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Zusammenfassung
Anfragen an Datenbanken werden mit Hilfe deklarativer Anfragesprachen gestellt.
Beispiele hierfür sind die relationale Anfragesprache SQL und XPath oder XQuery
für Anfragen an XML-Daten. Auf Grund der Deklarativität muss der Anfragesteller
nichts über die Techniken wissen, die benutzt werden, um eine Anfrage zu bear-
beiten. Stattdessen kann der Anfragebearbeiter eines Datenbanksystems hierfür be-
liebige Algorithmen auswählen.

Im relationalen Kontext wird die Anfragebearbeitung gewöhnlich mit Hilfe einer
relationalen Algebra durchgeführt. Hierfür wird eine Anfrage in eine logische Al-
gebra übersetzt. Diese Algebra besteht aus logischen Operatoren, die es erlauben,
zahlreiche Optimierungstechniken anzuwenden. Beispielsweise können Ausdrücke
in einer logischen Algebra umgeschrieben werden, um Ausdr¨ucke zu erhalten, die
effizienter auszuwerten sind.

Um Anfragen an Daten zu stellen, die im XML Format gespeichert sind, wur-
den die Anfragesprachen XPath und XQuery entwickelt. Beidesind deklarativ und
haben dadurch ebenfalls ein gros̈es Optimierungspotential. Insbesondere können
sie mit einer Algebra ausgewertet werden. Leider sind die existierenden Ansätze
(z.B. aus dem relationalen Kontext) jedoch nicht direkt anwendbar.

Das Ziel dieser Dissertation besteht aus zwei Teilen. Im ersten Teil werden
die eben genannten Defizite der Auswertung von XML-Anfragespachen beseit-
igt. Es wird ein algebraisches Rahmenwerk entwickelt, um XPath und XQuery
effizient auszuwerten. Dadurch soll es möglich werden, XPath und XQuery im
gros̈technischen Einsatz zu benutzen. Hierfür wird zuerst eine ordnungserhaltende
logische Algebra definiert und danach eineÜbersetzung von XPath in diese Alge-
bra vorgestellt. Darüber hinaus werden Regeln vorstellt,mit denen ein Algebra-
Ausdruck umgeformt werden kann, um den resultierenden algebraischen Ausdruck
schneller ausgewerten zu können.

Im zweiten Teil der Arbeit werden neue Optimierungen im relationalen Kon-
text entwickelt, mit deren Hilfe sich geschachtelte SQL-Anfragen mit Disjunktio-
nen entschachteln lassen. Hierfür werden algebraischeÄquivalenzen vorgestellt,
welche geschachtelte algebraische Ausdrücke in algebraische Ausdrücke mit ”By-
pass-Operatoren” überführen. Die entwickeltenÄquivalenzen können Anfragen
mit einem disjunktiven Verbindungsprädikat und Anfragen, bei denen das Kor-
relationsprädikat disjunktiv vorkommt, entschachteln.Damit lassen sich sowohl
Unteranfragen mit mengenwertigen Ergebnissen, als auch Anfragen mit skalaren
Ergebnissen, entschachteln.

Für alle Optimierungen wurden Experimente durchgeführt. Ihre Ergebnisse,
die in dieser Arbeit vorgestellt werden, zeigen die Wirksamkeit aller entwickelten
Ansätze zeigen.
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Abstract
Queries against databases are formulated in declarative languages. Examples are
the relational query language SQL and XPath or XQuery for querying data stored
in XML. Using a declarative query language, the querist doesnot need to know
about or decide on anything about the actual strategy a system uses to answer the
query. Instead, the system can freely choose among the algorithms it employs to
answer a query.

Predominantly, query processing in the relational contextis accomplished using
a relational algebra. To this end, the query is translated into a logical algebra.
The algebra consists of logical operators which facilitatethe application of various
optimization techniques. For example, logical algebra expressions can be rewritten
in order to yield more efficient expressions.

In order to query XML data, XPath and XQuery have been developed. Both are
declarative query languages and, hence, can benefit from powerful optimizations.
For instance, they could be evaluated using an algebraic framework. However, in
general, the existing approaches are not directly utilizable for XML query process-
ing.

This thesis has two goals. The first goal is to overcome the above-mentioned
misfits of XML query processing, making it ready for industrial-strength settings.
Specifically, we develop an algebraic framework that is designed for the efficient
evaluation of XPath and XQuery. To this end, we define an order-aware logical
algebra and a translation of XPath into this algebra. Furthermore, based on the re-
sulting algebraic expressions, we present rewrites in order to speed up the execution
of such queries.

The second goal is to investigate rewriting techniques in the relational context.
To this end, we present rewrites based on algebraic equivalences that unnest nested
SQL queries with disjunctions. Specifically, we present equivalences for unnesting
algebraic expressions with bypass operators to handle disjunctive linking and corre-
lation. Our approach can be applied to quantified table subqueries as well as scalar
subqueries.

For all our results, we present experiments that demonstrate the effectiveness of
the developed approaches.
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Chapter 1

Introduction

1.1 Motivation

Relational database systems are the prevalent choice for managing large amounts
of data. These systems offer, for example, efficient and reliable storage, access
control, multiuser synchronization, or assure data integrity. Moreover, besides these
features, the efficient processing of queries is a major factor of success for these
systems. In general, queries are formulated in a declarative language such as SQL.
Using a declarative query language, the querist does not need to know about or
decide on anything about the actual strategy a system uses toanswer the query.
Instead, the system can freely choose among the algorithms it employs to answer
a query — as long as the result is correct. Predominantly, query processing in the
relational context is accomplished using a relational algebra. To this end, the query
is translated into a logical algebra. The algebra consists of logical operators which
facilitate the application of various optimization techniques. For example, logical
algebra expressions can be rewritten in order to yield more efficient expressions.
Such rewrites can be formally proven for their validity. In addition, implementing
the logical algebra in an iterator-based, pipelined query execution engine scales well
to large data volumes [49].

XML (eXtensible Markup Language) is a standardized format [20] to store
semi-structured documents. Thanks to its flexibility and its ease of use it is nowa-
days widely used in a vast number of application areas. It hasemerged as the pre-
dominant mechanism for representing and exchanging data. For example, it is used
in document-centric applications for modeling and exchanging data in the financial
(FIXML), chemical (CML), or biological (BIOML) sector. Moreover, web stan-
dards such as Web Services use XML for communicating with clients or among
each other. Because of its widespread use and the large amounts of data that are
represented in XML, the necessity arises for efficiently managing and storing XML
data. This need led the major commercial database system vendors (i.e. [8, 77, 92])
as well as many open source projects (e.g. eXist, MonetDB, MySQL) to integrate

1
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XML support in their systems.
In order to query XML data, XPath [25] and XQuery [38] have been developed.

Both are declarative query languages and, hence, can benefitfrom powerful op-
timizations. For instance, they could be evaluated using analgebraic framework.
However, in general, the existing approaches are not directly utilizable for XML
query processing. There are two main reasons for this: (1) The mismatch between
the relational model and the tree-based data model of XML and(2) the order indif-
ference of relations in contrast to XML, which takes the order of nodes within an
XML document into account. The goal of this thesis is twofold.

The first goal is to overcome the above-mentioned misfits of XML query pro-
cessing, making it ready for industrial-strength settings. Specifically, we develop an
algebraic framework that is designed for the evaluation of XPath and XQuery. With
this framework, we want to contribute to the development of efficient evaluation
techniques for these query languages. To this end, we define an order-aware logical
algebra and a translation of XPath into this algebra. Based on the resulting algebraic
expressions, we present rewrites, for example, to unnest nested XPath and XQuery
expressions. We validate each of our techniques with an experimental evaluation,
comparing our approaches against several existing systems.

The second goal is to investigate rewriting techniques in the relational context.
To this end, we present rewrites based on algebraic equivalences that unnest nested
SQL queries with disjunctions. Nested queries with disjunctions seem to become
more and more relevant in practice (cf. [105]). To the best ofour knowledge, there
does not exist a solution to unnest these kinds of subqueriesso far. To proof the
effectiveness of our rewrites, we present an extensive performance study that com-
pares our approach against the canonical approach (which seems to be common in
practice) and three major commercial database systems.

The detailed contributions together with the outline of this thesis are described
in the following subsection.

1.2 Contributions

1.2.1 Algebraic XPath Evaluation

In Chapter 2 of this thesis, we present a complete algebraic approach for evaluating
XPath 1.01. We present a logical algebra that is capable of evaluating all of XPath
and develop a complete translation function into this algebra. Although this trans-
lation results in a rather naı̈ve way of evaluating XPath, wedevelop a technique
to remedy the exponential runtime behavior (of the naı̈ve evaluation) that has been
identified by Gottlob et al. [47]. At the end, we complement the logical algebra
with a physical algebra and describe the implementation of these operators in the

1In the remainder of this thesis, we always use XPath when talking about XPath 1.0 [25].
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runtime system of the native XML database management systemNatix [40]. Us-
ing the Natix physical algebra, we present an experimental study to validate our
approach. The logical algebra, the translation of XPath into this algebra, as well
as the presentation and evaluation of the physical algebra can also be found in the
following two publications.

[11] Matthias Brantner. Algebraische Auswertung von XPath in Natix. Masters
thesis, University of Mannheim, Mannheim, Germany, March 2004. (in Ger-
man).

[12] Matthias Brantner, Sven Helmer, Carl-Christian Kanne, andGuido Moerkotte.
Full-fledged algebraic XPath processing in Natix. In ICDE, pages 705-716,
2005.

1.2.2 Unnesting XPath Expressions

Based on our full-fledged algebraic XPath approach, we develop optimization tech-
niques that target further shortcomings of the naı̈ve approach in Chapter 3. There-
fore, we classify nested XPath expressions, and, for each class, we present opti-
mizations in the form of algebraic equivalences. They have expressions resulting
from our naı̈ve translation (see previous subsection) on the left-hand side and an op-
timized counterpart on the right-hand side. Primarily, theright-hand side employs
unnesting strategies that are already known from the context of SQL (e.g. [70]),
OQL (e.g. [29]), and lately XQuery (e.g. [82]). Parts of the presented techniques
have already been presented in the following poster paper.

[17] Matthias Brantner, Carl-Christian Kanne, Guido Moerkotte, and Sven Helmer.
Algebraic optimization of nested XPath expressions. In ICDE, page 128.
IEEE Computer Society,

1.2.3 Disjunctive Unnesting for XPath

The techniques mentioned in the previous subsection are a first step to unnest nested
XPath expressions. However, in a second step, we take unnesting techniques a
step forward. Specifically, we present unnesting techniques that are not limited to
nested queries occurring in conjunctions but are also capable to unnest disjunctive
queries (see Chapter 4). So far, we are not aware of any technique to unnest nested
queries in the presence of disjunctions. Our techniques cannot only be exploited
for unnesting XPath but can also be applied to nested XQuery FLWORs that occur
disjunctively. The results presented in Chapter 4 have already been published in a
workshop paper and a technical report.

[13] Matthias Brantner, Sven Helmer, Carl-Christian Kanne, andGuido Moerkotte.
Kappa-join: Efficient execution of existential quantification in XML query
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languages. In XSym, volume 4156 of Lecture Notes in ComputerScience,
pages 1-15. Springer, 2006.

[14] Matthias Brantner, Sven Helmer, Carl-Christian Kanne, andGuido Moerkotte.
Kappa-join: Efficient execution of existential quantification in XML query
languages. Technical Report, University of Mannheim, 2006.

1.2.4 Disjunctive Unnesting for SQL

Encouraged by the results we achieved by unnesting disjunctive nested XPath and
XQuery queries, we diverge from optimizing the execution ofXPath and XQuery.
In Chapter 5, we present algebraic unnesting techniques forSQL queries that oc-
cur disjunctively. We found this extremely useful because SQL queries containing
nested queries with disjunctions seem to become more and more relevant in practice
(cf. [36, 105]). We have already published the unnesting of scalar nested queries in
a conference paper [19] and the unnesting of both scalar and table subqueries in a
technical report [18].

[19] Matthias Brantner, Norman May, and Guido Moerkotte. Unnesting scalar
SQL queries in the presence of disjunction. In ICDE, pages 46–55, 2007.

[18] Matthias Brantner, Norman May, and Guido Moerkotte. Unnesting SQL que-
ries in the presence of disjunction. Technical report, University of Mannheim,
March 2006.

1.2.5 Preparing XQuery for Plan Generation

After our excursion into the relational world, we are back with XML in the last
Chapter 6. In this chapter, we investigate rewrites that merge XQuery FLWOR
blocks. These rewrites are useful to support plan generation. Plan generators gener-
ate optimal plans only for a single query block. Hence, bigger query blocks usually
imply a bigger search space for a plan generator and better query execution plans are
possible. The rewrite toolkit developed has already been published in a workshop
paper and, an extended version, in the according technical report.

[16] Matthias Brantner, Carl-Christian Kanne, and Guido Moerkotte. Let a Single
FLWOR Bloom (to improve XQuery plan generation). In XSym, Lecture
Notes in Computer Science. Springer, 2007.

[15] Matthias Brantner, Carl-Christian Kanne, and Guido Moerkotte. Let a Single
FLWOR Bloom. Technical report, University of Mannheim, 2007.

In the last chapter (Chapter 7), we conclude this thesis and give an outlook onto
future work.



Chapter 2

Algebraic XPath Processing

The efficient processing of XML data hinges on fast evaluation techniques for
XPath expressions, because XPath is an essential part of widely used XML pro-
cessing languages like XSLT and XQuery. We present the first complete translation
of XPath into an algebra.

Such a translation of XPath expressions into algebraic expressions (1) renders
possible algebraic optimization approaches as found in most modern query optimiz-
ers, and (2) facilitates the application of iterator-based, pipelined query execution
engines that scale well to large data volumes and have proventheir performance
e.g. in relational systems. For the same reasons, algebra-based XQuery evaluation
is attractive, requiring algebra-based XPath evaluation as an essential ingredient.

The main contributions of this chapter are:

• We introduce an algebra capable of expressinganyXPath query

• We show exactlyhow all XPath constructs can be translated into algebraic
expressions

These contributions are not intended to be purely theoretical exercises. To show
their usefulness in implementing XPath evaluators, we alsodiscuss our compiler
and algebra implementation, and give some performance results.

In our approach we translate XPath 1.0 expressions1 into a logical algebra work-
ing onordered tuple sequences. The main task here is to avoid unnecessary work
by eliminating duplicatesin intermediate results or memoizing already computed
results (such as location steps or predicates) if duplicateelimination is not imme-
diately possible due to the semantics of XPath predicates. This is very important,
as the presence of duplicates may lead to an exponential run time [48, 47, 46].
Another important point we cover is the efficient evaluationof predicates in XPath.
We pay particular attention toposition-based predicatesusingposition()or last().

1We will only write XPath in the following, always meaning XPath 1.0 except when explicitly
stated otherwise.

5
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For query execution, we use the physical algebra of our native XML database
system Natix [40]. It implements the operators of the logical algebra in an iterator-
based fashion [49]. We do not need to construct a complete main memory represen-
tation of an XML document in order to evaluate XPath expressions. Our approach
directly accesses the physical storage layout of the XML documents on disk. Fi-
nally, our XPath evaluator is implemented in a modular way, allowing the integra-
tion of several different optimization techniques.

The remainder of this chapter is organized as follows: In Sec. 2.1, we summa-
rize the XPath semantics and introduce our logical algebra.Sec. 2.2 describes the
canonical translation of XPath expressions into our algebra, and Sec. 2.3 shows how
to avoid an exponential run-time of the queries. Implementation details concerning
our physical algebra are given in Sec. 2.4. In Sec. 2.5, preliminary performance
results show that even without further optimization, our approach compares favor-
ably to main-memory based evaluators, and scales better to large document sizes.
Sec. 2.7 summarizes the contributions of this chapter.

2.1 Translation Input and Output

This section explains domain and range of our translation function: We give a brief
summary of XPath expression semantics and introduce our logical algebra.

2.1.1 XPath Semantics

The primary syntactic construct in XPath is an expression. When evaluating an
expression, the result has one of the following four basic types: a node-set (an un-
ordered collection of nodes without duplicates), a booleanvalue (’true’ or ’false’), a
number (a floating-point number), or a string (a sequence of characters). The eval-
uation of an expression considers a context, which consistsof the following: a node
(also called the context node), a pair of non-negative integers (the context position
and context size), a set of variable bindings (a map from variable names to values),
a function library, and a set of namespace declarations.

Please note that in XPath 1.0, the node-sets themselves are unordered. How-
ever, there exists the notion of document order, totally ordering all nodes of a doc-
ument. Document order is relevant in the evaluation of location steps, but not in
the representation of node-sets. Hence, we do not always return result sequences in
document order. For XPath 2.0 (and integration into XQuery), if ordered results are
required, additional sorting is sometimes [59] necessary.

2.1.2 Logical Algebra

Before going into the details of the translation, we have to define the target algebra
and some associated notions.
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Universe

The universe of our algebra is the union of the domains of the atomic XPath types
(string, number, boolean) and the set of ordered sequences of tuples2.

A tuple is a mapping from a set of attributes to values. We allow nested tuples,
i.e. the value of an attribute may be a sequence of tuples. In addition to sequences,
attribute values may be document nodes or values of the atomic XPath types.

Conventions

Before defining the main algebra operators below, we introduce the notations used
in their definition and in the description of the translationprocess:

The set of attributes defined for a tuplet is written asA(t). All the tuplest ∈ e
of a sequence-valued expressione have the same attributesA(t), which are also
denoted asA(e). The set of free variables of an expressione is defined asF(e).

Single tuples are constructed by using the standard[·] brackets. The concatena-
tion of tuples and functions is denoted by◦.

The projection of a tuple on a set of attributesA is denoted by|A. We also define
t|A := t|A(t)\A. For brevity reasons, we identify a tuple containing a single attribute
with the value of that attribute.

For an expressione possibly containing free variables, and a tuplet, we denote
by e(t) the result of evaluatinge, where bindings of free variables are taken from
attribute bindings provided byt. Of course this requiresF(e) ⊆ A(t). In general,
accesses to identifiers are resolved by lookup in the tuple; if no mapping can be
found, the tuples of the surrounding algebra expressions are checked successively.
Ultimately, the free variables of the complete expressionsmust be bound by a top-
level map supplied as execution context for the expressions. This top-level map also
has to provide bindings for XPath variables and the context node for the execution.

For sequencese, we useα(e) to denote the first element of a sequence. We
identify single element sequences and elements. The function τ retrieves the tail
of a sequence, and⊕ concatenates two sequences. We denote the empty sequence
by ǫ. As a first application, we construct from a sequence of non-tuple valuese a
sequence of tuples denoted bye[a]. It is empty ife is empty. Otherwise,e[a] = [a :
α(e)]⊕ τ(e)[a].

By id we denote the identity function.

Operators

The main operators of our algebra are sequence-valued analogs of traditional re-
lational algebra operators. An overview of the formal definitions of the sequence-
valued operators is given in Fig. 2.1. More detailed comments about the operators

2We use ordered sequences instead of node-sets since predicate evaluation (withposition() and
last()) and embedding of XPath into other languages is sensitive tothe order of the returned nodes.
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Selection selects qualifying tuples according to predicate p:

σ σp(e) :=

{
α(e) ⊕ σp(τ(e)) if p(α(e))
σp(τ(e)) else

Projection projects on attributes inA (duplicate elimination version calledΠD
A ,

duplicate elimination without projection denoted byΠD,
attribute renaming version denoted byΠa′:a):

Π ΠA(e) := α(e)|A ⊕ΠA(τ(e))
Πa′:a(e) := α(e)|a ◦ [a′ : a]⊕ΠA(τ(e))

Map extends each tupleti in e1 with attributea with value ofe2(ti):
χ χa:e2(e1) := α(e1)|Attr(e1)\{a} ◦ [a : e2(α(e1))]⊕ χa:e2(τ(e1))

Product connects single tuplet1 to each tuple ine2:A t1Ae2 := (t1 ◦ α(e2))⊕ (t1Aτ(e2))

Cross product connects all tuples ine1 to all in e2:A e1Ae2 := (α(e1)Ae2)⊕ (τ(e1)Ae2)

D-join joins each tupleti in e1 to all tuples ine2, which depend onti:
<>,C e1 <e2 >:= α(e1)Ae2(α(e1))⊕ τ(e1) <e2 >

Semi-join p checks for tuple existence ine2 to decide on including tuple ine1:G e1Gpe2 :=

{
α(e1)⊕ (τ(e1)Gpe2) if ∃x ∈ e2 p(α(e1) ◦ x)
τ(e1)Gpe2 else

Unnesting unnests a sequence-valued nested attribute:
µ µg(e) := (α(e)|{g}Aα(e).g) ⊕ µg(τ(e))

Unnest-Map abbreviated notation for a map operator followed by an
unnest operator (µ):

Υ Υa:e2(e1) := µg(χg:e2[a](e1))

Binary Grouping Adds toe1 an attribute based on aggregation ofe2:T e1Tg;A1θA2;f e2 := α(e1) ◦ [g : G(α(e1))]⊕ (τ(e1)Tg;A1θA2;f e2)
G(x) := f(σx|A1

θA2
(e2))

Aggregation Aggregates input sequence into a singleton sequence with a
single attributea:A Aa;f (e) := {[a : f(e)]}

Sorting Sorts input sequence based on attributea:

Sort Sorta(e) :=
Sorta(σa<α(e).a(τ(e))) ⊕ α(e)⊕
Sorta(σa≥α(e).a(τ(e)))

Singleton Scan Returns singleton sequence consisting of the empty tuple:V V := {[ ]}

Figure 2.1: Sequence-valued operators of the target algebra

and their usage is embedded in the description of our translation process in the
remainder of the chapter.

Except if explicitly stated otherwise, unary operators produceǫ if their input isǫ,
and binary operators produceǫ if their left input isǫ. The d-join has two notations,
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one to be used in visualizations of query trees (C) which designates the side that
provides tuples as input to the other side using a filled triangle. The second repre-
sentation is used for textual expressions where the dependent side is parenthesized
(<>).

In addition, our target algebra provides counterparts for functions (e.g. contains)
and operators (e.g.+, ∗, /, =) defined on the XPath basic types, including explicit
and implicit conversions. For those functions that have node-sets as inputs (e.g.
count), their algebraic counterpart has sequence-valued input. Note that for some
XPath functions and operators, special translation rules are given in Sec. 2.2 (in
particular node-set comparison, see Sec. 2.2.6). These functions or operators have
no direct equivalent in our algebra.

2.2 Translation into Algebra

In a first translation step, we decide for each expression a mapping onto algebraic
operators. In a second step (see Sec. 2.3), we enhance the translation to avoid ex-
ponential complexity of the evaluation process. The description of our translation
process follows loosely the XPath grammar as found in the W3Crecommenda-
tion [25].

When translating XPath into our algebra, we denote the translation of an ex-
pressione by T [e]. The result of our translation function is an algebraic expression
which may or may not be sequence-valued.

2.2.1 Location Paths

The most important construct in XPath is a location path. Location paths are applied
to context nodes and produce as a result a node-set (Sec. 2.1.1).

We have to distinguish between absolute and relative location paths. Anabso-
lute pathstarts at the root element of an XML document. Arelative pathcan start
at an arbitrary context node. After that, both location paths are handled in the same
manner.

The starting context node for a location path is provided by the variablecn.
Note that for top-level location paths,cn is free and must be bound by the execution
context; this is the mechanism for the execution engine to provide the initial context
node.

Canonical Translation

A path expressionπ = π1/s1/ . . . /sn−1/sn consists of a sequence of location steps
(denoted bysi).

For the moment, we assume thatπ starts with a partial expressionπ1, consisting
of the first location step ofπ, possibly prefixed by an initial/. We take a closer look
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ΠDC
T (π1) C
T (s1) C
T (s2) . . .C
T (sn−1) T (sn)

Figure 2.2: Canonical translation

at π1 when distinguishing absolute from relative paths below. The individual steps
are evaluated sequentially, i.e. the output of a location stepsi serves as the context
for the following stepsi+1.

We translate a path expression into a chain of dependency joins (d-joins). In a
d-join, the free variables in the expression on the right-hand side are bound with
values supplied from a tuple generated by the expression on the left-hand side. We
use this mechanism of a d-join to hand over the context from one location step to
the next, one node at a time. The independent (left) subexpression of the d-join
enumerates the context nodes from the previous step. The dependent subexpression
of the d-join has the current step’s context node as a free variable. Hence, each
evaluation of the dependent subexpression corresponds to one result context of the
location step.

We call a translation into d-joins thecanonical translationof π:

T [π] := ΠD(T [π1] <T [s1]> . . . <T [sn]>)

We always want thecn attribute in a tuple sequence to contain the node attribute
that was last added to the tuple. This makes it easy to treat all sequence-valued
algebraic expressions uniformly.

We also have to add a projection operator that eliminates duplicates, as by def-
inition the result of an XPath expression may not contain anyduplicates (see also
2.1.1). The duplicate elimination only operates on the relevant context node at-
tribute cn of the tuple, without projecting away the remaining attributes. Fig. 2.2
shows a graphical representation of the translated expression.

Absolute and Relative Paths

The initial context of a location path depends on whether it is an absolute or relative
path, i.e. whetherπ1 is prefixed by a slash or not. For absolute location paths, a map
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operator is used supplying the input context nodecn for the first location steps1:

T [π] := ΠD(χcn:root(cn)(V) <T [s1]> . . . <T [sn]>)

In the following, we abbreviate the algebraic expressionχcn′:cn(V) by Vcn′:cn. It
takes as input the free variablecn and creates a sequence containing a single tuple
with a single attributecn′ containing the value ofcn. This shortcut is calledcontext
scan.

T [π] := ΠD(Vcn:root(cn) <T [s1]> . . . <T [sn]>)

For relative location paths, the map operator can be omittedbecausecn is al-
ready bound to the context in whichπ has to be evaluated.

Unions

The union of path expressions (π1|π2| . . . |πn) is translated into a series of concate-
nation operators followed by a duplicate elimination:

T [π1|π2| . . . |πn] := ΠD(T [π1]⊕ T [π2]⊕ . . .⊕ T [πn])

Note that the translation ofπi already bindscn to the produced context node.

2.2.2 Location Steps

A location step consists of three parts: an axis (which specifies the relationship
between the result set of nodes and the context node), a node test (which specifies
the node type and name of the selected nodes), and an arbitrary number of predicates
(which use additional expressions to further refine the set of selected nodes). We
will look at predicates in more detail in the following section, here we address axes
and node tests. So for the moment, a stepsi is defined by an axisai and a node test
ti, i.e. is of the formai :: ti

We translate the evaluation of a location step with the help of an auxiliary trans-
lation functionΨ:

T [ai :: ti] := Ψ[ai :: ti] ◦ Vcn′:cn,

where the actual translation of the location step uses an unnest map operator as
follows:

Ψ[ai :: ti] := Πcn′ ◦Υcn:cn′/ai::ti

The unnest map operator takescn′ as input and creates bindings for the new
context attributecn. It is successively bound to the results produced by evaluating
axis a and node testt with contextcn′. At the end, the old context nodecn′ is
discarded usingΠcn′.
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We explain in Sec. 2.4.2 how the evaluation of the subscript is performed. Here,
it is sufficient to note that the result sequence is in the proper order for the specified
axis.

For two neighboring location steps, e.g. in the absolute location path/a1 ::
t1/a2 :: t2, it can be seen quite nicely that the result of the location stepa1 :: t1 is
used during the evaluation of location stepa2 :: t2:

ΠD((Vcn:root(cn)) <Πcn′ ◦Υcn:cn′/a1::t1(Vcn′:cn)><Πcn′ ◦Υcn:cn′/a2::t2(Vcn′:cn)>)

Example As an example, consider the XPath expression//student/name,
which will be used (and extended) to illustrate problems andsolutions throughout
this thesis. In XPath,//student is an abbreviation for the two consecutive loca-
tion steps/descendant::node()/child::student. Translating the full
expression yields:

T [//student/name] = ΠD((Vcn:root(cn))

<Πcn′ ◦Υcn:cn′/descendant::node()(Vcn′:cn)>

<Πcn′ ◦Υcn:cn′/child::student(Vcn′:cn)>

<Πcn′ ◦Υcn:cn′/child::name(Vcn′:cn)>)

2.2.3 Predicates

A location stepsi may contain an arbitrary numberh of predicatespk and has
the general formai :: ti[p1] . . . [ph]. The pattern for translating a location step
ai :: ti[p1] . . . [ph] with predicates is

Φ[ph] ◦ · · · ◦ Φ[p1] ◦ T [ai :: ti],

whereΦ is an auxiliary translation function for predicates, returning a filtering
functor which operates on algebraic expressions. We now elaborate onΦ.

An individual predicatepk is represented as conjunction of several clauseslkj,
i.e. pk =

∧mk

j=1 lkj. Depending on whether or not the conjuncts contain function
calls to the position-based functionsposition() and last(), we have to translate
them differently.

Simple Clauses & Nested Paths

Translating a predicatepk = lk1∧· · ·∧ lkmk
that does not include positional clauses

simply results in a translation into selection operators:

Φ[lk1 ∧ · · · ∧ lkmk
] := σT [lkmk

] ◦ · · · ◦ σT [lk1]
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After the semantic analysis, all clauses are broken down into function calls:lkj =
f1 ◦ · · · ◦ fr. For example,or, not, and comparisons are all evaluated by function
calls. All implicit conversions have also been added as function calls. We cover the
translation of these calls in Sec. 2.2.6.

If a nested path is not used inside an aggregate function, thetranslation will add
a conversion to boolean in the form of our internalexists() aggregate function (see
also Sec. 2.2.6).

Example To illustrate the translation of an XPath expression containing a nested
path, let us extend our example to selecting only students that took at least one
exam://stundent[exam]/name.

T [//student[exam]/name] = ΠD((Vcn:root(cn))

<Πcn′ ◦Υcn:cn′/descendant::node()(Vcn′:cn)>

<σAx,exists()(V<Π
cn′◦Υcn:cn′/child::exam(Vcn′:cn)>)

◦

Πcn′ ◦Υcn:cn′/child::student(Vcn′:cn)>

<Πcn′ ◦Υcn:cn′/child::name(Vcn′:cn)>)

In this example, the value of the attributex is true if there exists at least one
exam for a given student andfalse otherwise. The selection operator checks this
attribute, i.e. it comparesx with true.

Clauses withposition()

If at least one of the clauses inpk containsposition() (but none of them contains
last()), we have to count the number of context nodes that are produced. We do
this with the help of a map operator that labels the tuples of the resulting nodes with
their appropriate position within the current context (introducing a new attribute
cp):

Φ[lk1 ∧ · · · ∧ lkmk
] := σT [lkmk

] ◦ · · · ◦ σT [lk1] ◦ χcp:counter(pk)++

Calls toposition() are then translated into attribute accesses tocp:

T [position()] := cp

Example For selecting only the first student, our algebra expressionis as follows:
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T [//student[1]/name] = ΠD((Vcn:root(cn))

<Πcn′ ◦Υcn:cn′/descendant::node()(Vcn′:cn)>

<σcp=1 ◦ χcp:counter(p1)++ ◦

Πcn′ ◦Υcn:cn′/child::student(Vcn′:cn)>

<Πcn′ ◦Υcn:cn′/child::name(Vcn′:cn)>)

Clauses withlast()

The most difficult case are clauses that containlast(). Here we have to compute
the context size to be able to evaluate the clause. We do this with the help of
our newTmpcs operator that first materializes the context and then adds a context
size attributecs to all the tuples belonging to the current context. In the canonical
translation, the context is exactly the result of the dependent subexpression of the
current location step. Hence, on a logical levelTmpcs is just shorthand for3

Tmpcs(e) := Acs;count(e)Ae

This leads to the translation of a predicate relying on full positional information as

Φ[lk1 ∧ · · · ∧ lkmk
] := σT [lkmk

] ◦ · · · ◦ σT [lk1] ◦ Tmpcs ◦ χcp:counter(pk)++

with
T [last()] := cs

2.2.4 Filter Expressions

XPath allows to filter any expression of type node-set using predicates. As with
location path predicates, we use a different translation incase there are position-
based clauses.

Without Position-Based Predicates

If the predicatespi in the filter expressione[p1] . . . [ph] do not containposition() or
last(), we have as translation:

T [e[p1] . . . [ph]] := Φ[ph] ◦ · · · ◦ Φ[p1] ◦ T [e]

Note that the sequence-valuede already hascn bound to the correct node, so we do
not need to add a map operator.

3We explain in Sec. 2.4.2 how to implementTmpcs efficiently.
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With Position-Based Predicates

Position-based predicates in filter expressions are evaluated with respect to the child
axis, i.e. in document order. In location step predicates, the input sequence (the
context) always results from a single location step and, hence, is properly ordered.
In filter expressions, the input sequence may contain an arbitrary node sequence. To
make the counting mechanisms from Sec. 2.2.3 work for filter expressions, we must
guarantee that the input sequence is in document order. Hence, we introduce a sort
operator which establishes document order before evaluating the predicates4. So, if
there is any predicatepk in the filter expressione[p1] . . . [ph] containingposition()
or last(), its translation is

T [e[p1] . . . [ph]] := Φ[ph] ◦ · · · ◦ Φ[p1] ◦ Sortcn(T [e])

2.2.5 Path Expressions

Path Expressions are a more general form of relative location paths. They comprise
a node-set expressione and a relative location pathπ. All the nodes in the node-set
are used as context nodes for the location path, and a union ofthe results is returned.

Our translation of path expressions uses a d-join to feed allnodes frome as
context nodes to the relative location path:

T [e/π] := ΠD(T [e] <T [π]>)

The duplicate elimination operator is required since the evaluation ofπ for several
context nodes may introduce duplicates, just as in locationpaths.

Note that the tuple sequence frome has an attributecn containing the nodes it
provides.

2.2.6 Function Calls

We distinguish between simple function calls, node-set-based function calls and
node-set-valued function calls. Simple function calls arecharacterized by the fact
that they neither get node-sets as parameters nor return node-sets, while node-set-
based function calls have node-sets as parameters and return simple values. Node-
set-valued function calls may return node-sets.

Simple Functions

Examples for simple functions in XPath are functions to dealwith strings, numbers,
or Boolean values (e.g.string-length, floor, ceiling, true, false,

4The input sequence may already be in document order, for example because it resulted from
a location path that returned a sorted result[59]. We defer the determination of interesting orders
in XPath and the resulting optimization of sort operations,as we are primarily concerned with a
complete translation, but not an optimized one yet.
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etc.). They are mostly used as subscripts of algebraic operators. Translating simple
functions is quite straightforward (f is translated into its algebra counterpart):

T [f(e1, . . . , en)] := f(T [e1], . . . , T [en])

Node-Set-Based Functions

We classify the node-set-based function calls further intoaggregate functions and
comparison operators between two node-sets. Iff is an aggregate function (sum or
count in XPath), we translate it into the corresponding aggregate operatorAf of our
algebra.Af aggregates the tuples of the input node-set applying the functionf and
returns a tuple containing the answer. Lete be a node-set value, then

T [f(e)] := Aa;f (T [e]) (2.1)

Our aggregation operatorA formally has sequence-valued inputand output.
However, here we use it according to our conventions (Sec. 2.1.2) as an atomic
value. We explain in Sec. 2.4.2 how this conversion is actually implemented.

For the comparison operators on node-sets, it is important to know that they have
an existential semantics. That is, if we can find two elements(one in each node-
set) that satisfy the condition, the comparison operator returns true. To implement
this, we have the additional internal aggregation functions exists(), max() and
min(). exists() is boolean-valued and returns false for empty sequences andtrue
otherwise.maxa() andmina() return the maximum or minimum of an attributea
in a tuple sequence, where for node attributes, each node content is converted to a
number by means of thenumber() function.

For (in)equality, we have

T [e1θe2] := Ax;exists()(T [e1]Gcnθcn′Πcn′:cn(T [e2])) (2.2)

with θ ∈ {=, 6=}.
For θ ∈ {<,≤} (recall that the nodes produced by sequence-valuede2 are as-

signed to attributecn):

T [e1θe2] := Ax;exists()(σcnθAmaxcn(T [e2])
T [e1]) (2.3)

Finally, for θ ∈ {>,≥}:

T [e1θe2] := Ax;exists()(σcnθAmincn(T [e2])
T [e1]) (2.4)
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Example For selecting good students, i.e. those with an exam that wasgraded
better than ’B’, let us translate the following XPath queryp:
//student[examination/@id = //exam[grade < ’B’]/@id].

T [p] = ΠD((Vcn:root(cn))

<Πcn′ ◦Υcn:cn′/descendant::node()(Vcn′:cn)>

<σAx;exists()(T [examination/@id]Gcn=cn′Πcn′:cn(T [//exam[...]/@id]))
◦

Πcn′ ◦Υcn:cn′/child::student(Vcn′:cn)>

To anticipate, these translation equations are labeled because they are on target
for our new optimizations described in Chapters 3 and 4.

Node-Set-Valued Functions

The only node-set-valued function in XPath 1.0 isid(). We translateid() by first
converting the input into a sequence of IDs. Then, the individual IDs are derefer-
enced using a dereference function which converts a single ID string into a node5.
The result is a sequence-valued expression with the result nodes assigned tocn.

The input conversion depends on whether the input is of type node set or not.
For a node set inpute, we just convert the nodes to strings:

T [id(e)] := χcn:deref(string(c′))(Πc′:cn(T [e]))

In the case of ane which is not of type node-set, we converte to a string and use
unnest map with a tokenizing function to return the sequenceof embedded string
tokens:

T [id(e)] := χcn:deref(t)(Υt:tokenize(string(T [e]))(V))

2.2.7 Constants and Variables

Constants and variables are very easy to translate into our algebra. For the transla-
tion of a constantc we haveT [c] = c. This means that, the expression is left as is
and no algebraic operator is necessary to process it. The same applies to XPath $
variables, as they are bound to values before evaluating expressions.

2.3 Improved Translation

After presenting the canonical translation into the algebra, we go into some details
on how to improve the translation step. In particular, Gottlob et al. have shown how

5We do not elaborate on the implementation ofderef() here, as it depends too much on the
details of the storage environment.
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XPath expressions can be evaluated in polynomial time in theworst case [46, 47].
In this section, we reveal how this can be done in an algebra-based approach.

2.3.1 Pushing Duplicate Elimination

We divide all location steps into two different groups: one that potentially produces
duplicates (ppd) and one that does not (¬ppd). Axes that belong to ppd are:

• following,

• following-sibling,

• preceding,

• preceding-sibling,

• parent,

• ancestor,

• ancestor-or-self,

• descendant, and

• descendant-or-self.

Instead of such a simple axis-wise treatment, we could incorporate the work by
Hidders et al. for determining if a sequence of location steps will produce duplicates
or not [59]. We skip this because it does not affect asymptotical complexity and is
straightforward to implement.

The canonical translation eliminates duplicates only in a final step to preserve
the duplicate-free semantics of XPath location paths. However, duplicates may be
generated after every single step. The single final duplicate elimination means that
the effect of producing duplicates in several intermediatesteps will multiply, as we
generate duplicates of duplicates.

Hence, we introduce additional duplicate eliminations after ppd axes. This re-
duces the input size of the following steps. Also, the duplicate elimination works
on smaller data sets. For the translation of a location pathπ0/a :: t with a steps
comprised of axisa and node testt, this means:

T [π0/a :: t] :=

{
ΠD(T [π0] <T [a :: t]>) if ppd(s)
T [π0] <T [a :: t]> else.
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cn′:cn

Υcn:cn′/a2::t2

Πcn′:cn

Υcn:cn′/a1::t1Vcn′:cn

Figure 2.3: Stacked translation for/a1 :: t1/a2 :: t2/a3 :: t3 with ppd(a2 :: t2)

2.3.2 Location Paths

When improving on the translation of location paths, we haveto distinguish be-
tween outer and inner paths. Aninner pathappears within a predicate, anouter
pathdoes not. We discern between these two cases because we can translate outer
paths in a more efficient way, deviating from the canonical d-join translation. For
inner location paths, we run the risk of having to evaluate expressions multiple times
for the same context node. We avoid this by memoizing alreadyevaluated paths.

Outer Paths

For outer location paths, we concatenate the evaluation of the steps, avoiding the
overhead of a d-join operator. We replace the singleton scanin the dependent branch
with the left subexpression of the d-join. For an outer pathπ/s, we get the following
stacked translation:

T [π/a :: t] :=

{
ΠD

cn′:cn(Ψ[a :: t](T [π])) if ppd(a)
Πcn′:cn(Ψ[a :: t](T [π])) else,

whereppd(a) means that location steps with axisa potentially produces dupli-
cates. The context nodescn are now directly handed over from step to step instead
of using a d-join to explicitly bind them. Fig. 2.3 shows an example for the trans-
lation of path/a1 :: t1/a2 :: t2/a3 :: t3, using the stacked translation ifa2 :: t2 is
potentially producing duplicates.

Inner Paths

When looking at inner location paths, we have to distinguishbetween relative and
absolute inner paths. Arelative inner pathgets its context from the corresponding
step of the outer path, anabsolute inner pathsets its own context. The translation
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of the actual inner path then takes place during the translation of the predicate (see
also Section 2.2.3).

Absolute inner paths can be translated like outer paths, while we have to avoid
unnecessary work in relative inner paths as follows.

In the XPath expression

π[count(./descendant:: c/following :: ∗) = 1000],

when evaluating the predicate for the context nodes produced by π, we may reach
the samec elements over and over again, computing and counting the nodes pro-
duced by thefollowing axis multiple times.

For the location pathπ0[π1/s], the inner path is translated asT [π1] < T [s] >.
We want to avoid computing the right-hand side of the d-join when getting handed
a context node from the left-hand side for whichs was already evaluated before.

In order to avoid this, we apply a memoization strategy usinga MemoX opera-
tor (M). In contrast to the memoizing function call operator from [57], the MemoX
operator is asequence-valuedunary operator typically used in the dependent subex-
pression of a d-join. It is subscripted with a set of variables which are free in its
producer expression.

