G replaced by
G, Go or Go when appropriate).
We compare relaxations using the predicates equivalent and (strictly) stronger: We call a relax-
ation R1 stronger than a relaxation R2 if the optimal value of R1 is no less than that of R2 for all
instances of the problem. If R2 is also stronger than R1, we call them equivalent, otherwise we say
that R1 is strictly stronger than R2• If neither is stronger than the other, they are incomparable.

2 Cut and Flow Formulations

In this section, we state the basic flow and cut based formulations of the Steiner problem. There
are some well-knownobservations concerning these formulations, which we cite without proof.
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2.1 Cut Formulations

The directed cut formulation was stated in [20].

(1.1)

Ipel L CijXij ~ min,
[vi,vjJEA

L Xij > 1 (Zl\fW, WnR1;60),
[vi,vjJEo-(W)

Xij E {0,1} ([Vi, Vj] E A). (1.2)

The constraints (1.1) are cal1edSteiner cut constraints. They guarantee that in any arc set corre-
sponding to a feasible solution, there is a path from Zl to any other terminal.

A formulation for the undirected version was stated in [1]:

IPuel L CijXij ~ min,
(vi,vj)EE

L Xij > 1 (W nR;6 R, W nR ;6 0), (2.1)
(vi,vj)Eo(W)

Xij E {0,1} «Vi,Vj) E E). (2.2)
Lemma 1 LPe is strictly stronger than LPue; and sup {V(<f:t:;)} = 2 [4, 6].

Wejust mention here that v(<tßuc;) ::; 2 [8];and that when applied to undirected instances, the value
v(LPe) is independent of the choice of the root [9].For much more information on LPe, LPue and
their relationship, see [4].Also, many related results are discussed in [17].

2.2 Flow Formulations

Viewing the Steiner problem as a multicommodity £lowproblem leads to the following formulation
(see [20]).

IPFI L CijXij ~ min,
[vi,vjJEA

L t L t = { ~
(Zt E R1 ; Vi = Zt),

(3.1)Yji - Yij
(Zt E R1 ; Vi E V\ {Zl,Zt}),

[vj,viJEA [vi,vjJEA

Xij > Y:j (Zt E R1 j [Vi, Vj] E A), (3.2)

Y:j > 0 (Zt E R1 ; [Vi, Vj] E A), (3.3)
Xij E {a, I} «(Vi,Vj] E A). (3.4)

Each variable yfj denotes the quantity of the commodity t £lowingthrough [Vi, Vj]. Constraints (3.1)
and (3.3) guarantee that for each terminal Zt E R1, there is a £lowof one unit of commodity t from
Zl to Zt. Together with (3.2), they guarantee that in any arc set corresponding to a feasible solution,
there is a path from Zl to any other terminal.

Lemma 2 LPe is equivalent to LPF [20].

The correspondence is even stronger: Every feasible solution x for LPe corresponds to a feasible
solution (x,y) for LPF.
The straightforward translation of PF for the undirected version leads to LPUF with v(LPUF) =
v(LPuc) (see [9]).There are other undirected formulations (see [9]), leading to relaxations which
are all equivalent to LPF; so we use the notation LPFU for all of them.
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Gf course, there is no need for different commodities in PF' In an aggregated version, which we caU
PF++, one unit of a single commodity £lowsfrom Zl to each terminal Zt E R1 (see [16]).This program
has only 8(IAI) variables and constraints, which is asymptotically minimal. But the corresponding
linear relaxation LPF++ is not a strong one:

Lemma 3 LPF is strictly stronger than LPFH. The worst case ratio vtl~::l)is r - 1 [16,6].
In [15]' the two-terminal formulation was stated:

I
p2TI L CijXij -+ min,

[v;,v;jEA

I: -kl L -kl > { -1 ({Zk,ZI} ~ R1 ; Vi = zd, (4.1)Yji - Yij 0 ({zk,zd ~ R1 ; Vi E V \ {zt}),
[v; ,volEA [vi,v;JEA

I: Ckl .kl) I: Ckl + .kl) { 1 ( {Zk, zd ~ R1 ; Vi = Zk), (4.2)Yji + Yji - Yij Yij = 0 ({zk,zd ~ R1 ; Vi E V\ {zl,zd),
(v;,vijEA [vi,v;JEA

I: (-kl ,kl) I: Ckl + 'kl) { 1 ({Zk,ZI} ~ R1 ; Vi = zt}, (4.3)Yji + Yji - Yij Yij = 0 ({Zk,ZI} ~ R1 ; Vi E V \ {Zl,zd),
[v; ,v;]EA [v;,v;jEA

