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Abstract

There are many (mixed) integer programming formulations of the
Steiner problem in networks. The corresponding linear programming re-
laxations are of great interest particularly, but not exclusively, for com-
puting lower bounds; but not much has been known about the relative
quality of these relaxations. We compare all classical and some new re-
laxations from a theoretical point of view with respect to their optimal
values. Among other things, we prove that the optimal value of a flow-
class relaxation (e.g. the multicommodity flow or the dicut relaxation)
cannot be worse than the optimal value of a tree-class relaxation (e.g.
degree-constrained spanning tree relaxation) and that the ratio of the
corresponding optimal values can be arbitrarily large. Furthermore, we
present a new flow based relaxation, which is to the authors’ knowledge
the strongest linear relaxation of polynomial size for the Steiner problem
in networks.
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1 Introduction

The Steiner problem in networks is the problem of connecting together, at minimum cost, a set
of required vertices in a weighted graph. This is a classical A'P-hard problem (see [11, 10]) with
many important applications in network design in general and VLSI design in particular. For more
background information on this problem, its applications and its algorithmic aspects, we refer the
reader to the second part of the book of Hwang, Richards and Winter [10] on the Steiner problem.
The primary goal of this paper is to compare the linear relaxations of all classical, frequently cited
and some modified or new integer programming formulations of this problem with respect to their
optimal values. We present several new results, establishing very clear relations between relaxations
which have often been treated as unrelated or incomparable ones. We have also included some
known results to provide the reader with a wider view at one sight.

The results in this paper are not explicitly presented as polyhedral ones; the relationship to results
of this kind and polyhedral extensions of our results will be briefly discussed in section 7.2.

Also, the empirical study of the relaxations and the algorithmic aspects of their application are riot
the subject of this paper. In another paper [19], we report on our empirical study of some of these
relaxations and their algorithmic application, not only for computing lower bounds, but also as the
basis of empirically successful heuristics for computing upper bounds and sophisticated reduction
techniques, culminating in an exact algorithm which achieves impressive empirical results.




1.1 Definitions

- The Steiner problem in networks can be stated as follows (see [10] for details):

Given an (undirected, connected) network G = (V, E,c) (with vertices V. = {v1,...,v,}, edges
E and edge weights c;; = ¢((vi,v;)) > 0) and a set R, § # R C V, of required vertices (or
terminals), find a minimum weight tree in G that spans R.

For the ease of notation we assume R = {vy,...,v,}. f we want to stress that v; is a terminal, we
will write 2; instead of v;.

We also look at two reformulations of this problem, because they are used in some relaxations.
One uses the directed version: Given G = (V, E, c) and R, find a minimum weight arborescence in
G = (V,A,c) (A := {[vi,v5],[vj,vi] | (vi,v;) € E}, ¢ defined accordingly) with a terminal (say z)
as the root that spans R; := R\{z1}.

The problem can also be stated as finding a degree-constrained minimum spanning tree Tp in a
modified network Go = (Vo, Eo, ¢o), produced by adding a new vertex vp and connecting it through
zero cost edges to all vertices in V'\ R and to a fixed terminal (say z;). The problem is now equivalent
to finding a minimum spanning tree Ty in G with the additional restriction that in Ty every vertex
in V\R adjacent to vg must have degree one. For more details on this reformulation, see [2, 3].
Again, a similar directed version for a network Go can be defined, this time by adding zero cost
arcs [vo, v;] (for all v; € V\R) and [vg, z1] to G.

Acutin G = (V,4,¢) (orin G = (V,E,c)) is defined as a partition C = {W, W}hofV (BCWC
V:V = WUW). We use 6~ (W) to denote the set of arcs [v;,v;] € A with v; € W and v; € W. For
simplicity, we write 6~ (v;) instead of 6~ ({v;}). The sets §*(W) and, for the undirected version,
§(W) are defined similarly. A cut C = {W, W} is called a Steiner cut, if z7 € W and RiNW # 0
(for the undirected version: RNW # @ and RNW # 0).

In the integer programming formulations we use (binary) variables z;; for each arc [v;,v;] € A
(resp. X;; for each edge (v;,v;) € E), indicating whether an arc is in the solution (z;; = 1) or not
(zi; = 0). Let P; be such a program. The corresponding linear relaxation is denoted by LP;. The
value of an optimal solution of the integer programming formulation (for given G and R), denoted
by v(P1), is of course the value of an optimal solution of the corresponding Steiner arborescence
problem in G. Thus, in this context we are only interested in the optimal value u(LP;) of the
corresponding linear relaxation, which can differ from v(P).

In the following text, we will often define integer formulations or prove the relationships between
linear relaxations. The notations P; (or LP;) always denote the integer (or linear) program cor-
responding to an arbitrary, but fixed instance (G, R) of the Steiner problem (with G replaced by
G, Go or Gy when appropriate).

We compare relaxations using the predicates equivalent and (strictly) stronger: We call a relax-
ation R, stronger than a relaxation R; if the optimal value of R, is no less than that of R, for all
instances of the problem. If R; is also stronger than R;, we call them equivalent, otherwise we say
that R; is strictly stronger than Rs. If neither is stronger than the other, they are incomparable.