Every time the MemoX operator is evaluated, it checks if the variables have
already been bound with these specific values in a prior evaluation. If not, the
MemoX operator evaluates the subexpression and stores the result in an associative
data structure with the given variable values as key. Finally, it also returns the result
to its consumer. If the same variable values have already been used in an earlier
evaluation of the MemoX operator, it just looks up the previously computed result
and returns it without engaging the producer operator.

In the case of the translation of inner paths, the producer operator is the next
location step, and the free variable is the current context node from the previous
location step. So the translation of the inner paths/π1 actually looks like:

T [s/π1] :=







T [s] <T [π1]> if¬ppd(s) and¬ppd(π1)
ΠD(T [s] <Mcn(T [π1])>) if ppd(s) and¬ppd(π1)
ΠD(T [s] <T [π1]>) if ¬ppd(s) andppd(π1)
ΠD(T [s] <Mcn(T [π1])>) if ppd(s) andppd(π1)
T [s] if π1 is empty

2.3.3 Predicate Evaluation

Predicates and Stacked Translation

In the canonical translation, all tuples produced on the right hand side of the d-join
for a given tuple on the left hand side belong to the same context. So all contexts
are clearly separated from each other by separate evaluations of dependent d-join
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subexpressions. This makes it easy to determine context position and context size
by counting the tuples in one complete evaluation of a dependent subexpression.

In the stacked translation, all tuples belonging to a location step are part of the
same tuple stream flowing through the pipeline of operators.The different contexts
are separated by the input context nodes; a new context begins whenever the input
context nodecn changes. This requires a slightly different handling of predicate
evaluation.

Whenever acn value different from the last processed tuple is detected, the map
performing the position count must reset its counter.

We also have to be careful when evaluating predicates of outer location paths
containinglast. As we have already mentioned in Section 2.3.2, outer location
paths are evaluated in a stack-based fashion. The Tmpcs operator now has to be
able to recognize the boundaries of the contexts. For this task, we define aTmpcscn
operator parameterized with the context node attributecn:

Tmpcs
cn(e) := eTcs;cn=cn′′;countΠcn′′:cn(e)

This operator performs the same task asTmpcs but does not aggregate the whole
input sequence. It only aggregates those tuples that were generated for the same
context nodecn.

When evaluating predicates, the new operator is used in the same way as the
Tmpcs operator in Sec. 2.2.3 but is parameterized with the input context node as
Tmpcs

cn.

Example Fig. 2.4 shows the graphical representation of a translation for the com-
plex XPath expression//student[exam][position()=last()]/name
using stacked translation.

Avoiding Evaluation of Expensive Predicates

We classify the clauseslkj of a predicatepk into the sets

cheap(pk) := {lkj | lkj is cheap to evaluate}

exp(pk) := {lkj | lkj is expensive to evaluate}

pos(pk) := {lkj | lkj containsposition(),

but nolast()}

last(pk) := {lkj | lkj containslast()}

For classification into cheap() and exp(), a simple cost model is used which
considers the number of instructions that are necessary to evaluate a clause. For the
translation of a predicatepk = lk1 . . . lkmk

, this means
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Υcn:cn′/child::name

Πcn′:cn

σcp=cs

Tmpcs
cn

χcp:counter(p2)++

σ

Υcn:cn′/child::student

Πcn′:cn

Υcn:cn′/descendant::node()Vcn′:cn

Ax;exists()CV Υcn:cn′/child::examVcn′:cn

Figure 2.4: Translation of//student[exam][position() = last()]/name

Φ[pk] := σmat
exp(pk) ◦

only for last
︷ ︸︸ ︷

σcheap(pk)∩last(pk) ◦ Tmpcs ◦

σcheap(pk)\last(pk) ◦ χcp:counter(pk)++
︸ ︷︷ ︸

only for pos or last

Each expensive expressione in a clauselkj that is a member ofexp(pk) is
replaced by a variablev. We compute the value ofv with the help ofχmat opera-
tors. The operators memoize function evaluation results similar to the approach by
Hellerstein and Naughton [57]. In the translation above,σmat

exp(pk) is an abbreviation
for this sequence ofχmat operators and the final selection.

In the above translation,Tmpcs has to be replaced byTmpcs
c if the predicate

occurs in a stacked translation.

2.4 Implementation

2.4.1 Compiler

The translation was implemented as an XPath compiler modulewritten in C++, tak-
ing XPath expressions as strings and generating an execution plan for the NQE (see
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below). The compilation process comprises six steps, listed here with some of the
tasks they perform: (1) Parsing (generating an abstract syntax tree (AST)) (2) Nor-
malization (classifies and sorts predicates as explained inSec. 2.2.3 and 2.3.3)
(3) Semantic analysis (4) Rewrite (constant folding) (5) Translation into algebra
(6) Code generation (generate NQE execution plan). The query is handed from step
to step using a single data structure, starting out as an AST which is annotated and
modified until it has become an algebraic expression. The resulting expression is
traversed by step (6), which returns an execution plan in theNQE syntax. A detail
worth noting is that our translation includes a lot of map andprojection operations,
particularly to guarantee that the context node attribute is always calledcn, and
cn′ is projected away. The compiler does not emit actual copy operations in these
cases. Instead, an attribute manager which is part of the compiler ensures that code
emitted for aliased attribute accesses uses the proper memory locations directly.

2.4.2 Physical Algebra

The Query Execution Engine (NQE) of the Natix system implements the logical al-
gebra from Sec. 2.1.2 in C++. Below, we focus on implementation aspects relevant
for XPath. More details can be found in [40], [58], and [83].

Iterators

All the sequence-valued operators in our logical algebra (Fig. 2.1) have a corre-
sponding implementation as aniterator [49] in the physical algebra. Whenever
possible, they avoid to copy and/or materialize intermediate results, passing them
by reference and/or in a pipelining fashion.

Natix Virtual Machine

The remaining (i.e. non-sequence valued) operators of our logical algebra are im-
plemented using assembler-like programs interpreted by the Natix Virtual Machine
(NVM). XPath basic type functions and operators are evaluated using single NVM
commands or small command sequences.

Location step navigation and node tests are performed via NVM commands
that directly access the persistent representation of the documents in the Natix page
buffer, thus avoiding an expensive representation change into a separate main mem-
ory format. In the buffer, the XML documents are stored in a recoverable, updatable
form which does not require a fixed DTD. There are also NVM commands for ac-
cess to text node contents. However, we transcode the stored, space-saving string
encoding to UTF-16, which is the encoding used for strings inNVM.
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Nested Iterators

NVM programs are primarily used to evaluate non-sequence-valued subscripts of
iterators, and the NVM commands operate on tuples. Sometimes subscripts also
need to evaluate XPath functions that have sequences as input, and to convert the
sequence-valued result of theA operator into an atomic value. The NVM provides
commands that can access results of nested iterators.

Context Size Operators

In Sec. 2.2.3 and Sec. 2.3.3, we introduced the special operatorsTmpcs andTmpcs
c ,

which determine the context size and concatenate it to all output tuples. The logical
definition of these operators requires the input sequence twice, once for determining
the number of tuples, and once to return the actual result annotated by the size.

The actual implementation does not evaluate the input context twice. Instead,
each context is evaluated once and then materialized. Note that the input tuples
for Tmpcs

c always containcp, the position counter. Thecp value of the final tuple
equals the context sizecs, which is remembered. When delivering the result, the
materialized sequence is reread, addingcs to each tuple as it is returned.

Tmpcs andTmpcs
cn only differ in how they determine the input context to mate-

rialize. Tmpcs counts the complete input sequence, whileTmpcs
cn only materializes

those input tuples generated for the same input context node. The materialization
stops when the input context node attributec changes (compare Sec. 2.3.3).

Actually, there is just one implementationTmpcs
cn, which coversTmpcs as a

special case.

Smart Aggregation

The aggregation functions used byA are also implemented as small NVM programs.
The interface between theA operator and these programs allows to signal a prema-
ture end of the aggregation. For example, when evaluating anexists() function, it
is not necessary to evaluate the complete argument sequence. If one tuple is found,
the remaining input sequence may be ignored, and theA operator may returntrue.

2.5 Evaluation

Our ultimate goal in providing a complete algebraic translation is performance.
While we do not discuss advanced optimization techniques onthe algebraic level
in this chapter (see Chapters 3 and 4), another performance-related aspect of the
algebraic approach is the fact that queries can be executed in a scalable way through
an iterator-based approach.

To verify that this goal has been met, we compared our implementation against
some purely main-memory based XPath interpreters. We chosethose freely avail-
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Number Path
1 /child::xdoc/desc::*/anc::*/desc::*/@id
2 /child::xdoc/desc::*/pre-sib::*/fol::*/@id
3 /child::xdoc/desc::*/anc::*/anc::*/@id
4 /child::xdoc/child::*/par::*/desc::*/@id

Figure 2.5: Queries against generated documents

able interpreters which support the complete XPath specification, including all axes,
namelyxsltproc (libxslt 1.1.2) and Xalan 1.6.0.

We are aware that the following is not a comprehensive performance evaluation,
and that it leaves open a lot of questions. The measurements below are intended to
give a proof-of-concept of our approach, and we gathered them only to make sure
that we are on the right track.

2.5.1 Environment

The environment used to perform the experiments consisted of a PC with an Intel
Pentium 4 CPU at 2.80GHz and 1 GB of RAM, running Linux 2.6.4. The Natix C++
library and the test executable were compiled with gcc 3.3 atthe O2 optimization
level.

2.5.2 Results

Below, we list the time needed to compile and execute a query.To make them
comparable across the different evaluators, the times do not include the time to
parse/load the document. The measurements are averaged over several runs.

Generated Documents

The documents on which the queries in Fig. 2.5 are executed were generated. They
differ in the number of elements, fanout and document depth.The document gen-
erator follows a breadth first algorithm and fills every depthof the document with
the given fanout until the maximum number of elements or depth is reached. The
root element of every document has the namexdoc. Every element contains an
attributeid which is consecutively numbered.

The concrete documents having between 2000-8000 elements were generated
with a fanout of six and a depth of four. The documents having between 10000-
80000 elements were generated with a fanout of ten and a depthof five.

The queries were obtained by systematically generating allXPath location paths
of length 3 with a node test checking for any element node in each step. There are
several typical patterns in the results, and we selected sample queries as examples
for these patterns.
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(a) Results for path 1
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(b) Results for path 2
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(c) Results for path 3
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(d) Results for path 4

Figure 2.6: Results for paths 1-4

Fig. 2.6(a)–Fig. 2.6(d) show the selected results. Withoutgoing into detail, we
observe (1) that we can keep up with the performance of the main-memory based
interpreters, (2) the high memory requirements sometimes cause the main-memory
interpreters to fail on large documents (this is the reason the curves sometimes
stop before reaching the end of the x-axis), and (3) the constants in the asymptotic
behavior of the algebraic approach are promisingly small.

In some queries like the one in Fig. 2.6(d), one or both main-memory evaluators
outperform Natix by a constant factor. Profiling NQE has provided us with hints on
how to lower this factor. Specifically, returning the query result in our implementa-
tion involves several unnecessary conversions and memory allocations, caused by
unoptimized Unicode support. This points out some optimization potential.

DBLP Data

Fig. 2.7 shows the execution times for queries executed on DBLP data collected in
one big XML document [75]. This document has a size of 216 mega-bytes.

xsltproc was not able to load the document, probably due to memory re-
quirements.

As above, the results are promising, as we can compete with a main-memory-
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based evaluation. For some queries (those below the horizontal line in the center),
we are slower. Again, profiling points to engineering details in NQE: output pro-
cessing and string management seem to be the cause. Here, theproblem is even
worse than in the previous section, because the string representation in NVM is
UTF-16, and we transcode the contents of the stored nodes into UTF-16 for com-
parison. As a remedy, we plan to supply NVM with the ability totranscode the
string constant from the query into the persistent encoding, reducing the compari-
son overhead (instead of tens of thousands of comparisons).

time[s]
Path Xalan Natix
/dblp/article/title 6.50 3.97
/dblp/*/title 17.73 8.10
/dblp/article[position() = 3]/title 24.51 1.51
/dblp/article[position()< 100]/title 25.22 1.55
/dblp/article[position() = last()]/title 23.99 2.22
/dblp/article[position()=last()-10]/title 24.32 2.31
/dblp/article/title/dblp/inproceedings/title 157.98 14.23
/dblp/article[count(author)=4]/@key 0.9 2.91
/dblp/article[year=’1991’]/@key

| /dblp/inproceedings[year=’1991’]/@key 3.90 8.69
/dblp/*[author=’Guido Moerkotte’]/@key 4.2 9.78
/dblp/inproceedings[@key=’conf/er/LockemannM91’]/title 3.22 4.28
/dblp/inproceedings[author=’Guido Moerkotte’]

[position()=last()]/title 4.59 6.71

Figure 2.7: Results (in sec.) of queries against DBLP

2.6 Related Work

The approaches for evaluating XPath can be divided into several different cate-
gories:

First of all, we have (main-memory-based) interpreters (e.g. Xalan, XSLTProc).
Although most of them support the full XPath standard, they have high memory
requirements and do not scale very well to large documents.

Second, many papers were published investigating the efficient evaluation of
individual location steps [2, 21, 58, 67]. For some locationsteps, very efficient
operators have been developed, but a complete framework forsupporting the full
XPath standard still seems to be missing, e.g. there is no support for nested expres-
sions or position-based predicates.
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Third, we have approaches relying on relational databases [41, 52, 55, 103].
Here, the XML data is transformed and stored in relations. Queries containing
XPath expressions are translated into SQL and processed using the (possibly ex-
tended) engine of the underlying database system.

Fourth, there are other algebra-based approaches for the evaluation of queries
over XML data [7, 64, 98], However, these approaches give no translation function
for all of constructs of XPath, in particular the whole set ofaxes.

Finally, there exist streaming-based approaches for evaluating XPath [34, 51,
66]. Some of these approaches are used for document filtering[34, 51] using XPath.
Document filters do not require to retrieve the full result ofthe query, but only have
to make a binary decision if there exists at least one result or not. The approach
by Josifovski et al. [66] (called TurboXPath) is also used inthe streaming context.
Hence, they have to buffer their input for evaluating specific predicates or backward
axis. A discussion about memory requirements in the streaming context is given
in [5]. TurboXPath follows a holistic approach, i.e. it usesa single operator for
evaluating XPath expressions. Moreover, their approach isspecifically designed for
evaluating multiple XPath expressions (for example in an XQuery) in a single run
over the according input. However, because of following a holistic approach, they
have limitations when it comes to advanced optimization techniques (e.g. unnest-
ing) as described in the next chapter. TurboXPath is the foundation for the XNav
operator used in DB2 [8].

Further, there are optimizations that are orthogonal to ourapproach and can
be integrated. Mathis et al. have shown how to integrate structural joins ([2])
into our algebraic approach and, amongst others, use them for evaluating predi-
cates [78]. Moreover, there exist path rewriting techniques [58, 90], schema-based
rewritings [9, 73], and equivalences that use properties ofthe intermediate results
to avoid duplicate elimination and sorting [59].

Gottlob et al. have shown that the presence of duplicates during evaluation may
lead to an exponential run-time [46, 47, 48]. Their bottom-up approach in [46]
computes all potential contexts to avoid an exponential runtime. However, they
perform unnecessary computations. Their top-down approach is not algebraic and
requires materialization of all intermediate results, which we circumvent by using
our algebraic approach. Helmer et al. presented an approachto avoid the generation
of duplicates during evaluation [58]. Their approach is orthogonal to our approach
and can be integrated by modifying the translation functionfor location steps. Diao
et al. developed a memoization approach for avoiding the computation of equal or
shared XQuery expressions [35]. Their Memo Table is similarto our approach.
Specifically, it is a combination of our MemoX and MapMat operators. The Map-
Mat operator is similar to the approach by Hellerstein and Naughton [57].

The binary grouping operator has been introduced in [29, 28,102]. An analysis
and implementations for binary grouping can be found in [83].
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2.7 Conclusion

In this chapter, we have explained how to translate XPath queries into algebraic
expressions. The proposed translation method covers the complete set of XPath
features including all axes, position-based predicates, nested paths, filter expres-
sions, general path expressions, and node-set functions.

Apart from providing an effective translation as a first step, we were also con-
cerned with efficiency. In a second step, we extended our simple approach, achiev-
ing polynomial worst-case complexity. To this end, we incorporated the memoiza-
tion techniques pioneered by Gottlob et al. [47] in the context of XPath interpreters.

We implemented an XPath compiler based on the concepts outlined in this chap-
ter. A complementary iterator-based physical algebra was used to evaluate the gen-
erated algebraic query plans. First measurements demonstrate that our approach is
viable.

Having established that an algebraic approach to XPath is reasonable, we can
now turn to the next challenges. In the next two chapters, we present algebraic
optimization techniques for optimizing XPath expressions.





Chapter 3

Unnesting XPath Expressions

In the previous chapter, we presented a translation of XPathinto algebraic expres-
sions. Our translation is complete and avoids the exponential runtime behavior of
the naı̈ve evaluation (e.g. [47]). However, there are stilla lot of shortcomings and,
hence, there is a lot of optimization potential. In this chapter, we illustrate these
shortcomings and present algebraic techniques to fix them.

Up to now, optimizing the evaluation of XPath addressed the evaluation of
chains of simple location steps (e.g. [2, 21, 54, 55, 66]), streaming-based approaches
for evaluating XPath (e.g. [34, 51, 66]), or techniques for avoiding unnecessary
work (e.g. [47, 46, 58]). However, when used as a standalone language or within
XSLT, the expressions used to formulate queries can become quite complex, con-
taining many predicates. Let us demonstrate this with a sample XPath query (called
Q1).

//student[examination/@id = //exam[grade<’B’]
[belongsto/@lecture = //lecture[title=’NCS’]/@id]
/@id]/name

Q1

Q1 selects all students who have taken an exam in ‘Numerical Computer Sci-
ence’ (NCS) and have achieved a grade better than ‘B’. The na¨ıve interpretation
employs a strategy that evaluates the steps in order of theiroccurrence in the query.
Expressions within predicates are evaluated for every result of the corresponding
location step. In a first step, all students are selected (which can be quite a large
number). Then, for each student, we select the exams that have a grade better than
‘B’ and belong to a lecture with the title NCS (the predicate checking for the lec-
tures is again nested). Obviously, evaluating the above query in a nested fashion is
not very efficient. As we show, we can improve the performancesignificantly by
unnesting nested XPath expressions.

Therefore, the approach presented in this chapter is as follows: First, we give a
complete classification of nested XPath expressions and introduce six new algebraic
operators that are particularly useful for unnesting. Second, based on this classifi-
cation, we introduce novel rewrite and optimization techniques for each class. We

31
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present them by means of algebraic equivalences that allow to unnest nested alge-
braic expressions. The left-hand side of our equivalences results from the (canoni-
cal) translation introduced in the previous chapter. Pursuing an algebraic approach
for unnesting has two basic advantages: (1) We can (partially) reuse current op-
timization techniques (e.g. [29, 82]), and (2) we can supplyrigorous correctness
proofs for the equivalences (see Appendix A). Usually, our rewrite techniques will
improve performance. However, contrary to the situation inunnesting SQL, OQL,
or XQuery, there will be cases where performance is difficultto improve by unnest-
ing. In these cases, we refer to [106] for optimizations. Third, we validate our
techniques by presenting performance measurements showing the improvements
that are possible. This way, we also compare our approach with several other XPath
evaluators.

The remainder of this chapter is organized as follows. In thenext section, we es-
tablish a classification scheme for nested XPath expressions. After that, we present
six algebraic operators that we use for unnesting (see Sec. 3.2). The core of this
chapter is Section 3.3. It covers the actual optimization techniques by means of
algebraic equivalences. For convenience, two figures contain all equivalences. In
Section 3.4, we show the effectiveness of our approach by comparing it with other
approaches using example queries. Section 3.5 discusses related work. At the end
of this chapter, Section 3.6 summarizes our contributions.

3.1 XPath Expressions

First, we establish a classification of nested XPath expressions. In later sections,
we develop optimization techniques for each of these classes. In more detail, the
outline of this section is as follows: In order to keep the number of classes low, we
first normalize XPath expressions. Then, we classify expressions by two properties
of expressions:dependencyon the local context and expectedresult cardinality.
The expected result cardinality distinguishes between expressions returning a single
value and expressions that return a node-set. The former arefurther subdivided into
those that contain an aggregate function as the top most operator and those that
do not. The final step then consists of deriving the classification of nested binary
predicates. Since normalization turns unary predicates (i.e. expressions returning a
boolean) into binary predicates, this covers all cases.

3.1.1 Normalization

Normalization performs the following steps:

Explicit Comparisons Makes all implicit comparisons explicit:

• If an expression evaluates to a number, a comparison with thecontext
position is introduced.



3.1. XPATH EXPRESSIONS 33

• If an expression of a non-comparison expression is a boolean, a com-
parison withtrue is inserted.

• If an expression evaluates to a string, its result is converted to boolean.

• If an expression evaluates to a node or a node-set, anexists function
call is introduced, comparing the result with true. Note that there is no
exists function call in XPath. It is an internal function of ours.

Predicate CNF Transforms predicates into conjunctive normal form (CNF).

Extremum Rewrite The query is rewritten using maximum and minimum aggre-
gation functions. For instance, a nested expression of the form not(a <
b) is rewritten intoa ≥ max(b) if a is single-valued. Similarly to the
exists function call, themax function call is not defined in XPath 1.0, but
inserted for internal use.

3.1.2 Expression Classification

The basic construct of XPath is an expression. We distinguish expressions accord-
ing to their dependency on the context and the cardinality oftheir result.

Context Dependency

An important concept in XPath is the context. Every expression is evaluated with
respect to a given context. For the purposes of this chapter,it suffices for a context to
contain three components: thecontext node(cn), thecontext position(cp), and the
context size(cs). The evaluation of an XPath expression requires aglobal context
to be specified. Subexpressions of the top-level query are evaluated with respect to
a local context. The local context is derived from the result of the evaluation of a
former step or filter expression. We distinguish two classesof subexpressions:

Dependent Expression:Expressions depending on a local context that is different
from the global context (denoted byType D).

Independent Expression: Expressions depending only on the global context (de-
noted byType I).

Location steps, relative location paths, calls toposition() andlast() are
evaluated with respect to the local context. All other expressions are evaluated with
respect to the global context.

In our example query Q1, the subexpression//student is independent. The
last location stepname depends on the local context resulting from the evaluation
of the previous step and hence is dependent. Further, the absolute location path
//exam is independent, whereas location pathexamination/@id within the
first predicate is dependent.
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Cardinality

For every XPath expression, the static type analysis can detect the type of its re-
sult. An expression has either one of the three atomic types (boolean, number
or string) or is node-set typed. We distinguish expressions according to the car-
dinality of their result.

Single-valued expressions with no top-level aggregate function are classified as
Type S, and those with a top-level aggregate function are classified asType A.

Set-valued expressions (Type M) have a node-set as result. If an empty set is de-
tected, its expression is associated with the class of set-valued expressions.

Detecting a single value or empty node-set requires schema information and is
beyond the scope of this thesis.

In our example query from the introduction, the attributesid are single-valued
(Type S), whereas the path expression//student has a set-valued result (Type
M).

Combined Expression Classification

We have presented the two expression properties dependencyand cardinality of the
result. Similar to Kim [70] within the relational context and Cluet et al. [28, 29]
in the OO-context, we can combine these properties and definethe following four
types of expressions:

• Type I[S|A] Independent subexpressions that return a single element, i.e. it
either comes from a top-level aggregate (Type IA) or not (Type IS).

• Type D[S|A] Dependent subexpressions that return a single element that
comes from a top-level aggregate (DA) or not (DS).

• Type IM Independent subexpressions that have a set-valued result.

• Type DM Dependent subexpressions that have a set-valued result.

Each of these types has individual properties that can particularly be exploited
by the optimization techniques developed in Sec. 3.3.

3.1.3 Nested Expression Classification

Our primary focus of this work is the optimization of comparison-based predicates.
A predicatepk can consist of arbitrary XPath expressions and is represented as

a conjunction of several clauseslkj (i.e. pk =
∧mk

j=1 lkj). The CNF results from our
normalization phase. After making all implicit comparisons explicit, each conjunct
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consists of binary comparison expressions. They exhibit the comparison operators
∈ {=, 6=, <, >, <=, >=}. Note, that if either of the operands is set-valued, the
comparison operator has an existential semantics.

Corresponding to the previous classification, we establisha classification for
comparison expressions. The properties of this classification allow for particular
optimization techniques of each of the classes. The classification simply consists of
all combinations of the previously introduced types and is shown in the following
table.

Independent Dependent
I[S|A] IM D[S|A] DM

Independent I[S|A] I[S|A]/I[S |A] I[S |A]/IM I[S|A]/D[S|A] I[S |A]/DM
IM IM/I[S |A] IM/IM IM/D[S|A] D[S|A]/DM

Dependent D[S|A] D[S|A]/I[S |A] D[S|A]/IM D[S|A]/D[S|A] D[S|A]/DM
DM DM/I[S|A] DM/IM DM/D[S|A] DM/DM

This table can be divided into three groups. The first group (top left) is com-
posed only of independent operands. The second group (top right and down left) in-
cludes one independent and one dependent operand. For expressions in this group,
we introduce the termsemi-independent. The last group (down right) is made up
only of dependent operands.

Nested comparison expressions are a crucial factor for an efficient evaluation of
XPath predicates. This has several reasons:

• Expressions are evaluated in a nested fashion. In particular, expressions can
be deeply nested, and many execution orders for independentexpressions
may exist. Some of them are more, some less efficient.

• Further, based on the classification, we observe that

– independent comparisons (Types I[S|A] and IM) are evaluated unneces-
sarily for every context resulting from the outer expression.

– comparisons with an independent and a dependent argument are acor-
relation predicatebetween the outer and the inner expression.

– expressions which share common paths or consist of common subex-
pressions would require their evaluation more than once.

3.2 Logical Algebra

Our optimizations in Section 3.3 are based on the algebra described in the previous
chapter. Moreover, all optimizations are presented by means of algebraic equiva-
lences. They have the canonical translation (also presented in the previous chapter)
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on the left-hand side. However, for our unnesting techniques, we need some addi-
tional algebraic operators. In this section, we formally define them. Before defining
the operators, we repeat the notations that are used for their definition.

Our algebra is defined on sequences of tuples. A sequence-valued expressione
results in several tuples which all have the same attributesA(e). The attributes of a
single tuple are also referred to asA(t). Within the definitions,A (Ai) abbreviates
A(e) (A(ei)). The projection of a tuple onto a set of attributesA is denoted by
|A. In the context of projections (|, Π), overlined attributes are discarded, i.e. only
the complement is retained. A single tuple is constructed using the brackets[·].
The concatenation of tuples and functions is denoted by◦. For a sequencee, α(e)
returns the first element of the sequence andτ(e) the tail of the sequence. Sequences
are concatenated using⊕. Given a sequence of non-tuple valuese, we construct a
sequence of tuples bye[a]. It is empty if e is empty. Otherwisee[a] := [a :
α(e)]⊕ τ(e)[a]. In the following,e, e1, ande2 are sequence-valued expressions.

First, we define theleft outer-join :

e1Pg:f(∅)
p e2 :=







(α(e1)Bpe2)⊕ (τ(e1)Pg:f(∅)
p e2) if (α(e1)Bpe2) 6= ǫ

(α(e1) ◦ [A(e2) \ {g}] ◦ [g : f(∅)]) otherwise
⊕(τ(e1)Pg:f(∅)

p e2)

The left outer-join is used for unnesting queries with aggregation functions. It is
needed to prevent the ”count bug” [71]. Specifically, the left outer-join is a regular
join with the exception that all tuples ine1 that do not find a join partner ine2 also
contribute to the result. Those tuples are concatenated with [A(e2)\{g}]◦[g : f(∅)].
The functionf(∅) in the superscript of the operator assigns a meaningful value to
the attributeg of those tuples. For example, iff is the function count,count(∅)
assigns0 to g. For construction, the attributesA(e2) are initialized with NULL by
default.

In our optimizations, we use the left outer-join together with a unary grouping
operator. Ourunary grouping operator is defined in terms of the binary grouping
operator (T; see Section 2.1.2):

Γg;θA;f(e) := ΠA:A′(ΠD
A′:A(ΠA(e))Tg;A′θA;fe)

In this definition,A andA′ are sets of attributes (A ∈ A(e) andA′ ∈ A(e))
called grouping attributes. For each group (i.e. those tuples having the same value
for all grouping attributesA), Γ computes an aggregation function and adds the
result to the attributeg.

Fig. 3.1 presents an example for the unary grouping operator. It shows the result
of applying the unary grouping operatorΓg;=A;count to the sequencee1. The result
is a sequence of three tuples, each having two attributes, i.e. A and g. Each tuple
results from one of the three distinct values ine1. The attribute g contains the
number of tuples having equal values for A.
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e1

A
1
1
3
3
4

Γg;=A;count

A g
1 2
3 2
4 1

Figure 3.1: Unary grouping example

To avoid unnecessary navigations in predicate expressions, we define the max
operator. Themax operator was originally introduced in [29].

Maxg;m;a=(e) = [m : max({x.a|x ∈ e}), g :< [g′ : x]|x ∈ e, x.a = m >]

The result of the operator has two attributes: One containing the maximum value
m for a group of nodes and one (g) containing the resulting nodes that are equal to
the calculated maximumm. The motivation for the max operator will become clear
in later sections. Themin operator is defined analogously.

Some of our unnesting techniques introduce duplicates of tuples that must not
be in the result. To identify such falsely introduced tuples, we use the auxiliary
ν operator (cf. ‘’[82]). It numbers tuples in a sequence by adding an additional
attributeA holding their position (pos) in the sequence. It is defined asfollows:

νA(e) := α(e) ◦ [A : pos]⊕ νA(τ(e))

After unnesting, we have to eliminate multiple occurrencesof tuples that have
the same attribute value forA. However, we want to keep the order of the input.
Therefore, we introduce anorder-preserving duplicate elimination projection
ΠA

B:

ΠA
B(e) :=







α(e)|B ⊕ ΠA
B(τ(e)) if τ(e) = ǫ or

α(e).A 6∈ α(τ(e)).A
ΠA

B(τ(e)) otherwise

This projection keeps the first tuple for a given attribute value A and throws
away the remaining tuples with the same value. At the same time, this operator
can be used to project on a set of attributeB. Analogously, we have arenaming
order-preserving duplicate elimination projection ΠA

B′:B.
Last, we define a new operator that directly implements an unnesting strategy.

The operator is calledkappa-join and is a ternary operator, i.e. it has three argument
expressionse1, e2, ande3. It is defined by the following equation:
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e1

cn
1
2
3
4

e2(e1)

cn c
1 11
2 22
2 222
3 33

e3

c’
222
44

Figure 3.2: Kappa-join example

e1κ
e2

c=c′e3 := σAx;exists(e2Gc=c′e3)
(e1).

The right-hand side of this equation results from our translation of comparison
expressions that use= as a comparison predicate (see Sec. 2.2.3). In this equation,
c is an attribute defined in the sequence-valued expressione2, andc′ is defined ine3,
i.e.c ∈ A(e2) andc′ ∈ A(e3). The attributex contains the result of the aggregation
operator, i.e. true if the result sequence of the semi-join consists at least of one tuple
and false otherwise. Accordingly, the selection filters tuples whosex value is false.
As for conventional join operators, we denote the producer expressionse1 ande3 as
outer producerand inner producer, respectively. The second producer expression
e2 (in the superscript) is calledlink producerbecause it acts as a link between the
outer and inner producer within the join predicate. The outer expressione1 and the
inner expressione3 are independent expressions, i.e. they do not depend on any of
the kappa-join’s other arguments. In contrast, the expression e2 is dependent one1,
i.e. it refers to free variables that are defined ine1.

Informally, the result sequence of the operator contains all tuples from the outer
producer (e1) for which there exists at least one tuple in the link producer (e2),
when evaluated with respect to the current tuple ofe1, that satisfies a comparison of
attributes ofe2 and attributes of the the inner producere3. Consider for an example
Fig 3.2. It shows three sequences: (1) The sequence for expressione1 contains
one attribute namedcn. (2) The sequence-valued expressione2 consisting of the
attributec that depends on values frome1. For example, forcn value2 it contains
two tuples, i.e.22 and222. (3) The independent sequence fore3 contains the values
222 and44 for attributec′. The result sequence of the expressione1κ

e2

c=c′e3 on this
input contains one tuple with attributecn that has the value2.

3.2.1 XPath Context in the Algebra

As already discussed in Section 3.1.2, the notion of contextis of utmost importance
for XPath. The context is needed to evaluate XPath expressions and, hence, must
be handled within our algebra. We briefly repeat the hooks.
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Context Representation For the purpose of this chapter, it suffices to think of an
XPath context as consisting of three context items, each represented by an attribute:
the attributescn, cp, andcsrepresentcontext node, position, andsize, respectively.

Each of these attributes has a counterpart in the form of a free variable:cn, cp
andcs. Whenever an expression has no producer, but refers to an attribute, or refers
to a non-existing attribute, the appropriate free variableis used.

Context Producer and Dependency In the formal description of our optimiza-
tion techniques, we utilize the notions ofcontext producerandcontext dependent.
An expressione1 is calledcontext producerfor an expressione2 if (1) it creates
new bindings for one or more context item attributes and (2)e2 exhibits at least one
free variable corresponding to one of these attributes. If so, expressione2 is called
context dependenton e1.

3.3 Optimization

We now introduce optimizations for our canonical translation of nested XPath ex-
pressions. Given the classification established in Section3.1 and the (canonical)
algebraic translation from Chapter 2, we provide optimization techniques for each
of the classes of nested comparison expressions. We formulate them by means of
equivalences whose left-hand side matches the result of thecanonical translation
and whose right-hand side contains the optimized expression.

The section is structured according to the three groups of classes presented in
Section 3.1. We start out with independent comparison expressions, continue with
semi-independent expressions, and, at the end, examine thegroup containing only
dependent expressions.

3.3.1 Independent Comparison Expressions

Optimizing independent comparison expressions is easy anddoes not depend on
the cardinality. We can simply execute the independent parts separately and mate-
rialize the result. This is like constant folding1 in compiler construction and saves
evaluating independent parts more than once. Note that evenif the operands of an
expression are set-valued, its evaluation always results in a single boolean value.
Hence, materialization costs are negligible.

For nested expressions of the forme1θe2 with θ ∈ {<,≤, >,≥}, the minimum/-
maximum aggregation within Rules 2.3 and 2.4 (see Sec. 2.2.3) can additionally be
pulled outside, as the expressione2 is independent and single-valued. This way, we
can avoid multiple evaluations of the same subexpression.

1Due to the global context, this term is a slight misnomer. However, from the evaluation point of
view, the global context can be considered as a constant.
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3.3.2 Semi-Independent Comparison Expressions

Nested comparison expressions, where one of the operands isindependent and the
other is dependent, describe a correlation predicate between the outer and inner in-
dependent expression. Their evaluation is expensive, as the independent expression
is evaluated several times without necessity.

Now, we discuss algebraic unnesting techniques for each of the classes of semi-
independent comparison expressions. The corresponding equivalences are summa-
rized in Figure 3.3. Within all equivalences, expressione2 is context dependent on
expressione1, whereas expressione3 is independent. We discuss the equivalences
in the order of increasing complexity: I[S|A]/D[S|A], IM/DM, I[S |A]/DM, and,
finally, IM/D[S|A].

σ
T [e2]=Am:maxcn (T [e3])

(T [e1]) ≡ Πcn:g′(Maxg;m;cn′=(Πcn′:cn(T [e1]) <T [e2]>).g) (3.1)

if T [e1] <T [e2]>= T [e3] ande2 is single-valued and dependent one3,

ande3 is independent

σAx;exists(T [e2θe3])
(T [e1]) ≡ ΠA

cn:cn′′,A
(E)Gcnθcn′ΠD

cn′:cn(T [e3]) (3.2)

with E = (νA(Πcn′′:cn(T [e1]))) <T [e2]>

for θ ∈ {=, 6=}

σAx;exists(T [not(e2θe3)])
(T [e1]) ≡ Πcn:cn′′,A(σc=0(νA(T [e1]))Tc;A=A′;countE) (3.3)

with E = (Πcn′′:cn((νA′ (T [e1])) <T [e2]>)Gcnθcn′ (Πcn′:cn(T [e3])))

θ ∈ {=, 6=}

σAx;exists(T [e2θe3])
(T [e1]) ≡ ΠA

cn:cn′,A
(σcnθx((νA(Πcn′:cn(T [e1]))) <T [e2]>)) (3.4)

wherex results fromAx;acn(T [e3]),

with a = min if θ ∈ {>,≥} or a = max if θ ∈ {<,≤},

σAx;exists(T [not(e2θe3)])
(T [e1]) ≡ Πcn:cn′′,A(σc=0(νA(T [e1])Tc;A=A′;count(E)) (3.5)

with E = σcnθx((Πcn′′ :cn(νA′ (T [e1]))) <T [e2]>)

wherex results fromAx;acn(T [e3]),

with a = min if θ ∈ {>,≥} or a = max if θ ∈ {<,≤},

σAx;exists(T [e2]=(σp(T [e3])))
(T [e1]) ≡ σg>0(E) (3.6)

with E = Πcn:cn′,A(Γg;=A;count◦σp((νA(Πcn′:cn(T [e1]))) <T [e2]>))

and(T [e1] <T [e2]>) = T [e3]

σAx;exists(T [e2θe3])
(T [e1]) ≡ ΠA

cn:cn′,A
(σcnθx((νA(Πcn′:cn(T [e1]))) <T [e2]>)) (3.7)

wherex results frome3 (single-valued), andθ ∈ {=, 6=, >,≥, <,≤}

σAx;f(T [e2])θT [e3]
(T [e1]) ≡ Πcn:cn′′,A(E)Ggθcn′ (ΠD

cn′:cn(T [e3])) (3.8)

with E = Γg;=A;f (νA(Πcn′′:cn(T [e1]))) <T [e2]>

if θ ∈ {=, 6=, <,≤, >,≥}

Figure 3.3: Equivalences for semi-independent comparisonexpressions
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Classes I[S|A]/D[S|A]

Classes I[S|A]/D[S|A] contain two single-valued expressions where both operands
are dependent. In a first optimization step, constant folding of the independent part
could be applied for both classes (I[S|A]/D[S|A]). However, sometimes even more
efficient techniques are possible. An interesting query, which allows for advanced
optimization techniques, is the following one:

/university/exam[not(grade < /university/exam/grade)]
/belongsto/@lecture.

Q2

During normalization, the query (selecting the worst exams) is rewritten to2

/university/exam[grade = max(/university/exam/grade)]
/belongsto/@lecture.

Q2

and falls into the class IA/DS. Note that the rewrite is only correct because the
grades will be the same on both sides of the comparison.

The canonical translation of this query is

e = T [belongsto/@lecture](e1))

e1 = σ
T [grade]=Am;maxcn (e2)

(T [/university/exam])

e2 = T [/university/exam/grade]

Note that from now on, we abbreviate the algebra expression for location steps
and paths and simply denote them with our translation function T or our helper
function Φ, respectively. Applying constant folding, the independent maximum
aggregation is evaluated only once. However, since the outer and inner independent
expression share a common path, evaluating the common expression more than
once can be avoided. This optimization described in Equivalence 3.1 uses the max
operator.

This operator uses the scan needed for the evaluation of the inner expression to
simultaneously evaluate the outer expression. The result of the operator has two
attributes: One containing the maximum valuem for a group of nodes and one
containing the resulting nodes that are equal to the calculated maximum. Note that
the resulting sequence is empty if the input sequence is empty. The application of
Equivalence 3.1 results in

e′ = T [belongsto/@lecture](e′1))

e′1 = Πcn:g(Maxg;m;cn′=(e′2)).g

e′2 = (Πcn′:cn(T [/university/exam])) <T [grade]>

2Remember that there is no maximum function in XPath 1.0. We fall back on our own function
here.
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Sharing the scan with the help of the max operator halves the execution time for
this query. The evaluation of this query in Sec. 3.4 proofs our claim and Section A.1
in the appendix presents a proof of correctness. Of course, the minimum can be
treated analogously.

Class IM/DM

We now consider comparison expressions of type IM/DM, i.e. those where both
operands are set-valued. In this case, the XPath semantics requires a quantified eval-
uation. Using our algebraic approach, we are able to revert to the well-established
idea of using semi-joins (e.g. for unnesting XQuery [82]). However, the application
of known equivalences is not possible. There are two main reasons for this. First,
all known equivalences suffer from at least one of two problems: (a) the outer op-
erator of the nested algebraic expression is a map and not (the needed) selection, or
(b) they have conditions not fulfilled here (e.g. at least onesingle-valued argument).
Second, context handling has not been investigated.

In the following, we look at different algebraic evaluationstrategies for different
query patterns exhibiting correlation predicates. Therefore, consider the following
query patterns that are made up of different comparison operators (=, 6=, andθ ∈
{<,≤, >,≥}) and negation, whereE denotes any path expression,DM an set-
valued expression dependent onE, andIM an independent set-valued expression.

1. E[DM = IM ]

2. E[DM 6= IM ]

3. E[not(DM = IM)]

4. E[not(DM 6= IM)]

5. E[DMθIM ]

6. E[not(DMθIM)]

For introducing the idea, we start with an elaborate discussion of optimizations
for query pattern 1. Existential quantification (i.e. querypattern 1) is one of the
most frequently used patterns in XPath. Hence, we not only present the application
of known unnesting technique using semi-joins. We also extend the algebra with
our new kappa-join operator for particularly boosting the performance of XPath
queries with query pattern 1.3 At the end, we briefly discuss the remaining query
patterns and their associated equivalences.

Query Pattern 1 We begin with a shortened version of the query from the intro-
duction, which is an instance of query pattern 1 (selecting all students having exams
better than B).

