Rewriting Declarative Query Languages

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universiait Mannheim

vorgelegt von

Diplom-Wirtschafts-Informatiker
Matthias Brantner

aus Schramberg

Mannheim, 2007

Dekan: Professor Dr. Matthias Krause, Universitat Mammhe
Referent: Professor Dr. Guido Moerkotte, Universitat Miagim
Korreferent: Professor Dr. Donald Kossmann, ETH Zirich

Tag der mundlichen Prufung: Donnerstag, den 11.10.2007

Zusammenfassung

Anfragen an Datenbanken werden mit Hilfe deklarativer Agésprachen gestellt.
Beispiele hierfur sind die relationale Anfragesprachd.$Qd XPath oder XQuery
fur Anfragen an XML-Daten. Auf Grund der Deklarativitauss der Anfragesteller
nichts Uber die Techniken wissen, die benutzt werden, uma Anfrage zu bear-
beiten. Stattdessen kann der Anfragebearbeiter einesiatksystems hierfur be-
liebige Algorithmen auswahlen.

Im relationalen Kontext wird die Anfragebearbeitung géwiich mit Hilfe einer
relationalen Algebra durchgefuhrt. Hierfur wird eineffage in eine logische Al-
gebra Uibersetzt. Diese Algebra besteht aus logischera@pen, die es erlauben,
zahlreiche Optimierungstechniken anzuwenden. Beisp@é$e konnen Ausdricke
in einer logischen Algebra umgeschrieben werden, um Awdr zu erhalten, die
effizienter auszuwerten sind.

Um Anfragen an Daten zu stellen, die im XML Format gespeickied, wur-
den die Anfragesprachen XPath und XQuery entwickelt. Beidé deklarativ und
haben dadurch ebenfalls ein groses Optimierungspotertisbesondere kdnnen
sie mit einer Algebra ausgewertet werden. Leider sind distiexenden Ansatze
(z.B. aus dem relationalen Kontext) jedoch nicht direkt eangbar.

Das Ziel dieser Dissertation besteht aus zwei Teilen. Inesr3eil werden
die eben genannten Defizite der Auswertung von XML-Anfrpgeben beseit-
igt. Es wird ein algebraisches Rahmenwerk entwickelt, unatKRund XQuery
effizient auszuwerten. Dadurch soll es moglich werden, tXRad XQuery im
grostechnischen Einsatz zu benutzen. Hierfur wird ziere ordnungserhaltende
logische Algebra definiert und danach eldeersetzung von XPath in diese Alge-
bra vorgestellt. Daruiber hinaus werden Regeln vorstalit,denen ein Algebra-
Ausdruck umgeformt werden kann, um den resultierenderbedggehen Ausdruck
schneller ausgewerten zu kdnnen.

Im zweiten Teil der Arbeit werden neue Optimierungen im trelaalen Kon-
text entwickelt, mit deren Hilfe sich geschachtelte SQLfrAgen mit Disjunktio-
nen entschachteln lassen. Hierfiir werden algebraifchgvalenzen vorgestellt,
welche geschachtelte algebraische Ausdriicke in algediraiAusdricke mit "By-
pass-Operatoren” iberfilhren. Die entwickelfgquivalenzen konnen Anfragen
mit einem disjunktiven Verbindungspradikat und Anfragéei denen das Kor-
relationspradikat disjunktiv vorkommt, entschachteDamit lassen sich sowohl
Unteranfragen mit mengenwertigen Ergebnissen, als auéfagen mit skalaren
Ergebnissen, entschachteln.

Fur alle Optimierungen wurden Experimente durchgefilinre Ergebnisse,
die in dieser Arbeit vorgestellt werden, zeigen die Wirkkarhaller entwickelten
Ansatze zeigen.

Abstract

Queries against databases are formulated in declarahgeidges. Examples are
the relational query language SQL and XPath or XQuery foryjng data stored
in XML. Using a declarative query language, the querist doasneed to know
about or decide on anything about the actual strategy araysses to answer the
query. Instead, the system can freely choose among thetalgsrit employs to
answer a query.

Predominantly, query processing in the relational conteatcomplished using
a relational algebra. To this end, the query is translatéal anlogical algebra.
The algebra consists of logical operators which facilitteeapplication of various
optimization techniques. For example, logical algebraesgions can be rewritten
in order to yield more efficient expressions.

In order to query XML data, XPath and XQuery have been dewslopoth are
declarative query languages and, hence, can benefit frorerpdveptimizations.
For instance, they could be evaluated using an algebraieefreork. However, in
general, the existing approaches are not directly utileédr XML query process-
ing.

This thesis has two goals. The first goal is to overcome theexbtentioned
misfits of XML query processing, making it ready for indualistrength settings.
Specifically, we develop an algebraic framework that is glesil for the efficient
evaluation of XPath and XQuery. To this end, we define an esdere logical
algebra and a translation of XPath into this algebra. Funtbee, based on the re-
sulting algebraic expressions, we present rewrites inrdod&gpeed up the execution
of such queries.

The second goal is to investigate rewriting techniques @rétational context.
To this end, we present rewrites based on algebraic equiv@dehat unnest nested
SQL queries with disjunctions. Specifically, we presentiemjances for unnesting
algebraic expressions with bypass operators to handlendisye linking and corre-
lation. Our approach can be applied to quantified table seivegias well as scalar
subqueries.

For all our results, we present experiments that demomedtiateffectiveness of
the developed approaches.

Vi

Contents

1

Introduction 1
1.1 Motivation. e 1
1.2 Contributions 2
1.2.1 Algebraic XPath Evaluation 2
1.2.2 Unnesting XPath Expressions 3
1.2.3 Disjunctive UnnestingforXPath 3
1.2.4 Disjunctive UnnestingforSQL 4
1.2.5 Preparing XQuery for Plan Generation. 4
Algebraic XPath Processing 5
2.1 TranslationInputand Output 6
211 XPathSemantics 6
2.1.2 LogicalAlgebra 0. 6
2.2 TranslationintoAlgebra L. 9
2.21 LocationPaths, 9
2.2.2 LocationSteps 11
223 Predicates 12
2.2.4 FilterExpressions 14
225 PathExpressions 15
226 FunctionCalls 15
2.2.7 Constantsand Variables 17
2.3 Improved Translation 17
2.3.1 Pushing Duplicate Elimination 18
2.3.2 LocationPaths 19
2.3.3 Predicate Evaluation 20
2.4 Implementation 22
24.1 Compiler 22
2.4.2 PhysicalAlgebrao oo 23
25 Evaluation. 24
251 Environment 25
252 Results 25
26 RelatedWork 27
2.7 Conclusion 29

viii CONTENTS

3 Unnesting XPath Expressions 31
3.1 XPath Expressions i 32
3.1.1 Normalization 32
3.1.2 Expression Classification 33
3.1.3 Nested Expression Classification 34
3.2 LogicalAlgebra 35
3.2.1 XPath Contextinthe Algebra 38
3.3 Optimization e 39
3.3.1 Independent Comparison Expressions 39
3.3.2 Semi-Independent Comparison Expressions 40.
3.3.3 Dependent Comparison Expressions 47
3.4 Evaluation. 51
3.4.1 Environment 51
3.4.2 Documents 51
343 QuUeries e e 52
3.4.4 Results and Interpretation 53
3.5 RelatedWork 56
3.6 Conclusion 56
4 Disjunctive Unnesting for XPath 59
4.1 Problem 60
4.2 BypassTechnique 61
4.3 DisjunctiveUnnesting. 00 62
4.3.1 Unnesting a Single Disjunctive Correlation Predicat. . . 62
4.3.2 Unnesting Multiple Disjunctive Correlation Predes . . . 62
4.4 Evaluation 64
4.4.1 Resultsand Interpretation 65
45 RelatedWork 65
4.6 Conclusion 66
5 Disjunctive Unnesting for SQL 67
5.1 Preliminaries 69
5.1.1 Terminology 69
5.1.2 Classification o 70
5.1.3 AlgebraforSets 70
5.2 Unnesting Table Subqueries 71
5.2.1 DisjunctiveLinking. 71
5.2.2 Disjunctive Correlation 75
5.23 Equivalences 76
5.2.4 Completeness of Equivalences 78
525 TreeQueries e 79
5.2.6 LinearQueries 79
5.2.7 DuplicateHandling 82

CONTENTS

5.3 Unnesting Scalar Subqueries
5.3.1 DisjunctiveLinking.
5.3.2 Disjunctive Correlation
5.3.3 Equivalences
5.3.4 Completeness of Equivalences
535 TreeQueries
5.3.6 LinearQueries
5.3.7 DuplicateHandling

54 Evaluation.,
541 Datasets.
542 Settings
5.4.3 Table Subqueries
5.4.4 Scalar Subqueries.

55 RelatedWork

56 Conclusion oL

6 Beyond XPath

6.1 Overview
6.2 Normalization
6.2.1 Return Normalization.
6.2.2 Path Normalization
6.3 Merging FLWORBIlocks
6.3.1 ForRewrites
6.3.2 LetRewrites
6.4 Intricacies
6.4.1 Positional ForRewrites
6.42 Order-by
6.5 Evaluation.
6.6 RelatedWork
6.7 Conclusion

7 Conclusion & Outlook

7.1 Conclusion
7.1.1 Algebraic XPath Evaluation
7.1.2 Unnesting XPath Expressions
7.1.3 Disjunctive Unnesting for XPath
7.1.4 Disjunctive UnnestingforSQL
7.1.5 Preparing XQuery for Plan Generation

7.2 Outlook
7.2.1 XML QueryProcessing

7.2.2 Unnesting Disjunctive SQL Queries

A Proofs for Unnesting XPath Queries

A.1 Proof of Equivalence3.1
A.2 Proof of Equivalence3.2
A.3 Proof of Equivalence3.3
A.4 Proof of Equivalence3.4
A.5 Proof of Equivalence3.5
A.6 Proof of Equivalence3.6
A.7 Proof of Equivalence 3.7
A.8 Proof of Equivalence3.8
A.9 Proof of Equivalence3.9
A.10 Proof of Equivalence 3.10.

B DTD for the University Schema

C Proofs for Unnesting SQL Queries

C.1 Proof of Equivalences5.2and5.6
C.2 Proof of Equivalences5.3and5.7
C.3 Proof of Equivalences5.4and5.8
C.4 Proof of Equivalences5.5and59
C.5 Proof of Equivalence5.10.
C.6 Proof of Equivalence5.11.

C.7 Proof of Equivalences 5.15 and 5.16

C.7.1 Proof of Equivalence 5.15
C.7.2 Proof of Equivalence 5.16

C.8 Proof of Equivalences 5.17 and 5.18

C.8.1 Proof of Equivalence 5.17
C.8.2 Proof of Equivalence 5.18

C.9 Proof of Equivalences 5.19 and 5.20

C.9.1 Proof of Equivalence5.19
C.9.2 Proof of Equivalence 5.20
C.10 Proof of Equivalence5.21.

Bibliography

CONTENTS

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6

Sequence-valued operators of the targetalgebra 8
Canonical translation
Stacked translation fgu, :: t1/as :: ta/as :: t3 With ppd(ag :: t5) . 19

Translation of / student[exam][position() = last()]/name 22
Queries against generated documents 25
Resultsforpaths1-4
Results (in sec.) of queries againstDBLP 27
Unary groupingexample
Kappa-joinexample
Equivalences for semi-independent comparison express 40
TranslationsketchforQ3
Unnesting strategyforQ3
Unnesting strategy for Q3 with kappa-join 44
Pseudocode for the kappa-join
Equivalences for dependent comparison expressions....... . . 48
Results(insec.)forQ2,
Results (insec.) for Q1,Q3,and Q7 4
Results (insec.) forQ4,Q5,and Q6 5
TranslationsketchforQ8
Unnesting strategy for Q8 with bypass selection 61
Unnesting strategy for Q8 with bypass selection anddxapqm. .. 62
Incorrect unnesting strategyforQ9 63
Unnesting strategy for Q9 with kappa-join 63
Results (insec.)forQ8and Q9
Operators ofthealgebra.
Unnesting strategy for Q10 (sketch) 73
Unnesting strategy for Q11 (sketch)75
Equivalences for disjunctive Nqueries 76
Equivalences for disjunctive Jqueries 77
Unnesting strategy for Q12 (sketch) 80

Xi

66
72

Xii

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

LIST OF FIGURES

Unnesting strategy for Q13 (sketch) 81
Unnesting strategy for Q14 (sketch) 82
Unnesting strategy for Q15 (sketch) 85
Unnesting strategy for Q16 (sketch) 87
Equivalences for disjunctiA queries L. 89
Unnesting strategy for Q17 (sketch) 91
Unnesting strategy for Q18 (sketch) 93
Query plan sketches forQuery4d 96
Results (insec.) forQl0and4d 97
Results (insec.)forQ11 98
Query plan sketches for TPC-DS Query 10 00 1
Results (in sec.) for Q19 and TPC-DS Query 10 101
Results (insec.) forQ20 102
Results (insec.) forQ15and2d 310
Query plan sketches for Query2d 4 10
Results (insec.)forQ16 105
Results (insec.) forQ21 105
Results (insec.) forQ22 106
Processingmodel 112
Returnrewrites 114
Path tailoringrewrites oL 611
Predicate normalizationrewrites 117
Common path elimination 118
Forrewrites 120
Letrewrites e 122
Positional forrewrites o L. 412
Order-by forrewrites 126
Order-by letrewrites 127
Alternative executionplans 128
Performanceresults 129

Chapter 1

Introduction

1.1 Motivation

Relational database systems are the prevalent choice foagireg large amounts
of data. These systems offer, for example, efficient anclkdi storage, access
control, multiuser synchronization, or assure data ingdvioreover, besides these
features, the efficient processing of queries is a majoofauft success for these
systems. In general, queries are formulated in a declarihguage such as SQL.
Using a declarative query language, the querist does nat tteknow about or
decide on anything about the actual strategy a system usassteer the query.
Instead, the system can freely choose among the algorithemsploys to answer
a query — as long as the result is correct. Predominantlyyyqu@cessing in the
relational context is accomplished using a relationalladgeTo this end, the query
is translated into a logical algebra. The algebra considtggacal operators which
facilitate the application of various optimization techues. For example, logical
algebra expressions can be rewritten in order to yield mifigent expressions.
Such rewrites can be formally proven for their validity. ltd#ion, implementing
the logical algebra in an iterator-based, pipelined queegetion engine scales well
to large data volumes [49].

XML (eXtensible Markup Language) is a standardized fornifi] [to store
semi-structured documents. Thanks to its flexibility asdeise of use it is nowa-
days widely used in a vast number of application areas. Ieha@srged as the pre-
dominant mechanism for representing and exchanging dataxample, it is used
in document-centric applications for modeling and exclvagngdata in the financial
(FIXML), chemical (CML), or biological (BIOML) sector. Maover, web stan-
dards such as Web Services use XML for communicating wientdi or among
each other. Because of its widespread use and the large ssrafuhata that are
represented in XML, the necessity arises for efficiently agang and storing XML
data. This need led the major commercial database systetorsefi.e. [8, 77, 92])
as well as many open source projects (e.g. eXist, MonetDES®N) to integrate

1

2 CHAPTER 1. INTRODUCTION

XML support in their systems.

In order to query XML data, XPath [25] and XQuery [38] havehdeveloped.
Both are declarative query languages and, hence, can bé&oefitpowerful op-
timizations. For instance, they could be evaluated usinglgebraic framework.
However, in general, the existing approaches are not tjrattizable for XML
guery processing. There are two main reasons for this: (&)rilismatch between
the relational model and the tree-based data model of XML(2pthe order indif-
ference of relations in contrast to XML, which takes the oraflenodes within an
XML document into account. The goal of this thesis is twofold

The first goal is to overcome the above-mentioned misfits oflodvery pro-
cessing, making it ready for industrial-strength settirgsecifically, we develop an
algebraic framework that is designed for the evaluationBath and XQuery. With
this framework, we want to contribute to the developmentfbient evaluation
techniques for these query languages. To this end, we defioslar-aware logical
algebra and a translation of XPath into this algebra. Bas¢teresulting algebraic
expressions, we present rewrites, for example, to unnegtt&XPath and XQuery
expressions. We validate each of our techniques with anrempetal evaluation,
comparing our approaches against several existing systems

The second goal is to investigate rewriting techniques éréhational context.
To this end, we present rewrites based on algebraic eqgaon@dahat unnest nested
SQL queries with disjunctions. Nested queries with disjioms seem to become
more and more relevant in practice (cf. [105]). To the bestwfknowledge, there
does not exist a solution to unnest these kinds of subqusoidar. To proof the
effectiveness of our rewrites, we present an extensiv@padnce study that com-
pares our approach against the canonical approach (whéchss® be common in
practice) and three major commercial database systems.

The detailed contributions together with the outline o§tthesis are described
in the following subsection.

1.2 Contributions

1.2.1 Algebraic XPath Evaluation

In Chapter 2 of this thesis, we present a complete algebppimach for evaluating
XPath 1.0'. We present a logical algebra that is capable of evaluating XPath
and develop a complete translation function into this alge@lthough this trans-
lation results in a rather naive way of evaluating XPath,dgeelop a technique
to remedy the exponential runtime behavior (of the naiauation) that has been
identified by Gottlob et al. [47]. At the end, we complemerd thgical algebra
with a physical algebra and describe the implementatioimede operators in the

In the remainder of this thesis, we always use XPath whemgbout XPath 1.0 [25].

1.2. CONTRIBUTIONS 3

runtime system of the native XML database management syiS&gm [40]. Us-
ing the Natix physical algebra, we present an experimentgalysto validate our
approach. The logical algebra, the translation of XPath this algebra, as well
as the presentation and evaluation of the physical algebralso be found in the
following two publications.

[11] Matthias Brantner. Algebraische Auswertung von XPath itixNaMasters
thesis, University of Mannheim, Mannheim, Germany, Mar6@4£ (in Ger-
man).

[12] Matthias Brantner, Sven Helmer, Carl-Christian Kanne,@oitlo Moerkotte.
Full-fledged algebraic XPath processing in Natix. In ICDBges 705-716,
2005.

1.2.2 Unnesting XPath Expressions

Based on our full-fledged algebraic XPath approach, we dpv@btimization tech-
niques that target further shortcomings of the naive aqgraon Chapter 3. There-
fore, we classify nested XPath expressions, and, for eads,clve present opti-
mizations in the form of algebraic equivalences. They haywessions resulting
from our naive translation (see previous subsection) etett-hand side and an op-
timized counterpart on the right-hand side. Primarily, ight-hand side employs
unnesting strategies that are already known from the cowote®QL (e.g. [70]),
OQL (e.g. [29]), and lately XQuery (e.g. [82]). Parts of thegented techniques
have already been presented in the following poster paper.

[17] Matthias Brantner, Carl-Christian Kanne, Guido Moerkaodied Sven Helmer.
Algebraic optimization of nested XPath expressions. In EC[Ppage 128.
IEEE Computer Society,

1.2.3 Disjunctive Unnesting for XPath

The techniques mentioned in the previous subsection ars atip to unnest nested
XPath expressions. However, in a second step, we take umgpeésthniques a
step forward. Specifically, we present unnesting techrsdbat are not limited to
nested queries occurring in conjunctions but are also ¢apannest disjunctive
gueries (see Chapter 4). So far, we are not aware of any tpehio unnest nested
gueries in the presence of disjunctions. Our techniquesioapnly be exploited
for unnesting XPath but can also be applied to nested XQuey@Rs that occur
disjunctively. The results presented in Chapter 4 haveadlyréeen published in a
workshop paper and a technical report.

[13] Matthias Brantner, Sven Helmer, Carl-Christian Kanne,@uoitlo Moerkotte.
Kappa-join: Efficient execution of existential quantificat in XML query

4 CHAPTER 1. INTRODUCTION

languages. In XSym, volume 4156 of Lecture Notes in Comp8teence,
pages 1-15. Springer, 2006.

[14] Matthias Brantner, Sven Helmer, Carl-Christian Kanne,@unatlo Moerkotte.
Kappa-join: Efficient execution of existential quantificat in XML query
languages. Technical Report, University of Mannheim, 2006

1.2.4 Disjunctive Unnesting for SQL

Encouraged by the results we achieved by unnesting disyencésted XPath and
XQuery queries, we diverge from optimizing the executiorX®ath and XQuery.

In Chapter 5, we present algebraic unnesting techniqueS@dr queries that oc-
cur disjunctively. We found this extremely useful becau§d $ueries containing

nested queries with disjunctions seem to become more arglnglerant in practice
(cf. [36, 105]). We have already published the unnestingafes nested queries in
a conference paper [19] and the unnesting of both scalaradotel $ubqueries in a
technical report [18].

[19] Matthias Brantner, Norman May, and Guido Moerkotte. Unngsscalar
SQL queries in the presence of disjunction. In ICDE, page$862007.

[18] Matthias Brantner, Norman May, and Guido Moerkotte. UningsSQL que-
ries in the presence of disjunction. Technical report, Ersity of Mannheim,
March 2006.

1.2.5 Preparing XQuery for Plan Generation

After our excursion into the relational world, we are backhaXML in the last
Chapter 6. In this chapter, we investigate rewrites thatgmetQuery FLWOR
blocks. These rewrites are useful to support plan genexafan generators gener-
ate optimal plans only for a single query block. Hence, biggeery blocks usually
imply a bigger search space for a plan generator and bettey guecution plans are
possible. The rewrite toolkit developed has already bedrighed in a workshop
paper and, an extended version, in the according techmpatt.

[16] Matthias Brantner, Carl-Christian Kanne, and Guido Mo#gadLet a Single
FLWOR Bloom (to improve XQuery plan generation). In XSym,chee
Notes in Computer Science. Springer, 2007.

[15] Matthias Brantner, Carl-Christian Kanne, and Guido Mo#gadLet a Single
FLWOR Bloom. Technical report, University of Mannheim, 200

In the last chapter (Chapter 7), we conclude this thesis arecbg outlook onto
future work.

Chapter 2

Algebraic XPath Processing

The efficient processing of XML data hinges on fast evalumatechniques for
XPath expressions, because XPath is an essential part efywaded XML pro-
cessing languages like XSLT and XQuery. We present the braptete translation
of XPath into an algebra.

Such a translation of XPath expressions into algebraicesgmns (1) renders
possible algebraic optimization approaches as found it modern query optimiz-
ers, and (2) facilitates the application of iterator-bagegelined query execution
engines that scale well to large data volumes and have pritsnperformance
e.g. in relational systems. For the same reasons, algelsedbXQuery evaluation
is attractive, requiring algebra-based XPath evaluatsoareessential ingredient.

The main contributions of this chapter are:

e We introduce an algebra capable of expressimgXPath query

¢ We show exactlyhow all XPath constructs can be translated into algebraic
expressions

These contributions are not intended to be purely the@latxercises. To show
their usefulness in implementing XPath evaluators, we disouss our compiler
and algebra implementation, and give some performancésesu

In our approach we translate XPath 1.0 expressiints a logical algebra work-
ing onordered tuple sequence¥he main task here is to avoid unnecessary work
by eliminating duplicatesn intermediate results or memoizing already computed
results (such as location steps or predicates) if duplielt@nation is not imme-
diately possible due to the semantics of XPath predicatass i$ very important,
as the presence of duplicates may lead to an exponentiaimen {48, 47, 46].
Another important point we cover is the efficient evaluatdpredicates in XPath.
We pay particular attention foosition-based predicatassingposition()or last().

We will only write XPath in the following, always meaning XiRal.0 except when explicitly
stated otherwise.

6 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

For query execution, we use the physical algebra of our @&ML database
system Natix [40]. It implements the operators of the logdgebra in an iterator-
based fashion [49]. We do not need to construct a complete mamory represen-
tation of an XML document in order to evaluate XPath expa@ssi Our approach
directly accesses the physical storage layout of the XMLudwents on disk. Fi-
nally, our XPath evaluator is implemented in a modular wélgyang the integra-
tion of several different optimization techniques.

The remainder of this chapter is organized as follows: In 8elg we summa-
rize the XPath semantics and introduce our logical algeBes. 2.2 describes the
canonical translation of XPath expressions into our algedmd Sec. 2.3 shows how
to avoid an exponential run-time of the queries. Implemtmtadetails concerning
our physical algebra are given in Sec. 2.4. In Sec. 2.5, mnediry performance
results show that even without further optimization, oupra@ach compares favor-
ably to main-memory based evaluators, and scales bettarge ocument sizes.
Sec. 2.7 summarizes the contributions of this chapter.

2.1 Translation Input and Output

This section explains domain and range of our translationtfan: We give a brief
summary of XPath expression semantics and introduce ouwrdglgebra.

2.1.1 XPath Semantics

The primary syntactic construct in XPath is an expressiorheklVevaluating an
expression, the result has one of the following four bagiesy a node-set (an un-
ordered collection of nodes without duplicates), a booledue (‘true’ or 'false’), a
number (a floating-point number), or a string (a sequencéarfacters). The eval-
uation of an expression considers a context, which consiishke following: a node
(also called the context node), a pair of non-negative arefhe context position
and context size), a set of variable bindings (a map fromabéginames to values),
a function library, and a set of namespace declarations.

Please note that in XPath 1.0, the node-sets themselvesardened. How-
ever, there exists the notion of document order, totallyeordg) all nodes of a doc-
ument. Document order is relevant in the evaluation of loocasteps, but not in
the representation of node-sets. Hence, we do not alwaysinetsult sequences in
document order. For XPath 2.0 (and integration into XQuefyprdered results are
required, additional sorting is sometimes [59] necessary.

2.1.2 Logical Algebra

Before going into the details of the translation, we havedfing the target algebra
and some associated notions.

2.1. TRANSLATION INPUT AND OUTPUT 7

Universe

The universe of our algebra is the union of the domains of tbm@& XPath types
(string, nunber, bool ean)and the set of ordered sequences of tifples
A tuple is a mapping from a set of attributes to values. Wenatllested tuples,
i.e. the value of an attribute may be a sequence of tuplesiditian to sequences,
attribute values may be document nodes or values of the eaRath types.

Conventions

Before defining the main algebra operators below, we inttedbe notations used
in their definition and in the description of the translatmocess:

The set of attributes defined for a tuples written asA(t). All the tuplest € e
of a sequence-valued expressiohave the same attribute4(¢), which are also
denoted asA(e). The set of free variables of an expressida defined asF(e).

Single tuples are constructed by using the stanfaldackets. The concatena-
tion of tuples and functions is denoted by

The projection of a tuple on a set of attributéss denoted by,. We also define
tlz := tlawy\ a. For brevity reasons, we identify a tuple containing a stragtribute
with the value of that attribute.

For an expressioa possibly containing free variables, and a tuple/e denote
by e(t) the result of evaluating, where bindings of free variables are taken from
attribute bindings provided by Of course this require®(e) C A(¢). In general,
accesses to identifiers are resolved by lookup in the tupley mapping can be
found, the tuples of the surrounding algebra expressianstacked successively.
Ultimately, the free variables of the complete expressionst be bound by a top-
level map supplied as execution context for the expressibms top-level map also
has to provide bindings for XPath variables and the conteserfor the execution.

For sequences, we usea(e) to denote the first element of a sequence. We
identify single element sequences and elements. The émctretrieves the tall
of a sequence, and concatenates two sequences. We denote the empty sequence
by e. As a first application, we construct from a sequence of nptetvalues a
sequence of tuples denoted djy]. It is empty ife is empty. Otherwise;[a] = [a :
a(e)] @ 7(e)[al.

By id we denote the identity function.

Operators

The main operators of our algebra are sequence-valuedganafdraditional re-
lational algebra operators. An overview of the formal défoms of the sequence-
valued operators is given in Fig. 2.1. More detailed comsabbut the operators

2We use ordered sequences instead of node-sets since peeslighiation (withposition() and
last()) and embedding of XPath into other languages is sensititfeetorder of the returned nodes.

8 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

Selection selects qualifying tuples according to predipat
_ [ale)@ay(r(e)) if plale))
o ople) = { o, ((e)) else
Projection projects on attributes i (duplicate elimination version calldd?,

duplicate elimination without projection denoted iy,
attribute renaming version denoted By .,):

11 IA(e) == ae)|a ® a(r(e))
My.a(e) :=ale)|gold : al ®I4(7(e))

Map extends each tuptgin e; with attributea with value ofes (t;):
X Xazes (€1) := a(€1)] attr(er)\{a} © [0 : €2(a(€1))] & Xaen (T(€1))
Product connects single tupleto each tuple ires:
X t1§62 = (tl o Oé(eg)) 5>} (t1Y7’(€2))
Cross product connects all tupleseinto all in es:
X e1xes = (aeq)Xez) @ (1(e1)Xez)
D-join joins each tuplé; in e, to all tuples ine,, which depend on;:
<>, e1 <eg>:= afe)Xes(aler)) ® T(er) <eg>
Semi-join p checks for tuple existence &3 to decide on including tuple iey:
X v a(er) @ (t(e1)Xpez) if Iz € e2 p(afer) o x)
p 7(e1)Xpes else
Unnesting unnests a sequence-valued nested attribute:
v ng(e) = (a(e)[pxale).g) & py(7(e))

Unnest-Map abbreviated notation for a map operator foltbimean

unnest operaton):
Y Taces (€1) = 11 (Xyresfal (1))
Binary Grouping Adds te; an attribute based on aggregatiornegf

€1 g A104;f €2 1= fe1) o [g 1 Glaler))] ® (T(€1)9g; 410455 €2)
G(z) := f(oa|s 0a5(€2))

Aggregation Aggregates input sequence into a singletoneseg with a
single attributes:

a Auise) == {la: f(e)]}
Sorting Sorts input sequence based on attribute
SO/r-t Sorta(e) — Sorta(0a<a(e).a(7—(€))) S5 O‘(e)@

Sorta(o—aza(e).a(T(e)))
Singleton Scan Returns singleton sequence consisting a@tipty tuple:
O 0:=A{[]}

Figure 2.1: Sequence-valued operators of the target agebr

and their usage is embedded in the description of our traoslarocess in the
remainder of the chapter.

Except if explicitly stated otherwise, unary operatorsjuees if their input ise,
and binary operators produedf their left input ise. The d-join has two notations,

2.2. TRANSLATION INTO ALGEBRA 9

one to be used in visualizations of query treey\Which designates the side that
provides tuples as input to the other side using a filled glianThe second repre-
sentation is used for textual expressions where the depéstke is parenthesized
(<>).

In addition, our target algebra provides counterpartsifoctions (e.g. contains)
and operators (e.gr, *, /, =) defined on the XPath basic types, including explicit
and implicit conversions. For those functions that haveenssels as inputs (e.g.
count), their algebraic counterpart has sequence-vahyad.i Note that for some
XPath functions and operators, special translation ruleggaven in Sec. 2.2 (in
particular node-set comparison, see Sec. 2.2.6). Thes@idus or operators have
no direct equivalent in our algebra.

2.2 Translation into Algebra

In a first translation step, we decide for each expression@img onto algebraic
operators. In a second step (see Sec. 2.3), we enhancertbiatie to avoid ex-
ponential complexity of the evaluation process. The dpson of our translation
process follows loosely the XPath grammar as found in the W&®©mmenda-
tion [25].

When translating XPath into our algebra, we denote the llmdos of an ex-
pressiore by 7[e]. The result of our translation function is an algebraic espion
which may or may not be sequence-valued.

2.2.1 Location Paths

The most important construct in XPath is a location path.ation paths are applied
to context nodes and produce as a result a node-set (Sel. 2.1.

We have to distinguish between absolute and relative locgtaths. Arabso-
lute pathstarts at the root element of an XML documentrefative pathcan start
at an arbitrary context node. After that, both location patfe handled in the same
manner.

The starting context node for a location path is provided H®y tariablecn.
Note that for top-level location paths; is free and must be bound by the execution
context; this is the mechanism for the execution engineduige the initial context
node.

Canonical Translation

A path expressiomr = 1 /s1/ ... /sn—1/, consists of a sequence of location steps
(denoted by;).

For the moment, we assume thagtarts with a partial expressian, consisting
of the first location step af, possibly prefixed by an initigl. We take a closer look

10 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

HD
-
T g \N
(1) AN
T(Sl) /N
T(SQ) \\
X
7N

T (Sn-1) 7T (sn)
Figure 2.2: Canonical translation

at; when distinguishing absolute from relative paths belowe Tdividual steps
are evaluated sequentially, i.e. the output of a locatiep stserves as the context
for the following steps; ;.

We translate a path expression into a chain of dependemy (dijoins). In a
d-join, the free variables in the expression on the rightehside are bound with
values supplied from a tuple generated by the expressiohelett-hand side. We
use this mechanism of a d-join to hand over the context fromloocation step to
the next, one node at a time. The independent (left) subssioe of the d-join
enumerates the context nodes from the previous step. Tlemdept subexpression
of the d-join has the current step’s context node as a fre@ablar Hence, each
evaluation of the dependent subexpression correspondsetcesult context of the
location step.

We call a translation into d-joins tleanonical translatiorof

Tr] :=10° (T[] <T[s1]> ... <T[s5,]>)

We always want then attribute in a tuple sequence to contain the node attribute
that was last added to the tuple. This makes it easy to treaequence-valued
algebraic expressions uniformly.

We also have to add a projection operator that eliminateSahtes, as by def-
inition the result of an XPath expression may not contain duglicates (see also
2.1.1). The duplicate elimination only operates on thevieié context node at-
tribute cn of the tuple, without projecting away the remaining atttéss Fig. 2.2
shows a graphical representation of the translated express

Absolute and Relative Paths

The initial context of a location path depends on whetherain absolute or relative
path, i.e. whether, is prefixed by a slash or not. For absolute location paths,@ ma

2.2. TRANSLATION INTO ALGEBRA 11

operator is used supplying the input context nedéor the first location step; :
T[ﬂ—] = HD(ch:root(cn)(D) <T[$1] > ... < T[Sn] >)

In the following, we abbreviate the algebraic expressign..(d) by Oey.cp. It
takes as input the free variahle and creates a sequence containing a single tuple
with a single attributen’ containing the value afn. This shortcut is calledontext
scan

T[W] = HD(Dcn:root(cn) <T[51] > <T[Sn] >)

For relative location paths, the map operator can be omitésdusen is al-
ready bound to the context in whiehhas to be evaluated.

Unions

The union of path expressions,(m.| . .. |w,) is translated into a series of concate-
nation operators followed by a duplicate elimination:

Tm|mal ... |m) = HD(T[m] ST [me) ®... 0T [m,))

Note that the translation of; already bindsn to the produced context node.

2.2.2 Location Steps

A location step consists of three parts: an axis (which $igscthe relationship
between the result set of nodes and the context node), a asd@vhich specifies
the node type and name of the selected nodes), and an grbimraber of predicates
(which use additional expressions to further refine the tselected nodes). We
will look at predicates in more detail in the following sext| here we address axes
and node tests. So for the moment, a step defined by an axig; and a node test
t;, 1.e. is of the formu, :: ¢;

We translate the evaluation of a location step with the hegmauxiliary trans-
lation functionWw:

Tla; = t;] == ¥[a; :: t;] © Oenrecn,

where the actual translation of the location step uses aestrmap operator as
follows:

\I/[ai i tz] = HW o Tcn:cn’/ai:sti

The unnest map operator takes as input and creates bindings for the new
context attributen. It is successively bound to the results produced by evialgiat
axis a and node test with contextcn’. At the end, the old context node’ is
discarded usingl_;.

12 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

We explain in Sec. 2.4.2 how the evaluation of the subsaiperformed. Here,
it is sufficient to note that the result sequence is in the @ropder for the specified
axis.