2 Cut and Flow Formulations

In this section, we state the basic flow and cut based formulations of the Steiner probiem. There
are some well-known observations concerning these formulations, which we cite without proof.




2.1 Cut Formulations

The directed cut formulation was stated in [20].

(Fe] X ez - min

[vi,v;]eA
Sz 2 1 (ugW, WNR #£0), (1.1)
[vi,v5]€8~ (W)
zi; € {0,1} ([vi,v;] € A). (1.2)
The constraints (1.1) are called Steiner cut constraints. They guarantee that in any arc set corre-
sponding to a feasible solution, there is a path from z; to any other terminal.

A formulation for the undirected version was stated in [1]:
Z c;inj — min,
(vi,v;)EE
> X4 > 1 (WNR#R, WNR#0), (2.1)
(vi,v;)€8(W)
Xi; € {0,1} ((vi,v;) € E). (2.2)

Lemma 1 LPc is strictly stronger than LPy¢; and sup {;%(%})} =2 [4, 6].

v(Pyc

We just mention here that S22 <2 [8]; and that when applied to undirected instances, the value

v(LPc) is independent of the choice of the root [9]. For much more information on LPz, LPy¢ and
their relationship, see [4]. Also, many related results are discussed in [17).

2.2 Flow Formulations

Viewing the Steiner problem as a multicommodity flow problem leads to the following formulation

(see [20]).
Z CijZTij — min,
{vi,vjlea
t t 1 (2t € Ry ; vi = z),
Z Yji — Z Vi; = { . 3.1)
[v;,0:]€A [us,v;]€A 0 (Zt € Rl ; Ui € 14 \ {Zl,Zt}), »
zij > v (2 € Ri; [vi,v5] € A), (3.2)
¥i; = 0 (2€R:; [ui,vj] € 4), (3.3)
zi;j € {0,1} ([v:,v5] € A). (3.4)

Each variable y; denotes the quantity of the commodity ¢ flowing through [v;, v;]. Constraints (3.1)
and (3.3) guarantee that for each terminal z; € R;, there is a flow of one unit of commodity ¢ from
21 to z;. Together with (3.2), they guarantee that in any arc set corresponding to a feasible solution,
there is a path from z; to any other terminal.

Lemma 2 LPc is equivalent to LPr [20].

The correspondence is even stronger: Every feasible solution z for LPs corresponds to a feasible
solution (z,y) for LPr. -

The straightforward translation of Pr for the undirected version leads to LPyyp with v(LPyF) =
v(LPyc) (see [9]). There are other undirected formulations (see [9]), leading to relaxations which
are all equivalent to LPr; so we use the notation LPpy for all of them.



Of course, there is no need for different commodities in Pr. In an aggregated version, which we call
Pg++, one unit of a single commodity flows from z; to each terminal z; € Ry (see {16]). This program
has only ©(|A|) variables and constraints, which is asymptotically minimal. But the corresponding
linear relaxation LPp++ is not a strong one:

Lemma 3 LPr is strictly stronger than LPgp++. The worst case ratio % isr —11{16, 6].
F

In [15], the two-terminal formulation was stated:

Pyr Z cijTij — min,
[vivjleA
-kl ki -1 ({zk, 2} € B1; vi = 21),
Z Yii — Z Ui 2 { C R - v (4.1)
[vi.vi]eA [vi,v5]€A 0 ({z,2} € Br; vi € V\{a1}),
- N - N 1 ({Zk,Z{} C Rl DU = Zk)
S o@H+uh- Y @+ = { =t : (4.2)
i i P C -
[vj,v:]€A [vi,v;]€A 0 ({Zk’zl} C R vi € VA {z1,z}),
el - . 1 ({zk, 2} SRy vi=2),
S oG- T i - Ry )
{vj,vi]€A [vi,vj]€A 0 ({zk’zl} CRi;veV \ {21,21}),
g8+ +9 < oz ({a 2} C R lwiyvs] € 4), (4.4)
g4, g8, 2 0 ({aa} SR v € 4), (4.5)
zi; € {01} ([vi,vj] € A). (4.6)

. The formulation Pr is based on the flow formulation of the shortest path problem (the special
case of the Steiner problem with |R;| = 1). The formulation Por is based on the special case with
|Ri| = 2, namely the two-terminal Steiner tree problem. In a Steiner tree, for any two terminals
2k, 21 € Ry, there is a two-terminal tree consisting of a path from z; to a splitter node v, and two
paths from v, to zx and z (vs can belong to {z1,2k,z}). In Py, §, § and § describe flows from
21 to Us, from v, to zx and from v, to z;. Note that the flow described by § can have an excess at
some vertices (because of the inequality in (4.1)), this excess is carried by the flows described by ¥
and 7 to zx and z; (because of (4.2) and (4.3)).

Lemma 4 LP,r is strictly stronger than LPr [15].

3 Tree Formulations

In this section, we state the basic tree based formulations and prove that the corresponding linear
relaxations are all equivalent. We also discuss some variants from the literature, which we prove to
be weaker.