//student[examination/@id =
//exam[grade<’B’]/@id]/name

Q3

3However, the kappa-join can also be used for evaluating other query languages, e.g. XQuery.
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T [name]

σ

T [//student] Ax;existsGcn=cn′

T [examination/@id] T [//exam[grade <′ B′]]

Figure 3.4: Translation sketch for Q3

The canonical evaluation of this query provides an aggregation with a semi-join
as producer.

e = Ψ[name](σe1(T [//student]))

e1 = Ax;exists(T [examination] <T [@id]> Gcn=cn′(e2))

e2 = Πcn′:cn(Ψ[@id](σT [grade]<′B′(T [//exam])))

For convenience, Fig. 3.4 shows the algebra expression as a tree.
The problems that occur have already been explained in the introduction to this

chapter. The expressions within predicates are evaluated for every result of the
corresponding location step. That is, the subscript of the selection (in Fig. 3.4
denoted by a dashed line) is evaluated for every student resulting from the outer
expression. Thus, evaluating the above query in a nested correlated fashion is not
very efficient. The idea of the optimization that is shown in Equivalence 3.2 is to
pull the semi-join into the main evaluation thread.

The resulting optimized translation is as follows:

e′ = Ψ[name](ΠA
cn:cn′(e′1))

e′1 = νA(Πcn′:cn,A(T [//student])) <e′2 > Gcn=cn′(e′3))

e′2 = Πcn′:cn(Ψ[examination/@id](Vcn′:cn)))

e′3 = Ψ[@id](σT [grade]<′B′(T [//exam]))

The dependent location pathexamination/@id is connected to the outer
expression using a d-join [82]. As the dependent expressioncould produce du-
plicate students, theν operator is needed to identify the tuples resulting from the
outer expressions. At the end, we remove duplicates of the same ν-value for A



44 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

with our order-preserving duplicate elimination (ΠA
cn:cn′,A

). Moreover, this projec-
tion reestablishes the right context attributecn from cn′ and discards theν attribute
A. Fig. 3.5 sketches the optimized algebra expression graphically.

T [name]

ΠAGC
νA

T [//student]

T [examination/@id]

T [//exam[grade <′ B′]/@id]

Figure 3.5: Unnesting strategy for Q3

Resulting from that, we avoid the repeated evaluation of theinner independent
expression. If this equivalence is applied to the introductory query, we can addi-
tionally choose the optimal execution order for the semi-joins, which gives us an
even higher optimization potential.

Clearly, the main advantage of this approach is that the independent expression
is evaluated only once. In addition, if the implementation of the semi-join uses a
custom data structure (e.g. a hash-table) to improve performance, this data struc-
ture has to be initialized only once, compared to one initialization per student in
the naı̈ve correlated evaluation. However, unnesting comes at a price: The outer
expression produces duplicates which have to be eliminated. Below, we show how
we can avoid them using our novel kappa-join. Our evaluationin Sec. 3.4 confirms
this claim.

To avoid the above-mentioned generation of duplicates, butnevertheless gain
performance by avoiding unneeded evaluations of the independent expression, we
use the kappa-join operator. It combines the advantages of the evaluation strategies
from Equivalence 3.2 and the canonical translation into oneoperator and capitalizes
on efficient implementation techniques.

Ψ[name]

κT [examination/@id]
=

T [//student] T [//exam[grade <′ B′]/@id]

Figure 3.6: Unnesting strategy for Q3 with kappa-join
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Fig. 3.6 contains the resulting algebra expression for Q3. Here, the location path
//student is mapped to the outer producer of the kappa-join. The inner location
pathexamination/@id is the (dependent) link producer, and the independent
expression//exam[grade<’B’]/@id is mapped to the inner producer.

OPEN

1 while T ← INNERPRODUCER.NEXT

2 do HASHTABLE .INSERT(T )

NEXT

1 while T1 ← OUTERPRODUCER.NEXT

2 do
3 LINK PRODUCER.OPEN(T1)
4 while T2 ← L INK PRODUCER.NEXT

5 do
6 if HASHTABLE .LOOKUP(T2)
7 then
8 LINK PRODUCER.CLOSE

9 return T1

10
11 LINK PRODUCER.CLOSE

12 return nil

Figure 3.7: Pseudocode for the kappa-join

The secret of the kappa-join lies in its simple, yet efficientimplementation. It
improves performance beyond that of the operator combination in its logical defini-
tion. Fig. 3.7 shows the pseudocode for the implementation of the kappa-join as an
iterator.

In its open method, the kappa-join builds a data structure, e.g. a hash-table,
containing the attributes from the inner producer that are part of the join predicate.
In its next method, the kappa-join initializes the link producer for every tupleT1

from its outer producer. Like a semi-join, it then probes thehash-table with tuples
T2 from the link producer until a matching one is found, and returns the outer tuple
as soon as it finds a match. The kappa-join does not always enumerate all tuples
from the dependent link producer, while building the hash-table only once. Hence,
the worst-case complexity isO(|e1| × |e2| + |e3|), assuming constant hash-table
insert and lookup, respectively. However, the average complexity depends on the
distribution of the data and is usually much better. Compared to the canonical
translation, the plan in Fig. 3.6 using the kappa-join has three main advantages:
(1) It avoids to enumerate all tuples from the link producer because it immediately
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returns a result if one match is found (see Line 9). (2) It doesnot produce duplicates
of tuples from the outer producer because the result contains at most one tuple from
T [//student], and (3) consequently saves the cost of a final duplicate elimination.
These effects combine to yield the speedup that can be achieved (see Sec. 3.4).

We now briefly discuss the remaining query patterns.

Query Pattern 2 So far, we have discussed the optimization of XPath queries that
match query pattern 1. This query pattern uses an equality comparison operator and
resembles the semantics of an existential quantification. However, XPath queries
can also exhibit a non-equality comparison operator. In this case, shown in query
pattern number 2, the semantics is that of a negated existential quantification. As
for existential quantification, we can also evaluate such queries with a semi-join,
but using a negated comparison. This procedure is also captured in Equivalence 3.2.
Moreover, we can also use the kappa-join operator.

Query Pattern 3 If such a comparison expression is encapsulated in anot function-
call, the semantic resembles that of a universal quantification. In the first case (see
query pattern 3), the semantics requires that there must notexist any match that is
equal, i.e. all items are different. Secondly, if the comparison contains a non-equals
sign, the semantics is inverted, i.e. all items are equal. Both universally quantified
query patterns can be unnested using Equivalence 3.3. In this equivalence, the trick
is to count the number of matches (cf. [26]) that satisfye2 = e3 (resp. e2 6= e3)
for every tuple resulting frome1 and store the result in the attributec. To this end,
we use the binary grouping operator withe1 as outer and the comparison between
e2 ande3 as inner expression. Note that for computinge2, we use the same trick
as shown previously, i.e. using a d-join for computinge2 that is dependent one1.
Thereby, all tuples frome1 are uniquely identified using the attributeA′ that is
added by aν operator. To accomplish the match between tuples from the left- and
right-hand side of the binary grouping operator, we also (deterministically) mark
the tuples frome1 on the left-hand side and store theirν-value in the attributeA. At
the end, only those tuples frome1 qualify for the result whose value forc is equal
to zero, i.e. either all tuples are different (=) or equal (6=), respectively.

Query Pattern 5 Query pattern 5 again resembles an existential quantification but
with an arbitrary comparison operatorθ ∈ {<,≤, >,≥}. Unnesting such queries is
accomplished using Equivalence 3.4. To this end, we either compute the maximum
(for θ ∈ {<,≤}) or minimum (forθ ∈ {>,≥}) value for items resulting from
the independent expression (e3). Then, we can select only those tuples frome1

whosee2 value satisfies the according comparison with this maximum or minimum
value, respectively. Again, we use a combination of theν, d-join, andΠA operators
to evaluatee2 depending one1. Note that in a first step, the maximum/minimum
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aggregation remains subscript of the select operator. However, in a second opti-
mization step the evaluation of the independent aggregation can be pushed outside
and evaluated on its own.

Query Pattern 6 The last query pattern 6 describes a comparison expression en-
capsulated in a not function-call that uses an arbitrary comparison operatorθ ∈ {<
,≤, >,≥}. To unnest queries that comply with this query pattern, we combine the
previously presented Equivalences 3.3 and 3.4. The result is captured in Equiv-
alence 3.5. In this equivalence, we compute the maximum/minium value ofe3

independently and count the number of matches for every tuple from e1 with the
help of a binary grouping operator. The count is stored in theattributec, and tuples
from e1 whosec-count is equal to zero contribute to the result.

With Equivalence 3.6, we introduce an optimization that uses a strategy simi-
lar to the max operator. This equivalence avoids duplicate evaluation of common
expressions if the inner and outer expression share the samepath, i.e.T [e1] <
T [e2]>= T [e3]. In fact, Equivalence 3.1 is a special case of Equivalence 3.6.

Class I[S|A]/DM and IM/D[S |A]

The last class within the group of semi-independent comparison expressions con-
tains one single- and one set-valued expression. Optimizing them combines the
evaluation strategies of the previous equivalences.

If the independent expression is single-valued (class I[S|A]/DM), Equiv. 3.7 can
be applied, which is similar to 3.4. It pushes the evaluationof the independent part
outside and does the comparison of the dependent part using aselection.

For the second case, where the independent part is set-valued (e3) and the depen-
dent part comes from an aggregation (class IM/DA), Equiv. 3.8 can be applied. It
uses a grouping operator to compute the aggregation and doesthe comparison using
a semi-join. As the input for the grouping operator is already sorted by the group-
ing attribute, an efficient implementation for the groupingoperator can be used. For
class IM/DS, Equivalence 3.2 can be applied. Generally, theequivalences from the
previous sections can be used for all cases.

3.3.3 Dependent Comparison Expressions

Last but not least we discuss optimizations for comparison expressions that are
made up only of dependent operands. The last two sections considered optimiza-
tions for comparison expressions where at least one of the operands is independent
(i.e. that the independent part is evaluated redundantly).If both operands are de-
pendent, unnesting techniques in the narrower sense cannotbe applied. In this
section, we present a few algebraic optimization techniques for optimizing such
queries. Optimizing such queries requires factorization or schema knowledge. Al-
though schema-based optimization is beyond the scope of this thesis (see outline in
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Chapter 7), we present examples that demonstrate the optimization potential. For a
more extensive treatment of optimizations for queries withdependent comparison
expressions, we refer to [107].

The equivalences we present in this thesis are shown in Fig. 3.8.

σf(σn=c1(χn:f′(cn)(T [π])))=f(σn′=c2
(χn′:f′(cn)(T [π])))(e) ≡ e <Π

y,y′(σy′=y(χy′:2(V) (3.9)Py:2
true(Γy;=x;count(Γx;=n;f

(σn=c1∨n=c2(χn:f ′(cn)(T [π])))))))>

and f ∈ {sum, count},

and π is context dependent one

σE(T [(π)[e2]]) ≡ ΠD
string-value(cn)

(T [(π)[e2]] <T [e1]>) (3.10)

with E = not(T [e1] = T [((pre :: ∗)|(anc :: ∗))[e2]/e1])

if e1 is single-valued,

e1 is context dependent on(π)[e2] and,

e2 does not contain a call to position or last

Figure 3.8: Equivalences for dependent comparison expressions

In the following three subsections, we discuss comparison expressions of type
DA/DA, DS/DM, and DM/DM. We present an example query for eachtype and
demonstrate their effectiveness in our evaluation section.

Class DA/DA

The first class contains comparison expressions where both operands are single-
valued. Obviously, it is very challenging to improve the performance of nested
single-valued expressions that do not result from aggregation. On the other hand,
expressions that include aggregation (DA/DA) are more amenable to optimization
since they can be more expensive to evaluate. As an example, consider the query
selecting all students that take as many exams as they have attended lectures:

//student[count(descendant::examination)
= count(descendant::attends)]/name

Q4

The canonical translation is as follows:

e = Ψ[name](σe1=e2(T [//student]))

e1 = Ax;count(T [descendant::examination])

e2 = Ay;count(T [descendant::attends])

The last two sections considered optimizations for comparison expressions where
at least one of the operands is independent (i.e. that the independent part is evaluated
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redundantly). As in the above example, all expressions are dependent, unnesting
techniques in the narrower sense cannot be applied. However, all descendant nodes
of students are visited twice, once for each dependent expression. We can do better
if we find a common superset with the following property: the overall evaluation
costs – the costs to compute the superset plus the costs to complete the computa-
tions for both expressions – are cheaper than the evaluationcosts of evaluating both
expressions independently.

For the above example, the two optimized expressions can also be expressed
using XPath filter expressions. For instance,

• (descendant::*)[name(.)=’examination’] and

• (descendant::*)[name(.)=’attends’].

Again, the idea is to use a common scan to evaluate the superset and to eval-
uate the name tests afterwards. Applying Equivalence 3.9 results in the following
optimized translation:

e′ = Ψ[name](T [//student] <e′1 >)

e′1 = Πy,y′(σy′=y(χy′:2(V)Py:2
true(e

′
2)

e′2 = Γy;=x;count(Γx;=n;count(e
′
3))))

e′3 = (σn=(’examination’)∨n=(’attends’)(e
′
4)))

e′4 = (χ
n:name(cn)(T [descendant::*]))

The inner expressione′1 is connected using a d-join. It starts with evaluating
all descendant nodes of the context nodes and subsequently adds the tagname as
attributen to each tuple. The following selection filters the nodes according to the
required names. The first grouping operator creates groups for each of the names
and adds an attribute containing the group sizes. The secondgrouping operator
creates groups for each of the group sizes and counts its members. The result of the
second grouping qualifies if it consists of one group andy = 2. The outer join is
needed to handle empty groups.

Class DS/DM

The next class contains one single-valued and one set-valued expression. A com-
mon technique (cf. Sec. 3.14 in [38]) to eliminate duplicates using XPath is shown
in the following example query:

//lecture[not(title =
preceding-sibling::lecture/title)]/title

Q5

Within our document, we have a lot of lectures (all on the samelevel), some
having the same title. Reasoning about this fact requires schema information. We
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want to get a list of all lecture titles without duplicates. Therefore, our XPath query
selects the lectures with a title that does not follow in the remainder of the document.
The canonical translation is as follows :

e = Ψ[title](σ
not(Ax;existse1Gcn=cn′e2)

(T [//lecture]))

e1 = T [title]

e2 = Πcn′:cn(T [preceding-sibling::lecture] <T [title]>)

Obviously, the costs to evaluate all preceding-siblings for every lecture are huge.
However, using information about the semantics of the abovequery, we can do bet-
ter and apply Equivalence 3.10. This equivalences relies ona our duplicate elimi-
nation which exactly resembles the required semantics. It keeps the first tuple with
a given string-value (string-value(cn)) and throws away the remaining ones.

e′ = ΠD

string-value(cn)(T [//lecture/title])

In fact, Equivalence 3.10 is more general. However, with some knowledge about
the schema, in which all lectures appear on the same level, wecan apply a rewrite
and use thepreceding-sibling axis instead of the union ofpreceding and
ancestor.

Class DM/DM

This class is the most difficult to optimize, as we have two dependent set-valued
expressions (i.e. it may be quite challenging to factorize common subexpressions).
Most of the (reasonable) optimizations that are possible involve the semantics of the
query, that is, knowledge of the schema. As schema-based optimizations are beyond
the scope of this thesis, we just give an example here and someevaluations later.
Consider the following query in which we are looking for all research assistants
who share a research topic with another assistant:

//employee[assistant/topic =
(following-sibling::employee |

preceding-sibling::employee)
/assistant/topic]/name

Q6

As all assistants can be found on the same level in the document, it is sufficient
to scan through them twice and join them on their topics (taking care not to join a
tuple with itself). After that, we just need to eliminate duplicates.

e = Ψ[name]ΠD
e ((e1Be 6=e′∧t=t′e2)) (3.11)

e1 = Πt:cn(Ψ[topic](Ψ[assistant](Πe:cn(T [//employee]))))

e2 = Πt′:cn(Ψ[topic](Ψ[assistant](Πe′:cn(T [//employee]))))
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3.4 Evaluation

To show the effectiveness of our approach, we measured different XPath evalua-
tion engines against our canonical and optimized translations. We chose the freely
available engines

• Xalan C++ 1.8.0 using Xerces C++ 2.6.0,

• Berkley DB XML 2.0.9 (DBXML) using libpathan 1.99 as XPath engine,

• MonetDB 4.8.0 using MonetDB-XQuery-0.8.0 [10],

• the evaluator provided by the XMLTaskForce [72] (XTF), and

• Natix for the canonical and optimized approach.

3.4.1 Environment

The environment used to perform the experiments consisted of a PC with an Intel
Pentium 4 CPU at 2.40GHz and 1 GB of RAM, running SuSE Linux 2.6.8. The
Natix C++ library was compiled with gcc 3.3.5 using optimization level 2.

For Xalan and XTF, we measured the net time to execute the query. The time
used to parse the document and generate the main memory representation is sub-
tracted from the elapsed evaluation time.

For the evaluation of MonetDB, Berkley DB XML, and Natix, we imported
the documents into the database. The Natix instance was created using a page
size of 8kB and a buffer size of 1000 pages. The cache for Berkley DB XML was
configured with the same size. MonetDB was used out of the box.The queries were
executed with an empty buffer pool on a cold instance and without any indexes. The
query execution engine of the Natix system implements the logical algebra defined
in the last and this chapter.

3.4.2 Documents

We generated two different sets of documents. The first is used for our example
queries Q1-Q6 that are based on the university schema. Thesedocuments were
generated using the ToXgene data generator [6]4. We generated 6 documents: The
smallest document contains 50 employees, 100 students, 10 lectures, and 30 exams.
With each document we quadrupled these numbers, so that the biggest document
contains 51200 employees, 102400 students, 10240 lectures, and 30720 exams.
Overall, this lead to moderate document sizes between 59kB and 43MB.

The second set (called synthetic data set) is used for the comparison of the
kappa-join with our unnesting strategy according to Equivalence 3.2. We generated
seven documents structured according to the following template:

4The DTD is shown in Appendix B
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<?xml version=’1.0’?>
<gen>
<e1 id=’0’> <e2 id=’0’/> ... i-e2 nodes <e2 id=’i’/> </e1>

...
<e1 id=’0’> <e2 id=’0’/> ... i-e2 nodes <e2 id=’i’/> </e1>
<e3 id=’RandomNumber’/>
</gen>

Each of the documents contains 1000e1 nodes and 1000e3 nodes. For each
document, we varied the number ofe2 nodes (below ane1 node) between 10 and
500 nodes. This led to documents with sizes between 252kB and13MB.

3.4.3 Queries

We executed performance measurements for all example queries (Q1-Q6) presented
throughout this chapter. All queries were executed as printed on all the evaluators
listed above.

Additionally, we executed performance measurements that compare the unnest-
ing strategy according to Equivalence 3.2 with our kappa-join operator. Therefore,
we executed the following query on our synthetic data set:

/gen/e1[e2/@id = /gen/e3/@id] Q7

Query Evaluation Plans for Natix For Natix, we generated several different
NVM access plans for each of the queries. One plan always implements the canon-
ical translation. Further, we generated the following alternative plans:

Q1: unnested Access plan which uses Equivalence 3.2 twice. The exams and lec-
tures are compared first, before completing the result with the students.

Q2: unnested Access plan using constant folding.

max Access plan which uses the max operator as described in Section 3.3.2,
i.e. Equivalence 3.1.

Q3: unnested Access plan with Equivalence 3.2 applied (see Fig. 3.5).

kappa Access plan using the kappa-join (see Fig. 3.6).

Q4: optimized Access plan which uses Equivalence 3.9.

Q5: dupelim Access plan which uses Equivalence 3.10.

Q6: join Access plan according to Expression 3.11.

Q7: unnested Access plan according to Equivalence 3.2.

kappa Access plan exploiting the kappa-join.
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Documents
Evaluator 1 2 3 4 5 6
Xalan 0.01 0.03 0.44 7.71 123.92 2008
DBXML 0.03 0.14 1.32 4.09 59.06 863.56
MonetDB 0.28 0.35 1.36 22.70 DNF DNF
XTF 0.49 5.65 111.40 DNF DNF DNF
Natix
• canonical 0.16 0.81 11.12 176.59 12330 DNF
• unnested 0.12 0.13 0.17 0.31 0.93 3.37
•max 0.12 0.13 0.14 0.22 0.51 1.69

Figure 3.9: Results (in sec.) for Q2

3.4.4 Results and Interpretation

Figures 3.9, 3.10, and 3.11 present the results of our performance measurements.
All tables show the elapsed time in seconds. We executed all queries that finished
within six hours. Those that did not finish in this time limit are marked by DNF.
For MonetDB, the evaluation of some queries ran out of memoryon bigger docu-
ments (denoted by OOM). Moreover, for some queries the evaluator provided by
the XMLTaskForce and MonetDB crashed for unknown reasons. These cases are
denoted byn/a. The best execution time for each column is printed in bold face.
For almost all queries, our optimized approaches perform and scale best.

IA/DS Fig. 3.9 presents the performance evaluation for Q2. From the figure we
can see that our unnested approach and the strategy using themax operator outper-
form the fastest of the other evaluators (i.e. Xalan) by three orders of magnitude on
the biggest document. On this document, almost all other approaches — including
our canonical approach — did not finish within six hours. Moreover, the evaluation
demonstrates that the max operator gives us an additional speedup of almost 50%
when compared to the ”simple” unnested approach.

IM/DM For demonstrating the performance of our unnesting approach for queries
whose comparison operands are both set-valued, we performed experiments with Q1
and Q3 on the university schema and Q7 on our synthetic schemaFor all queries
on all documents, our unnesting approach performs and scales best.

For Q3, the execution times of the unnesting approach using Equivalence 3.2
behave similar to those of the kappa-join. This is because all students took very
few exams, i.e. only between one and three. For this reason, we compared those
two strategies on the synthetic data set. Subfigure 3.10(c) contains a comparison
between the two strategies. The execution times of the unnesting strategy without
kappa-join grow linearly with the number ofe2 nodes pere1 node. This is because
it has to enumerate alle2 nodes and finally perform a duplicate elimination on the
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appropriatee1 nodes. The execution times of the kappa-join operator are almost
constant. This is because the kappa-join does not need to enumerate alle2 nodes
and saves the cost of a final duplicate elimination.

Documents
Evaluator 1 2 3 4 5 6
Xalan 1.07 45.40 2805 DNF DNF DNF
DBXML 0.98 40.83 2634 DNF DNF DNF
MonetDB 0.53 4.43 OOM OOM OOM OOM
XTF 0.22 4.54 67.00 1376 DNF DNF
Natix
• canonical 2.83 119.40 7154 DNF DNF DNF
• unnested 0.12 0.14 0.20 0.44 1.53 5.59

(a) Q1

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.30 0.38 6.17 95.6 1552 DNF
DBXML 0.07 0.66 11.6 336 DNF DNF
MonetDB 0.31 0.38 2.05 36.1 OOM OOM
XTF 0.40 4.72 82.8 DNF DNF DNF
Natix
• canonical 0.25 2.62 38.2 583 9637 DNF
• unnested 0.02 0.03 0.06 0.19 0.75 2.99
• kappa 0.02 0.03 0.06 0.19 0.75 2.88

(b) Q3
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Figure 3.10: Results (in sec.) for Q1, Q3, and Q7

DA/DA, DS/DM, and DM/DM Finally, Fig. 3.11 presents the evaluation of our
unnesting strategies targeting dependent comparison expressions.

Again, our approaches dominate almost all other evaluators. In some cases the
main memory-based interpreter Xalan is faster than our unnested approach. Espe-
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cially, on very small documents and when faced with an aggregation function as
in Q4, Xalan is almost twice as fast as our approach.

However, our unnesting techniques for queries Q5 and Q6 again outperform
all other evaluators. Especially our canonical approach cannot keep up with the
unnested approaches and is outperformed by several orders of magnitude. More-
over, for Query Q6, for example, our unnesting technique outperforms even the
fastest of the other evaluators (Xalan) by four orders of magnitude. These num-
bers show the potential that is possible to exploit with the help of schema-based
optimization.

Documents
Evaluator 1 2 3 4 5 6
Xalan 0 0 0.04 0.10 0.42 1.65
DBXML 0.04 0.08 0.32 1.34 5.66 23.26
MonetDB 0.21 0.21 0.27 0.58 1.37 5.93
XTF 0.21 2.32 38.17 593.83 9489 DNF
Natix
• canonical 0.12 0.13 0.17 0.33 1.00 3.76
• optimized 0.12 0.13 0.16 0.30 0.87 3.13

(a) Q4

Documents
Evaluator 1 2 3 4 5 6
Xalan 0 0 0.06 0.56 12.22 346.08
DBXML 0.03 0.10 0.64 8.17 232.54 DNF
MonetDB 0.26 0.27 0.40 1.80 23.87 n/a
XTF n/a n/a n/a n/a n/a n/a
Natix
• canonical 0.12 0.14 0.31 2.97 43.45 851.44
• dupelim 0.12 0.13 0.15 0.26 0.72 2.39

(b) Q5

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.01 0.08 1.49 29.90 795.9 33552
DBXML 0.15 0.62 9.65 451.06 DNF DNF
MonetDB 0.28 0.47 2.62 35.60 DNF DNF
XTF n/a n/a n/a n/a n/a n/a
Natix
• canonical 0.16 0.62 8.18 126.73 2522 DNF
• join 0.21 0.22 0.26 0.46 1.30 4.77

(c) Q6

Figure 3.11: Results (in sec.) for Q4, Q5, and Q6
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3.5 Related Work

We have already discussed existing evaluation techniques and evaluators for XPath
in the related work of the previous chapter. However, all of the mentioned ap-
proaches have their drawbacks when faced with nested/correlated XPath queries.

Clearly, our main competitor is the approach by Gottlob et al. [46, 47] They
presented a complete and efficient method for evaluating XPath. Although their
evaluation algorithm has a polynomial worst-case run time,they have some short-
comings in optimizing the evaluation process further. For example, for independent
nested expressions they materialize intermediate resultsfor all different contexts
(which is not necessary). We, however, can avoid this by unnesting the expression.

This brings us to the initial work on unnesting nested queries. Apart from in-
troducing a classification for nested queries, Kim [70] was the first to rephrase
nested SQL queries to contain joins or grouping. However, the validity of these
rewrites depends on important restrictions. They mainly concern empty results
for the inner query block, NULL values, and duplicate handling. Subsequent re-
search found more unnesting techniques for SQL [32, 36, 43, 44, 69, 71, 99],
OQL [28, 29, 39, 101, 102], and XQuery [81, 82, 93].

All these works have in common that they unnest nested queries where one
query block contains another query block. In SQL and OQL, a query block corre-
sponds to a SFW expression, whereas in XQuery, it is a FLWOR expression. Since
XPath does not exhibit query blocks, the applicability of these approaches is lim-
ited.

Strategies for the evaluation of nested queries are discussed in [50]. How-
ever, currently the full potential for optimization is onlyavailable when queries
are unnested. First results to lift this limitation are presented in [56]. Additional
work for avoiding unnecessary navigation in XQuery subqueries that is similar to
the max operator has been done in [33].

Contrary to the situation in unnesting SQL, OQL, or XQuery, there are cases
in XPath that are difficult to unnest. These are the cases in which both expressions
in a comparison expression are dependent. In these cases, werefer to [107] for
optimizations. In contrast to [107] our classification defines classes for expressions
of a single XPath query. They discuss the optimization of multiple correlated path
expressions within one query by utilizing the connections between different path
expressions. However, they have a similar definition of our term dependent, which
they call correlated.

3.6 Conclusion

The translation of XPath queries into algebraic expressions provides a solid foun-
dation for efficient evaluation. However, when faced with nested expressions, a
simple canonical translation, as shown in the previous chapter, still suffers from
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inadequate performance similar to other evaluation approaches, such as interpreta-
tion. In this chapter, we have showed how the algebraic approach can be leveraged
to significantly improve evaluation time for nested XPath queries.

We have classified XPath expressions on properties relevantfor unnesting predi-
cates. For each of the resulting classes, we have developed equivalences for unnest-
ing the algebraic expressions that have been obtained by thecanonical translation of
XPath into our algebra. In an experimental study, we have demonstrated that access
plans optimized in this way are superior to other state-of-the-art XPath evaluators.
We have gained several orders of magnitude in terms of performance by unnesting
nested expressions.

However, our unnesting techniques do not apply when concerned with nested
queries occurring in a disjunction. This also holds for all other unnesting techniques
in the context of SQL, OQL, and XQuery. Hence, in the next chapter, we extend
our approach to also support nested XPath queries with disjunctions.





Chapter 4

Disjunctive Unnesting for XPath

Almost every XML query language features a construct that allows to express an ex-
istentially quantified comparison of two node-set valued subexpressions in a concise
manner. Unfortunately, current XML query processors lack efficiency and scalabil-
ity when facing such constructs. Query Q1 from the beginningof the last chapter is
an example for such a query. The corresponding semantics resembles that of nested
and correlated subqueries, which are notoriously difficultto evaluate efficiently. To
this end, we presented solutions in form of algebraic equivalences for efficiently
evaluating such queries.

However, Q3 is ”simple” because the correlation predicate occurs on its own.
What if correlation predicates become more complex? For an example, consider
the following XPath query:

//student[examination/@id = //exam[grade<’B’]/@id or
semester > 5]/name

Q8

In this query, which could be used for searching students that are eligible for
assistantship, we search foreithergoodor senior students. If the two clauses were
combined withand, we could use the techniques presented in the previous chapter.
If the clauses were not correlation predicates, we could usetechniques to improve
performance for disjunctive predicates (e.g. bypass operators [27]). However, none
of the existing techniques is able to unnestdisjunctivelyoccurring correlation pred-
icates.

Hence, in this chapter, we combine the bypass technique and our unnesting
technique which allows an unnested evaluation of disjunctively occurring correla-
tion predicates. So far, this has not been accomplished for any query language.

The main contributions of this chapter are as follows:

• We combine the bypass technique with our unnesting approachto allow for
efficient query execution plans in the presence of disjunction.

• We introduce a bypass variant of the kappa-join that allows us to extend our
technique to queries where two or more correlation predicates occur in a dis-
junction.

59
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T [name]

σ

T [//student] orAexistsG
T [examination/@id] T [//exam[...]/@id]

T [semester > 5]

Figure 4.1: Translation sketch for Q8

• We provide experimental results, demonstrating the superiority of our new
approach compared to other evaluation techniques and freely available XPath
evaluators.

The remainder of this chapter is organized as follows: In thenext section, we
illustrate the problem existing unnesting techniques havein the presence of dis-
junction. Section 4.2 presents the bypass technique. In Sec. 4.3, we investigate the
case of disjunctive correlation and present our novel bypass kappa-join. We experi-
mentally confirm the efficiency of our approach in Sec. 4.4, discuss related work in
Sec. 4.5, and conclude the chapter in the last Section 4.6.

4.1 Problem

Consider the canonical algebra plan for Query Q8 (see Fig. 4.1). This algebra ex-
pression is similar to the one presented in Fig. 3.4 for Q3 (see Sec. 3.3.2), except for
theor function call in the subscript of the selection. Disjunctively occurring literals
are translated using anor function call. It evaluates to true if either of its producer
expressions does.

Because of the extra literal and theor function call, the pattern used for the
correlation predicate does not match the left-hand side of Equivalence 3.2 or the
definition of the kappa-join. Hence, we cannot proceed as forQuery Q3. The
only technique currently available to improve the canonical plan is the so-called
shortcut evaluation of the disjunction, which means that wecan avoid evaluation
of the expensive correlation predicate for those students where the cheaper literal
semester > 5 is true. Below, we recall the bypass technique, which does exactly
that.
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T [name]

.
∪

σ±

T [//student] T [semester > 5]

σAexistsG=

T [examination/@id]

T [//exam[...]/@id]

Figure 4.2: Unnesting strategy for Q8 with bypass selection

4.2 Bypass Technique

The bypass technique is used to prevent the unnecessary evaluation of predicates
that occur disjunctively [27]. For this, the bypass technique adds a new class of
operators to the conventional algebra. In contrast to regular operators, bypass oper-
ators havetwooutput sequences. The first sequence contains the tuples that qualify
for the predicate of the operator. The second sequence consists of those tuples that
do not qualify this predicate. The two disjoint sequences are calledtrue-andfalse-
sequence. The existing bypass technique provides a bypass selection, a bypass join,
and a bypass semi-join [27]. For our purposes, we only need the bypass selection.

Consider as a first example the algebra representation of Q8 extended by a by-
pass selection operator (σ±) for evaluating the cheaper predicatesemester > 5.
Fig. 4.2 shows the resulting plan. Here and in the following,the false-sequence is
indicated by dotted lines. The evaluation according to thisplan starts with comput-
ing all result tuples for the outer expression (//student).

The bypass selection divides these tuples into two disjointsequences. The true-
sequence contains the students that fulfill the predicatesemester > 5. Accordingly,
the false-sequence contains the tuples that fail this predicate. The tuples of both
sequences form two separate paths, which are merged by a disjoint union (

.
∪). The

tuples from the false-sequence have to pass the second selection operator computing
the complex correlation predicate. This operator is responsible for filtering out those
tuples that do not qualify for any of the two predicates. The two sequences are
disjoint. Hence, no duplicate elimination is required by

.
∪. However, as the XPath

semantics requires its result to be in document order, a merge as in merge-sort may
be required. This can be done, for example, by numbering the tuples before use
or use node ids if they allow to rebuild the order. The final processing ofT [name]
completes the result.

Looking at Fig. 4.2, we are in for a surprise: The bypass selection we introduced
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T [name]

.
∪

σ±

T [//student] T [semester > 5]

κT [examination/@id]
=

T [//exam[...]/@id]

Figure 4.3: Unnesting strategy for Q8 with bypass selectionand kappa-join

to allow shortcut evaluation of the disjunction made the pattern required for Equiv-
alence 3.2 or the kappa-join reappear! We discuss in the following subsection how
to leverage this for the unnesting of disjunctive queries with a single correlation
predicate.

4.3 Disjunctive Unnesting

4.3.1 Unnesting a Single Disjunctive Correlation Predicate

Query Q8 contains a single correlation predicate within a disjunction. Bypass plans
have the advantage that the expression in the false-sequence can be optimized sep-
arately. In general, whenever there is only a single correlation predicate per dis-
junction, we can apply unnesting. As seen in Fig. 4.2, we can again recognize
the pattern that allows us to integrate the kappa-join for the conjunctive case. In
the false-sequence of Fig. 4.2, we can use the kappa-join, yielding the expression
shown in Fig. 4.3. Of course, we could also apply Equivalence3.2 to the pattern in
the false-sequence.

In this case, the plan takes advantage of both: (1) shortcut evaluation of the lit-
erals connected by disjunction and (2) unnesting of correlation predicates allowing
efficient execution if the cheaper predicate in the disjunction fails.

4.3.2 Unnesting Multiple Disjunctive Correlation Predicates

We have seen that the bypass technique facilitates unnesting if there is only one
correlation predicate in the disjunction. Unfortunately,if there is more than one,
we are again at a loss. Consider as an example the following query. In addition to
the good students, we also want to query the database for students that have already
been a teaching assistant for a given lecture.
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T [name]

.
∪

ΠAG±=C
νA

T [//student]

T [examination/@id]

T [//exam[. . .]/@id]

κT [@id]
=

T [//lecture[...]/.../@student]

Figure 4.4: Incorrect unnesting strategy for Q9

T [name]

.
∪

κ±,T [examination/@id]
=

T [//student] T [//exam[...]/@id]

κT [@id]
=

T [//lecture[...]/.../@student]

Figure 4.5: Unnesting strategy for Q9 with kappa-join

//student[examination/@id= //exam[grade < ’B’]/@id or
@id = //lecture[title=’NCT’]

/helpers/helper/@student]/name
Q9

We would like to unnest both correlation predicates. At firstglance, it is tempt-
ing to apply the unnesting strategy according to Equivalence 3.2. Fig. 4.4 shows an
algebra expression for Q9 applying this technique, but using a bypass semi-join in-
stead of a regular semi-join. However, this approach is not feasible. The first d-join
on the leftmost branch of the plan eliminates those items produced by//student
for which the dependent expressionexmination/@id produces an empty result. If
we had a conjunctive query, this would not be a problem.

However, the//student items failing the first disjunct could still qualify for the
second disjunct, and dropping them as in Fig. 4.4 produces anincorrect result. Note
that the bypass semi-join does not help: It ”comes too late”.Problems of this kind
are often solved by using an outer-join [71] or, in this case,outer d-join. However,
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this would still require duplicate elimination onνA, as shown in the true-sequence.
It turns out that we can do much better by applying thebypass kappa-join. As

every bypass operator, the bypass kappa-join has two resultsequences. The true-
sequence is the same as for the regular kappa-join. The tuples in the false-sequence
are the ones from the outer producer for which there was no match in the inner
producer or for which the link producer returned an empty result. In the false-
stream, we now have our familiar pattern and can employ the unnesting strategy as
if the correlation predicate was a single correlation predicate. Fig. 4.5 shows the
result. This plan finally has everything we want: (1) the evaluation of both corre-
lation predicates can be done in a decorrelated fashion, (2)the kappa-join avoids
unneeded duplicate generation and elimination for both correlation predicates, and
(3) we have shortcut evaluation and only evaluate the secondcorrelation predicate
if the first one fails.

4.4 Evaluation

To show the effectiveness of our approach, we ran experiments with different XPath
evaluation engines against our canonical and optimized approaches. We chose the
freely available engines

• Xalan C++ 1.8.0 using Xerces C++ version 2.6.0,

• Saxon for Java 8.7.1,

• Berkeley DB XML 2.0.9 (DBXML) using libpathan 1.99 as XPath engine,

• MonetDB 4.8.0 using MonetDB-XQuery-0.8.0,

• the evaluator provided by the XMLTaskForce (XTF), and

• Natix for the execution of the canonical and unnested plans.

We performed the experiments within the environment presented in the last
chapter. Moreover, we also generated the same documents as described in Sec. 3.4.
For Xalan, Saxon, and XTF, we measured the net time toexecutethe query. The
time needed to parse the document and generate the main memory representation
is subtracted from the elapsed evaluation time. For the evaluation of MonetDB,
Berkeley DB XML, and Natix, we imported the documents into the database. The
time needed for this is not included in the execution times. The queries were exe-
cuted several times with an empty buffer pool and without anyindexes.
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Queries

We executed performance measurements for both example queries (Q8 and Q9)
presented in this chapter. For Natix, we generated several different query evalua-
tion plans. For each of the queries, we generated the canonical plan as specified in
Chapter 2. For example, Fig. 4.1 shows the plans for Q8. Further, we generated
plans incorporating our optimization strategies. The following table gives a map-
ping from names for optimized query evaluation plans to figures that illustrate the
techniques used.

Query Name Figure
Q7 bypass Fig. 4.2

kappa Fig. 4.3
Q8 bypasskappa Fig. 4.5

4.4.1 Results and Interpretation

Fig. 4.6 contains the results of our performance measurements (elapsed time in
seconds). The best execution time(s) for each column in all tables are printed in
bold face. Those that did not finish within six hours are marked by DNF (did not
finish). For MonetDB, the evaluation of some queries ran out of memory on bigger
documents. These cases are denoted by OOM.

Subfigures 4.6(a) and 4.6(b) show the execution times for Q8 and Q9, respec-
tively. For all queries on all documents, our unnested approach performs and scales
best. The performance of all other approaches drops considerably when executed
on bigger documents. In contrast, our plans containing the kappa-join (Q8) and
bypass kappa-join (Q9) almost scale linearly with the size of the document.

4.5 Related Work

We have already discussed related work for unnesting XPath,SQL, OQL, and
XQuery at the end of the previous chapter. However, none of the mentioned ap-
proaches can handle unnesting in the presence of disjunction.

Several optimization techniques for queries containing disjunctive predicates
have been proposed [22, 27, 65]. One of them is the bypass technique [27] which
we extend with support for unnesting. Because bypass operators have two output
streams, which are unioned later, the resulting expressionforms a directed acyclic
graph (DAG). Strategies for implementing bypass operatorsand query evaluation
engines that support DAG-structured query plans can be found in [27, 87, 97].
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Documents
Evaluator 1 2 3 4 5 6
Xalan 0.02 0.23 3.63 54.7 893 12453
DBXML 0.06 0.39 6.87 207 DNF DNF
MonetDB 0.25 0.36 2.02 36.2 OOM OOM
Saxon 0.22 0.30 0.62 1.44 7.82 85.4
XTF 0.76 8.60 9180 DNF DNF DNF
Natix

• canonical 0.16 1.64 20.9 333 5598 DNF
• bypass 0.16 1.59 20.7 323 5436 DNF
• kappa 0.03 0.05 0.16 0.60 2.51 9.91

(a) Q8

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.06 0.75 12.6 199 3201 DNF
DBXML 0.30 1.61 30.2 4057 DNF DNF
MonetDB 0.31 0.50 3.29 62.9 OOM OOM
Saxon 0.20 0.28 0.54 1.48 10.9 138
XTF 0.48 5.14 94.8 DNF DNF DNF
Natix

• canonical 0.37 3.49 DNF DNF DNF DNF
• bypasscanonical 0.37 3.43 48.1 749 12492 DNF
• bypasskappa 0.02 0.04 0.10 0.35 1.44 5.91

(b) Q9

Figure 4.6: Results (in sec.) for Q8 and Q9

4.6 Conclusion

We have demonstrated how to efficiently evaluate XPath queries featuring existen-
tially quantified correlation predicates that occur in a disjunction. By injecting the
kappa-join — introduced in the previous chapter — with the bypass technique, we
are also able to perform an unnested evaluation if the correlation predicate occurs
in a disjunction. All other approaches cannot evaluate sucha case efficiently. Our
performance measurements show that the bypass kappa-join outperforms existing
approaches by up to two orders of magnitude.

Our novel unnesting technique is not only applicable to XPath queries contain-
ing disjunctions, but also to other query languages. For example, in [13] we have
presented the applicability to XQuery. Moreover, in the next chapter, we transfer
our approach for optimizing SQL queries in the presence of disjunction.