-kl + ,kl + ,kl < Xij ({zk,zd ~ R1 ; [Vi,Vj] E A), (4.4)Yij Yij Yij
-kl ,kl ,kl > 0 ({zk,zd ~ R1 ; [Vi,Vj] E A), (4.5)Yij , Yij , Yij

Xij E {O,l} ([Vi, Vj] E A). (4.6)

The formulationPF is based on the £low formulation of the shortest path problem (the special
case of the Steiner problem with IRti = 1). The formulation P2T is based on the special case with
IRll = 2, namely the two-terminal Steiner tree problem. In aSteiner tree, for any two terminals
Zk,ZI E Rl, there is a two-terminal tree consisting of a path from Zl to a splitter node Vs and two
paths from Vs to Zk and Zl (vs can belong to {Zl, Zk, Zl} ). In P2T, fJ, iJ and 11 describe £lowsfrom
Zl to vs, from Vs to Zk and from Vs to Z/. Note that the £lowdescribed by fJ can have an excess at
some vertices (because ofthe inequality in (4.1)), this excess is carried by the £lowsdescribed by iJ
and 11 to Zk and Z/ (because of (4.2) and (4.3)).

Lemma 4 LP2T is strictly stronger than LPF [15].

3 Tree Formulations

In this section, we state the basic tree based formulations and prove that the corresponding linear
relaxations are all equivalent. We also discuss some variants from the literature, which we prove to
be weaker.

3.1 Degree-ConstrainedTree Formulations

In [3]' the followingprogram was suggested, which is a translation of the degree-constrained mini-
mum spanning tree problem in Go.

IPTo I L CijXij -+ min,
(vi,v;)EE

{(Vi,Vj) I Xij = I}
XOk + Xki

Xij

builds a spanning tree for Go,
< 1 (Vk E V\R; (Vk,Vi) E <5(Vk)),
E {O, I} «Vi,Vj) E Eo).

4
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The requirement (5.1) ean be stated by linear eonstraints. In the following, we assume that (5.1) is
replaeed by the followingeonstraints.

L Xij = n,
(vi,v;)EEo

L Xij:::; IWI- 1 (0 =I W c Vo).
(vi,v;)EEo; vi,v;EW

(5.4)

(5.5)

The eonstraints (5.4) and (5.5), together with the nonnegativity of X, define a polyhedron whose
extreme points are the incidenee veetors of spanning trees in Go (see [7, 17]). Thus, no other set of
linear eonstraints replaeing (5.1) ean lead to a stronger linear relaxation.

A direeted version can be stated as follows.

fP:l. -
~

L CijXij ~ min,
[vi,vj]EA

L Xji = 1 (Vi E V),
[v;,v;jE"-(Vi)

L Xij < IWI- 1 (0 =I W ~ Vo),
[vi,vjJEAo; vi,vjEW

(6.1)

(6.2)

XOi + Xij + Xji < 1 (Vi E V \ R; [Vi, Vj] E 6+(Vi) ), (6.3)
Xij E {a,l} ([Vi,Vj] E Ao). (6.4)

Again, the eonstraints (6.1) and (6.2), together with the natuerlich n man incidence vectors of
spanning arboreseences with raot Vo (see [17]).Note that 6- (vo) = 0 by the eonstruetion of Go.

In the literature on the Steiner problem, one finds usually a direeted variant Fi'o that uses

XOi + Xij :::;1 (Vi E V \ R; [Vi,Vj] E 6+(Vi) )

instead of the eonstraints (6.3) (see for example [10]).Obviously v(Fi'o) = v(Pi'o)' and v(fFi'o) :::;
v(LPi'o)' The followingexample shows that LPi'o is strictly stronger than the version in the-litera-
ture.

Example 1 Figure 1 shows the network G with R = {Zl, Z2}, 'Y~ 100 and the network Go. The
minimum Steiner arborescence has the value 'Y+ 10.
The foIlowingx is feasible (and optimal) for LFi'o and gives the value 11: XOl = 1, X03 = X04 =
X34 = X43 = X32 = X42 = ~ and Xij = 0 (for all otherarcs). But for LPi'o' x is infeasible. The
optimal value here is: v(LPi'o) = ~+ 14 (this value is reached for example by x with XOl = 1, X03 =
X04 = X13 = X23 = X32 = i, X42 = X34 = j and Xij = 0 (for all other ares)). So the ratio
v(LFi'o)/v(LPi'o) ean be arbitrarily elose to O.
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3.2 Rooted Tree Formulation

The rooted tree formulation is stated, for example, in [13]:

~ L CijXij ~ min,
[vi,vjlEA

L Xji = 1 (Vi ERd, (7.1)
(vj,viJEe5-(Vi)