3.1 Degree-Constrained Tree Formulations

In [3], the following program was suggested, which is a translation of the degree-constrained mini-
mum spanning tree problem in Gq. -

Pr, > Xy — min,
(vi,v;)€EE
{(vi,v;) | Xi5 =1} : builds a spanning tree for Go, (6.1)
Xok+ X < 1 (ve € VAR (v, i) € 8(vi)), (5.2)
Xi; € {0,1} ((vi,v;) € Eo). (5.3)




The requirement (5.1) can be stated by linear constraints. In the following, we assume that (5.1) is
replaced by the following constraints.

Z X,‘j = n, (5.4)

(vi,v;)EEg
> X5 < Wi-1 (0#W V). (5.5)

(vi,vj)EE0; vi v;EW

The constraints (5.4) and (5.5), together with the nonnegativity of X, define a polyhedron whose
extreme points are the incidence vectors of spanning trees in G (see (7, 17}]). Thus, no other set of
linear constraints replacing (5.1) can lead to a stronger linear relaxation.

A directed version can be stated as follows.

P’I‘o Z CijT;; — min,
[vi,v;]€A

Z T = 1 (’Ui € V), (6.1)

[vj,w]€6= (v:)
> oz < WI-1 @£WCW), (62)

[vi,v5]€A0; vi,u;€W
Toi+zTij+z5 < 1 (i €V\R; [vi,v;] €67 (w) ), (6.3)
Tij € {071} ([Uiy 'Uj] € AQ) (64)

Again, the constraints (6.1) and (6.2), together with the natuerlich n man incidence vectors of
spanning arborescences with root vg (see [17]). Note that §~(vg) = @ by the construction of Gg..

In the literature on the Steiner problem, one finds usually a directed variant Pfo that uses
Toi +2ij; <1 (v EV\R; [v;,v] € 61 (v:) )

instead of the constraints (6.3) (see for example {10]). Obviously v(P ) = v(Pg), and v(LP 1) <
v(LPy,). The following exa.mple shows that LPy is strictly stronger than the version in the htera—
ture.

Figure 1: Example with v(LP;) < v(LPy) = v(LPr,) < v(Pr,)

Example 1 Figure 1 shows the network G with R = {21,232}, v > 100 and the network Go. The
minimum Steiner arborescence has the value v + 10.

The following z is feasible (and optimal) for LPT and gives the value 11: £o1 = 1, 293 = Zg4 =
T34 = D43 = T3z = T4z = 5 and :z:,J = 0 (for all other arcs). But for LP— ; £ is infeasible. The
optimal value here is: v(LP )= + 14 (this va.lue is reached for example by % with $o; = 1, £g3 =
To4 = F13 = Zgz = Tz = %, 242 = F34 = — and £;; = 0 (for all other arcs)). So the ratio
v(LPT—O)/v(LPT-O) can be arbitrarily close to 0.



3.2 Rooted Tree Formulation

The rooted tree formulation is stated, for example, in [13]:

Pf Z CijTij min,
[vi.vij€A

zj; = 1 (v €R), (7.1)

[vj,vi]€6~ (i)
Tk > i (i €V\R; [vi,v5] € 67 (w)), (7.2)

[vr,vi]€8— (v:); vaFv;
> z; < [Wl-1 @#WCV), (7.3)

[vi,v;]€A4; vi,v;EW
T;; € {0, 1} ([U,‘,’Uj] € A). 7.4)

To get rid of the exponential number of constraints for avoiding cycles, many authors have considered
replacing (7.3) by the subtour elimination constraints introduced in the TSP-context (known as the
Miller-Tucker-Zemlin constraints [18]), allowing additional variables ¢; for all v; € V:

ti—t;+nzy; <n-1 (['U,',vj] € A). (7.5)

This leads to the program PT— with ©(]Al]) variables and constraints, which is asymptotically mini-

mal. The linear relaxation LPf was used by [12]. We will now prove the intuitive guess that LPj is

stronger than LPT. Indeed, the ratio %ﬁ—; can be arbitrarily close to 0 (see figure 2 on page 10).

Lemma 5 v(LP;) < v(LPj).

Proof: Let & denote an (optimal) solution for LPz. Obviously Z satisfies the constraints (7.1) and
(7.2). We show now that it is possible to construct t such that (%,1) satisfies (7.5), too.

We start with an arbitrary t (e.g. t; = 0 (for all v; € V)). We define for every arc [v;,v;] € A:
8ij == (n —1) = (& - fj + n#;;); and call an arc [vs, v;] good, if s;; > 0; used, if s;; < 0; and bad, if
sij < 0. Suppose [v;,v;] is a bad arc (if no bad arcs exist, (%,1) satisfies (7.5)).

We show now how #; (and perhaps some other £,) can be increased in a way that [v;,v;] becomes
good, but no good arc becomes bad. By repeating this procedure we can make all arcs good and
prove the lemma. '

In each step we denote by W; the set of vertices vx € V that can be reached from v; through paths

with only used arcs. We define A as min{sy | [ve,w] € +(Wj;)}, if this set is nonempty, and oo

otherwise. Now we increase for all vertices v, € W; the variables ¢, by min{—s;;, A} (these values
can change in every step). By doing this, no arc of §*(W;) becomes bad. For arcs [up,vg] with
vp, Vg € W or vp, vy & W; the value of sp, does not change; and for arcs [vg, vp] € 67 (W) sqp does
not decrease.