Chapter 5

Disjunctive Unnesting for SQL

In the last two chapters, we have seen that nested queries caneasily become a per-
formance bottleneck because in many cases, they demand a nested-loop evaluation.
For XPath, we presented a technique to unnest XPath comparison expressions if the
expression occurs either in a conjunction or a disjunction.Moreover, for conjunc-
tive SQL and OQL predicates this problem has also been addressed successfully,
e.g. [29, 70, 99]. However, despite the fact that disjunctions occurring inside nested
queries are common in practice, we are not aware of any work that treats unnest-
ing nested SQL queries which contain disjunctions, i.e. thelinking or correlation
predicate occur in a disjunction. Hence, in this chapter, weintroduce a technique to
unnest disjunctive nested SQL queries.

Key Idea As an example, let us consider a sample analytical query. Assume that
we are interested in all European suppliers that deliver a certain part with minimum
supply costsor have a minimal amount of this part available on stock. In SQL,this
query can be formulated as follows:

SELECT s acctbal, s name, n name, p partkey,
p mfgr, s address, s phone, s comment

FROM part, supplier, partsupp, nation, region
WHERE p partkey = ps partkey
AND s suppkey = ps suppkey AND p size = 15
AND p type LIKE ’%BRASS’
AND s n key = n n key AND n r key = r r key
AND r name = ’EUROPE’
AND (ps supplycost=(SELECT min(ps supplycost)

FROM partsupp, supplier,
nation, region

WHERE s suppkey = ps suppkey
AND p partkey = ps partkey
AND s n key = n n key

67
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AND n r key = r r key
AND r name = ’EUROPE’)

OR ps availqty > 2000)
ORDER BY s acctbal desc, n name, s name, p partkey

This query is very similar to TPC-H Query 2. Hence, we refer toit as Query
2d. It exhibits two key components: (1) it features a nested,correlated subquery,
and (2) it contains a disjunction. Our unnesting strategy iscapable of optimizing
nested queries whose linking or correlation predicates occur disjunctively. The key
idea is that the nested query block needs to be evaluated onlyfor those tuples of the
outer query block that do not pass the cheap and simple predicateps availqty
> 2000. For those tuples, we are currently restricted to an inefficient nested-loop
evaluation. However, our novel unnesting technique allowsto employ more effi-
cient evaluation algorithms. Consequently, our approach exploits both the short-cut
evaluation of the disjunction and the power of unnesting nested queries.

Our Approach The starting point of our approach is to translate SQL into the
relational algebra extended with bypass operators [27, 68]. Then, we apply our
novel unnesting equivalences, which can cope with disjunctions on a large variety
of nested queries. As a result, nested query blocks are removed, and the resulting
queries can be evaluated much more efficiently.

As already mentioned in previous chapters, applying unnesting at the algebraic
level has mainly three advantages: (1) It is possible to giverigorous correctness
proofs for the unnesting equivalences. (2) Unnesting techniques stated as alge-
braic equivalences are query language independent as long as the query language
is translatable into the algebra. (3) Unnesting equivalences can be used during plan
generation. This allows to apply them in a cost-based manner. The latter is espe-
cially important in our case, since some unnesting strategies do not always result in
better plans.

Contributions The main contributions of this chapter are:

• We present equivalences for unnesting algebraic expressions with bypass op-
erators to handle disjunctive linking and correlation predicates where the link-
ing and/or the correlation predicate involves a comparisonoperatorθ ∈ {=
, 6=, <,≤, >,≥}.

• We present how our approach can be applied to quantified tablesubqueries
with the operators EXISTS, NOT EXISTS, IN, and NOT IN.

• We show how they can be used to effectively unnest SQL querieswith scalar
subqueries featuring an arbitrary aggregation function intheselect clause.
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• Our techniques can be applied not only to queries with exactly one nested
block (simple queries), but also to queries whose nesting has a linear or even
a tree structure [85].

• We provide experimental results demonstrating the performance improve-
ments that can be achieved by using our approach.

Limitations As a current limitation, we restrict ourselves to queries exhibiting
direct correlation: That is, for linear queries the correlation predicate only refers to
attributes of the current block and the direct outer block.

Further, we do exclude linking predicates with linking operatorsθ SOME/ANY,
or θ ALL with θ ∈ {<,≤, >,≥} from our discussion. However, using aggregate
functions that are aware of NULL values, we can still optimize these queries by
turning these quantifiers into the aggregate functionsminNULL or maxNULL (cf.
‘’[44]).

Structure of This Chapter The remainder of this chapter is organized as follows:
Section 5.1 briefly introduces preliminaries. In Section 5.2, we present our unnest-
ing technique for table subqueries. Section 5.3 contains our unnesting techniques
for scalar subqueries. After introducing these approaches, we show their effective-
ness with an experimental study (Sec. 5.4). At the end, we summarize related work
in Section 5.5 and conclude the chapter with Section 5.6.

5.1 Preliminaries

To start with, we briefly establish a common terminology and repeat Kim’s classifi-
cation for nested SQL queries [70]. After that, we present the algebra on which our
unnesting approach is based on.

5.1.1 Terminology

A query blockis aselect-from-whereexpression. A query containing a query
block nested in another query block is called anested query. The containing query
block is calledouter query block, and the contained block is calledinner query
block. An inner query block is also callednestedquery block. Letp be a predicate
occurring in thewhere clause of an inner query block. Ifp refers to attributes
defined in the outer query block and to attributes defined in the inner query block,p
is called acorrelation predicate, and the inner query block is calledcorrelated. A
predicateq in thewhere clause of the outer query block which contains the inner
query block as an argument is calledconnection predicate. The operator used in the
connection predicate is calledconnection operator. Connection predicates are also
calledlinking predicates[23]. In the following, we will stick to the latter term.
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If a linking predicate occurs in a disjunction as, for example, in the introductory
query, this is calleddisjunctive linking. Analogously, if the correlation predicate
occurs in a disjunction, this is calleddisjunctive correlation.

5.1.2 Classification

Kim introduced four types of nested query blocks [70]:A, N, JA, andJ. Let us refer
to a nested query block asB. If B contains an aggregate function,B is of typeA or
JA and is calledscalarsubquery.B must return a single column. IfB contains a
correlation predicate, it is of typeJ or JA. A nested query blockB that neither has
an aggregate function nor a correlation predicate is of typeN. Query blocks with
an aggregation function but no correlation predicate are oftype A. Nested query
blocks of typeN or J are calledtablesubqueries. They are connected to their outer
query block using thepositive linking operatorsEXISTS, SOME/ANY, andIN or
negative linking operatorsNOT EXISTS, ALL, andNOT IN, respectively.

While Kim concentrates on classifying single nested query blocks, Muralikr-
ishna additionally classifies queries according to the nesting structure [85]. He
subdivides queries with more than one nested block into linear and tree queries:
A Linear (Nested) Queryis a query where at most one block is nested within any
block. A Tree (Nested) Queryis a query with at least one block, which has two or
more blocks nested within at the same level. We complete thisclassification and
call a query with exactly one nested block aSimple (Nested) Query.

5.1.3 Algebra for Sets

In contrast to previous chapters, the domain of the relational algebra consists of sets
of tuples. The core algebra we use in this chapter contains the following operators:
union (∪), intersection (∩), set-difference (\), projection (Π), renaming operator
(ρ), selection (σ), theta-join (B), semi-join (G), and anti semi-join (I) [45]. We
denote a disjoint union by

.
∪.

For the purpose of this chapter, we extend this core algebra by five operators:
a unary grouping operator (Γ), a binary grouping operator (T) [29, 102], a left
outer-join (Pg:f(∅)) [29, 31], a numbering operator (ν), and a map operator (χ).

Given the definition of the binary grouping operator in Fig. 5.1, we define the
unary grouping operator. The left outer-join (Pg:f(∅)) is required to address the
“count bug” [69, 44], i.e. losing a tuple due to an empty group. Therefore, the
functionf assigns meaningful values to the attributeg for tuples that have no join
partner on the right-hand side. The numbering operator (ν) characterizes each tuple
with a unique deterministic number (e.g. a physical tuple identifier). We use the
map operator to apply a function to each tuple. Figure 5.1 summarizes the formal
definition of the five additional operators.

As a final important extension of our algebra, we allow subscripts to contain
algebraic expressions. In our case, such subscripts resultfrom translating nested
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query blocks in thewhere clause, i.e. algebraic operators appear in selection pred-
icates.

To translate the linking predicatesEXISTS andIN, we employ the internal
function∃p(e); for the negated form we use6 ∃p(e). Each of these operators returns
true if there exists (does not exist) at least one element in their argumente that
satisfies the predicatep. We write∃(e) and 6 ∃(e) if the predicate is true, i.e. there
is no linking predicate (e.g.EXISTS andNOT EXISTS). To translate aggregate
functions, we use the aggregation operators, e.g.SUM,COUNT,MAX,MIN, andAVG.

In the previous chapter, we have presented bypass operators[27, 68] in order
to effectively deal with disjunction. In this chapter, we use them again in variants
that can be used for sets. Hence, we call their outputs positive and negative stream
instead of sequence (as in the previous chapter). For example, a selection produces
a positive streamcontaining all those tuples for which the selection predicate eval-
uates to true; thenegative streamcontains the remaining tuples. To denote the
positive and negative streams of a bypass operator, we use the superscripts+ and
−, respectively.

For this chapter, we need a bypass selection (σ±), a bypass join (B±), a bypass
semi-join (G±) and a bypass anti semi-join (I±). Their definitions on sets are given
in the bottom part of Figure 5.1.

Although the algebra is based on sets of tuples, our approachis also applicable
for an algebra on bags. In two dedicated sections (see Sec. 5.2.7 and 5.3.7) and in
the Appendix C, we elaborate on the correctness of our techniques if the algebra is
based on bags.

5.2 Unnesting Table Subqueries

We now present our detailed unnesting techniques along the lines of the classifi-
cation introduced in Section 5.1.2. As table subqueries (i.e. typesN & J) are less
demanding, we start out with them. As typeN queries can be unnested by applying
the unnesting techniques for typeJ queries, we deal with them later in Sec. 5.2.3.

This section is organized as follows: First, we discuss the basic idea of our
approach by means of two queries based on a synthetic schema.Second, we present
the general solution in the form of algebraic unnesting equivalences. On their left-
hand side, they have a selection whose predicate contains disjunctively a quantified
algebraic expression. On their right-hand side they introduce a bypass operator.
Then, we move on to more advanced issues, i.e. tree queries, linear queries, and
duplicate handling.

5.2.1 Disjunctive Linking

The first example query exhibits a nested query block whose disjunctively occur-
ring linking predicate uses the linking operatorIN. Because the nested block has a
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Non-standard operators:

e1Tg;A1θA2;fe2 := {x.A1 ◦ [g : G]|x ∈ e1 ∧

G = f({y|y ∈ e2 ∧ x.A1θy.A2})}

Γg;=A;f(e1) := ΠA:A′(ΠA′:A(e1)Tg;A=A′;f(e1))

e1Pg:f(∅)
p e2 := e1Bpe2 ∪ {x ◦ z|x ∈ e1 ∧

6 ∃y ∈ e2 : p(x, z) ∧A(z) = A(e2) ∧

g ∈ A(e2) ∧ ∀a ∈ (A(e2) \ g) :

(z.a : NULL ∧ z.g : f(∅))}

νA(e) := {ti ◦ [A : i]|e = {t1, . . . , tn}}

χa:e2(e1) := {x ◦ [a : e2(x)]|x ∈ e1}

Bypass operators:

σ+
p (e) := {x|x ∈ e ∧ p(x)}

σ−p (e) := e \ σ+
p (e)

∗
= {x|x ∈ e ∧ ¬p(x)}

e1B+
p e2 := {x ◦ y|x ∈ e1 ∧ y ∈ e2 ∧ p(x, y)}

e1B−p e2 := (e1Ae2) \ (e1B+
p e2)

∗
= {x ◦ y|x ∈ e1 ∧ y ∈ e2 ∧ ¬p(x, y)}

e1G+
p e2 := {x|x ∈ e1 ∧ ∃y ∈ e2 ∧ p(x, y)}

e1G−p e2 := e1 \ (e1G+
p e2)

∗
= {x|x ∈ e1∧ 6 ∃y ∈ e2 ∧ p(x, y)}

e1I+p e2 := {x|x ∈ e1∧ 6 ∃y ∈ e2 ∧ p(x, y)}

e1I−p e2 := e1 \ (e1I+p e2)
∗
= {x|x ∈ e1 ∧ ∃y ∈ e2 ∧ p(x, y)}

* only valid for two-valued logic (cf. [27, 68] for details).[·] denotes tuple con-
struction. ◦ denotes tuple concatenation.A(R) is the set of attributes of relation
R.

Figure 5.1: Operators of the algebra

correlation predicate in itswhere clause (R.A2 = S.B3), it is of typeJ.

SELECT DISTINCT *
FROM R
WHERE R.A1 IN (SELECT S.B4

FROM S
WHERE R.A2 = S.B3)

OR R.A4 > 1500;

Q10
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σ

R or

A4 > 1500 ∃A1=B4

σA2=B3

S
(a) Canonical

GA4>1500

∨(A1=B4∧A2=B3)

R S
(b) Semi-join

.
∪

σ±A4>1500

R

σ

∃A1=B4

σA2=B3

S
(c) Correlated bypass plan

.
∪

σ±A4>1500

R

GA1=B4∧A2=B3

S

(d) Unnested bypass plan (1)

.
∪

G±A1=B4∧A2=B3

R S

σA4>1500

(e) Unnested bypass
plan (2)

Figure 5.2: Unnesting strategy for Q10 (sketch)

Due to the existential nature of theIN operator, the algebraic expression result-
ing from the translation of the query has an existential quantifier subscripted with
the linking predicate. The argument of this quantifier itself is again an algebraic
expression. As the existential quantifier occurs in a selection operator, the nesting
of the query blocks in the query is reflected by a nesting of algebraic expressions,
i.e. the subscript of an algebraic operator again contains an algebraic expression.
Translating the query into a nested algebraic expression yields the following:

σ(∃A1=B4
(σA2=B3

(S)))∨A4>1500(R).

Fig. 5.2(a) sketches the more readable tree form of this expression. Evaluating
the predicate which contains the inner query block for everytuple produced by the
outer query block (R) is not very efficient.

To avoid this nested-loop-like evaluation, we would like tounnest the sub-
query. In the conjunctive case, nested queries are usually unnested by applying
(semi-)joins. Recast into the algebraic framework, this amounts to applying the
following equivalence:

σ∃A1=B1
(σA2=B2

(S))(R) ≡ RGA1=B1∧A2=B2S. (5.1)

Let us see what happens if we apply this traditional technique to our translated
query. The resulting expression (called semi-join plan) isshown in Fig. 5.2(b).
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The problem is that efficient implementations of (semi-)joins only exist for equi-
joins, whereas in our case, the semi-join condition contains a disjunction at the
top level. Implementations other than a simple nested-loopevaluation are beyond
reach. Thus, we are again stuck with a nested-loop evaluation.

Let us take a closer look at the query. Assume that a tuple fromR satisfiesR.A4
> 1500. Then, we do not have to checkR.A1 IN . . . for it: it qualifies inde-
pendently of the outcome of this check. Further, if a tuple from R does not satisfy
R.A4 > 1500, it must satisfyR.A1 IN . . . in order to qualify. Thus, it does
make sense to split the tuple stream produced by scanning R into two independent
streams: one containing those tuples satisfyingR.A4 > 1500 and one with the
remaining tuples. The latter then needs to be filtered byR.A1 IN . . .. Finally, as
the two streams are disjoint, a disjoint union (

.
∪) on these two streams suffices to

produce the final result. Bypass operators capture exactly this kind of reasoning.
This is why we want to use them for unnesting. Let us introducea bypass selection
with predicateR.A4 > 1500. Fig. 5.2(c) shows the result. The positive stream
of the bypass selection (denoted by a solid line) directly contributes to the final re-
sult whereas the negative stream (denoted by dots) is filtered by a selection with the
algebraic equivalent ofR.A1 IN . . .. This equivalent,∃A1=B4(σA2=B3(S)), is the
filter predicate of a top-level selection and itself contains an algebraic expression
(especially a scan of S). Hence, we still have a rather inefficient nested algebraic
expression demanding a nested-loop evaluation. However, we are prepared for the
final, performance-improving step.

We now introduce a semi-join to unnest the query (according to Equivalence 5.1).
Although the details are given in the next subsection, we still would like to give the
result:

e = e1

.
∪ e2

e1 = σ+
A4>1500(R)

e2 = (σ−A4>1500(R))GA1=B4∧A2=B3(S).

Fig. 5.2(d) shows this expression in a more readable form. The semi-join now
operates on the negative stream of the bypass selection and the scan of S. Since its
condition is now a conjunction of two equality predicates, it can be evaluated very
efficiently. We verify this claim in our experiments in Section 5.4.

Remark. It is important to recognize that commuting the bypass selection with
the semi-join (see Fig. 5.2(e)) is also feasible. This enables further optimization
potential. Assume that the second predicate is expensive toevaluate. Then it may
be cheaper to perform the semi-join first. This situation is recognized by comparing
ranks of the predicates: the one with the lower rank should beevaluated first [100].
For a predicatep, the rank (rank(p)) is defined ass−1

c
, wheres is the selectivity of

predicatep, andc is the cost required to evaluatep.
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5.2.2 Disjunctive Correlation

In the previous subsection, we have shown a technique to unnest (nested) queries
whose linking predicate occur in a disjunction. In contrast, the following query
contains a disjunctively occurring correlation predicate, i.e. disjunctive correlation:

SELECT DISTINCT *
FROM R
WHERE R.A1 IN (SELECT S.B4

FROM S
WHERE R.A2 = S.B3

OR S.B4 > 1500)

Q11

Fig. 5.3(a) depicts the canonical translation of this queryas a sketch. Note that
we cannot unnest this query with the technique of the first example, because the
where clause of the nested query contains a disjunction with two predicates, one
of which is the correlation predicate (R.A2 = S.B3).

Consider a tupler of R. If there exists a tuples in S such thats passes the tests
s.B4 > 1500 andr.A1 = s.B4, thenr is contained in the result. This is expressed
by the bypass semi-join in Fig 5.3(b). If no such tuple inS exists,r becomes part
of the negative output of the bypass semi-join. Forr to qualify, there must be a
tuple s in S such thatr.A1 = s.B4 andr.A2 = s.B3. As those tuples inS with
s.B4 > 1500 have been checked before, we only need to consider thoses ∈ S
not havings.B4 > 1500. Thus, we have to perform a semi-join on the negative
output of the bypass semi-join and the negative output of theselection (see again
Fig 5.3(b)).

σ

R ∃A1=B4

σ

S or

A2 = B3 B4 > 1500
(a) Canonical

.
∪

G±A1=B4

R σ±B4>1500

S

GA1=B4∧A2=B3

(b) Unnested bypass plan

Figure 5.3: Unnesting strategy for Q11 (sketch)
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σ∃A1=B1
(S)∨p(R) ≡ e1

.
∪ e2 (5.2)

e1 := σ+
p (R)

e2 := (σ−p (R))GA1=B1S

σ∃A1=B1
(S)∨p(R) ≡ e1

.
∪ e2 (5.3)

e1 := RG+
A1=B1

S

e2 := σp(RG−A1=B1
S)

σ6∃A1=B1
(S)∨p(R) ≡ e1

.
∪ e2 (5.4)

e1 := σ+
p (R)

e2 := (σ−p (R))IA1=B1S

σ6∃A1=B1
(S)∨p(R) ≡ e1

.
∪ e2 (5.5)

e1 := RI+A1=B1
(S)

e2 := σp(RI−A1=B1
S)

Figure 5.4: Equivalences for disjunctive N queries

5.2.3 Equivalences

After having worked out the general idea by means of two examples, we now intro-
duce the general form of our technique by means of our novel equivalences. They
are shown in Figure 5.4 for typeN subqueries and Figure 5.5 for typeJ subqueries.
We provide proofs of these equivalences in Appendix C. Theseequivalences allow
us, for example, to formally derive the unnested plans presented before. On their
left-hand side, they contain a selection with a predicate that results from the trans-
lation of a nested typeN or typeJ query block. On their right-hand side, they have
an unnested algebraic expression with bypass operators.

We first discuss the equivalences for disjunctive linking, then those for disjunc-
tive correlation.

Disjunctive Linking

We split the discussion of the equivalences for disjunctivelinking into two parts:
one for positive and one for negative linking predicates.

Positive Linking Predicates Equivalences 5.6 and 5.7 have been implicitly ap-
plied to our sample query Q10. The former yields the plan shown in Fig. 5.2(d), the
latter the one in Fig. 5.2(e).

Both equivalences unnest table subqueries that exhibit a positive linking pred-
icate occurring in a disjunction. The former employs the bypass technique to a
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σ∃A1=B1
(σA2=B2

(S))∨p(R) ≡ e1

.
∪ e2 (5.6)

e1 := σ+
p (R)

e2 := (σ−p (R))GA1=B1∧A2=B2S

σ∃A1=B1
(σA2=B2

(S))∨p(R) ≡ e1

.
∪ e2 (5.7)

e1 := RG+
A1=B1∧A2=B2

S

e2 := σp(RG−A1=B1∧A2=B2
S)

σ6∃A1=B1
(σA2=B2

(S))∨p(R) ≡ e1

.
∪ e2 (5.8)

e1 := σ+
p (R)

e2 := (σ−p (R))IA1=B1∧A2=B2(S)

σ6∃A1=B1
(σA2=B2

(S))∨p(R) ≡ e1

.
∪ e2 (5.9)

e1 := RI+A1=B1∧A2=B2
S

e2 := σp(RI−A1=B1∧A2=B2
S)

σ∃A1=B1
(σA2=B2∨p(S))(R) ≡ e1

.
∪ e2 (5.10)

e1 := RG+
A1=B1

e3

e2 := (RG−A1=B1
e3)GA1=B1∧A2=B2(σ

−
p (S))

e3 := σ+
p (S)

σ6∃A1=B1
(σA2=B2∨p(S))(R) ≡ e1

.
∪ e2 (5.11)

e1 := RI+A1=B1
e3

e2 := (RI−A1=B1
e3)IA1=B1∧A2=B2σ

−
p (S)

e3 := σ+
p (S)

Figure 5.5: Equivalences for disjunctive J queries

disjunctively occurring subquery and unnests the subqueryin the negative stream
of a bypass selection. The positive stream contains all tuples that match a lower-
ranked predicatep [100]. A final union merges both streams without having to
eliminate duplicates. The latter equivalence uses the sameidea, but the subquery
is evaluated first, and the evaluation of a higher-ranked (expensive) predicatep is
postponed into the negative stream.

Equivalences 5.2 and 5.3 are similar but can be used for unnesting subqueries
of typeN. As a result of the missing correlation predicate, the unnested query only
contains a simple join condition.

Negative Linking Predicates Equivalences 5.8 and 5.9 unnest queries with a neg-
ative linking predicate (i.e. of the formNOT IN), which occurs disjunctively. Both
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equivalences are similar to those for positive linking predicates but feature an anti
semi-join. The first equivalence takes advantage of an anti semi-join in the nega-
tive stream to unnest the subquery. Note that in order to evaluate the correlation
predicate it also becomes a join predicate of the anti semi-join. The second equiv-
alence uses a bypass anti semi-join for evaluating the subquery first and postpones
the evaluation of a higher-ranked predicatep into the negative stream.

Equivalences 5.4 and 5.5 are again similar but useful for unnesting subqueries
of typeN, i.e. exhibiting a predicate containingNOT EXISTS. The anti semi-join
on the right-hand side of both equivalences only features a single join predicate for
evaluating the negative linking predicate.

Disjunctive Correlation

Equivalences 5.10 and 5.11 unnest queries with a disjunctive correlation predicate.
Again, we discuss those exhibiting a positive linking predicate first and then discuss
unnesting of queries featuring a negative linking predicate. In both equivalences,
the predicatep can be a simple predicate or a nested query itself.

Positive Linking Predicates Equivalence 5.10 is used for unnesting queries whose
linking operator isIN. The core benefit of this equivalence results from the clever
filtering of tuples in R. First, the linking predicate is onlychecked for tuples of S
that match the cheaper predicatep. Only the remaining tuples of R are checked
for matches that pass the correlating predicate. This equivalence can also be used
for unnesting queries whose linking operator isEXISTS. In this case, there is no
linking and, hence,A1 = B1 is set to true within the equivalence.

Negative Linking Predicates Equivalence 5.11 handles the linking operatorsNOT
EXISTS andNOT IN. It applies the same strategy as explained in the previous
equivalence that handles positive linking predicates. However, note that now an
anti semi-join replaces the semi-join to check for the negative linking operator. In
case of the linking operatorNOT EXISTS, the linking predicate within the equiv-
alence is true.

5.2.4 Completeness of Equivalences

It is important to make sure that the equivalences suffice to unnest all nested queries
with linking predicateIN orEXISTS and their negated counterparts. The reason is
that the translation of these queries results exactly in thepatterns on the left-hand
side of our equivalences. When no correlation predicate exists, the equivalences
from Fig. 5.4 can be applied. Otherwise, we apply those from Fig. 5.5.
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5.2.5 Tree Queries

Obviously, the equivalences introduced in the last subsection are capable of unnest-
ing simple nested queries, i.e. those containing just a single nested block. It might
be less obvious that they also allow us to unnest tree and linear queries. In this
subsection and the following one, we demonstrate that this is indeed the case.

Let us start with the following example of a tree query:

SELECT DISTINCT *
FROM R
WHERE A1 NOT IN (SELECT B1

FROM S
WHERE A2 = B2)

OR
A3 IN (SELECT C1

FROM T
WHERE A4 = C2)

Q12

In this query, we have two nested query blocks on the same level, one usingNOT
IN and the other usingIN. Their linking predicates are connected by a disjunction.
Additionally, both query blocks are correlated, i.e. of typeJ.

We briefly demonstrate that Equivalences 5.9 and 5.1 enable us to unnest this
query. The canonical translation of the Query Q12 is given inFig. 5.6(a). First,
we can unnest this query by applying Equivalence 5.9. This introduces a bypass
anti semi-join (for the negative linking predicate) whose join predicates are the
linking and correlation predicates. The evaluation of the second nested query is
postponed into the negative stream of this bypass anti semi-join. Second, we apply
Equivalence 5.1 — the equivalence used for the conjunctive case — to the query in
the negative stream. Fig. 5.6(b) shows the final unnested result.

Analogously, we can also apply Equivalence 5.7 for unnesting the subquery
connected with the positive linking operator. This equivalence introduces a bypass
semi-join and postpones the second nested query into the false stream of this op-
erator. Then, we can apply the following equivalence to the operators in the false
stream.

σ6∃A1=B1
(σA2=B2

(S))(R) ≡ RIA1=B1∧A2=B2S. (5.12)

This equivalence was developed for unnesting the conjunctive case with nega-
tive linking operators and is similar to Equivalence 5.1 forpositive linking opera-
tors.

5.2.6 Linear Queries

In the following, we demonstrate that all of the strategies,we developed for simple
typeN or typeJ queries, also work for linear queries. Moreover, in this section, we
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σ

R or

6 ∃A1=B1

σA2=B2

S

∃A3=C1

σA4=C2

T
(a) Canonical

.
∪I±A1=B1∧A2=B2

R S

GA3=C1∧A4=C2

T

(b) Unnested bypass plan

Figure 5.6: Unnesting strategy for Q12 (sketch)

also show that our equivalences can be applied in either a top-down or a bottom-up
fashion on the algebra tree.

Let us start with a demonstration of our technique using a linear query with two
subqueries of typeN.

SELECT A1

FROM R
WHERE A1 IN (SELECT B1

FROM S
WHERE B2 IN (SELECT C1

FROM T)
OR c2)

OR c1

Q13

Fig. 5.7 compares both strategies for Query Q13. In Fig. 5.7(a), we present
the canonical algebra expression of this query. Starting with this expression, we
have two choices: We can either start to unnest the deepest subquery that has a
nested query in one of its predicates (see Fig. 5.7(b)) or start with unnesting the
top-level query (see Fig. 5.7(d)). In the former case, we apply Equivalence 5.2 to
the subquery in the middle, in the latter case, we apply the same equivalence to
the top most query. In either case, Equivalence 5.2 does not modify or influence
the expressions which represent the remaining subqueries.Hence, as we can also
see in Figures 5.7(c) and 5.7(e), in both cases, there are no blind alleys, and both
approaches yield a correctly unnested plan.

Next, we briefly demonstrate that the same holds for linear queries whose sub-
queries are of typeJ. Therefore, consider the following query containing two sub-
queries in a linear chain, each of which is correlated:
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Figure 5.7: Unnesting strategy for Q13 (sketch)

SELECT A1

FROM R
WHERE A1 IN (SELECT B4

FROM S
WHERE A2 = B3

OR B1 IN (SELECT C4

FROM T
WHERE B2 = C3))

Q14

In this query, the deepest nested query block is connected toits outer query
block by a disjunction. Note that we have restricted ourselves to queries whose
correlation predicate consists of attributes or variablesthat are defined in a directly
adjacent outer block. We depict our top-down unnesting strategy in Figure 5.8.
Subfigure 5.8(a) contains the canonical translation. Applying Equivalence 5.10 for
positive linking operators, as already shown for Query Q11,yields the intermediate
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plan from Fig. 5.8(b). Although the middle query block is already unnested, we
would like to unnest the deepest nested block, too. This can finally be done applying
Equivalence 5.1. Subfigure 5.8(c) shows the final result.

σ

R ∃A1=B4

σ

S or

∃B1=C4

σB2=C3

T

A2 = B3

(a) Canonical

.
∪G±A1=B4
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S ∃B1=C4

σB2=C3

T
(b) Unnested bypass plan (1)

.
∪G±A1=B4

R

GA1=B4∧A2=B3

G±B1=C4∧B2=C3

S T
(c) Unnested bypass plan (2)

Figure 5.8: Unnesting strategy for Q14 (sketch)

We have already shown that it does not matter whether we applyour unnesting
strategy in a top-down or a bottom-up fashion for subqueriesof type J. Note that
for a generally nested tree or linear query, we have a choice:We can apply all
equivalences in a top-down or a bottom-up fashion. Taking the former approach,
we would successively apply the equivalences to the outermost query block. For
the bottom-up approach, we would use the innermost block.

5.2.7 Duplicate Handling

Our unnesting equivalences are defined for an algebra over sets of tuples. However,
we now briefly argue that all of the equivalences presented inFigures 5.4 and 5.5
are also correct for an algebra over multisets. For formal proofs instead of a verbal
argumentation, we refer to Appendix C. The validity of our equivalences for mul-
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tisets is necessary because by default, SQL queries do not remove duplicates, i.e.
they yield multisets of tuples.

For our equivalences for table queries, two issues have to beconsidered. The
first is the bypass technique. Bypassing does not cause any problems because it
splits its input into two disjoint multisets, i.e. equal tuples go the same way. The
final (disjoint) union merges both inputs without duplicateelimination. Hence, no
duplicates are falsely eliminated. Further, no new (false)duplicates are introduced
as long as there are no expressions producing duplicates in any of the two streams.

Hence, the second source of possible problems are the operators that are applied
in the streams. All equivalences from Figures 5.5 employ a semi-join or an anti
semi-join. For both operators, implementations are conceivable which adhere to the
selection-like semantics, i.e. they neither wrongly eliminate nor generate duplicates.
Hence, it is safe to apply our unnesting techniques to multisets.

The correctness of the equivalences from Fig. 5.4 can be verified by replac-
ing the correlation predicate of the according equivalencefor type J queries with
true.

5.3 Unnesting Scalar Subqueries

Unnesting scalar queries is difficult and error-prone. Particularly, empty groups
and duplicates (cf. [69]) have been sources of errors. As a new challenge, we now
support unnesting queries with disjunctive linking or correlation.

Analogically to the last section, this section is organizedas follows: First, we
start with a discussion of our approach by means of two simplequeries. Second,
we present our unnesting equivalences for simple queries. Last, we elaborate on the
unnesting of linear queries, tree queries, and finish with a discussion of correctness
in the presence of duplicates.

According to Kim’s classification, scalar subqueries can beof typeA or JA [70].
Subqueries of typeA are easy to handle. Their result can be computed indepen-
dently of the outer query, and the materialization costs arenegligible. Thus, it suf-
fices to materialize the computed result. As their treatmentis so simple, we do not
discuss them any further but concentrate on the more challenging typeJA queries.

5.3.1 Disjunctive Linking

In the following query, the subquery is of typeJA, as it contains a predicate which
refers to the attribute A2, which is defined in the outer block, and the attribute B2,
which is defined in the inner block:
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SELECT DISTINCT *
FROM R
WHERE A1 = (SELECT COUNT(DISTINCT *)

FROM S
WHERE A2 = B2)

OR A4 > 1500

Q15

The linking predicate compares the attribute A1 with the result of the aggrega-
tion (i.e. count) from theselect clause of the inner query. Moreover, this linking
predicate occurs in a disjunction. Translating this query into the algebra yields the
following expression:

σA1=count(σA2=B2
(S))∨A4>1500(R).

Fig. 5.9(a) presents this canonical evaluation plan in a more readable form.
For the evaluation of this query, the inner query has to be evaluated for ev-

ery tuple produced by the outer query block, i.e. in nested loops. Obviously, this
is not very efficient. In order to unnest typeJA queries in the conjunctive case,
it is common practice to apply grouping on the correlation attributes of the inner
query to perform the aggregation. Then, an outer-join is used to accomplish the
match with the tuples from the outer query block with the grouped and aggregated
result [70, 71]. The following algebraic equivalence captures this procedure:

σA1θf(σA2=B2
(S))(R) ≡ ΠA(R)(σA1θg(RPg:f(∅)

A2=B2
(Γg;=B2;f(S)))). (5.13)

If the predicate in the outer query block of our example querywas a conjunc-
tion, we could apply this equivalence without hesitation. However, if we apply this
equivalence to the algebra expression of the query, the resulting plan contains an
outer-join with a disjunctive join predicate. In this case,the only known implemen-
tation is the rather inefficient nested-loop implementation.

Equivalence 5.13 utilizes grouping and an outer-join to unnest the correlated
subquery. However, it is restricted to the correlation predicate being an equality
comparison. The binary grouping operator in the following equivalence roughly
results from merging the grouping operator and the outer-join [29].

σA1θ1f(σA2θ2B2
(S))(R) ≡ σA1θ1g(RTg;A2θ2B2;fS) (5.14)

This equivalence requires thatA2 is a super key ofR but allows for general
comparisonsθ2 of the correlation predicate. For both Equivalences 5.13 and 5.14,
it is required thatg 6∈ A(R) ∪A(S).

Let us take a closer look at example Query Q15. Assume that a tuple from R
satisfiesA4 > 1500. Then, we do not have to checkA1 = . . . for it: it qualifies
independently of the result of this check. Further, if a tuple from R does not satisfy
A4 > 1500, it must satisfyA1 = . . . in order to qualify. Thus, it does make sense
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σ

R or

=

A1 count

σA2=B2

S

A4 > 1500

(a) Canonical

.
∪

σ±A4>1500

R

σ

=

A1 count

σA2=B2

S
(b) Bypass plan

.
∪

σ±A4>1500

R

ΠA(R)

σA1=gPg:0
A2=B2

Γg;=B2;count

S
(c) Unnested bypass plan (1)

.
∪

ΠA(R)

σ±A1=gPg:0
A2=B2

R Γg;=B2;count

S

σA4>1500

ΠA(R)

(d) Unnested bypass plan (2)

Figure 5.9: Unnesting strategy for Q15 (sketch)

to split the tuple stream produced by scanning R into two independent streams: one
containing those tuples satisfyingA4 > 1500 and one with the remaining tuples.
The latter then needs to be filtered byA1 = . . .. Finally, as the two streams are
disjoint, a disjoint union (

.
∪) on them suffices to produce the final result. Let us

therefore introduce a bypass selection with predicateA4 > 1500. The following
algebraic expression results from this:

e = e1

.
∪ e2

e1 = σ+
A4>1500(R)

e2 = σA1=count(σA2=B2
(S))(σ

−
A4>1500(R)).

Fig. 5.9(b) shows the more readable result. The positive stream of the bypass
selection checkingA4 > 1500 (denoted by a solid line) directly contributes to the
final result. In addition, the negative stream (denoted by dots) is filtered by a selec-
tion with the algebraic equivalent ofA1 = . . ..

With this expression as a starting point, we can derive the unnested bypass plan
shown in Fig. 5.9(c). Those tuples of R that satisfy the predicateA4 > 1500 directly
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contribute to the result. Only for the remaining tuples, we need to check the condi-
tion expressed byA1 = . . .. This check is represented in the plan by the same trick
used to unnest conjunctively nested queries. In a first step,we group by the linking
attributeB2 of the inner query and calculate the aggregate. Then, we perform an
outer-join. For those tuples of R that do not find a join partner, the default handling
of the outer-join assures correctness. Last, we evaluate the linking predicate. It has
been rewritten since the aggregation result has been materialized in the attributeg.
A final projection on the attributes ofR guarantees the same schema in the positive
as well as the negative stream before unioning the two streams.

Remark. As for disjunctive table queries, we can commute the bypass selection
with the selection in the negative stream (see Fig. 5.9(d)).That is, if the predicate
A4 > 1500 was a very expensive one, we could evaluate the subquery first. In
this case, the selection checking the linking predicate turns into a bypass selection,
and the predicateA4 > 1500 is evaluated only in the negative stream of the by-
pass selection. A projection on the attributes ofR in both streams ensures the final
schema.

5.3.2 Disjunctive Correlation

Not only the linking predicate can occur in a disjunction. The following query
contains a disjunctively occurring correlation predicate, i.e. disjunctive correlation:

SELECT DISTINCT *
FROM R
WHERE A1 = (SELECT COUNT(*)

FROM S
WHERE A2 = B2

OR B4 > 1500)

Q16

The aggregation function in theselect clause of the nested query combines
all tuples that pass the correlation predicateA2 = B2 or the simple predicateB4 >
1500.

Similar to the canonical translation of Query Q15, but with the disjunction in
the selection predicate of the nested selection, the canonical translation gives us
(see also Figure 5.10(a))

σA1=count(σA2=B2∨B4>1500(S))(R).

Unnesting is not possible with any of the existing techniques. For the following,
we refer to the plan in Fig. 5.10(b). The general idea to unnest this query is based
on two facts: (1) the aggregation function (in this case count) is decomposable [30],
and (2) the predicateB4 > 1500 can be evaluated independently of the outer query.
This allows us to calculate the total count of the inner queryfrom adding up the
counts calculated for two disjoint subsets. Take a look at the bottom of the plan
in Fig. 5.10(b). In the positive stream of the bypass selection (denoted by a solid
line), we count all tuples from relation S that satisfy the predicateB4 > 1500.
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Those tuples of S that do not satisfyB4 > 1500 go into the negative stream. Here,
they have to pass the correlation predicate before they contribute to the total count.
Hence, we group them and evaluate the count function for eachgroup. Analogously
to the general unnesting strategy (see Equivalence 5.13), we apply an outer-join to
perform the match with the outer relation R and — in order to avoid the count bug
— assign 0 to the attributeg1 for those tuples from R that do not have a join partner.
At the end, we need a map operator to add up the separately calculated values
for g1 andg2 to give the total countg. The subsequent selection with predicate
A1 = g checks the linking predicate. The final projection assures that the result
only contains attributes from R.

σ

R =

A1 count

σ

or

A2 = B2 B4 > 1500

S

(a) Canonical

ΠA(R)

σA1=g

χg:g1+g2Pg1:0
A2=B2

R Γg1;=B2;countI

σ±B4>1500

S

g2 := countI

(b) Unnested bypass plan

Figure 5.10: Unnesting strategy for Q16 (sketch)

5.3.3 Equivalences

Having presented the general approach, we present our general unnesting rewrites
for scalar queries of typeJA. However, first we need to definedecomposability
of aggregate functions [30]. LetX, Y , andZ be sets withX = Y

.
∪ Z and

Y
.
∩ Z = ∅. A scalar aggregate functionf : X → N is decomposableif there exist

functions

fI : X → N ′

fO : N ′,N ′ → N

with f(X) = fO(fI(Y ), fI(Z)). Fortunately, the SQL aggregation functions
used most often are decomposable:
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count(X)≡ countI(Y) + countI(Z)
sum(X)≡ sumI(Y) + sumI(Z)
avg(X)≡ sumI(Y )+sumI (Z)

countI(Y )+countI(Z)

min(X) ≡minO(minI(Y),minI(Z))
max(X)≡maxO(maxI(Y),maxI(Z)).

However, there is another restriction for decomposability. The partitionsY and
Z must contain disjoint values. To see why this must be the case, consider the fol-
lowing example:COUNT(DISTINCT({1,1,1,2,2,2})) = 2, but some par-
titionings of the bag yield the wrong result:COUNT(DISTINCT({1,1,2})) +
COUNT(DISTINCT({1,2,2}))= 2 + 2 6= 2.

The discussion of our equivalences (see Fig. 5.11) is split into two parts. In the
first part, we discuss unnesting equivalences for queries with disjunctive linking. In
the second part, we advance to unnesting equivalences for queries with disjunctive
correlation. The proofs for all equivalences can be found inAppendix C.

Disjunctive Linking

In all the equivalences, letf be an aggregation function.

Equivalences 5.15 and 5.17 Equivalences 5.15 and 5.17 are used to unnest scalar
queries whose linking predicate occurs disjunctively.

The former postpones the evaluation of the unnested subquery into the negative
stream of a bypass selection. Basically, the unnesting technique is adapted from
Equivalence 5.13 in the conjunctive case. Note that also thesame restrictions hold,
i.e. we require an equality comparison. The idea of this equivalence has already
been explained using Query Q15. Fig. 5.9(c) depicts this strategy.

The latter equivalence is used for first evaluating the unnested subquery, i.e.
the linking predicate, and postpone the evaluation of the second predicate into the
negative stream of the bypass selection. Fig. 5.9(d) visualizes this strategy.