For two neighboring location steps, e.g. in the absolutation path/a; :
t1/as :: ty, it can be seen quite nicely that the result of the locatiep st :: ¢; is
used during the evaluation of location step: t,:

HD((Dcn:root(cn)) < HCT o Tcn:cn’/alzztl (Dcn’:cn) >< HCT o Tcnscn’/agsstg (Dcn’:cn) >)

Example As an example, consider the XPath expresdidist udent / nane,
which will be used (and extended) to illustrate problems swldtions throughout
this thesis. In XPath,/ st udent is an abbreviation for the two consecutive loca-
tion stepy descendant : : node()/chi |l d: : student. Translating the full
expression yields:

7 [/ /student /name| = HD((Dmmot(m))
<II7 0 Teniens /descendant:mode() (Benicn) >
<IIz7 0 Yeniens fchild:istudent (Oensien) >
<170 Tenien’ fchild:mame (Tenzen) >)

2.2.3 Predicates

A location steps; may contain an arbitrary numbér of predicatesy, and has
the general formu; :: t;[p1]...[pn]. The pattern for translating a location step
a; : ti[p1] . . . [pn] with predicates is

Plpp) oo ®[p1) o Tla; = 4],

where® is an auxiliary translation function for predicates, retag a filtering
functor which operates on algebraic expressions. We novwoedée ond.

An individual predicate is represented as conjunction of several clauggs
i.e.pp = /\T:’“1 l;. Depending on whether or not the conjuncts contain function
calls to the position-based functiopssition() andlast(), we have to translate

them differently.

Simple Clauses & Nested Paths

Translating a predicai®, = lx1 A - - - Alim, that does not include positional clauses
simply results in a translation into selection operators:

Ollpr A -+ ANlim,] := o1, © -+ 0 O

2.2. TRANSLATION INTO ALGEBRA 13

After the semantic analysis, all clauses are broken dovnfintction calls:l;; =
fio---o f.. For exampleor , not , and comparisons are all evaluated by function
calls. All implicit conversions have also been added astioncalls. We cover the
translation of these calls in Sec. 2.2.6.

If a nested path is not used inside an aggregate functiomrahslation will add
a conversion to boolean in the form of our interaaists() aggregate function (see
also Sec. 2.2.6).

Example To illustrate the translation of an XPath expression comagi a nested
path, let us extend our example to selecting only studemtisttdok at least one
exam:/ / st undent [exan] / nane.

T[//student[exam]/name] = TI”((Densroot(en))

< HW o Tcn:cn’/descendant::node() (Dcn’:cn) >
<0 o
gz,emists() (DmmoTcn:cn’/child::exam(l:lcn’:cn)>)

HCW © Tcn:cn’/child::student (Dcn/:cn) >
< HW o Tcn:cn’/child:sname(Dcn/:cn) >)

In this example, the value of the attributds t r ue if there exists at least one
exam for a given student arical se otherwise. The selection operator checks this
attribute, i.e. it compares with t r ue.

Clauses withposition()

If at least one of the clauses jin containsposition() (but none of them contains
last()), we have to count the number of context nodes that are peadud/e do

this with the help of a map operator that labels the tupleb@fésulting nodes with
their appropriate position within the current context r@atucing a new attribute

cp):

Olky A==+ ANy] = 0T (11,1 © ++ © OT[133] © Xepreounter(py) +-+

Calls toposition() are then translated into attribute accesse®10

T [position()] := ¢p

Example For selecting only the first student, our algebra expressiaa follows:

14 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

7[//student[1] /name| = HD((Dcn:Toot(cn))
<II7 0 Tenient /descendant:node() (Tentien) >
< Ocp=1 © Xep:counter(p1)++ ©
17 © Yenient fehild:student (Denzen) >
<Il70 Tcn:cn’/child::name(Dcn/:cn) >)

Clauses withlast()

The most difficult case are clauses that contait(). Here we have to compute
the context size to be able to evaluate the clause. We do ikistiae help of
our newT'mp operator that first materializes the context and then addstext
size attribute:s to all the tuples belonging to the current context. In theocacal
translation, the context is exactly the result of the depaenhdubexpression of the
current location step. Hence, on a logical leVehp is just shorthand fdr

Tmpcs(e) = gcs;count(e)ge
This leads to the translation of a predicate relying on faBigonal information as

Pllir A Nlgmy] = 0771410+ + © 07(110) © TMP © Xepicounter(pp) ++

with
Tlast()] :=cs

2.2.4 Filter Expressions

XPath allows to filter any expression of type node-set usirggligates. As with
location path predicates, we use a different translatiocase there are position-
based clauses.

Without Position-Based Predicates

If the predicate9; in the filter expression[p,] . . . [p,] do not contairposition() or
last(), we have as translation:

T le[p1] ... [pn]] == ®lpn] o+ 0 ®[p1] 0 Te]

Note that the sequence-valuedlready hagn bound to the correct node, so we do
not need to add a map operator.

3We explain in Sec. 2.4.2 how to impleméhinp®* efficiently.

2.2. TRANSLATION INTO ALGEBRA 15

With Position-Based Predicates

Position-based predicates in filter expressions are eilwéth respect to the child
axis, i.e. in document order. In location step predicates,ihput sequence (the
context) always results from a single location step andcégis properly ordered.
In filter expressions, the input sequence may contain atrarpnode sequence. To
make the counting mechanisms from Sec. 2.2.3 work for fikpressions, we must
guarantee that the input sequence is in document order.e-esmcintroduce a sort
operator which establishes document order before evatytite predicatés So, if
there is any predicate; in the filter expression|p,] . . . [ps] containingposition()
or last(), its translation is

T lelps]. - - [pa]] := @lpn) o - - 0 ®[p1] 0 Sorten(Te])

2.2.5 Path Expressions

Path Expressions are a more general form of relative latgiadhs. They comprise
a node-set expressierand a relative location path All the nodes in the node-set
are used as context nodes for the location path, and a untbe césults is returned.

Our translation of path expressions uses a d-join to feedaks frome as
context nodes to the relative location path:

Tle/n] := IP(T[e] <T[r]>)

The duplicate elimination operator is required since thaweation ofr for several
context nodes may introduce duplicates, just as in locataihs.

Note that the tuple sequence franias an attributen containing the nodes it
provides.

2.2.6 Function Calls

We distinguish between simple function calls, node-ssetaunction calls and
node-set-valued function calls. Simple function calls @raracterized by the fact
that they neither get node-sets as parameters nor retusigedd, while node-set-
based function calls have node-sets as parameters and setyle values. Node-
set-valued function calls may return node-sets.

Simple Functions

Examples for simple functions in XPath are functions to dé#i strings, numbers,
or Boolean values (e.gstri ng-1ength, floor,ceiling,true,false,

4The input sequence may already be in document order, for geabecause it resulted from
a location path that returned a sorted result[59]. We déferdetermination of interesting orders
in XPath and the resulting optimization of sort operaticas we are primarily concerned with a
complete translation, but not an optimized one yet.

16 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

etc.). They are mostly used as subscripts of algebraic tgrerd ranslating simple
functions is quite straightforward (is translated into its algebra counterpart):

T(fler,...,en)]:= f(Tlex],..., Tlen])

Node-Set-Based Functions

We classify the node-set-based function calls further aggregate functions and
comparison operators between two node-sets.idfan aggregate function (sum or
count in XPath), we translate it into the corresponding eggte operatd®; of our
algebra.@, aggregates the tuples of the input node-set applying thetibm/ and
returns a tuple containing the answer. kdte a node-set value, then

Tf(e)] = Fay(Tle]) (2.1)

Our aggregation operat& formally has sequence-valued inpand output.
However, here we use it according to our conventions (Sdc2Pas an atomic
value. We explain in Sec. 2.4.2 how this conversion is aljtualplemented.

For the comparison operators on node-sets, it is impodmtdw that they have
an existential semantics. That is, if we can find two elemémte in each node-
set) that satisfy the condition, the comparison operatirms true. To implement
this, we have the additional internal aggregation fundiarists(), max() and
min(). exists() is boolean-valued and returns false for empty sequencetaad
otherwise.mazx,() andmin,() return the maximum or minimum of an attribute
in a tuple sequence, where for node attributes, each nodertas converted to a
number by means of theumber() function.

For (in)equality, we have

7[61962] = gx;exists()(T[el]Kcn@cn/ch’:cn(T[eﬂ)) (22)

with 6 € {=, #}.
Ford € {<, <} (recall that the nodes produced by sequence-valyede as-
signed to attributen):

7[61662] = g$;easists() (J T[el]) (23)

Cnagmaxcn (Tlea))

Finally, for6 € {>,>}:

7[61062] = gx;exists() (Jcngg 7[61]) (24)

minen (Teg])

2.3. IMPROVED TRANSLATION 17

Example For selecting good students, i.e. those with an exam thatgnaded
better than 'B’, let us translate the following XPath query
/' student [exam nation/ @d = //exan{fgrade < 'B']/ @d].

T[p] = HD((Dcn:Toot(cn))
< HW © Tcn:cn’/descendant::node() (Dcn/:cn) >

<nggemsm()('T[examination/@id]K /I, (T[//exam[...]/@id]))o

cn=cn cn'ien

HW o Tcn:cn’/child::student(Dcn/:cn) >

To anticipate, these translation equations are labeleausecthey are on target
for our new optimizations described in Chapters 3 and 4.

Node-Set-Valued Functions

The only node-set-valued function in XPath 1.0d$). We translated() by first
converting the input into a sequence of IDs. Then, the iddial IDs are derefer-
enced using a dereference function which converts a sifig#tring into a nodé.
The result is a sequence-valued expression with the resdésassigned to:.
The input conversion depends on whether the input is of tgge set or not.
For a node set input, we just convert the nodes to strings:

T[Zd(e)] = ch:deref(strmg(c’)) (Hc’:cn (T [6]))

In the case of aawhich is not of type node-set, we convetb a string and use
unnest map with a tokenizing function to return the sequefi@nbedded string
tokens:

T[Zd(e)] ‘= Xen:deref(t) (Tt:tok:enize(string(']'[e])) (D))

2.2.7 Constants and Variables

Constants and variables are very easy to translate intolgeira. For the transla-
tion of a constant we have7 [c] = ¢. This means that, the expression is left as is
and no algebraic operator is necessary to process it. The applies to XPath $
variables, as they are bound to values before evaluatingssions.

2.3 Improved Translation

After presenting the canonical translation into the algelare go into some details
on how to improve the translation step. In particular, Gdet al. have shown how

SWe do not elaborate on the implementationdef-ef() here, as it depends too much on the
details of the storage environment.

18 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

XPath expressions can be evaluated in polynomial time imtbrst case [46, 47].
In this section, we reveal how this can be done in an algeasadapproach.

2.3.1 Pushing Duplicate Elimination

We divide all location steps into two different groups: ohattpotentially produces
duplicates ppd) and one that does notfpd). Axes that belong to ppd are:

e fol | ow ng,

fol |l ow ng-si bling,
e precedi ng,

e precedi ng-sibling,
e parent,

e ancestor,

e ancestor-or-self,

e descendant, and

e descendant - or-sel f.

Instead of such a simple axis-wise treatment, we could puate the work by
Hidders et al. for determining if a sequence of locationsteftl produce duplicates
or not [59]. We skip this because it does not affect asymgabtomplexity and is
straightforward to implement.

The canonical translation eliminates duplicates only imalfstep to preserve
the duplicate-free semantics of XPath location paths. NHeweluplicates may be
generated after every single step. The single final duglielnination means that
the effect of producing duplicates in several intermedsé@s will multiply, as we
generate duplicates of duplicates.

Hence, we introduce additional duplicate eliminationggipd axes. This re-
duces the input size of the following steps. Also, the dgtécelimination works
on smaller data sets. For the translation of a location pgth :: ¢ with a steps
comprised of axig and node tedt, this means:

o P (T [mo] <Tla = t]>) if ppd(s)
T[?To/a i t] = { T[?TO] <T[z :: t]> - eI]sgé)

2.3. IMPROVED TRANSLATION 19

cn:root(cn) Tcn:cn//ag::tg

HDI

cn/:en

a

Tcn:cn//aQ::tQ
|
ch’:cn
|

Tcn:cn’/al::tl
|

cn/:cn

O
Figure 2.3: Stacked translation fod; :: t;/ay :: t3/as = t3 With ppd(as :: ts)

2.3.2 Location Paths

When improving on the translation of location paths, we h@vdistinguish be-
tween outer and inner paths. Amner pathappears within a predicate, auter
pathdoes not. We discern between these two cases because wartsaty outer
paths in a more efficient way, deviating from the canonicgid-translation. For
inner location paths, we run the risk of having to evaluafgessions multiple times
for the same context node. We avoid this by memoizing alreadiuated paths.

Outer Paths

For outer location paths, we concatenate the evaluatioheosteps, avoiding the
overhead of a d-join operator. We replace the singletonisdtie dependent branch
with the left subexpression of the d-join. For an outer path we get the following
stacked translation

L S D (Wla s (T [x]) if ppd(a)
Tlrfa: 1] '—{ Moo (Wla = 4](T[x])) else.

whereppd(a) means that location stepwith axisa potentially produces dupli-
cates. The context nodes are now directly handed over from step to step instead
of using a d-join to explicitly bind them. Fig. 2.3 shows arasple for the trans-
lation of path/a; :: t;/as :: ta/ag :: t3, using the stacked translationds :: ¢, is
potentially producing duplicates.

Inner Paths

When looking at inner location paths, we have to distinglistween relative and
absolute inner paths. felative inner pathgets its context from the corresponding
step of the outer path, absolute inner patisets its own context. The translation

20 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

of the actual inner path then takes place during the trdoslaf the predicate (see
also Section 2.2.3).

Absolute inner paths can be translated like outer pathdewe have to avoid
unnecessary work in relative inner paths as follows.

In the XPath expression

w[count./descendant ¢/following :: x) = 1000],

when evaluating the predicate for the context nodes pratibger, we may reach
the same: elements over and over again, computing and counting thesnpub-
duced by the¢ ol | owi ng axis multiple times.

For the location pathry[m /s], the inner path is translated @3] < 7[s| >
We want to avoid computing the right-hand side of the d-joivew getting handed
a context node from the left-hand side for whictvas already evaluated before.

In order to avoid this, we apply a memoization strategy usiMpmoX opera-
tor (). In contrast to the memoizing function call operator frdid], the MemoX
operator is aequence-valuaghary operator typically used in the dependent subex-
pression of a d-join. It is subscripted with a set of variabAich are free in its
producer expression.

Every time the MemoX operator is evaluated, it checks if thaables have
already been bound with these specific values in a prior atialu If not, the
MemoX operator evaluates the subexpression and storesgtk in an associative
data structure with the given variable values as key. Rindblso returns the result
to its consumer. If the same variable values have already bsed in an earlier
evaluation of the MemoX operator, it just looks up the pregiy computed result
and returns it without engaging the producer operator.

In the case of the translation of inner paths, the produceratpr is the next
location step, and the free variable is the current contegerfrom the previous
location step. So the translation of the inner path; actually looks like:

T[s] <T[m]|> if —=ppd(s) and—ppd(m)
IP(T[s] <Men(T[m])>) if ppd(s) and—ppd(m:)

T[s/m] = § O°(T[s] <T[m]>) if =ppd(s) andppd ()
I7(T [s] <My (T [m])>) if ppd(s) andppd()
T[] if 71 is empty

2.3.3 Predicate Evaluation
Predicates and Stacked Translation

In the canonical translation, all tuples produced on thitrgnd side of the d-join
for a given tuple on the left hand side belong to the same gon&b all contexts
are clearly separated from each other by separate evalgaifadependent d-join

2.3. IMPROVED TRANSLATION 21

subexpressions. This makes it easy to determine conteiigpoand context size
by counting the tuples in one complete evaluation of a depeinslibexpression.

In the stacked translation, all tuples belonging to a larastep are part of the
same tuple stream flowing through the pipeline of operailine. different contexts
are separated by the input context nodes; a new contextdedienever the input
context nodern changes. This requires a slightly different handling ofdgrate
evaluation.

Whenever an value different from the last processed tuple is detectedntap
performing the position count must reset its counter.

We also have to be careful when evaluating predicates of ¢atation paths
containingl ast . As we have already mentioned in Section 2.3.2, outer logati
paths are evaluated in a stack-based fashion. The“Tamgerator now has to be
able to recognize the boundaries of the contexts. For this tae define amg>
operator parameterized with the context node attribute

Tm pgr;z (6) = ewcs;cn:cn”;countncn” cn (6)

This operator performs the same taskasp® but does not aggregate the whole
input sequence. It only aggregates those tuples that wererged for the same
context noden.

When evaluating predicates, the new operator is used inaime svay as the
Tmp® operator in Sec. 2.2.3 but is parameterized with the inpotexd node as

Example Fig. 2.4 shows the graphical representation of a transi&iothe com-
plex XPath expressioh/ st udent [exam] [position() =l ast()]/nane
using stacked translation.

Avoiding Evaluation of Expensive Predicates

We classify the clausdsg; of a predicatey, into the sets

cheagp,) = {l; | lx; is cheap to evaluaje
expipr) = {l; | l; is expensive to evaluafe
pospr) = {lw; | lx; containgposition(),
but nol ast () }
lastpy) := {lx; | lr; containd ast () }

For classification into cheap() and exp(), a simple cost rhizdased which
considers the number of instructions that are necessamatoate a clause. For the
translation of a predicat®, = 1 . . . lgm, , this means

22 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

X
SN
Dcn:root(cn)]-—[l
Tcn:cn’/child::name
I

ch/:cn

Ocp=cs

Xep:counter(p2)++

y o
Tcnzcn’/chﬂd::student g$;e$ists()
I I
ch/:cn X
| N
Tcn:cn’/descendant::node() O Tcn:cn’/child: :exam
I I
Uens:en Uenen

Figure 2.4: Translation of / student[exzam|[position() = last()|/name

only forl ast

mat

(I)[pk] = 06$p(pk) © Ocheap(py)Nlast(py) © TmpCS ©

O cheap(py)\last(py) © z(cp:counter(pk)—i-t

only for pgs orl ast

Each expensive expressienin a clausel;; that is a member oéxp(py) is
replaced by a variable. We compute the value of with the help ofy,,.. opera-
tors. The operators memoize function evaluation resuttdai to the approach by
Hellerstein and Naughton [57]. In the translation abmg%t(pk) is an abbreviation
for this sequence of,,.; operators and the final selection.

In the above translatiory,mp* has to be replaced B¥mp® if the predicate
occurs in a stacked translation.

2.4 Implementation

2.4.1 Compiler

The translation was implemented as an XPath compiler madutieen in C++, tak-
ing XPath expressions as strings and generating an exaql#n for the NQE (see

2.4. IMPLEMENTATION 23

below). The compilation process comprises six stepsdistre with some of the
tasks they perform: (1) Parsing (generating an abstratcasyree (AST)) (2) Nor-
malization (classifies and sorts predicates as explaineékm 2.2.3 and 2.3.3)
(3) Semantic analysis (4) Rewrite (constant folding) (5an&lation into algebra
(6) Code generation (generate NQE execution plan). Theygsibanded from step
to step using a single data structure, starting out as an A8dhws annotated and
modified until it has become an algebraic expression. Thdtieg expression is
traversed by step (6), which returns an execution plan ifNIRE syntax. A detail
worth noting is that our translation includes a lot of map prajection operations,
particularly to guarantee that the context node attribsitaliays called:n, and
cn’ is projected away. The compiler does not emit actual copyatjpas in these
cases. Instead, an attribute manager which is part of th@itemensures that code
emitted for aliased attribute accesses uses the proper méocations directly.

2.4.2 Physical Algebra

The Query Execution Engine (NQE) of the Natix system impleta¢he logical al-
gebra from Sec. 2.1.2 in C++. Below, we focus on implemeortedispects relevant
for XPath. More details can be found in [40], [58], and [83].

Iterators

All the sequence-valued operators in our logical algebrg. (£.1) have a corre-
sponding implementation as aerator [49] in the physical algebra. Whenever
possible, they avoid to copy and/or materialize intermtediasults, passing them
by reference and/or in a pipelining fashion.

Natix Virtual Machine

The remaining (i.e. non-sequence valued) operators ofagicdl algebra are im-
plemented using assembler-like programs interpreteddoi#tix Virtual Machine
(NVM). XPath basic type functions and operators are evatliasing single NVM
commands or small command sequences.

Location step navigation and node tests are performed vi Mgmmands
that directly access the persistent representation ofdberdents in the Natix page
buffer, thus avoiding an expensive representation charigeiseparate main mem-
ory format. In the buffer, the XML documents are stored incxerable, updatable
form which does not require a fixed DTD. There are also NVM c@ands for ac-
cess to text node contents. However, we transcode the sgpade-saving string
encoding to UTF-16, which is the encoding used for strings\fM.

24 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

Nested Iterators

NVM programs are primarily used to evaluate non-sequeadaed subscripts of
iterators, and the NVM commands operate on tuples. Somstsukscripts also
need to evaluate XPath functions that have sequences &s amguto convert the
sequence-valued result of tAeoperator into an atomic value. The NVM provides
commands that can access results of nested iterators.

Context Size Operators

In Sec. 2.2.3 and Sec. 2.3.3, we introduced the special mpsanp* and7'mpS”,
which determine the context size and concatenate it to ghubtuples. The logical
definition of these operators requires the input sequenice tance for determining
the number of tuples, and once to return the actual resutitated by the size.

The actual implementation does not evaluate the input gbhigce. Instead,
each context is evaluated once and then materialized. Matettie input tuples
for Tmp¢® always contaircp, the position counter. Thep value of the final tuple
equals the context siz&, which is remembered. When delivering the result, the
materialized sequence is reread, addintp each tuple as it is returned.

Tmp® andT'mpg; only differ in how they determine the input context to mate-
rialize. Tmp® counts the complete input sequence, wilitep’ only materializes
those input tuples generated for the same input context.nblde materialization
stops when the input context node attributthanges (compare Sec. 2.3.3).

Actually, there is just one implementatidimpS’, which coversI'mp® as a
special case.

Smart Aggregation

The aggregation functions used®ware also implemented as small NVM programs.
The interface between tifeoperator and these programs allows to signal a prema-
ture end of the aggregation. For example, when evaluatinga#s() function, it

is not necessary to evaluate the complete argument sequéaone tuple is found,

the remaining input sequence may be ignored, andtbperator may returtv-ue.

2.5 Evaluation

Our ultimate goal in providing a complete algebraic transfais performance.
While we do not discuss advanced optimization techniquetheralgebraic level
in this chapter (see Chapters 3 and 4), another performatated aspect of the
algebraic approach is the fact that queries can be execugestialable way through
an iterator-based approach.

To verify that this goal has been met, we compared our impheaten against
some purely main-memory based XPath interpreters. We dhose freely avail-

2.5. EVALUATION 25

Number | Path

1 /child::xdoc/desc::*/anc::*/desc::+x/@d

2 [child::xdoc/desc::«/pre-sib::«/fol::+x/@d
3 /child::xdoc/desc::+/anc::*/anc::*/@d

4 /child::xdoc/child::*/par::+/desc::*x/@d

Figure 2.5: Queries against generated documents

able interpreters which support the complete XPath spatiic, including all axes,
namelyxsl t pr oc (libxslt 1.1.2) and Xalan 1.6.0.

We are aware that the following is not a comprehensive pedioce evaluation,
and that it leaves open a lot of questions. The measuremeluw lre intended to
give a proof-of-concept of our approach, and we gathereuh vy to make sure
that we are on the right track.

2.5.1 Environment

The environment used to perform the experiments consistadP@ with an Intel
Pentium 4 CPU at 2.80GHz and 1 GB of RAM, running Linux 2.6.4e Natix C++
library and the test executable were compiled with gcc 3tBatO2 optimization
level.

2.5.2 Results

Below, we list the time needed to compile and execute a quéymake them
comparable across the different evaluators, the times donotude the time to
parse/load the document. The measurements are averagestogeal runs.

Generated Documents

The documents on which the queries in Fig. 2.5 are executesl generated. They
differ in the number of elements, fanout and document deplie document gen-
erator follows a breadth first algorithm and fills every deptlthe document with

the given fanout until the maximum number of elements orhiepteached. The
root element of every document has the namdec. Every element contains an
attributei d which is consecutively numbered.

The concrete documents having between 2000-8000 elemenésgenerated
with a fanout of six and a depth of four. The documents havieigvben 10000-
80000 elements were generated with a fanout of ten and a défie.

The queries were obtained by systematically generatirngRdkh location paths
of length 3 with a node test checking for any element node @¢h step. There are
several typical patterns in the results, and we selecteglsaguieries as examples
for these patterns.

26 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

350

‘xsllproc J— x xéllproc —
450 | Xalan - Xalan -
Natix - 300 | Natix -~

o) o)
E 250 E
F F
200
150
100 .
*
50 y
0 N . " . Py S
0 10000 20000 30000 40000 50000 60000 70000 80000 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Element Nodes Element Nodes
(a) Results for path 1 (b) Results for path 2
50 T T 7 T T
xsltproc —— xsltproc ——
a5 L Xalan ---%-, | Xalan ------
Natix - - 6L Natix -~
40
35 - 5
30
o) z 4
g g
= = r
20 8
,)(/
15 - 2 -
10 -
1k
5r e
[A e Svessessit — e — 0
0 10000 20000 30000 40000 50000 60000 70000 80000 0

Element Nodes Element Nodes

(c) Results for path 3 (d) Results for path 4

Figure 2.6: Results for paths 1-4

Fig. 2.6(a)—Fig. 2.6(d) show the selected results. Witlymirhg into detail, we
observe (1) that we can keep up with the performance of the-mamory based
interpreters, (2) the high memory requirements sometiragsethe main-memory
interpreters to fail on large documents (this is the reas@ncurves sometimes
stop before reaching the end of the x-axis), and (3) the aatsin the asymptotic
behavior of the algebraic approach are promisingly small.

In some queries like the one in Fig. 2.6(d), one or both magmory evaluators
outperform Natix by a constant factor. Profiling NQE has jted us with hints on
how to lower this factor. Specifically, returning the quesgult in our implementa-
tion involves several unnecessary conversions and mentlogaions, caused by
unoptimized Unicode support. This points out some optitiongootential.

DBLP Data

Fig. 2.7 shows the execution times for queries executed onFDdata collected in
one big XML document [75]. This document has a size of 216 riBdas.

xsl t pr oc was not able to load the document, probably due to memory re-
guirements.

As above, the results are promising, as we can compete withi@memory-

2.6. RELATED WORK 27

based evaluation. For some queries (those below the heaidore in the center),
we are slower. Again, profiling points to engineering dstail NQE: output pro-
cessing and string management seem to be the cause. Heprplihem is even
worse than in the previous section, because the stringgepiation in NVM is

UTF-16, and we transcode the contents of the stored node&Jiff-16 for com-

parison. As a remedy, we plan to supply NVM with the abilityttanscode the
string constant from the query into the persistent encqodiegucing the compari-
son overhead (instead of tens of thousands of comparisons).

time[s]

Path Xalan | Natix
/dblp/articleftitle 6.50 | 3.97
/dblp/*/title 17.73 | 8.10
/dblp/article[position() = 3]/title 2451 | 151
/dblp/article[position()< 100]/title 25.22 | 1.55
/dblp/article[position() = last()]/title 23.99 | 2.22
/dblp/article[position()=last()-10]/title 24.32 | 2.31
/dblp/article/title/dblp/inproceedingsttitle 157.98| 14.23
/dblp/article[count(author)=4]/ @key 0.9 2.91
/dblp/article[year="1991"]/ @key

| /dblp/inproceedings[year="1991']/ @key 3.90 8.69
/dblp/*[author="Guido Moerkotte’]/@key 4.2 9.78
/dblp/inproceedings[@key="conf/er/LockemannM91il&i| 3.22 | 4.28
/dblp/inproceedings[author="Guido Moerkotte’]

[position()=last()]/title 4.59 6.71

Figure 2.7: Results (in sec.) of queries against DBLP

2.6 Related Work

The approaches for evaluating XPath can be divided intorakd#ferent cate-
gories:

First of all, we have (main-memory-based) interpreters. (€alan, XSLTProc).
Although most of them support the full XPath standard, thayehhigh memory
requirements and do not scale very well to large documents.

Second, many papers were published investigating theesffigvaluation of
individual location steps [2, 21, 58, 67]. For some locatsdeps, very efficient
operators have been developed, but a complete framewodufgporting the full
XPath standard still seems to be missing, e.g. there is noostfor nested expres-
sions or position-based predicates.

28 CHAPTER 2. ALGEBRAIC XPATH PROCESSING

Third, we have approaches relying on relational databa&ks52, 55, 103].
Here, the XML data is transformed and stored in relations.eri@s containing
XPath expressions are translated into SQL and processeg ts (possibly ex-
tended) engine of the underlying database system.

Fourth, there are other algebra-based approaches for &heagon of queries
over XML data [7, 64, 98], However, these approaches giveartstation function
for all of constructs of XPath, in particular the whole seagés.

Finally, there exist streaming-based approaches for atiaty XPath [34, 51,
66]. Some of these approaches are used for document fil{84n§1] using XPath.
Document filters do not require to retrieve the full resultred query, but only have
to make a binary decision if there exists at least one resulbd The approach
by Josifovski et al. [66] (called TurboXPath) is also usethi@ streaming context.
Hence, they have to buffer their input for evaluating spegfedicates or backward
axis. A discussion about memory requirements in the streguoontext is given
in [5]. TurboXPath follows a holistic approach, i.e. it usesingle operator for
evaluating XPath expressions. Moreover, their approaspesifically designed for
evaluating multiple XPath expressions (for example in aru¥@) in a single run
over the according input. However, because of following iskio approach, they
have limitations when it comes to advanced optimizatiohnéues (e.g. unnest-
ing) as described in the next chapter. TurboXPath is thedation for the XNav
operator used in DB2 [8].

Further, there are optimizations that are orthogonal toapproach and can
be integrated. Mathis et al. have shown how to integratecttral joins ([2])
into our algebraic approach and, amongst others, use theevébuating predi-
cates [78]. Moreover, there exist path rewriting techngs8, 90], schema-based
rewritings [9, 73], and equivalences that use propertigh@fintermediate results
to avoid duplicate elimination and sorting [59].

Goittlob et al. have shown that the presence of duplicatesglawvaluation may
lead to an exponential run-time [46, 47, 48]. Their bottopnapproach in [46]
computes all potential contexts to avoid an exponentialiman However, they
perform unnecessary computations. Their top-down appracot algebraic and
requires materialization of all intermediate results, aihive circumvent by using
our algebraic approach. Helmer et al. presented an apptoasieid the generation
of duplicates during evaluation [58]. Their approach if©yogonal to our approach
and can be integrated by modifying the translation funclowhocation steps. Diao
et al. developed a memoization approach for avoiding thepcation of equal or
shared XQuery expressions [35]. Their Memo Table is simdaour approach.
Specifically, it is a combination of our MemoX and MapMat aggers. The Map-
Mat operator is similar to the approach by Hellerstein anddtdon [57].

The binary grouping operator has been introduced in [291@8]. An analysis
and implementations for binary grouping can be found in [83]

2.7. CONCLUSION 29

2.7 Conclusion

In this chapter, we have explained how to translate XPathmiegiento algebraic
expressions. The proposed translation method covers thplete set of XPath
features including all axes, position-based predicatesten paths, filter expres-
sions, general path expressions, and node-set functions.

Apart from providing an effective translation as a first st@p were also con-
cerned with efficiency. In a second step, we extended ourlsiagproach, achiev-
ing polynomial worst-case complexity. To this end, we ipmyated the memoiza-
tion techniques pioneered by Gottlob et al. [47] in the coindé XPath interpreters.

We implemented an XPath compiler based on the conceptsediin this chap-
ter. A complementary iterator-based physical algebra wsad to evaluate the gen-
erated algebraic query plans. First measurements deratsgtat our approach is
viable.

Having established that an algebraic approach to XPathasoreble, we can
now turn to the next challenges. In the next two chapters, rgegnt algebraic
optimization techniques for optimizing XPath expressions

Chapter 3

Unnesting XPath Expressions

In the previous chapter, we presented a translation of Xidédhalgebraic expres-
sions. Our translation is complete and avoids the expoalemnintime behavior of
the naive evaluation (e.g. [47]). However, there are gtitit of shortcomings and,
hence, there is a lot of optimization potential. In this dieapwe illustrate these
shortcomings and present algebraic techniques to fix them.

Up to now, optimizing the evaluation of XPath addressed taduation of
chains of simple location steps (e.g. [2, 21, 54, 55, 66jashing-based approaches
for evaluating XPath (e.g. [34, 51, 66]), or techniques feoiding unnecessary
work (e.g. [47, 46, 58]). However, when used as a standalamgulage or within
XSLT, the expressions used to formulate queries can becaite gpmplex, con-
taining many predicates. Let us demonstrate this with a EaKipath query (called

Q1).

/] student[exanmi nati on/@d = //exan]grade< B']
[bel ongsto/ @ecture = //lecture[title="NCS]/ @d] Q1
[@d]/ nane

Q1 selects all students who have taken an exam in ‘NumericaipgDiter Sci-
ence’ (NCS) and have achieved a grade better than ‘B’. Tineenaterpretation
employs a strategy that evaluates the steps in order ofdbeinrence in the query.
Expressions within predicates are evaluated for evenytre§ihe corresponding
location step. In a first step, all students are selectedcfwban be quite a large
number). Then, for each student, we select the exams thatehgrade better than
‘B’ and belong to a lecture with the title NCS (the predicatecking for the lec-
tures is again nested). Obviously, evaluating the aboveyqoe nested fashion is
not very efficient. As we show, we can improve the performasigaificantly by
unnesting nested XPath expressions.

Therefore, the approach presented in this chapter is asv®llFirst, we give a
complete classification of nested XPath expressions aratinte six new algebraic
operators that are particularly useful for unnesting. 8dcbased on this classifi-
cation, we introduce novel rewrite and optimization tecjueis for each class. We

31

32 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

present them by means of algebraic equivalences that atlawmrtest nested alge-
braic expressions. The left-hand side of our equivaleregdts from the (canoni-
cal) translation introduced in the previous chapter. Hagsan algebraic approach
for unnesting has two basic advantages: (1) We can (paitialuse current op-
timization techniques (e.g. [29, 82]), and (2) we can supf@grous correctness
proofs for the equivalences (see Appendix A). Usually, ewrite techniques will
improve performance. However, contrary to the situationnnesting SQL, OQL,
or XQuery, there will be cases where performance is diffimitmprove by unnest-
ing. In these cases, we refer to [106] for optimizations. rdhwe validate our
techniques by presenting performance measurements shola@nimprovements
that are possible. This way, we also compare our approathseiteral other XPath
evaluators.

The remainder of this chapter is organized as follows. Im#hé section, we es-
tablish a classification scheme for nested XPath expressidter that, we present
six algebraic operators that we use for unnesting (see S&c. Bhe core of this
chapter is Section 3.3. It covers the actual optimizatiahnéues by means of
algebraic equivalences. For convenience, two figures coatbequivalences. In
Section 3.4, we show the effectiveness of our approach byaang it with other
approaches using example queries. Section 3.5 discusatire/ork. At the end
of this chapter, Section 3.6 summarizes our contributions.

3.1 XPath Expressions

First, we establish a classification of nested XPath exmess In later sections,
we develop optimization techniques for each of these ctaslsemore detail, the
outline of this section is as follows: In order to keep the emof classes low, we
first normalize XPath expressions. Then, we classify exgooes by two properties
of expressionsdependencyn the local context and expectessult cardinality
The expected result cardinality distinguishes betweenssgions returning a single
value and expressions that return a node-set. The forméuréiner subdivided into
those that contain an aggregate function as the top mosatmpeand those that
do not. The final step then consists of deriving the classifioaof nested binary
predicates. Since normalization turns unary predicatesgxpressions returning a
boolean) into binary predicates, this covers all cases.