Because fj is increased in every step, there is only one situation that could prevent that {vi,v;]
becomes good: In one step v; is absorbed by W;. But then, according to the definition of W, there
exists a path v; ~» v; with only used arcs. Thus, there exists a cycle C := (v, v; = vy, ..., Uk = v;),
with 8g,x, < 0 and sg,_,x <0 (for all ¢ € {2,...,1}). Summation of the inequalities for arcs on the
cycle C leads to: n 3, , jec $pq > I(n — 1). On the other hand, since £ satisfies the constraints

(7.3), Z[v,,uq]ec Zpq £ 1 — 1. The consequence, "Tl > "n;l, is a contradiction. a

3.3 Equivalence of Tree-Class Relaxations

We show now the equivalence of the tree based relaxations LPr,, LP,fo, and LPg.




Lemma 6 v(LPy) = v(LPr,).

Proof:

I) v(LPy ) 2 v(LPr,): Let z denote an (optimal) solution for LPy . Define X with X;; := z; +z;
(for all (v;,v;) € E), Xoi := zo; (for all v; € V \ R) and Xo; := zg;. It is easy to check that X
satisfies all constraints of LPr, and yields the same value as v(LPyg).

IT) v(LPr,) > v(LPy, ): Now let X denote an (optimal) solution for LPr,. Define A with A;; € [0, 1]
arbitrarily (for all (U;’,’Uj) € E) and set z to zij = Ay Xy, zji o= (11— A,‘j)X,'j (for all (vi,v5) € E),
Zoi := Xoi (for all v; € V' \ R) and z¢; := Xg). Again, it is easy to validate that z satisfies the
constraints (6.2) and (6.3) and yields the same value as v(LPr,).

The only question is, whether there is a A such that z satisfies the constraints (6.1), too. This
question can be stated in the following way:

Is it possible to distribute the “supply” Xi; of each edge (vi,v;) in such a way to its end-vertices
that every vertex v; € V gets one unit at the end?

It is known that this problem can be viewed as a flow problem: Construct a flow network with source
s, sink ¢, and vertices u;; (for all (vi,v;) € Eo) and u; (for all v; € Vp). Every u;; is connected with
u; and u; through arcs [uij, u;] and [u;j, u;] with capacity co. Furthermore, there are arcs [s, u;;]
with capacity X;; and arcs [u;, t] with capacity 1 (or 0, if : = 0). The question above is equivalent
to the question, whether a flow from s to t with value n can be constructed. The max-flow min-cut
theorem says that this is possible if and only if there is no cut C = {U,U} (with s € U and ¢t ¢ U)
with capacity less than n (Obviously U = {s} and U = V\{t} correspond to cuts with capacity n).
Suppose that U corresponds to a cut C with minimum capacity. Define W := {v; € Vy | w; € U},
Ew = {(vi,v;) € Eo | vi,v; € W}, and Ey := {(vi,v;) € Eo | ui; € U}. For every [v;,v;] € Ey
(ui; € U), u; and u; must belong to U ([v;,v;] € Ew), because otherwise the capacity of C would
be oo which is not minimal. It follows that: Ey C Ew.

The capacity of C is: '

WA\ {w}+ D>, Xy > W\ {w}+ > Xi;  (since By C Ew)

(vi,v;)EE\Ey (vi,v;)EE\Ew
> Wl-1+ Y X4- > Xy
(vi,v;)EE, (vi,v;)EEwW
= |W|-14+n- Z Xij (because of 5.4)
] (vi,v;)€Ew
> n. (because of 5.5) a

Lemma 7 v(LP;) = v(LPyg).

Proof:

I) v(LPy) > v(LPy): Let £ denote an (optimal) solution for LPy . Define £ with Z;; := £;; (for
all [v;,v;] € A). Because £ satisfies the constraints (6.1) and in G only arcs in A are incident with
terminals in R;,  satisfies the constraints (7.1).

Furthermore, Z satisfies the constraints (7.2), because for every arc [v;,v;] € A with v; € V\ R
holds: ‘

Ba o= (), Ew)=E (6in G)
[vn,v:]€8 (u); vaFtv; {on vij€6— (v:)
(> #w)-fo—£u  (8in Go)
" [vwvil€d- (w)
1—Zoi — 25 (because of (6.1) )
Zij (because of (6.3) )
Eij.

i wv

7




Finally Z satisfies (7.3), because Z satisfies (6.2).

II) v(LPz) > v(LPg): Let £ denote an (optimal) solution for LPjy. Define £ with £;; = Zj;
(for all [vi,v;] € A) and Zoi = 1 = 3y yes-(v) T (for all vi € V \ R;). Notice that for
an optimal Z, Z[ui‘ui]ed_(v‘_)iji > 1 could only be forced by (7.2) for some arc [v;,v] with
z[u,-,u.']eé‘(v.'),vﬁévz Zji = %4, and it would follow that 1 < Z[u;,u;]eé-(u;) Zj; = Iy + %y, but
this is excluded by (7.3) (for W = {v;,u}). So Z satisfies (6.1) in a trivial way.