Equivalences 5.16 and 5.18 The above equivalences allow unnesting only for
queries whose correlation predicate features an equality comparison. In Equiv-
alences 5.16 and 5.18, the sequence of unary grouping and left outer-join is re-
placed by a binary grouping operator. The advantage of usingbinary grouping
is that these equivalences support an arbitrary correlation predicate A2θ2 B2 with
θ ∈ {=, 6=, <,≤, >,≥}. However, for their validity they require the correlation
predicate A2 to be a key ofR. This is necessary to be able to preserve the other
attributes ofR, e.g. A1 or a free attribute ofp.
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σp∨A1θ(f(σA2=B2
(S)))(R) ≡ e1

.
∪ e2 (5.15)

e1 := σ+
p (R)

e2 := ΠA(R)(σgθA1((σ
−
p (R))Pg:f(∅)

A2=B2

(Γg;=B2;f(S))))

ΠA1,A2(σp∨A1θ1(f(σA2θ2B2
(S)))(R)) ≡ ΠA1,A2(e1

.
∪ e2) (5.16)

e1 := σ+
p (R)

e2 := ΠA(R)(σgθ1A1((σ
−
p (R))Tg;A2θ2B2;f(S)))

σp∨A1θ(f(σA2=B2
(S)))(R) ≡ ΠA(R)(e1

.
∪ e2) (5.17)

e1 := σ+
gθA1

((R)Pg:f(∅)
A2=B2

(Γg;=B2;f(S)))

e2 := σp(σ
−
gθA1

((R)Pg:f(∅)
A2=B2

(Γg;=B2;f(S))))

ΠA1,A2(σp∨A1θ1(f(σA2θ2B2
(S)))(R)) ≡ ΠA1,A2(e1

.
∪ e2) (5.18)

e1 := σ+
gθ1A1

((R)Tg;A2θ2B2;f(S))

e2 := σp(σ
−
gθ1A1

((R)Tg;A2θ2B2;f(S)))

σA1θf(σA2=B2∨p(S))(R) ≡ ΠA(R)(σA1θg(χg:fO(g1,e2)(e1))) (5.19)

e1 := RPg1:fI(∅)
A2=B2

(Γg1;=B2;fI(σ
−
p (S)))

e2 := fI(σ
+
p (S))

ΠA1,A2(σA1θ1f(σA2θ2B2∨p(S))(R)) = ΠA1,A2(σA1θ1g(χg:fO(g1,e2)(e1))) (5.20)

e1 := (R)Tg1;A2θ2B2;fI
(σ−p (S))

e2 := fI(σ
+
p (S))

σA1θf(σA2=B2∨p(S))(R) ≡ ΠA(R)(σA1θg((R
′)Tg;t1=t1′;f (5.21)

(ρt1′←t1(e1

.
∪ e2))))

R′ := νt1(R)

e1 := R′B+
A2=B2

S

e2 := σp(R
′B−A2=B2

S)

Figure 5.11: Equivalences for disjunctiveJA queries

Disjunctive Correlation

Equivalences 5.19 and 5.20 handle queries whose correlation predicate occurs
in a disjunction. Their limitation is that the predicate expressionp must not be a
subquery itself. Moreover, these equivalences require theaggregation function to be
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decomposable and the correlation predicate to be an equality predicate1. Fig. 5.10
illustrates the idea of Equivalence 5.19 for the query from Section 5.3.2.

For both equivalences, the main idea is to generate partial,intermediate results,
which are then combined by the subsequent map operator. The first partial result
consists of those tuples that qualify for the non-correlation predicate. The other part
of the result contains those tuples that satisfy the correlation predicate. These tuples
are either checked by a sequence of unary grouping and left outer-join operator
(see Equivalence 5.19) or a binary grouping operator (see Equivalence 5.20). For
the former, the correlation predicate must exhibit an equality comparison. For the
latter, the correlation predicate may use an arbitrary correlation predicate (using
θ ∈ {=, 6=, <,≤, >,≥}) but must hold the restriction that A2 must be a super key
of R.

Equivalence 5.21 in contrast, is more generally applicable. There are no restric-
tions on the aggregate function. In addition, predicatep may contain a nested query,
i.e. the query is a linear query. The bypass join generates one positive stream for
the tuples which satisfy the correlation predicate and a complementary negative
one wherep is checked. Beforehand, we need to introduce a numbering operatorν,
which enables us to correctly reassemble the results duringthe binary grouping.

5.3.4 Completeness of Equivalences

Our equivalences handle all cases of scalar subqueries withdisjunctive linking and
correlation. Thereby, the linking predicate can consist ofan arbitrary linking oper-
ator ({=, 6=, <,≤, >,≥}).

Let us make sure that the canonical translation of a scalar subquery always leads
to a pattern that matches the left-hand side of one of our equivalences. In this
situation, the canonical translation results in an aggregate function callf as top-
level member of a selection predicate, which is part of the linking predicate.

In Equivalence 5.15 and 5.17, this corresponds to disjunctive linking. The ar-
gument of the aggregation function is again a selection checking for the correlation
predicate, which in Equivalences 5.19 and 5.21 occurs in a disjunction. Remember
that the former equivalence is a special case of the latter one, wherep must not be a
subquery itself and the aggregation functionf must be decomposable.

5.3.5 Tree Queries

Tree queries of typeJA can be unnested quite easily by successive applications of
our known equivalences. Consider the following tree query:

1Note that the DISTINCT versions of the aggregation functionsCOUNT, SUM, andAVG are not
decomposable. In this case, Equivalence 5.21 must be applied.



5.3. UNNESTING SCALAR SUBQUERIES 91

SELECT DISTINCT *
FROM R
WHERE A1 =(SELECT COUNT(DISTINCT *)

FROM S
WHERE A2 = B2)

OR
A3 = (SELECT COUNT(DISTINCT *)

FROM T
WHERE A4 = C2)

Q17

Figure 5.12 illustrates the canonical translation and the result of the following
two steps. In a first step, we unnest the query. For this, we apply Equivalence 5.15
to the predicate with the lowest rank. In the second step, we have to choose: either
we apply Equivalence 5.15 again, if there exists another subquery on the same level,
or we apply Equivalence 5.13, if this is not the case. Becausenone of the subqueries
contains a nested query, we then apply Equivalence 5.13.

σ

R or

=

A1 count

σ

A2 = B2 S

=

count

σ

T A4 = C2

A3

(a) Canonical

.
∪

ΠA(R)

σ±A1=g1Pg1:0
A2=B2

R Γg1;=B2;count

S

ΠA(R)

σA3=g2Pg2:0
A4=C2

Γg2;=C2;count

T
ΠA(R)

(b) Unnested bypass plan

Figure 5.12: Unnesting strategy for Q17 (sketch)

We can also replace Equivalences 5.13 with 5.14 or Equivalence 5.15 with 5.16,
respectively.
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5.3.6 Linear Queries

Linear JA queries are a special case of disjunctive correlation. The second predicate
in the disjunction is again a linking predicate, as shown in the following query:

SELECT DISTINCT *
FROM R
WHERE A1 =(SELECT COUNT(DISTINCT *)

FROM S
WHERE A2 = B2

OR
B3 = (SELECT COUNT(DISTINCT *)

FROM T
WHERE B4 = C2))

Q18

Fig. 5.13 presents the unnesting procedure. We start with the canonical transla-
tion (see Fig. 5.13(a)) and unnest in a top-down fashion. In afirst step, we apply
Equivalence 5.21. The result is shown in Fig. 5.13(b). From here, it becomes ob-
vious that for the deepest nested expression Equivalence 5.13 can be applied which
yields the final plan shown in Fig. 5.13(c).

5.3.7 Duplicate Handling

Let us make sure that all equivalences mentioned in this section are also correct
when they are based on an algebra over multisets. The right-hand side of Equiv-
alences 5.15, 5.17, and 5.19 contains a unary grouping of theinput of the nested
query block, followed by a left outer-join. We observe that after grouping on the
correlation attribute of the inner query, each value of the grouping attributes occurs
exactly once. This key is later used as join attribute in the left outer-join. As a
result, this join either finds exactly one matching tuple foreach tuple resulting from
the outer query block, or it keeps the outer block’s tuple in order to preserve empty
groups. Hence, the cardinality of the left outer-join is exactly the one of the outer
relation R.

In Equivalence 5.19, we have already ensured correctness ofthe duplicate se-
mantic for expressione1 above. The map operator does not influence duplicates, as
it only computes the correct aggregate value.

The numbering operatorν in Equivalence 5.21 turns the multiset R into a set
and thereby ensures correctness for multisets.

Each equivalence introduces one bypass operator. In the unnested plan, this
operator partitions its input into two disjoint sets. Thus,it neither creates duplicates
nor discards any tuples. Moreover, the final union can be defined for multisets,
ensuring that duplicates are handled correctly.
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ΠA(R)
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(c) Unnested bypass plan (2)

Figure 5.13: Unnesting strategy for Q18 (sketch)

5.4 Evaluation

To demonstrate the effectiveness of our unnesting techniques, we performed an ex-
tensive evaluation. Specifically, we measured the execution times of the canonical
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and the unnested plans using our hybrid relational and XML DBMS Natix [40]. Ad-
ditionally, we compared the resulting evaluation times with those measured for three
major commercial database management systems, for anonymity reasons hence-
forth nicknamed S 1, S 2, and S 3. For the same reason, we cannotpresent specific
query evaluation plans for the commercial systems. However, as we will see, the
strategy can be predicted by comparing these evaluation times with those resulting
from the execution of the canonical plans in Natix.

After a brief description of the experimental setup, we firstpresent performance
results for unnesting table subqueries and then proceed to scalar subqueries. In both
cases, we present evaluation results for simple, tree, and linear queries.

5.4.1 Datasets

The evaluation is performed on several datasets based on three schemas:

1. the schema of the TPC-H benchmark [104],

2. the schema of the preliminary draft of the TPC-DS benchmark [105], and

3. the schema RST used for the example queries.

The latter schema contains three tables (R, S, and T), each consisting of four
columnsAi ∈ A(R), Bi ∈ A(S), andCi ∈ A(T) for i = 1 . . . 4.

The datasets for the TPC-H benchmark are generated using thebenchmark gen-
erator (dbgen) with scaling factors (SF ) 0.01, 0.05, 0.5, 1, 5, and 10. This results
in moderate database sizes of 11MB - 11GB.

For the TPC-DS benchmark, we generated the qualification database using the
benchmark generator dbgen2. The resulting database has a size of 1GB.

For the independently scaled relations of the RST schema, wegenerated in-
stances with scaling factors (SF ) 1, 5, and 10. This led to 10.000, 50.000, and
100.000 rows and amounts to small tables of 178KB, 1.1MB, and2.1MB. In the
evaluations,SF1 denotes the scaling factor of the outer query block andSF2 the
scaling factor of the inner query block. We did not use largerscaling factors because
neither the canonical plans nor the commercial systems scaled well.

5.4.2 Settings

For the experiments, we used two comparable PCs with 1 GB of RAM each. Not
all commercial systems are available for the same operatingsystem. We executed
Natix and two of the commercial systems on one of the PCs running Linux 2.6.11.
The other commercial system ran on the other PC under WindowsXP. All queries
were executed with a cold buffer. Further, for optimizing the queries using the
commercial systems, we used the highest optimization levelpossible. However, we
did not create any indexes.
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Because of the necessity to use two different systems, the resulting evaluation
times are not exactly comparable. However, the growth of theresulting evaluation
times already demonstrates the effectiveness of our unnesting approaches.

5.4.3 Table Subqueries

Disjunctive Linking

First, we present a performance evaluation for Query Q10 on our synthetic schema
and the Query 4d on the TPC-H schema. Query 4d is similar to Query 4 from
the TPC-H benchmark but extended to also select urgent orders. The predicate
selecting the urgent orders is disjunctively connected to the linking predicate of the
nested (correlated) query. The query is shown in the following.

SELECT o orderpriority, count(*) as order count
FROM orders
WHERE o orderpriority = ’1-URGENT’

OR EXISTS (
SELECT *
FROM lineitem
WHERE l commitdate < l receiptdate
AND o orderkey = l orderkey)

GROUP BY o orderpriority ORDER BY o orderpriority

We executed both queries in the three commercial systems andin our database
system Natix. For the evaluation with Natix, we generated three alternative evalua-
tion plans for both queries. For Query Q10 these are:

Canonical: A correlated plan, as depicted in Fig. 5.2(a). Clearly, thisplan per-
forms a nested-loop like evaluation.

Semi-join: An unnested plan, as shown in Fig. 5.2(b) using a nested-loopsemi-join
implementation.

Unnested: An unnested bypass plan, as given in Fig. 5.2(d).

For Query 4d we generated the same alternatives. Fig. 5.14 depicts their plan
sketches.

The first plan (see Fig. 5.14(a)) implements a nested-loop strategy. In this plan,
the correlated subquery is executed for every tuple from theORDERS relation that
does not qualify for the predicate checking for an urgent orderpriority. The second
plan (see Fig. 5.14(b)) features a semi-join operator for the unnested evaluation of
the subquery and the predicate connected to the subquery using a disjunction. For
this reason, the implementation of the semi-join performs anested-loop strategy.
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Sorto orderpriority

Γorder count,o orderpriority,count
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(b) Natix: semi-join

Πo orderpriority,order count

Sorto orderpriority

Γorder count,o orderpriority,count

∪

σ±o orderpriority=1−URGENT

ORDERS

Gl orderkey=o orderkey

σl commitdate<l receiptdate

LINEITEM

(c) Natix: unnested

Figure 5.14: Query plan sketches for Query 4d

Efficient hash- or sort-based implementations are out of reach in this case. The
third and last plan (see Fig. 5.14(c)) exhibits a bypass selection for the evaluation
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of the predicate checking for urgent priorities. In the false stream of the bypass
selection, a hash-based semi-join is used for the evaluation of the subquery. The
remaining operators (i.e. grouping, sort, and projection operator) are the same in all
three plans.

SF1 1 5 10
SF2 1 5 10 1 5 10 1 5 10
System
S 1 10.1 51.3 102 50.6 260 520 100 522 1043
S 2 0.21 0.28 0.17 0.86 0.83 0.89 1.75 1.84 1.86
S 3 7.78 41.4 83.3 33.8 175 363 66.1 342 663
Natix
• canonical 10.8 53.1 104 45.5 228 452 86.2 431 852
• semi-join 4.0 4.05 4.0 4.01 4.03 3.96 4.01 4.02 3.97
• unnested 0.21 0.2 0.2 0.21 0.2 0.2 0.21 0.2 0.23

(a) Q10

TPC-H Scaling Factor
System/Technique 0.01 0.05 0.5 1 5 10

S 1 84.0 3715 n/a n/a n/a n/a
S 2 0.08 1.83 24.7 43.9 290 616
S 3 62.8 1742 n/a n/a n/a n/a
Natix
• canonical 79.7 3631 n/a n/a n/a n/a
• semi-join 17.7 470 n/a n/a n/a n/a
• unnested 0.19 0.48 3.67 15.6 79.3 189

(b) Query 4d

Figure 5.15: Results (in sec.) for Q10 and 4d

Fig. 5.15 shows the execution times (in seconds) of these queries. We aborted
the execution of queries after six hours. These cases are denoted by n/a. The
fastes execution time for each dataset is denoted using a bold face. The first ta-
ble (see 5.15(a)) compare the runtimes for Query Q10 executed on the commercial
systems and Natix. The bottom table (see 5.15(b)) presents the results for Query
4d.

For both queries, our unnested approach outperforms even the fastest commer-
cial system S 2. For the largest scaling factors, our approach outperforms S 2
by a factor of three or more. The remaining commercial systems show a perfor-
mance similar to our canonical plan. These results indicatethat they perform a
rather naı̈ve evaluation. The unacceptable evaluation times of these systems and the
canonical plan underline the importance of unnesting nested queries. In general,
the unnested plans of the two example queries finish up to fourorders of magni-
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tude faster than the naı̈ve nested-loop evaluation. Morever, even the Natix plan that
exhibits a nested-loop semi-join for unnesting Query 4d does not produce a result
within six hours for the dataset with scaling factor 0.5.

Disjunctive Correlation

Besides the evaluation of typeJ queries with disjunctive linking, we also performed
an evaluation for queries with disjunctive correlation. Therefore, we executed
Query Q11 on our synthetic dataset and generated two alternative query execu-
tion plans for Natix. The first alternative is based on the canonical translation (see
Fig. 5.3(a)), and the second is the unnested plan (see Fig. 5.3(b)). Fig. 5.16 presents
the results of this study.

SF1 1 5 10
SF2 1 5 10 1 5 10 1 5 10
System
S 1 0.06 0.17 0.24 0.08 0.35 0.56 0.11 0.38 0.70
S 2 0.13 0.27 0.38 0.11 0.61 0.95 0.13 0.63 1.23
S 3 8.78 35.9 87.1 46.9 220 400 94.7 469 885
Natix
• canonical 11.9 48.3 72.9 66.3 278 661 163 633 1348
• unnested 0.22 0.39 0.54 0.26 0.69 1.02 0.31 0.75 1.27

Figure 5.16: Results (in sec.) for Q11

In the experiments, systems S 1 and S 2 perform as fast as our unnested plan.
However, in contrast to the acceleration of nested queries,unnesting gives the cost-
based optimizer more opportunities for reordering operators and the selection of
physical implementations. Finally, we point out the enormous performance gains,
compared to the naı̈ve nested-loop evaluation chosen by system S 3 and to our
canonical plan.

Tree Table Subqueries

To evaluate queries of typeJ with a tree structure, we executed two queries. The
first is based on the our synthetic dataset and shown in the following.

SELECT DISTINCT *
FROM R
WHERE A1 IN (SELECT B4

FROM S
WHERE A2 = B3)

OR
A1 IN (SELECT C4

FROM T
WHERE A2 = C3)

Q19
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Query Q19 is a tree query because it has two nested query blocks nested inside
the top-level query block.

The second is Query 10 taken from the TPC-DS benchmark and entirely shown
here.

SELECT cd gender, cd marital status, cd education status,
count(*), cd purchase estimate, count(*), cd credit rating,
count(*), cd dep count, count(*), cd dep employed count,
count(*), cd dep college count, count(*)

FROM customer c,customer address ca,customer demographics
WHERE c.c current addr sk = ca.ca address sk and

ca county in (’Rush County’,’Toole County’,
’Jefferson County’, ’Dona Ana County’,’La Porte County’)
and cd demo sk = c.c current cdemo sk and
EXISTS (SELECT *

FROM store sales,date dim
WHERE c.c customer sk = ss customer sk and

ss sold date sk = d date sk and
d year = 2000 and
d moy between 3 and 3+3) and

(EXISTS (SELECT *
FROM web sales,date dim
WHERE c.c customer sk = ws bill customer sk

and ws sold date sk = d date sk and
d year = 2000 and
d moy between 3 ANd 3+3) or

EXISTS (SELECT *
FROM catalog sales,date dim
WHERE c.c customer sk = cs ship customer sk

and cs sold date sk = d date sk and
d year = 2000 and
d moy between 3 and 3+3))

GROUP BY cd gender, cd marital status, cd education status,
cd purchase estimate, cd credit rating, cd dep count,
cd dep employed count, cd dep college count

ORDER BY cd gender, cd marital status, cd education status,
cd purchase estimate, cd credit rating, cd dep count,
cd dep employed count, cd dep college count

The TPC-DS query contains three nested correlated queries,two of which are
connected by a disjunction. For the (almost) canonical plan(see Fig. 5.17(a) for
a sketch), we unnested the subquery that occurs conjunctively with the help of
a semi-join. The remaining two subqueries that are connected by a disjunction
are evaluated in the subscript of the selection. The grouping operator utilizes the
sorted grouping attributes. The unnested bypass plan (see Fig. 5.17(b) for a sketch)
exploits a bypass semi-join for the evaluation of the subquery that joining cata-
log sales and datedim. The evaluation of the other subquery is postponed into the
false stream.
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(a) Natix: canonical
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(b) Natix: unnested

Figure 5.17: Query plan sketches for TPC-DS Query 10

Fig. 5.18 contains the results of our evaluation. For the synthetic dataset (see
Subfigure 5.18(a)) SF1 denotes the scaling factor for the outer relation. SF2 denotes
the scaling factor of both inner relations, i.e. S and T. Subfigure 5.18(b) presents the
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results for the evaluation of TPC-DS Query 10 on the qualification database of the
TPC-DS benchmark.

SF1 1 5 10
SF2 1 5 10 1 5 10 1 5 10
System
S 1 23.3 119 305 114 598 1524 231 1199 3008
S 2 0.34 0.14 0.16 0.13 0.19 0.27 0.16 0.22 0.34
S 3 17.2 91.9 179 84.3 496 920 166 944 1873
Natix
• canonical 26.8 133 273 127 695 1323 266 1291 3003
• unnested 0.23 0.68 2.04 0.27 1.23 3.21 0.41 1.97 4.66

(a) Q19

Qualification
Database (1GB)

S 1 7304
S 2 228
S 3 537
Natix
• canonical 82.9
• unnested 14.7

(b) TPC-DS Query 10

Figure 5.18: Results (in sec.) for Q19 and TPC-DS Query 10

For the synthetic dataset, S 2 is the fastest of all systems. We also note, that in
the case of tree queries S 3 (which was the slowest before) is faster than S 1, for
both, the synthetic and the TPC-DS dataset. However, on the TPC-DS benchmark,
our unnested approach is the fastest, i.e. an order of magnitude faster than S 2. On
this dataset, our canonical approach, which executes the conjunctively connected
subquery in an unnested manner, is faster than S 2.

Linear Table Subqueries

Within the last table subquery experiment, we measured the performance gains that
can be achieved by unnesting linear queries. Consider the following linear query
that contains two subqueries of typeJ.
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SELECT *
FROM R
WHERE R.A1 IN (SELECT S.A4

FROM S
WHERE R.A2 = S.A3
OR S.A1 IN (SELECT T.A4

FROM T
WHERE S.A2 = T.A3))

Q20

Fig. 5.19 contains the according results of its evaluation.In the table, SF1 de-
notes the factor used to scale the outer relation. SF2 denotes the scaling factor of
both inner relations, i.e. S and T.

SF1 1 5 10
SF2 1 5 10 1 5 10 1 5 10
System
S 1 8.71 191 902 8.36 497 1515 8.35 818 1995
S 2 0.19 0.75 1.64 0.31 0.91 1.73 0.53 1.14 1.94
S 3 25.6 418 1376 85.6 742 1974 149 1060 2925
Natix
• canonical 24.2 348 1347 79.6 6574 1891 140 1057 2519
• unnested 0.17 0.37 0.74 0.24 0.43 0.81 0.36 0.52 0.89

Figure 5.19: Results (in sec.) for Q20

For linear table queries, our unnested approach dominates all other approaches.
The execution times of S 1 and S 3, compared to the execution times of our naı̈ve
evaluation plan, indicate that the commercial systems use anested-loop like evalu-
ation. However, we also note that S 2 also performs very well.

5.4.4 Scalar Subqueries

In the following section, we present the results for our performance study for scalar
subqueries. Similar to the last section, we start with presenting our evaluation for
simple queries — with disjunctive linking and correlation —and then move on to
queries that have a tree and linear structure.

Disjunctive Linking

We selected Query Q15, and based on the TPC-H schema, the introductory Query
2d to evaluate simple queries with disjunctive linking.

Query Q15 has one nested correlated query that is disjunctively connected to
the outer query block. The same yields for Query 2d, which we depicted in the
introduction of this chapter. For both queries, we executedtwo query execution
plans in Natix. The first plan implements a canonical translation. Figures 5.9(a)
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and 5.21(a) show the canonical plan for Query Q15 and 2d, respectively. The sec-
ond plan results from the application of Equivalence 5.15. It unnests the typeJA
subquery using a binary grouping operator in the false stream of a bypass selec-
tion. Figures 5.9(c) and 5.21(b) illustrate these strategies for Query Q15 and 2d,
respectively.

SF1 1 5 10
SF2 1 5 10 1 5 10 1 5 10
System
S 1 10.6 55.7 111 49.4 259 520 98.3 515 1029
S 2 0.19 0.33 0.52 0.92 1.17 1.30 1.95 2.13 2.52
S 3 5.06 25.1 50.1 25.7 144 267 49.8 259 558
Natix
• canonical 10.9 54.9 109 46.8 235 474 88.5 450 899
• unnested 0.2 0.24 0.3 0.78 0.87 0.98 1.6 1.65 1.74

(a) Q15

TPC-H Scaling Factor (SF)
0.01 0.05 0.5 1 5 10

System
S 1 0.14 0.36 52.5 123 n/a n/a
S 2 0.10 2.00 29.0 67.0 328 766
S 3 0.27 0.57 48.7 234 n/a n/a
Natix
• canonical 79.7 3631 n/a n/a n/a n/a
• unnested 0.14 0.19 0.82 1.49 23.1 49.5

(b) Query 2d

Figure 5.20: Results (in sec.) for Q15 and 2d

Fig. 5.20(a) and 5.20(b) present the results for these queries. We observe that
our unnested approach excels all other approaches — for the RST as well as the
TPC-H dataset. In comparison with our canonical approach, the performance num-
bers of the commercial systems for the RST dataset allow to deduce that these sys-
tems execute the nested query in a nested-loop like fashion.Only the commercial
system S 2 almost keeps up with our unnested approach. However, for the TPC-H
dataset our unnested approach even outperforms this systemby one order of mag-
nitude. The remaining commercial systems are surpassed by three to four orders of
magnitude for the cases that finished within six hours.

Disjunctive Correlation

Besides the evaluation of JA queries with disjunctive linking, we performed an eval-
uation for queries with disjunctive correlation. Therefore, we executed Query Q16
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(b) Natix: unnested

Figure 5.21: Query plan sketches for Query 2d

using the commercial systems on our synthetic dataset and generated two alterna-
tive query execution plans for Natix. The first alternative is based on a canonical
translation (see Fig. 5.10(a)). The second was derived by applying a strategy based
on Equivalence 5.19 (see Fig. 5.10(b)).

Figure 5.22 presents our performance measurements for these plans. The as-
sessments indicate that all commercial systems evaluate this query similarly to our



5.4. EVALUATION 105

SF1 1 5 10
SF2 1 5 10 1 5 10 1 5 10
System
S 1 16.7 90.3 184 82.7 445 905 165 892 1803
S 2 8.55 46.3 95.5 42.9 235 479 85.7 466 971
S 3 11.6 59.7 120 71.4 378 737 143 753 1519
Natix
• canonical 16.0 98.6 208 79.8 470 897 166 1237 1768
• unnested 0.12 0.14 0.15 0.22 0.24 0.26 0.38 0.41 0.42

Figure 5.22: Results (in sec.) for Q16

canonical plan. For the moderate size of 2.1MB of the largestsynthetic dataset —
scaling factor 10 for both the inner and outer query block —, our unnested approach
outperforms the others by three to four orders of magnitude.Moreover, evaluation
times up to half an hour for 2.1MB data seem unacceptable to us.

Tree Scalar Subqueries

To evaluate tree queries, we executed the following query onthe synthetic RST
dataset. Fig. 5.23 presents the results.

SELECT *
FROM R
WHERE A1 = (SELECT COUNT(*)

FROM S
WHERE A2 = B3)

OR
A2 = (SELECT COUNT(*)

FROM T
WHERE A4 = C4)

Q21

SF1 1 5 10
SF2 1 5 10 1 5 10 1 5 10
System
S 1 31.8 190 539 225 1039 2435 395 1976 4874
S 2 0.14 0.47 0.92 0.36 0.72 1.17 0.66 1.02 1.58
S 3 25.6 136 274 147 717 1391 289 1446 2874
Natix
• canonical 25.8 136 262 136 689 1342 257 1384 2693
• unnested 0.19 0.29 0.45 0.4 0.58 0.79 0.81 0.96 1.23

Figure 5.23: Results (in sec.) for Q21



106 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

Similar to the results for queries of typeJAwith disjunctive linking, our unnested
approach is the fastest. However, S 2 can almost keep up with us. The other com-
mercial systems perform a naı̈ve evaluation strategy.

Linear Scalar Subqueries

In the last subsection, we show an evaluation for linear queries whose subqueries
are all of typeJA. For this purpose, consider the following linear query.

SELECT *
FROM R
WHERE R.A1 = (SELECT count(S.B4)

FROM S
WHERE R.A2 = S.B3

OR S.B1 = (SELECT count(T.C4)
FROM T
WHERE S.B2 = T.C3))

OR R.A4 < 1500

Q22

This query has two scalar subqueries of typeJA arranged in a linear structure.
Fig. 5.24 shows the according results of its evaluation.

SF1 1 5 10
SF2 1 5 10 1 5 10 1 5 10
System
S 1 n/a n/a n/a n/a n/a n/a n/a n/a n/a
S 2 152 784 1602 744 3884 9237 1517 7923 n/a
S 3 n/a n/a n/a n/a n/a n/a n/a n/a n/a
Natix
• canonical n/a n/a n/a n/a n/a n/a n/a n/a n/a
• unnested n/a n/a n/a n/a n/a n/a n/a n/a n/a

Figure 5.24: Results (in sec.) for Q22

As we can see, the evaluation of this query is very hard for almost all systems.
Even our unnested approach cannot produce a result within six hours. The reasons
for this are that the bypass join is, in fact, equally costly as a cross product because it
has to enumerate the same number of tuples. However, in this case, our equivalences
still increase the search space for an cost-based optimizerand may, for example,
But as the evaluation of S 2 shows, evaluation techniques as in [50] become more
important in such cases.
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5.5 Related Work

The optimization of nested queries has been researched successfully. We have al-
ready discussed the existing techniques for unnesting SQL,OQL, and XQuery in
the last two chapters. For example, Kim [70] established theclassification for
nested SQL queries to which we adhered to in this chapter. Moreover, he also
proposed the first strategies for unnesting nested queries.With this preliminary
work, he opened a huge research field for unnesting SQL [32, 36, 43, 44, 69, 99],
OQL [29, 39, 101, 102], and XQuery [81, 82]. In particular, all these approaches
focused on merging two or more query blocks into one. However, none of the ap-
proaches considered nested queries whose linking or correlation predicate occurs
in a disjunction. We presented a novel approach that is capable of merging query
blocks in order to unnest nested queries even if one of these predicates occurs in a
disjunction.

In almost all cases, our approach significantly outperformsother existing ap-
proaches in terms of execution time. Admittedly, not all of our unnested plans are
superior to evaluating queries in a nested fashion. The reason is that unnesting
strategies do not always result in better plans if, for example, the result of the outer
query is small. However, in any case, our algebraic unnesting approach increases
the search space of a cost-based optimizer.

For the cases in which unnesting does not increase performance or unnesting is
not possible, Elhemali et al. [36] and Graefe [50] propose approaches for efficiently
evaluating subqueries in their nested structure. This is, for example, achieved by
exhibiting available indices, materialized views, techniques similar to magic decor-
relation ([99]), or prefetching.

The former approach by Elhemali et al. also suggests a solution for dealing with
subqueries and their linking predicate occurring in disjunctions. Their approach
utilizes the translation of disjunctions into union expressions in order to execute
each argument of a union efficiently. However, this may require evaluating the two
common input expression twice, which we avoid with bypass operators.

Optimizations for queries containing disjunctions have been presented in [22,
27, 65]. Specifically, the bypass technique that we extend for unnesting was intro-
duced in [27, 68]. Strategies for implementing bypass operators and query evalua-
tion engines that support DAG-structured query plans are presented in [27, 87, 97].

5.6 Conclusion

We believe that nested queries containing disjunctive predicates have not yet at-
tracted the attention they deserve. In our experimental study, we have shown that
evaluating nested queries in a nested-loop-like fashion leads to an unacceptable
performance. With our novel unnesting strategy, we are ableto remedy this situ-
ation and to substantially improve query execution times. Although most runtime
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systems and optimizers do not incorporate bypass plans, it is possible to transfer
bypass plans into plans without bypass operators. This can,for example, be done
by tagging every tuple whether it belongs to the positive or negative stream.

Based on a common terminology, a classification, and an algebra, we have pre-
sented unnesting equivalences containing bypass operators for the first time. We
have shown how to unnest scalar subqueries whose linking or correlation predicate
occurs in a disjunction. Furthermore, we have demonstratedthe our equivalences
are applicable to simple, linear, and queries. Our equivalences are also valid for
bags, and, hence, can be applied in real world applications.

Bypass operators in combination with our novel unnesting strategy provide an
efficient evaluation for nested scalar queries with disjunctive linking or correla-
tion. Our comprehensive experimental study compares the nested and unnested ap-
proaches — using our hybrid relational and XML database system Natix — against
three commercial database systems. Our optimized approachdominates almost all
other approaches, most of them by several orders of magnitude.



Chapter 6

Beyond XPath

In the last two years, the importance of XPath as a standalonelanguage decreased,
disposing the field to the more powerful XQuery language [38]. At the same time,
XQuery evaluators become more and more mature in terms of features and perfor-
mance, and XQuery is being integrated into mainstream DBMS products as a native
language [8, 77, 92].

Because XQuery processing research is still missing some fundamental tools
to facilitate the development of industrial-strength XQuery optimizers, we are con-
cerned with filling one of these gaps in this chapter. Specifically, we provide a
rewrite toolkit that allows to reduce the number of query blocks in a query expres-
sion. This widens the search space for plan generators by making more information
visible to a single run of the plan generation algorithm. Letus begin by stressing
the importance of our goal:

Industrial-strength query optimizers proceed in a two-phase manner. In a first
phase, the query is translated into an internal representation, and heuristical rewrite
rules are applied to simplify and normalize the query. In a second phase, a plan gen-
erator enumerates alternative execution plans, determines their cost, and chooses
the optimal plan. Alternative plans can differ in the accesspaths used for the basic
input sets (e.g. whether to use an index or not), in the order in which the basic input
sets are joined, and in the position of other operators, suchas grouping or sorting.

However, efficient plan generation algorithms cannot take arbitrary query struc-
tures as input. Instead, the unit of plan generation is thequery block. Depending
on the design of the query compiler, a query block can be represented in a variety
of ways, for example as a source language construct (SELECT FROM WHERE in
SQL, or FLWOR in XQuery), as a node in an internal graph representation (such as
the Query Graph Model QGM [94]), or as an algebraic expression. Some queries
exhibit a nested structure, where a query block references subquery blocks. In such
cases, the plan generator is called in a bottom-up fashion, generating plans for all
subquery blocks before the surrounding query block is processed. It is easy to see
that in such cases, the search space examined by the plan generator is limited, be-
cause only locally good solutions are computed. For globally optimal plans, it is

109
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desirable to reduce the number of query blocks to have more information available
in a single run of the plan generator, creating a larger search space of alternative
plans. For this reason, in the first phase of optimization, queries are rewritten by
merging as many query blocks as possible. This is state-of-the-art for SQL query
processing (e.g. [32, 44, 99]), but not highly developed forXQuery.

For an industrial strength approach to XQuery optimization, such a rewriting
step to merge query blocks is particularly necessary:

• In XQuery expressions in real applications, a nested query structure is the
norm rather than an exception. This is due to a number of reasons, including
the construction of hierarchical XML results, the absence of a grouping con-
struct, the generation of queries using visual editors, and, last but not least,
the inlining of (nonrecursive) XQuery functions that contain FLWOR expres-
sions.

• XML query processing can benefit from holisticn-way joins [21] which per-
form single-pass tree-pattern matching instead of constructing results just us-
ing binary joins. The detection of tree patterns and the decision when to use
regular joins and when to use pattern matching is a global decision during
plan generation that requires access to as much of the query as possible.

An example for a highly nested query (inspired by XMark Query3) is shown here:
l e t $ a u c t i o n := doc ( ” a u c t i o n . xml ” ) re tu rn

l e t $euro :=f o r $o in $ a u c t i o n / s i t e / o p e na u c t i o n s / o p e na u c t i o n
f o r $ i in $ a u c t i o n / s i t e / r e g i o n s / europe / i tem / @id
where $o / i t e m r e f / @item eq $ i
re tu rn $o

f o r $a in $euro
where zero−or−one ( $a / b i d d e r [ 1 ] / i n c r e a s e / t e x t ( ) )∗ 2

<= $a / b i d d e r [ l a s t ( ) ] / i n c r e a s e / t e x t ( )
re tu rn

fo r $p in $ a u c t i o n / s i t e / peop le / pe rson [ p r o f i l e / @income> 5000]
f o r $w in $p / watches / watch
where $a / @id = $w / @openauct ion
re tu rn <a u c t i o n id =”{ $a / @id}”>

< i n c r e a s e f i r s t =”{ $a / b i d d e r [ 1 ] / i n c r e a s e / t e x t ( )} ”
l a s t =”{ $a / b i d d e r [ l a s t ( ) ] / i n c r e a s e / t e x t ( )} ” / >

<watched by id =”{$p / @id}”/ >
</ auc t ion>

The query body is constructed of four FLWOR expressions, three of which are
nested inside other FLWORs. However, these are only the explicit FLWOR blocks.
Depending on the compiler design, the number of nested queryblocks may be even
deeper. For example, with a plan generator that focuses on purely structural tree
pattern matching, nested value-based predicates such asprofile/@income >
5000 may be separate query blocks.

Without further processing, such a query is optimized usingseveral runs of the
plan generation algorithm, where each plan for a FLWOR expression is used in
the plan for the surrounding FLWOR. This separate optimization of subqueries im-
pedes the discovery of good overall execution plans. This isdemonstrated by our



111

example, in which there are two value-based joins, one joining the Open Auctions
to the European Items, and one joining the Open Auctions to the Persons with an
income higher than 5000. However, the join conditions in thewhere clauses are
in different FLWORs, prohibiting the plan generator to see both of the joins and
optimize their order. Join order optimization is a cornerstone of efficient relational
query processing and just as important in XQuery processing[80].

As in many other cases, the nested structure of the query is not required to
obtain the query result, but is used because this way the query is simpler to write.
In fact, the whole query above can be formulated using a single FLWOR block. One
alternative to do so is shown below, with the results of each processing step bound
to a separate variable:
l e t $ a u c t i o n := doc ( ” a u c t i o n . xml ” ) , $x32 := $ a u c t i o n / s i t e
f o r $o in $x32 , $x13 in $o / o p e n a u c t i o n s , $a in $x13 / o p e n a u c t i o n
f o r $ i in $x32 , $x15 in $ i / r eg ions , $x16 in $x15 / europe
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $a / i t e m r e f , $x19 := $x4 / @item
l e t $x33 := $a / b i d d e r [ 1 ] , $x34 := $x33 / i n c r e a s e , $x35 := $x34 / te x t ( )
l e t $x36 := $a / b i d d e r [ l a s t ( ) ] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ( )
l e t $x39 := $a / @id
f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / pe rson
f o r $w in $x21 / watches , $x22in $w / watch
l e t $x8 := $x21 / @id , $x10 := $x22 / @openauct ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x1 in <a u c t i o n id =”{ $x39}”>

< i n c r e a s e f i r s t =”{ $x35}”
l a s t =”{$x38}”/ >

<watched by id =”{ $x8}”/ >
</ auc t ion>

where zero−or−one ( $x35 ) ∗ 2 <= $x38 and $x39 = $x10
and $x27 > 5000 and $x19 eq $x18

re tu rn $x1

While this form of the query is less readable and more difficult to write, it is
easier to optimize because all the basic operations, intermediate results, input sets,
and their dependencies are uniformly represented in a single, top-level FLWOR
construct.

The goal of this chapter is to provide a toolkit for developers of XQuery eval-
uators to transform XQuery expressions into expressions with as few query blocks
as possible. This toolkit takes the form of rewrite rules merging the inner and outer
FLWOR expressions into single FLWORs. These unnesting rules are supplemented
by some helpful normalization rewrites. We have chosen to present our rules using
regular XQuery syntax because other representations (suchas QGM or algebraic
expressions) are less universal and would be more difficult to adapt to different
evaluators. We do not use the XQuery Core sublanguage because it does not have a
query block construct suitable for plan generation. It is, instead, inherently nested,
even for quite simple XQuery expressions.

The remainder of this chapter is structured as follows: First, in Section 6.1, we
give an overview of the rewrite toolkit. The main Sections 6.2, 6.3, and 6.4 present
normalization and FLWOR merging rules, respectively. We then present a short
evaluation (see Sec. 6.5), demonstrating the effect of our rules when generating
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Normalization

Return 
Rewrites
(Figure 6.2)

Path Normalization

Path Extraction 
and Tailoring
(Figure 6.3)

Predicate 
Normalization
(Figure 6.4)

Factorization
(Figure 6.5)

For-/Let Rewrites
(Figures 6.6 - 6.10)

Figure 6.1: Processing model

execution plans. At the end, we discuss related work in Section 6.6 and conclude
the chapter in Sec. 6.7.

6.1 Overview

The overall goal of this chapter is to flatten an XQuery expression, i.e. merge as
many query blocks (i.e. FLWOR expressions) as possible. To achieve this goal,
we basically proceed in two phases: (1) Normalization and (2) FLWOR Merging.
Fig. 6.1 gives an overview of our processing model.

In both phases, we apply a set of rules based on XQuery syntax to a query. A
separate figure presents one set of rules for each normalization and rewriting step.
The overview Figure 6.1 contains references to each of them.

Normalization

comprises two major subtasks:

1. All ExprSingle expressions1 from thereturn clause are moved to the
expression creating the binding sequence of a newfor expression.

2. Path expressions are normalized (as far as possible). In particular, (1) all path
expressions not directly associated with afor clause are bound to variables
usinglet, (2) path expressions are taken to single steps, (3) predicates are
moved into thewhere clause, and (4) common location steps are factorized.

FLWOR Merging

Starting from this normalized form, we remove as many query blocks (FLWOR
expressions) as possible. Specifically, we present rewriterules that eliminate or
merge inner FLWORs occurring in thefor or let clause, respectively.