3.1.1 Normalization
Normalization performs the following steps:
Explicit Comparisons Makes all implicit comparisons explicit:

¢ If an expression evaluates to a number, a comparison witledheext
position is introduced.

3.1. XPATH EXPRESSIONS 33

e If an expression of a non-comparison expression is a bopkeanm-
parison witht r ue is inserted.

e If an expression evaluates to a string, its result is cordext boolean.

e If an expression evaluates to a node or a node-setxast s function
call is introduced, comparing the result with true. Notet thare is no
exi st s function call in XPath. It is an internal function of ours.

Predicate CNF Transforms predicates into conjunctive normal form (CNF).

Extremum Rewrite The query is rewritten using maximum and minimum aggre-
gation functions. For instance, a nested expression ofdima fiot (a <
b) is rewritten intoa > max(b) if a is single-valued. Similarly to the
exi st s function call, themax function call is not defined in XPath 1.0, but
inserted for internal use.

3.1.2 Expression Classification

The basic construct of XPath is an expression. We distilgexpressions accord-
ing to their dependency on the context and the cardinalithaf result.

Context Dependency

An important concept in XPath is the context. Every expsss evaluated with
respect to a given context. For the purposes of this chapseffices for a context to
contain three components: thentext nodécn), thecontext positior{cp), and the
context siz€cs). The evaluation of an XPath expression requirgbbhal context
to be specified. Subexpressions of the top-level query alei@ed with respect to
alocal context The local context is derived from the result of the evalwaof a
former step or filter expression. We distinguish two clasgestibexpressions:

Dependent Expression: Expressions depending on a local context that is different
from the global context (denoted Aype D.

Independent Expression: Expressions depending only on the global context (de-
noted byType).

Location steps, relative location paths, callptsi ti on() andl ast () are
evaluated with respect to the local context. All other egpiens are evaluated with
respect to the global context.

In our example query Q1, the subexpresgiérst udent is independent. The
last location stemane depends on the local context resulting from the evaluation
of the previous step and hence is dependent. Further, tlwuéddocation path
/ | examis independent, whereas location patham nat i on/ @ d within the
first predicate is dependent.

34 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

Cardinality

For every XPath expression, the static type analysis cagct#te type of its re-
sult. An expression has either one of the three atomic tyipesl(ean, nunber
orstri ng) oris node-set typed. We distinguish expressions accgtdithe car-
dinality of their result.

Single-valued expressions with no top-level aggregate function are ifledsas
Type Sand those with a top-level aggregate function are cladsfsdype A

Set-valued expressionsType M have a node-set as result. If an empty set is de-
tected, its expression is associated with the class ofaaett expressions.

Detecting a single value or empty node-set requires schefoamation and is
beyond the scope of this thesis.

In our example query from the introduction, the attributelsare single-valued
(Type S), whereas the path expressidrst udent has a set-valued result (Type
M).

Combined Expression Classification

We have presented the two expression properties dependedmardinality of the
result. Similar to Kim [70] within the relational context &iCluet et al. [28, 29]
in the OO-context, we can combine these properties and difentollowing four
types of expressions:

e Type I[S|A] Independent subexpressions that return a single elemenit, i
either comes from a top-level aggregate (Type IA) or not €Ng).

e Type D[S|A] Dependent subexpressions that return a single element that
comes from a top-level aggregate (DA) or not (DS).

e Type IM Independent subexpressions that have a set-valued result.

e Type DM Dependent subexpressions that have a set-valued result.

Each of these types has individual properties that canquéatily be exploited
by the optimization techniques developed in Sec. 3.3.

3.1.3 Nested Expression Classification

Our primary focus of this work is the optimization of comzam-based predicates.
A predicatep, can consist of arbitrary XPath expressions and is repredeast

a conjunction of several clausgs (i.e. p, = A2, l;). The CNF results from our

normalization phase. After making all implicit comparisaxplicit, each conjunct

3.2. LOGICAL ALGEBRA 35

consists of binary comparison expressions. They exhibitthmparison operators
€ {=#,<,>,<=,>=}. Note, that if either of the operands is set-valued, the
comparison operator has an existential semantics.

Corresponding to the previous classification, we estalaistassification for
comparison expressions. The properties of this classditatlow for particular
optimization techniques of each of the classes. The clea8dn simply consists of
all combinations of the previously introduced types anchisan in the following
table.

Independent Dependent
I[S|A] IM D[S|A] DM
Independent I[S|A] | I[SIAVI[S|A] I[S|A)/IM | I[S|A]/D[S|A] I[S|A}/DM
IM IM/I[S |A] IM/IM IM/D[S |A] D[S|A]/DM
Dependent | D[S|A] || D[S|AJ/I[S|A] DI[S|AJ/IM | D[S|AJ/D[S|A] DI[S|A]/DM
DM DMI/I[S |A] DM/IM DM/DI[S|A] DM/DM

This table can be divided into three groups. The first groap [&ft) is com-
posed only of independent operands. The second group (loppamd down left) in-
cludes one independent and one dependent operand. Fos&xmin this group,
we introduce the terrsemi-independentThe last group (down right) is made up
only of dependent operands.

Nested comparison expressions are a crucial factor forfenest evaluation of
XPath predicates. This has several reasons:

e Expressions are evaluated in a nested fashion. In panmj@xpressions can
be deeply nested, and many execution orders for indepem@néssions
may exist. Some of them are more, some less efficient.

e Further, based on the classification, we observe that
— independent comparisons (Types|f$and IM) are evaluated unneces-

sarily for every context resulting from the outer expressio

— comparisons with an independent and a dependent arguneeatar-
relation predicatebetween the outer and the inner expression.

— expressions which share common paths or consist of commumexsu
pressions would require their evaluation more than once.

3.2 Logical Algebra
Our optimizations in Section 3.3 are based on the algebi@iesl in the previous

chapter. Moreover, all optimizations are presented by medmlgebraic equiva-
lences. They have the canonical translation (also pred@émtlee previous chapter)

36 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

on the left-hand side. However, for our unnesting techrsgque need some addi-
tional algebraic operators. In this section, we formalljiriethem. Before defining
the operators, we repeat the notations that are used ford@ition.

Our algebra is defined on sequences of tuples. A sequengeevekpression
results in several tuples which all have the same attribdte$. The attributes of a
single tuple are also referred to ds$t). Within the definitions A (A;) abbreviates
A(e) (A(e;)). The projection of a tuple onto a set of attributéss denoted by
|4. In the context of projectiong,(IT), overlined attributes are discarded, i.e. only
the complement is retained. A single tuple is constructedguthe brackets:|.
The concatenation of tuples and functions is denoted. fyor a sequence, a(e)
returns the first element of the sequenceafadl the tail of the sequence. Sequences
are concatenated using Given a sequence of non-tuple valugsve construct a
sequence of tuples byfa]. It is empty if e is empty. Otherwise[a] := [a :
a(e)] @ 7(e)[a]. In the following,e, e;, ande, are sequence-valued expressions.

First, we define théeft outer-join:

(a(er)pen) @ (m(e) 257 Wey) if (aler)yen) # €
129/ Wey := ¢ (afer) o [Ae)\{g}] [g: f(®)]) otherwise

B(r(er) 2 Pey)

The left outer-join is used for unnesting queries with aggt®n functions. Itis
needed to prevent the "count bug” [71]. Specifically, thé defter-join is a regular
join with the exception that all tuples i that do not find a join partner i#, also
contribute to the result. Those tuples are concatenatédits)\{g}]o[g : f(0)].
The functionf(0) in the superscript of the operator assigns a meaningfukvialu
the attributeg of those tuples. For example, ffis the function countgount ()
assigng) to g. For construction, the attribute$(e,) are initialized with NULL by
default.

In our optimizations, we use the left outer-join togethettva unary grouping
operator. Ouunary grouping operator is defined in terms of the binary grouping
operator K; see Section 2.1.2):

Tgoar(e) =Tl (I 4 (ILa(€))X g ar045r€)

In this definition, A and A" are sets of attributesd(€ A(e) and A’ € A(e))
called grouping attributes. For each group (i.e. thosesgiphving the same value
for all grouping attributesd), I' computes an aggregation function and adds the
result to the attribute.

Fig. 3.1 presents an example for the unary grouping openasirows the result
of applying the unary grouping operatby._a..ount t0 the sequence,. The result
is a sequence of three tuples, each having two attribugesiiand g. Each tuple
results from one of the three distinct valuesein The attribute g contains the
number of tuples having equal values for A.

3.2. LOGICAL ALGEBRA 37

€1

A 1—‘g;:A;coun‘c
1 A g

1 1 2

3 3 2

3 4 1

4

Figure 3.1: Unary grouping example

To avoid unnecessary navigations in predicate expressianslefine the max
operator. Thenax operator was originally introduced in [29].

Mazgma(€) = [m : mazx({z.a|lz € e}),g:< [¢ : z]|z € e,x.a = m >]

The result of the operator has two attributes: One contgitiie maximum value
m for a group of nodes and ong)(containing the resulting nodes that are equal to
the calculated maximum. The motivation for the max operator will become clear
in later sections. Thmin operator is defined analogously.

Some of our unnesting techniques introduce duplicatespdés$uthat must not
be in the result. To identify such falsely introduced tuples use the auxiliary
v operator (cf. “[82]). It numbers tuples in a sequence byiagdn additional
attribute A holding their position (pos) in the sequence. It is definefblsws:

va(e) 1= a(e) o [A: pos] & va(r(e))

After unnesting, we have to eliminate multiple occurrengkegiples that have
the same attribute value fot. However, we want to keep the order of the input.
Therefore, we introduce aorder-preserving duplicate elimination projection
ITA:

ale)|p ® 4(r(e)) if 7(e) =eor
14 (e) := ale).A & a(r(e)).A
14 (7(e)) otherwise

This projection keeps the first tuple for a given attributéugad and throws
away the remaining tuples with the same value. At the same, tihis operator
can be used to project on a set of attribite Analogously, we have eenaming
order-preserving duplicate elimination projection 114, .

Last, we define a new operator that directly implements arestimmy strategy.
The operator is callekbppa-join and is a ternary operator, i.e. it has three argument
expressionsy, e, andes. It is defined by the following equation:

38 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

€1 62(61)

chn cn C €3

1 1 11 c
2 2 22 222
3 2 222 44
4 3 33

Figure 3.2: Kappa-join example

€2 R
61&6:0,63 T Ugm;emists (62P<c:6/63) (61)

The right-hand side of this equation results from our tratish of comparison
expressions that use as a comparison predicate (see Sec. 2.2.3). In this equation
cis an attribute defined in the sequence-valued expressi@amdc’ is defined ires,
i.e.c € A(ey) andc’ € A(es). The attributer contains the result of the aggregation
operator, i.e. true if the result sequence of the semi-jonsists at least of one tuple
and false otherwise. Accordingly, the selection filterdeapvhoser value is false.

As for conventional join operators, we denote the produgpressiong; andes as
outer producerandinner producer respectively. The second producer expression
es (in the superscript) is callelthk producerbecause it acts as a link between the
outer and inner producer within the join predicate. The oexpressiore; and the
inner expressions are independent expressions, i.e. they do not depend onfany o
the kappa-join’s other arguments. In contrast, the exmess is dependent on,,

i.e. it refers to free variables that are defined;in

Informally, the result sequence of the operator contairsiples from the outer
producer ¢;) for which there exists at least one tuple in the link produes),
when evaluated with respect to the current tuple;pthat satisfies a comparison of
attributes ofe, and attributes of the the inner produegr Consider for an example
Fig 3.2. It shows three sequences: (1) The sequence forssipne; contains
one attribute namedn. (2) The sequence-valued expressigrconsisting of the
attributec that depends on values from. For example, forn value2 it contains
two tuples, i.e22 and222. (3) The independent sequence égicontains the values
222 and44 for attributec’. The result sequence of the expressior? _e; on this
input contains one tuple with attribute that has the valug.

3.2.1 XPath Context in the Algebra

As already discussed in Section 3.1.2, the notion of coméedftutmost importance
for XPath. The context is needed to evaluate XPath expmessiod, hence, must
be handled within our algebra. We briefly repeat the hooks.

3.3. OPTIMIZATION 39

Context Representation For the purpose of this chapter, it suffices to think of an

XPath context as consisting of three context items, eadlesepted by an attribute:

the attributesn, cp, andcsrepresentontext nodgposition andsize respectively.
Each of these attributes has a counterpart in the form ofeaviagable:cn, cp

andcs Whenever an expression has no producer, but refers tordoudt or refers

to a non-existing attribute, the appropriate free variablesed.

Context Producer and Dependency In the formal description of our optimiza-
tion techniques, we utilize the notions adntext produceandcontext dependent
An expressiore; is calledcontext producefor an expressiom, if (1) it creates
new bindings for one or more context item attributes and{2xhibits at least one
free variable corresponding to one of these attributeso,l€gpressior; is called
context dependemin ¢;.

3.3 Optimization

We now introduce optimizations for our canonical transiatf nested XPath ex-
pressions. Given the classification established in Se@&ibdrand the (canonical)
algebraic translation from Chapter 2, we provide optimaratechniques for each
of the classes of nested comparison expressions. We famriham by means of
equivalences whose left-hand side matches the result afahenical translation
and whose right-hand side contains the optimized expmessio

The section is structured according to the three groupsasisels presented in
Section 3.1. We start out with independent comparison espas, continue with
semi-independent expressions, and, at the end, examimgedhp containing only
dependent expressions.

3.3.1 Independent Comparison Expressions

Optimizing independent comparison expressions is easydaad not depend on
the cardinality. We can simply execute the independensza@parately and mate-
rialize the result. This is like constant foldihin compiler construction and saves
evaluating independent parts more than once. Note thatietroperands of an
expression are set-valued, its evaluation always resuléssingle boolean value.
Hence, materialization costs are negligible.

For nested expressions of the foende, with 6 € {<, <, >, >}, the minimum/-
maximum aggregation within Rules 2.3 and 2.4 (see Sec.)xarBadditionally be
pulled outside, as the expressigns independent and single-valued. This way, we
can avoid multiple evaluations of the same subexpression.

1Due to the global context, this term is a slight misnomer. Eesy, from the evaluation point of
view, the global context can be considered as a constant.

40 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

3.3.2 Semi-Independent Comparison Expressions

Nested comparison expressions, where one of the operamite@endent and the
other is dependent, describe a correlation predicate leetite outer and inner in-
dependent expression. Their evaluation is expensivegdadependent expression
is evaluated several times without necessity.

Now, we discuss algebraic unnesting techniques for eadteaflasses of semi-
independent comparison expressions. The corresponduigaégnces are summa-
rized in Figure 3.3. Within all equivalences, expressigis context dependent on
expressiore;, whereas expressian is independent. We discuss the equivalences
in the order of increasing complexity: I[&]/D[S|A], IM/DM, I[S |A}/DM, and,
finally, IM/D[S|A].

07[52]:gm,:m,a:ﬁcn (T[eg])(T[el]) ch:g’(Maxg;m;cn/:(ch’:cn(lz—[el}) <T[62} >)'g) (31)

if T[e1] <7 le2] >= T [e3] andez is single-valued and dependent @y
andes is independent

O Tlenteay TN = T2 2 (EVXengen Ty, cp (T lea)) (32)
With E = (va (Hep/r.en (Tle1]))) <Tlea]>
for6 € {=,#}
0@ (Tinot(entes) L) = Menienn a(@e=0a(Te1]) e a=aricount B) (3.3)
with B = (Heprrien ((var (T [e1])) <Te2]>)%enpen’ (Mens:en(7 [e3])))
0€{=+#}
A tpenveay TN = T 2 (Oensa (A (Hensicn(T[en])) <Tle2] >)) (34)

wherez results from@,.,..,, (T[es]),
witha = minif € {>,>} ora = maxifd € {<, <},

Ugm;emists(T[not(eQGeg)])(T[el]) = I, Z(0c=0a(Tler])] e a=ar;count (E)) (3.5)
With ' = enge ((Hensicn(var (Tle1]))) <7 lea] >)
wherez results fron@.,..., (7 [es]),
witha = minif 6 € {>,>}ora =maxifd € {<, <},
O, eniatn(Tlea=(op(Tleshy L €D = Tg>0(E) (3.6)
with B = I0_ . 2(Cgi=ascountoo, (VA (Henr.cn (Tle1]))) <Tle2]>))
and(7 [e1] <Te2] >) = Tles]
A tpeaseyTOD = T (e (VAT on(T[e1]))) < Tlez] >)) @37)
wherez results fromes (single-valued), and € {=,#,>,>, <, <}
(Tler) = W 2(B)Xgoens 1D, (Tes))) (3.8)

ng;.f(T[ﬁ2])97[e3]
with £ = Fg;:A;f(VA(ch”:cn(lz—[el}))) <7[62] >
ifoe{=+<<>2}

Figure 3.3: Equivalences for semi-independent compaegpressions

3.3. OPTIMIZATION 41

Classes I[SA]/D[S|A]

Classes I[fA]/D[S|A] contain two single-valued expressions where both op#san
are dependent. In a first optimization step, constant fgldirthe independent part
could be applied for both classes (/D[S |A]). However, sometimes even more
efficient techniques are possible. An interesting queryckvhllows for advanced
optimization techniques, is the following one:

/uni versity/exan not (grade < /university/exani grade)] Q2
/ bel ongst o/ @ ect ure.

During normalization, the query (selecting the worst exgisisewritten té

/uni versity/exanf grade = max(/uni versity/exani grade)] Q2
/ bel ongst o/ @ ect ure.

and falls into the class IA/DS. Note that the rewrite is ordyrect because the
grades will be the same on both sides of the comparison.
The canonical translation of this query is

e = 7T [belongsto/@lecturge;))

e = 7 [luniversity/exan)

O rigrade-@ e e2)|
e; = T[luniversity/lexam/grade

Note that from now on, we abbreviate the algebra expressiolo€ation steps
and paths and simply denote them with our translation foncIi or our helper
function ®, respectively. Applying constant folding, the indepertde@ximum
aggregation is evaluated only once. However, since the aatkinner independent
expression share a common path, evaluating the commons=sipnemore than
once can be avoided. This optimization described in Egenee 3.1 uses the max
operator.

This operator uses the scan needed for the evaluation afitiee €xpression to
simultaneously evaluate the outer expression. The restifteooperator has two
attributes: One containing the maximum valwefor a group of nodes and one
containing the resulting nodes that are equal to the cakdilmaximum. Note that
the resulting sequence is empty if the input sequence isyerifipe application of
Equivalence 3.1 results in

¢’ = T |belongsto/@lectuiée’))
6,1 = ch:g(Maxg;m;cn’:(eé»‘g
¢y = (Hen.en (7 [funiversity/exam)) < 7 [gradé >

2Remember that there is no maximum function in XPath 1.0. Wé&k on our own function
here.

42 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

Sharing the scan with the help of the max operator halvesd@xsion time for
this query. The evaluation of this query in Sec. 3.4 proofstaim and Section A.1
in the appendix presents a proof of correctness. Of coungeminimum can be
treated analogously.

Class IM/DM

We now consider comparison expressions of type IM/DM, hesé where both
operands are set-valued. In this case, the XPath semagticise's a quantified eval-
uation. Using our algebraic approach, we are able to revdhta well-established
idea of using semi-joins (e.g. for unnesting XQuery [82]hwéver, the application
of known equivalences is not possible. There are two maisoreafor this. First,
all known equivalences suffer from at least one of two protde(a) the outer op-
erator of the nested algebraic expression is a map and mov¢ided) selection, or
(b) they have conditions not fulfilled here (e.g. at leastsingle-valued argument).
Second, context handling has not been investigated.

In the following, we look at different algebraic evaluatstnategies for different
guery patterns exhibiting correlation predicates. Thaesfconsider the following
guery patterns that are made up of different comparisonat@er &, =4, andd €
{<,<,>,>}) and negation, wheré& denotes any path expressiab)/ an set-
valued expression dependent Bnand/ M an independent set-valued expression.

1. E[DM = IM] 4. Elnot(DM # IM)]
2. E[DM # IM] 5. E[DMOIM]
3. Enot(DM = IM)] 6. Enot(DMOIM)]

For introducing the idea, we start with an elaborate disonssf optimizations
for query pattern 1. Existential quantification (i.e. queattern 1) is one of the
most frequently used patterns in XPath. Hence, we not ordgent the application
of known unnesting technique using semi-joins. We alsorektbe algebra with
our new kappa-join operator for particularly boosting tlegfprmance of XPath
queries with query pattern $.At the end, we briefly discuss the remaining query
patterns and their associated equivalences.

Query Pattern 1 We begin with a shortened version of the query from the intro-
duction, which is an instance of query pattern 1 (selectilgfadents having exams
better than B).

/] student [exam nation/@d = Q3
[l exan] grade<’ B]/ @d]/ nane

3However, the kappa-join can also be used for evaluating ofirery languages, e.g. XQuery.

3.3. OPTIMIZATION 43

T[//student] gwmsts

X

/

T [examination/Qid) T[//exam[grade <" B']]|

cn=cn/’

Figure 3.4: Translation sketch for Q3

The canonical evaluation of this query provides an aggregatith a semi-join
as producer.

e = W[namé(o,, (7 [//student))
e1 = Querists(7 [examination < 7 [@id] > Xep—ens(€2))
e2 = ewien(Y[@id (07 grade<r (7 [llexani)))

For convenience, Fig. 3.4 shows the algebra expressionras.a t

The problems that occur have already been explained in thadunction to this
chapter. The expressions within predicates are evaluatedviery result of the
corresponding location step. That is, the subscript of #lecsion (in Fig. 3.4
denoted by a dashed line) is evaluated for every studenliresirom the outer
expression. Thus, evaluating the above query in a nestedlatad fashion is not
very efficient. The idea of the optimization that is shown pukralence 3.2 is to
pull the semi-join into the main evaluation thread.

The resulting optimized translation is as follows:

6/ = \Il[namé(nﬁucn’(e/l))

6/1 = VA(ch’:cn,Z(T[”StUdenD) < 6,2 > KCH:C”'(eg’))
ey = Ilepr.cn(V[examination/@it{ D))

e = V[@id(0rgrade s (7 [/fexani))

The dependent location pa#xam nati on/ @ d is connected to the outer
expression using a d-join [82]. As the dependent expressoortd produce du-
plicate students, the operator is needed to identify the tuples resulting from the
outer expressions. At the end, we remove duplicates of thme savalue for A

44 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

with our order-preserving duplicate eIiminatidfijgl:m, —). Moreover, this projec-

tion reestablishes the right context attributefrom cn’ and discards the attribute
A. Fig. 3.5 sketches the optimized algebra expression graii

7 [name]
4

X
N\T[//exam[grade <" B']/@id]

va 7 [examination/@id]
|
7T/ /student]

Figure 3.5: Unnesting strategy for Q3

Resulting from that, we avoid the repeated evaluation ofrther independent
expression. If this equivalence is applied to the introdoctjuery, we can addi-
tionally choose the optimal execution order for the sermgpwhich gives us an
even higher optimization potential.

Clearly, the main advantage of this approach is that thepedeent expression
is evaluated only once. In addition, if the implementatidrth@ semi-join uses a
custom data structure (e.g. a hash-table) to improve padoce, this data struc-
ture has to be initialized only once, compared to one ina@ion per student in
the naive correlated evaluation. However, unnesting somte price: The outer
expression produces duplicates which have to be elimin&elbw, we show how
we can avoid them using our novel kappa-join. Our evaluatiddec. 3.4 confirms
this claim.

To avoid the above-mentioned generation of duplicatespbuértheless gain
performance by avoiding unneeded evaluations of the intég® expression, we
use the kappa-join operator. It combines the advantagée@valuation strategies
from Equivalence 3.2 and the canonical translation intoaperator and capitalizes
on efficient implementation techniques.

Ulname
|
KT[examination /@id]

T[//student] 7T[//exam|grade <’ B']/Qid]

Figure 3.6: Unnesting strategy for Q3 with kappa-join

3.3. OPTIMIZATION 45

Fig. 3.6 contains the resulting algebra expression for @8eHhe location path
/ I st udent is mapped to the outer producer of the kappa-join. The iroeation
pathexam nati on/ @ d is the (dependent) link producer, and the independent
expressiont / exan{ grade<’ B']/ @ d is mapped to the inner producer.

OPEN

1 while T« INNERPRODUCERNEXT

2 do HASHTABLE.INSERT(T)

NEXT
1 while T, «+— OUTERPRODUCERNEXT
2 do
3 LINK PRODUCER OPEN(T7)

4 while Ty « LINKPRODUCERNEXT
5 do
6 if HASHTABLE.LOOKUP(T5)
7 then
8 LINK PRODUCER CLOSE
9 return T

10

11 LINKPRODUCERCLOSE

12 return nil

Figure 3.7: Pseudocode for the kappa-join

The secret of the kappa-join lies in its simple, yet efficiemplementation. It
improves performance beyond that of the operator comlwinaiits logical defini-
tion. Fig. 3.7 shows the pseudocode for the implementatidineokappa-join as an
iterator.

In its open method, the kappa-join builds a data structure, e.g. a taddb;
containing the attributes from the inner producer that amt @f the join predicate.
In its next method, the kappa-join initializes the link producer foesvtupleT;
from its outer producer. Like a semi-join, it then probesliash-table with tuples
T, from the link producer until a matching one is found, and mestthe outer tuple
as soon as it finds a match. The kappa-join does not alwayseratermall tuples
from the dependent link producer, while building the haebl¢ only once. Hence,
the worst-case complexity i©(Je;| x |es| + |es|), assuming constant hash-table
insert and lookup, respectively. However, the average t¢exitp depends on the
distribution of the data and is usually much better. Comghdoethe canonical
translation, the plan in Fig. 3.6 using the kappa-join hasdimain advantages:
(1) It avoids to enumerate all tuples from the link producecdwuse it immediately

46 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

returns a result if one match is found (see Line 9). (2) It da#gproduce duplicates

of tuples from the outer producer because the result caimost one tuple from

7/ /student], and (3) consequently saves the cost of a final duplicateredinon.

These effects combine to yield the speedup that can be ach{see Sec. 3.4).
We now briefly discuss the remaining query patterns.

Query Pattern 2 So far, we have discussed the optimization of XPath quénggs t
match query pattern 1. This query pattern uses an equahtpadson operator and
resembles the semantics of an existential quantificatioowedder, XPath queries
can also exhibit a non-equality comparison operator. Ia thise, shown in query
pattern number 2, the semantics is that of a negated exatgoantification. As
for existential quantification, we can also evaluate suctrigs with a semi-join,
but using a negated comparison. This procedure is alsoregjituEquivalence 3.2.
Moreover, we can also use the kappa-join operator.

Query Pattern 3 If such a comparison expression is encapsulateshotafunction-
call, the semantic resembles that of a universal quaniiicatn the first case (see
guery pattern 3), the semantics requires that there musxnsitany match that is
equal, i.e. all items are different. Secondly, if the congaar contains a non-equals
sign, the semantics is inverted, i.e. all items are equath Baiversally quantified
guery patterns can be unnested using Equivalence 3.3.sledhivalence, the trick
is to count the number of matches (cf. [26]) that satisfy= e5 (resp. e; # e3)
for every tuple resulting from; and store the result in the attributeTo this end,
we use the binary grouping operator withas outer and the comparison between
e andes as inner expression. Note that for computiagwe use the same trick
as shown previously, i.e. using a d-join for computighat is dependent o#y.
Thereby, all tuples frone; are uniquely identified using the attributg that is
added by ar operator. To accomplish the match between tuples from thealed
right-hand side of the binary grouping operator, we alsdefaheinistically) mark
the tuples frone; on the left-hand side and store theivalue in the attributed. At
the end, only those tuples from qualify for the result whose value feris equal
to zero, i.e. either all tuples are different)(or equal ¢), respectively.

Query Pattern5 Query pattern 5 again resembles an existential quantdicatit
with an arbitrary comparison operatbe {<, <, >, >}. Unnesting such queries is
accomplished using Equivalence 3.4. To this end, we eithi@pcte the maximum
(for 8 € {<,<}) or minimum (ford € {>,>}) value for items resulting from
the independent expressioss). Then, we can select only those tuples frem
whosee, value satisfies the according comparison with this maximumiaimum
value, respectively. Again, we use a combination ofithé-join, andlI* operators
to evaluates, depending ore;. Note that in a first step, the maximum/minimum

3.3. OPTIMIZATION 47

aggregation remains subscript of the select operator. Menven a second opti-
mization step the evaluation of the independent aggragata be pushed outside
and evaluated on its own.

Query Pattern 6 The last query pattern 6 describes a comparison expression e
capsulated in a not function-call that uses an arbitrarypanson operatof € {<
,<,>,>}. To unnest queries that comply with this query pattern, waliae the
previously presented Equivalences 3.3 and 3.4. The resgliptured in Equiv-
alence 3.5. In this equivalence, we compute the maximunwmirvalue ofe;
independently and count the number of matches for everg tinpm e; with the
help of a binary grouping operator. The count is stored irattr#butec, and tuples
from e; whosec-count is equal to zero contribute to the result.

With Equivalence 3.6, we introduce an optimization thatsusestrategy simi-
lar to the max operator. This equivalence avoids dupliceséuation of common
expressions if the inner and outer expression share the pathei.e.7[e;| <
T [ea] >= T les). In fact, Equivalence 3.1 is a special case of Equivalenge 3.

Class I[SA)/DM and IM/D[S |A]

The last class within the group of semi-independent corsparexpressions con-
tains one single- and one set-valued expression. Optigitiam combines the
evaluation strategies of the previous equivalences.

If the independent expression is single-valued (clag@\l[BM), Equiv. 3.7 can
be applied, which is similar to 3.4. It pushes the evaluatibtine independent part
outside and does the comparison of the dependent part uselgdation.

For the second case, where the independent part is sedvailiand the depen-
dent part comes from an aggregation (class IM/DA), Equ.can be applied. It
uses a grouping operator to compute the aggregation andltesmparison using
a semi-join. As the input for the grouping operator is alsesdrted by the group-
ing attribute, an efficient implementation for the groupapgrator can be used. For
class IM/DS, Equivalence 3.2 can be applied. Generallyethavalences from the
previous sections can be used for all cases.

3.3.3 Dependent Comparison Expressions

Last but not least we discuss optimizations for comparisqressions that are
made up only of dependent operands. The last two sectiorssdssad optimiza-
tions for comparison expressions where at least one of ttemaogs is independent
(i.e. that the independent part is evaluated redundanifiyjoth operands are de-
pendent, unnesting techniques in the narrower sense caenapplied. In this
section, we present a few algebraic optimization techracfoe optimizing such
gueries. Optimizing such queries requires factorizatioschema knowledge. Al-
though schema-based optimization is beyond the scopesifiibsis (see outline in

48 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

Chapter 7), we present examples that demonstrate the aption potential. For a
more extensive treatment of optimizations for queries w&pendent comparison
expressions, we refer to [107].

The equivalences we present in this thesis are shown in Eg. 3

Tf(nmer . g (em) TN =F 01— ey Ot g1 (emy(TIrDN (€)= € <T(oyr=y (xy:2(0) 3.9)
M;J;Que(Fy;=-r;cmmt(r-r;=n;f
(O'n:cl Vn=cg (Xn:f’(cn) (T[WD)))))) >
and f € {sum count,
and m is context dependent an
oE (T[(Tr) [EQH) = H?tring-vmuecn) (T[(ﬂ—)[eﬂ} < T[61] >) (3.10)
with E =not(7T[e1] = T[((pre :: *)|(anc :: x))[e2]/e1])
if e1 is single-valued,

e1 is context dependent dr)[ez2] and,
e2 does not contain a call to position or last

Figure 3.8: Equivalences for dependent comparison express

In the following three subsections, we discuss comparigpnessions of type
DA/DA, DS/DM, and DM/DM. We present an example query for e&gbe and
demonstrate their effectiveness in our evaluation section

Class DA/DA

The first class contains comparison expressions where lptands are single-
valued. Obviously, it is very challenging to improve the fpemance of nested
single-valued expressions that do not result from aggi@gaOn the other hand,
expressions that include aggregation (DA/DA) are more ablkento optimization
since they can be more expensive to evaluate. As an exangoigider the query
selecting all students that take as many exams as they hlaveled lectures:

/] student [count (descendant : : exam nati on) Q4
= count (descendant: : attends)]/ nane

The canonical translation is as follows:

e = W[nameé(o.,—,(7 [//student))
e1 = Qu.count(7 [descendant::examinatipn
es = @Ay count(7 [descendant::attenfds

The last two sections considered optimizations for consparexpressions where
at least one of the operands is independent (i.e. that tepentient part is evaluated

3.3. OPTIMIZATION 49

redundantly). As in the above example, all expressions epemtent, unnesting
techniques in the narrower sense cannot be applied. Honalvdescendant nodes
of students are visited twice, once for each dependent ssijore We can do better
if we find a common superset with the following property: themll evaluation
costs — the costs to compute the superset plus the costs feterthe computa-
tions for both expressions — are cheaper than the evaluaigis of evaluating both
expressions independently.

For the above example, the two optimized expressions canb&expressed
using XPath filter expressions. For instance,

e (descendant::*)[nanme(.)="exam nation’] and
e (descendant::*)[nane(.)="attends’].

Again, the idea is to use a common scan to evaluate the stiperdd¢o eval-
uate the name tests afterwards. Applying Equivalence 3@teein the following
optimized translation:

¢ = WU[name(7 [//student <e) >)

e, = HW(U@/:ZJ(Xy’:2(D):Ngiie(€,2)

¢y = Dy—aicount(Trimnicount (€3))))

€3 = (Jn:(’examinationSVn:(’attendss(6?4)))
¢s = (X,.name(cn)7 [descendant:}))

The inner expression, is connected using a d-join. It starts with evaluating
all descendant nodes of the context nodes and subsequdd#tlze tagname as
attributen to each tuple. The following selection filters the nodes ediog to the
required names. The first grouping operator creates graupsatch of the names
and adds an attribute containing the group sizes. The seganging operator
creates groups for each of the group sizes and counts its exemkhe result of the
second grouping qualifies if it consists of one group and 2. The outer join is
needed to handle empty groups.

Class DS/DM

The next class contains one single-valued and one setdrak@ession. A com-
mon technique (cf. Sec. 3.14 in [38]) to eliminate duplisaising XPath is shown
in the following example query:
/llecture[not(title = Q5
preceding-sibling::lecture/title)]/title
Within our document, we have a lot of lectures (all on the séawel), some
having the same title. Reasoning about this fact requiresrsa information. We

50 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

want to get a list of all lecture titles without duplicatesefefore, our XPath query
selects the lectures with a title that does not follow in #raainder of the document.
The canonical translation is as follows :

e = Ultitle](o
ep = Tltitle]
epr.en (7 [preceding-sibling::lectute< 7 [title] >)

7 [Necturg))

nOt(gz;ezistselxcn:cn’ 32) (

€9

Obviously, the costs to evaluate all preceding-siblingef@ry lecture are huge.
However, using information about the semantics of the alojoegy, we can do bet-
ter and apply Equivalence 3.10. This equivalences relies oar duplicate elimi-
nation which exactly resembles the required semanticedpk the first tuple with
a given string-value (string-value(cn)) and throws awayrgmaining ones.