The constraints (6.2) are satisfied by & for every W C V, because Z satisfies (7.3). For W C W,
with vg € W holds:

Z zi; < Z Z £ (in Go)
{vi,vj]€A0; vi v;EW v;€EW\{vo} [v;,v:] €6~ (:)
= z 1 (because of (6.1) )
v €W\{vo}
= |Wl-1.

Finally for every [vi,v;] € A with v; € V\ R:

Bty = 1=( >,  Ew)+iy+i; (i G)
[ve,vi]€8— (v:)

1- ( Z iki) + .’E.,;j
vk, vi]€6= (vi); vi#kv;

< L (because of (7.2) )

il

Thus, & satisfies also the constraints (6.3). a

4 Rélationship between the two Classes

In this section, we settle the question of the relationship between flow and tree based relaxations
by proving that LPc is strictly stronger than LPz. Our proofs show also that LPc cannot be
strengthened by adding constraints which are present in LPj5 or LP;.

First, we show that every (optimal) solution £ of LP¢ has certain properties:

Lemma 8 For every (optimal) solution £ of LPc, W C V\{2z1} and vx € W holds:

> E;2 Y. i

[vi,v;]€6— (W) [vi,va]€6 (vi)

Proof: Suppose that £ violates the inequality for some W and vi. Among all such inequalities,
choose one for which |W| is minimal. For this inequality to be violated, there must be an arc
(v, vk] € 67 (ug)\6~ (W) with Z; > 0. Because of the optimality of £, Z;x cannot be decreased
without violating a Steiner cut constraint, so thereisa U C V with z; ¢ U, UNR # 0, (v, ] €
6~ (U), and Z[w wyjes-uy Tii = L. Now one has the inequality {:

S oae ¥ omo= D s S e
[vi,v;]€6= (V) [vi,v;]€6= (W) [vi,v5]€6—(UUW) [vi,v;]€6-(UnW)
' :i“'j-i- Z :i‘,;j
[vi,v;]€ A, €W\U,v; EU\W [vi,v;]€EA, v EU\W,u; EW\U
)RR "E D DI 2

[vi,v;]€E6=(UUW) {vi,v;]€8-(UNW)

v




Since z; ¢ UUW and (UUW)NR # 0 UUW corresponds to a Steiner cut, and

Cwwsles-wuw) Fi 2 1 = . yaes-y Fi5- Using 1, one obtains: s vsles-(wy Fig >
[v:,0;]€6- (UNW) Z;;. This implies that £ also violates the lemma for UNW and vi. Since y; € W\U,
we have [UNW| < |W]|, and this contradicts the minimality of W .1 a

Lemma 9 For every (optimal) solution £ of LPc and vx € V\{z:} holds:

E i < 1

[vi,ve]€6—(vy)

Proof: Suppose £ violates the inequality for vx. There is an arc [v;,vk] € 6~ (vx) with £ > 0.
Because of the optimality of £, Z;x cannot be decreased without violating a Steiner cut constraint,
sothereisa W CV withzy ¢ W, WNR # 0, [u,v] € 6~ (W), and Z[‘U{,Uj]Eé"(W) iy = 1
Together with lemma 8 (for v, and W), one gets a contradiction. ' a

Lemma 10 For every (optimal) solution £ of LP¢, v € V\{z1}, and [v;, vx] € A4 holds:

Z Zq > Tig-

[vi,u1]€8~ (w),vi vy

Proof: This follows directly from lemma 8 (for vx and W = {u,v}) by subtracting
Z[v‘_,vh]@_(“),u#w Zix from both sides. Note that the special case vy = z; is trivial, because
%31 = 0 in every optimal solution. ]

Theorem 11 v(LPz) < v(LFPc).

Proof: Let £ be an (optimal) solution for LPc. We will show that £ is feasible for LPg:
Because {v;} corresponds to a Steiner cut for v; € R; and using lemma 9, £ satisfies (7.1).
Because of lemma 10, £ satisfies (7.2).

Let W C V be a nonempty set. If 2, € W:

POREEEE D DD DR

[vi,v;]€A; viv;EW v EW [v;,vs]€6~ (v:)

> > (optimality of &)

vieW\{z} [v,vi]€6~ (v3)

< Z 1 (lemma 9)
vi€W\{z1}
= |W|-1.
Now we assume z; € W and define A := E[vh,v.]eé-(W) Z;. There are two cases:
DAaA>1:
> T o= 3 > Ei— ) du
[‘U.','D,'IGA; Vi, V5 ew v, eEW [v,-,v.-]ed‘(v;) [v.,,m]é&‘(W)
< (Y > #)-1 (ax1)
HEW Loy il () _
< Y1 -1 (lemma 9)
%uEW
= |W|-1

'In a different context this argumentation was used in [9].




MA<I:

Z Ty = Z Z Zji = Z Tw

[vi,v;]€A; vi,v;€EW vieW (3, vs]€6 (v:) (e oi)€0- (W)
= Z Z Tht — Z Zrt (lemma 8)
uiew[vu,va]ea—(W) (vn,v1]€6— (W)
= (Wl-1) > &
[vx wi]€6= (W)
< Wi-v (A<1)
It follows that Z satisfles (7.3), too. _

Corollary 11.1 The proof shows that adding constraints of LPs to LPc cannot improve v(LPc).