L Xki > Xij (Vi E V \ R; [Vi, Vj] E 8+(Vi)), (7.2)
(v~,vilEe5-(vi); VHfvj

L Xij < IWj-1 (0;z!: W ~ V), (7.3)
[vi,vjlEA; vi,vjEW

Xij E {0,1} ([Vi,Vj] E A). (7.4)

To get rid of the exponential number of eonstraints for avoiding eyeles, many authors have eonsidered
replaeing (7.3) by the subtour elimination eonstraints introdueed in the TSP-eontext (known as the
Miller-Tucker-Zemlin eonstraints [18]), allowing additional variables ti for all Vi E V:

(7.5)

This leads to the program Ft with 6(IAI) variables and eonstraints, which is asymptotieally mini-
mal. The linear relaxation LFt was used by [12].We will now prove the intuitive guess that LPt is
stronger than LFt. Indeed, the ratio ~~~~;~ ean be arbitrarily elose to 0 (see figure 2 on page 10).

Lemma 5 v(LFt) ::;v(LPt).

Proof: Let x denote an (optimal) solution for LPt. Obviously x satisfies the eonstraints (7.1) and
(7.2). We show now that it is possible to eonstruet t such that (x, i) satisfies (7.5), too.
We start With an arbitrary £ (e.g. ti = 0 (for all Vi E V)). We define for every are [Vi, Vj] E A:
Sij := (n ---1) -(ti"":: tj + nXij); and call an arc [Vi, Vj] good, if Sij ~ 0; used, if Sij ::; 0; and bad, if
Sij < O. Suppose [Vi,Vj] is a bad are (if no bad ares exist, (x,i) satisfies (7.5)).
We show now how tj (and perhaps some other £p) ean be inereased in a way that [Vi, Vj] beeomes
good, but no good are beeomes bad. By repeating this proeedure we ean make all ares good and
prove the lemma.
In each step we denote by Wj the set of vertices Vk E V that ean be reached £rom Vj through paths
with only used ares. We define A as min{Skl I [Vk,V,] E 8+(Wj)}, if this set is nonempty, and 00

otherwise. Now we increase for all vertices vp E Wj the variables tp by min{ -Sij, A} (these values
ean change in every step). By doing this, no arc of 8+(Wj) becomes bad. For arcs [vp,vq] with
vp, vq E Wj or vp, vq 't Wj the value of Spq does not change; and for ares [vq, vp] E 8- (Wj) Sqp does
not decrease.
Because tj is inereased in every step, there is only one situation that eould prevent that [Vi, Vj]
becomes good: In one step Vi is absorbed by Wj• But then, aceording to the definition of Wj, there
exists a path Vj "-+ Vi with only used arcs. Thus, there exists a cyde C := (Vi, Vj = Vkl"'" Vk, = Vi),
with Sklkl < 0 and Skt_lkt ::; 0 (for all t E {2, ... , l}). Summation of the inequalities for ares on the
cyde C leads to: n E(vp,v.1EC xpq > l(n - 1). On the other hand, since x satisfies the constraints
(7.3), E[vp,v.1EC xpq ::; 1- 1. The consequence, 'll > n;;l, is a contradiction. 0

3.3 Equivalence of Tree-Class Relaxations

We show now the equivalenee of the tree based relaxations LPTo' LPto' and LPt.
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Proof:
I) v(LPfo) ~ v(LPf): Let x denote an (optimal) solution for LPfo' Define x with Xij := Xij (for
all [Vi, Vj] E A). Because x satisfies the constraints (6.1) and in Go only ares in A are incident with
terminals in R1, X satisfies the constraints (7.1).
Furthermore, x satisfies the constraints (7.2), because for every arc [Vi, Vj] E A with Vi E V \ R
holds:

o

(because of 5.4)

(since Eu <; Ew)

(because of 5.5)

(8 in G)

(because of (6.1) )
(because of (6.3) )

7

=

L Xki) - Xji
[v.,viJES-(v;)

L Xki) - XOi - Xji
(v. ,vijES- (v;)

= 1-XOi - Xji

= IWI ~ 1+ n - L Xij
(v;,vj)EEw

> IW\{vo}l+ L Xij
(vi,vj)EEo\Ew

> IWI - 1+ L Xij - I:: Xij
(vi,vj)EEo (vi,vj)EEw

> n.