I D .
e = Hstring-value(cn§7 [Nectureltitld)
In fact, Equivalence 3.10 is more general. However, withes&nowledge about
the schema, in which all lectures appear on the same levetawapply a rewrite
and use ther ecedi ng- si bl i ng axis instead of the union @t ecedi ng and

ancest or.

Class DM/DM

This class is the most difficult to optimize, as we have twoetelent set-valued
expressions (i.e. it may be quite challenging to factorm@mon subexpressions).
Most of the (reasonable) optimizations that are possivi@we the semantics of the
guery, thatis, knowledge of the schema. As schema-basgedipations are beyond
the scope of this thesis, we just give an example here and suabeations later.
Consider the following query in which we are looking for adlsearch assistants
who share a research topic with another assistant:
/I enpl oyee[assi stant/topic =
(foll ow pg-si pl i ng: : enpl oyee | Q6
precedi ng- si bl i ng: : enpl oyee)
[assi stant/topi c]/nane
As all assistants can be found on the same level in the dodyumensufficient

to scan through them twice and join them on their topics (tgldare not to join a
tuple with itself). After that, we just need to eliminate digptes.

e = Unaméll? ((e;¥epeni—re2)) (3.11)
er = Ien(Vtopicl(¥[assistai{Il,..,,(7 [//employee))))
ey = Iy..,(V[topic|(¥[assistantIl, .., (7 [//lemployeg))))

3.4. EVALUATION 51

3.4 Evaluation

To show the effectiveness of our approach, we measuredditfe&XPath evalua-
tion engines against our canonical and optimized tramsliati\We chose the freely
available engines

e Xalan C++ 1.8.0 using Xerces C++ 2.6.0,

Berkley DB XML 2.0.9 (DBXML) using libpathan 1.99 as XPathgne,
MonetDB 4.8.0 using MonetDB-XQuery-0.8.0 [10],
the evaluator provided by the XMLTaskForce [72] (XTF), and

Natix for the canonical and optimized approach.

3.4.1 Environment

The environment used to perform the experiments consistadP@ with an Intel
Pentium 4 CPU at 2.40GHz and 1 GB of RAM, running SUSE Linux&.ahe
Natix C++ library was compiled with gcc 3.3.5 using optintina level 2.

For Xalan and XTF, we measured the net time to execute the/.qlibe time
used to parse the document and generate the main memorgesfagon is sub-
tracted from the elapsed evaluation time.

For the evaluation of MonetDB, Berkley DB XML, and Natix, weaported
the documents into the database. The Natix instance watedreging a page
size of 8kB and a buffer size of 1000 pages. The cache for BgiRB XML was
configured with the same size. MonetDB was used out of the Do&.queries were
executed with an empty buffer pool on a cold instance andowithny indexes. The
guery execution engine of the Natix system implements theéb algebra defined
in the last and this chapter.

3.4.2 Documents

We generated two different sets of documents. The first id é@eour example
gueries Q1-Q6 that are based on the university schema. Tuesements were
generated using the ToXgene data generatat.[8Je generated 6 documents: The
smallest document contains 50 employees, 100 students¢tldés, and 30 exams.
With each document we quadrupled these numbers, so thatggesb document
contains 51200 employees, 102400 students, 10240 lectamels30720 exams.
Overall, this lead to moderate document sizes between 58HBlaMB.

The second set (called synthetic data set) is used for theoaason of the
kappa-join with our unnesting strategy according to Egenee 3.2. We generated
seven documents structured according to the following tatap

4The DTD is shown in Appendix B

52 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

<?xnml version='1.0"?>

<gen>

<el id="0"><e2 id="0"/> ... i-e2 nodes <e2 id="i"/> </el>
<el id="0"><e2 id="0"/> ... i-e2 nodes <e2 id="i'/> </el>
<e3 i d=" RandonNunber’ />

</ gen>

Each of the documents contains 10§0nodes and 1000; nodes. For each
document, we varied the number @f nodes (below am; node) between 10 and
500 nodes. This led to documents with sizes between 252kB 3ikkB.

3.4.3 Queries

We executed performance measurements for all exampleegu€i-Q6) presented
throughout this chapter. All queries were executed asegution all the evaluators
listed above.

Additionally, we executed performance measurements thrapare the unnest-
ing strategy according to Equivalence 3.2 with our kappa-gperator. Therefore,
we executed the following query on our synthetic data set:

/gen/el[e2/@d = /gen/e3/ @d] Q7

Query Evaluation Plans for Natix For Natix, we generated several different
NVM access plans for each of the queries. One plan alwaysmmghts the canon-
ical translation. Further, we generated the followingralive plans:

Q1: unnested Access plan which uses Equivalence 3.2 twice. The examseand |
tures are compared first, before completing the result wighstudents.

Q2: unnested Access plan using constant folding.

max Access plan which uses the max operator as described iro86c8.2,
i.e. Equivalence 3.1.

Q3: unnested Access plan with Equivalence 3.2 applied (see Fig. 3.5).
kappa Access plan using the kappa-join (see Fig. 3.6).

Q4: optimized Access plan which uses Equivalence 3.9.
Q5: dupelim Access plan which uses Equivalence 3.10.
Q6: join Access plan according to Expression 3.11.

Q7: unnested Access plan according to Equivalence 3.2.
kappa Access plan exploiting the kappa-join.

3.4. EVALUATION 53

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.01| 0.03 0.44 7.71| 123.92| 2008

DBXML 0.03| 0.14 1.32 4.09| 59.06| 863.56
MonetDB || 0.28| 0.35 1.36| 22.70| DNF DNF
XTF 0.49| 5.65| 111.40 DNF DNF DNF
Natix
e canonical|| 0.16| 0.81| 11.12| 176.59| 12330| DNF
e unnested|| 0.12| 0.13 0.17 0.31 0.93 3.37
e max 0.12] 0.13 0.14 0.22 0.51 1.69

Figure 3.9: Results (in sec.) for Q2

3.4.4 Results and Interpretation

Figures 3.9, 3.10, and 3.11 present the results of our pedioce measurements.
All tables show the elapsed time in seconds. We executediali@s that finished
within six hours. Those that did not finish in this time limreamarked by DNF.
For MonetDB, the evaluation of some queries ran out of memarpigger docu-
ments (denoted by OOM). Moreover, for some queries the at@yprovided by
the XMLTaskForce and MonetDB crashed for unknown reasoresé& cases are
denoted by /a. The best execution time for each column is printed in bote fa
For almost all queries, our optimized approaches perfortsaale best.

IA/DS Fig. 3.9 presents the performance evaluation for Q2. Franfiure we
can see that our unnested approach and the strategy usimgiheperator outper-
form the fastest of the other evaluators (i.e. Xalan) byalmelers of magnitude on
the biggest document. On this document, almost all othero@gpes — including
our canonical approach — did not finish within six hours. Mxver, the evaluation
demonstrates that the max operator gives us an additioaatlsp of almost 50%
when compared to the "simple” unnested approach.

IM/DM For demonstrating the performance of our unnesting apprimagjueries
whose comparison operands are both set-valued, we pedaxperiments with Q1
and Q3 on the university schema and Q7 on our synthetic sckemall queries
on all documents, our unnesting approach performs andssbakdt.

For Q3, the execution times of the unnesting approach ustgvilence 3.2
behave similar to those of the kappa-join. This is becausstadients took very
few exams, i.e. only between one and three. For this reasercompared those
two strategies on the synthetic data set. Subfigure 3.10(@pms a comparison
between the two strategies. The execution times of the tingestrategy without
kappa-join grow linearly with the number eR nodes peel node. Thisis because
it has to enumerate a#i2 nodes and finally perform a duplicate elimination on the

54 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

appropriateel nodes. The execution times of the kappa-join operator anesl
constant. This is because the kappa-join does not need ezate alle2 nodes
and saves the cost of a final duplicate elimination.

Documents
Evaluator 1 2 3 4 5 6
Xalan 1.07| 45.40| 2805| DNF | DNF | DNF

DBXML 0.98| 40.83| 2634| DNF | DNF | DNF
MonetDB 0.53 4.43| OOM | OOM | OOM | OOM
XTF 0.22 454 | 67.00| 1376| DNF | DNF
Natix
e canonical|| 2.83| 119.40| 7154| DNF | DNF | DNF
e unnested| 0.12 0.14| 0.20| 0.44| 153| 5.59

(@) Q1
Documents
Evaluator 1 2 3 4 5 6
Xalan 0.30| 0.38| 6.17| 95.6| 1552| DNF
DBXML 0.07] 066 | 11.6| 336| DNF | DNF
MonetDB 0.31] 0.38| 2.05| 36.1| OOM | OOM
XTF 0.40| 4.72| 82.8| DNF | DNF | DNF

Natix
e canonical|| 0.25| 2.62| 38.2| 583| 9637| DNF
e unnested| 0.02| 0.03| 0.06| 0.19| 0.75| 2.99
e kappa 0.02| 0.03| 0.06| 0.19| 0.75| 2.88
(b) Q3

3

decorrelation ——
kappa-join -

25

15

Time (s)

05 r

0 50 100 150 200 250 300 350 400 450 500
Number of inner nodes

(c) Q7

Figure 3.10: Results (in sec.) for Q1, Q3, and Q7

DA/DA, DS/DM, and DM/DM Finally, Fig. 3.11 presents the evaluation of our
unnesting strategies targeting dependent comparisoesipns.

Again, our approaches dominate almost all other evaluatorsome cases the
main memory-based interpreter Xalan is faster than our stedeapproach. Espe-

3.4. EVALUATION 55

cially, on very small documents and when faced with an aggieqg function as
in Q4, Xalan is almost twice as fast as our approach.

However, our unnesting techniques for queries Q5 and Q6 amaperform
all other evaluators. Especially our canonical approacinctikeep up with the
unnested approaches and is outperformed by several orfleragmitude. More-
over, for Query Q6, for example, our unnesting technique@dorms even the
fastest of the other evaluators (Xalan) by four orders of mtage. These num-
bers show the potential that is possible to exploit with te>of schema-based
optimization.

Documents
Evaluator 1 2 3 4 5 6
Xalan 0 0| 0.04 0.10| 0.42| 1.65

DBXML 0.04| 0.08| 0.32 1.34| 5.66| 23.26
MonetDB 0.21] 0.21| 0.27 0.58| 1.37| 5.93
XTF 0.21| 2.32| 38.17 | 593.83| 9489 | DNF
Natix
e canonical || 0.12| 0.13| 0.17 0.33| 1.00| 3.76
e optimized || 0.12| 0.13| 0.16 0.30| 0.87| 3.13

(a) Q4
Documents
Evaluator 1 2 3 4 5 6
Xalan 0 0| 0.06| 056| 12.22| 346.08

DBXML 0.03| 0.10| 0.64| 8.17 | 232.54| DNF
MonetDB | 0.26 | 0.27| 0.40| 1.80| 23.87 n/a
XTF nfa | nfa | nfa | n/a nja n/a
Natix
e canonical|| 0.12 | 0.14| 0.31| 2.97| 43.45| 851.44
e dupelim || 0.12| 0.13| 0.15| 0.26 0.72 2.39

(b) Q5
Documents
Evaluator 1 2 3 4 5 6
Xalan 0.01| 0.08| 1.49| 29.90| 795.9| 33552

DBXML 0.15| 0.62| 9.65| 451.06| DNF | DNF
MonetDB 0.28] 0.47| 2.62| 35.60| DNF | DNF

XTF n/a | nfa | n/a nfa | n/a n/a

Natix

e canonical|| 0.16 | 0.62 | 8.18 | 126.73| 2522| DNF

e join 0.21| 0.22| 0.26 0.46| 1.30| 4.77
c) Q6

Figure 3.11: Results (in sec.) for Q4, Q5, and Q6

56 CHAPTER 3. UNNESTING XPATH EXPRESSIONS

3.5 Related Work

We have already discussed existing evaluation technicuees\aluators for XPath
in the related work of the previous chapter. However, allle# thentioned ap-
proaches have their drawbacks when faced with nestediatadeXPath queries.

Clearly, our main competitor is the approach by Gottlob e{46, 47] They
presented a complete and efficient method for evaluatingiXPAalthough their
evaluation algorithm has a polynomial worst-case run tithey have some short-
comings in optimizing the evaluation process further. F@meple, for independent
nested expressions they materialize intermediate refultgll different contexts
(which is not necessary). We, however, can avoid this by stinmgthe expression.

This brings us to the initial work on unnesting nested qerigpart from in-
troducing a classification for nested queries, Kim [70] wias first to rephrase
nested SQL queries to contain joins or grouping. However,wilidity of these
rewrites depends on important restrictions. They mainlgceon empty results
for the inner query block, NULL values, and duplicate hamgli Subsequent re-
search found more unnesting techniques for SQL [32, 36, 4369, 71, 99],
OQL [28, 29, 39, 101, 102], and XQuery [81, 82, 93].

All these works have in common that they unnest nested qarieere one
guery block contains another query block. In SQL and OQL, ergblock corre-
sponds to a SFW expression, whereas in XQuery, it is a FLWQ@Ressgion. Since
XPath does not exhibit query blocks, the applicability afgb approaches is lim-
ited.

Strategies for the evaluation of nested queries are dieduiss[50]. How-
ever, currently the full potential for optimization is onfwailable when queries
are unnested. First results to lift this limitation are er@ed in [56]. Additional
work for avoiding unnecessary navigation in XQuery subgpsethat is similar to
the max operator has been done in [33].

Contrary to the situation in unnesting SQL, OQL, or XQuehgre are cases
in XPath that are difficult to unnest. These are the cases iohAdoth expressions
in a comparison expression are dependent. In these casesgfevdo [107] for
optimizations. In contrast to [107] our classification defitlasses for expressions
of a single XPath query. They discuss the optimization oftiplél correlated path
expressions within one query by utilizing the connectioasuMeen different path
expressions. However, they have a similar definition of eomtdependent, which
they call correlated.

3.6 Conclusion

The translation of XPath queries into algebraic expresspovides a solid foun-
dation for efficient evaluation. However, when faced witlsted expressions, a
simple canonical translation, as shown in the previous tehaptill suffers from

3.6. CONCLUSION 57

inadequate performance similar to other evaluation aghes such as interpreta-
tion. In this chapter, we have showed how the algebraic @mbroan be leveraged
to significantly improve evaluation time for nested XPatleges.

We have classified XPath expressions on properties relévaminesting predi-
cates. For each of the resulting classes, we have develgpedknces for unnest-
ing the algebraic expressions that have been obtained lmatimnical translation of
XPath into our algebra. In an experimental study, we haveotsinated that access
plans optimized in this way are superior to other statehefdrt XPath evaluators.
We have gained several orders of magnitude in terms of pedoce by unnesting
nested expressions.

However, our unnesting techniques do not apply when cordewith nested
queries occurring in a disjunction. This also holds for #tley unnesting techniques
in the context of SQL, OQL, and XQuery. Hence, in the next thigpve extend
our approach to also support nested XPath queries withraisans.

Chapter 4

Disjunctive Unnesting for XPath

Almost every XML query language features a construct tHawed to express an ex-
istentially quantified comparison of two node-set valudaesypressions in a concise
manner. Unfortunately, current XML query processors ldtkiency and scalabil-
ity when facing such constructs. Query Q1 from the beginpirtge last chapter is
an example for such a query. The corresponding semantiesileas that of nested
and correlated subqueries, which are notoriously diffituévaluate efficiently. To
this end, we presented solutions in form of algebraic edemges for efficiently
evaluating such queries.

However, Q3 is "simple” because the correlation predica&i®ucs on its own.
What if correlation predicates become more complex? Forxamele, consider
the following XPath query:

//student[exam nation/ @d = //exan[grade<’ B ']/ @d or 08
senester > 5]/ nane

In this query, which could be used for searching studentsateeligible for
assistantship, we search f@ithergoodor senior students. If the two clauses were
combined withand, we could use the techniques presented in the previousarhapt
If the clauses were not correlation predicates, we coulded@iques to improve
performance for disjunctive predicates (e.g. bypass opex§27]). However, none
of the existing techniques is able to unnéisjunctivelyoccurring correlation pred-
icates.

Hence, in this chapter, we combine the bypass technique andrmesting
technique which allows an unnested evaluation of disjuattioccurring correla-
tion predicates. So far, this has not been accomplishedhipgaery language.

The main contributions of this chapter are as follows:

e We combine the bypass technique with our unnesting apprweatow for
efficient query execution plans in the presence of disjoncti

e We introduce a bypass variant of the kappa-join that allosv®iextend our
technique to queries where two or more correlation preegatcur in a dis-
junction.

59

60 CHAPTER 4. DISJUNCTIVE UNNESTING FOR XPATH

7 [name]
;
T[//studen;]> or\

Aovists 7 [semester > 5]

X

7 [examination/@id] 7[//exam]...]/@Qid]

Figure 4.1: Translation sketch for Q8

e We provide experimental results, demonstrating the sapgriof our new
approach compared to other evaluation techniques ang freailable XPath
evaluators.

The remainder of this chapter is organized as follows: Inrié&vet section, we
illustrate the problem existing unnesting techniques havine presence of dis-
junction. Section 4.2 presents the bypass technique. IndSgowe investigate the
case of disjunctive correlation and present our novel bygappa-join. We experi-
mentally confirm the efficiency of our approach in Sec. 4.4¢dss related work in
Sec. 4.5, and conclude the chapter in the last Section 4.6.

4.1 Problem

Consider the canonical algebra plan for Query Q8 (see Fig. Zhis algebra ex-
pression is similar to the one presented in Fig. 3.4 for Q8 &ex. 3.3.2), except for
theor function call in the subscript of the selection. Disjunetiwoccurring literals
are translated using am function call. It evaluates to true if either of its producer
expressions does.

Because of the extra literal and tbe function call, the pattern used for the
correlation predicate does not match the left-hand sidequiiialence 3.2 or the
definition of the kappa-join. Hence, we cannot proceed asQwery Q3. The
only technique currently available to improve the candngtan is the so-called
shortcut evaluation of the disjunction, which means thatcae avoid evaluation
of the expensive correlation predicate for those studeherevthe cheaper literal
semester > 5 is true. Below, we recall the bypass technique, which doestéx
that.

4.2. BYPASS TECHNIQUE 61

7 [name]

o=l ' gexists

T [/ /student] T[gemester > 5] Xo
7 [examination/@id

T/ /exam]...]/Qid]
Figure 4.2: Unnesting strategy for Q8 with bypass selection

4.2 Bypass Technique

The bypass technique is used to prevent the unnecessanatwalof predicates
that occur disjunctively [27]. For this, the bypass teclhieiqdds a new class of
operators to the conventional algebra. In contrast to eeguperators, bypass oper-
ators haveéwo output sequences. The first sequence contains the tuptegdidy
for the predicate of the operator. The second sequencestss$ithose tuples that
do not qualify this predicate. The two disjoint sequencescatledtrue- andfalse-
sequenceThe existing bypass technique provides a bypass seleetlmypass join,
and a bypass semi-join [27]. For our purposes, we only nezbtypass selection.

Consider as a first example the algebra representation ok{@&ded by a by-
pass selection operator¥) for evaluating the cheaper predicatenester > 5.
Fig. 4.2 shows the resulting plan. Here and in the followihg, false-sequence is
indicated by dotted lines. The evaluation according tophas starts with comput-
ing all result tuples for the outer expressigiistudent).

The bypass selection divides these tuples into two disgaqtiences. The true-
sequence contains the students that fulfill the predicatester > 5. Accordingly,
the false-sequence contains the tuples that fail this pageli The tuples of both
sequences form two separate paths, which are merged byoantisjion (J). The
tuples from the false-sequence have to pass the seconti@elgmerator computing
the complex correlation predicate. This operator is resgdafor filtering out those
tuples that do not qualify for any of the two predicates. The sequences are
disjoint. Hence, no duplicate elimination is requireddayHowever, as the XPath
semantics requires its result to be in document order, aeresgn merge-sort may
be required. This can be done, for example, by numberinguples before use
or use node ids if they allow to rebuild the order. The finalggssing of7 [name]
completes the result.

Looking at Fig. 4.2, we are in for a surprise: The bypass selewe introduced

62 CHAPTER 4. DISJUNCTIVE UNNESTING FOR XPATH

7 [examination/@id]

~
7|/ /exam]...]/Qid]

7[/ /student] T[gemester > 5]

Figure 4.3: Unnesting strategy for Q8 with bypass seledimh kappa-join

to allow shortcut evaluation of the disjunction made thegyatrequired for Equiv-
alence 3.2 or the kappa-join reappear! We discuss in thewoily subsection how
to leverage this for the unnesting of disjunctive querieghvai single correlation
predicate.

4.3 Disjunctive Unnesting

4.3.1 Unnesting a Single Disjunctive Correlation Predica

Query Q8 contains a single correlation predicate withinsgudiction. Bypass plans
have the advantage that the expression in the false-segjeande optimized sep-
arately. In general, whenever there is only a single cdicglgredicate per dis-
junction, we can apply unnesting. As seen in Fig. 4.2, we @ainarecognize
the pattern that allows us to integrate the kappa-join ferabnjunctive case. In
the false-sequence of Fig. 4.2, we can use the kappa-j@idiyg the expression
shown in Fig. 4.3. Of course, we could also apply Equivaléh2do the pattern in
the false-sequence.

In this case, the plan takes advantage of both: (1) shortaluation of the lit-
erals connected by disjunction and (2) unnesting of caroglgredicates allowing
efficient execution if the cheaper predicate in the disjiomcfails.

4.3.2 Unnesting Multiple Disjunctive Correlation Predicaes

We have seen that the bypass technique facilitates ungattinere is only one
correlation predicate in the disjunction. Unfortunatefythere is more than one,
we are again at a loss. Consider as an example the followiegygtn addition to
the good students, we also want to query the database fargtithat have already
been a teaching assistant for a given lecture.

4.3. DISJUNCTIVE UNNESTING 63

7 [name]
|
U

N
/ T [oid
NS

4 ._.~""T[//lecture[...]/.../@student]

/ \
T/ /exam]|...]/Qid
N\ [// [...]/@id]

v4a 7 [examination/@id]
|
T/ /student]

Figure 4.4: Incorrect unnesting strategy for Q9

7 [name]
|
U

T loid]

T/ /lecturel...]/.../@student]
KT ,T[examinaf'i.on /Qid]

— ~
T[//student] 7[//exam]|...]/@Qid]

Figure 4.5: Unnesting strategy for Q9 with kappa-join

/] student[exam nation/ @d= //exan[grade < 'B]/ @d or
@d = //lecture[title=" NCT’'] Q9
/ hel per s/ hel per/ @t udent]/ name

We would like to unnest both correlation predicates. At fijlsince, it is tempt-
ing to apply the unnesting strategy according to Equivaeéh2. Fig. 4.4 shows an
algebra expression for Q9 applying this technique, butguaibypass semi-join in-
stead of a regular semi-join. However, this approach iseadible. The first d-join
on the leftmost branch of the plan eliminates those itemdywed by//student
for which the dependent expressi@mmination/@id produces an empty result. If
we had a conjunctive query, this would not be a problem.

However, the/ /student items failing the first disjunct could still qualify for the
second disjunct, and dropping them as in Fig. 4.4 producexarnrect result. Note
that the bypass semi-join does not help: It "comes too laebblems of this kind
are often solved by using an outer-join [71] or, in this casger d-join. However,

64 CHAPTER 4. DISJUNCTIVE UNNESTING FOR XPATH

this would still require duplicate elimination ary, as shown in the true-sequence.

It turns out that we can do much better by applying ltgpass kappa-joinAs
every bypass operator, the bypass kappa-join has two ssgliences. The true-
sequence is the same as for the regular kappa-join. Thestupllee false-sequence
are the ones from the outer producer for which there was nahmatthe inner
producer or for which the link producer returned an emptywltesin the false-
stream, we now have our familiar pattern and can employ thesting strategy as
if the correlation predicate was a single correlation prati. Fig. 4.5 shows the
result. This plan finally has everything we want: (1) the ea#ibn of both corre-
lation predicates can be done in a decorrelated fashiorthékappa-join avoids
unneeded duplicate generation and elimination for botretation predicates, and
(3) we have shortcut evaluation and only evaluate the secomrdlation predicate
if the first one fails.

4.4 Evaluation

To show the effectiveness of our approach, we ran expergwatt different XPath
evaluation engines against our canonical and optimizebappes. We chose the
freely available engines

e Xalan C++ 1.8.0 using Xerces C++ version 2.6.0,

Saxon for Java 8.7.1,

Berkeley DB XML 2.0.9 (DBXML) using libpathan 1.99 as XPathgne,

MonetDB 4.8.0 using MonetDB-XQuery-0.8.0,

the evaluator provided by the XMLTaskForce (XTF), and

¢ Natix for the execution of the canonical and unnested plans.

We performed the experiments within the environment priesem the last
chapter. Moreover, we also generated the same documergseasoed in Sec. 3.4.
For Xalan, Saxon, and XTF, we measured the net timexerutehe query. The
time needed to parse the document and generate the main ynegpogsentation
is subtracted from the elapsed evaluation time. For theuatiah of MonetDB,
Berkeley DB XML, and Natix, we imported the documents inte ttatabase. The
time needed for this is not included in the execution timdse Gueries were exe-
cuted several times with an empty buffer pool and withoutiadgxes.

4.5. RELATED WORK 65

Queries

We executed performance measurements for both exampleg{&8 and Q9)
presented in this chapter. For Natix, we generated sevdfateht query evalua-
tion plans. For each of the queries, we generated the caalgtan as specified in
Chapter 2. For example, Fig. 4.1 shows the plans for Q8. Eyrtiee generated
plans incorporating our optimization strategies. Thedfelhg table gives a map-
ping from names for optimized query evaluation plans to gguhat illustrate the
techniques used.

Query | Name Figure

Q7 bypass Fig. 4.2
kappa Fig. 4.3

Q8 bypasskappa Fig. 4.5

4.4.1 Results and Interpretation

Fig. 4.6 contains the results of our performance measuren{etapsed time in
seconds). The best execution time(s) for each column irables are printed in
bold face. Those that did not finish within six hours are mdrkg DNF (did not
finish). For MonetDB, the evaluation of some queries ran dmt@mory on bigger
documents. These cases are denoted by OOM.

Subfigures 4.6(a) and 4.6(b) show the execution times for 80, respec-
tively. For all queries on all documents, our unnested agpgr@erforms and scales
best. The performance of all other approaches drops caabigevhen executed
on bigger documents. In contrast, our plans containing #pp&-join (Q8) and
bypass kappa-join (Q9) almost scale linearly with the sizb® document.

4.5 Related Work

We have already discussed related work for unnesting XFa@i,, OQL, and
XQuery at the end of the previous chapter. However, none @fikntioned ap-
proaches can handle unnesting in the presence of disjanctio

Several optimization techniques for queries containirgjudictive predicates
have been proposed [22, 27, 65]. One of them is the bypassiteeh[27] which
we extend with support for unnesting. Because bypass apsraave two output
streams, which are unioned later, the resulting expredsioms a directed acyclic
graph (DAG). Strategies for implementing bypass operaois query evaluation
engines that support DAG-structured query plans can bedfouf27, 87, 97].

66 CHAPTER 4. DISJUNCTIVE UNNESTING FOR XPATH

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.02| 0.23| 3.63| 54.7 893 | 12453
DBXML 0.06| 0.39| 6.87| 207 | DNF DNF
MonetDB 0.25| 0.36| 2.02| 36.2| OOM | OOM
Saxon 0.22| 0.30| 0.62| 1.44| 7.82 85.4
XTF 0.76 | 8.60| 9180 | DNF | DNF DNF

Natix
e canonical|| 0.16 | 1.64| 20.9| 333| 5598 | DNF
e bypass | 0.16| 1.59| 20.7| 323| 5436| DNF
e kappa 0.03| 0.05| 0.16| 0.60| 2.51 9.91

(a) Q8
Documents

Evaluator 1 2 3 4 5 6
Xalan 0.06| 0.75| 12.6| 199| 3201| DNF
DBXML 0.30| 1.61| 30.2| 4057| DNF | DNF
MonetDB 0.31| 0.50| 3.29| 62.9| OOM | OOM
Saxon 0.20| 0.28| 0.54| 1.48 10.9 138
XTF 0.48 | 5.14| 94.8| DNF | DNF | DNF
Natix

e canonical 0.37| 3.49| DNF | DNF | DNF | DNF
e bypasscanonicg| 0.37 | 3.43| 48.1| 749 | 12492| DNF
e bypasskappa j 0.02] 0.04| 0.10| 0.35| 1.44| 591

(b) Q9
Figure 4.6: Results (in sec.) for Q8 and Q9

4.6 Conclusion

We have demonstrated how to efficiently evaluate XPath gadeaturing existen-
tially quantified correlation predicates that occur in gustion. By injecting the
kappa-join — introduced in the previous chapter — with thpdss technique, we
are also able to perform an unnested evaluation if the @iroel predicate occurs
in a disjunction. All other approaches cannot evaluate suctise efficiently. Our
performance measurements show that the bypass kappatmarforms existing
approaches by up to two orders of magnitude.

Our novel unnesting technique is not only applicable to XRpteries contain-
ing disjunctions, but also to other query languages. Fomgt@, in [13] we have
presented the applicability to XQuery. Moreover, in thetrehapter, we transfer
our approach for optimizing SQL queries in the presencegtidction.

Chapter 5

Disjunctive Unnesting for SQL

In the last two chapters, we have seen that nested queriesasdy become a per-
formance bottleneck because in many cases, they demanted-hesp evaluation.
For XPath, we presented a technique to unnest XPath coropampressions if the
expression occurs either in a conjunction or a disjunctMoreover, for conjunc-
tive SQL and OQL predicates this problem has also been agitiesiccessfully,
e.g. [29, 70, 99]. However, despite the fact that disjumdioccurring inside nested
gueries are common in practice, we are not aware of any weartktteats unnest-
ing nested SQL queries which contain disjunctions, i.e.litiieng or correlation
predicate occur in a disjunction. Hence, in this chapterintreduce a technique to
unnest disjunctive nested SQL queries.

Key ldea As an example, let us consider a sample analytical queryumsghat
we are interested in all European suppliers that delivertaicegpart with minimum
supply cost®r have a minimal amount of this part available on stock. In SQis,
guery can be formulated as follows:

SELECT s_acctbal, s_nane, n_nane, p_partkey,
p_nfgr, s_address, s_phone, s_conment
FROM part, supplier, partsupp, nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey AND p_size = 15
AND p_type LIKE ' %8BRASS
AND s_.n.key = n.nkey AND n.r key = r_r key
AND r_name = ' EURCPE
AND (ps_suppl ycost =(SELECT m n(ps_suppl ycost)
FROM partsupp, supplier,
nation, region
WHERE s_suppkey = ps_suppkey
AND p_partkey = ps_partkey
AND s_n_key = n._n_key

67

68 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

AND n_r key = r_r key
AND r_name = ' EUROPE')
OR ps_avail gty > 2000)
ORDER BY s_acctbal desc, n_nane, s_nane, p_partkey

This query is very similar to TPC-H Query 2. Hence, we refeit tas Query
2d. It exhibits two key components: (1) it features a nested,elated subquery,
and (2) it contains a disjunction. Our unnesting strategyasable of optimizing
nested queries whose linking or correlation predicatesrodisjunctively. The key
idea is that the nested query block needs to be evaluatedarilyose tuples of the
outer query block that do not pass the cheap and simple ptegis _avai | gty
> 2000. For those tuples, we are currently restricted to an ineffichested-loop
evaluation. However, our novel unnesting technique allemwsmploy more effi-
cient evaluation algorithms. Consequently, our approaploés both the short-cut
evaluation of the disjunction and the power of unnestingatequeries.

Our Approach The starting point of our approach is to translate SQL int® th
relational algebra extended with bypass operators [27, 88n, we apply our
novel unnesting equivalences, which can cope with disjanston a large variety
of nested queries. As a result, nested query blocks are emand the resulting
gueries can be evaluated much more efficiently.

As already mentioned in previous chapters, applying ummgst the algebraic
level has mainly three advantages: (1) It is possible to gyarous correctness
proofs for the unnesting equivalences. (2) Unnesting tecias stated as alge-
braic equivalences are query language independent as $otige ajuery language
is translatable into the algebra. (3) Unnesting equivasmman be used during plan
generation. This allows to apply them in a cost-based manites latter is espe-
cially important in our case, since some unnesting stragsgp not always result in
better plans.

Contributions The main contributions of this chapter are:

e We present equivalences for unnesting algebraic expressiith bypass op-
erators to handle disjunctive linking and correlation pcatés where the link-
ing and/or the correlation predicate involves a comparigoerator) € {=
,# <S>, > 1

e We present how our approach can be applied to quantified saligueries
with the operators EXISTS, NOT EXISTS, IN, and NOT IN.

¢ We show how they can be used to effectively unnest SQL queitbsscalar
subqueries featuring an arbitrary aggregation functiadghésel ect clause.

5.1. PRELIMINARIES 69

e Our techniques can be applied not only to queries with exante nested
block (simple queries), but also to queries whose nestisgHaear or even
a tree structure [85].

e We provide experimental results demonstrating the perdoe improve-
ments that can be achieved by using our approach.

Limitations As a current limitation, we restrict ourselves to queriekileiting
direct correlation: That is, for linear queries the cortiela predicate only refers to
attributes of the current block and the direct outer block.

Further, we do exclude linking predicates with linking cggers¢ SOVE/ ANY,
or @ ALL with § € {<,<,>,>} from our discussion. However, using aggregate
functions that are aware of NULL values, we can still optienthese queries by
turning these quantifiers into the aggregate functionayyr;, or maxyurr, (cf.
“[44]).

Structure of This Chapter The remainder of this chapter is organized as follows:
Section 5.1 briefly introduces preliminaries. In Sectia® Sve present our unnest-
ing technique for table subqueries. Section 5.3 containsionesting techniques
for scalar subqueries. After introducing these approgalieshow their effective-
ness with an experimental study (Sec. 5.4). At the end, wersanme related work

in Section 5.5 and conclude the chapter with Section 5.6.

5.1 Preliminaries

To start with, we briefly establish a common terminology agjobat Kim’s classifi-
cation for nested SQL queries [70]. After that, we preseataligebra on which our
unnesting approach is based on.

5.1.1 Terminology

A query blocks asel ect - f r om wher e expression. A query containing a query
block nested in another query block is calledested queryThe containing query
block is calledouter query block, and the contained block is calieder query
block. An inner query block is also callegkstedquery block. Lefp be a predicate
occurring in thewher e clause of an inner query block. f refers to attributes
defined in the outer query block and to attributes definedanrther query blockp

is called acorrelation predicateand the inner query block is calledrrelated A
predicate;y in thewher e clause of the outer query block which contains the inner
guery block as an argument is calleahnection predicatel he operator used in the
connection predicate is callednnection operatorConnection predicates are also
calledlinking predicateg23]. In the following, we will stick to the latter term.

70 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

If a linking predicate occurs in a disjunction as, for exaeoh the introductory
query, this is calledlisjunctive linking Analogously, if the correlation predicate
occurs in a disjunction, this is calletisjunctive correlation

5.1.2 Classification

Kim introduced four types of nested query blocks [7R]N, JA andJ. Let us refer

to a nested query block & If B contains an aggregate functidjs of typeA or

JA and is calledscalar subquery.B must return a single column. B contains a
correlation predicate, it is of typgor JA. A nested query blocB that neither has
an aggregate function nor a correlation predicate is of typ&uery blocks with

an aggregation function but no correlation predicate arypé A. Nested query
blocks of typeN or J are calledablesubqueries. They are connected to their outer
query block using theositive linking operator&XI STS, SOVE/ ANY, andl N or
negative linking operatorslOT EXI STS, ALL, andNOT | N, respectively.