1Note thatExprSingle is the expression produced by the grammar rules from [38].
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Notation

Our rewrite rules are formulated using XQuery syntax [38]. However, to simplify
the presentation, we use the following abbreviations for frequently used clauses:

ForOrLetClause := ForClause | LetClause
ForOrLetClauses := ForOrLetClause∗

Moreover, we assume that all variable names are unambiguous. Since we some-
times introduce new variables or change the bindings of existing ones, we introduce
a notation for variable substitution:Expr[$x2 ← $x1] denotesExpr with all free
occurrences of$x2 replaced by$x1.

Running Example

We illustrate the application of our rules on the query from the introduction. Ap-
plying our rules to the example query yields a query having a single FLWOR block.
l e t $ a u c t i o n := doc ( ” a u c t i o n . xml ” ) re tu rn

l e t $euro :=f o r $o in $ a u c t i o n / s i t e / o p e na u c t i o n s / o p e na u c t i o n
f o r $ i in $ a u c t i o n / s i t e / r e g i o n s / europe / i tem / @id
where $o / i t e m r e f / @item eq $ i
re tu rn $o

f o r $a in $euro
where zero−or−one ( $a / b i d d e r [ 1 ] / i n c r e a s e / t e x t ( ) )∗ 2

<= $a / b i d d e r [ l a s t ( ) ] / i n c r e a s e / t e x t ( )
re tu rn

fo r $p in $ a u c t i o n / s i t e / peop le / pe rson [ p r o f i l e / @income> 5000]
f o r $w in $p / watches / watch
where $a / @id = $w / @openauct ion
re tu rn <a u c t i o n id =”{ $a / @id}”>

< i n c r e a s e f i r s t =”{ $a / b i d d e r [ 1 ] / i n c r e a s e / t e x t ( )} ”
l a s t =”{ $a / b i d d e r [ l a s t ( ) ] / i n c r e a s e / t e x t ( )} ” / >

<watched by id =”{$p / @id}”/ >
</ auc t ion>

In practice, this query could well be the result of an inlinedXQuery function.
XQuery functions are often used asviewsto increase data independence, or sim-
ply to make queries more readable, similar to views in SQL. Inour case, the se-
quence bound to$euro could be an inlined function to retrieve European Auc-
tions, whereas the bottommost FLWOR expression could be a function to retrieve
all watchers for a given auction. The results of these functions are joined using the
surrounding FLWOR block. In such a context, the applicationof our rewrite rules
can also be described asview merging, allowing the plan generator to optimize join
orders beyond view borders.

6.2 Normalization

Normalization does not decrease the FLWOR nesting level of aquery. Instead, it
transforms the query such that the unnesting rewrite rules can still be applied in
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case of minor syntactical variations. In addition to this preparatory character, nor-
malization also directly helps to achieve our ultimate goalof preparing queries for
plan generation: XQuery allows several different ways of formulating predicates
(e.g. thewhere clause and XPath predicates). However, the plan generator re-
quires a single unified formulation of all the constraints onall the variables in the
currently considered query block to systematically explore the search space of alter-
native plans. Execution plan alternatives for value-basedpredicates include, but are
not limited to, placement of selection operators, use of joins, and index selection.
Which of these alternatives is used, and in which order the different predicates of
a query are evaluated, should not depend on the nesting levelor placement of the
predicates. This robustness is achieved by our normalization phase.

Normalization proceeds in several consecutive steps, as shown in in Fig. 6.1.
We first enforce a simple form for allreturn clauses before we break down com-
plex locations paths into primitives, with an emphasis on predicate normalization.
Finally, we eliminate common subexpressions.

6.2.1 Return Normalization

In order to allow a uniform treatment of nested expressions in return andlet
clauses, we move allExprSingle expressions fromreturn clauses tolet
clauses (see Rewrite 6.1). This way, we can treat unnesting of return andlet
uniformly and can always assume that areturn clause contains a single variable
reference.

ForOrLetClauses
WhereClause?
OrderByClause?
return ExprSingle1

→

ForOrLetClauses
let $x1 := ExprSingle1

WhereClause?
OrderByClause?
return $x1

(6.1)

ForOrLetClauses1

let $x1 := ExprSingle1

ForOrLetClauses2

WhereClause?
OrderByClause?
return $x1

→

ForOrLetClauses1

for $x1 in ExprSingle1

ForOrLetClauses2

WhereClause?
OrderByClause?
return $x1

(6.2)

Condition: There are no other occurrences of$x1.

Figure 6.2: Return rewrites

Other than normalizing thereturn clause, we can further prepare optimization
by converting the newlet clause into afor clause (see Rewrite 6.2). This is
possible because on the right-hand side the concatenation semantics of FLWOR
blocks reestablishes the same result sequence as on the left-hand side of the rewrite,
as long as$x1 is not used anywhere but in thereturn clause.
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Turninglet into for expressions allows a significantly larger range of alter-
natives for plan generation. Evaluation offor clauses can be done in an iterative
manner, generating the items of the binding sequence one by one, instead of com-
puting and materializing the whole sequence at once. This allows efficient tech-
niques such as pipelining and is the preferred style of implementation in database
runtime engines [].

Running Example

Applying thereturn elimination andlet transformation rewrites (6.1 and 6.2)
to thereturn expressions of our example query results in the following:
l e t $ a u c t i o n := doc ( ” a u c t i o n . xml ” )
f o r $x1 in l e t $euro := f o r $o in $ a u c t i o n / s i t e / o p e na u c t i o n s / o p e na u c t i o n

f o r $ i in $ a u c t i o n / s i t e / r e g i o n s / europe / i tem / @id
where $o / i t e m r e f / @item eq $ i
re tu rn $o

f o r $a in $euro
f o r $x2 in f o r $p in $ a u c t i o n / s i t e / peop le / pe rson [ p r o f i l e / @income> 5000]

f o r $w in $p / watches / watch
f o r $x3 in <a u c t i o n id =”{ $a / @id}”>

< i n c r e a s e f i r s t =”{ $a / b i d d e r [ 1 ] / i n c r e a s e / t e x t ( )} ”
l a s t =”{ $a / b i d d e r [ l a s t ( ) ] / i n c r e a s e / t e x t ( )} ” / >

<watched by id =”{$p / @id}”/ >
</ auc t ion>

where $a / @id = $w / @openauct ion
re tu rn $x3

where zero−or−one ( $a / b i d d e r [ 1 ] / i n c r e a s e / t e x t ( ) )∗ 2
<= $a / b i d d e r [ l a s t ( ) ] / i n c r e a s e / t e x t ( )

re tu rn $x2
re tu rn $x1

6.2.2 Path Normalization

Path expressions are a crucial performance factor for the evaluation of almost ev-
ery XQuery query. For efficiently evaluating path expressions, the plan generator
makes cost-based decisions on algorithms that should be used to evaluate them.
For example, an optimizer decides whether a holistic approach (e.g. [21, 66]) for
evaluating multiple path expressions is superior to a fine granular approach that
evaluates single steps individually (e.g. [2, 53]) probably with the help of an index.
The plan generator requires a canonical form of the path expressions to make such
decisions. Besides separating each processing step for plan generation, cutting path
expressions involves two other advantages:

• It allows to move location step predicates from the middle oflocation paths
into thewhere clause.

• Common subexpression elimination (see below) can be done atthe granular-
ity of steps.
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Sometimes it is not possible to cut location path into singlesteps. For example,
if a path occurs in alet binding or if duplicates are generated by a path. In these
cases, we rely on the algebraic techniques, we have proposedin previous chapters.
Our full-fledged XPath approach can be seamlessly integrated in the approaches
proposed by [82] in order to evaluate such XPath expressions.

Path Tailoring

for $x in StepExpr/PathExpr →
for $x1 in StepExpr
for $x2 in $x1/PathExpr

(6.3)

Condition: StepExpr must not produce duplicates.

for $x in ddo(StepExpr)/PathExpr →
for $x1 in StepExpr
for $x2 in $x1/PathExpr

(6.4)

for $x in StepExpr/PathExpr →
let $x1 := StepExpr
for $x2 in $x1/PathExpr

(6.5)

let $x := StepExpr/PathExpr →
let $x1 := StepExpr
let $x2 := $x1/PathExpr

(6.6)

Figure 6.3: Path tailoring rewrites

In order to separate each processing step, we first extract all path expressions
from the query which are not already binding expressions offor or let, and bind
them to newlet variables. We keep path expressions infor clauses because they
need a different treatment in our predicate rewrites below.

Having extracted all path expressions, we cut them up into single location steps
(see Fig. 6.3 for rewriting rules). Again to facilitate iterator-based evaluation, we
attempt to avoidlet clauses when possible (6.3 and 6.5) while breaking up path
expressions infor clauses. Without further refinements, we can only cut those
steps that do not produce duplicates (see [59, 60]). Rule 6.4uses the ddo function
(fs:distinct-doc-order) which is defined in the XQuery formal seman-
tics [37]. This function can be introduced as for example described in [60]. With
this rule, we can tailor and later factorize path which wouldnot have been possible
without explicit treatment of the ddo function.

Of course, location steps assigned to alet variable remain in alet binding
(6.6).
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Predicate Normalization

The plan generator not only decides on the path evaluation algorithms and the order
of joins based on structural predicates, but also on the order of regular, value-based
joins and selections. Moving all non-structural predicates into thewhere clause
makes such join and selection predicates explicitly available in a uniform manner.
This allows a search space of plans that is robust against thesyntactical placement of
the predicate. Further, a unifiedwhere also allows predicate processing, including,
but not limited to inference of new predicates, and elimination of redundant ones.

ForOrLetClauses1

for $x1 in StepExpr[Expr1]
ForOrLetClauses2

where Expr2

OrderByClause?
return ExprSingle1

→

ForOrLetClauses1

for $x1 in StepExpr
ForOrLetClauses2

where fn : boolean($x1/(Expr1)) and Expr2

OrderByClause?
return ExprSingle1

(6.7)

Condition: The value ofExpr1 must not depend on the context position or context size.

ForOrLetClauses1

let $x1 := StepExpr[Expr1]
ForOrLetClauses2

where Expr2

OrderByClause?
return ExprSingle1

→

ForOrLetClauses1

let $x1 := StepExpr
ForOrLetClauses2

where fn : boolean(Expr1) and Expr2

OrderByClause?
return ExprSingle1

(6.8)

Condition: The value ofExpr1 must not depend on the focus (context item, context position, or context size).

ForOrLetClauses1

for $x1 in StepExpr[Expr1 and Expr2]
ForOrLetClauses2

where Expr3

OrderByClause?
return ExprSingle1

→

ForOrLetClauses1

for $x1 in StepExpr[Expr2]
ForOrLetClauses2

where fn : boolean($x1/(Expr1)) and Expr3

OrderByClause?
return ExprSingle1

(6.9)

Condition: The value ofExpr1 must not depend on the context position or context size.

ForOrLetClauses1

for $x1 in StepExpr[Expr1 and Expr2]
ForOrLetClauses2

where Expr3

OrderByClause?
return ExprSingle1

→

ForOrLetClauses1

for $x1 at $y1 in StepExpr[Expr2]
ForOrLetClauses2

where Expr′1 and Expr3

OrderByClause?
return ExprSingle1

(6.10)

Conditions: The value of Expr1 depends on the context position, but not the context size.Expr′1 :=
Expr1[$fs : position← $y1] andStepExpr must not consist of a reverse axis step (see text).

Figure 6.4: Predicate normalization rewrites

In Fig. 6.4, we present rules that get predicate expressionsof location steps and
move them into thewhere clause of the surrounding FLWOR block. For each ex-
tracted predicate expression, we have to set the context to the context defined by
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the according step. For example, if we moveExpr1 from a location step predicate
into awhere clause (see Rule 6.7), we have to guarantee that all context accesses
are performed with respect to$x1, which is why we prepend$x1 to the predi-
cate expression. Similarly, we can get comparison expressions that contain calls to
the context position of a location step by creating a positional variable using the
for VarRef at VarRef syntax and replacing accesses to the context position
with the variable (see Rule 6.10). This is not strictly possible in XQuery syntax, but
easily implemented in most evaluators, because the contextposition is modeled as
a special variable anyway. Our choice of variable name ($fs:position) follows the
XQuery Formal Semantics, which also replaces context position by a special vari-
able. Further, reverse axis steps cannot be handled this way, because the context
position numbering is different from the order of the resultsequence2.

Note that for the sake of brevity, we assume that there alwaysis awhere clause
in the outer expression. We treatwhere-less outer FLWORs as if there was a
where true clause.

Common Path Elimination

let $x1 := StepExpr1

let $x2 := StepExpr1/StepExpr2
→

let $x1 := StepExpr1

let $x2 := $x1/StepExpr2
(6.11)

for $x1 in StepExpr1

for $x2 in StepExpr1/StepExpr2
→

let $x0 := StepExpr1

for $x1 in $x0
for $x2 in $x0/StepExpr2

(6.12)

let $x1 := StepExpr1

for $x2 in StepExpr1/StepExpr2
→

let $x1 := StepExpr1

for $x2 in $x1/StepExpr2
(6.13)

for $x1 in StepExpr1

let $x2 in $x1/StepExpr2
→

let $x0 := StepExpr1

for $x1 in $x0
let $x2 := $x0/StepExpr2

(6.14)

Figure 6.5: Common path elimination

To avoid redundant evaluation, we eliminate common paths, binding them to
newfor or let variables as needed. In Fig. 6.5, we present four rules for elimi-
nating common location steps. However, elimination of common subexpressions is
a complex process that cannot be sufficiently described using only those rules. We
refer to [1] for algorithms on subexpression elimination.

2If the rewrite is not done on source level, the internal representation may have a suitable special
variable to bind for reverse axis numbering, making our rewrite possible again.
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Running Example

In the following, we present the query that is obtained by applying normalization,
i.e. path extraction, path tailoring, predicate normalization, and common path elim-
ination, to our example query.
l e t $ a u c t i o n := doc ( ” a u c t i o n . xml ” )
l e t $x32 := $ a u c t i o n / s i t e
f o r $x1 in l e t $euro := f o r $o in $x32 , $x13 in $o / o p e n a u c t i o n s

f o r $x14 in $x13 / open auc t ion , $ i in $x32 ,
f o r $x15 in $ i / r eg ions , $x16 in $x15 / europe ,
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $x14 / i t e m r e f , $x19 := $x4 / @item
where $x19 eq $x18
re tu rn $x14

f o r $a in $euro
l e t $x33 := $a / b i d d e r [ 1 ] , $x34 := $x33 / i n c r e a s e
l e t $x35 := $x34 / t e x t ( )
l e t $x36 := $a / b i d d e r [ l a s t ( ) ] , $x37 := $x36 / i n c r e a s e
l e t $x38 := $x37 / t e x t ( ) , $x39 := $a / @id
f o r $x2 in f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / pe rson

f o r $w in $x21 / watches , $x22in $w / watch
l e t $x8 := $x21 / @id
l e t $x10 := $x22 / @openauct ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x3 in <a u c t i o n id =”{ $x39}”>

< i n c r e a s e f i r s t =”{ $x35}” l a s t =”{ $x38}”/ >
<watched by id =”{$x8}”/ >

</ auc t ion>
where $x39 = $x10 and $x27 > 5000
re tu rn $x3

where zero−or−one ( $x35 ) ∗ 2 <= $x38
re tu rn $x2

re tu rn $x1

In this expression, for example, the XPath predicateprofile/@income >
5000 is removed from the location step and added to thewhere clause of the ac-
cording FLWOR block. Moreover, we replaced the common path expressions from
within the element construction and thewhere clauses (e.g. the path selecting the
increases of the first and last bid) by single variables. Notethat it is not possible
to move the positional predicates into thewhere clause, as they occur in alet
binding. Also note that for presentation purposes, we abbreviated consecutive oc-
currences offor andlet expressions using commas. In the full representation
of this query,for andlet expressions that bind multiple variables are split into
separate expressions.

6.3 Merging FLWOR Blocks

After finishing the normalization phase, the query is prepared for the core rules of
our toolkit, thefor andlet merging rewrites. The ultimate goal of the rewrites
presented in this section is to reduce the number of query blocks as much as possi-
ble.

Reconsider our normalized example query shown above. This formulation of
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the query contains several nested FLWOR expressions. The FLWOR nesting depth
in Line 3 is three. Thefor-clause binding$o is nested in alet clause which,
in turn, is nested in the outer-mostfor-clause binding$x1. Moreover, the query
contains afor clause defining$x2 whose binding sequence is generated by another
for clause.

In the following, we introduce rewrite rules that remove such nested expres-
sions. Applying them to our example query eliminates all nested FLWORs.

We start with rewrites that remove FLWORs nested infor clauses (see Fig. 6.6),
and then proceed tolet clauses (see Fig. 6.7).

6.3.1 For Rewrites

The semantics of afor clause is to iterate over items of the binding sequence,
binding thefor variable to every item from that sequence. The remaining FLWOR
expression is evaluated for each such binding, and the individual result sequences
are concatenated. We are interested in afor clause if its binding sequence is cre-
ated by a nested FLWOR expression. In some cases, we can lift the inner FLWOR
to the outer level. This rewrite opportunity results from the fact that sequences in
the XQuery data model are never nested. Hence, it often does not matter on how
many levels of implicit concatenation ofreturn sequences occurs, because the
result is always a flat sequence.

ForOrLetClauses1

for $x1 in (ForOrLetClauses2

for $x2 in ExprSingle1

ForOrLetClauses3

where ExprSingle2

return $x2)
ForOrLetClauses4

where ExprSingle3

return VarRef1

→

ForOrLetClauses1

ForOrLetClauses2

for $x1 in ExprSingle1

ForOrLetClauses′3
ForOrLetClauses4

where ExprSingle3 and ExprSingle
′
2

return VarRef1

(6.15)

Conditions: ForOrLetClauses′3 := ForOrLetClauses3[$x2← $x1] and
ExprSingle′2 := ExprSingle2[$x2← $x1]

ForOrLetClauses1

for $x1 in (ForOrLetClauses2

let $x2 := ExprSingle1

ForOrLetClauses3

where ExprSingle2

return $x2)
ForOrLetClauses4

where ExprSingle3

return VarRef1

→

ForOrLetClauses1

ForOrLetClauses2

let $x2 := ExprSingle1

ForOrLetClauses3

for $x1 in $x2
ForOrLetClauses4

where ExprSingle3 and ExprSingle2

return VarRef1

(6.16)

Figure 6.6: For rewrites

For example, consider the left-hand side of the firstfor Rewrite 6.15. In this
rewrite, the variable$x1 is iteratively bound to each item returned by the inner
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FLWOR. The result of the inner FLWOR is generated by thereturn clause. Note
that in our case thereturn clause consists only of a variable reference, i.e. vari-
able$x2. To merge the two blocks, we have to guarantee that the outerfor variable
$x1, after merging, is still bound to the same items, i.e. those generated by variable
$x2. To this end, we replace the nested FLWOR with the expressionresponsible for
binding$x2. In the rewrite this expression is calledExprSingle1 and bound by
afor clause. The remaining (optional) clauses are moved into theouter FLWOR
block. Specifically,ForOrLetClauses2 andForOrLetClauses3 are pulled
up one level.ExprSingle2 from the innerwhere clause is conjunctively con-
nected to the expression in the outerwhere clause3. After relocating the inner
expressions, we have to replace free occurrences of the previous inner variable$x2
with $x1.

Similarly, we merge two query blocks if the binding sequenceis created by a
nestedlet variable (see our Rewrite Rule 6.16). Note that the right-hand side of
Rule 6.16 may still contain a FLWOR nested in alet clause. This case is unnested
by Rule 6.17, which is presented in the next section.

Running Example

On our example query, we can apply Rewrite Rule 6.15 twice. First, to eliminate
the innerfor -clause binding$x2, as this variable is returned to create the binding
sequence for$x1. Second, we apply this rule to eliminate thefor expression
binding$x3. This results in the following expression:

l e t $ a u c t i o n := doc ( ” a u c t i o n . xml ” )
l e t $x32 := $ a u c t i o n / s i t e
l e t $euro := f o r $o in $x32 , $x13 in $o / o p e n a u c t i o n s , $x14 in $x13 / o p e n a u c t i o n

f o r $ i in $x32 , $x15 in $ i / r eg ions , $x16 in $x15 / europe
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $x14 / i t e m r e f , $x19 := $x4 / @item
where $x19 eq $x18
re tu rn $x14

f o r $a in $euro
l e t $x33 := $a / b i d d e r [ 1 ] , $x34 := $x33 / i n c r e a s e , $x35 := $x34 / te x t ( )
l e t $x36 := $a / b i d d e r [ l a s t ( ) ] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ( )
l e t $x39 := $a / @id
f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / pe rson
f o r $w in $x21 / watches , $x22in $w / watch
l e t $x8 := $x21 / @id , $x10 := $x22 / @openauct ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x1 in <a u c t i o n id =”{ $x39}”>

< i n c r e a s e f i r s t =”{ $x35}”
l a s t =”{$x38}”/ >

<watched by id =”{ $x8}”/ >
</ auc t ion>

where zero−or−one ( $x35 ) ∗ 2 <= $x38 and $x39 = $x10 and $x27 > 5000
re tu rn $x1

3As before, expressions withoutwhere are treated as if awhere true clause was added.
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6.3.2 Let Rewrites

let clauses require separate rewrites because they bind a variable to the result of
its associated expression, i.e. without iterating over this result. Fig. 6.7 presents
three rewrite rules to eliminate FLWORs nested inlet clauses.

ForOrLetClauses1

let $x1 := ExprSingle1

ForOrLetClauses2

for $x2 in $x1
ForOrLetClauses3

where ExprSingle2

return VarRef

→

ForOrLetClauses1

ForOrLetClauses2

for $x2 in ExprSingle1

ForOrLetClauses3

where ExprSingle2

return VarRef

(6.17)

Condition: There are no other occurrences of$x1.

ForOrLetClauses1

let $x1 := (ForOrLetClauses2

for $x2 in ExprSingle1

where ExprSingle2

return $x2)
where ExprSingle3

return $x1

→

ForOrLetClauses1

ForOrLetClauses2

for $x2 in ExprSingle1

where ExprSingle3 and ExprSingle2

return $x2

(6.18)

Condition: There are no other occurrences of$x1.

ForOrLetClauses1

let $x1 := (ForOrLetClauses2

let $x2 := ExprSingle1

where ExprSingle2

return $x2)
where ExprSingle3

return $x1

→

ForOrLetClauses1

ForOrLetClauses2

let $x2 in ExprSingle1

where ExprSingle3 and ExprSingle2

return $x2

(6.19)

Condition: There are no other occurrences of$x1.

Figure 6.7: Let rewrites

Rewrite Rule 6.17 tackles a frequently used case. There, afor iteration is used
to enumerate all items contained in alet variable. This technique is used in our
example query and may result from inlining an XQuery function as explained at
the beginning of this section. The rules suggests to eliminate thelet variable if
it is used only once and inline the associated expression (i.e.ExprSingle1). On
this result, the rewrites of the previous section (see Fig. 6.6) can be applied and
eliminate the nesting.

Fig. 6.7 also contains two rewrites that remove nestedfor (see Rule 6.18) and
let (see Rule 6.19) expressions, respectively. The outerlet clause in both rules
is immediately followed by thewhere clause. If there was anotherfor or let
clause in between, it wouldn’t contain occurrences ofx1 and, hence, could w.l.o.g.
be moved above thelet clause that is bindingx1.
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Running Example

The result of applying thelet Rewrite Rule 6.17 and thefor Rewrite Rule 6.15
to our example is the following query finally consisting of a single query block.
l e t $ a u c t i o n := doc ( ” a u c t i o n . xml ” ) , $x32 := $ a u c t i o n / s i t e
f o r $o in $x32 , $x13 in $o / o p e n a u c t i o n s , $a in $x13 / o p e n a u c t i o n
f o r $ i in $x32 , $x15 in $ i / r eg ions , $x16 in $x15 / europe
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $a / i t e m r e f , $x19 := $x4 / @item
l e t $x33 := $a / b i d d e r [ 1 ] , $x34 := $x33 / i n c r e a s e , $x35 := $x34 / te x t ( )
l e t $x36 := $a / b i d d e r [ l a s t ( ) ] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ( )
l e t $x39 := $a / @id
f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / pe rson
f o r $w in $x21 / watches , $x22in $w / watch
l e t $x8 := $x21 / @id , $x10 := $x22 / @openauct ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x1 in <a u c t i o n id =”{ $x39}”>

< i n c r e a s e f i r s t =”{ $x35}”
l a s t =”{$x38}”/ >

<watched by id =”{ $x8}”/ >
</ auc t ion>

where zero−or−one ( $x35 ) ∗ 2 <= $x38 and $x39 = $x10
and $x27 > 5000 and $x19 eq $x18

re tu rn $x1

Note how in this form all value-based join and selection predicates are available
in a unifiedwhere clause. This allows a plan generator to decide on index access
and join orders.

6.4 Intricacies

In the last section, we presented rewrite rules to reduce thenumber of FLWOR
expressions in a query. However, all of the presented elimination rewrites were
limited in terms of FLWORs that do not contain positional variables ororder
by clauses. Merging FLWORs which contain one of these constructs requires more
sophisticated rewrite techniques. In case of anorder by clause, for example, one
has to keep track of the order that is given (1) through the explicit sort statement
in an outer query block and (2) implicitly in a nested FLWOR expression. In this
section, we present new rewrite rules that are similar to thepreviously presented
rules but also fix one of these intricacies.

6.4.1 Positional For Rewrites

First, we consider the case that the outer block contains a positional clause. Afor
expression that has a nested FLWOR and additionally binds a positional variable
is called apositionalfor expression. Fig. 6.8 presents two rewrites that merge an
expression that is nested inside a positionalfor expression. Both have on the left-
hand side a positionalfor expression. Each of them binds the positional variable
$y1 using thefor VarRef at VarRef syntax. In order to be able to merge
the outer and the inner FLWOR into one, the inner FLWOR must not contain a
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where or order by clause. Otherwise, the numbering of the result sequence of
the inner query could not be guaranteed after merging. Our solution for merging
such FLWOR expressions is shown on the right-hand side of Rewrite Rules 6.20
and 6.21.

ForOrLetClauses1

for $x1 at $y1 in (for $x2 in ExprSingle1

return $x2)
ForOrLetClauses2

where ExprSingle2

return VarRef1

→

ForOrLetClauses1

for $x1 at $y1 in ExprSingle1

ForOrLetClauses2

where ExprSingle2

return VarRef1

(6.20)

ForOrLetClauses1

for $x1 at $y1 in (let $x2 := ExprSingle1

return $x2)
ForOrLetClauses2

where ExprSingle2

return VarRef1

→

ForOrLetClauses1

for $x1 at $y1 in ExprSingle1

ForOrLetClauses2

where ExprSingle2

return VarRef1

(6.21)

Figure 6.8: Positional for rewrites

The former rule contains a nestedfor clause. In this case, we can simply re-
duce the nesting level and pullExprSingle1 from the inner into the outer block.
Because there are no other clauses in the inner query block, we do not reorder the
result and, hence, keep the numbering. The inner FLWOR blockof the latter rule
starts with alet clause. Here, eliminating thelet clause is possible for the same
reason.

6.4.2 Order-by

A second restriction on the rewrites from the previous section is that neither the
outer nor the inner FLWOR can contain anorder by clause. In this section,
we augment our rewrite merging rules with expressions containing anorder by
clause. We present rules for all cases, i.e. eitherfor orlet expressions are nested
in afor clause or they are nested in alet clause, respectively.

If an order by clause is present, we have to guarantee that both the explicit
order given by theorder by clause and the implicit order given by the occurrence
of for orlet clauses are preserved. For maintaining the hierarchy in theunnested
case, we introduce a technique that we callCanonical Order By. This technique
modifiesfor clauses to bind a positional variable and add anorder by clause
to the corresponding FLWOR expression which has the new positional variables
in its OrderSpecList. If there are multiplefor and/orlet clauses in one
FLWOR expression, the order of the positional variables in theOrderSpecList
is determined by the order in which these clauses occur in theFLWOR block. Doing
so, we guarantee that the result is in requested order.
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In the following, we show how this technique can be applied tomerge FLWOR
expressions that contain anorder by clause in the outer and/or the inner FLWOR.
Analogously to the previous section, we start withfor rewrites and then proceed
to let merging rules.

For Rewrites

Fig. 6.9 presents four rules to tackle queries whose inner orouter FLWOR contains
anorder by clause.

The left-hand side of each rule in this figure is similar to a rule from Fig. 6.6
but allows fororder by clauses. The right-hand side of all rewrite rules shows
how the outer and inner FLWOR expression can be merged, despite the order of the
result is not changed.

At the bottom of each rule, we delineate the expressions thatneed to bind po-
sitional variables. For example, on the right-hand side of Equivalence 6.22 thei-th
for clause inForOrLetClauses1 binds the positional variable$y1i using the
for VarRef at VarRef syntax. In Rules 6.22 and 6.23, we could omit the
positional variables$y41, . . . , $y4m and instead usestable order by. How-
ever, this case could be less efficient, as it may require to keep of the sortedness of
unnecessary attributes.

In case both the outer and inner FLWOR contain anorder by clause, we
proceed as shown in Fig. 6.6. However, we need to merge the twoorder by
clauses such that sorting is done according to theOrderSpecList of the outer
FLWOR first and then for theOrderSpecList of the inner FLWOR block.

Let Rewrites

Similarly to the previous subsection, we also allow ourlet merging rules from
Fig. 6.7 to containorder by clauses. These rules are presented in Fig. 6.10.

The left-hand side of Rewrite Rule 6.26 corresponds to Rule 6.17 but has an
order by clause in the outer block. On the right-hand side, we merge the let
clause binding$x1 with the for clause that iterates over the sequence resulting
from $x1. Theorder by clause remains with the outer block.

In Rule 6.27, we eliminate thelet clause in the outer block and, therefore,
pull the inner block one level higher. However, in this case,the for clauses of
the outer block are augmented to bind new positional variables on which sorting is
done. This is necessary to keep the order that is predetermined by the outer block.

Rules 6.28 and 6.29 merge blocks that have alet clause in the outer block
that contains a nestedfor or let expression. Additionally, the outer clause fea-
tures anorder by clause. Theorder by clause of the merged representation
is augmented to reestablish the order of the inner FLWOR block.
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ForOrLetClauses1

for $x1 in (ForOrLetClauses2

for $x2 in ExprSingle1

ForOrLetClauses3

where ExprSingle2

order by OrderSpecList1

return $x2)
ForOrLetClauses4

where ExprSingle4

return VarRef1

→

ForOrLetClauses1

ForOrLetClauses2

for $x1 at $y2 in ExprSingle1

ForOrLetClauses′3
ForOrLetClauses4

where ExprSingle4 and ExprSingle
′
2

order by $y11, . . . , $y1n, $y2,
OrderSpecList′1, $y41, . . . , $y4m

return VarRef1

(6.22)

On the right-hand sideForOrLetClauses1 bind the positional variables$y11, . . . , $y1n andForOrLetClauses4

bind$y41, . . . , $y4m.
Conditions: ForOrLetClauses′3 := ForOrLetClauses3[$x2 ← $x1], ExprSingle′2 :=
ExprSingle2[$x2← $x1], andOrderSpecList′1 := OrderSpecList1[$x2← $x1]

ForOrLetClauses1

for $x1 in (ForOrLetClauses2

let $x2 := ExprSingle1

ForOrLetClauses3

where ExprSingle2

order by OrderSpecList1

return $x2)
ForOrLetClauses4

where ExprSingle4

return VarRef1

→

ForOrLetClauses1

ForOrLetClauses2

let $x2 := ExprSingle1

ForOrLetClauses3

for $x1 at $y2 in $x2
ForOrLetClauses4

where ExprSingle4 and ExprSingle2

order by $y11, . . . , $y1n, $y2,
OrderSpecList1, $y41, . . . , $y4m

return VarRef1

(6.23)

On the right-hand sideForOrLetClauses1 bind the positional variables$y11, . . . , $y1n andForOrLetClauses4

bind$y41, . . . , $y4m.

ForOrLetClauses1

for $x1 in (ForOrLetClauses2

for $x2 in ExprSingle1

ForOrLetClauses3

where ExprSingle2

return $x2)
ForOrLetClauses4

where ExprSingle4

order by OrderSpecList1

return VarRef1

→

ForOrLetClauses1

ForOrLetClauses2

for $x1 at $y2 in ExprSingle1

ForOrLetClauses′3
ForOrLetClauses4

where ExprSingle4 and ExprSingle
′
2

order by OrderSpecList1, $y21, . . . , $y2n, $y2,
$y31, . . . , $y3m

return VarRef1

(6.24)

On the right-hand sideForOrLetClauses1 bind the positional variables$y11, . . . , $y1n andForOrLetClauses′3
bind$y43, . . . , $y3m.
Conditions: ForOrLetClauses′3 := ForOrLetClauses3[$x2 ← $x1], ExprSingle′2 :=
ExprSingle2[$x2← $x1], andOrderSpecList′1 := OrderSpecList1[$x2← $x1]

ForOrLetClauses1

for $x1 in (ForOrLetClauses2

let $x2 := ExprSingle1

ForOrLetClauses3

where ExprSingle2

return $x2)
ForOrLetClauses4

where ExprSingle4

order by OrderSpecList1

return VarRef1

→

ForOrLetClauses1

ForOrLetClauses2

let $x2 := ExprSingle1

ForOrLetClauses3

for $x1 at $y2 in $x2
ForOrLetClauses4

where ExprSingle4 and ExprSingle2

order by OrderSpecList1, $y21, . . . , $y2n, $y2,
$y31, . . . , $y3m

return VarRef1

(6.25)

On the right-hand sideForOrLetClauses1 bind the positional variables$y11, . . . , $y1n andForOrLetClauses3

bind$y43, . . . , $y3m.

Figure 6.9: Order-by for rewrites
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ForOrLetClauses1

let $x1 := ExprSingle1

ForOrLetClauses2

for $x2 in $x1
ForOrLetClauses3

where ExprSingle2

order by OrderSpecList
return VarRef

→

ForOrLetClauses1

ForOrLetClauses2

for $x2 in ExprSingle1

ForOrLetClauses3

where ExprSingle2

order by OrderSpecList
return VarRef

(6.26)

Condition: There are no other occurrences of$x1.

ForOrLetClauses1

let $x1 := (ForOrLetClauses2

for $x2 in ExprSingle1

where ExprSingle2

order by OrderSpecList1

return $x2)
where ExprSingle3

return $x1

→

ForOrLetClauses1

ForOrLetClauses2

for $x2 at $y2 in ExprSingle1

where ExprSingle3 and ExprSingle2

order by $y11, . . . , $y1n, $y2, OrderSpecList1

return $x2

(6.27)

On the right-hand sideForOrLetClauses1 bind the positional variables$y11, . . . , $y1n .
Condition: There are no other occurrences of$x1.

ForOrLetClauses1

let $x1 := (ForOrLetClauses2

for $x2 in ExprSingle1

where ExprSingle2

return $x2)
where ExprSingle3

order by OrderSpecList1

return $x1

→

ForOrLetClauses1

ForOrLetClauses2

for $x2 at $y2 in ExprSingle1

where ExprSingle3 and ExprSingle2

order by OrderSpecList1, $y21, . . . , $y2n, $y2
return $x2

(6.28)

On the right-hand sideForOrLetClauses2 bind the positional variables$y21, . . . , $y2n .
Condition: There are no other occurrences of$x1.

ForOrLetClauses1

let $x1 := (ForOrLetClauses2

let $x2 := ExprSingle1

where ExprSingle2

return $x2)
where ExprSingle3

order by OrderSpecList1

return $x1

→

ForOrLetClauses1

ForOrLetClauses2

let $x2 in ExprSingle1

where ExprSingle3 and ExprSingle2

order by OrderSpecList1, $y21, . . . , $y2n

return $x2

(6.29)

On the right-hand sideForOrLetClauses2 bind the positional variables$y21, . . . , $y2n .
Condition: There are no other occurrences of$x1.

Figure 6.10: Order-by let rewrites

6.5 Evaluation

A goal of this chapter is to show how to rewrite a query into a form that consists of
a single query block to give a single run of the plan generatoras much uniformly
structured information about the query as possible. We now elaborate on the impor-
tance of this goal by discussing the optimization of our example query during plan
generation. We will see how more efficient plans can be generated only when the
query has been reduced to a single block.

In order to demonstrate that better plans are possible, it isnot necessary to ex-
plore the whole search space available. Hence, we only focuson join ordering.
Therefore, we assume that the optimizer has decided on subplans to produce the
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sequences for Open Auctions, European Items, and Persons. The subplans may be
based on pattern matching algorithms. Further, we assume that the predicate select-
ing the auctions according to their bids has been converted into a single predicate
subplan. This predicate is, however, more expensive to evaluate than a simple value
comparison, and its placement in the overall plan does significantly affect perfor-
mance. Thus, finding an optimal plan includes finding an optimal position for this
predicate. We now discuss execution plans for our example query in the form of
algebraic expressions on an abstract level (see Fig. 6.11).

open_auctions european items

people($a)

σ income > 5,000σ bid[|]*2 ≤ bid[last]

MapConcat

(a) Block-by-block translation

open_auctions european items

people

σ income > 5,000σ bid[|]*2 ≤ bid[last]

(b) Plan 1

open_auctions

european items people

σ income > 5,000

σ bid[|]*2 ≤ bid[last]

(c) Plan 2

open_auctions

european items

people

σ income > 5,000σ bid[|]*2 ≤ bid[last]

(d) Plan 3

open_auctions

european items

people

σ income > 5,000

σ bid[|]*2 ≤ bid[last]

(e) Plan 4

Figure 6.11: Alternative execution plans

A straightforward translation of the original, nested, multi-block query looks
like Fig. 6.11(a). Here, the FLWOR blocks are translated directly into separate
subplans, and no global optimization takes place. For simplicity, we disregard the
first line of the example query (the initiallet clause for the document root). The
top-level MapConcat operator represents the main FLWOR expression. Its operand
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generates the tuple stream and contains subplans for the European Auctions query
block. The subplan connected to MapConcat by the dashed linerepresents the query
block in thereturn clause (the last eight lines of the query). It has a free variable
$a in the subplan for thepeople sequence, and, hence, has to be reevaluated for
every tuple of the MapConcat operand, as dictated by XQuery FLWOR semantics.
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Figure 6.12: Performance results

Fig. 6.11 shows four other execution plans based on the rewritten, single-block
form of our example query. These can be enumerated by the plangenerator because
it has access to all value-based predicates of the query in a singlewhere clause, and
can detect joins and determine an optimal order for them and the residual selections.
We executed all five plans from Fig. 6.11 in our hybrid relational and XML DBMS
Natix [40] on an XMark document with scaling factor one.

The experimental setup consisted of a PC with an Intel Pentium D CPU having
3.40GHz and 1GB of main memory, running on openSUSE 10.2 withLinux Kernel
2.6.18 SMP. To investigate the relative performance of the execution plans, we var-
ied the selectivity of the predicate restricting the peopleby their income between
0.14 and 0. This corresponds to incomes between 60,000$ to 130,000$ instead of
5,000$ in the original query. Fig. 6.12 shows the result of this small performance
study (execution time in seconds) for four plans from Fig. 6.11.

The experiment makes obvious why careful global plan generation based on
single-block queries is crucial for efficient execution. The results of the nested-loop
strategy of the straightforward translation are orders of magnitude slower (well be-
yond 100s) and have been left out of the graph. The join-basedplans made possible
by our rewritten single-block query show that an enumeration of alternatives is as
important as in relational query processing: Depending on selectivity, the overall
best plan varies. The plan according to Fig. 6.11(e) performs best with a very low
selectivity, whereas the plan belonging to Fig. 6.11(b) outperforms the others with
an increasing selectivity.
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6.6 Related Work

Michiels et al. [84] discuss rewrite rules on two levels. Starting from expressions in
XQuery Core, they propose to first rewrite them into normal forms (still in XQuery
Core) that make the subsequent stages robust against different syntactic formula-
tions of the same query, and to support tree-pattern detection. They also simplify
the query by removing unnecessary constructs introduced byCore normalization.
Some of these simplification rewrites could be incorporatedinto our toolkit. The
rewritten query is then translated into an algebra that includes a tree-pattern match-
ing operator. These algebraic expressions are then rewritten using algebraic equiv-
alences in order to merge simple path navigation operators into holistic tree pattern
matching operators. The rewrite rules on the algebraic level are orthogonal to the
ones presented in our toolkit and can be used by a plan generator to create execution
plans based on tree-pattern matching.

The very thorough paper by Hidders et al. [60] has a similar aim, but translates
a fragment of XQuery directly into tree patterns without an intermediate algebraic
phase. In a first phase, the queries are annotated with properties such as result car-
dinality, ordering, and occurrence of duplicates. These properties are then used to
control a rewriting of the query into the Tree Pattern NormalForm (TPNF), which is
always possible for the language fragment under consideration. For TPNF, a direct
mapping onto tree patterns is then described. Unfortunately, the language fragment
does not cover important XQuery constructs, such as value-based predicates. An-
other problem is that the rewrite rules are based on XQuery Core, which is unsuit-
able as a plan generator input, for example because the absence of awhere clause
makes it difficult to identify applicable join conditions. However, the property anno-
tations are not only useful for TPNF rewriting and can be usedwhen implementing
our rewrite toolkit. Further, the TPNF technique may be usedby plan generators to
identify parts of the query that can be evaluated using pattern matching.

May et al. [82] have presented unnesting strategies for XQuery. Their approach
is based on algebraic equivalences to be applied after translation of XQuery into
the NAL algebra of the Natix system. The main focus of that work is unnesting of
selection predicates which correspond towhere clauses on the source level. The
paper also discusses unnesting the subscripts of map operators, which on source
level corresponds tolet clauses. However, the rules are exclusively for the con-
version of implicit grouping into explicit grouping operators, and not for the general
unnesting oflet. Translated into the source form, the presented rewrite rules are
complementary to the rules discussed in this thesis.