...~---'-'

I:: Xki =
(VI"ViJES-(Vi); V.#Vj

IW \ {vo}1 + I:: Xij
(vi,vj)EEo\Eu

Proof:
I) v(LPfo) ~ V(LPTo): Let x denote an (optimal) solution for LPfo. Define X with Xij:= Xij +Xji
(for all (Vi I Vj) E E), XOi := XOi (for all Vi E V \ R) and XOl := XOl' It is easy to check that X
satisfies all constraints of LPTo and yields the same value as v(LPfo)'
II) V(LPTo) ~ v(LPfo): Now let X denote an (optimal) solution for LPTo' Define 6. with 6.ij E [0,1]
arbitrarily (for all (Vi, Vj) E E) and set x to Xij := ßijXij, Xji := (1- 6.ij)Xij (for all (Vi, Vj) E E),
XOi := XOi (for all Vi E V \ R) and XOl := XOl. Again, it is easy to validate that x satisfies the
constraints (6.2) and (6.3) and yie1ds the same value as V(LPTo)'
The only question is, whether there is a ß such that x satisfies the constraints (6.1), too. This
question can be stated in the following way:
Is it possible to distribute the "supply" Xij ofeach edge (Vi,Vj) in such a way to its end-vertices
that every vertex Vi E V gets one unit at the end?
It is known that this problem can be viewed as a £lowproblem: Construct a £lownetwork with source
s, sink t, and vertices Uij (for all (Vi,Vj) E Eo) and Ui (for al1Vi E Vo). Every Uij is connected with
Ui and Uj through arcs [Uij,Ui] and [Uij,Uj] with capacity 00. Furthermore, there are ares [S,Uij]
with capacity Xij and ares [Ui, t] with capacity 1 (or 0, if i = 0). The quest ion above is equivalent
to the question, whether a flow £rom s to t with value n can be constructed. The max-£lowmin-cut
theorem says that this is possible if and only if there is no cut C = {U, Ü} (with s E U and t ~ U)
with capacity less than n (Obviously U = {s} and U = V\{t} correspond to cuts with capacity n).
Suppose that U corresponds to a cut C with minimum capacity. Define W := {Vi E Vo I Ui EU},
Ew := {(Vi,Vj) E Eo I Vi,Vj E W}, and Eu := {(Vi,Vj) E Eo I Uij EU}. For every [Vi,Vj] E Eu
(Uij EU), Ui and Uj must belong to U ([Vi, Vj] E Ew), because otherwise the capacity of C would
be 00 which is not minimal. It follows that: Eu <; Ew.
The capacity of Cis:



Finally X satisfies (7.3), because X satisfies (6.2).
II) v(LP'f) ~ v(LP'fo): Let x denote an (optimal) solution for LP'f' Define x with Xij .- Xij

(for all (Vi,Vj] E A) and XOi := 1 - I:[V;,Vi]EO-(Vi) Xji (for all Vi E V \ R1). Notice that for
an optimal x, I:[V;.ViJEO-(Vi) Xji > 1 could only be forced by (7.2) for some. arc [Vi,V,j with
I:(v;,viJEO-(V;),V;;i:vl Xji = XiI, and it would follow that 1 < I:[V;,VijEO-(Vi) Xji = Xli + XiI, but
this is excluded by (7.3) (forW = {Vi, vL}). So x satisfies (6.1) in a trivial way.
The constraints (6.2) are satisfied by x for every W ~ V, because X satisfies (7.3). For W ~ Vo

with Vo EW holds:

:L Xij
[vi,v;JEAo; vi,v;EW

< :L :L Xji

viEW\{vo} [v;,viJEo-(Vi)

(in Go)

= :L 1
viEW\{vo}

= IWI-1.

(because of (6.1) )

Finally for every [Vi, Vj] E A with Vi E V \ R:

XOi + Xij + Xji = 1 - ( :L Xki) + Xij + Xji
[Vi>.v;]EO-(Vi)

= 1- ( :L Xki) + Xij
[vi>,v;JEo-(v;); vk;i:v;

(in G)

< 1.

Thus, X satisfies also the constraints (6.3).

(because of (7.2) )

o

4 Relationship between the two Classes

In this section, we settle the question of the relationship between £lowand tree based relaxations
by proving that LPc is strictly stronger. than LP'f' Our proofs show also that LPc cannot be
strengthened by adding coristraints which are present in LP'fo or LP'f'
First, we show that every (optimal) solution x of LPc has certain properties:

Lemma 8 For every (optimal) solution x of LPc, W ~ V\{zd and Vk EW holds:

L Xij ~ :L Xik.
[vi.v;JEo-(W) [Vi,VkJEo-(Vk)

Proof: Suppose that x violates the inequality for some W and Vk. Among all such inequalities,
choose one for which IWI is minimal. For this inequality to be violated, there must be an arc
[VI, Vk] E 8- (Vk) \6- (W) with Xlk > O. Because of the optimality of X, Xlk cannot be decreased
without violating aSteiner cut constraint, so there is aUe V with Zl >t U, U nR :f:. 0, [VI, vkl E
8-(U), and I:[vi.v;lEO-(U) Xij = 1. Now one has the inequality t:

L Xij + :L Xij =
[Vi .v;JEo- (U) [Vi .v;JE6- (W)