While Kim concentrates on classifying single nested quéoghks, Muralikr-
ishna additionally classifies queries according to theimgsttructure [85]. He
subdivides queries with more than one nested block intatimad tree queries:
A Linear (Nested) Queris a query where at most one block is nested within any
block. A Tree (Nested) Queng a query with at least one block, which has two or
more blocks nested within at the same level. We completectassification and
call a query with exactly one nested blockmnple (Nested) Query

5.1.3 Algebra for Sets

In contrast to previous chapters, the domain of the relatialyebra consists of sets
of tuples. The core algebra we use in this chapter contasfotlowing operators:
union (), intersection 1), set-difference(), projection (I), renaming operator
(p), selection §), theta-join &), semi-join (), and anti semi-join») [45]. We
denote a disjoint union by.

For the purpose of this chapter, we extend this core algepfard operators:
a unary grouping operatoi’), a binary grouping operatoi() [29, 102], a left
outer-join (x9:/?) [29, 31], a numbering operatar), and a map operatogy).

Given the definition of the binary grouping operator in Fidl,5ve define the
unary grouping operator. The left outer-joix{/() is required to address the
“count bug” [69, 44], i.e. losing a tuple due to an empty grouherefore, the
function f assigns meaningful values to the attribytior tuples that have no join
partner on the right-hand side. The numbering operafoctfaracterizes each tuple
with a unique deterministic number (e.g. a physical tupkntdier). We use the
map operator to apply a function to each tuple. Figure 5.1nsarizes the formal
definition of the five additional operators.

As a final important extension of our algebra, we allow sup$€ito contain
algebraic expressions. In our case, such subscripts fesoittranslating nested

5.2. UNNESTING TABLE SUBQUERIES 71

guery blocks in theher e clause, i.e. algebraic operators appear in selection pred-
icates.

To translate the linking predicatésXl STS and | N, we employ the internal
functiond,(e); for the negated form we usé,(e). Each of these operators returns
true if there exists (does not exist) at least one elementeir argument that
satisfies the predicate We write3(e) and A(e) if the predicate is true, i.e. there
is no linking predicate (e.g=XI STS andNOT EXI STS). To translate aggregate
functions, we use the aggregation operators,&Jyl COUNT, MAX, M N, andAVG

In the previous chapter, we have presented bypass ope[aiQr88] in order
to effectively deal with disjunction. In this chapter, weetthem again in variants
that can be used for sets. Hence, we call their outputs pesitid negative stream
instead of sequence (as in the previous chapter). For exampklection produces
a positive streantontaining all those tuples for which the selection preticyval-
uates to true; th@egative streantontains the remaining tuples. To denote the
positive and negative streams of a bypass operator, we asaifferscripts- and
—, respectively.

For this chapter, we need a bypass selectiof),(a bypass joinx*), a bypass
semi-join &*) and a bypass anti semi-joir{). Their definitions on sets are given
in the bottom part of Figure 5.1.

Although the algebra is based on sets of tuples, our applieadko applicable
for an algebra on bags. In two dedicated sections (see S¢.dnd 5.3.7) and in
the Appendix C, we elaborate on the correctness of our tqalesiif the algebra is
based on bags.

5.2 Unnesting Table Subgueries

We now present our detailed unnesting techniques alongrtae bf the classifi-
cation introduced in Section 5.1.2. As table subqueries fypesN & J) are less
demanding, we start out with them. As tyNejueries can be unnested by applying
the unnesting techniques for typgueries, we deal with them later in Sec. 5.2.3.

This section is organized as follows: First, we discuss th&ididea of our
approach by means of two queries based on a synthetic scls&oand, we present
the general solution in the form of algebraic unnestingejances. On their left-
hand side, they have a selection whose predicate contajusdiively a quantified
algebraic expression. On their right-hand side they intoeda bypass operator.
Then, we move on to more advanced issues, i.e. tree queariear Queries, and
duplicate handling.

5.2.1 Disjunctive Linking

The first example query exhibits a nested query block whaosjardtively occur-
ring linking predicate uses the linking operatdy. Because the nested block has a

72 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

Non-standard operators:

ey a045. 062 = {x.A10g:Gllx€er A
G = f({yly € ea Az A10y. As})}
Pg—airler) = Taa(analen)ga—niy(er))
el}dg:f(@)eg = eMyeaU{zoz|lr€e A

Ay € ey :p(r,2) NA(z) = Alez) A
g€ Ale2) ANVa € (Ale2) \ 9) :
(z.a : NULL A z.g: f(0))}
vale) == {tio[A:ille={t1,...,t,}}
Xaen(€1) = {zola:eyx)]|r € e}

Bypass operators:

o (e) = {zlz €enp(z)}

o, (e) = e\o;(e)={z|r €en—p(x)}
eie; = {zoylrce Ay €eAp(z,y)}
e, e (e1Xea) \ (ellx];reQ)

é{xoy‘xeel/\yeeg/_‘}?(ﬂfay)}

e1xl e {z|lz € ey ATy € ea Ap(x,y)}
e1x, e er\ (elxgeg)

= {z]|r € es\ By € ex Ap(w,y)}
ervyes {z|z € esN By € ea Ap(z,y)}
erb, e er\ (erb)es)

={zlr€er ANy € ea Ap(z,y)}

* only valid for two-valued logic (cf. [27, 68] for details)|-] denotes tuple con-
struction. o denotes tuple concatenatiofl(R) is the set of attributes of relation
R.

Figure 5.1: Operators of the algebra

correlation predicate in itsher e clause (R.A = S.B;), it is of typeJ.

SELECT DI STI NCT =
FROM R
VWHERE R A; IN (SELECT S. By
FROM S
WHERE R Ay = S. Bg)
OR R A, > 1500;

Q10

5.2. UNNESTING TABLE SUBQUERIES 73

o X A4>1500
l \\ \/(A1:B4/\A2:B3)
or o
bR S . . \\
Ay>1500 Fy,_p,) Semijoin 2 3a-s,
| + |
JAzlzBa 0 A4>1500 UA2|=B3
I
S R S
(a) Canonical (c) Correlated bypass plan
: U\
OA4>1500
+ +
O A4>1500 X A1=BiAAL=B;
I /
R R S
(d) Unnested bypass plan (18) Unnested bypass
plan (2)

Figure 5.2: Unnesting strategy for Q10 (sketch)

Due to the existential nature of thé\ operator, the algebraic expression result-
ing from the translation of the query has an existential ¢jtiansubscripted with
the linking predicate. The argument of this quantifier ftsglagain an algebraic
expression. As the existential quantifier occurs in a seledperator, the nesting
of the query blocks in the query is reflected by a nesting oélalgic expressions,
i.e. the subscript of an algebraic operator again containglgebraic expression.
Translating the query into a nested algebraic expresselds/the following:

O (3n, =B, (0ay—5, (5)VAs>1500(R).

Fig. 5.2(a) sketches the more readable tree form of thisesspyn. Evaluating
the predicate which contains the inner query block for evepje produced by the
outer query block (R) is not very efficient.

To avoid this nested-loop-like evaluation, we would likeunnest the sub-
guery. In the conjunctive case, nested queries are usuatigated by applying
(semi-)joins. Recast into the algebraic framework, thi®ants to applying the
following equivalence:

O3a,=8, (0a,=B, (S))(R) = RXA,=Binao=B.S. (5.1)

Let us see what happens if we apply this traditional techentguour translated
query. The resulting expression (called semi-join planghiswn in Fig. 5.2(b).

74 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

The problem is that efficient implementations of (semif)ponly exist for equi-
joins, whereas in our case, the semi-join condition costairdisjunction at the
top level. Implementations other than a simple nested-e@uation are beyond
reach. Thus, we are again stuck with a nested-loop evatuatio

Let us take a closer look at the query. Assume that a tuple RaatisfiedR. A4
> 1500. Then, we do not have to che€& A1 I N ... for it: it qualifies inde-
pendently of the outcome of this check. Further, if a tupterfiR does not satisfy
R A4 > 1500, it must satisfyR. A1 I N ... in order to qualify. Thus, it does
make sense to split the tuple stream produced by scannintpRwo independent
streams: one containing those tuples satisffgng4 > 1500 and one with the
remaining tuples. The latter then needs to be filtere®b&1 I N Finally, as
the two streams are disjoint, a disjoint uniay) (©n these two streams suffices to
produce the final result. Bypass operators capture exduykind of reasoning.
This is why we want to use them for unnesting. Let us introdubgpass selection
with predicateR. A4 > 1500. Fig. 5.2(c) shows the result. The positive stream
of the bypass selection (denoted by a solid line) directhyticbutes to the final re-
sult whereas the negative stream (denoted by dots) is @iltere selection with the
algebraic equivalentd® A1 | N This equivalentd,_g,(0a,=5,(S)), is the
filter predicate of a top-level selection and itself consaam algebraic expression
(especially a scan of S). Hence, we still have a rather ineffimested algebraic
expression demanding a nested-loop evaluation. Howeeeare/prepared for the
final, performance-improving step.

We now introduce a semi-join to unnest the query (accoraitgpuivalence 5.1).
Although the details are given in the next subsection, wienauld like to give the
result:

e = € U €o
61 = UX4>1500(R)
€2 = (0Z4>1500(R))KA1:B4/\A2:BS(S>‘

Fig. 5.2(d) shows this expression in a more readable forne SEmi-join now
operates on the negative stream of the bypass selectiomarsd¢dn of S. Since its
condition is now a conjunction of two equality predicatésan be evaluated very
efficiently. We verify this claim in our experiments in Sexti5.4.

Remark. It is important to recognize that commuting the bypass seleevith
the semi-join (see Fig. 5.2(e)) is also feasible. This eemflirther optimization
potential. Assume that the second predicate is expensiedaloate. Then it may
be cheaper to perform the semi-join first. This situatiorognized by comparing
ranks of the predicates: the one with the lower rank shouleMagiated first [100].
For a predicate, the rank {ank(p)) is defined a§;—1, wheres is the selectivity of
predicatep, andc is the cost required to evalugte

5.2. UNNESTING TABLE SUBQUERIES 75

5.2.2 Disjunctive Correlation

In the previous subsection, we have shown a technique tostiimested) queries
whose linking predicate occur in a disjunction. In contrake following query
contains a disjunctively occurring correlation predicat disjunctive correlation:

SELECT DI STI NCT =

FROM R

VWHERE R A, IN (SELECT S. B,
FROM S Q11
WHERE R A, = S. Bj
OR S. B; > 1500)

Fig. 5.3(a) depicts the canonical translation of this quesya sketch. Note that
we cannot unnest this query with the technique of the firstrgte, because the
wher e clause of the nested query contains a disjunction with tvealipates, one
of which is the correlation predicate (R.A S.B;).

Consider a tuple of R. If there exists a tuple in S such that passes the tests
s.B4 > 1500 andr.A; = s.By, thenr is contained in the result. This is expressed
by the bypass semi-join in Fig 5.3(b). If no such tuplesiexists, becomes part
of the negative output of the bypass semi-join. Fdo qualify, there must be a
tuple s in S such that~.A; = s.B, andr.A; = s.Bs. As those tuples irb with
s.B4 > 1500 have been checked before, we only need to consider thaseS
not havings.B, > 1500. Thus, we have to perform a semi-join on the negative
output of the bypass semi-join and the negative output oE#tection (see again
Fig 5.3(b)).

N

R E|A1:B4 l><A1:'B4/\A2:Bg
g
AN
. .
S or XA, =B, .
/ L
Ay =B; By > 1500 R 0E o0

(a) Canonical |

S
(b) Unnested bypass plan

Figure 5.3: Unnesting strategy for Q11 (sketch)

76 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

035, 5, vp(R) = e1Ue (5.2)
e = o, (R)
ez = (0, (R))Xa,=B,S

035,25, vp(R) = e Ues (5.3)
er = Rx{ _pS
e = 0p(RXy _g,5)

02 _n,w(R) = e Ue (5.4)
e = o, (R)
ez = (0, (R))>a,=B,S

O7a,—n, Svp(R) = e Ues (5.5)
er == Re{ g (S)
e2 = op(RPy _p,5)

Figure 5.4: Equivalences for disjunctive N queries

5.2.3 Equivalences

After having worked out the general idea by means of two exaspgve now intro-
duce the general form of our technique by means of our novelalgnces. They
are shown in Figure 5.4 for tydé subqueries and Figure 5.5 for typsubqueries.
We provide proofs of these equivalences in Appendix C. Tlegsgvalences allow
us, for example, to formally derive the unnested plans prtesebefore. On their
left-hand side, they contain a selection with a predicaaé thsults from the trans-
lation of a nested typBl or typeJ query block. On their right-hand side, they have
an unnested algebraic expression with bypass operators.

We first discuss the equivalences for disjunctive linkimgrt those for disjunc-
tive correlation.

Disjunctive Linking

We split the discussion of the equivalences for disjundimeng into two parts:
one for positive and one for negative linking predicates.

Positive Linking Predicates Equivalences 5.6 and 5.7 have been implicitly ap-
plied to our sample query Q10. The former yields the plan shioviFig. 5.2(d), the
latter the one in Fig. 5.2(e).

Both equivalences unnest table subqueries that exhibisgiymlinking pred-
icate occurring in a disjunction. The former employs the dggptechnique to a

5.2. UNNESTING TABLE SUBQUERIES 77

03a,-B, (0ay=B, (S))Vp(R) = € U €2 (5.6)
er = o, (R)
e2 = (0, (R))Xa,=B,Ans=B,5

03,2, (oaym, Op(R) = €1 Uey (5.7)

e1 = RXL _p an,=p,S
ea = 0p(RXy _p aa,—B,5)
OFa, =B, (0ay=B, (S))VP(R) = A U €2 -8)
e = UJ(R)
ez = (0, (R))>A,=B;rA,=B,(S)
OFa =8, (0a,=B, (S))VP(R) = aUe (5:9)
er = RDX1:B1/\A2:BQS
ez = 0p(RPy g any—B,d)
JEAIZBI(UAQZBQVP(S))(R) = a U €2 (5.10)
e = RKL:Bleiﬁ
ey = (RD(XIZBleB)D(AlzBl/\AQIBQ (UI;(S))
€3 = U;—(S)
O2a,_p, (oagepyup®)(R) = €1 Ues (5.11)
e = RDL:Ble?)
ey = (RDXIZBI63)DA1=BI/\A2=BQJ;(S)
€3 = U;—(S)

Figure 5.5: Equivalences for disjunctive J queries

disjunctively occurring subquery and unnests the subguretiye negative stream
of a bypass selection. The positive stream contains alesugplat match a lower-
ranked predicate [100]. A final union merges both streams without having to
eliminate duplicates. The latter equivalence uses the sd@ae but the subquery
is evaluated first, and the evaluation of a higher-rankeg€psive) predicatg is
postponed into the negative stream.

Equivalences 5.2 and 5.3 are similar but can be used for tingesibqueries
of typeN. As a result of the missing correlation predicate, the utatkguery only
contains a simple join condition.

Negative Linking Predicates Equivalences 5.8 and 5.9 unnest queries with a neg-
ative linking predicate (i.e. of the fortdOT | N), which occurs disjunctively. Both

78 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

equivalences are similar to those for positive linking jrates but feature an anti
semi-join. The first equivalence takes advantage of an anti-fin in the nega-
tive stream to unnest the subquery. Note that in order tauat@lthe correlation
predicate it also becomes a join predicate of the anti semi-jThe second equiv-
alence uses a bypass anti semi-join for evaluating the supdust and postpones
the evaluation of a higher-ranked predicatato the negative stream.

Equivalences 5.4 and 5.5 are again similar but useful foesting subqueries
of typeN, i.e. exhibiting a predicate containitNQT EXI STS. The anti semi-join
on the right-hand side of both equivalences only featuresgesjoin predicate for
evaluating the negative linking predicate.

Disjunctive Correlation

Equivalences 5.10 and 5.11 unnest queries with a disjuectiwelation predicate.
Again, we discuss those exhibiting a positive linking poatie first and then discuss
unnesting of queries featuring a negative linking pre@cadh both equivalences,
the predicate can be a simple predicate or a nested query itself.

Positive Linking Predicates Equivalence 5.10 is used for unnesting queries whose
linking operator id N. The core benefit of this equivalence results from the clever
filtering of tuples in R. First, the linking predicate is ordliecked for tuples of S
that match the cheaper predicate Only the remaining tuples of R are checked
for matches that pass the correlating predicate. This atgnee can also be used
for unnesting queries whose linking operatoEdsl STS. In this case, there is no
linking and, henceA; = B; is set to true within the equivalence.

Negative Linking Predicates Equivalence 5.11 handles the linking operatdts

EXI STS andNOT | N. It applies the same strategy as explained in the previous
equivalence that handles positive linking predicates. éi@& note that now an
anti semi-join replaces the semi-join to check for the negdinking operator. In
case of the linking operat®dOT EXI STS, the linking predicate within the equiv-
alence is true.

5.2.4 Completeness of Equivalences

It is important to make sure that the equivalences sufficaitest all nested queries
with linking predicatd Nor EXI STS and their negated counterparts. The reason is
that the translation of these queries results exactly irptteerns on the left-hand
side of our equivalences. When no correlation predicatst&xthe equivalences
from Fig. 5.4 can be applied. Otherwise, we apply those fragm%-5.

5.2. UNNESTING TABLE SUBQUERIES 79

5.2.5 Tree Queries

Obviously, the equivalences introduced in the last subs®are capable of unnest-
ing simple nested queries, i.e. those containing just desimgsted block. It might
be less obvious that they also allow us to unnest tree andrliqeeries. In this
subsection and the following one, we demonstrate that$higleed the case.

Let us start with the following example of a tree query:

SELECT DI STI NCT =

FROM R
WHERE A, NOT IN (SELECT B,
FROM S
WHERE A, = By)
R Q12
As IN (SELECT C

FROM T
WHERE A, = C)

In this query, we have two nested query blocks on the samg aveusing\NOT
| Nand the other usingN. Their linking predicates are connected by a disjunction.
Additionally, both query blocks are correlated, i.e. oféyjp

We briefly demonstrate that Equivalences 5.9 and 5.1 enable unnest this
query. The canonical translation of the Query Q12 is giveRkim 5.6(a). First,
we can unnest this query by applying Equivalence 5.9. Thieduces a bypass
anti semi-join (for the negative linking predicate) whosejpredicates are the
linking and correlation predicates. The evaluation of theosid nested query is
postponed into the negative stream of this bypass anti pgmiSecond, we apply
Equivalence 5.1 — the equivalence used for the conjunctige e— to the query in
the negative stream. Fig. 5.6(b) shows the final unnestedtres

Analogously, we can also apply Equivalence 5.7 for unngstine subquery
connected with the positive linking operator. This equeveae introduces a bypass
semi-join and postpones the second nested query into the $aleam of this op-
erator. Then, we can apply the following equivalence to therators in the false
stream.

OFa,=B, (0ay=B,(9)) (R) = R‘DAIZBI/\AQZBQS' (512)

This equivalence was developed for unnesting the conpmctaise with nega-
tive linking operators and is similar to Equivalence 5.1 positive linking opera-
tors.

5.2.6 Linear Queries

In the following, we demonstrate that all of the strategves developed for simple
typeN or typeJ queries, also work for linear queries. Moreover, in thidisec we

80

CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

o U
I N
or XA3=C1AAL=C>
SN
Ani=B; Fag=Ci PA,_piarsB,
| | / \
UAQZBQ JA4:C2

R S
| | (b) Unnested bypass plan

S :
(a) Canonical

Figure 5.6: Unnesting strategy for Q12 (sketch)

also show that our equivalences can be applied in either-ddaym or a bottom-up
fashion on the algebra tree.

Let us start with a demonstration of our technique usingeslimuery with two

subqueries of typ#l.
SELECT A
FROM R
WHERE A, IN (SELECT B,
FROM S
WHERE B, I N (SELECT C; Q13
FROM T)
R CQ)
OoRrR C1

Fig. 5.7 compares both strategies for Query Q13. In Fig.a), #e present
the canonical algebra expression of this query. Startirt this expression, we
have two choices: We can either start to unnest the deepegtisty that has a
nested query in one of its predicates (see Fig. 5.7(b)) ot with unnesting the
top-level query (see Fig. 5.7(d)). In the former case, wdyapguivalence 5.2 to
the subquery in the middle, in the latter case, we apply tihheesaguivalence to
the top most query. In either case, Equivalence 5.2 does odtfynor influence
the expressions which represent the remaining subquéiliesce, as we can also
see in Figures 5.7(c) and 5.7(e), in both cases, there arémbddleys, and both
approaches yield a correctly unnested plan.

Next, we briefly demonstrate that the same holds for lineariga whose sub-

gueries are of typd. Therefore, consider the following query containing twb-su
queries in a linear chain, each of which is correlated:

5.2. UNNESTING TABLE SUBQUERIES 81

T o
(d) Top-down 1 |2 |

S T
(e) Top-down 2

Figure 5.7: Unnesting strategy for Q13 (sketch)

SELECT A
FROM R
VWHERE A; I N (SELECT By
FROM S
VHERE A2 = 83 Q14
R B, I N (SELECT C,
FROM T

WHERE B, = G;))

In this query, the deepest nested query block is connectéd tmter query
block by a disjunction. Note that we have restricted oueslw queries whose
correlation predicate consists of attributes or variatiles are defined in a directly
adjacent outer block. We depict our top-down unnestingegsain Figure 5.8.
Subfigure 5.8(a) contains the canonical translation. ApglfEquivalence 5.10 for
positive linking operators, as already shown for Query Qidids the intermediate

82 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

plan from Fig. 5.8(b). Although the middle query block iseady unnested, we
would like to unnest the deepest nested block, too. This oaftyfibe done applying
Equivalence 5.1. Subfigure 5.8(c) shows the final result.

o U
/> AN
R E|A1=B4 l><AA'1=B4./\A2=B;3
| Ll
0—\ D<A1:134
[~ |
S or R Ji\
N /.
E|]31:C4 A2 - B3 S E|Bl:C4
| |
aBQ:Cg 0B2:C3
| |
T T
(a) Canonical (b) Unnested bypass plan (1)

"~
D<_A1=B4_AA2=B3
S
R

+
I><B1 =C4AB2=C3

/ \
S T
(c) Unnested bypass plan (2)

Figure 5.8: Unnesting strategy for Q14 (sketch)

We have already shown that it does not matter whether we applynnesting
strategy in a top-down or a bottom-up fashion for subquesfagpe J. Note that
for a generally nested tree or linear query, we have a chdige:can apply all
equivalences in a top-down or a bottom-up fashion. Takimgftiimer approach,
we would successively apply the equivalences to the outgrougery block. For
the bottom-up approach, we would use the innermost block.

5.2.7 Duplicate Handling

Our unnesting equivalences are defined for an algebra otgeofsiples. However,
we now briefly argue that all of the equivalences presentddgares 5.4 and 5.5
are also correct for an algebra over multisets. For formabfsrinstead of a verbal
argumentation, we refer to Appendix C. The validity of ouueglences for mul-

5.3. UNNESTING SCALAR SUBQUERIES 83

tisets is necessary because by default, SQL queries do motveeduplicates, i.e.
they yield multisets of tuples.

For our equivalences for table queries, two issues have tmbsidered. The
first is the bypass technique. Bypassing does not cause abjeprs because it
splits its input into two disjoint multisets, i.e. equal e go the same way. The
final (disjoint) union merges both inputs without duplicatanination. Hence, no
duplicates are falsely eliminated. Further, no new (fatkejlicates are introduced
as long as there are no expressions producing duplicatey ioféhe two streams.

Hence, the second source of possible problems are the opetiaat are applied
in the streams. All equivalences from Figures 5.5 employraig@in or an anti
semi-join. For both operators, implementations are coatéde which adhere to the
selection-like semantics, i.e. they neither wrongly efiate nor generate duplicates.
Hence, it is safe to apply our unnesting techniques to nautis

The correctness of the equivalences from Fig. 5.4 can béeckiby replac-
ing the correlation predicate of the according equivaldonceype J queries with
true.

5.3 Unnesting Scalar Subqueries

Unnesting scalar queries is difficult and error-prone. iBaldrly, empty groups
and duplicates (cf. [69]) have been sources of errors. Aswachallenge, we now
support unnesting queries with disjunctive linking or etation.

Analogically to the last section, this section is organiasdollows: First, we
start with a discussion of our approach by means of two simgpéries. Second,
we present our unnesting equivalences for simple quereest, e elaborate on the
unnesting of linear queries, tree queries, and finish witiseudsion of correctness
in the presence of duplicates.

According to Kim’s classification, scalar subqueries caofitgpeA or JA[70].
Subqueries of typ@ are easy to handle. Their result can be computed indepen-
dently of the outer query, and the materialization costsagdigible. Thus, it suf-
fices to materialize the computed result. As their treatrmeesd simple, we do not
discuss them any further but concentrate on the more clyatigypeJA queries.

5.3.1 Disjunctive Linking

In the following query, the subquery is of tyg@é, as it contains a predicate which
refers to the attribute A which is defined in the outer block, and the attribute B
which is defined in the inner block:

84 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

SELECT DI STINCT =

FROM R
WHERE A, = (SELECT COUNT(DI STI NCT *) 015
FROM S
WHERE A, = By)
OR A, > 1500

The linking predicate compares the attributewith the result of the aggrega-
tion (i.e. count) from theel ect clause of the inner query. Moreover, this linking
predicate occurs in a disjunction. Translating this quaety the algebra yields the
following expression:

O Aj=count(oa,—B, (S))vA4>1500(R)'

Fig. 5.9(a) presents this canonical evaluation plan in eemeaidable form.

For the evaluation of this query, the inner query has to béuated for ev-
ery tuple produced by the outer query block, i.e. in nestegdo Obviously, this
is not very efficient. In order to unnest ty@dA queries in the conjunctive case,
it is common practice to apply grouping on the correlatianitaites of the inner
guery to perform the aggregation. Then, an outer-join igluseaccomplish the
match with the tuples from the outer query block with the grediand aggregated
result [70, 71]. The following algebraic equivalence capsithis procedure:

f(0
Tas0t(on,—n,)(R) = T (0a,05(RIGY, (Tycpaie(9)))). (5.13)

If the predicate in the outer query block of our example queag a conjunc-
tion, we could apply this equivalence without hesitatioowdver, if we apply this
equivalence to the algebra expression of the query, thétiregplan contains an
outer-join with a disjunctive join predicate. In this cages only known implemen-
tation is the rather inefficient nested-loop implementatio

Equivalence 5.13 utilizes grouping and an outer-join toastrihe correlated
subquery. However, it is restricted to the correlation ma being an equality
comparison. The binary grouping operator in the followimgigalence roughly
results from merging the grouping operator and the outerf9].

TA101 (0 ag0,5,(S) (R) = 0a10,6(RMg450,8,:65) (5.14)

This equivalence requires that, is a super key oR but allows for general
comparisond, of the correlation predicate. For both Equivalences 5.185ah4,
it is required thag ¢ A(R) U A(S).

Let us take a closer look at example Query Q15. Assume thaila fttrom R
satisfiesA, > 1500. Then, we do not have to cheek = ... for it: it qualifies
independently of the result of this check. Further, if a¢upbm R does not satisfy
A, > 1500, it must satisfyA; = ... in order to qualify. Thus, it does make sense

5.3. UNNESTING SCALAR SUBQUERIES 85

T U
l AN
.o
/ A\> 1500 o '
4 A4>1500 -
VAN Y /.
A co|unt R A co|unt
OAy=Bs OAy=Bs

S
(a) Canonical

BN

l
S
(b) Bypass plan

N

H“T(R)) O A4>1500
OA=
4 T Maw
:0 |
™9 .
AQ—BQ MiO_B
A | 2=By
JA4>1500 Fg;ZBz;coun‘c / \\
| | R Fg;:Bz;coun‘c

R S
(c) Unnested bypass plan (1)

(d) Unnested bypass plan (2)

Figure 5.9: Unnesting strategy for Q15 (sketch)

to split the tuple stream produced by scanning R into twopedeent streams: one
containing those tuples satisfying, > 1500 and one with the remaining tuples.
The latter then needs to be filtered Ay = Finally, as the two streams are
disjoint, a disjoint union{) on them suffices to produce the final result. Let us
therefore introduce a bypass selection with predi¢ate> 1500. The following
algebraic expression results from this:

e = €1 U €9
€1 = UX4>1500(R)
€ = 0a, =count(oa,=B,(9)) (O-X4>1500 (R)) .

Fig. 5.9(b) shows the more readable result. The positieastrof the bypass
selection checking\, > 1500 (denoted by a solid line) directly contributes to the
final result. In addition, the negative stream (denoted lig)ds filtered by a selec-
tion with the algebraic equivalent df; =

With this expression as a starting point, we can derive timested bypass plan
shown in Fig. 5.9(c). Those tuples of R that satisfy the maeiA, > 1500 directly

86 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

contribute to the result. Only for the remaining tuples, veechto check the condi-
tion expressed by\; = This check is represented in the plan by the same trick
used to unnest conjunctively nested queries. In a first steroup by the linking
attribute B, of the inner query and calculate the aggregate. Then, wenperén
outer-join. For those tuples of R that do not find a join parttiee default handling
of the outer-join assures correctness. Last, we evaluatintking predicate. It has
been rewritten since the aggregation result has been @miaed in the attributg.
A final projection on the attributes & guarantees the same schema in the positive
as well as the negative stream before unioning the two sgeam

Remark. As for disjunctive table queries, we can commute the bypalsston
with the selection in the negative stream (see Fig. 5.9()at is, if the predicate
A, > 1500 was a very expensive one, we could evaluate the subquery first
this case, the selection checking the linking predicatestinto a bypass selection,
and the predicatd, > 1500 is evaluated only in the negative stream of the by-
pass selection. A projection on the attribute®oh both streams ensures the final
schema.

5.3.2 Disjunctive Correlation

Not only the linking predicate can occur in a disjunction. eTiollowing query
contains a disjunctively occurring correlation predicae disjunctive correlation:
SELECT DI STINCT
FROM R
WHERE A, = (SELECT COUNT(*)
FROM S
WHERE A, = B,
OR B; > 1500)
The aggregation function in theel ect clause of the nested query combines
all tuples that pass the correlation predicAte= B, or the simple predicat8, >
1500.
Similar to the canonical translation of Query Q15, but whie tisjunction in
the selection predicate of the nested selection, the cealotmanslation gives us
(see also Figure 5.10(a))

Q16

OAj=count(ca,=B,yvB,>1500(S)) (R).

Unnesting is not possible with any of the existing techngyueor the following,
we refer to the plan in Fig. 5.10(b). The general idea to untines query is based
on two facts: (1) the aggregation function (in this case tpigrdecomposable [30],
and (2) the predicatB, > 1500 can be evaluated independently of the outer query.
This allows us to calculate the total count of the inner quesyn adding up the
counts calculated for two disjoint subsets. Take a look atlbttom of the plan
in Fig. 5.10(b). In the positive stream of the bypass sedecftdenoted by a solid
line), we count all tuples from relation S that satisfy thegcateB, > 1500.

5.3. UNNESTING SCALAR SUBQUERIES 87

Those tuples of S that do not satiddy > 1500 go into the negative stream. Here,
they have to pass the correlation predicate before theyibate to the total count.
Hence, we group them and evaluate the count function for giaip. Analogously

to the general unnesting strategy (see Equivalence 5.E3pply an outer-join to
perform the match with the outer relation R and — in order toiéithe count bug
— assign 0 to the attributg for those tuples from R that do not have a join partner.
At the end, we need a map operator to add up the separatelylatelt values
for g; and g, to give the total couny. The subsequent selection with predicate
A; = g checks the linking predicate. The final projection assunes the result
only contains attributes from R.

o I ar)
I |
— O_Alzg
VERN
A, count |
| Xg:g1+g\2
ag . \\
) :Ni’ozBQ g9 1= count;
of S /

R F91;=Bz;00unt1
A2 = B2 B4 > 1500

(a) Canonical Jj'[
B4>1500

S
(b) Unnested bypass plan

Figure 5.10: Unnesting strategy for Q16 (sketch)

5.3.3 Equivalences

Having presented the general approach, we present ourgjemeresting rewrites
for scalar queries of typ8A. However, first we need to defirsdecomposability
of aggregate functions [30]. LeY, Y, andZ be sets withX = Y U Z and

Y N Z = (). A scalar aggregate functigh: X — A is decomposabli there exist

functions

fr: X — N
fO:N/>N/ - N

with f(X) = fo(f1(Y), fi1(Z)). Fortunately, the SQL aggregation functions
used most often are decomposable:

88 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

count(X)= count(Y) + count(2)
sum(X)= sumy(Y) + sumy(2)

_ sumy(Y)+sum;(Z)
an(X) = countj(Y)+counItI(Z)

min(X) = ming(min;(Y),min;(Z))
max(X) = maxp(max (Y),max;(2)).

However, there is another restriction for decomposabilitye partitionsy” and
Z must contain disjoint values. To see why this must be the, casesider the fol-
lowing example:COUNT(DI STI NCT({1, 1, 1, 2, 2, 2})) = 2, but some par-
titionings of the bag yield the wrong resu®OUNT(DI STI NCT({1, 1, 2})) +
COUNT(DI STINCT({1, 2,2})) =2+2#2.

The discussion of our equivalences (see Fig. 5.11) is spbttivo parts. In the
first part, we discuss unnesting equivalences for querigsdigjunctive linking. In
the second part, we advance to unnesting equivalences éoiegwvith disjunctive
correlation. The proofs for all equivalences can be foundippendix C.

Disjunctive Linking

In all the equivalences, lgt be an aggregation function.

Equivalences 5.15 and 5.17 Equivalences 5.15 and 5.17 are used to unnest scalar
gueries whose linking predicate occurs disjunctively.

The former postpones the evaluation of the unnested supqierthe negative
stream of a bypass selection. Basically, the unnestinghigah is adapted from
Equivalence 5.13 in the conjunctive case. Note that alssdh®e restrictions hold,
i.e. we require an equality comparison. The idea of this\edence has already
been explained using Query Q15. Fig. 5.9(c) depicts thadexty.

The latter equivalence is used for first evaluating the utegesubquery, i.e.
the linking predicate, and postpone the evaluation of ticerse predicate into the
negative stream of the bypass selection. Fig. 5.9(d) vieemthis strategy.

Equivalences 5.16 and 5.18 The above equivalences allow unnesting only for
gueries whose correlation predicate features an equalityparison. In Equiv-
alences 5.16 and 5.18, the sequence of unary grouping anduteir-join is re-
placed by a binary grouping operator. The advantage of usingry grouping

is that these equivalences support an arbitrary correlgredicate Af, B, with

0 € {=,#,<,<,>,>}. However, for their validity they require the correlation
predicate A to be a key ofR. This is necessary to be able to preserve the other
attributes ofR, e.g. A or a free attribute op.