Corollary 11.2 Because the pfoofs of the equivalence of the tree relaxations require the optimality
only in one step of lemma 7 to show that 3_, ..es-(v)Zji £ 1, which is forced by lemma 9 for
each (optimal) solution of LP¢, adding constraints of LPy to LPc cannot improve v(LFc), either.

To show that LPr and LP; are strictly stronger than the tree based relaxations LPr,, LPTov and
LPy, it is sufficient to give the following example.

Figure 2: Example for v(LPz) < v(LPy) < v(LPr) = v(PF)

Example 2 For the network G (or in the directed view G) in figure 2 set a>1and v > a
Obviously, v(Pr) = v(LPg) = v. For LPg is £ with £93 = 234 = £42 = 2 225 = Zs6 = L6z = :13,
and Z;; = 0 (otherwise) feasible, even optima.l and gives the value v(LPj) = a + 2. Thus, there is
no positive lower bound for the ratio :'R(-i'—}};ﬁ%

With respect to LPT and LPT, one observes that (z,£) with ti =0 (for all v; € V), To3 = 32 =
f34 = Z43 = E24 = T42 = §, and &;; = 0 (otherwise) is an (optimal) solution for LP with the value

3. So, there is no positive lower bound for the ratio "7(11:—;1%.




o |

5 Multiple Trees and the Relation to the Flow Model

In this section, we consider a relaxation based on multiple trees and prove its equivalence to an
augmented flow relaxation. We also discuss some variants of the former relaxation.

5.1 Multiple Trees Formulation

In [13], a variant of Py was stated, using the idea that an undirected Steiner tree can be viewed as
|R| different Steiner arborescences with different roots.

me Z Qinj - min,
(vi,v;)EE
Z X,‘j > 1 (’Ui € R), (81)
(vi,v;)€8(v:)
>ooXy; 2 2 (vi € V\ R), (8.2)
(vi,v;)€6(v:)
si 2 Xij (vi € VAR (vi,v5) € 6(vi) ), (8.3)
T + zfi = Xj (v € R; (vi,v;) € E), (8.4)
£ _ 1 (vk € R; vi € R\ {w}),
Z i = { 0 ('Uk S R_; Vi = 'Uk), (85)
[vj vi]€6- (v:)
zh = s (ve € R; v; € V\R), (8.6)
[vj vi]€6~ (vi)
{[vi,vj] | zf; =1} : contains no cycles (v € R), 8.7
_Xij € {0, 1} ((’U,',Uj) € E), (8.8)
zt, € {0,1} (v €R; [vi,v;] € A), (8.9)
s; € {0,1} (vi e V\ R). (8.10)

In any feasible solution for P, 7, each group of variables z* describes an arborescence (with root
zr) spanning all terminals. The variables s describe the set of the other vertices used by these
arborescences.

We will relate this formulation to the flow formulations. First, we have to present an improvement
of LPF.

5.2 Flow-Balance Constraints and an Augmented Flow Formulation

There is a group of constraints (see for example [14]) that can be used to make LPp stronger. We
call them flow-balance constraints:

Z zii < Z Tij (vi e V\R). (9.1)
[vj,v:]€6— () [vi,v5]€8+(vs)

We denote the linear program that consists of LPr and (9.1) by LPrrp. It is obvious that LPr. g
is stronger than LPr. The following example shows that it is even strictly stronger.

11




Figure 3: Example with v(LPr) < v(LPr+rB) = v(Pr+FB)

Example 3 The network G in figure 3 with z; as the root and R; = {22, 23} gives an example for
v(LPF) < U(LPF+FB): ‘U(PF+FB) = 'U(LPF+FB) =6, U(LPF) = 5%.

Now consider the following formulation:

PF'+FB Z c;,-X,-' — min,

(vi,v;)€E
Tij + 255 = Xy ((vi,v5) € E), (10.1)
(z,y) : is feasible for PryFB. (10.2)

Lemma 12 If (X,z,y) is an (optimal) solution for LPp+pp with root terminal z,, then there
exists an (optimal) solution (X, %,y) for LPp4 pp for any other root terminal zp € R\{z.}.

Proof: One can verify that (X, ,§) with &;; := zi;+y% —y¥, §%; = max{0, y}; —y}; } +max{0, yi—

vh) 9% = ygi (for all [v;,v;] € A, zx € R\{za,2}) satisfies (10.1), (3.2) and (3.3). Because of
2 [y vs] €6 (v:) (@ = 95) = Loy vijes-(vi) (max{0, Y5 —yhi} +max{0, v} — %} +min{0, —y}; +y}+
min{0, —y% + ¥4} = Lo, vijes-(v) Y5 — vb +yd —yl; (for all v; € V, 2 € R\{2a,2}) the con-
straints (3.1) are satisfied, too. From (3.1) for y® follows that 35, . 1e6- (v:) Tit = 2ofu;,vi]€d- (vs) Zé
and 3op,. 1€+ (o) Tid = 2ofui,vsledt(w) Tid for all v; € V\R; therefore & satisfies the flow-balance
constraints (9.1).