>

L Xij + :L Xij +
[Vi .v;JEo-(UUW) [vi,v;JEo- (Unw)

L Xij + L Xij
[Vi .v;JEA.ViEW\U,v; EU\ W [Vi ,v;JEA.ViEU\ W.v; EW\U

L Xij + L Xij.
[Vi,ViJEo-(UUW) (vi.v;JEo-(UnW)
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Since Zl ~ U U W and (U u W) n R i- 0, U u W corresponds to aSteiner cut, and
L[v.,vjlEä-(UUW) Xii ~ 1 = L(Vi,Vj]Eä-(U) xii' Using t, one obtains: L[vi,vjlEä-(W) xii ~
L[Vi,VjlEä-(UnW) xii' This implies that X also violates the lemma for UnWand Vk. Since VI E W\U,
we have IU n Wj < IWI, and this contradicts the minimality of W.l 0

Lemma 9 For every (optimal) solution X of LPe and Vk E V\{zd holds:

2: Xik :5 1.
[Vi,VIolEä-(VIo)

Proof: Suppose x violates the inequality for Vk. There is an arc [VI,Vk] E 8-(Vk) with Xlk > O.
Because of the optimality of x, Xlk cannot be decreased without violating aSteiner cut constraint,
so there is a W C V with Zl ~ W, W n R i- 0, [VI, Vk] E 8-(W), and L[Vi,VjlEä-(W) Xii = 1.
Together with lemma 8 (for Vk and W), one gets a contradiction. 0

Lemma 10 For every (optimal) solution x of LPe, VI E V\{zd, and [VI,Vk] E A holds:

2: Xii ~ Xlk'
[Vi ,vrjEä- (V,),Vi;>OVIo

Proof: This follows directly from lemma 8 (for Vk and W = {VI, vd) by subtracting
L[V.,VIo]Eä-(VIo),Vi;>OVl Xik from both sides. Note that the special case Vk = Zl is trivial, because
XI1 = 0 in every optimal solution. 0

Theorem 11 v(LPt) :5 v(LPe).

Proof: Let x be an (optimal) solution for LPe. We will show that x is feasible for LPt:
Because {vd corresponds to aSteiner cut for Vi E Rl and using lemma 9, x satisfies (7.1).
Because of lemma 10, x satisfies (7.2).
Let W ~ V be a nonempty set. H Zl E W:

2: xii < 2: 2: Xii
[vi,VjlEA; vi,vjEW v'EW

• [Vj ,Vi]Eä- (Vi)

= 2: 2: Xii (optimality of x)
viEW\{Zl} [ .. lEä-( .)v, ,v, v,

< 2: 1 (lemma 9)
v.EW\{Zl}

= IWI-1.

Now we assume Zl f/. W and define ß := L(vIo,vr]Eä-(W) Xkl. There are two cases:
I)ß~l:

2: xii
(vi,vjlEA; vi,vjEW

=

= IWI-1.

Xii - 2: Xkl
(vIo,vrjEä- (W)

(ß ~ 1)

(lemma 9)

1In a different context this argumentation was used in [9].
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II) D.< 1 :

L Xij
(l1i,l1jJEA; vi,v;EW

=

<

Xji - L Xkl
[l1~,VdE<5-(W)

(lemma 8)

= (\WI - 1) L Xkl
(11~,l1,JE<5- (W)

< IWI-l.

It follows that X satisfies (7.3), too.

(D. < 1)

o

Corollary 11.1 The proof shows that adding constraints of LPt to LPe cannot improve v(LPe).

Corollary 11.2 Because the proofs of the equivalence of the tree relaxations require the optimality
only in one step of lemma 7 to show that 2:[l1j,l1i]E<5-(l1i) Xji ~ 1, which is forced by lemma 9 for
each (optimal) solution of LPe, adding constraints of LPto to LPe cannot improve v (LPc) , either.

To show that LPF and LPe are strictly stronger than the tree based relaxations LPTo' LPfo' and
LPt, it is sufficient to give the following example.

Figure 2: Example for v(LFt) «v(LPt) «V(LPF) = V(PF)

Example 2 For the network G (or in the directed view G) in figure 2 set Cl: » 1 and "y » Cl:.

Obviously, V(PF) = V(LPF) = "Y. For LP'i' is x with X23 = X34 = X42 = f, X25 = X56 = X62 = ~,
and Xij = 0 (otherwise) feasible, even optimal, and gives the value v(LPt) = Cl: + 2. Thus, there is
no positive lower bound for the ratio :~~;;~.
With respect to LFt and LPt, one observes that (x, t) with ti = 0 (for all Vi E V), X23 = X32 =
X34 = X43 = X24 = X42 = t, and xi; = 0 (otherwise) is an (optimal) solution for LF'i' with the value

3. So, there is no positive lower bound for the ratio :~~~;l.
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5 Multiple Trees and the Relation to the Flow Model

In this section, we consider a relaxation based on multiple trees and prove its equivalence to an
augmented £lowrelaxation. We also discuss some variants of the former relaxation.