5.3. UNNESTING SCALAR SUBQUERIES

TpvA10(f(oay—, (5)) (R)
€1

€2

HAhAQ (UpVA191(f(UA292B2 (9)) (R))
€1
€2

OpvA10(f(cay=B,(9))) (R)
€1
€2

IT4, 4, (UpVA191(f(UA292B2 (8)) (R))
€1
€2

TALOK (0, Byvp($) (R)
€1
€2

a1, 42 (04,01 10130, 50050 ()
€1
€2

T8 (02, —1,vp(S) (R)

Rl
€1

€2

89

el U €9

o, (R)

Ty (0g0a, (0 (R)) 20520
(Cg=n,;¢(8))))

T4, 4,(e1 U ey)

oy (R)

TLa(r) (00,2, (0, (R))Xg2,0,8,:1(S)))

ILar)(e1 U es) (5.17)

oo, (B2, (Tgmpa(9)))

000 g, (R0, (Tympuis(5)))

T4, 4,(e1 U €y) (5.18)

T3, a, (R)Xg:a,0,8,:6(S))

op(0 galAl((R) g:A205B2:£(S)))

TLa(R) (0108 (Xecfo(g1.e0)(€1)))

R (P impai, (0, (5)))

fr(o, (9))

14,4, (O—AIQIQ(XQZJCO(QLBQ)(61)))

(R)Wgqu@sz;fz (J;(S))

filo,(9))

Iar) (0A10g((R/)Wg;t1:t1’;f
(prrr—e1 (e U €2))))

v (R)

R'™E .S

Up(R/[X]XQ:BQS)

(5.15)

(5.16)

(5.19)

(5.20)

(5.21)

Figure 5.11: Equivalences for disjunctiy& queries

Disjunctive Correlation

Equivalences 5.19 and 5.20 handle queries whose correlation predicate occurs
in a disjunction. Their limitation is that the predicate eegsionp must not be a
subquery itself. Moreover, these equivalences requiraglyeegation function to be

90 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

decomposable and the correlation predicate to be an egpaditiicaté. Fig. 5.10
illustrates the idea of Equivalence 5.19 for the query fraent®n 5.3.2.

For both equivalences, the main idea is to generate paniatmediate results,
which are then combined by the subsequent map operator. rEhgdirtial result
consists of those tuples that qualify for the non-correlapredicate. The other part
of the result contains those tuples that satisfy the cdrosl@redicate. These tuples
are either checked by a sequence of unary grouping and ledt-fmin operator
(see Equivalence 5.19) or a binary grouping operator (segvéence 5.20). For
the former, the correlation predicate must exhibit an dguebmparison. For the
latter, the correlation predicate may use an arbitraryetation predicate (using
0 € {=,#,<,<,>,>}) but must hold the restriction that,Anust be a super key
of R.

Equivalence 5.21 in contrast, is more generally applicable. There are neicest
tions on the aggregate function. In addition, predigatgay contain a nested query,
i.e. the query is a linear query. The bypass join generategositive stream for
the tuples which satisfy the correlation predicate and aptementary negative
one wherep is checked. Beforehand, we need to introduce a numberingitope,
which enables us to correctly reassemble the results dthienginary grouping.

5.3.4 Completeness of Equivalences

Our equivalences handle all cases of scalar subqueriesligjtinctive linking and
correlation. Thereby, the linking predicate can consistroarbitrary linking oper-
ator (=, #, <, <, >, >}).

Let us make sure that the canonical translation of a scateyusry always leads
to a pattern that matches the left-hand side of one of ourvatprices. In this
situation, the canonical translation results in an agdgesfianction callf as top-
level member of a selection predicate, which is part of thkitig predicate.

In Equivalence 5.15 and 5.17, this corresponds to disjuaditnking. The ar-
gument of the aggregation function is again a selectionkihgdor the correlation
predicate, which in Equivalences 5.19 and 5.21 occurs isjamition. Remember
that the former equivalence is a special case of the latesrnweherep must not be a
subquery itself and the aggregation functipmust be decomposable.

5.3.5 Tree Queries

Tree queries of typdA can be unnested quite easily by successive applications of
our known equivalences. Consider the following tree query:

INote that the DISTINCT versions of the aggregation funaiG@UNT, SUM andAVG are not
decomposable. In this case, Equivalence 5.21 must be dpplie

5.3. UNNESTING SCALAR SUBQUERIES 91

SELECT DI STI NCT =

FROM R
WHERE A; =(SELECT COUNT(DI STI NCT =*)
FROM S
R VWHERE A2 = BQ) Q17
A; = (SELECT COUNT(DI STI NCT +)
FROM T

VHERE A, =)

Figure 5.12 illustrates the canonical translation and ésellt of the following
two steps. In a first step, we unnest the query. For this, wh/&ipivalence 5.15
to the predicate with the lowest rank. In the second step,ave to choose: either
we apply Equivalence 5.15 again, if there exists anothegseity on the same level,
or we apply Equivalence 5.13, if this is not the case. Becaase of the subqueries
contains a nested query, we then apply Equivalence 5.13.

U\
Ay
0 As=go
[!
R \\or Mﬂi‘:%
/ \ AN
— " HA(R) I‘gg;:Cg;count
/ \ /\ j:l Tar |
A, count count As Ohg T
o
0 o 0,
2N)N /N
A2 - B2 S T A4 - CQ R Fgl;:Bg;count
|
S
(a) Canonical (b) Unnested bypass plan

Figure 5.12: Unnesting strategy for Q17 (sketch)

We can also replace Equivalences 5.13 with 5.14 or Equical&ri5 with 5.16,
respectively.

92 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

5.3.6 Linear Queries

Linear JA queries are a special case of disjunctive coroglal he second predicate
in the disjunction is again a linking predicate, as showrhafbllowing query:

SELECT DI STI NCT =

FROM R
WHERE A, =(SELECT COUNT(DI STI NCT *)
FROM S
WHERE A, = B,
R Q18
B; = (SELECT COUNT(DI STI NCT *)
FROM T

WHERE B, = C)))

Fig. 5.13 presents the unnesting procedure. We start wetbhdhonical transla-
tion (see Fig. 5.13(a)) and unnest in a top-down fashion. firsastep, we apply
Equivalence 5.21. The result is shown in Fig. 5.13(b). Frarehit becomes ob-
vious that for the deepest nested expression Equivaleh8ean be applied which
yields the final plan shown in Fig. 5.13(c).

5.3.7 Duplicate Handling

Let us make sure that all equivalences mentioned in thisoseate also correct
when they are based on an algebra over multisets. The ragid-kide of Equiv-
alences 5.15, 5.17, and 5.19 contains a unary grouping dhthe of the nested
guery block, followed by a left outer-join. We observe th#eagrouping on the
correlation attribute of the inner query, each value of treuging attributes occurs
exactly once. This key is later used as join attribute in #fe duter-join. As a
result, this join either finds exactly one matching tupledach tuple resulting from
the outer query block, or it keeps the outer block’s tupleroheo to preserve empty
groups. Hence, the cardinality of the left outer-join is ekathe one of the outer
relation R.

In Equivalence 5.19, we have already ensured correctnetse afuplicate se-
mantic for expression, above. The map operator does not influence duplicates, as
it only computes the correct aggregate value.

The numbering operatar in Equivalence 5.21 turns the multiset R into a set
and thereby ensures correctness for multisets.

Each equivalence introduces one bypass operator. In thestethplan, this
operator partitions its input into two disjoint sets. Thiigeither creates duplicates
nor discards any tuples. Moreover, the final union can be e@ffor multisets,
ensuring that duplicates are handled correctly.

5.4. EVALUATION 93

BN
R —
7\
A, co|unt
? N
S -~(|7
N I
/ N\ /" \
Bs co|unt
TN\ e
B4 = CQ T T
(a) Canonical (b) Unnested bypass plan (1)
Har)
|
UA1|:92
X"

g2,t=t/ ,count

Pt —t
I

BN

L aryuAs)uin

Nig*Bg 033:g1
s gl
I
R I‘gl;:Cg;count
+

(c) Unnested bypass plan (2)

Figure 5.13: Unnesting strategy for Q18 (sketch)

5.4 Evaluation

To demonstrate the effectiveness of our unnesting tecbsijgue performed an ex-
tensive evaluation. Specifically, we measured the exattitioes of the canonical

94 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

and the unnested plans using our hybrid relational and XMIM3B\atix [40]. Ad-
ditionally, we compared the resulting evaluation timedwiiose measured for three
major commercial database management systems, for angnggasons hence-
forth nicknamed S 1, S 2, and S 3. For the same reason, we gamasent specific
guery evaluation plans for the commercial systems. Howeagewe will see, the
strategy can be predicted by comparing these evaluatiastimith those resulting
from the execution of the canonical plans in Natix.

After a brief description of the experimental setup, we fargtsent performance
results for unnesting table subqueries and then proce@adkarsubqueries. In both
cases, we present evaluation results for simple, tree jia@arIqueries.

5.4.1 Datasets

The evaluation is performed on several datasets basedemsbhemas:
1. the schema of the TPC-H benchmark [104],
2. the schema of the preliminary draft of the TPC-DS benchkiji®5], and
3. the schema RST used for the example queries.

The latter schema contains three tables (R, S, and T), eadistiog of four
columnsj; € A(R), B; € A(S), andC; € A(T)fori=1...4.

The datasets for the TPC-H benchmark are generated usibgtitémark gen-
erator (dbgen) with scaling factor§) 0.01, 0.05, 0.5, 1, 5, and 10. This results
in moderate database sizes of 11MB - 11GB.

For the TPC-DS benchmark, we generated the qualificaticabdae using the
benchmark generator dbgen2. The resulting database hes af 4iGB.

For the independently scaled relations of the RST schemajemerated in-
stances with scaling factor§'f’) 1, 5, and 10. This led to 10.000, 50.000, and
100.000 rows and amounts to small tables of 178KB, 1.1MB, 2a¥B. In the
evaluationsSF'1 denotes the scaling factor of the outer query block &A@ the
scaling factor of the inner query block. We did not use laspaling factors because
neither the canonical plans nor the commercial systemsdoatll.

5.4.2 Settings

For the experiments, we used two comparable PCs with 1 GB dfiRAch. Not
all commercial systems are available for the same operatisggm. We executed
Natix and two of the commercial systems on one of the PCs ngninnux 2.6.11.
The other commercial system ran on the other PC under Wind&®wvall queries
were executed with a cold buffer. Further, for optimizing tueries using the
commercial systems, we used the highest optimization f[m&dible. However, we
did not create any indexes.

5.4. EVALUATION 95

Because of the necessity to use two different systems, tudtireg evaluation
times are not exactly comparable. However, the growth oféisalting evaluation
times already demonstrates the effectiveness of our ungesgtproaches.

5.4.3 Table Subqueries
Disjunctive Linking

First, we present a performance evaluation for Query Q10unrsynthetic schema
and the Query 4d on the TPC-H schema. Query 4d is similar tayQdiérom
the TPC-H benchmark but extended to also select urgentrdBne predicate
selecting the urgent orders is disjunctively connectetiédinking predicate of the
nested (correlated) query. The query is shown in the fohgwi

SELECT o_orderpriority, count(*) as order _count
FROM orders
WHERE o.orderpriority = ' 1-URGENT
OR EXI STS (

SELECT =

FROM [|ineitem

VWHERE | comm tdate < | recei ptdate

AND o.orderkey = | orderkey)
GROUP BY o.orderpriority ORDER BY o.orderpriority

We executed both queries in the three commercial systemsand database
system Natix. For the evaluation with Natix, we generateddtalternative evalua-
tion plans for both queries. For Query Q10 these are:

Canonical: A correlated plan, as depicted in Fig. 5.2(a). Clearly, fian per-
forms a nested-loop like evaluation.

Semi-join: An unnested plan, as shown in Fig. 5.2(b) using a nesteddeoyp-join
implementation.

Unnested: An unnested bypass plan, as given in Fig. 5.2(d).

For Query 4d we generated the same alternatives. Fig. 5didtdeheir plan
sketches.

The first plan (see Fig. 5.14(a)) implements a nested-laapesjy. In this plan,
the correlated subquery is executed for every tuple fronORBERS relation that
does not qualify for the predicate checking for an urgeneggdority. The second
plan (see Fig. 5.14(b)) features a semi-join operator feruhnested evaluation of
the subquery and the predicate connected to the subqueny aiglisjunction. For
this reason, the implementation of the semi-join perfornmesied-loop strategy.

96 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

Ho_orderpriority,order_count
1

Sorto_orderpriority
|

1—‘order_coun‘c,o_orderpriority,coun‘c

[
~
~

I ~
ORDERS “or
/

Jo_orderkey=l_orderkey o_orderpriority = 1 — URGENT
I

Ol_commitdate<l_receiptdate

|
LINEITEM _ _
(a) Natix: canonical

Ho_orderpriority,order_count
I
Sorto_orderpriority

1—‘order_coun‘c,o_orderpriority,coun‘c

I><(o_orderkey:l_orderkey/\l_commitdate<l_receiptda‘ce)\/o.order];)riority:1 —URGENT

/ ~~
ORDERS LINEITEM

(b) Natix: semi-join

Ho_orderpriority,order_count
I
Sorto_orderpriority

1—‘order_count,o_orderpriority,count

|
U \
le_orderkey:o_orderkey

N

Ol_commitdate<l.receiptdate

I
LINEITEM

n .
o-orderpriority=1—URGENT

|
ORDERS

g

(c) Natix: unnested

Figure 5.14: Query plan sketches for Query 4d

Efficient hash- or sort-based implementations are out afhrea this case. The
third and last plan (see Fig. 5.14(c)) exhibits a bypasscgelefor the evaluation

5.4. EVALUATION 97

of the predicate checking for urgent priorities. In the édatdream of the bypass
selection, a hash-based semi-join is used for the evatuafithe subquery. The

remaining operators (i.e. grouping, sort, and projectjoerator) are the same in all
three plans.

SF1 1 5 10

SF2 1 5 10 1 5 10 1 5 10
System

S1 10.1| 51.3| 102 50.6| 260| 520 100| 522 | 1043
S2 0.21/0.28| 0.17| 0.86| 0.83| 0.89| 1.75| 1.84| 1.86
S3 7.78| 41.4| 83.3| 33.8| 175| 363| 66.1| 342| 663
Natix

e canonical| 10.8| 53.1| 104 || 45.5| 228 | 452 | 86.2| 431| 852
e semi-join|| 4.0/ 4.05| 4.0||4.01|4.03|3.96| 4.01| 4.02| 3.97
e unnested| 0.21| 0.2| 0.2 0.21| 0.2 0.2|0.21] 0.2| 0.23

(a) Q10

TPC-H Scaling Factor

System/Technique¢ 0.01| 0.05] 05| 1| 5| 10
S1 84.0| 3715| n/a| n/a| nl/a| nla
S2 0.08| 1.83| 24.7| 43.9| 290| 616
S3 62.8| 1742| n/a| n/a| n/a| n/a
Natix

e canonical 79.7| 3631| n/a| n/a| n/a| n/a
e semi-join 17.7| 470| n/a| n/a| n/a| nla
e unnested 0.19| 0.48| 3.67| 15.6| 79.3| 189

(b) Query 4d

Figure 5.15: Results (in sec.) for Q10 and 4d

Fig. 5.15 shows the execution times (in seconds) of thesaagué/Ne aborted
the execution of queries after six hours. These cases a@eatkby n/a. The
fastes execution time for each dataset is denoted usingdafbce. The first ta-
ble (see 5.15(a)) compare the runtimes for Query Q10 exeautehe commercial
systems and Natix. The bottom table (see 5.15(b)) preseatsesults for Query
4d.

For both queries, our unnested approach outperforms eediashest commer-
cial system S 2. For the largest scaling factors, our appraatperforms S 2
by a factor of three or more. The remaining commercial systshow a perfor-
mance similar to our canonical plan. These results inditzdé they perform a
rather naive evaluation. The unacceptable evaluatiogstohthese systems and the
canonical plan underline the importance of unnesting degteries. In general,
the unnested plans of the two example queries finish up todalers of magni-

98 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

tude faster than the naive nested-loop evaluation. Moreven the Natix plan that
exhibits a nested-loop semi-join for unnesting Query 4dsdu& produce a result
within six hours for the dataset with scaling factor 0.5.

Disjunctive Correlation

Besides the evaluation of ty@egueries with disjunctive linking, we also performed
an evaluation for queries with disjunctive correlation. efdfore, we executed
Query Q11 on our synthetic dataset and generated two dite¥rguery execu-
tion plans for Natix. The first alternative is based on theotéesl translation (see

Fig. 5.3(a)), and the second is the unnested plan (see Bitp)p.Fig. 5.16 presents
the results of this study.

SF1 1 5 10

SF2 1 5| 10 1 5| 10 1 5 10
System

S1 0.06|0.17| 0.24| 0.08| 0.35| 0.56 0.11| 0.38| 0.70
S2 0.13|0.27|0.38| 0.11] 0.61| 0.95| 0.13| 0.63| 1.23
S3 8.78|35.9|87.1| 46.9| 220| 400| 94.7| 469| 885
Natix

e canonical|| 11.9| 48.3| 72.9| 66.3| 278 | 661 | 163| 633| 1348
e unnested| 0.22]| 0.39| 0.54| 0.26| 0.69| 1.02| 0.31| 0.75| 1.27

Figure 5.16: Results (in sec.) for Q11

In the experiments, systems S 1 and S 2 perform as fast as nasteaad plan.
However, in contrast to the acceleration of nested quasi@sesting gives the cost-
based optimizer more opportunities for reordering opesadémd the selection of
physical implementations. Finally, we point out the enoasiperformance gains,
compared to the naive nested-loop evaluation chosen ligrsyS 3 and to our
canonical plan.

Tree Table Subqueries

To evaluate queries of typkwith a tree structure, we executed two queries. The
first is based on the our synthetic dataset and shown in tleeviolg.

SELECT DI STI NCT *
FROM R
WHERE Al | N (SELECT B4
FROM S
WHERE A2 = B3) Q19
R
Al IN (SELECT C4
FROM T
WHERE A2 = C3)

5.4. EVALUATION 99

Query Q19 is a tree query because it has two nested queryshhasted inside
the top-level query block.

The second is Query 10 taken from the TPC-DS benchmark aidlgrghown
here.

SELECT cd_gender, cd_marital status, cd_educati on_stat us,
count (*), cd_purchase_estimte, count(*), cdcredit_rating,
count (*), cd.dep_count, count(*), cd.dep_enpl oyed_count,
count (*), cd.dep._college_count, count(*)

FROM custonmer c, custoner _address ca, cust onmer _denogr aphi cs

WHERE c.c_current _addr sk = ca. ca._address_sk and

cacounty in (’Rush County’,’ Toole County’,
"Jefferson County’, 'Dona Ana County’,’lLa Porte County’)
and cd.denmo_sk = c.c_current _cdenp_sk and
EXI STS (SELECT =
FROM store.sales,datedim
WHERE c.c_customer sk = ss_customer sk and
ss_sol d_date_sk = d._date_sk and
d_year = 2000 and
d_moy between 3 and 3+3) and
(EXI STS (SELECT =
FROM web_sal es, datedi m
WHERE c.c_custoner sk = ws_ bill _customer sk
and ws_sol d_date_sk = d.date_sk and
d_year = 2000 and
d_noy between 3 ANd 3+3) or
EXI STS (SELECT =
FROM catal ogsal es,datedim
WHERE c.c_custoner sk = cs_shi p_customer sk
and cs_sol d_date sk = d.date_sk and
d_year = 2000 and
d_noy between 3 and 3+3))

CGROUP BY cd_gender, cd_marital status, cd_education_status,
cd_purchase estimate, cdcredit_rating, cd.dep_-count,
cd_dep_enpl oyed_count, cd_dep_col |l ege_count

ORDER BY cd_gender, cd_narital status, cd_education_status,
cd_purchaseestimate, cdcredit_rating, cd.dep_count,
cd_dep_enpl oyed_count, cd_dep_col | ege_count

The TPC-DS query contains three nested correlated quénesyf which are
connected by a disjunction. For the (almost) canonical féae Fig. 5.17(a) for
a sketch), we unnested the subquery that occurs conjulyctiith the help of
a semi-join. The remaining two subqueries that are condeayea disjunction
are evaluated in the subscript of the selection. The graupperator utilizes the
sorted grouping attributes. The unnested bypass plan (ge&.E7(b) for a sketch)
exploits a bypass semi-join for the evaluation of the subgtieat joining cata-
log_sales and datdim. The evaluation of the other subquery is postponed heo t
false stream.

100 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

~ -
- —

T~ N N
S [

I I
customer fly storesales T catalogsales datedim wehsales datedim

customeraddress datedim i)
(a) Natix: canonical

I

|
Sort
X
/

customerdemogr. U

" wehsales o

|
X+ datedim
I></ \lx
x/ \x
RN /

customer o storesales ol datedim

customeraddress datedim

catalogsales o

(b) Natix: unnested

Figure 5.17: Query plan sketches for TPC-DS Query 10

Fig. 5.18 contains the results of our evaluation. For thelstic dataset (see
Subfigure 5.18(a)) SF1 denotes the scaling factor for theroelation. SF2 denotes
the scaling factor of both inner relations, i.e. S and T. Suivé 5.18(b) presents the

5.4. EVALUATION 101

results for the evaluation of TPC-DS Query 10 on the quatificedatabase of the
TPC-DS benchmark.

SF1 1 5 10
SF2 1 5 10 1 5 10 1 5 10
System
S1 23.3| 119| 305| 114 | 598 | 1524 231| 1199| 3008
S2 0.34| 0.14| 0.16| 0.13| 0.19| 0.27] 0.16| 0.22| 0.34
S3 17.2191.9| 179 84.3| 496| 920| 166| 944 1873
Natix
e canonical| 26.8| 133 | 273 127 | 695| 1323| 266 | 1291 | 3003
e unnested|| 0.23| 0.68| 2.04 || 0.27| 1.23| 3.21|| 0.41| 1.97| 4.66
(@) Q19
Quialification
Database (1GB
S1 7304
S2 228
S3 537
Natix
e canonical 82.9
e unnested 14.7

(b) TPC-DS Query 10

Figure 5.18: Results (in sec.) for Q19 and TPC-DS Query 10

For the synthetic dataset, S 2 is the fastest of all systenesalgé note, that in
the case of tree queries S 3 (which was the slowest beforaksisrfthan S 1, for
both, the synthetic and the TPC-DS dataset. However, onB& DS benchmark,
our unnested approach is the fastest, i.e. an order of magniaster than S 2. On
this dataset, our canonical approach, which executes thi@rmively connected
subquery in an unnested manner, is faster than S 2.

Linear Table Subqueries

Within the last table subquery experiment, we measureddhfermance gains that
can be achieved by unnesting linear queries. Consider tloavfog linear query
that contains two subqueries of type

102 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

SELECT *
FROM R
WHERE R Al | N (SELECT S. A4
FROM S
WHERE R A2 = S. A3 Q20
OR S.Al IN (SELECT T. A4
FROM T
WHERE S. A2 = T.A3))

Fig. 5.19 contains the according results of its evaluatlarthe table, SF1 de-
notes the factor used to scale the outer relation. SF2 detimtescaling factor of
both inner relations, i.e. Sand T.

SF1 1 5 10

SF2 1 5 10 1 5 10 1 5 10
System

S1 8.71| 191| 902| 8.36| 497 | 1515| 8.35| 818 1995
S2 0.19]| 0.75| 1.64| 0.31| 0.91| 1.73|0.53| 1.14| 1.94
S3 25.6| 418| 1376/ 85.6| 742 | 1974| 149| 1060| 2925
Natix

e canonicall| 24.2| 348 | 1347|| 79.6| 6574| 1891 | 140| 1057| 2519
e unnested| 0.17| 0.37| 0.74| 0.24| 0.43| 0.81| 0.36| 0.52| 0.89

Figure 5.19: Results (in sec.) for Q20

For linear table queries, our unnested approach dominkighar approaches.
The execution times of S 1 and S 3, compared to the executiastof our naive
evaluation plan, indicate that the commercial systems umested-loop like evalu-
ation. However, we also note that S 2 also performs very well.

5.4.4 Scalar Subqueries

In the following section, we present the results for our periance study for scalar
subqueries. Similar to the last section, we start with priésg our evaluation for

simple queries — with disjunctive linking and correlationard then move on to
gueries that have a tree and linear structure.

Disjunctive Linking

We selected Query Q15, and based on the TPC-H schema, tbduatory Query
2d to evaluate simple queries with disjunctive linking.

Query Q15 has one nested correlated query that is disj@hgtonnected to
the outer query block. The same yields for Query 2d, which egicted in the
introduction of this chapter. For both queries, we exectnenl query execution
plans in Natix. The first plan implements a canonical tramsia Figures 5.9(a)

5.4. EVALUATION 103

and 5.21(a) show the canonical plan for Query Q15 and 2deotisply. The sec-
ond plan results from the application of Equivalence 5.15inhests the typdA
subquery using a binary grouping operator in the false streba bypass selec-

tion. Figures 5.9(c) and 5.21(b) illustrate these stra®edor Query Q15 and 2d,
respectively.

SF1 1 5 10

SF2 1 5 10 1 5 10 1 5 10
System

S1 10.6| 55.7| 111 49.4| 259| 520| 98.3| 515| 1029
S2 0.19] 0.33| 0.52| 0.92| 1.17| 1.30| 1.95| 2.13| 2.52
S3 5.06| 25.1| 50.1| 25.7| 144 | 267 | 49.8| 259| 558
Natix

e canonical|| 10.9(54.9| 109 46.8| 235| 474 | 88.5| 450| 899
e unnested|| 0.2|0.24| 0.3 0.78|/ 0.87|0.98| 1.6|1.65| 1.74

(a) Q15
TPC-H Scaling Factor (SF)
0.01| 0.05| 0.5 1 5| 10

System

S1 0.14| 0.36| 52.5| 123| n/a| n/a
S2 0.10| 2.00| 29.0| 67.0| 328| 766
S3 0.27| 0.57| 48.7| 234| n/a| nl/a
Natix

e canonical|| 79.7| 3631| n/a| n/a| n/a| n/a

e unnested| 0.14| 0.19| 0.82| 1.49| 23.1| 49.5
(b) Query 2d

Figure 5.20: Results (in sec.) for Q15 and 2d

Fig. 5.20(a) and 5.20(b) present the results for these egiekle observe that
our unnested approach excels all other approaches — for $ieaR well as the
TPC-H dataset. In comparison with our canonical approdehpéerformance num-
bers of the commercial systems for the RST dataset allowdaakethat these sys-
tems execute the nested query in a nested-loop like fasaty. the commercial
system S 2 almost keeps up with our unnested approach. Hovievéhe TPC-H
dataset our unnested approach even outperforms this sppsteme order of mag-
nitude. The remaining commercial systems are surpassdudwy to four orders of
magnitude for the cases that finished within six hours.

Disjunctive Correlation

Besides the evaluation of JA queries with disjunctive Ingkiwe performed an eval-
uation for queries with disjunctive correlation. Therefowe executed Query Q16

104 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

Sort
|
/ X \
X g
\ N\
1></ SUPPLIER m/ AN
NATION/ Jge PART/ QRTSUPP N
Or_name=FEurope or
REGION il 600\
ps.availgty > =
/ \
p&SUppWCOSt gmin,pssupplycost
|
/) \
/ X \ Up_partkeyI:ps_partkey
/K\SUF’PLIER PARTSUPP
NATION Or_name=Europe
|
REGION

(a) Natix: canonical

Sort
|

/ X \
X U
/ X \SUPPLlER Ops_supplycost=g
|
NATION Or_name=Europe Dd—‘g.;p_l;)aurtkey:1;)s_partkey;min
....... |

|
+
REGION Up.s_a/uailqty>2000
1

RN
X PARTSUPP
PART PARTSUPP/K SUPPLIER
NATION Or_name=Europe
REéION

(b) Natix: unnested

Figure 5.21: Query plan sketches for Query 2d

using the commercial systems on our synthetic dataset ametgfed two alterna-
tive query execution plans for Natix. The first alternatiseoased on a canonical
translation (see Fig. 5.10(a)). The second was derived plyimg a strategy based
on Equivalence 5.19 (see Fig. 5.10(b)).

Figure 5.22 presents our performance measurements far gi@ss. The as-
sessments indicate that all commercial systems evaluatgqubry similarly to our

5.4. EVALUATION

105
SF1 1 5 10
SF2 1 5| 10 1 5| 10 1 5 10
System
S1 16.7| 90.3| 184 82.7| 445| 905| 165| 892| 1803
S2 8.55|46.3| 95.5| 42.9| 235| 479 | 85.7| 466| 971
S3 11.6|59.7| 120 71.4| 378| 737| 143| 753| 1519
Natix
e canonical|| 16.0| 98.6| 208 | 79.8| 470| 897| 166| 1237 | 1768
e unnested| 0.12| 0.14| 0.15|| 0.22| 0.24| 0.26| 0.38| 0.41| 0.42

Figure 5.22: Results (in sec.) for Q16

canonical plan. For the moderate size of 2.1MB of the larggsthetic dataset —
scaling factor 10 for both the inner and outer query block #+,unnested approach
outperforms the others by three to four orders of magnitiviiereover, evaluation

times up to half an hour for 2.1MB data seem unacceptable.to us

Tree Scalar Subqueries

To evaluate tree queries, we executed the following queryhensynthetic RST
dataset. Fig. 5.23 presents the results.

SELECT =
FROM R
VWHERE Al = (SELECT COUNT(*)
FROM S
WHERE A2 = B3) Q21
R
A2 = (SELECT COUNT(*)
FROM T
VWHERE A4 = C4)
SF1 1 5 10
SF2 1 5/ 10 1 5 10 1 5 10
System
S1 31.8| 190| 539| 225| 1039| 2435| 395| 1976| 4874
S2 0.14| 0.47|0.92| 0.36| 0.72| 1.17| 0.66| 1.02| 1.58
S3 25.6| 136| 274\ 147| 717| 1391| 289 | 1446| 2874
Natix
e canonical| 25.8| 136| 262 | 136| 689| 1342| 257 | 1384| 2693
e unnested| 0.19]| 0.29| 0.45|| 0.4| 0.58| 0.79] 0.81| 0.96| 1.23

Figure 5.23: Results (in sec.) for Q21

106 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

Similar to the results for queries of typAwith disjunctive linking, our unnested
approach is the fastest. However, S 2 can almost keep up witihe other com-
mercial systems perform a naive evaluation strategy.

Linear Scalar Subqueries

In the last subsection, we show an evaluation for linearigeevhose subqueries
are all of typeJA. For this purpose, consider the following linear query.

SELECT =
FROM R
WHERE R Al = (SELECT count (S. B4)
FROM S
WHERE R A2 = S. B3 22
OR S.Bl1 = (SELECT count (T.C4) Q

FROM T

WHERE S. B2 = T.C3))
OR R A4 < 1500

This query has two scalar subqueries of typearranged in a linear structure.
Fig. 5.24 shows the according results of its evaluation.

SF1 1 5 10

SF2 1 5 10 1 5 10 1 5] 10
System

S1 n/a| n/a| n/aj n/a| n/a| nla n/a| n/a| n/a
S2 152 | 784 | 1602| 744 | 3884 | 9237 || 1517 | 7923 | n/a
S3 n/a| nfa| n/a| n/a|] n/a| nla n/a| nl/a|n/a
Natix

e canonical| n/a| n/a| n/a| n/fa| n/la] n/a n/a| nl/a|n/a
e unnested|| n/a| n/a| n/a| n/a| n/la] n/a n/a| nl/a|n/a

Figure 5.24: Results (in sec.) for Q22

As we can see, the evaluation of this query is very hard fopatrall systems.
Even our unnested approach cannot produce a result withhosirs. The reasons
for this are that the bypass join is, in fact, equally costiaa@ross product because it
has to enumerate the same number of tuples. However, irethés our equivalences
still increase the search space for an cost-based optimmemay, for example,

But as the evaluation of S 2 shows, evaluation techniques f®] become more
important in such cases.

5.5. RELATED WORK 107

5.5 Related Work

The optimization of nested queries has been researchedssfialty. We have al-
ready discussed the existing techniques for unnesting SX@L,, and XQuery in
the last two chapters. For example, Kim [70] establisheddhssification for
nested SQL queries to which we adhered to in this chapter.eM@r, he also
proposed the first strategies for unnesting nested queéth this preliminary
work, he opened a huge research field for unnesting SQL [3243644, 69, 99],
OQL [29, 39, 101, 102], and XQuery [81, 82]. In particulat,thkese approaches
focused on merging two or more query blocks into one. Howewane of the ap-
proaches considered nested queries whose linking or aboelpredicate occurs
in a disjunction. We presented a novel approach that is ¢amdbmerging query
blocks in order to unnest nested queries even if one of theskgates occurs in a
disjunction.

In almost all cases, our approach significantly outperfoother existing ap-
proaches in terms of execution time. Admittedly, not all af annested plans are
superior to evaluating queries in a nested fashion. Theoressthat unnesting
strategies do not always result in better plans if, for eXantpe result of the outer
guery is small. However, in any case, our algebraic unngstpproach increases
the search space of a cost-based optimizer.

For the cases in which unnesting does not increase perfeer@runnesting is
not possible, Elhemali et al. [36] and Graefe [50] propoggagaches for efficiently
evaluating subqueries in their nested structure. Thisoisekample, achieved by
exhibiting available indices, materialized views, tecfu@s similar to magic decor-
relation ([99]), or prefetching.

The former approach by Elhemali et al. also suggests a ealtdr dealing with
subqueries and their linking predicate occurring in disjions. Their approach
utilizes the translation of disjunctions into union exgiess in order to execute
each argument of a union efficiently. However, this may regjavaluating the two
common input expression twice, which we avoid with bypassajors.

Optimizations for queries containing disjunctions haverbpresented in [22,
27, 65]. Specifically, the bypass technique that we extenddaesting was intro-
duced in [27, 68]. Strategies for implementing bypass dpesand query evalua-
tion engines that support DAG-structured query plans asegnted in [27, 87, 97].

5.6 Conclusion

We believe that nested queries containing disjunctiveipatels have not yet at-
tracted the attention they deserve. In our experimentdlystiue have shown that
evaluating nested queries in a nested-loop-like fashiadd€o an unacceptable
performance. With our novel unnesting strategy, we are tbtemedy this situ-
ation and to substantially improve query execution timekh@ugh most runtime

108 CHAPTER 5. DISJUNCTIVE UNNESTING FOR SQL

systems and optimizers do not incorporate bypass plans pibssible to transfer
bypass plans into plans without bypass operators. Thisfoaexample, be done
by tagging every tuple whether it belongs to the positiveegative stream.

Based on a common terminology, a classification, and an edgele have pre-
sented unnesting equivalences containing bypass opefatothe first time. We
have shown how to unnest scalar subqueries whose linkingroglation predicate
occurs in a disjunction. Furthermore, we have demonstihieadur equivalences
are applicable to simple, linear, and queries. Our equinae are also valid for
bags, and, hence, can be applied in real world applications.

Bypass operators in combination with our novel unnestingtagy provide an
efficient evaluation for nested scalar queries with disjweclinking or correla-
tion. Our comprehensive experimental study compares thied@nd unnested ap-
proaches — using our hybrid relational and XML databasessy$atix — against
three commercial database systems. Our optimized appdmacates almost all
other approaches, most of them by several orders of magnitud

Chapter 6
Beyond XPath

In the last two years, the importance of XPath as a standémgeiage decreased,
disposing the field to the more powerful XQuery language.[28]the same time,
XQuery evaluators become more and more mature in terms wfrésaand perfor-
mance, and XQuery is being integrated into mainstream DBMS8Uxts as a native
language [8, 77, 92].

Because XQuery processing research is still missing somaéafaental tools
to facilitate the development of industrial-strength X@ueptimizers, we are con-
cerned with filling one of these gaps in this chapter. Spedificwe provide a
rewrite toolkit that allows to reduce the number of querych®in a query expres-
sion. This widens the search space for plan generators binghatore information
visible to a single run of the plan generation algorithm. ustbegin by stressing
the importance of our goal:

Industrial-strength query optimizers proceed in a twosghaanner. In a first
phase, the query is translated into an internal represenjand heuristical rewrite
rules are applied to simplify and normalize the query. Incse phase, a plan gen-
erator enumerates alternative execution plans, detesni@r cost, and chooses
the optimal plan. Alternative plans can differ in the acqesths used for the basic
input sets (e.g. whether to use an index or not), in the ordethich the basic input
sets are joined, and in the position of other operators, asgrouping or sorting.