6.7 Conclusion

In this chapter, we have proposed a toolkit for rewriting XQuery expressions into
expressions with as few query blocks as possible. This form is especially useful
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because merging query blocks usually increases the search space of a plan generator
and, hence, allows for better query execution strategies.

Our rewrite toolkit basically proceeds in a two-phase manner: First, we normal-
ize the query such that the unnesting rewrite rules can be applied despite syntactical
variations considering thereturn clause, XPath expressions, and predicates from
thewhere clause.

Second, we apply rewrite rules that merge all variants of nestedfor andlet
clauses. That is, we have given rules that merge inner blocksthat are contained in
a for or let binding, respectively. All our rules rely on the fact that sequences
in the XQuery data model are never nested. The result is always a flat sequence
because the level of implicit concatenations ofreturn sequences does not matter.

In a brief experimental study, we have shown that more efficient plans are pos-
sible if queries are rewritten using our toolkit.

Although XQuery seems to become the de facto query language for XML, this
fact does not supersede our work on the evaluation of XPath. Instead, because
XPath is an essential ingredient of XQuery, our algebraic techniques can also be
applied within an algebraic framework for XQuery. For example, as we have seen
in this chapter, it is not possible to cut XPath expressions that occur in an XQuery
let binding. In this case, all of our techniques for XPath (i.e. the full-fledged
algebraic approach and our unnesting techniques) can directly be applied to such an
XPath expression.





Chapter 7

Conclusion & Outlook

7.1 Conclusion

Relational systems have shown how algebraic techniques canbe used to efficiently
process SQL queries. These systems feature powerful query optimization tech-
niques as well as a fast and scalable implementations of their query execution en-
gines. In this thesis, we have developed a framework for leveraging algebraic tech-
niques to enable the efficient evaluation of XML query languages. Moreover, we
have presented novel rewrites to unnest nested SQL queries with disjunctions, a
problem that has not yet gained any attention.

7.1.1 Algebraic XPath Evaluation

We have started out with the development of an order-aware tuple-based logical
algebra that is capable to evaluate all of XPath. A translation function taking an
arbitrary XPath 1.0 expression as argument maps its input onto operators of the
new logical algebra. In a first step, we have defined the translation function such
that its output does not avoid the exponential runtime behavior of the naı̈ve XPath
evaluation. However, in a second step, we refined the translation function in order to
remedy this situation. Additionally, we have also described the implementation of
our algebra in the runtime system of the native XML database system Natix. Using
this system, we performed an evaluation comparing our approach against freely
available main-memory engines. As a result, we could observe that our approach
can compete with such engines — even though Natix is not purely main-memory
based — and that applying optimizations such as pushing duplicate elimination, our
approach is able to clearly outperform the others.

7.1.2 Unnesting XPath Expressions

Having established a complete algebraic approach, we have turned to optimizations.
Specifically, we have presented algebraic equivalences in order to unnest nested

133
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XPath expressions.
In order to systematically develop new unnesting techniques, we have estab-

lished a classification of nested XPath expressions. Primarily, this classification
distinguishes expressions according to their dependency on the local context and
the cardinality of their result. Our equivalences are targeted on unnesting each of
the classes. Therefore, we have extended our logical algebra by six operators that
are especially useful for unnesting. For example, we have developed the kappa-join
operator for efficiently evaluating existentially quantified comparison expressions.
As our performance study shows, our unnesting approach clearly outperforms the
other XPath evaluators. For example, our main competitor, the approach by Gottlob
et al. [46, 47], avoids the exponential runtime in the worst case, but is still several
orders of magnitude slower than our unnested approach. The reasons is that they
need to materialize intermediate results for different contexts, which is not neces-
sary. We, however, can avoid materialization for differentcontexts by unnesting
nested (independent) XPath expressions.

Existing unnesting techniques that were developed in the relational context are
presented as source level rewrites of the query. Rewriting queries on the source
level turned out to be error-prone because their validity isdifficult to confirm (e.g.
[71]). Pursuing unnesting on the algebraic level, however,allowed us to formally
ensure the correctness of our rewrites. To this end, we provide proofs for all our
unnesting equivalences in the appendix.

7.1.3 Disjunctive Unnesting for XPath

The unnesting techniques we have presented in Chapter 3 are capable of unnesting
arbitrary quantified comparison expressions as long as theyoccur in a conjunction.
However, in an XPath predicate, a comparison expression canalso occur disjunc-
tively. In this case, all existing unnesting techniques — including ours — fail so
far. Hence, we have developed a novel unnesting approach that is able to unnest
quantified comparison expressions that occur in a disjunction.

Therefore, we have combined the existing bypass technique (e.g. [27]) with
our unnesting approach for nested expressions in conjunctions. This combination
allows for the efficient evaluation of nested XPath expressions with disjunctions.
For example, we have presented a variant of the kappa-join operator that is injected
with the bypass technique. The result is our novel bypass kappa-join which can
efficiently evaluate arbitrary existentially quantified comparison expressions that
occur in disjunctions. Our experimental study demonstrates the superiority of our
approach compared to other existing evaluators.

Furthermore, our approach is not only applicable to unnest nested XPath queries.
Instead, combining algebraic unnesting techniques with bypass operators also en-
ables the unnested evaluation of nested XQuery or SQL queries. Our kappa-join, for
example, can be used to unnest existentially quantified XQuery expressions [13].
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7.1.4 Disjunctive Unnesting for SQL

Unnesting of nested queries with disjunctions has not been studied for any query
language so far. In an excursion into the relational world, we have presented an
unnesting technique for unnesting such queries. To the bestof our knowledge, we
are the first to study this problem.

Our unnesting approach is presented by means of algebraic equivalences. Based
on the orthogonal classifications by Kim [70] and Muraliskrishna [85], we have
presented equivalences to unnest table and scalar subqueries that can be shaped in
a single, a tree, or a linear form. The right-hand side of all equivalences features a
bypass operator in order to efficiently deal with the disjunction.

Our extensive experimental study has shown, that optimizations for such queries
have not abundantly found their ways in commercial DBMSs. This is despite the
fact that such techniques seem to become more and more commonin practice and
emerge, for example, in the latest decision support benchmark of the transaction
processing performance council [105]. Our approach, in contrast, outperforms the
major commercial systems by orders of magnitude in most cases.

To ensure the correctness of our SQL unnesting equivalences, we provide proofs
for all of them in Appendix C. These proofs also confirm the validity of our rewrites
on an algebra for bags.

7.1.5 Preparing XQuery for Plan Generation

In Chapter 6, we have been back to XML query optimization. Specifically, we
have proposed a rewrite toolkit in order to prepare plan generation for XQuery.
Taking a single query block as argument a plan generator creates an optimal plan
for the given query block. Our toolkit provides rewrite rules in order to transform
an XQuery — possibly consisting of many query blocks — in a form with fewer
query blocks. Applying these rewrites, we increase the search space for the plan
generator which can then (usually) generate better plans. Using an example query,
we were able to demonstrate the effect of fewer query blocks on the execution time
of query execution plans that would not have been possible togenerate without our
rewrites.

7.2 Outlook

In this thesis, we have developed an algebraic approach for the evaluation of XPath
and presented optimizations for the evaluation of XPath andXQuery. Moreover, we
studied the unnesting of nested SQL queries in the presence of disjunctions. Still, in
all of these areas, this is just the beginning of research that needs to be done in order
to employ these techniques in industrial-strength database management systems. In
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the last section, we discuss outstanding topics that have not yet received any or
enough attention.

7.2.1 XML Query Processing

Plan Generation Plan generation is the problem to find for a given data set a
query execution plan that is the fastest to execute. Findingsuch a plan requires
the plan generator to compare alternative (equivalent) plans. Therefore, the plan
generator attaches costs to single operations of a plan and calculates, given statis-
tical information about the data, the overall cost needed toexecute it. These costs
are computed using cost functions for physical algebra operators that take the map-
ping of the data onto storage mediums (disk or main memory) and the physical
characteristics of this medium into account. For relational algebras and storage,
this problem has been solved successfully. For an XML algebra and storage, no
such (published) work currently exists. A major future research task is to make
up a complete cost model out of physical algebra operators, statistical information
about XML data (e.g. [95, 96, 108]), and functions that describe the characteristics
of accessing XML data on disk or in main memory. In some cases,our unnesting
techniques may not always result in better execution plans.A cost model would
allow us to decide on the benefit of applying our unnesting equivalences, i.e. apply
them in a cost-based manner during plan generation. Moreover, a plan generator
should determine the most effective way to evaluate XPath location steps or paths
among many techniques that have been proposed for this (e.g.[2, 21, 54, 66, 67]).
First studies comparing the use of index-based evaluation techniques (i.e. structural
joins) against the navigational technique that is used in Natix have already been
presented in [79].

Schema-Based Optimization A detailed investigation of schema-based optimiza-
tion should be a further point of research. Although there have already been some
results presented in this area (e.g. [9, 73, 74]), there remains a lot of work to be
done. We have already shown some promising rewrites in orderto optimize de-
pendent nested XPath expressions (see Sec. 3.3.3). Some of these rewrites are not
applicable without knowledge about the schema of the underlying document. Tech-
niques such as magic sets could, for example, be used to optimize dependent path
expressions further.

Factorization A byproduct of the previous chapter addressed the factorization
of common location steps in an XQuery. This avoids multiple evaluations of the
same step. However, this is not sufficient. For instance, factorizing more complex
XQuery expressions, such as predicates, node constructions, or functions, would
further reduce execution costs. Moreover, in order to ensure optimal plans, factor-
ization has to be incorporated into plan generation algorithms. First research that
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focused on plan generation and efficient query execution under factorization has al-
ready be done in [87, 88, 89]. A step towards this direction would be to incorporate
our unnest map operator in their plan generation algorithms.

Materialized Views Materialized views are well-studied and widely used in or-
der to reduce the runtime of complex SQL queries. In the context of XQuery, it
has already been shown how materialized XPath views can be exploited to answer
user queries with XPath expressions [4]. However, their algorithms still lack some
features. For example, they cannot completely decide whether views can be used if
the user query contains disjunctions. Moreover, it is not sufficient to answer XPath
expressions with the help of views but their approach shouldbe extended to answer
complex XQuery expressions as well.

7.2.2 Unnesting Disjunctive SQL Queries

Our unnesting techniques for nested SQL queries with disjunctions also lack some
cases that need to be handled. These include, for example, (1) unnesting queries
whose linkingand correlation predicate occurs in a disjunction, (2) optimizing
nested disjunctive queries in thefrom clause, (3) handling all linking operators, i.e.
θ ALL andθ SOME/ANY for θ ∈ {<,≤, >,≥}, and finally (4) unnesting queries
featuring correlation predicates that refer to attributesdefined in a non-adjacent
query block (indirect correlation).

Moreover, since our unnesting technique creates DAG-structured algebraic ex-
pressions, we rely on effective optimization techniques for generating and executing
DAG-structured query plans. A first framework for the evaluation of such plans has
already been introduced in [87]. However, the algebraic expressions produced by
our techniques are quite demanding and, hence, might trigger further research in
this direction. Integrating techniques in order to efficiently evaluate nested queries
(e.g. [50]) into a push-based algebra could also be a next step.





Appendix A

Proofs for Unnesting XPath Queries

For the following proofs let lhs denote the left-hand side and rhs the right-hand
side of an equivalence. Unlike our equivalences, whereei denotes an expression,
let ei(i = 1, . . . , n) be sequences of tuples. That is why we omit the translation
functionT in the proofs. Because the result ofT is an algebraic expressions which
in turn, when evaluated, returns a sequence of tuples.

A.1 Proof of Equivalence 3.1

σ
e2=Am:maxcn(e3)

(e1) ≡ Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1) <e2>).g)

Assumptions:

• e1 <e2 >= e3,

• e2 is single-valued,

• e3 independent,

• ande2 dependent one1.

In a first step, we substitute the sequencee3 on the lhs withe1 < e2 >, which is equivalent
according to the assumptions.

σ
e2=Am:maxcn (e1<e2>)

(e1) ≡ Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1) <e2 >).g)

Proof by Induction: over the length of the sequencee1.
Base Case:
e1 = ǫ:
lhs =ǫ
rhs =ǫ asΠcn′:cn(e1) <e2 > is empty and (by definition of the max operator) if its input sequence
is empty.
Inductive Hypothesis:

σ
e2=Am:maxcn (e1<e2>)

(e1) ≡ Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1) <e2 >).g)

139
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Inductive Step:
e1 → e1 ⊕ t

σ
e2=Am:maxcn ((e1⊕t)<e2>)

(e1 ⊕ t) ≡ Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1 ⊕ t) <e2 >).g)

⇔ σ
e2=Am:maxcn ((e1⊕t)<e2>)

(e1)⊕ σ
e2=Am:maxcn ((e1⊕t)<e2>)

(t) ≡

Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1) <e2 > ⊕Πcn′:cn(t) <e2 >).g)

Case 1: The maximum element ine2 is not in the context oft:
lhs =σ

e2=Am:maxcn((e1)<e2>)
(e1) asσ

e2=Am:maxcn ((e1⊕t)<e2>)
(t) is empty and we can omit

the t in the subscripte1 ⊕ t of the selection because the maximum element is not in the
context oft.
rhs =Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1) <e2 >).g)

Case 2: The maximum element ine2 is in the context oft:

Case 2a: without duplicate maximum values:
lhs =σ

e2=Am:maxcn((t)<e2>)
(t). We can omite1 because it does not contain the maxi-

mum value.
rhs =Πcn:g′(Maxg;m;cn′=(Πcn′:cn(t) <e2 >).g)

As the maximum element ine2 is in the context oft the lhs =t. The rhs follows from
the same argument by definition of the max operator and therefore rhs =t.

Case 2b: with duplicate maximum values:
lhs =σ

e2=Am:maxcn((e1)<e2>)
(e1) ⊕ σ

e2=Am:maxcn ((e1)<e2>)
(t). We can omit thet in

the subscript of the selection, because the maximum value already is ine1.

In this case
Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1) <e2> ⊕Πcn′:cn(t) <e2 >).g) ≡
Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1) <e2>).g)
⊕Πcn:g′(Maxg;m;cn′=(Πcn′:cn(t) <e2 >).g)

and therefore

rhs = Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1) <e2 >).g)

⊕Πcn:g′(Maxg;m;cn′=(Πcn′:cn(t) <e2 >).g)

As we know that

σ
e2=Am:maxcn (e1<e2>)

(e1) ≡ Πcn:g′(Maxg;m;cn′=(Πcn′:cn(e1) <e2 >).g)

we have to proof that

σ
e2=Am:maxcn ((e1)<e2>)

(t) ≡ Πcn:g′(Maxg;m;cn′=(Πcn′:cn(t) <e2 >).g)

The lhs =t because the maximum value ine2 is in the context oft and there are
duplicate maximum values. Hence,t passes the selection.
The same argument holds for the rhs by definition of the max operator and therefore
rhs =t.
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A.2 Proof of Equivalence 3.2

σAx;exists(e2θe3)
(e1) ≡ ΠA

cn:cn′′,A
((νA(Πcn′′:cn(e1)) <e2 >)Gcnθcn′ΠD

cn′:cn(e3))

Assumptions:

• e3 independent,

• e2 dependent one1, and

• θ = ’ = ’.

Proof by Induction: over the length of the sequencee1.
Base Case:e1 = ǫ: lhs = rhs =ǫ
Inductive Hypothesis:

σAx;exists(e2=e3)
(e1) ≡ ΠA

cn:cn′′,A
((νA(Πcn′′:cn(e1)) <e2 >)Gcn=cn′ΠD

cn′:cn(e3))

Inductive Step:
e1 → e1 ⊕ t

σAx;exists(e2=e3)
(e1 ⊕ t) ≡ ΠA

cn:cn′′,A
((νA(Πcn′′:cn(e1 ⊕ t) <e2 >)Gcn=cn′ΠD

cn′:cn(e3))

⇔ σAx;exists(e2=e3)
(e1)⊕ σAx;exists(e2=e3)

(t) ≡

ΠA

cn:cn′′,A
((νA(Πcn′′:cn(e1) <e2 >)Gcn=cn′ΠD

cn′:cn(e3)) ⊕

ΠA

cn:cn′′,A
((t ◦ [A : max(ΠA(νA(e1))) + 1](t) <e2 >)Gcn=cn′ΠD

cn′:cn(e3))

As we know that

σAx;exists(e2=e3)
(e1) ≡ ΠA

cn:cn′′,A
((νA(Πcn′′:cn(e1)) <e2 >)Gcn=cn′ΠD

cn′:cn(e3))

we have to proof that

σAx;exists(e2=e3)
(t) ≡ ΠA

cn:cn′′,A
((Πcn′′ :cn

(Πcn′′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2>))Gcn=cn′ΠD
cn′:cn(e3))

Case 1: ∃z ∈ e2(t) : ∃y ∈ e3 : z.cn = y.cn
For the lhs, this means thatt will pass the selection operator, so

σAx;exists(e2=e3)
(t) = t

For the rhs, this means that

ΠA

cn:cn′′,A
((Πcn′′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t))) <e2 >)Gcn=cn′ΠD

cn′:cn(e3))

will contain all tuples in

(Πcn′′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >).

As cn stems frome2 andcn′ from e3 which is independent frome1, these are all tuples from
(Πcn′′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >). As all tuples have the same attribute
values forA, the final projection will reduce this to a single tuplet, relabel the attributecn′′,
and projectA away.
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Case 2: 6 ∃z ∈ e2(t) :6 ∃y ∈ e3 : z.cn = y.cn
For the lhs, this means that

σAx;exists(e2=e3)
(t) = ǫ

For the rhs, this means that

(Πcn′′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >)Gcn=cn′ΠD
cn′:cn(e3)

will be empty and thereforerhs = ǫ.

The proof forθ = ’ 6= ’ is analog to the proof above.

A.3 Proof of Equivalence 3.3

σAx;exists(not(e2=e3))
(e1) ≡ Πcn:cn′′,A(σc=0(νA(e1)Tc;A=A′;countE))

with E = (Πcn′′:cn((νA′(e1)) <e2 >)Gcn=cn′(Πcn′:cn(e3)))

Assumptions:

• e3 independent,

• e2 dependent one1, and

• θ = ’ = ’.

Proof by Induction: over the length of the sequencee1.
Base Case:e1 = ǫ: lhs = ǫ
rhs =ǫ, by definition of binary operators, if their left input is empty.
Inductive Hypothesis:

σAx;exists(not(e2=e3))
(e1) ≡ Πcn:cn′′,A(σc=0(νA(e1)Tc;A=A′;count

(Πcn′′:cn((νA′(e1)) <e2 >)Gcn=cn′(Πcn′:cn(e3)))))

Inductive Step: e1 → e1 ⊕ t

σAx;exists(not(e2=e3))
(e1 ⊕ t) ≡ Πcn:cn′′,A(σc=0(νA(e1 ⊕ t)Tc;A=A′;count

(Πcn′′:cn((νA′ (e1 ⊕ t)) <e2 >)Gcn=cn′(Πcn′:cn(e3)))))

⇔ σAx;exists(not(e2=e3))
(e1)⊕ σAx;exists(not(e2=e3))

(t) ≡

Πcn:cn′′,A(σc=0(νA(e1))⊕Πcn:cn′′,A(σc=0(t ◦ [A : max(ΠA(νA(e1))) + 1))Tc;A=A′;count(Πcn′′:cn((νA′(e1)) <e2 >)Gcn=cn′(Πcn′:cn(e3)))⊕

(Πcn′′:cn((t ◦ [A′ : max(ΠA′ (νA′(e1))) + 1) <e2 >)Gcn=cn′(Πcn′:cn(e3))))

For the grouping operator tuples ine1 will match only other tuples in((νA′(e1)) < e2 >
), while tuples in(t ◦ [A : max(ΠA(νA(e1))) + 1) will match only other tuples in(t ◦ [A′ :
max(ΠA′(νA′(e1))) + 1] <e2 >. So we can divide up theT operator into the concatenation of twoT operators.
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⇔ σAx;exists(not(e2=e3))
(e1)⊕ σAx;exists(not(e2=e3))

(t) ≡

Πcn:cn′′,A(σc=0(νA(e1))Tc;A=A′;count(Πcn′′:cn((νA′ (e1)) <e2 >)Gcn=cn′

(Πcn′:cn(e3)))) ⊕

Πcn:cn′′,A(σc=0(t ◦ [A : max(ΠA(νA(e1))) + 1)Tc;A=A′;count

(Πcn′′:cn((t ◦ [A′ : max(ΠA′(νA′(e1))) + 1) <e2>)Gcn=cn′(Πcn′:cn(e3))))

As we know that

σAx;exists(not(e2=e3))
(e1) ≡ Πcn:cn′′,A(σc=0(νA(e1)Tc;A=A′;count

(Πcn′′:cn((νA′(e1)) <e2 >)Gcn=cn′(Πcn′:cn(e3)))))

we have to proof that

σAx;exists(not(e2=e3))
(t) ≡ Πcn:cn′′,A(σc=0(t ◦ [A : max(ΠA(νA(e1))) + 1)Tc;A=A′;count

(Πcn′′ :cn((t ◦ [A′ : max(ΠA′(νA′(e1))) + 1) <e2 >)Gcn=cn′(Πcn′:cn(e3))))

Case 1: ∃z ∈ e2(t) : ∃y ∈ e3 : z.cn = y.cn
For the lhs, this means thatt will not pass the selection operator. Hence,

σAx;exists(not(e2=e3))
(t) = ǫ.

For the rhs, this means thatt will pass the semi-join operator and the grouping operatorT
creates a group withc > 0. Thust will not pass the selection and it follows that rhs =ǫ.

Case 2: 6 ∃z ∈ e2(t) :6 ∃y ∈ e3 : z.cn = y.cn
For the lhs, this means thatt will pass the selection and therefore lhs =t.
For the rhs, this means thatt will not pass the semi-join operator and the grouping operator
will create a group withc = 0. Thust will pass the selection and it follows that rhs =t.

The proof forθ = ’ 6= ’ is analog to the proof above.

A.4 Proof of Equivalence 3.4

σAx;exists(e2≥e3)
(e1) ≡ ΠA

cn:cn′,A
(σ

cn≥Ax;mincn(e3)
((νA(Πcn′:cn(e1))) <e2 >))

Assumptions:

• e3 independent,

• e2 dependent one1, and

• θ = ’ ≥ ′.

Proof by Induction: over the length of the sequencee1.
Base Case:e1 = ǫ: lhs =ǫ
rhs =ǫ
Inductive Hypothesis:
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σAx;exists(e2≥e3)
(e1) ≡ ΠA

cn:cn′,A
(σ

cn≥Ax;mincn(e3)
((νA(Πcn′:cn(e1))) <e2 >))

Inductive Step: e1 → e1 ⊕ t

σAx;exists(e2≥e3)
(e1 ⊕ t) ≡ ΠA

cn:cn′,A
(σ

cn≥Ax;mincn(e3)
((νA(Πcn′:cn(e1 ⊕ t))) <e2 >))

⇔ σAx;exists(e2≥e3)
(e1)⊕ σAx;exists(e2≥e3)

(t) ≡

ΠA

cn:cn′,A
(σ

cn≥Ax;mincn(e3)
((νA(Πcn′:cn(e1))) <e2 >))⊕

ΠA

cn:cn′,A
(σ

cn≥Ax;mincn(e3)
(Πcn′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >))

As we know that

σAx;exists(e2≥e3)
(e1) ≡ ΠA

cn:cn′,A
(σ

cn≥Ax;mincn(e3)
((νA(Πcn′:cn(e1))) <e2 >))

we have to proof that

σAx;exists(e2≥e3)
(t) ≡ ΠA

cn:cn′,A
(σ

cn≥Ax;mincn(e3)
(Πcn′:cn(t◦[A : max(ΠA(νA(e1)))+1](t)) <e2 >))

Case 1: ∃z ∈ e2(t) : ∃y ∈ e3 : z.cn ≥ y.cn
For the lhs, this means thatt will pass the selection operator. Hence,

σAy;exists(not(e2≥e3))
(t) = t.

For the rhs, this means thatt will pass the selection operator. As all tuples have the same
attribute values forA, the final projection will reduce this to a single tuplet and restore the
original attributecn from sequencee1.

Case 2: 6 ∃z ∈ e2(t) :6 ∃y ∈ e3 : z.cn ≥ y.cn

For the lhs, this means thatt will not pass the selection and therefore lhs =ǫ.
For the rhs, this means thatt will pass the selection operator ande3 is independent from
sequencee1. It follows that rhs =ǫ.

The proofs forθ ∈ {>,≤, <} are analog to the above proof.

A.5 Proof of Equivalence 3.5

σAy;exists(not(e2≥e3))
(e1) ≡ Πcn:cn′′,A(σc=0(E))

with E = νA(e1)Tc;A=A′;count(σcn≥Ax;mincn(e3)
((Πcn′′:cn(νA′(e1))) <e2 >))

Assumptions:

• e3 independent,

• e2 dependent one1, and

• θ = ’ ≥ ’ .
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Proof by Induction: over the length of the sequencee1.
Base Case:e1 = ǫ: lhs =ǫ
rhs =ǫ, by definition of binary operators, if their left input is empty.
Inductive Hypothesis:

σAy;exists(not(e2≥e3))
(e1) ≡

Πcn:cn′′,A(σc=0(νA(e1)Tc;A=A′;count(σcn≥Ax;mincn(e3)
((Πcn′′:cn(νA′(e1))) <e2 >))))

Inductive Step: e1 → e1 ⊕ t

σAy;exists(not(e2≥e3))
(e1 ⊕ t) ≡ Πcn:cn′′,A(σc=0(νA(e1 ⊕ t)Tc;A=A′;count(σcn≥Ax;mincn(e3)

((Πcn′′:cn(νA′(e1 ⊕ t))) <e2>))))

⇔ σAy;exists(not(e2≥e3))
(e1)⊕ σAy;exists(not(e2≥e3))

(t) ≡ Πcn:cn′′,A(σc=0(νA(e1 ⊕ t)Tc;A=A′;count(σcn≥Ax;mincn(e3)
((Πcn′′:cn(νA′(e1 ⊕ t))) <e2>))))

⇔ σAy;exists(not(e2≥e3))
(e1)⊕ σAy;exists(not(e2≥e3))

(t) ≡

Πcn:cn′′,A(σc=0(νA(e1)))⊕Πcn:cn′′,A(σc=0(t ◦ [A : max(ΠA(νA(e1))) + 1](t)))Tc;A=A′;count(σcn≥Ax;mincn(e3)
((Πcn′′:cn(νA′(e1))) <e2 >))⊕

(σ
cn≥Ax;mincn(e3)

((Πcn′′:cn(t ◦ [A′ : max(ΠA′(νA′(e1))) + 1](t))) <e2>))

For the grouping operator tuples in

Πcn:cn′′,A(σc=0(νA(e1)))

will match only other tuples in

(σ
cn≥Ax;mincn(e3)

((Πcn′′:cn(νA′(e1))) <e2 >))

while tuples in

Πcn:cn′′,A(σc=0(t ◦ [A : max(ΠA(νA(e1))) + 1](t)))

will match only other tuples in

((σ
cn≥Ax;mincn(e3)

((Πcn′′:cn(t ◦ [A′ : max(ΠA′(νA′(e1))) + 1](t))) <e2 >)))

So we can divide up theT operator into the concatenation of twoT operators.

⇔ σAy;exists(not(e2≥e3))
(e1)⊕ σAy;exists(not(e2≥e3))

(t) ≡

(Πcn:cn′′,A(σc=0(νA(e1)))Tc;A=A′;count(σcn≥Ax;mincn(e3)

((Πcn′′ :cn(νA′(e1))) <e2 >)))⊕

(Πcn:cn′′,A(σc=0(t ◦ [A : max(ΠA(νA(e1))) + 1](t)))Tc;A=A′;count

((σ
cn≥Ax;mincn (e3)

((Πcn′′ :cn(t ◦ [A′ : max(ΠA′(νA′(e1))) + 1](t))) <e2 >))))

As we know that the hypothesis holds it suffices to proof that

σAy;exists(not(e2≥e3))
(t) ≡ (Πcn:cn′′,A(σc=0(t ◦ [A : max(ΠA(νA(e1))) + 1](t)))Tc;A=A′;count(σcn≥Ax;mincn (e3)

((Πcn′′ :cn(t ◦ [A′ : max(ΠA′(νA′(e1))) + 1](t))) <e2 >)))
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Case 1: ∃z ∈ e2(t) : ∃w ∈ e3 : z.cn ≥ w.cn
For the lhs, this means thatt will not pass the selection operator. Hence,

σAy;exists(not(e2≥e3))
(t) = ǫ

For the rhs, this means thatt will pass the selection operator and the grouping operatorT
creates a group withc > 0. Thust will not pass the final selection and it follows that rhs =ǫ.

Case 2: 6 ∃z ∈ e2(t) :6 ∃w ∈ e3 : z.cn ≥ w.cn
For the lhs, this means thatt will pass the selection and therefore lhs =t.
For the rhs, this means thatt will not pass the selection operator, because even the smallest
z.cn ∈ e3 is bigger than anyw.cn. The grouping operator will create a group withc = 0
andt will pass the selection. The final projection will rename theoriginalcn attribute of the
sequencee1. It follows that rhs =t.

The proofs forθ ∈ {>,≤, <} are analog to the above proof.

A.6 Proof of Equivalence 3.6

σAx;exists(e2=(σp(e3)))
(e1) ≡ σg>0(E)

with E = Πcn:cn′,A(Γg;=A;count◦σp
((νA(Πcn′:cn(e1))) <e2 >))

Assumptions:

• e3 independent,

• e2 dependent one1, and

• (e1 <e2 >) = e3.

Proof by Induction: over the length of the sequencee1.
Base Case:e1 = ǫ: lhs = ǫ
rhs =ǫ, by definition of the grouping operator.
Inductive Hypothesis:

σAx;exists(e2=(σp(e3)))
(e1) ≡ σg>0(Πcn:cn′,A(Γg;=A;count◦σp

(

(νA(Πcn′:cn(e1))) <e2 >)))

Inductive Step: e1 → e1 ⊕ t

σAx;exists(e2=(σp(e3)))
(e1 ⊕ t) ≡

σg>0(Πcn:cn′,A(Γg;=A;count◦σp
((νA(Πcn′:cn(e1 ⊕ t))) <e2 >)))

⇔ σAx;exists(e2=(σp(e3)))
(e1)⊕ σAx;exists(e2=(σp(e3)))

(t) ≡

σg>0(Πcn:cn′,A(Γg;=A;count◦σp
((νA(Πcn′:cn(e1 ⊕ t))) <e2 >)))

⇔ σAx;exists(e2=(σp(e3)))
(e1)⊕ σAx;exists(e2=(σp(e3)))

(t) ≡

σg>0(Πcn:cn′,A(Γg;=A;count◦σp
((νA(Πcn′:cn(e1))) ⊕

(Πcn′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t))) <e2 >)))
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At this point, we should actually replace the unary groupingoperator (Γ) by the binary grouping
operator (T), as in the definition of the operator. As a shortcut, we skip this step, because the
grouping attributeA in tuple t is different from all other attributeA from tuples ine1. Hence, we
can safely emerge the grouping operator into two grouping operators.

⇔ σAx;exists(e2=(σp(e3)))
(e1)⊕ σAx;exists(e2=(σp(e3)))

(t) ≡

σg>0(Πcn:cn′,A(Γg;=A;count◦σp
((νA(Πcn′:cn(e1))) <e2>)⊕

(Γg;=A;count◦σp
(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >)))

⇔ σAx;exists(e2=(σp(e3)))
(e1)⊕ σAx;exists(e2=(σp(e3)))

(t) ≡

(σg>0(Πcn:cn′,A(Γg;=A;count◦σp
((νA(Πcn′:cn(e1))) <e2 >))))⊕

(σg>0(Πcn:cn′,A(Γg;=A;count◦σp
(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >)))

As we know that the hypothesis holds it suffices to proof that

σAx;exists(e2=(σp(e3)))
(t) ≡ (σg>0(Πcn:cn′,A(Γg;=A;count◦σp

(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >)))

Case 1: ∃z ∈ e2(t) : ∃y ∈ e3 : σp(e3) = z.cn
For the lhs, this means thatt will pass the selection operator. Hence,

σAx;exists(e2=(σp(e3)))
(t) = t.

For the rhs, this means thatt will be in a group whose g value is greater than zero. In this
case,t will pass the selection operator and it follows thatrhs = t.

Case 2: 6 ∃z ∈ e2(t) :6 ∃y ∈ e3 : σp(e3) = z.cn
For the lhs, this means thatt will not pass the selection and therefore lhs =ǫ.

For the rhs, this means thatt will be in a group whose g value is zero. Hence,t will not pass
the selection operator andrhs = ǫ.

A.7 Proof of Equivalence 3.7

σAy;exists(e2=e3)
(e1) ≡ ΠA

cn:cn′,A
(σcn=e3((νA(Πcn′:cn(e1))) <e2 >))

Assumptions:

• e3 is single-valued as well as independent,

• e2 dependent one1, and

• θ = ’ = ’ .

Proof by Induction: over the length of the sequencee1.
Base Case:e1 = ǫ:lhs = ǫ = rhs.
Inductive Hypothesis:

σAy;exists(e2=e3)
(e1) ≡ ΠA

cn:cn′,A
(σcn=e3 ((νA(Πcn′:cn(e1))) <e2 >))
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Inductive Step: e1 → e1 ⊕ t

σAy;exists(e2=e3)
(e1 ⊕ t) ≡ ΠA

cn:cn′,A
(σcn=e3 ((νA(Πcn′:cn(e1 ⊕ t))) <e2 >))

⇔ σAy;exists(e2=e3)
(e1)⊕ σAy;exists(e2=e3)

(t) ≡

ΠA

cn:cn′,A
(σcn=e3((νA(Πcn′:cn(e1 ⊕ t))) <e2 >))

⇔ σAy;exists(e2=e3)
(e1)⊕ σAy;exists(e2=e3)

(t) ≡

ΠA

cn:cn′,A
(σcn=e3((νA(Πcn′:cn(e1))) <e2 >))⊕

ΠA

cn:cn′,A
(σcn=e3(Πcn′:cn((t ◦ [A : max(ΠA(νA(e1))) + 1](t)))) <e2 >)

As we know that

σAy;exists(e2=e3)
(e1) ≡ ΠA

cn:cn′,A
(σcn=e3((νA(Πcn′:cn(e1))) <e2 >))

we have to proof that

σAy;exists(e2=e3)
(t) ≡ ΠA

cn:cn′,A
(σcn=e3(Πcn′:cn((t ◦ [A : max(ΠA(νA(e1))) + 1](t)))) <e2 >)

Case 1: ∃z ∈ e2(t) : z.cn = e3.cn
Remember, thate3 is single-valued.
For the lhs, this means thatt will pass the selection operator, solhs = t.
For the rhs, this means thatt will pass the selection operator. As all tuples have the same
attribute values forA, the final projection will reduce this to a single tuplet and restore the
original attributecn from sequencee1. It follows, that rhs =t.

Case 2: 6 ∃z ∈ e2(t) : z.cn = e3.cn
For the lhs, this means thatt will not pass the selection and therefore lhs =ǫ.
For the rhs, this means thatt will also not pass the selection operator and it follows, that rhs
= ǫ.

The proofs forθ ∈ {6=,≥, >,≤, <} are analog to the proof above.

A.8 Proof of Equivalence 3.8

σAx;f(e2)=e3
(e1) ≡ Πcn:cn′′,A(Γg;=A;f (νA(Πcn′′:cn(e1)) <e2 >)Gg=cn′(ΠD

cn′:cn(e3)))

Assumptions:

• e3 is independent,

• e2 dependent one1,

• f is an aggregation function, e.g. count, and

• θ = ’ = ’ .

Proof by Induction: over the length of the sequencee1.
Base Case:e1 = ǫ: lhs = ǫ
rhs =ǫ, by definition of binary operators if their left input is empty.
Inductive Hypothesis:
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σAx;f(e2)=e3
(e1) ≡ Πcn:cn′′,A(Γg;=A;f (νA(Πcn′′:cn(e1)) <e2 >)Gg=cn′(ΠD

cn′:cn(e3)))

Inductive Step: e1 → e1 ⊕ t

σAx;f(e2)=e3
(e1 ⊕ t) ≡ Πcn:cn′′,A(Γg;=A;f (νA(Πcn′′:cn(e1 ⊕ t)) <e2 >)Gg=cn′

(ΠD
cn′:cn(e3)))

⇔ σAx;f(e2)=e3
(e1)⊕ σAx;f(e2)=e3

(t) ≡ Πcn:cn′′,A(Γg;=A;f (νA(Πcn′′:cn(e1 ⊕ t)) <e2>)Gg=cn′(ΠD
cn′:cn(e3)))

⇔ σAx;f(e2)=e3
(e1)⊕ σAx;f(e2)=e3

(t) ≡ Πcn:cn′′,A((Γg;=A;f (νA(Πcn′′:cn(e1))

⊕(Πcn′′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t))) <e2 >))Gg=cn′(ΠD
cn′:cn(e3)))

At this point, we should actually replace the unary groupingoperator by the binary grouping
operator, as in the definition of the operator. As a shortcut,we skip this step. Because the grouping
attributeA in tuplet is different from all other attributeA from tuples ine1, we can safely emerge
the grouping operator into two grouping operators.

⇔ σAx;f(e2)=e3
(e1)⊕ σAx;f(e2)=e3

(t) ≡

Πcn:cn′′,A((Γg;=A;f (νA(Πcn′′:cn(e1)) <e2>)⊕

Γg;=A;f (Πcn′′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >))Gg=cn′(ΠD
cn′:cn(e3)))

⇔ σAx;f(e2)=e3
(e1)⊕ σAx;f(e2)=e3

(t) ≡

Πcn:cn′′,A(Γg; = A; f(νA(Πcn′′:cn(e1)) <e2 >)Gg=cn′(ΠD
cn′:cn(e3)))⊕

Πcn:cn′′,A(Γg;=A;f (Πcn′′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >)Gg=cn′

(ΠD
cn′:cn(e3)))

As we know that

σAx;f(e2)=e3
(e1) ≡ Πcn:cn′′,A(Γg; = A; f(νA(Πcn′′:cn(e1)) <e2 >)Gg=cn′(ΠD

cn′:cn(e3)))

we have to proof that

σAx;f(e2)=e3
(t) ≡ Πcn:cn′′,A(Γg;=A;f (Πcn′′:cn(t ◦ [A : max(ΠA(νA(e1))) + 1](t)) <e2 >)Gg=cn′(ΠD

cn′:cn(e3)))

Case 1: ∃z ∈ e2(t) : ∃y ∈ e3 : f(z) = y.cn
For the lhs, this means thatt will pass the selection operator, solhs = t.
For the rhs, this means that theg value, computed byf using the grouping operator will match
anycn value that stems frome3 within the semi-join. Sot will pass the semi-join operator.
As all tuples have the same attribute values forA, the grouping operator will reduce this
to a single tuple. The final projection restore the original attributecn from sequencee1. It
follows, that rhs =t.

Case 2: 6 ∃z ∈ e2(t) :6 ∃y ∈ e3 : f(z) = y.cn
For the lhs, this means thatt will not pass the selection and therefore lhs =ǫ.
For the rhs, this means thatg value, computed byf using the grouping operator will not
match anycn value that stemse3 within the semi-join. Sot will not pass the semi-join
operator. It follows, that rhs =ǫ.
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The proofs forθ ∈ {6=,≥, >,≤, <} are analog to the proof above.

A.9 Proof of Equivalence 3.9

σcount(σn=c1(χn:f′(cn)(π)))=count(σn′=c2
(χn′:f′(cn)(π)))(e) ≡ e <Πy,y′(σy′=y(χy′:2(V)Py:2

true(Γy;=x;count

(Γx;=n;count(E)))))>

E = σn=c1∨n=c2(χn:f ′(cn)(π))

Assumptions:π dependent one.
Proof by Induction: over the length of the sequencee.
Base Case:
e = ǫ:
lhs = ǫ
rhs =ǫ by definition of the d-join if its left argument is empty.
Inductive Hypothesis:

σcount(σn=c1(χn:f′(cn)(π)))=count(σn′=c2
(χn′:f′(cn)(π)))(e) ≡ e <Πy,y′(σy′=y(χy′:2(V)Py:2

true(Γy;=x;count

(Γx;=n;count(E)))))>

E = σn=c1∨n=c2(χn:f ′(cn)(π))

Inductive Step:
e→ e⊕ t

σcount(σn=c1 (χn:f′(cn)(π)))=count(σn′=c2
(χn′:f′(cn)(π)))(e⊕ t) ≡ (e⊕ t) <Πy,y′(σy′=y(χy′:2(V)Py:2

true(Γy;=x;count

(Γx;=n;count(E)))))>

E = σn=c1∨n=c2(χn:f ′(cn)(π))

⇔ σcount(σn=c1 (χn:f′(cn)(π)))=count(σn′=c2
(χn′:f′(cn)(π)))(e)⊕

σcount(σn=c1(χn:f′(cn)(π)))=count(σn′=c2
(χn′:f′(cn)(π)))(t) ≡ (e) <Πy,y′(σy′=y(χy′:2(V)Py:2

true(Γy;=x;count

(Γx;=n;count(E)))))> ⊕

(t) <Πy,y′(σy′=y(χy′:2(V)Py:2
true(Γy;=x;count

(Γx;=n;count(E)))))>

E = σn=c1∨n=c2(χn:f ′(cn)(π))

As we know that
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σcount(σn=c1(χn:f′(cn)(π)))=count(σn′=c2
(χn′:f′(cn)(π)))(e) ≡ (e) <Πy,y′(σy′=y(χy′:2(V)Py:2

true(Γy;=x;count

(Γx;=n;count(E)))))>

E = σn=c1∨n=c2(χn:f ′(cn)(π))

we have to proof that

σcount(σn=c1(χn:f′(cn)(π)))=count(σn′=c2
(χn′:f′(cn)(π)))(t) ≡ (t) <Πy,y′(σy′=y(χy′:2(V)Py:2

true(Γy;=x;count

(Γx;=n;count(E)))))>

E = σn=c1∨n=c2(χn:f ′(cn)(π))

The latter holds because everyt′ ∈ π that passes the two selections on the lhs also passes the
operators of expressionE on the rhs. After the selection there exists (among all tuples t′ ∈ π) two
values for the attribute valuen, i.e.c1 andc2. For each such value, the subsequent grouping operator
creates one group. Further, it adds the number of tuples in each group to the attributex. In a next
step, the second grouping operator creates a group for eachx value and also counts the tuples per
group, storing the result in the attributey. If there exist an equal number of tuples for bothn-values,
this grouping operator creates exactly one group having twotuples, i.e.y = 2. This one tuple is
joined (using a left outer-join) with one tuple that contains an attributey′ with value two. The (one)
tuple from the join result that passes the selection operator (comparingy′ = y) the two count-values
are equal becausey = 2. In this case,t is in the result. In contrast,t is not contained in the result,
if the tuple from the join result does not pass the selection,i.e. if the two count-values are not equal.
In case the last group is empty (i.e. if there does not exist any result inpi) the outer join handles
empty groups. For an empty group, the value 2 is assigned to the attributey and, hence, the tuplet
also qualifies.