5.1 Multiple Trees Formulation

In [13]' a variant of PT was stated, using the idea that an undirected Steiner tree can be viewed as
IRI different Steiner arborescences with different reots.

~ 2: C;iXii ~ min,mT
(vi,vj)EE

2: Xii > 1 (Vi ER), (8.1)
(vi,vj)E"(v;)

2: Xii > 2Si (Vi E V \ R), (8.2)
(vi,vj)E"(v;)

Si > Xii (Vi E V \ R; (Vi, Vi) E J(Vi) ), (8.3)
k k Xii (Vk ER; (Vi, Vi) E E), (8.4)Xii + Xii =

2: k = {~
(Vk ER; Vi ER \ {vd), (8.5)Xii (Vk ER; Vi = Vk),

[vj,viJE"-(v,)

2: k = (Vk ER; Vi E V \ R), (8.6)Xii Si
(vj,viJE"-(Vi)

{[Vi, Vi] I X~i = I} contains no cycles (Vk ER), (8.7)
Xii E {O,I} ((Vi, Vi) E E), (8.8)
k E {0,1} (Vk ER j [Vi, Vi] E A), (8.9)Xii
Si E {0,1} (Vi E V \ R). (8.10)

In any feasible solution for PmT' each group of variables xk describes an arborescence (with root
Zk) spanning all terminals. The variables s describe the set of the other vertices used by these
arborescences.

We will relate this formulation to the £lowformulations. First, we have to present an improvement
of LPF.

5.2 Flow-Balance Constraints and an Augmented Flow Formulation

There is a group of constraints (see for example [14]) that can be used to make LPF stronger. We
call them £low-balance constraints:

2: Xii ~ 2: Xii
(vj,v;jE"-(v,) (vi,vj)E"+(Vi)

(Vi E V \ R). (9.1)

We denotethe linear program that consists of LPF and (9.1) by LPF+FB. It is obvious that LPF+FB
is stronger than LPF' The following example shows that it is even strictly stronger.

11



Figure 3: Example with v(LPp) < v(LPp+PB) = V(Pp+PB)

Example 3 The network G in figure 3 with Zl as the root and R1 == {Z2, Z3} gives an example for
v(LPp) < v(LPP+PB): V(Pp+PB) = v(LPp+PB) = 6, v(LPp) = 5t.

Now consider the followingformulation:

2: CijXij
(vi,v;)EE

Xij + Xji
(x,y)

-+ min,

= Xij ((Vi,Vj) E E),
is feasible for Pp+PB.

(10.1)
(10.2)

Lemma 12 H (X,x,y) is an (optimal) solution for LPp'+PB with root terminal Za, then there
exists an (optimal) solution (X,x,ii) for LPp'+PB for any other root terminal Zb E R\{za}.

Proof: One can verify that (X,x,ii) with Xij := Xij+yJi-yfj, ii~j := max{O,y~j-yfj}+max{O,yJi-
yji}' iit := yJi (for all [Vi,Vj] E A, Zt E R\{Za,Zb}) satisfies (10.1), (3.2) and (3.3). Because of
L:[v;.vi]EO-(Vi) Wji -ii~j) = L:(v;,Vi]EO-(v;) (max{O,yji -yJi} +max{O, yfj -y~j} +min{O, -y~j +yfj} +
min{O,-yJi +yji}) = L:[V;,Vi]EO-(v;)Y;i ~yJi +yfj - y~j (for all Vi E V, Zt E R\{Za,Zb}) the con-
straints (3.1) are satisfied, tao. From (3.1) for yb followsthat L:(v;,vi]EO-(Vi) Xji = L:(v;,vi]EO-(Vi) Xji
and L:(Vi,v;]EO+(v;} Xij = L:(Vi,V;]EO+(Vi)Xij for all Vi E V\Rj therefore x satisfies the £low-balance
constraints (9.1).
Because this translation could also be performed from any (optimal) solution with root terminal Zb

to a feasible solution with root terminal Za, the value v(LPp'+PB) is independent of the choice of
the root terminal and (X,x,ii) is an (optimal) solution. 0
It follows immediately that LPp'+PB is equivalent to LPp+PB.

5.3 Relationship between the two Models

We will now show that the linear relaxation LPmf (where (8.7) is replaced by linear constraints of
the form (7.3)) is equivalent to LPp+PB.