However, efficient plan generation algorithms cannot takérary query struc-
tures as input. Instead, the unit of plan generation iqiery block Depending
on the design of the query compiler, a query block can be sepited in a variety
of ways, for example as a source language construct (SELEROMFWHERE in
SQL, or FLWOR in XQuery), as a node in an internal graph regoregtion (such as
the Query Graph Model QGM [94]), or as an algebraic expressBome queries
exhibit a nested structure, where a query block referendaguery blocks. In such
cases, the plan generator is called in a bottom-up fashmmergting plans for all
subquery blocks before the surrounding query block is meee. It is easy to see
that in such cases, the search space examined by the plamgeng limited, be-
cause only locally good solutions are computed. For glghatimal plans, it is

109

110 CHAPTER 6. BEYOND XPATH

desirable to reduce the number of query blocks to have méwenmation available
in a single run of the plan generator, creating a larger sespace of alternative
plans. For this reason, in the first phase of optimizatiorrigs are rewritten by
merging as many query blocks as possible. This is statbesktt for SQL query
processing (e.g. [32, 44, 99]), but not highly developeddQuery.

For an industrial strength approach to XQuery optimizatsuch a rewriting
step to merge query blocks is particularly necessary:

e In XQuery expressions in real applications, a nested quiengtsire is the
norm rather than an exception. This is due to a number of nsagacluding
the construction of hierarchical XML results, the absenfca grouping con-
struct, the generation of queries using visual editors, &sd but not least,
the inlining of (nonrecursive) XQuery functions that cantetLWOR expres-

sions.

¢ XML query processing can benefit from holistievay joins [21] which per-
form single-pass tree-pattern matching instead of coatstigiresults just us-
ing binary joins. The detection of tree patterns and thesi@eciwhen to use
regular joins and when to use pattern matching is a globakecduring
plan generation that requires access to as much of the gs@gysaible.

An example for a highly nested query (inspired by XMark Qu&yys shown here:

let $auction := doc(”auction.xml”)return
let $euro:=for $o in $auction/site/operauctions/openauction
for $i in $auction/site/regions/europe/item/@id
where $o/itemref/@item eq $i
return $o
for $a in $euro
where zero—or—one($a/bidder[1]/increase/text()¥ 2
<= $al/bidder[last ()]/increase/text()
return
for $p in $auction/site/people/person[profile/@income 5000]
for $w in $p/watches/watch
where $a/@id = $w/ @operauction
return <auction id="{$%$a/@id">

<increase first={$a/bidder[1]/increase/text{)
last="{$a/bidder[last ()]/increase/textf}j/ >
<watchedby id="{$p/@id}"/ >
<l/auction>

The query body is constructed of four FLWOR expressiongglaf which are
nested inside other FLWORs. However, these are only thectXpLWOR blocks.
Depending on the compiler design, the number of nested dplecks may be even
deeper. For example, with a plan generator that focuses ypsiructural tree
pattern matching, nested value-based predicates sygchas | e/ @ ncone >
5000 may be separate query blocks.

Without further processing, such a query is optimized usixgral runs of the
plan generation algorithm, where each plan for a FLWOR esgioa is used in
the plan for the surrounding FLWOR. This separate optinonadf subqueries im-
pedes the discovery of good overall execution plans. Thikmonstrated by our

111

example, in which there are two value-based joins, onengithe Open Auctions
to the European Items, and one joining the Open Auctionsdgdgrsons with an
income higher than 5000. However, the join conditions inwher e clauses are
in different FLWORSs, prohibiting the plan generator to se¢hbof the joins and
optimize their order. Join order optimization is a cornenst of efficient relational
guery processing and just as important in XQuery procesg0g

As in many other cases, the nested structure of the querytisenaired to
obtain the query result, but is used because this way the/ gsisimpler to write.
In fact, the whole query above can be formulated using asiRGQWWOR block. One
alternative to do so is shown below, with the results of eaclegssing step bound
to a separate variable:

let $auction := doc(”auction.xml”), $x32 := S$auction/site
for $o in $x32, $x13 in $o/openauctions, $ain $x13/openauction
for $i in $x32, $x15in $i/regions, $x16in $x15/europe
for $x17 in $x16/item, $x18in $x17/@id
let $x4 := $al/itemref, $x19 := $x4/@item
let $x33 $a/bidder[1], $x34 := $x33/increase , $x35 := $x34&Kkt()
let $x36 $a/bidder[last ()], $x37 := $x36/increase , $x38 :x3%/text()
let $x39 := $a/@id
for $p in $x32, $x20 in $p/people, $x21in $x20/person
for $w in $x21/watches, $x22in $w/watch
let $x8 := $x21/@id, $x10 := $x22/ @opeauction
let $x13 := $x21/profile, $x27 := $x13/@income
for $x1 in <auction id="{$x39}">
<increase first={$x35}"
last="{$x38}"/ >
<watchedby id="{$x8}"/>
</auction>

where zero—or—one ($x35) = 2 <= $x38 and $x39 = $x10

and $x27 > 5000 and $x19 eq $x18
return $x1

While this form of the query is less readable and more diffibulwrite, it is
easier to optimize because all the basic operations, iefate results, input sets,
and their dependencies are uniformly represented in aesingp-level FLWOR
construct.

The goal of this chapter is to provide a toolkit for develgpef XQuery eval-
uators to transform XQuery expressions into expressiotisad few query blocks
as possible. This toolkit takes the form of rewrite rulesgirgg the inner and outer
FLWOR expressions into single FLWORSs. These unnesting rale supplemented
by some helpful normalization rewrites. We have chosenéggant our rules using
regular XQuery syntax because other representations @u€)GM or algebraic
expressions) are less universal and would be more diffiouttdapt to different
evaluators. We do not use the XQuery Core sublanguage lettaloes not have a
guery block construct suitable for plan generation. Itnsteéad, inherently nested,
even for quite simple XQuery expressions.

The remainder of this chapter is structured as follows:tFinsSection 6.1, we
give an overview of the rewrite toolkit. The main Section®,®.3, and 6.4 present
normalization and FLWOR merging rules, respectively. Wentipresent a short
evaluation (see Sec. 6.5), demonstrating the effect of vl@srwhen generating

112 CHAPTER 6. BEYOND XPATH

Normalization

Path Normalization

Return Path Extraction Predicate Factorization For-/Let Rewrites
| Rewrites |—| and Tailoring [«%| Normalization —» (Figure 6.5) > (Figures 6.6 - 6.10) —
(Figure 6.2) (Figure 6.3) (Figure 6.4) 9 ’ 9) ’

Figure 6.1: Processing model

execution plans. At the end, we discuss related work in &e&i6 and conclude
the chapter in Sec. 6.7.

6.1 Overview

The overall goal of this chapter is to flatten an XQuery exgimgs i.e. merge as
many query blocks (i.e. FLWOR expressions) as possible. chiege this goal,
we basically proceed in two phases: (1) Normalization and~(2VOR Merging.
Fig. 6.1 gives an overview of our processing model.

In both phases, we apply a set of rules based on XQuery syo@xjuery. A
separate figure presents one set of rules for each normatizad rewriting step.
The overview Figure 6.1 contains references to each of them.

Normalization

comprises two major subtasks:

1. All Expr Si ngl e expressionsfrom ther et ur n clause are moved to the
expression creating the binding sequence of afoevexpression.

2. Path expressions are normalized (as far as possibledrticydar, (1) all path
expressions not directly associated witfoa clause are bound to variables
usingl et , (2) path expressions are taken to single steps, (3) ptedicae
moved into thevher e clause, and (4) common location steps are factorized.

FLWOR Merging

Starting from this normalized form, we remove as many quédoghs (FLWOR
expressions) as possible. Specifically, we present rewries that eliminate or
merge inner FLWORSs occurring in tiier or| et clause, respectively.

INote thatExpr Si ngl e is the expression produced by the grammar rules from [38].

6.2. NORMALIZATION 113

Notation

Our rewrite rules are formulated using XQuery syntax [38hwéver, to simplify
the presentation, we use the following abbreviations feqdently used clauses:

For Or Let Ol ause = For Cl ause | Let O ause
For Or Let Cl auses := For Or Let O ausex

Moreover, we assume that all variable names are unambigGouse we some-
times introduce new variables or change the bindings ofiegisnes, we introduce
a notation for variable substitutioEx pr [$x2 «— $x1] denotesExpr with all free
occurrences ofx2 replaced bybx1.

Running Example

We illustrate the application of our rules on the query frdra introduction. Ap-
plying our rules to the example query yields a query havinggls FLWOR block.

let $auction := doc("auction .xml”)return
let $euro:=for $o0 in $auction/site/openauctions/openauction
for $i in $auction/site/regions/europe/item/@id
where $o/itemref/@item eq $i
return $o
for $a in $euro
where zero—or—one($a/bidder[1]/increase/text()¥ 2
<= $a/bidder[last()]/increase/text ()
return
for $p in $auction/site/people/person[profile/@income 5000]
for $w in $p/watches/watch
where $a/@id = $w/ @opemauction
return <auction id="{$%$a/@id">
<increase first={$a/bidder[1]/increase/text{y
last="{$a/bidder[last ()]/increase/textf)/ >
<watchedby id="{$p/@id}"/ >
</auction>

In practice, this query could well be the result of an inlin€Query function.
XQuery functions are often used a®wsto increase data independence, or sim-
ply to make queries more readable, similar to views in SQLoun case, the se-
qguence bound t&eur o could be an inlined function to retrieve European Auc-
tions, whereas the bottommost FLWOR expression could becian to retrieve
all watchers for a given auction. The results of these fomstiare joined using the
surrounding FLWOR block. In such a context, the applicatbour rewrite rules
can also be described si®w mergingallowing the plan generator to optimize join
orders beyond view borders.

6.2 Normalization

Normalization does not decrease the FLWOR nesting levelgpfaay. Instead, it
transforms the query such that the unnesting rewrite rud@sstill be applied in

114 CHAPTER 6. BEYOND XPATH

case of minor syntactical variations. In addition to thisgaratory character, nor-
malization also directly helps to achieve our ultimate gafigdreparing queries for
plan generation: XQuery allows several different ways ofrfolating predicates
(e.g. thewher e clause and XPath predicates). However, the plan genemtor r
qguires a single unified formulation of all the constraintsatirthe variables in the
currently considered query block to systematically exptbe search space of alter-
native plans. Execution plan alternatives for value-basedicates include, but are
not limited to, placement of selection operators, use afgoand index selection.
Which of these alternatives is used, and in which order tfferdnt predicates of
a query are evaluated, should not depend on the nestingdey¢hcement of the
predicates. This robustness is achieved by our normalizatiase.

Normalization proceeds in several consecutive steps, @srsin in Fig. 6.1.
We first enforce a simple form for allet ur n clauses before we break down com-
plex locations paths into primitives, with an emphasis cedprate normalization.
Finally, we eliminate common subexpressions.

6.2.1 Return Normalization

In order to allow a uniform treatment of nested expressionset ur n and| et
clauses, we move alExpr Si ngl e expressions front et ur n clauses td et
clauses (see Rewrite 6.1). This way, we can treat unnestingtour n andl et
uniformly and can always assume thatet ur n clause contains a single variable
reference.

For Or Let Cl auses
| et $x1 := Expr Singl e;
— Wher eCl ause? (6.1)

For Or Let Cl auses
Wher ed ause?
Or der ByCl ause?

. O der ByCl ause?

return ExprSingl e return Szl
For Or Let Cl auses; For Or Let Cl auses;
| et $x1 := Expr Si ngl e; for $x1inExprSingle;
For Or Let O auses: For Or Let O auses:
Waer ed ause? ~ \hereCd ause? 62)
Or der ByCl ause? Or der ByCl ause?
return$zl return$zl

Condition: There are no other occurrences$afl.

Figure 6.2: Return rewrites

Other than normalizing theet ur n clause, we can further prepare optimization
by converting the new et clause into & or clause (see Rewrite 6.2). This is
possible because on the right-hand side the concatenamangics of FLWOR
blocks reestablishes the same result sequence as on thamefside of the rewrite,
as long a$x1 is not used anywhere but in thet ur n clause.

6.2. NORMALIZATION 115

Turningl et into f or expressions allows a significantly larger range of alter-
natives for plan generation. Evaluationfadr clauses can be done in an iterative
manner, generating the items of the binding sequence onedyyimstead of com-
puting and materializing the whole sequence at once. Thosvalefficient tech-
niques such as pipelining and is the preferred style of implgation in database
runtime engines [].

Running Example

Applying ther et ur n elimination and et transformation rewrites (6.1 and 6.2)
to ther et ur n expressions of our example query results in the following:

let $auction := doc(”auction.xml”)
for $x1 in let $euro:= for $o in $auction/site/openauctions/opebauction
for $i in $auction/site/regions/europe/item/@id
where $o/itemref/@item eq $i
return $o
for $a in $euro
for $x2 in for $p in $auction/site/people/person[profile/@income 5000]
for $w in $p/watches/watch
for $x3 in <auction id="{$a/@id">
<increase first={$a/bidder[1]/increase/text()
last="{$a/bidder[last ()]/increase/textf)/ >
<watchedby id="{$p/@id}"/ >
<lauction>
where $a/@id = $w/ @openauction
return $x3
where zero—or—one($a/bidder[1]/increase/text()¥ 2
<= $al/bidder[last()]/increase/text ()
return $x2
return $x1

6.2.2 Path Normalization

Path expressions are a crucial performance factor for thriation of almost ev-
ery XQuery query. For efficiently evaluating path expressjahe plan generator
makes cost-based decisions on algorithms that should ktasevaluate them.
For example, an optimizer decides whether a holistic agbrde.g. [21, 66]) for
evaluating multiple path expressions is superior to a firglar approach that
evaluates single steps individually (e.g. [2, 53]) prolgafith the help of an index.
The plan generator requires a canonical form of the pathesspons to make such
decisions. Besides separating each processing step fog@teeration, cutting path
expressions involves two other advantages:

¢ It allows to move location step predicates from the middléooktion paths
into thewher e clause.

e Common subexpression elimination (see below) can be dahe granular-
ity of steps.

116 CHAPTER 6. BEYOND XPATH

Sometimes it is not possible to cut location path into sirstéps. For example,
if a path occurs in &4 et binding or if duplicates are generated by a path. In these
cases, we rely on the algebraic techniques, we have projpogeevious chapters.
Our full-fledged XPath approach can be seamlessly intedjiat¢he approaches
proposed by [82] in order to evaluate such XPath expressions

Path Tailoring

for $xin St epExpr /Pat hExpr — ;g: gié: 2 g;tde/pFE:tpr:Expr (6.3)
Condition: St epExpr must not produce duplicates.
for $xi n ddo(St epExpr)/Pat hExpr — ;g: gg : 2 g;tde/pFE:tpr:Expr (6.4)
for $xin StepExpr /Pat hExpr — L Etr gg ;j ;:tcf/plgxﬁpr:Expr (6.5)
| et $x := St epExpr /Pat hExpr — : 2: gﬁ; i g;f/plgxﬁpr:izxpr (6.6)

Figure 6.3: Path tailoring rewrites

In order to separate each processing step, we first extigeatal expressions
from the query which are not already binding expressiorfsoaf or | et , and bind
them to new et variables. We keep path expressions ar clauses because they
need a different treatment in our predicate rewrites below.

Having extracted all path expressions, we cut them up imglsilocation steps
(see Fig. 6.3 for rewriting rules). Again to facilitate égor-based evaluation, we
attempt to avoid et clauses when possible (6.3 and 6.5) while breaking up path
expressions irf or clauses. Without further refinements, we can only cut those
steps that do not produce duplicates (see [59, 60]). Rule$ed the ddo function
(fs:distinct-doc-order) which is defined in the XQuery formal seman-
tics [37]. This function can be introduced as for examplecdbed in [60]. With
this rule, we can tailor and later factorize path which waubd have been possible
without explicit treatment of the ddo function.

Of course, location steps assigned tbet variable remain in & et binding
(6.6).

6.2. NORMALIZATION 117

Predicate Normalization

The plan generator not only decides on the path evaluatgmrithms and the order
of joins based on structural predicates, but also on ther afdegular, value-based
joins and selections. Moving all non-structural predisateo thewher e clause
makes such join and selection predicates explicitly alsé@lan a uniform manner.
This allows a search space of plans that is robust againsytttactical placement of
the predicate. Further, a unifigther e also allows predicate processing, including,
but not limited to inference of new predicates, and elimorabf redundant ones.

For Or Let Cl auses; For Or Let Cl auses;

for $x1in StepExpr [Expr] for $x1in StepExpr

For Or Let Cl auses2 - For Or Let Cl ausess 6.7)
wher e Expr o wher e fn : boolean($x1/(Expr {)) and Expr o '
Or der ByCd ause? Or der ByCl ause?

returnExprSingl e; return ExprSingl e;

Condition: The value ofExpr ; must not depend on the context position or context size.

For Or Let Cl auses; For Or Let O ausesy

| et $x1 := St epExpr [Expr] | et $x1 := St epExpr

For Or Let Cl ausess - For Or Let O ausess 6.8)
wher e Expr o wher e £n : boolean(Expr ;) and Expr, '
Or der ByCl ause? O der ByCl ause?

return ExprSingl e; returnExprSingl e;

Condition: The value ofExpr ; must not depend on the focus (context item, context positionontext size).

For Or Let Cl auses; For Or Let O ausesy

for $x1in StepExpr [Expr; and Expr] for $x1in StepExpr [Expr ;]

For Or Let Cl ausess - For Or Let O ausess (6.9)
wher e Expr 3 wher e £n : boolean($x1/(Expr ,)) and Expr3*
Or der ByCl ause? O der ByCl ause?

ret urn Expr Si ngl e; returnExprSingl eq

Condition: The value ofExpr ; must not depend on the context position or context size.

For Or Let Cl auses; For Or Let O ausesy

for $x1in StepExpr [Expr, and Expr] for $x1at $ylin StepExpr [Expr,]

For Or Let Cl ausess - For Or Let O ausess (6.10)
wher e Expr 5 wher e Expr/ and Expr 3 '
Or der ByCl ause? O der ByCl ause?

ret urn Expr Si ngl e; returnExprSingl e;

Conditions: The value of Expr, depends on the context position, but not the context sizExpr)| :=
Expr ¢ [$fs : position < $y1] andSt epExpr must not consist of a reverse axis step (see text).

Figure 6.4: Predicate normalization rewrites

In Fig. 6.4, we present rules that get predicate expressiblogation steps and
move them into th@her e clause of the surrounding FLWOR block. For each ex-
tracted predicate expression, we have to set the conteketodntext defined by

118 CHAPTER 6. BEYOND XPATH

the according step. For example, if we mdwepr ; from a location step predicate
into awher e clause (see Rule 6.7), we have to guarantee that all cortegsses
are performed with respect 1, which is why we prependx1 to the predi-
cate expression. Similarly, we can get comparison exgresshat contain calls to
the context position of a location step by creating a pas#tiovariable using the
for Var Ref at Var Ref syntax and replacing accesses to the context position
with the variable (see Rule 6.10). This is not strictly pbbsin XQuery syntax, but
easily implemented in most evaluators, because the coptaxtion is modeled as
a special variable anyway. Our choice of variable name §étstion) follows the
XQuery Formal Semantics, which also replaces contextipodity a special vari-
able. Further, reverse axis steps cannot be handled thish&aguse the context
position numbering is different from the order of the reseitjuence

Note that for the sake of brevity, we assume that there alvgagisher e clause
in the outer expression. We treaher e-less outer FLWORs as if there was a
wher et r ue clause.

Common Path Elimination

| et $x1 := St epExpr, | et $x1 := St epExpr,

et $x2 := St epExpr | /St epExpr | et $x2 := $x1/St epEXpr 5 (6.11)

| et $x0 := St epExpr
— for $x1in$x0 (6.12)
for $x2i n $x0/St epExpr

for $x1in StepExpr,
for $x2in St epExpr /St epExpr o

| et $x1 := St epExpr _, let $x1:=StepExpr, (6.13)
for $x2i n St epExpr /St epEXpr for $x2in $x1/St epExpr '

| et $x0:= St epExpr
— for $x1in $x0 (6.14)
| et $x2 := $x0/St epEXpr

for $x1in StepExpr,
| et $x21i n $x1/St epExpr,

Figure 6.5: Common path elimination

To avoid redundant evaluation, we eliminate common patimglifiy them to
newf or orl et variables as needed. In Fig. 6.5, we present four rules fiori-el
nating common location steps. However, elimination of camrsubexpressions is
a complex process that cannot be sufficiently describedyusity those rules. We
refer to [1] for algorithms on subexpression elimination.

2|f the rewrite is not done on source level, the internal reprgation may have a suitable special
variable to bind for reverse axis numbering, making our i@ypossible again.

6.3. MERGING FLWOR BLOCKS 119

Running Example

In the following, we present the query that is obtained bylypg normalization,
i.e. path extraction, path tailoring, predicate normaia@a and common path elim-
ination, to our example query.

let $auction := doc(”auction.xml”)

let $x32 := $auction/site

for $x1 in let $euro:= for $o in $x32, $x13 in $o/openauctions
for $x14 in $x13/openauction, $iin $x32,
for $x15 in $i/regions , $x16in $x15/europe ,
for $x17 in $x16/item, $x18in $x17/@id
let $x4 := $x14/itemref, $x19 := $x4/@item
where $x19 eq $x18
return $x14

for $a in $euro

let $x33 := $a/bidder[1], $x34 := $x33/increase

let $x35 := $x34/text()

let $x36 := $a/bidder[last ()], $x37 := $x36/increase
let $x38 := $x37/text(), $x39 := $a/@id

for $x2 in for $p in $x32, $x20 in $p/people, $x21in $x20/person
for $w in $x21/watches, $x22in $w/watch
let $x8 := $x21/@id
let $x10 := $x22/@operauction
let $x13 := $x21/profile, $x27 := $x13/@income
for $x3 in <auction id="{$x39}">
<increase first={$x35}" last="{$x38}"/>
<watchedby id="{$x8}"/>
</auction>
where $x39 = $x10 and $x27 > 5000
return $x3
where zero—or—one ($x35) x+ 2 <= $x38
return $x2
return $x1

In this expression, for example, the XPath prediqgatefi | e/ @ ncone >
5000 is removed from the location step and added tovther e clause of the ac-
cording FLWOR block. Moreover, we replaced the common pagressions from
within the element construction and tivaer e clauses (e.g. the path selecting the
increases of the first and last bid) by single variables. Nud¢ it is not possible
to move the positional predicates into thier e clause, as they occur inlaet
binding. Also note that for presentation purposes, we afied consecutive oc-
currences of or andl et expressions using commas. In the full representation
of this query,f or andl et expressions that bind multiple variables are split into
separate expressions.

6.3 Merging FLWOR Blocks

After finishing the normalization phase, the query is pregdor the core rules of
our toolkit, thef or andl et merging rewrites. The ultimate goal of the rewrites
presented in this section is to reduce the number of quegkblas much as possi-
ble.

Reconsider our normalized example query shown above. ©hisulation of

120 CHAPTER 6. BEYOND XPATH

the query contains several nested FLWOR expressions. TWER_nesting depth
in Line 3 is three. Thd or -clause bindindbo is nested in d et clause which,
in turn, is nested in the outer-mdsbr -clause bindingx1. Moreover, the query
contains 4 or clause definingx2 whose binding sequence is generated by another
f or clause.

In the following, we introduce rewrite rules that remove lsunested expres-
sions. Applying them to our example query eliminates alte@$LWORSs.

We start with rewrites that remove FLWORS nesteflom clauses (see Fig. 6.6),
and then proceed foet clauses (see Fig. 6.7).

6.3.1 For Rewrites

The semantics of &or clause is to iterate over items of the binding sequence,
binding thef or variable to every item from that sequence. The remaining BRNV
expression is evaluated for each such binding, and theithdiVresult sequences
are concatenated. We are interested froa clause if its binding sequence is cre-
ated by a nested FLWOR expression. In some cases, we cawelifiner FLWOR

to the outer level. This rewrite opportunity results frone flact that sequences in
the XQuery data model are never nested. Hence, it often daematter on how
many levels of implicit concatenation ofet ur n sequences occurs, because the
result is always a flat sequence.

For Or Let Ol auses;

for $x1in (For OrLet d ausess For Or Let O auses;
for $x2i n ExprSi ngl e; For Or Let O ausess
For Or Let O ausess for $x1in ExprSingl e;
wher e Expr Si ngl e, — For Or Let O auses (6.15)
return $x2) For Or Let Ol ausesy
For Or Let Cl ausesy wher e Expr Si ngl e3 and Expr Si ngl e/,
wher e Expr Si ngl eg returnVar Ref

returnVarRef,

Conditions: For O Let Cl auses?, := For Or Let 0 auses3[$x2 « $x1] and
Expr Si ngl e}, := Expr Si ngl e5[$x2 «— $x1]

For Or Let Cl auses;

for $x1in (ForOrLet O ausess
| et $x2 := Expr Si ngl e;
For Or Let Cl ausess
wher e Expr Si ngl e, —
return $x2)

For Or Let Ol ausesy

wher e Expr Si ngl ej

return Var Ref ;

For Or Let Ol auses;

For Or Let O ausess

| et $x2 := Expr Si ngl e;

For Or Let Cl ausess

for $x1in $x2

For Or Let O ausesy

wher e Expr Si ngl ez and Expr Si ngl e,
returnVarRef;

(6.16)

Figure 6.6: For rewrites

For example, consider the left-hand side of the first Rewrite 6.15. In this
rewrite, the variableéx1 is iteratively bound to each item returned by the inner

6.3. MERGING FLWOR BLOCKS 121

FLWOR. The result of the inner FLWOR is generated byrtle¢ ur n clause. Note
that in our case theet ur n clause consists only of a variable reference, i.e. vari-
able$x2. To merge the two blocks, we have to guarantee that the batevariable
$x1, after merging, is still bound to the same items, i.e. thaseegated by variable
$x2. To this end, we replace the nested FLWOR with the expressgponsible for
binding $x2. In the rewrite this expression is call&tpr Si ngl e, and bound by
af or clause. The remaining (optional) clauses are moved intotier FLWOR
block. SpecificallyFor Or Let Cl auses; andFor Or Let Cl auses; are pulled
up one level.Expr Si ngl e, from the innemher e clause is conjunctively con-
nected to the expression in the outdrer e clause®. After relocating the inner
expressions, we have to replace free occurrences of thmpsewvner variabléx2
with $x1.

Similarly, we merge two query blocks if the binding sequeiscereated by a
nested et variable (see our Rewrite Rule 6.16). Note that the rigitehside of
Rule 6.16 may still contain a FLWOR nested ih@t clause. This case is unnested
by Rule 6.17, which is presented in the next section.

Running Example

On our example query, we can apply Rewrite Rule 6.15 twicestRio eliminate
the innerfor -clause bindingx2, as this variable is returned to create the binding
sequence fofx1. Second, we apply this rule to eliminate ther expression
binding$x3. This results in the following expression:

let $auction := doc(”auction .xml”)
let $x32 := $auction/site
let $euro:= for $o in $x32, $x13 in $o/openauctions, $x14in $x13/openauction
for $i in $x32, $x15in $i/regions, $x16in $x15/europe
for $x17 in $x16/item, $x18in $x17/@id
let $x4 := $x14/itemref, $x19 := $x4/@item
where $x19 eq $x18
return $x14
for $a in $euro
let $x33 := $a/bidder[1], $x34 := $x33/increase , $x35 := $x34&kt()
let $x36 := $a/bidder[last ()], $x37 := $x36/increase , $x38 :x3%/text ()
let $x39 := $a/@id
for $p in $x32, $x20 in $p/people, $x21in $x20/person
for $w in $x21/watches, $x22in $w/watch
let $x8 := $x21/@id, $x10 := $x22/@openuction
let $x13 := $x21/profile, $x27 := $x13/@income
for $x1 in <auction id="{$x39}">
<increase first={$x35}"
last="{$x38}"/ >
<watchedby id="{$x8}"/>
</auction>
where zero—or—one ($x35) * 2 <= $x38 and $x39 = $x10 and $x27 > 5000
return $x1

3As before, expressions withowher e are treated as if @her e t r ue clause was added.

122 CHAPTER 6. BEYOND XPATH

6.3.2 Let Rewrites

| et clauses require separate rewrites because they bind dleattethe result of
its associated expression, i.e. without iterating oves tesult. Fig. 6.7 presents
three rewrite rules to eliminate FLWORS nested et clauses.

For Or Let Cl auses;

| et $x1 := Expr Singl e;

For Or Let O auses:

for $x2i n $x1 —
For Or Let Cl ausess

wher e Expr Si ngl e,

ret ur n Var Ref

For Or Let O auses;

For Or Let Cl ausessy

for $x2i n ExprSingl e;

For Or Let Cl ausess (6.17)
wher e Expr Si ngl e,

return Var Ref

Condition: There are no other occurrences$afl.

For Or Let Ol auses;

| et $x1 := (For Or Let Cl auses, For Or Let O auses;
for $x2i n Expr Si ngl e; For Or Let O ausess
wher e Expr Si ngl e, — for $x2i n ExprSi ngl e; (6.18)
return $x2) wher e Expr Si ngl ez and Expr Si ngl e,
wher e Expr Si ngl e; return $x2
return $x1

Condition: There are no other occurrences$afl.

For Or Let Cl auses;

| et $x1 := (For Or Let Ol auses For Or Let Ol auses;
| et $x2 := ExprSingl e; For Or Let O ausess
wher e Expr Si ngl e, — | et $x21i n ExprSingl e; (6.19)
return $x2) wher e Expr Si ngl e5 and Expr Si ngl e,

wher e Expr Si ngl eg return $x2

return $x1

Condition: There are no other occurrences$afl.

Figure 6.7: Let rewrites

Rewrite Rule 6.17 tackles a frequently used case. Thdrer ateration is used
to enumerate all items contained in at variable. This technique is used in our
example query and may result from inlining an XQuery functas explained at
the beginning of this section. The rules suggests to elitaitizel et variable if
it is used only once and inline the associated expressierefpr Si ngl e;). On
this result, the rewrites of the previous section (see Fig) éan be applied and
eliminate the nesting.

Fig. 6.7 also contains two rewrites that remove neéied (see Rule 6.18) and
| et (see Rule 6.19) expressions, respectively. The dwérclause in both rules
is immediately followed by th@her e clause. If there was anoth&or orl et
clause in between, it wouldn’t contain occurrencesbbénd, hence, could w.l.0.g.
be moved above theet clause that is bindingl1.

6.4. INTRICACIES 123

Running Example

The result of applying theet Rewrite Rule 6.17 and thleor Rewrite Rule 6.15
to our example is the following query finally consisting ofiagde query block.

let $auction := doc(”auction.xml”), $x32 := S$auction/site
for $o in $x32, $x13 in $o/openauctions, $ain $x13/openauction
for $i in $x32, $x15in $i/regions, $x16in $x15/europe
for $x17 in $x16/item, $x18in $x17/@id
let $x4 := $al/itemref, $x19 := $x4/@item
let $x33 := $a/bidder[1], $x34 := $x33/increase , $x35 := $x34¢kt()
let $x36 := $a/bidder[last ()], $x37 := $x36/increase , $x38 :x3%/text ()
let $x39 := $a/@id
for $p in $x32, $x20 in $p/people, $x21in $x20/person
for $w in $x21/watches, $x22in $w/watch
let $x8 := $x21/@id, $x10 := $x22/ @opeauction
let $x13 := $x21/profile, $x27 := $x13/@income
for $x1 in <auction id="{$x39}">
<increase first={$x35}"
last="{$x38}"/ >
<watchedby id="{$x8}"/>
</auction>

where zero—or—one ($x35) = 2 <= $x38 and $x39 = $x10

and $x27 > 5000 and $x19 eq $x18
return $x1

Note how in this form all value-based join and selection praiegs are available

in a unifiedwher e clause. This allows a plan generator to decide on index acces

and join orders.

6.4 Intricacies

In the last section, we presented rewrite rules to reducentimber of FLWOR
expressions in a query. However, all of the presented editiun rewrites were
limited in terms of FLWORs that do not contain positionaligbtes oror der
by clauses. Merging FLWORs which contain one of these constrequires more
sophisticated rewrite techniques. In case obader by clause, for example, one
has to keep track of the order that is given (1) through thdi@kgort statement
in an outer query block and (2) implicitly in a nested FLWORpeession. In this
section, we present new rewrite rules that are similar toptiegiously presented
rules but also fix one of these intricacies.

6.4.1 Positional For Rewrites

First, we consider the case that the outer block containsiéigaal clause. X or
expression that has a nested FLWOR and additionally bindssdignal variable

is called apositionalf or expression. Fig. 6.8 presents two rewrites that merge an
expression that is nested inside a positidral expression. Both have on the left-
hand side a position&lor expression. Each of them binds the positional variable
$y1 using thef or Var Ref at Var Ref syntax. In order to be able to merge
the outer and the inner FLWOR into one, the inner FLWOR mustcoatain a

124 CHAPTER 6. BEYOND XPATH

wher e oror der by clause. Otherwise, the numbering of the result sequence of
the inner query could not be guaranteed after merging. Outiso for merging
such FLWOR expressions is shown on the right-hand side ofriReRules 6.20
and 6.21.

For Or Let Ol auses;
for $xlat $ylin (for $x2inExprSingl e
return $x2)

For Or Let Cl auses;
for $x1 at $ylin ExprSingle;
— For Or Let O ausess (6.20)
wher e Expr Si ngl e,
return Var Ref |

For Or Let Ol auses»
wher e Expr Si ngl e,
return Var Ref ;

For Or Let O ausesy
for $xlat $ylin (Il et $x2 := Expr Si ngl e;
return $x2)

For Or Let Cl auses;
for $xlat $ylinExprSingle;
— For Or Let Ol ausess (6.21)
wher e Expr Si ngl e,
return Var Ref ;

For Or Let Ol auses:
wher e Expr Si ngl e,
return Var Ref ;

Figure 6.8: Positional for rewrites

The former rule contains a nestémt clause. In this case, we can simply re-
duce the nesting level and plkpr Si ngl e, from the inner into the outer block.
Because there are no other clauses in the inner query blekowot reorder the
result and, hence, keep the numbering. The inner FLWOR kb thke latter rule
starts with d et clause. Here, eliminating tHeet clause is possible for the same
reason.

6.4.2 Order-by

A second restriction on the rewrites from the previous sects that neither the
outer nor the inner FLWOR can contain ander by clause. In this section,
we augment our rewrite merging rules with expressions @oinganor der by
clause. We present rules for all cases, i.e. eitloar or| et expressions are nested
in af or clause or they are nested ih at clause, respectively.

If an or der by clause is present, we have to guarantee that both the éxplici
order given by ther der by clause and the implicit order given by the occurrence
of f or orl et clauses are preserved. For maintaining the hierarchy iarthested
case, we introduce a technique that we €&dhonical Order By This technique
modifiesf or clauses to bind a positional variable and addader by clause
to the corresponding FLWOR expression which has the newtipoal variables
in its Or der SpeclLi st . If there are multiplef or and/orl et clauses in one
FLWOR expression, the order of the positional variable®ie1¥ der SpecLi st
is determined by the order in which these clauses occur iRiti#éOR block. Doing
S0, we guarantee that the result is in requested order.