Because this translation could also be performed from any (optimal) solution with root terminal zp
to a feasible solution with root terminal z,, the value v(LPr +rpg) is independent of the choice of
the root terminal and (X, %,7) is an (optimal) solution. o
1t follows immediately that LPg 4 rp is equivalent to LPri+r35.

5.3 Relationship between the two Models

We will now show that the linear relaxation LP,_ + (where (8.7) is replaced by linear constraints of
the form (7.3)) is equivalent to LPryFB-

Lemma 13 v(LP, ) = v(LPr +FB)

Proof: . ' .

I) v(LP,_ ) > v(LPr +Fp): Let (X,%,3) denote an (optimal) solution for LP, 7. Define = with
zi; = & (for all [v;,v;] € A), and y with yt; = max{&}; — &};,0} (for all [vi,v;] € 4,2 € Ry).
Because of (8.4) and the definition of y, y; = 0 if y}; > 0 (for all (vi,v;) € E and z; € Ry).




For all z, € Ry, v; € V\{z1, z;} holds:

Z .U;'i - Z yfj = Z (‘ij - 5’31) - Z (57%, - i'f,)

[v;,0:]€A [vi,v;]€A [‘Uj',vi}eA,.’i;‘»>i§-‘- ‘ (viv;]€A,2]; >4,
= Z (&5 —25) - Z (2%, — £};) (because of (8.4) )
[vj,v;]eA,:i:Jl.‘)ai:;.. [vj,u;]GA,i§i<i;~,-
= Z (35— 25) = 0 (because of (8.5) or (8.6) ).

(vj,vi]€8—(v:)

With the same argumentation for v; = z;, it follows that y satisfies (3.1).

The other constraints (3.2) and (3.3) are satisfied in a trivial way. A substitution of (8.4) and (8.6)
into (8.2) gives the flow-balance constraints (9.1). Thus, (X, z,y) is feasible for LPr . rp.

II) v(LP, +) < v(LPr +rB): Let (X, z,y) denote an (optimal) solution for LPg +rp. From lemma
12 we know that there is an (optimal) solution (X, £",§") for each choice of the root vertex z, € R,
with the property that §; := Z[Uj,u;] €6 (ve) 5:;,. (for any v; € V\R) has the same value for any choice
of z; € R. With the argumentation of theorem 11 it follows that (X, £, §) is feasible for LP_ . O

Corollary 13.1 The constraints (8.1), (8.3), and (8.7) are useless with respect to the value of the
linear relaxation LP, 7.

Corollary 13.2 The linear program LP,_ ;_(with the same objective function as LP_ ) that con-
tains only the equations (8.4), (8.5), and (8.6) is equivalent to LPg.

6 4A New Formulation

In this section we introduce a new formulation and examine some of its properties. We call it
common-flow formulation, because it embeds additional variables into the multicommodity flow
formulation and these variables §* correspond to the common flow from the root terminal to the
terminals z; and z;. It can be stated in the following way:

FPp2 > eyzi; — min,
[vi,v;]€A
1 (zx€Ry; vi =2z),
{"jge‘éy;" - [v;%eAij = { 0 Ez: € Ri ;v € Vt)\ {z1,2}), (11.1)
o . -1 Zk, 21} C Ry 5 vi = 21),
[‘ij‘"Xi]:EA C [u;%]:e/a vz { 0 (({{Z:, Z!l}} Q_Rll Vi € Vli {z1}), (112)
gf} < yfj ({zk, 21} C Ry ; [vi,v;] € A), (11.3)
35 < w; ({za)} SRy [viv;] € 4), (11.4)
yfj + yﬁj - ﬂf} <z ({zk,2} C R ; [vi,v;] € 4), (11.5)
> zi— Y oz < 0 (neV\R), (11.6)
[vj,vi]€A [vi,u;5]€A
gfj’ , y,’-‘j > 0 ({zx,z1} € Ry ; [vs,v5] € A), (11.7)
zi; € {0,1} ([vi,v;] € A). (11.8)

As in Pp, each set of variables y* describes a flow from 2z; to z;.. The variables §* describe the
common flow from z; to zx and 2. The inequalities (11.2) guarantee that the common flow is
nonincreasing; (11.5) state that the capacity of each arc must be at least the sum of each pair of
flows minus the common flow through this arc. The idea behind this to make it difficult for two
flows to split up and rejoin again. The inequalities (11.6) are the flow-balance constraints (9.1).
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Consider an (optimal) solution (z,y,J) for Prz and define T := {[v;,v;] | z;; = 1}. Constraints
(11.1) guarantee that for each z; € R, there is a flow y* of one unit (of the commodity t) from z,
to z. For arcs [v;,v;] € T, constraints (11.3), (11.4), and (11.5) guarantee that y¥ =y}, = =0
for all {2k, 21} C R:. Therefore, there is no flow over arcs not in T and T contains ways from z; to
each other terminal.

Now let z describe the arcs of an optimal (directed) tree T'. For each z; € Ry, there is a path from
z; to z¢ in T. Set y* to 1 along this path. For each {2x,21} C R, set g}f} to 1, if [vi,v;] is on the
path from z; to z as well as on the path from z; to z. Obviously (z,y,§) is feasible for Pga.
Thus, T itself is an optimal Steiner arborescence.