Proof:
I) v(LPmf) ~ v(LPp'+PB): Let (X,x,s) denote an (optimal) solution for LPmf' Define x with
Xij := X;j (for all [Vi,Vj] E A), and y with y~j := max{x;j - X~j'O} (for all [Vi,Vj] E A,Zt ERd.
Because of (8.4) and the definition ofy, Y~j = 0 ifyji > 0 (for all (Vi,Vj) E E and Zt ERd.

12



For all Zt E R1, Vi E V\ {Zl, zt} holds:

(X;i - Xli) (because of (8.4) )

(because of (8.5) or (8.6) ).o=

L (Xli - X;i) - L (xL - X~j)
[Vi,V;JEA,:i:};>:i:j; [V;,ViJEA,:i:~i>:i::i

L=

=

=t " tYji - L.., Yij
[V;,ViJEA

L
[Vi ,v;JEA

With the same argumentation for Vi = Zt, it follows that Y satisfies (3.1).
The other constraints (3.2) and (3.3) are satisfied in a trivial way. A substitution of (8.4) and (8.6)
into (8.2) gives the fiow-balance constraints (9.1). Thus, (X, x, y) is feasible for LPF'+FB.
II) v(LPmT) S V(LPF'+FB): Let (X,x,y) denote an (optimal) solution for LPF'+FB. From lemma
12 we know that there is an (optimal) solution (X, xr, ir) for each choice of the root vertex Zr E R,
with the property that Si := L[Vi,V;JEÖ-(V;) X}i (for any Vi E V\R) has the same value for any choice
of Zt E R. With the argumentation of theorem 11 it follows that (X, X, s) is feasible for LP mT' 0

Corollary 13.1 The constraints (8.1), (8.3), and (8.7) are useless with respect to the value of the
linear relaxation LP mT'

Corollary 13.2 The linear program LP mT- (with the same objective function as LP mT) that con-
tains only the equations (8.4), (8.5), and (8.6) is equivalent to LPF'

6 A New Formulation
In this section we introduce a new formulation and examine same of its properties. We call it
common-fiow formulation, because it embeds additional variables into the multicommodity fiow
formulation and these variables fJlel correspond to the common £low from the root terminal to the
terminals Zle and ZI. It can be stated in the following way:

IPF21 L CijXij ---t min,
(vi,viJEA

L t L t { 1 (Zt E R1 ; Vi = Zt),
(11.1)Yji - Yij = 0 (Zt E R1 j Vi E V \ {Zl,Zt}),

(vi.v;JEA (V;,ViJEA

L -lei L -lei > { -1 ({ZIe,Zt}~Rl j Vi=Zl), (11.2)Yii - Yii 0 ({ZIe,zt} ~ Rl ; Vi E V \ {zd),
(Vi,V;JEA (V;'ViJEA

-lei < Ie ({ZIe, zt} ~ Rl j [Vi, Vi] E A), (11.3)Yij Yii
-lei < I ({ZIe,ZI} ~ Rl j [Vi, Vi] E A), (11.4)Yii Yii

Ie I -lei < ({ZIe,ZI} ~ Rl ; [Vi, Vi] E A), (11.5)Yii + Yii - Yii Xij

L Xii - L Xij < 0 (Vi E V\R), (11.6)
[vi,v;JEA (vi.viJEA

-lei Ie > 0 ({ZIe,zt} ~ R1 j [Vi, Vi] E A), (11. 7)Yii ' Yii
Xii E {O,l} ([Vi, Vi] E A). (11.8)

As in PF, each set of variables yt describes a £low from Zl to Zt. The variables fJlel describe the
common £low from Zl to Z1c and ZI. The inequalities (11.2) guarantee that the common £low is
nonincreasingj (11.5) state that the capacity of each arc must be at least the surn of each pair of
£lows minus the cornrnon £low through this arc. The idea behind this to make it difficult for two
£lows to split up and rejoin again. The inequalities (11.6) are the £low-balance constraints (9.1).
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Consider an (optimal) solution (x, Y, y) for PF2 and define T := {[Vi, Vj] I Xij = I}. Constraints
(11.1) guarantee that for each Zt E R1, there is a£low yt of one unit (of the eommodity t) from Zl

to Zt. For ares [Vi, Vj] ft T, eonstraints (11.3), (11.4), and (11.5) guarantee that yfj = yL = yfj = 0
for all {Zk, Zl} ~ R1. Therefore, there is no £lowover ares not in T and T eontains ways from Zl to
eaeh other terminal.
Now let x deseribe the ares of an optimal (direeted) tree T. For each Zt E R1, there is a path from
ZI to Zt in T. Set yt to 1 along this path. For each {Zk, zL} ~ R1 set yf} to 1, if [Vi, Vj] is on the
path from Zl to Zk as well as on the path from ZI to Zl. Obviously (x, y, y) is feasible for PF2.

Thus, T itself is an optimal Steiner arboreseence.