Analogously, the same argument holds for the sum function.

A.10 Proof of Equivalence 3.10

σE((π)[e2]) ≡ ΠD

string-value(cn)
((π)[e2] <e1 >)

with E = not(Ax;exists(e1G((pre :: ∗)|(anc :: ∗))[e2]/e1))

Assumptions:

• e1 is single-valued,

• e1 is context dependent on(π)[e2], and

• e2 does not contain a call to position or last.

Proof by Induction: over the length of the sequenceπ.
Base Case:
π = ǫ:
lhs =ǫ
rhs =ǫ by definition of the d-join if its left argument is empty.
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Inductive Hypothesis:

σE((π)[e2]) ≡ ΠD

string-value(cn)
((π)[e2] <e1 >)

with E = not(Ax;exists(e1G((pre :: ∗)|(anc :: ∗))[e2]/e1))

Inductive Step: π → π ⊕ t
In the following,E denotesnot(Ax;exists(e1G((pre :: ∗)|(anc :: ∗))[e2]/e1)).

σE((π ⊕ t)[e2]) ≡ ΠD

string-value(cn)
((π ⊕ t)[e2] <e1 >)

σE((π)[e2])⊕ σE((t)[e2]) ≡ ΠD

string-value(cn)
((π)[e2] <e1 >)⊕

ΠD

string-value(cn)
((t)[e2] <e1>)

The last equation holds, becausee2 does not contain a call to position or last.
As we know that

σE((π)[e2]) ≡ ΠD

string-value(cn)
((π)[e2] <e1>)

we have to proof that

σE((t)[e2]) ≡ ΠD

string-value(cn)
((t)[e2] <e1 >)

On the lhs, suppose for the tuplet there exists a tuple ine1G((pre :: ∗)|(anc :: ∗))][e2]/e3.
This means, that there exists a tuple ine1 (evaluated in the context oft) that is equal to any tuple
in e1 that is evaluated in the context of all preceding or ancestorof t that also satisfiese2, i.e.
((pre :: ∗)|(anc :: ∗))][e2]/e1. Then, the tuplet does not pass the selection because of the not
function call. If there does not exist a preceding or ancestor the tuplet contributes to the result. The
comparison of the semi-join is done using the string-valuesof the two input context nodes.

This semantics is exactly resembled by the semantics of our duplicate elimination projection
ΠD that keeps the first tuple in a sequence and throws away the remaining ones. The projection also
eliminates duplicates based on the string-values.
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DTD for the University Schema

<!ELEMENT university (employee*|student*|lecture*|exam*)*>

<!ELEMENT employee (name, (professor|research-assistant)?)>
<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT professor (degree| room| teaches*| examines*)*>
<!ELEMENT degree (#PCDATA)>
<!ELEMENT room (#PCDATA)>
<!ELEMENT teaches EMPTY>
<!ATTLIST teaches lecture IDREF #REQUIRED>
<!ELEMENT examines EMPTY>
<!ATTLIST examines lecture IDREF #REQUIRED>

<!ELEMENT research-assistant (research-topic|worksfor)*>
<!ELEMENT research-topic (#PCDATA)>
<!ELEMENT worksfor EMPTY>
<!ATTLIST worksfor professor IDREF #REQUIRED>

<!ELEMENT student (name| semester| examination* | attends)*>
<!ATTLIST student id ID #REQUIRED>
<!ELEMENT attends EMPTY>
<!ATTLIST attends lecture IDREF #REQUIRED>

<!ELEMENT name (#PCDATA)>
<!ELEMENT semester (#PCDATA)>
<!ELEMENT examination EMPTY>
<!ATTLIST examination id IDREF #REQUIRED>

<!ELEMENT lecture (helpers|title|credits|attendies|lecturer?)*>
<!ATTLIST lecture id ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT credits (#PCDATA)>
<!ELEMENT lecturer EMPTY>
<!ATTLIST lecturer professor IDREF #REQUIRED>
<!ELEMENT attendies (attendee*)>
<!ELEMENT attendee EMPTY>
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<!ATTLIST attendee student IDREF #REQUIRED>
<!ELEMENT helpers (helper*)>
<!ELEMENT helper EMPTY>
<!ATTLIST helper student IDREF #REQUIRED>

<!ELEMENT exam (grade|belongsto|examiner|examinee)*>
<!ATTLIST exam id ID #REQUIRED>
<!ELEMENT grade (#PCDATA)>
<!ELEMENT belongsto EMPTY>
<!ATTLIST belongsto lecture IDREF #REQUIRED>

<!ELEMENT examiner EMPTY>
<!ATTLIST examiner professor IDREF #REQUIRED>

<!ELEMENT examinee EMPTY>
<!ATTLIST examinee student IDREF #REQUIRED>
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Proofs for Unnesting SQL Queries

For the following proofs letlhsdenote the left-hand side andrhs the right-hand side
of an equivalence.

C.1 Proof of Equivalences 5.2 and 5.6

We proof only Equivalence 5.6 repeated below. The correctness of Equivalence 5.2
follows immediately when we replace the correlation predicate A2 = B2 by the
constantTRUE.

σ∃A1=B1
(σA2=B2

(S))∨p(R) ≡ e1

.
∪ e2

e1 := σ+
p (R)

e2 := (σ−p (R))GA1=B1∧A2=B2S

if F(p) ⊆ A(R), A(R) ∩ A(S) = ∅, A1 ∈ A(R), B1 ∈ A(S), (for Equiva-
lence 5.6 in additionA2 ∈ A(R), B2 ∈ A(S))

rhs = σ+
p (R)

.
∪ ((σ−p (R))GA1=B1∧A2=B2(S))

= {r|r ∈ R ∧ p}
.
∪ {r|r ∈ {x|x ∈ R ∧ ¬p} ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}

= {r|r ∈ R ∧ p}
.
∪ {r|r ∈ R ∧ ¬p ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}

= {r|r ∈ R ∧ (p ∨ (¬p ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ (p ∨ (¬p ∧ ∃s ∈ {t|t ∈ S ∧ r.A2 = t.B2} ∧ r.A1 = s.B1))}

= σp∨∃A1=B1(σA2=B2(S))(R)

= lhs

Note that predicatesp and¬p partition the tuples ofR into two disjoint sets.
We explicitly use this property in the bypass selection to avoid the creation of du-
plicates. Together with the short-circuit evaluation of the disjunction duplicate se-
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mantics are preserved. For this reason and because all remaining operators preserve
duplicates this equivalence holds for bags.

C.2 Proof of Equivalences 5.3 and 5.7

We proof only Equivalence 5.7 repeated below. The correctness of Equivalence 5.3
follows immediately when we replace the correlation predicate A2 = B2 by the
constantTRUE.

σ∃A1=B1
(σA2=B2

(S))∨p(R) ≡ e1

.
∪ e2

e1 := RG+
A1=B1∧A2=B2

S

e2 := σp(RG−A1=B1∧A2=B2
S)

if F(p) ⊆ A(R), A(R) ∩ A(S) = ∅, A1 ∈ A(R), B1 ∈ A(S), (for Equiva-
lence 5.7 in additionA2 ∈ A(R), B2 ∈ A(S))

rhs = (RG+
A1=B1∧A2=B2

S)
.
∪ (σp(RG−A1=B1∧A2=B2

S))

= {r|r ∈ R ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}
.
∪

{r|r ∈ R ∧ p ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}

= {r|r ∈ R ∧ ((∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2) ∨

(p ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ (p ∨ (∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ (p ∨ (∃s ∈ {t|t ∈ S ∧ r.A2 = t.B2} ∧ r.A1 = s.B1))}

= σp∨∃A1=B1(σA2=B2(S))(R)

= lhs

Again, we rely on a disjoint partitioning ofR and short-circuit evaluation of
the disjunction in the last step. The correctness for multisets follows for the same
reasons as for Equivalences 5.2 and 5.6.

C.3 Proof of Equivalences 5.4 and 5.8

We proof only Equivalence 5.8 repeated below. The correctness of Equivalence 5.4
follows immediately when we replace the correlation predicate A2 = B2 by the
constantTRUE.
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σ6∃A1=B1
(σA2=B2

(S))∨p(R) ≡ e1

.
∪ e2

e1 := σ+
p (R)

e2 := (σ−p (R))IA1=B1∧A2=B2S

if F(p) ⊆ A(R), A(R) ∩ A(S) = ∅, A1 ∈ A(R), B1 ∈ A(S), (for Equiva-
lence 5.8 in additionA2 ∈ A(R), B2 ∈ A(S))

rhs = σ+
p (R)

.
∪ ((σ−p (R))IA1=B1∧A2=B2(S))

= {r|r ∈ R ∧ p}
.
∪ {r|r ∈ {x|x ∈ R ∧ ¬p} ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}

= {r|r ∈ R ∧ p}
.
∪ {r|r ∈ R ∧ ¬p ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}

= {r|r ∈ R ∧ (p ∨ (¬p ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ (p ∨ (¬p ∧ ¬∃s ∈ {t|t ∈ S ∧ r.A2 = t.B2} ∧ r.A1 = s.B1))}

= σp∨6∃A1=B1 (σA2=B2 (S))(R)

= lhs

Again, we rely on a disjoint partitioning ofR and short-circuit evaluation of
the disjunction in the last step. The correctness for multisets follows for the same
reasons as for Equivalences 5.2 and 5.6.

C.4 Proof of Equivalences 5.5 and 5.9

We proof only Equivalence 5.9 repeated below. The correctness of Equivalence 5.5
follows immediately when we replace the correlation predicate A2 = B2 by the
constantTRUE.

σ6∃A1=B1
(σA2=B2

(S))∨p(R) ≡ e1

.
∪ e2

e1 := RI+A1=B1∧A2=B2
S

e2 := σp(RI−A1=B1∧A2=B2
S)

if F(p) ⊆ A(R), A(R) ∩ A(S) = ∅, A1 ∈ A(R), B1 ∈ A(S), (for Equiva-
lence 5.9 in additionA2 ∈ A(R), B2 ∈ A(S))
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rhs = (RI+A1=B1∧A2=B2
S)

.
∪ (σp(RI−A1=B1∧A2=B2

S))

= {r|r ∈ R ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}
.
∪

{r|r ∈ R ∧ p ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}

= {r|r ∈ R ∧ ((¬∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2) ∨

(p ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ (p ∨ (¬∃s ∈ {t|t ∈ S ∧ r.A2 = t.B2} ∧ r.A1 = s.B1))}

= σp∨6∃A1=B1(σA2=B2(S))(R)

= lhs

Again, we rely on a disjoint partitioning ofR and short-circuit evaluation of
the disjunction in the last step. The correctness for multisets follows for the same
reasons as for Equivalences 5.2 and 5.6.

C.5 Proof of Equivalence 5.10

σ∃A1=B1
(σA2=B2∨p(S))(R) ≡ e1

.
∪ e2

e1 := RG+
A1=B1

e3

e2 := (RG−A1=B1
e3)GA1=B1∧A2=B2(σ

−
p (S))

e3 := σ+
p (S)

if F(p) ⊆ A(S),A(R) ∩A(S) = ∅, A1, A2 ∈ A(R), B1, B2 ∈ A(S)
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rhs = (RG+
A1=B1

(σ+
p (S)))

.
∪

((RG−A1=B1
(σ+

p (S)))GA1=B1∧A2=B2(σ
−
p (S)))

= {r|r ∈ R ∧ ∃s ∈ {t|t ∈ S ∧ p} ∧ r.A1 = s.B1}
.
∪

{t|t ∈ {r|r ∈ (R \ {x|x ∈ R ∧ ∃s ∈ {t|t ∈ S ∧ p} ∧ x.A1 = s.B1}}) ∧

∃s ∈ {y|y ∈ S ∧ ¬p} ∧ t.A1 = s.B1 ∧ t.A2 = s.B2}

= {r|r ∈ R ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ p}
.
∪

{t|t ∈ {r|r ∈ R \ {x|x ∈ R ∧ ∃s ∈ S ∧ x.A1 = s.B1 ∧ p}} ∧

∃s ∈ S ∧ ¬p ∧ t.A1 = s.B1 ∧ t.A2 = s.B2}

= {r|r ∈ R ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ p}
.
∪

{r|r ∈ (R − {x|x ∈ R ∧ ∃s ∈ S ∧ x.A1 = s.B1 ∧ p}) ∧

∃s ∈ S ∧ ¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}

= {r|((r ∈ R ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ p) ∨

(r ∈ (R − {x|x ∈ R ∧ ∃s ∈ S ∧ x.A1 = s.B1 ∧ p}) ∧

∃s ∈ S ∧ ¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}
∗
= {r|r ∈ R ∧ ((∃s ∈ S ∧ r.A1 = s.B1 ∧ p) ∨

(∃s ∈ S ∧ ¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ ∃s ∈ S ∧ ((p ∧ r.A1 = s.B1) ∨ (¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ ∃s ∈ S ∧ r.A1 = s.B1 ∧ (p ∨ (¬p ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ ∃s ∈ {t|t ∈ S ∧ (p ∨ (¬p ∧ r.A2 = t.B2))} ∧ r.A1 = s.B1}

= σ∃A1=B1(σA2=B2∨p(S))(R)

= lhs

In the last step we assume short-circuit evaluation of the disjunction. In the step
marked * we rely on the more general definition of the bypass semi-join where the
negative stream is defined by set difference.

e1G+
p e2 := {x|x ∈ e1 ∧ ∃y ∈ e2 ∧ p}

e1G−p e2 := e1 − (e1G+
p e2)

For the correctness of this equivalence for multisets it is important to realize
that the bypass semi-join partitions the tuples ofR into two disjoint streams. Either
stream is correct under multiset semantics. Finally the outermost union merges both
streams without changing the number of duplicates.
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C.6 Proof of Equivalence 5.11

σ6∃A1=B1
(σA2=B2∨p(S))(R) ≡ e1

.
∪ e2

e1 := RI+A1=B1
e3

e2 := (RI−A1=B1
e3)IA1=B1∧A2=B2(σ

−
p (S))

e3 := σ+
p (S)

if F(p) ⊆ A(S),A(R) ∩ A(S) = ∅, A1, A2 ∈ A(R), B1, B2 ∈ A(S)

rhs = (RI+A1=B1
(σ+

p (S)))
.
∪

((RI−A1=B1
(σ+

p (S)))IA1=B1∧A2=B2(σ
−
p (S)))

= {r|r ∈ R ∧ ¬∃s ∈ {t|t ∈ S ∧ p} ∧ r.A1 = s.B1}
.
∪

{t|t ∈ {r|r ∈ (R \ {x|x ∈ R ∧ ¬∃s{t|t ∈ S ∧ p} ∧ x.A1 = s.B1}}) ∧

¬∃s ∈ {y|y ∈ S ∧ ¬p} ∧ t.A1 = s.B1 ∧ t.A2 = s.B2}

= {r|r ∈ R ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ p}
.
∪

{t|t ∈ {r|r ∈ R \ {x|x ∈ R ∧ ¬∃s ∈ S ∧ x.A1 = s.B1 ∧ p}} ∧

¬∃s ∈ S ∧ ¬p ∧ t.A1 = s.B1 ∧ t.A2 = s.B2}

= {r|r ∈ R ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ p}
.
∪

{r|r ∈ (R− {x|x ∈ R ∧ ¬∃s ∈ S ∧ x.A1 = s.B1 ∧ p}) ∧

¬∃s ∈ S ∧ ¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2}

= {r|((r ∈ R ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ p) ∨

(r ∈ (R− {x|x ∈ R ∧ ¬∃s ∈ S ∧ x.A1 = s.B1 ∧ p}) ∧

¬∃s ∈ S ∧ ¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}
∗
= {r|r ∈ R ∧ ((¬∃s ∈ S ∧ r.A1 = s.B1 ∧ p) ∨

(¬∃s ∈ S ∧ ¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ (({s|s ∈ S ∧ r.A1 = s.B1 ∧ p} = ∅) ∨

({s|s ∈ S ∧ ¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2} = ∅))}

= {r|r ∈ R ∧ ({s|s ∈ S ∧ ((r.A1 = s.B1 ∧ p) ∨

(¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))} = ∅)}

= {r|r ∈ R ∧ ¬∃s ∈ S ∧ ((p ∧ r.A1 = s.B1) ∨

(¬p ∧ r.A1 = s.B1 ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ ¬∃s ∈ S ∧ r.A1 = s.B1 ∧ (p ∨ (¬p ∧ r.A2 = s.B2))}

= {r|r ∈ R ∧ ¬∃s ∈ {t|t ∈ S ∧ (p ∨ (¬p ∧ r.A2 = t.B2))} ∧ r.A1 = s.B1}

= σ¬∃A1=B1
(σA2=B2∨p(S))(R)

= lhs
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In the last step we assume short-circuit evaluation of the disjunction. In the step
marked * we rely on the more general definition of the bypass antijoin where the
negative stream is defined by set difference.

e1I+p e2 := {x|x ∈ e1 ∧ ¬∃y ∈ e2 ∧ p}

e1I−p e2 := e1 − (e1I+p e2)

For the correctness of this equivalence for multisets it is important to realize
that the bypass anti-join partitions the tuples ofR into two disjoint streams. Either
stream is correct under multiset semantics. Finally the outermost union merges both
streams without changing the number of duplicates.

C.7 Proof of Equivalences 5.15 and 5.16

σA1θ1f(S)(R) = σA1θ1g(χg:f(S)(R)) (C.1)

We observe that the equivalence holds if and only if the argument to the selec-
tions is equivalent. To see this, we rewrite the lhs as follows:

lhs = σA1θf(S)(R)

= {r|r ∈ R ∧A1θf({s|s ∈ S})}

= {t|A(R)|t ∈ {r ◦ [g : f({s|s ∈ S})]|r ∈ R} ∧ t.gθt.A1}

= σA1θg(χg:f(S)(R))

= rhs

As a result, all proofs presented next are also valid when theresult of the nested
scalar query block is returned with the tuples of the outer query block. Hence, these
equivalences are also valid for disjunctive correlation ofnested scalar queries in the
select clause.

C.7.1 Proof of Equivalence 5.15

σp∨A1θf(σA2=B2
(S))(R) = e1

.
∪ e2

e1 := σ+
p (R)

e2 := ΠA(R)(σgθA1((σ
−
p (R))Pg:f(∅)

A2=B2
(Γg;=B2;f(S))))

if F(p) ⊆ A(R), A(R) ∩ A(S) = ∅, A1,A2 ∈ A(R), B2 ∈ A(S), g 6∈
A(R) ∪A(S)
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We defineR′ := σ−p (R) = {r|r ∈ R ∧ ¬p} and
S ′ := Γg;=B2;f(S) = {s|B2 ◦ [g : G]|s ∈ S∧G = f({y|y ∈ S∧y.B2 = s.B2})}.

rhs = σ+
p (R)

.
∪ ΠA(R)(σgθA1((σ

−
p (R))Pg:f(∅)

A2=B2
(Γg;=B2;f(S))))

= {r|r ∈ R ∧ p}
.
∪

{r|r ∈ R′ ∧ s ∈ S′ ∧ r.A2 = s.B2 ∧ s.gθr.A1} ∪

{r|r ∈ R′ ∧ ¬∃s ∈ S′ : r.A2 = s.B2 ∧A(z) = A(S′) ∧ g ∈ A(S′) ∧

∀a ∈ A(S) \ g : (z.a : NULL) ∧ z.g : f(∅) ∧ z.gθr.A1}

= {r|r ∈ R ∧ (p ∨ (¬p ∧ ((s ∈ S′ ∧ r.A2 = s.B2 ∧ s.gθr.A1) ∨

(¬∃s ∈ S′ : r.A2 = s.B2 ∧ A(z) = A(S′) ∧ g ∈ A(S′) ∧

∀a ∈ A(S) \ g : (z.a : NULL) ∧ z.g : f(∅) ∧ z.gθr.A1))))}

= {r|r ∈ R ∧ (p ∨ (¬p ∧

((s ∈ {t|B2
◦ [g : G]|t ∈ S ∧G = f({y|y ∈ S ∧ y.B2 = t.B2})}

∧r.A2 = s.B2 ∧ s.gθr.A1) ∨

(¬∃s ∈ {t|B2
◦ [g : G]|t ∈ S ∧G = f({y|y ∈ S ∧ y.B2 = t.B2})} : r.A2 = s.B2 ∧

A(z) = A(S′) ∧ g ∈ A(S′) ∧ ∀a ∈ A(S) \ g : (z.a : NULL) ∧ z.g : f(∅)

∧z.gθr.A1))))}

= {r|r ∈ R ∧ (p ∨ (¬p ∧ ((s ∈ S ∧G = f({y|y ∈ S ∧ y.B2 = s.B2}) ∧

r.A2 = s.B2 ∧Gθr.A1) ∨ (¬∃s ∈ S : r.A2 = s.B2 ∧A(z) = A(S) ∧

∀a ∈ A(S) : (z.a : NULL) ∧G = f(∅) ∧Gθr.A1))))}

= {r|r ∈ R ∧ (p ∨ (¬p ∧G = f({y|y ∈ S ∧ r.A2 = y.B2}) ∧Gθr.A1))}

= σp∨A1θf(σA2=B2(S))(R)

= lhs

For the correctness of this equivalence over multisets, we note that the bypass
selection partitions the tuples inR into two disjoint sets. The left outer-join finds
at most one match with the tuples of expressionΓg;=B2;fS because the grouping
operator creates a key on the join attributeB2. Additionally, the left outer-join
returns by definition at least one tuple for each tuple inR and thus handles the case
for empty groups. Hence, duplicates inR are handled properly.

The result of the aggregation is computed correctly by the unary grouping oper-
ator. It simply precomputes the value of the aggregate function f for each value of
attributeB2 in S, i.e. for each non-empty group.

The proof of Equivalence 5.16 for the special case of equality predicates follows
directly from the proof of the following Lemma. Note however, that we requireA2

in R to be a key. Otherwise, as the lemma tells us, attributeA1 and other attributes
of R are not available after binary grouping.

Lemma:

ΠA2∪g(RPf(∅)
A2=B2

(Γg;=B2;f(S))) ≡ (R)Tg;A2=B2;f(S) (C.2)

Proof:
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lhs = {r|A2
◦ s|g|r ∈ R ∧ s ∈ {t ◦ [g : G]|t ∈ S ∧

G = f({y|y ∈ S ∧ t.B2 = y.B2})} ∧ r.A2 = s.B2} ∪

{r|A2
◦ z|g|r ∈ R ∧ ¬∃y ∈ S : r.A2 = y.B2 ∧ A(z) = A(S) ∧ g ∈ A(S) ∧

∀a ∈ (A(S) \ g) : (z.a : NULL ∧ z.g : f(∅))}

= {r|A2
◦ [g : G]|r ∈ R ∧ s ∈ S ∧ r.A2 = s.B2 ∧G = f({y|y ∈ S ∧ s.B2 = y.B2})} ∪

{r|A2
◦ [g : G]|r ∈ R ∧ (¬∃s ∈ S : r.A2 = s.B2) ∧G = f(∅)}

= {r|A2
◦ [g : G]|r ∈ R ∧ ((s ∈ S ∧ r.A2 = s.B2 ∧G = f({y|y ∈ S ∧ s.B2 = y.B2})) ∨

(G = f(∅) ∧ ¬∃s ∈ S : r.A2 = s.B2))}

= {r|A2
◦ [g : G]|r ∈ R ∧G = f({y|y ∈ S ∧ r.A2 = y.B2})}

= (R)Tg;A2=B2;f (S)

= rhs

C.7.2 Proof of Equivalence 5.16

ΠA1,A2(σp∨A1θ1f(σA2θ2B2
(S))(R)) = ΠA1,A2(e1

.
∪ e2)

e1 := σ+
p (R)

e2 := σgθ1A1(σ
−
p (R)Tg;A2θ2B2;f(S))

if F(p) ⊆ A(R), A(R) ∩ A(S) = ∅, A1,A2 ∈ A(R), B2 ∈ A(S), g 6∈
A(R) ∪A(S) and the functional dependencyA2 → A1 holds.

rhs = ΠA1,A2(σ
+
p (R)

.
∪ (ΠA(R)(σgθ1A1(σ

−
p (R)Tg;A2θ2B2;f (S)))))

= {r|A1,A2
|r ∈ R ∧ p}

.
∪ {t|A1,A2

|t ∈ {r ◦ [g : G]|r ∈ R ∧Gθ1A1 ∧ ¬p ∧

G = f({y|y ∈ S ∧ r.A2θ2y.B2})}}

= {r|A1,A2
|r ∈ R ∧ (p ∨ (¬p ∧Gθ1A1 ∧G = f({y|y ∈ S ∧ r.A2θ2y.B2})))}

= {r|A1,A2
|r ∈ R ∧ (p ∨ (¬p ∧Gθ1A1G = f({y|y ∈ S ∧ r.A2θ2y.B2})))}

= ΠA1,A2(σp∨A1θ1f(σA2θ2B2
(S))(R))

= lhs

For the correctness of this equivalence over multisets, we note that the bypass
selection partitions the tuples inR into two disjoint sets. The returns exactly one
tuple per input tuple ofσ−p (R) extended with the result of the aggregate functionf .
Thereby empty groups are initialized and handled properly.The final union merges
the disjoint subsets of the bypass selection establishing the correct final result.
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C.8 Proof of Equivalences 5.17 and 5.18

C.8.1 Proof of Equivalence 5.17

σp∨A1θ(f(σA2=B2
(S)))(R) ≡ ΠA(R)(e1

.
∪ e2)

e1 := σ+
gθA1

((R)Pg:f(∅)
A2=B2

(Γg;=B2;f(S)))

e2 := σp(σ
−
gθA1

((R)Pg:f(∅)
A2=B2

(Γg;=B2;f(S))))

if F(p) ⊆ A(R), A(R) ∩ A(S) = ∅, A1,A2 ∈ A(R), B2 ∈ A(S), g 6∈
A(R) ∪ A(S)

First, we simplify the following subexpressionX that occurs both ine1 ande2:

X = ΠA(R)∪g((R)Pg:f(∅)
A2=B2

(Γg;=B2;f(S)))

= {r ◦ s|g|r ∈ R ∧ s ∈ {t ◦ [g : G]|t ∈ S ∧

G = f({y|y ∈ S ∧ t.B2 = y.B2})} ∧ r.A2 = s.B2} ∪

{r ◦ z|g|r ∈ R ∧ ¬∃y ∈ S : r.A2 = y.B2 ∧ A(z) = A(S) ∧ g ∈ A(S) ∧

∀a ∈ (A(S) \ g) : (z.a : NULL ∧ z.g : f(∅))}

= {r ◦ [g : G]|r ∈ R ∧ s ∈ S ∧ r.A2 = s.B2 ∧G = f({y|y ∈ S ∧ s.B2 = y.B2})} ∪

{r ◦ [g : G]|r ∈ R ∧ ¬∃s ∈ S : r.A2 = s.B2 ∧G = f(∅)}

= {r ◦ [g : G]|r ∈ R ∧ ((s ∈ S ∧ r.A2 = s.B2 ∧G = f({y|y ∈ S ∧ s.B2 = y.B2})) ∨

(G = f(∅) ∧ ¬∃s ∈ S : r.A2 = s.B2))}

= {r ◦ [g : G]|r ∈ R ∧G = f({y|y ∈ S ∧ r.A2 = y.B2})}

Now we useX to complete the proof:

rhs = ΠA(R)((σ
+
gθA1

(X))
.
∪ (σp(σ

−
gθA1

(X))))

= {x|A(R)|x ∈ X ∧ x.gθx.A1}
.
∪ {x|A(R)|x ∈ X ∧ ¬(x.gθx.A1) ∧ p}

= {x|A(R)|x ∈ X ∧ ((x.gθx.A1) ∨ (¬(x.gθx.A1) ∧ p))}

= {x|A(R)|x ∈ {r ◦ [g : G]|r ∈ R ∧G = f({y|y ∈ S ∧ r.A2 = y.B2})}

∧((x.gθx.A1) ∨ (¬(x.gθx.A1) ∧ p))}

= {r|r ∈ R ∧G = f({y|y ∈ S ∧ r.A2 = y.B2}) ∧ ((Gθr.A1) ∨ (¬(Gθr.A1) ∧ p))}

= σp∨A1θf(σA2=B2(S))(R)

= lhs

The correctness of this equivalence over multisets followsby the same argu-
mentation as for Equivalence 5.15.

C.8.2 Proof of Equivalence 5.18

The proof of Equivalence 5.18 forθ2 as equality predicate follows from Lemma C.2.
Again the A2 must be a key ofR.
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For the general case we have:

ΠA1,A2(σp∨A1θ1(f(σA2θ2B2
(S)))(R)) ≡ ΠA1,A2(e1

.
∪ e2)

e1 := σ+
gθ1A1

((R)Tg;A2θ2B2;f(S))

e2 := σp(σ
−
gθ1A1

((R)Tg;A2θ2B2;f(S)))

if F(p) ⊆ A(R), A(R) ∩ A(S) = ∅, A1,A2 ∈ A(R), B2 ∈ A(S), g 6∈
A(R) ∪A(S) and the functional dependencyA2 → A1 holds.

To simplify the following expression we defineX as:

X = (R)Tg;A2θ2B2;f (S)

= {r|A1,A2
◦ [g : G]|r ∈ R ∧G = f({s|s ∈ S ∧ r.A2θ2s.B2})}

rhs = ΠA1,A2(σ
+
gθ1A1

((R)Tg;A2θ2B2;f (S))
.
∪ σp(σ

−
gθ1A1

((R)Tg;A2θ2B2;f (S))))

= {tA1,A2 |t ∈ ({x|x ∈ X ∧ x.gθ1x.A1}
.
∪ {y|y ∈ X ∧ ¬(y.gθ1y.A1) ∧ p})}

= {tA1,A2 |t ∈ X ∧ x.gθ1x.A1 ∨ p}

= {tA1,A2 |t ∈ {r|A1,A2
◦ [g : G]|r ∈ R ∧G = f({s|s ∈ S ∧ r.A2θ2s.B2})} ∧

(Gθ1x.A1 ∨ p)}

= {rA1,A2 |r ∈ R ∧G = f({s|s ∈ S ∧ r.A2θ2s.B2}) ∧ (Gθ1r.A1 ∨ p)}

= ΠA1,A2(σp∨A1θ1f(σA2θ2B2
(S))(R))

= lhs

The correctness of this equivalence for multisets follows by the same arguments
as for Equivalence 5.16.

C.9 Proof of Equivalences 5.19 and 5.20

C.9.1 Proof of Equivalence 5.19

σA1θf(σA2=B2∨p(S))(R) = ΠA(R)(σA1θg(χg:fO(g1,e2)(e1)))

e1 := RPg1:fI(∅)
A2=B2

(Γg1;=B2;fI
(σ−p (S)))

e2 := fI(σ
+
p (S))

if F(p) ⊆ A(S), A(R) ∩ A(S) = ∅, Ai ∈ A(R), i = 1, 2, B2 ∈ A(S),
g, g1 6∈ A(R)∪A(S), f is decomposable [30], i.e. there are setsX, Y , andZ, with
X = Y

.
∪ Z andY ∩ Z = ∅.
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The scalar aggregate functionf : X → N is decomposableif there exist func-
tions

fI : X → N ′

fO : N ′,N ′ → N

with f(X) = fO(fI(Y ), fI(Z)).
To simplify the expressions we defineX.

X = ΠA(R)∪g1
(RPg1:fI(∅)

A2=B2
(Γg1;=B2;fI

(σ−p (S))))

= {r ◦ s|g1
|r ∈ R ∧ s ∈ {t ◦ [g1 : G]|t ∈ S ∧ ¬p ∧

G = fI({y|y ∈ S ∧ ¬p ∧ t.B2 = y.B2})} ∧ r.A2 = s.B2} ∪

{r ◦ z|g1
|r ∈ R ∧ ¬∃y ∈ S : r.A2 = y.B2 ∧ ¬p ∧A(z) = A(S)

∧g1 ∈ A(S) ∧ ∀a ∈ (A(S) \ g1) : (z.a : NULL ∧ z.g1 : fI(∅))}

= {r ◦ [g1 : G]|r ∈ R ∧G = fI({y|y ∈ S ∧ ¬p ∧ r.A2 = y.B2})} ∪

{r ◦ z|g1|r ∈ R ∧ ¬∃y ∈ S : r.A2 = y.B2 ∧ ¬p ∧A(z) = A(S) ∧

g1 ∈ A(S) ∧ ∀a ∈ (A(S) \ g1) : (z.a : NULL ∧ z.g1 : fI(∅))}

= {r ◦ [g1 : G]|r ∈ R ∧G = fI({y|y ∈ S ∧ ¬p ∧ r.A2 = y.B2})} ∪

{r ◦ [g1 : G]|r ∈ R ∧ ¬∃y ∈ S : r.A2 = y.B2 ∧ ¬p ∧G = fI(∅))}

= {r ◦ [g1 : G]|r ∈ R ∧G = fI({y|y ∈ S ∧ ¬p ∧ r.A2 = y.B2})}

Using Equivalence C.1, this equivalence also holds withoutthe final selection
on both sides. Hence, we remove can it in the remainder of the proof.

rhs = ΠA(R)∪g(χg:fO(g1,fI(σ+
p (S)))(X))

= {x ◦ [g : fO(g1, fI({y|y ∈ S ∧ p}))]|A(R)∪g|x ∈ X}

= {x ◦ [g : G]|A(R)∪g |x ∈ {r ◦ [g1 : G]|r ∈ R ∧

G = fI({y|y ∈ S ∧ ¬p ∧ r.A2 = y.B2})} ∧

G = fO(g1, fI({y|y ∈ S ∧ p}))}

= {r ◦ [g : G]|r ∈ R ∧

G = fO(fI({y|y ∈ S ∧ ¬p ∧ r.A2 = y.B2}), fI({y|y ∈ S ∧ p}))}

= {r ◦ [g : f({y|y ∈ S ∧ (r.A2 = y.B2 ∨ p)})]|r ∈ R}

= χg:f(σA2=B2∨p(S))(R)

= lhs

To establish the correctness for multisets we observe that no tuple ofR is dupli-
cated. Hence, we only have to be careful that at most one tupleof S matches with
every tuple ofR.

In the first part of the proof tuples ofσ−p (S) are partitioned by the join predicate
A2 = B2. Matching tuples inσ−p (S) are combined to exactly one value — the



C.9. PROOF OF EQUIVALENCES 5.19 AND 5.20 167

result of the aggregation functionfI . This value produces exactly one output tuple
for matching tuple inR. Tuples inR that do not find any matching tuple inσ−p (S)
are padded with the value of the aggregation function for an empty input.

In the second part no new tuples are produced or filtered. Thus, the correct
number of result tuples are produced. When we investigate the correctness of the
final aggregate value we note that the tuples ofS are partitioned by predicatep
(resp. ¬p). The latter were handled properly in the first part of the proof. The
former are aggregated independently in the subscript of themap operatorχ. When
both partitions are combined according to the definition of decomposable aggregate
functions the correct aggregate value is computed.

C.9.2 Proof of Equivalence 5.20

ΠA1,A2(σA1θ1f(σA2θ2B2∨p(S))(R)) = ΠA1,A2(σA1θ1g(χg:fO(g1,e2)(e1)))

e1 := (R)Tg1;A2θ2B2;fI
(σ−p (S))

e2 := fI(σ
+
p (S))

if F(p) ⊆ A(S),A(R) ∩ A(S) = ∅, Ai ∈ A(R), i = 1, 2, B2 ∈ A(S), g, g1 6∈
A(R) ∪ A(S), the functional dependencyA2 → A1 holds, andf is decomposable
as discussed in the proof for Equivalence 5.19.

Using Equivalence C.1, this equivalence also holds withoutthe final selection
on both sides. Hence, we remove can it in the remainder of the proof. In addition,
we ignore the final projection as it is only needed to establish the same schema of
the result tuples.

rhs = χg:fO(g1,fI(σ+
p (S)))((R)Tg1;A2θ2B2;fI

(σ−p (S)))

= {x ◦ [g : fO(x.g1, fI({y|y ∈ S ∧ p}))]|x ∈ {r ◦ [g1 : G]|r ∈ R ∧

G = fI({y|y ∈ S ∧ ¬p ∧ r.A2θ2y.B2})}

= {r ◦ [g : fO(fI({y|y ∈ S ∧ ¬p ∧ r.A2θ2y.B2}), fI({y|y ∈ S ∧ p}))]|r ∈ R}

= {r ◦ [g : f({y|y ∈ S ∧ (r.A2θ2y.B2 ∨ p)})]|r ∈ R}

= χg:f(σA2θ2B2∨p(S))(R)

= lhs

To establish the correctness for multisets we observe that no tuple ofR is du-
plicated. The binary grouping takes care that for every tuple of R a single group
exists.

The bypass selection partitions the tuples ofS into two disjoint sets. The binary
grouping matches all tuples ofσ−p (S) to the groups established fromR. Tuples of
R that do not find a join partner are properly initialized by thebinary grouping.
Hence exactly the same tuples ofR – extended with the result of aggregation – are
returned by the binary grouping operator.
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In the map operator does not produce or filter any tuples. Thus, the correct
number of result tuples are produced. When we investigate the correctness of the
final aggregate value we note that the tuples ofS are partitioned by predicatep
(resp.¬p). The latter were handled properly by the binary grouping operator. The
former are aggregated independently in the subscript of themap operatorχ. When
both partitions are combined according to the definition of decomposable aggregate
functions the correct aggregate value is computed.

C.10 Proof of Equivalence 5.21

σA1θ1f(σA2θ2B2∨p(S))(R) = ΠA(R)(σA1θ1g((R
′)Tg;t1=t1′;f(ρt1′←t1(e1

.
∪ e2))))

R′ := νt1(R)

e1 := R′B+
A2θ2B2

S

e2 := σp(R
′B−A2θ2B2

S)

if F(p) ⊆ A(R)∪A(S),A(R)∩A(S) = ∅, Ai ∈ A(R), i = 1, 2, B2 ∈ A(S),
g 6∈ A(R) ∪ A(S)

Let us point out that we assume the idt1 returned by the numbering operator is
computed deterministically. For an ordered set, this mightbe the position of a tuple
within the set, it might be a tuple identifier as it is commonlyused to store tuples in
relational databases, or simply the key attribute of a relation. We may only use that
for t ∈ R′ ands ∈ R′ it holds that ift.t1 = s.t1⇒ t = s. Note thatt1 is a key for
the tuple it is generated for.

We useX as a shortcut:

X := ρt′1←t1(e1

.
∪ e2)

= ρt′1←t1((R
′B+

A2θ2B2
S)

.
∪ (σp(R

′B−A2θ2B2
S)))

= {r ◦ st′1←t1 |r ∈ R′ ∧ s ∈ S ∧ r.A2θ2s.B2}
.
∪

{yt′1←t1 |y ∈ {r ◦ s|r ∈ R′ ∧ s ∈ S ∧ ¬(r.A2θ2s.B2)} ∧ p}

= {r ◦ st′1←t1 |r ∈ R′ ∧ s ∈ S ∧ r.A2θ2s.B2}
.
∪

{r ◦ st′1←t1 |r ∈ R′ ∧ s ∈ S ∧ ¬(r.A2θ2s.B2) ∧ p}

= {r ◦ st′1←t1 |r ∈ R′ ∧ s ∈ S ∧ (r.A2θ2s.B2 ∨ (¬(r.A2θ2s.B2) ∧ p))}

Thanks to Equivalence C.1 we can safely remove the final selection on both
sides. We also remove the final projection on the rhs because it is only required for
syntactic reasons.
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rhs = (R′)Tg;t1=t1′ ;f(X)

= {t ◦ [g : G]|t ∈ R′ ∧G = f({y|y ∈ X ∧ t.t1 = y.t′1})}

= {t ◦ [g : G]|t ∈ R′ ∧G = f({y|y ∈ {[s ◦ r]t′1←t1 |r ∈ R′ ∧ s ∈ S ∧

(r.A2θ2s.B2 ∨ (¬(r.A2θ2s.B2) ∧ p))} ∧ t.t1 = y.t′1})}
∗
= {t ◦ [g : G]|t ∈ R ∧G = f({s|s ∈ S ∧ (t.A2θ2s.B2 ∨ (¬(t.A2θ2s.B2) ∧ p))})}
∗∗
= {t ◦ [g : G]|t ∈ R ∧G = f({s|s ∈ S ∧ (t.A2θ2s.B2 ∨ p)})]}

= {t ◦ [g : f({s|s ∈ S ∧ (t.A2θ2s.B2 ∨ p)})]|t ∈ R}

= χg:f(σA2θ2B2∨p(S))(R)

= lhs

In the step marked * we use the bijectivity of the numbering operator mentioned
in the beginning of the proof. Hence we resume withR instead ofR′. In the step
marked ** we make use of short circuit evaluation of∨.

Note that employing the numbering operator makes this equivalence applicable
for either sets or multisets.
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