6.1 Comparing LPr: with other Relaxations

We now compare LPp: with the two strongest relaxations presented before, namely LP,r and
LPriFB.

Lemma 14 v(LPp2) > v(LP,7).

Proof: Let (z,y,7) be an (optimal) solution of LPg2. For all {zx,z1} C R, k <, and {v;,v;] € A

define & :=y% — g4 and gff = yt; — y¥. Obviously the constraints of LP;r are satisfied. a

Because LPpz contains the flow-balance constraints and is stronger than LP,, it is stronger than
LPs7,rp (constructed by adding (9.1) to LP.r). It follows directly that LPp2 is also stronger
than LPr,rp. The following example shows that it is even strictly stronger than the other stated
relaxations.

21 5
-

Figure 4: Example with U(LPQT) < U(LPF.H:'B) = ’U(LPF':) = ‘U(sz)

Example 4 Here is an example for v(LPyr) < v(LPg2) = v(Ppz2): Setting all z-variables to 0.5
leads to a feasible (and optimal) solution for LP;r with the value 13.5. An optimal solution for
LPg2 is T3 = T3s = Tsg = Te2 = Tea = 1, which forms a Steiner tree with value 14. Notice
that this is also an example with v(LPr) < v(LPp4+Fg). On the other hand, if vs is moved to R,
v(LPpyrB) = v(LPr) = 12 < v(LPyr) = v(LPyr4+rB) = 13.5 < v(LPp2) = v(Pp2) (The optimal
value for LPF+FB is reached by £ with 5:12 = .’313 = .’214 = .’225 = :235 = 5:45 = 1/3, 5753 = 5:52 =
&63 = Z¢4 = 2/3). Thus, LPr4rp and LP;r are incomparable.

This example has been chosen because it is especially instructive. For v(LPyr+r5) < v(LFPp2), as
for all other statements in this paper that one relaxation is strictly stronger than another, we know
also (originally) undirected instances as examples.- ‘ : ‘

Both LPpz: and LPr make it difficult for flows to two different terminals to split up and rejoin
again by increasing the z-variables on arcs with rejoined flow. One could say that rejoining has
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to be “payed”. To get an intuitive impression why LPp2 is strictly stronger than LP;r (or even
LP;1,FB), notice that in LPg2, there is one flow to each terminal and rejoining of each pair of
these flows has to be payed; while in LP,7, it is just required that for each pair of terminals there
are two flows and rejoining them has to be payed. The latter task is easier; for example it is possible
(for given z-values) that for each pair of terminals there are two flows that do not rejoin, but there
are not |R;| flows to all terminals in R; that do not rejoin pairwise; this is the case in example 4
(setting all z-variables to 0.5).

6.2 Choice of the Root

The following example shows that the value v(LPg2) is not independent of the choice of the root

vertex.
(51 7

21
Z3

S2

NG

AW

Figure 5: The value v(LPg2) changes with different roots

Example 5 The value v(LPg2) changes for different roots: Choosing z; as the root yields the value
4.5 (setting all z-variables in the direction away from 2, to 0.5 leads to an optimal solution), while
choosing zs, z3, or z4 yields 5, which is the weight of a minimum Steiner tree.

7 Conclusion

7.1 A Hierarchy of Relaxations

The following figure summarizes the relations stated in this paper. All relaxations in the same box
are equivalent. A line between two boxes means that the relaxations in the upper box are strictly
stronger than those in the lower box. Notice that the “strictly stronger” relation is transitive.

LPg2
N
LP,r LPpirp,LP, &

LPrp,LPc,LPry,LP +_

e |
LPpyy|| LPyr,LPyc || LPr,LPy,LPs
7 AN
LB; | | LBy,

Figure 6: A Hierarchy of Relaxations
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7.2 Remarks

It should be mentioned that some of the stated results on the relationship between the optimal values
of linear relaxations extend directly to polyhedral results concerning the corresponding feasible sets.
This is always the case if optimality is not used in the proofs (e.g. in lemmas 5 or 6); and hence the
feasible set of one relaxation (projected into the z-space) is mapped into the corresponding set of
some other. The situation is different in the other cases (e.g. the proofs of lemma 7 or theorem 11).
Here the assumption of optimality of z can obviously be replaced by the assumption of minimality
of z (a feasible z is minimal if there is no feasible z' # x with 2’ < z). In such cases, the presented
results extend directly to polyhedral results in the sense of inclusions between the dominants of the
corresponding polyhedra (projected into the z-space). (The dominant of @ is {z’ | ' > z € Q}.)

Note also that polyhedral results concerning the facets of the Steiner tree polyhedron (like those
in [4, 5]) fall into a different category. Our line of approach in this paper has been studying linear
relaxations of general, explicitly given (and frequently used) integer formulations; not methods for
describing facet defining inequalities. Applying such descriptions is typically possible only if the
graph has certain properties (e.g. that it contains a special substructure) and involves separation
problems which are believed to be difficult.

Acknowledgement: We would like to thank the referees for their comments.
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