6.1 Comparing LPF2 with other Relaxations

We now eompare LPF2 with the two strongest relaxations presented before, namely LP2T and
LPF+FB.

Proof: Let (x,y,y) be an (optimal) solution of LPF2. For all {Zk,zL} ~ R1, k < 1, and [Vi,Vj] E A
d fi •kl k -kl d -Jel I ~Jel Ob. 1 h t. t f LF . fi d 0e ne Yij := Yij - Yij an Yij:= Yij - Yij. VI0US Yt e eons ram s 0 2T are satls e .

Beeause LPF2 eontains the £low-balance eonstraints and is stronger than LPZT, it is stronger than
LPZT+FB (construeted by adding (9.1) to LPZT)' It follows direetly that LPF2 is also stronger
than LPF+FB. The following example shows that it is even strictly stronger than the other stated
relaxations.

Example 4 Here is an example for V(LPZT) < V(LPF2) = V(PF2): Setting all x-variables to 0.5
leads to a feasible (and optimal) solution for LPZT with the value 13.5. An optimal solution for
LPF2 is X13 = X35 = X56 = X6Z = X64 = 1, which forms aSteiner tree with value 14. Notice
that this is also an example with V(LPZT) < V(LPF+FB). On the other hand, if V5 is moved to R,
V(LPF+FB) = V(LPF) = 12 < V(LP2T) = V(LPZT+FB) = 13.5 < V(LPF2) = v(Pp2) (The optimal
value for LPF+FB is reached by x with X12 = Xl3 = X14 = X25 = X35 = X45 = 1/3, X56 = X62 =
X63 = X64 = 2/3). Thus, LPF+FB and LP2T are incomparable.
This example has been chosen because it is especially instructive. For V(LP2T+FB) < v(LPp2), as
for all other statements in this paper that one relaxation is strictly stronger than another, we know
also (originally) undirected instances as exaniples.

Both LPF2 and LPZT make it difficult for £lows to two different terminals to split up and rejoin
again by increasing the x-variables on arcs with rejoined £low. One eould say that rejoining has
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to be "payed". To get an intuitive impression why LPF2 is strictly stronger than LP2T (or even
LP2T+FB), notice that in LPF2, there is one flow to each terminal and rejoining of each pair of
these flowshas to be payed; while in LPZT, it is just required that for each pair of terminals there
are two flowsand rejoining them has to be payed. The latter task is easier; for example it is possible
(for given x-values) that for each pair of terminals there are two flows that do not rejoin, but there
are not IRll flowsto all terminals in Rl that do not rejoin pairwise; this is the case in example 4
(setting all x-variables to 0.5).

6.2 Choiceof the Root

The followingexample shows that the value V(LPF2) is not independent of the choice of the root
vertex.

Figure 5: The value V (LPF2 ) changes with different roots

Exainple 5 The value V(LPF2) changes for different roots: Choosing Zl as the root yields the value
4.5 (setting all x-variables in the direction away from Zl to 0.5 leads to an optimal solution), while
choosing Zz, Z3, or Z4 yields 5, which is the weight of a minimum Steiner tree.

7 Conclusion

7.1 A Hierarchyof Relaxations

The followingfigure summarizes the relations stated in this paper. All relaxations in the same box
are equivalent. A line between two boxes means that the relaxations in the upper box are strictly
stronger than those in the lower box. Notice that the "strictly stronger" relation is transitive.

Figure 6: A Hierarchy of Relaxations
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7.2 Remarks

It should be mentioned that someof the stated results on the relationship between the optimal values
of linear relaxations extend directly to polyhedral results concerning the corresponding feasible sets.
This is always the case if optimality is not used in the proofs (e.g. in lemmas 5 or 6); and hence the
feasible set of one relaxation (projected into the x-space) is mapped into the corresponding set of
some other. The situation is different in the other cases (e.g. the proofs oflemma 7 or theorem 11).
Here the assumption of optimality of x can obviously be replaced by the assumption of minimality
of x (a feasible x is minimal if there is no feasible Xl :j; x with Xl $ x). In such cases, the presented
results extend directly to polyhedral results in the sense of inclusionsbetween the dominants of the
corresponding polyhedra (projected into the x-space). (The dominant of Q is {Xl I Xl ~ x E Q}.)

Note also that polyhedral results concerning the facets of the Steiner tree polyhedron (like those
in [4, 5]) fall into a different category. Our line of approach in this paper has been studying linear
relaxations of general, explicitly given (and frequently used) integer formulations; not methods for
describing facet defining inequalities. Applying such descriptions is typically possible only if the
graph has certain properties (e.g. that it contains a special substructure) and involves separation
problems which are believed to be difficult.

Acknowledgement: We would like to thank the referees for their comments.
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