6.4. INTRICACIES 125

In the following, we show how this technique can be appliecheoge FLWOR
expressions that containander by clause in the outer and/or the inner FLWOR.
Analogously to the previous section, we start withr rewrites and then proceed
tol et merging rules.

For Rewrites

Fig. 6.9 presents four rules to tackle queries whose inneutar FLWOR contains
anor der by clause.

The left-hand side of each rule in this figure is similar to ke fuom Fig. 6.6
but allows foror der by clauses. The right-hand side of all rewrite rules shows
how the outer and inner FLWOR expression can be merged,tdebpiorder of the
result is not changed.

At the bottom of each rule, we delineate the expressionsnidadl to bind po-
sitional variables. For example, on the right-hand sideaiialence 6.22 théth
f or clause inFor Or Let Cl auses; binds the positional variableyl; using the
for Var Ref at Var Ref syntax. In Rules 6.22 and 6.23, we could omit the
positional variable$y4,, ..., $y4,, and instead usst abl e order by. How-
ever, this case could be less efficient, as it may requireep ké the sortedness of
unnecessary attributes.

In case both the outer and inner FLWOR containcairder by clause, we
proceed as shown in Fig. 6.6. However, we need to merge theotwer by
clauses such that sorting is done according to@hder SpecLi st of the outer
FLWOR first and then for thér der SpecLi st of the inner FLWOR block.

Let Rewrites

Similarly to the previous subsection, we also allow b@t merging rules from
Fig. 6.7 to contairor der by clauses. These rules are presented in Fig. 6.10.

The left-hand side of Rewrite Rule 6.26 corresponds to Rul& 6ut has an
order by clause in the outer block. On the right-hand side, we mergé &t
clause bindingbx; with thef or clause that iterates over the sequence resulting
from $x,. Theor der by clause remains with the outer block.

In Rule 6.27, we eliminate theet clause in the outer block and, therefore,
pull the inner block one level higher. However, in this cabef or clauses of
the outer block are augmented to bind new positional vagbh which sorting is
done. This is necessary to keep the order that is predetedbythe outer block.

Rules 6.28 and 6.29 merge blocks that haveead clause in the outer block
that contains a nestddr or| et expression. Additionally, the outer clause fea-
tures anor der by clause. Theor der by clause of the merged representation
is augmented to reestablish the order of the inner FLWORKbloc

126 CHAPTER 6. BEYOND XPATH

For Or Let Cl auses;

for $x1in (For OrLet O ausess
for $x2i n Expr Si ngl e;
For Or Let Cl ausess
wher e Expr Si ngl e,
order by O der SpeclLi st
return $x2)

For Or Let Cl ausess

wher e Expr Si ngl ey

return VarRef ;

On the right-hand sideor Or Let Cl auses; bind the positional variable®y11, . .., $yl, andFor Or Let C ausesy
bind$y41,...,8y4m.

Conditions: ForOrLetC auses; := ForOlLetd auses3[$x2 <« $xl1], ExprSingle, :=
Expr Si ngl e;[$x2 «— $x1], andOr der SpecLi st/ := Or der SpeclLi st ; [$x2 «— $x1]

For Or Let O auses;
For Or Let Cl auses2
for $x1at $y2in ExprSingl e;
For Or Let Ol auses)
For Or Let Ol ausesy (6.22)
wher e Expr Si ngl e, and Expr Si ngl e,
order by $yli,...,8yl,, $y2,
Or der SpeclLi st, $y41,...,8ydm
return VarRef ;

For Or Let Cl auses; For Or Let Cl auses;
for $x1in (For OrLet O ausess For Or Let Ol auses:
| et $x2:= Expr Singl e, | et $x2:= Expr Singl e,
For Or Let Ol ausess For Or Let Ol ausess
wher e Expr Si ngl e, for $xlat $y2in $x2 6.23
order by O der SpeclLi st - For Or Let Cl ausess (6.23)
return $x2) wher e Expr Si ngl e, and Expr Si ngl e,
For Or Let Cl ausesy order by $yli,...,8yl,, $y2,
wher e Expr Si ngl ey Or der SpeclLi st ¢, $y41,...,8y4m
return VarRef ; return VarRef ;

On the right-hand sideor Or Let Cl auses; bind the positional variable®y 11, . .., $y1, andFor Or Let O ausesy
bind$y41,...,8y4m.

For Or Let Cl auses;

for $x1in (For OrLet O ausess
for $x2i n ExprSingl e;
For Or Let Cl ausess
wher e Expr Si ngl e,
return $x2)

For Or Let Cl ausesy

wher e Expr Si ngl ey

order by O der SpeclLi st

return Var Ref |

On the right-hand sidor Or Let O auses bind the positional variable®y11, . . ., $y1, andFor Or Let Ol auses),
bind $y4s, ..., $y3m.

Conditions: For OrLet Cl auses; := ForOrLetd ausess[$x2 «— $x1], ExprSingle, :=
Expr Si ngl e, [$x2 — $x1], andOr der SpecLi st} := Or der SpeclLi st [$x2 «— $x1]

For Or Let Cl auses;
For Or Let Ol ausess
for $x1at $y2i n ExprSingl e,
For Or Let O auses)
— For Or Let Ol ausesy (6.24)
wher e Expr Si ngl e, and Expr Si ngl €,
order by Order SpeclLi stq, $y21,...,8y2,, $y2,
$y31,...,8y3m
return Var Ref ;

For Or Let Ol auses; For Or Let O auses;
for $x1in (ForOrLet O ausess For Or Let O auses>
| et $x2 := Expr Si ngl e; | et $x2:= Expr Si ngl e;
For Or Let Cl ausess For Or Let Cl ausess
wher e Expr Si ngl e, - for $xlat $y2in $x2 (6.25)
return $x2) For Or Let Ol ausesy
For Or Let Cl ausess wher e Expr Si ngl e, and Expr Si ngl e,
wher e Expr Si ngl ey order by Order SpeclLi st ,8$y21,...,8y2,, $y2,
order by Order SpeclLi st $y31,...,8y3m
returnVarRef returnVarRef

On the right-hand sideor Or Let Cl auses; bind the positional variablegy11, . .., $y1l, andFor Or Let O ausess
bind $y4s, ..., $y3m.

Figure 6.9: Order-by for rewrites

6.5. EVALUATION 127

For Or Let Cl auses;
| et $x1 := ExprSingl e; For(rLet 0 auses,
For Or Let Cl ausesay
For Or Let O ausess . ;
i for $x2i n ExprSi ngl e;
for $x2in $x1
— For Or Let O ausess (6.26)
For Or Let O ausess :
. wher e Expr Si ngl e,
wher e Expr Si ngl e, .
. order by O der SpeclLi st
order by Order SpeclLi st
return Var Ref
ret urn Var Ref
Condition: There are no other occurrences$afl.
For Or Let O auses;
| et $x1 := (For Or Let Ol auses: For Or Let O auses;
for $x2i n Expr Si ngl e; For Or Let Ol ausess
wher e Expr Si ngl e, - for $x2at $y2i n ExprSingl e, (6.27)
order by O der SpeclLi st wher e Expr Si ngl e5 and Expr Si ngl e, '
return $x2) order by $yli,...,8yln, $y2,Or der SpecLi st
wher e Expr Si ngl es return $x2
return $x1
On the right-hand sidEor Or Let Cl auses; bind the positional variable®y11, ..., $yly.
Condition: There are no other occurrences$afl.
For Or Let Ol auses;
| et $x1 := (For Or Let Ol auses: For Or Let Cl auses;
for $x2i n Expr Si ngl e; For Or Let O ausess
wher e Expr Si ngl e, - for $x2at $y2inExprSingl e; (6.28)
return $x2) wher e Expr Si ngl e5 and Expr Si ngl e, ’
wher e Expr Si ngl eg order by Order SpeclLi st ,8y21,...,8y2,, $y2
order by Order SpeclLi st return $x2
return $x1
On the right-hand sidEor Or Let Cl auses: bind the positional variable®y21, . .., $y2y,.
Condition: There are no other occurrences$afl.
For Or Let O auses;
| et $x1 := (For Or Let Ol auses, For Or Let O auses;
| et $x2 := Expr Singl e; For Or Let O ausess
wher e Expr Si ngl e, - | et $x2i n Expr Si ngl e, (6.29)
return $x2) wher e Expr Si ngl ez and Expr Si ngl e, ’
wher e Expr Si ngl e; order by Order SpeclLi st ¢,8$y21,...,8y2,
order by Order SpeclLi st return $x2
return $x1
On the right-hand sidEor Or Let Cl auses: bind the positional variable®y21, . .., $y2,.
Condition: There are no other occurrences$afl.

Figure 6.10: Order-by let rewrites

6.5 Evaluation

A goal of this chapter is to show how to rewrite a query into@fohat consists of
a single query block to give a single run of the plan generasomuch uniformly
structured information about the query as possible. We naloeate on the impor-
tance of this goal by discussing the optimization of our eplenguery during plan
generation. We will see how more efficient plans can be géegi@nly when the
guery has been reduced to a single block.

In order to demonstrate that better plans are possiblenmtis:iecessary to ex-
plore the whole search space available. Hence, we only fooysin ordering.
Therefore, we assume that the optimizer has decided onaubpd produce the

128 CHAPTER 6. BEYOND XPATH

sequences for Open Auctions, European Items, and Persbhassubplans may be
based on pattern matching algorithms. Further, we assumhéheh predicate select-
ing the auctions according to their bids has been conventedai single predicate
subplan. This predicate is, however, more expensive taat@athan a simple value
comparison, and its placement in the overall plan does faigntly affect perfor-
mance. Thus, finding an optimal plan includes finding an oatiposition for this
predicate. We now discuss execution plans for our exampteyga the form of
algebraic expressions on an abstract level (see Fig. 6.11).

X
MapConcat

0 bid[l]*2 < bid[last] 0 incon‘1e > 5,000 ‘ ‘
X =

AN RN

I open_auctions l Ieuropean itemsl | open_auctions | |european itemsl

0 bid[I]*2 < bid[last] 0 income > 5,000

(a) Block-by-block translation (b) Plan 1

9 >
AN SR
/ \ 0 incon|19 > 5,000 / \

0 bid[I]*2 < bid[last] l european items l l people l 0 bid[l]*2 < bid[last] 0 income > 5,000

I open_auctions l I people l

(c) Plan 2 (d) Plan 3

o bid[I]"2 < bid[last]

(e) Plan 4

Figure 6.11: Alternative execution plans

A straightforward translation of the original, nested, thblock query looks
like Fig. 6.11(a). Here, the FLWOR blocks are translate@atly into separate
subplans, and no global optimization takes place. For somyplwe disregard the
first line of the example query (the initiblet clause for the document root). The
top-level MapConcat operator represents the main FLWORessmpn. Its operand

6.5. EVALUATION 129

generates the tuple stream and contains subplans for tlop&am Auctions query
block. The subplan connected to MapConcat by the dashetklmmesents the query
block in ther et ur n clause (the last eight lines of the query). It has a free ltgia

$a in the subplan for thpeopl e sequence, and, hence, has to be reevaluated for
every tuple of the MapConcat operand, as dictated by XQUEWW®R semantics.

35

.
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Selectivity

Figure 6.12: Performance results

Fig. 6.11 shows four other execution plans based on thettewyisingle-block
form of our example query. These can be enumerated by theplaarator because
it has access to all value-based predicates of the querynglesher e clause, and
can detect joins and determine an optimal order for themlandesidual selections.
We executed all five plans from Fig. 6.11 in our hybrid relatiband XML DBMS
Natix [40] on an XMark document with scaling factor one.

The experimental setup consisted of a PC with an Intel PenflCPU having
3.40GHz and 1GB of main memory, running on openSUSE 10.2luhx Kernel
2.6.18 SMP. To investigate the relative performance of Kee@tion plans, we var-
ied the selectivity of the predicate restricting the pedpleheir income between
0.14 and 0. This corresponds to incomes between 60,00080t00$ instead of
5,000% in the original query. Fig. 6.12 shows the result ¢f #mall performance
study (execution time in seconds) for four plans from Fidg16.

The experiment makes obvious why careful global plan géioerdbased on
single-block queries is crucial for efficient execution €esults of the nested-loop
strategy of the straightforward translation are orders afnitude slower (well be-
yond 100s) and have been left out of the graph. The join-bplsed made possible
by our rewritten single-block query show that an enumenatibalternatives is as
important as in relational query processing: Dependingedecsivity, the overall
best plan varies. The plan according to Fig. 6.11(e) perddvest with a very low
selectivity, whereas the plan belonging to Fig. 6.11(bpetforms the others with
an increasing selectivity.

130 CHAPTER 6. BEYOND XPATH

6.6 Related Work

Michiels et al. [84] discuss rewrite rules on two levels.rgig from expressions in
XQuery Core, they propose to first rewrite them into normainf® (still in XQuery
Core) that make the subsequent stages robust againsediffeyntactic formula-
tions of the same query, and to support tree-pattern deteclihey also simplify
the query by removing unnecessary constructs introduceddsg normalization.
Some of these simplification rewrites could be incorporaéa our toolkit. The
rewritten query is then translated into an algebra thatiohes a tree-pattern match-
ing operator. These algebraic expressions are then rewriting algebraic equiv-
alences in order to merge simple path navigation operattwsholistic tree pattern
matching operators. The rewrite rules on the algebraid Eneeorthogonal to the
ones presented in our toolkit and can be used by a plan geneyatreate execution
plans based on tree-pattern matching.

The very thorough paper by Hidders et al. [60] has a similax, &ut translates
a fragment of XQuery directly into tree patterns without atermediate algebraic
phase. In a first phase, the queries are annotated with piepsuch as result car-
dinality, ordering, and occurrence of duplicates. Thesperties are then used to
control a rewriting of the query into the Tree Pattern Norfaim (TPNF), which is
always possible for the language fragment under considardtor TPNF, a direct
mapping onto tree patterns is then described. Unfortupated language fragment
does not cover important XQuery constructs, such as vadsecbpredicates. An-
other problem is that the rewrite rules are based on XQuenrg,@¢ehich is unsuit-
able as a plan generator input, for example because thecdhstawher e clause
makes it difficult to identify applicable join conditions.oMever, the property anno-
tations are not only useful for TPNF rewriting and can be wsken implementing
our rewrite toolkit. Further, the TPNF technique may be usggdlan generators to
identify parts of the query that can be evaluated using patteatching.

May et al. [82] have presented unnesting strategies for X@QUdeir approach
is based on algebraic equivalences to be applied afterlataors of XQuery into
the NAL algebra of the Natix system. The main focus of thatknsrunnesting of
selection predicates which correspondmoer e clauses on the source level. The
paper also discusses unnesting the subscripts of map oggrathich on source
level corresponds tbet clauses. However, the rules are exclusively for the con-
version of implicit grouping into explicit grouping opeoas, and not for the general
unnesting of et . Translated into the source form, the presented rewrigsraie
complementary to the rules discussed in this thesis.

6.7 Conclusion

In this chapter, we have proposed a toolkit for rewriting X@Quexpressions into
expressions with as few query blocks as possible. This ferespecially useful

6.7. CONCLUSION 131

because merging query blocks usually increases the sqaach of a plan generator
and, hence, allows for better query execution strategies.

Our rewrite toolkit basically proceeds in a two-phase manRest, we normal-
ize the query such that the unnesting rewrite rules can blesgpgespite syntactical
variations considering theet ur n clause, XPath expressions, and predicates from
thewher e clause.

Second, we apply rewrite rules that merge all variants ofendsor andl et
clauses. That is, we have given rules that merge inner bibektsare contained in
afor orl et binding, respectively. All our rules rely on the fact thatjgsences
in the XQuery data model are never nested. The result is ahasflat sequence
because the level of implicit concatenations et ur n sequences does not matter.

In a brief experimental study, we have shown that more effiqgi¢ans are pos-
sible if queries are rewritten using our toolkit.

Although XQuery seems to become the de facto query languagéeML, this
fact does not supersede our work on the evaluation of XPatktead, because
XPath is an essential ingredient of XQuery, our algebrasbnejues can also be
applied within an algebraic framework for XQuery. For exden@as we have seen
in this chapter, it is not possible to cut XPath expressibas dccur in an XQuery
| et binding. In this case, all of our techniques for XPath (ilee full-fledged
algebraic approach and our unnesting techniques) cartlglibscapplied to such an
XPath expression.

Chapter 7

Conclusion & Outlook

7.1 Conclusion

Relational systems have shown how algebraic techniquebecased to efficiently
process SQL queries. These systems feature powerful qymimination tech-

niques as well as a fast and scalable implementations afdbery execution en-
gines. In this thesis, we have developed a framework forégieg algebraic tech-
niques to enable the efficient evaluation of XML query largpsa Moreover, we
have presented novel rewrites to unnest nested SQL quettlesdisjunctions, a
problem that has not yet gained any attention.

7.1.1 Algebraic XPath Evaluation

We have started out with the development of an order-awarie-tbased logical
algebra that is capable to evaluate all of XPath. A trarmtatunction taking an
arbitrary XPath 1.0 expression as argument maps its inpiat operators of the
new logical algebra. In a first step, we have defined the @#nsl function such
that its output does not avoid the exponential runtime bielhaf the naive XPath
evaluation. However, in a second step, we refined the trimstainction in order to
remedy this situation. Additionally, we have also desdatiiee implementation of
our algebra in the runtime system of the native XML databgstesn Natix. Using
this system, we performed an evaluation comparing our @ghr@against freely
available main-memory engines. As a result, we could oles#rat our approach
can compete with such engines — even though Natix is not ypuna@in-memory
based — and that applying optimizations such as pushinga@elelimination, our
approach is able to clearly outperform the others.

7.1.2 Unnesting XPath Expressions

Having established a complete algebraic approach, we bawved to optimizations.
Specifically, we have presented algebraic equivalencesderdo unnest nested

133

134 CHAPTER 7. CONCLUSION & OUTLOOK

XPath expressions.

In order to systematically develop new unnesting techrégues have estab-
lished a classification of nested XPath expressions. Pitynémnis classification
distinguishes expressions according to their dependendhelocal context and
the cardinality of their result. Our equivalences are t@g®n unnesting each of
the classes. Therefore, we have extended our logical ad®sbsix operators that
are especially useful for unnesting. For example, we haveldped the kappa-join
operator for efficiently evaluating existentially quargdicomparison expressions.
As our performance study shows, our unnesting approachicleatperforms the
other XPath evaluators. For example, our main competherapproach by Gottlob
et al. [46, 47], avoids the exponential runtime in the woeste; but is still several
orders of magnitude slower than our unnested approach. éasons is that they
need to materialize intermediate results for differentterts, which is not neces-
sary. We, however, can avoid materialization for differeantexts by unnesting
nested (independent) XPath expressions.

Existing unnesting techniques that were developed in tla¢ioaal context are
presented as source level rewrites of the query. Rewritirgrigs on the source
level turned out to be error-prone because their validigiffscult to confirm (e.g.
[71]). Pursuing unnesting on the algebraic level, howeakowed us to formally
ensure the correctness of our rewrites. To this end, we gegproofs for all our
unnesting equivalences in the appendix.

7.1.3 Disjunctive Unnesting for XPath

The unnesting techniques we have presented in Chapter ajgaéle of unnesting
arbitrary quantified comparison expressions as long asdbeyr in a conjunction.
However, in an XPath predicate, a comparison expressiomlsanoccur disjunc-
tively. In this case, all existing unnesting techniques -eluding ours — fail so
far. Hence, we have developed a novel unnesting approatlisthbale to unnest
guantified comparison expressions that occur in a disjancti

Therefore, we have combined the existing bypass technieuge [27]) with
our unnesting approach for nested expressions in conumgctiThis combination
allows for the efficient evaluation of nested XPath exp@ssiwith disjunctions.
For example, we have presented a variant of the kappa-j@ratgr that is injected
with the bypass technique. The result is our novel bypaspdgun which can
efficiently evaluate arbitrary existentially quantifiedngoarison expressions that
occur in disjunctions. Our experimental study demonssrtte superiority of our
approach compared to other existing evaluators.

Furthermore, our approach is not only applicable to unnestien XPath queries.
Instead, combining algebraic unnesting techniques wiftabg operators also en-
ables the unnested evaluation of nested XQuery or SQL quédigr kappa-join, for
example, can be used to unnest existentially quantified XQepressions [13].

7.2. OUTLOOK 135

7.1.4 Disjunctive Unnesting for SQL

Unnesting of nested queries with disjunctions has not baetiexl for any query
language so far. In an excursion into the relational world,hvave presented an
unnesting technique for unnesting such queries. To thedbestr knowledge, we
are the first to study this problem.

Our unnesting approach is presented by means of algebnaiadences. Based
on the orthogonal classifications by Kim [70] and Muraliskmna [85], we have
presented equivalences to unnest table and scalar substieat can be shaped in
a single, a tree, or a linear form. The right-hand side of glliealences features a
bypass operator in order to efficiently deal with the disjiorc

Our extensive experimental study has shown, that optimizafor such queries
have not abundantly found their ways in commercial DBMSsis Thdespite the
fact that such techniques seem to become more and more comrpuaactice and
emerge, for example, in the latest decision support bendhofahe transaction
processing performance council [105]. Our approach, inrrasty outperforms the
major commercial systems by orders of magnitude in mosiscase

To ensure the correctness of our SQL unnesting equivalewegsovide proofs
for all of them in Appendix C. These proofs also confirm thedig} of our rewrites
on an algebra for bags.

7.1.5 Preparing XQuery for Plan Generation

In Chapter 6, we have been back to XML query optimization. c8pally, we
have proposed a rewrite toolkit in order to prepare plan geima for XQuery.
Taking a single query block as argument a plan generatotes@a optimal plan
for the given query block. Our toolkit provides rewrite rsilie order to transform
an XQuery — possibly consisting of many query blocks — in arfavith fewer
query blocks. Applying these rewrites, we increase theckegpace for the plan
generator which can then (usually) generate better plassglan example query,
we were able to demonstrate the effect of fewer query blookse execution time
of query execution plans that would not have been possilgenerate without our
rewrites.

7.2 Outlook

In this thesis, we have developed an algebraic approachdavaluation of XPath
and presented optimizations for the evaluation of XPath&@dery. Moreover, we
studied the unnesting of nested SQL queries in the presduitgunctions. Still, in
all of these areas, this is just the beginning of researdmteds to be done in order
to employ these techniques in industrial-strength da@bsmagement systems. In

136 CHAPTER 7. CONCLUSION & OUTLOOK

the last section, we discuss outstanding topics that haveetaeceived any or
enough attention.

7.2.1 XML Query Processing

Plan Generation Plan generation is the problem to find for a given data set a
query execution plan that is the fastest to execute. Finduddh a plan requires
the plan generator to compare alternative (equivalent)spld herefore, the plan
generator attaches costs to single operations of a planaadlates, given statis-
tical information about the data, the overall cost needegkexute it. These costs
are computed using cost functions for physical algebraaipes that take the map-
ping of the data onto storage mediums (disk or main memorgl)tha physical
characteristics of this medium into account. For relatiaigebras and storage,
this problem has been solved successfully. For an XML akyend storage, no
such (published) work currently exists. A major future agsé task is to make
up a complete cost model out of physical algebra operattasstscal information
about XML data (e.g. [95, 96, 108]), and functions that diéscthe characteristics
of accessing XML data on disk or in main memory. In some cas@sunnesting
techniques may not always result in better execution pl@&nsost model would
allow us to decide on the benefit of applying our unnestingvadgnces, i.e. apply
them in a cost-based manner during plan generation. Moreay@an generator
should determine the most effective way to evaluate XPatation steps or paths
among many techniques that have been proposed for thigZe2f, 54, 66, 67]).
First studies comparing the use of index-based evaluatmiques (i.e. structural
joins) against the navigational technique that is used ihxNe&ave already been
presented in [79].

Schema-Based Optimization A detailed investigation of schema-based optimiza-
tion should be a further point of research. Although theneehaready been some
results presented in this area (e.g. [9, 73, 74]), there irsralot of work to be
done. We have already shown some promising rewrites in doadeptimize de-
pendent nested XPath expressions (see Sec. 3.3.3). Sohmesefrewrites are not
applicable without knowledge about the schema of the upishgrlocument. Tech-
niques such as magic sets could, for example, be used toipptdapendent path
expressions further.

Factorization A byproduct of the previous chapter addressed the factiza
of common location steps in an XQuery. This avoids multiplaleations of the
same step. However, this is not sufficient. For instancepfering more complex
XQuery expressions, such as predicates, node constractorfunctions, would
further reduce execution costs. Moreover, in order to eneptimal plans, factor-
ization has to be incorporated into plan generation algoré. First research that

7.2. OUTLOOK 137

focused on plan generation and efficient query executioeuiadtorization has al-
ready be done in [87, 88, 89]. A step towards this directionldde to incorporate
our unnest map operator in their plan generation algorithms

Materialized Views Materialized views are well-studied and widely used in or-
der to reduce the runtime of complex SQL queries. In the corteXQuery, it
has already been shown how materialized XPath views cangleitd to answer
user queries with XPath expressions [4]. However, theiorégms still lack some
features. For example, they cannot completely decide veh&ibws can be used if
the user query contains disjunctions. Moreover, it is nffigant to answer XPath
expressions with the help of views but their approach shbelextended to answer
complex XQuery expressions as well.

7.2.2 Unnesting Disjunctive SQL Queries

Our unnesting techniques for nested SQL queries with disjoms also lack some
cases that need to be handled. These include, for examplenesting queries
whose linkingand correlation predicate occurs in a disjunction, (2) optimiz
nested disjunctive queries in the omclause, (3) handling all linking operators, i.e.
6 ALL andf SOVE/ ANY for 6 € {<,<,>,>}, and finally (4) unnesting queries
featuring correlation predicates that refer to attribideined in a non-adjacent
query block (indirect correlation).

Moreover, since our unnesting technique creates DAG-sired algebraic ex-
pressions, we rely on effective optimization techniquegénerating and executing
DAG-structured query plans. A first framework for the evailmaof such plans has
already been introduced in [87]. However, the algebraiaesgions produced by
our techniques are quite demanding and, hence, might triggeaer research in
this direction. Integrating techniques in order to effitigevaluate nested queries
(e.g. [50]) into a push-based algebra could also be a ngxt ste

Appendix A

Proofs for Unnesting XPath Queries

For the following proofs let Ihs denote the left-hand sidel ans the right-hand
side of an equivalence. Unlike our equivalences, wheenotes an expression,
lete;(i = 1,...,n) be sequences of tuples. That is why we omit the translation
function7 in the proofs. Because the resultbfis an algebraic expressions which
in turn, when evaluated, returns a sequence of tuples.

A.1 Proof of Equivalence 3.1

Ue2:gn1:nlaﬂ?cn(63)(61) = 1_[(:’n,:g’ (Maxgnn;cn’:(ch’:cn(el) <e2 >)g)

Assumptions:
e ¢ <eg>= €3,
e ¢ is single-valued,
e ¢3 independent,
e ande, dependent oa;.

In a first step, we substitute the sequengen the lhs withe; < es >, which is equivalent
according to the assumptions.

0'62:gm:m{wcn (el<eg>)(el) = ch:g’ (]\/jamg;m;cn’:(ch’:cn(el) <ez >)g)

Proof by Induction: over the length of the sequeneg

Base Case:

e] = €

Ihs =¢

rhs =e asll., ..n(e1) < ez > is empty and (by definition of the max operator) if its inpuggence
is empty.

Inductive Hypothesis:

i) = Mo Mty (Lo o) <62>).9)

139

140 APPENDIX A. PROOFS FOR UNNESTING XPATH QUERIES

Inductive Step:
epr —e Pt
s (1601 (3 O 1) = oy (M gmien = (eion (¢1 & 1) <€2>).9)

= 052:g7n:7nawcn((51®t)<€2>)(61) @ 0—62_gm mazen (el @t)<€2>) (t) =

ch:g’ (Maxg;m;cn’:(ncn :cn(el) <ezx> @ch/:cn(t) <ez >)g)

Case 1: The maximum element ie, is not in the context of:
NS =0, @, v (er) <o) (1) s (e180)<co) (1) 1S €MPty and we can omit
thet in the subscript; @ t of the selection because the maximum element is not in the
context oft.
rhs :ch:g’ (Maxg;m;cn’:(ncn/:cn(el) <ez >)g)

33062:g

Case 2: The maximum element ie, is in the context of:

Case 2a: without duplicate maximum values:
lhs=0, _q (t). We can omit; because it does not contain the maxi-
o=@ m:mazen ((t)<e2>)

mum value.

rhs :ch:g/ (Maxg;m;cn/: (ch/:cn (t) <eg >).g)

As the maximum element i, is in the context of the |hs =t. The rhs follows from
the same argument by definition of the max operator and therelis =t.

Case 2b: with duplicate maximum values:
|hs = 0—62:g_7n:7nawcn((61)<€2>)(61) @ 0—62_gm ma‘r,‘“ (61)<€2>)(t). We Can omit the In
the subscript of the selection, because the maximum valaa@y} is ine;.
In this case
ch:g/ (Maxg;m;cn/ (cn/ ('n(el) <ez> @H('n ('n() <e2 >)g) =
chg (Maxgmcn/ (cn/ cn() <62>))
@ch g’ (Maxg m;en/= (cn/ cn(t) <eg >))

and therefore

rhs = H(:n:g’ (Maxg;m;cn’: (ch’:cn(el) <ez >)g)
@ch:g/ (Maxg;m;cn/: (ch/:cn (t) <ez >)g)

As we know that

s (oo (€1) = Moy (Mot =(ewrene1) <€2>).9)

we have to proof that

s (o)) 1) = Tenigr M0 gmions = (Tenvin(t) < 2>).9)

The |hs =t because the maximum value ég is in the context oft and there are
duplicate maximum values. Henagyasses the selection.

The same argument holds for the rhs by definition of the maxatpeand therefore
rhs =t.

A.2. PROOF OF EQUIVALENCE 3.2 141
A.2 Proof of Equivalence 3.2

Ugm;emists(€29€3)(el) = H?n:cn“,z((VA (ch”:cn(el)) <ez >)I><cn9(:n/ng/;cn(€3))

Assumptions:
e ¢3 independent,
e ¢, dependent ony, and
e ="=",
Proof by Induction: over the length of the sequeneg

Base Casee; = ¢: lhs =rhs =¢
Inductive Hypothesis:

ng;emsw(@:%)(@l) = I (va(Menren(e1)) <ez>)Kenmen Masicn(e3))

cn:en!’ A
Inductive Step:

e1 — el Dt

O (erme (€1 B0 =T (i [Teron(e1 © 1) <25 e T2 (e3))

cnien

< Ugm;emists(@:%)(el) @ ng:ewists (62:63)(t) =

?n:cn”,z((VA (ch”:cn (el) <e2 >)[><(:n:(:n’H37/;cn(€3)) @
an:cn”,z((t ° [A : mCLLC(HA(I/A(el))) + 1](t) <eéz >)I><0n:C7l’H(€7/:cn(e3))

As we know that
0gm;emists(€2:€3) (61) = 1_I?n:cn”7z((y"4 (HC”N:C" (61)) <eéz >)D<0nzcnlngﬂ:cn(e3))
we have to proof that

— A
Ugw:ewists(e2:e3) (t) = ch:cn”,Z((HC"”mn

(Wenrreen(t © [A - maz(Ila(va(er))) +1](1) <e2>))

Xen=cn? Hch/ ien (63))

Case l: 3z €es(t) : Jy €ez: z.cn = y.cn
For the lhs, this means thawill pass the selection operator, so

Ugm;emists(62:e3)(t) =1

For the rhs, this means that

I ((Menricn(t 0 [A s maz(ILa(vaer))) + 1)(1)) <e2>)Xen—cnTLoy.cn(e3))

cnien!! A
will contain all tuples in
(Tenrien(t o [A: max(Ila(valer))) + 1](t)) <e2>).

As cn stems fronme, anden’ from es which is independent froms , these are all tuples from

(Tenrien(t o [A : max(Ila(valer))) + 1](t)) <e2>). As all tuples have the same attribute

values forA, the final projection will reduce this to a single tupleelabel the attributen”,
and projectd away.

142 APPENDIX A. PROOFS FOR UNNESTING XPATH QUERIES

Case2: Az €es(t) : Ay €Ees: z.cn=y.cn
For the Ihs, this means that

ng:ew'ists (62:33)({;) =€

For the rhs, this means that
(Heprren(t o [A :maz(Ila(va(er))) + 1]@)) <eg>)Xep= cn’ch en(€3)
will be empty and thereforehs = e.

The proof ford = ’ # " is analog to the proof above.

A.3 Proof of Equivalence 3.3

Q. caists(not(es=es)) (1) = 11— Z(UCZO(VA (e1)9Ce; A=A count B))
with £ = (en!’ cn((VA’ (61)) <es >)I><cn:cn’ (ch’:cn(e3)))

Assumptions:
e ¢3 independent,
e ¢, dependent oly, and
o ="="

Proof by Induction: over the length of the sequeneg

Base Casee; = €: lhs =¢

rhs =¢, by definition of binary operators, if their left input is etgp
Inductive Hypothesis:

ng;emsts (not(ez=e3)) (61) = H(’n en’’, Z(UCZO(VA (GI)WC;A:A/;count
(cn’’:en ((VA’ (61)) <e2 >)[><(:n:(:n’ (ch’:cn(eB)))))

Inductive Step:e; — e1 Dt

OQ.oioes (not(eames)) (61 O 1) = i 7 (0e=0(valer © H)M¥e,a=arcount
(Henren((var(e1 @ 1)) <ez>)Xen=cen'(Henrien(e3)))))
S 0@, s (not(eames)) E) B IAL L (not(esmes)) (D) =
cnn a(0e=0(valer)) @11, pn 7(0e=0(t o [A : maz(Ila(valer))) + 1))
Mo A=A count (Hen:en((Var (1)) <e2>)Xen=cn (Henricn(€3))) ®
(Menrien((t o [A" s max(Ilar (var(e1))) + 1) <e2>)Xen—cn (Henrien(€3))))

For the grouping operator tuples i will match only other tuples if(va/(e1)) < es >
), while tuples in(t o [A : maxz(ITa(va(e1))) + 1) will match only other tuples ir(¢t o [4’ :
max(Ia(var(e1))) + 1] <ez>. So we can divide up the operator into the concatenation of two
M operators.

A.4. PROOF OF EQUIVALENCE 3.4 143

= ng;ezists(n(’t(e2263))(el) ® Ugm;emists(n()t(eQZeS))(t) =

. 7(Oe=0(Vale1)) X a=ar;count (Henrien ((var (1)) <e2>)Xepmens
(Menr:en(e3)))) ®
I, p.enn Z(Oc=0(t o [A: maz(a(valer))) + 1)MCe;a=ar;count
(ch”:cn((t o [AI : max(HA/ (I/A/ (61))) + 1) <e2 >)[><cn:cn/ (ch/;cn(eg))))

As we know that

O-gm:emists(not(€2:€3)) (61) = ch:cn”,Z(UCZO(VA (el)WC;A:A/;count
(ch”:cn((VA’ (61)) <e2 >)I><cn:cn’ (ch’:cn(e?))))))

we have to proof that

ch:cn,,E(JC:o(t o[A:max(Ila(va(er))) + 1)X . A= a7 count
(chu;cn((t o [AI : max(HA/ (I/A/ (61)) + 1) <es >)
Xen=cn/ (ch’:cn (63))))

OQ,.coicrs(not(ea=es)) (t)

Case l: 3z € ex(t) : Jy € e3: z.cn = y.cn
For the lhs, this means thatvill not pass the selection operator. Hence,

ng:ew'ists(nOt(e2:53))(t) =€

For the rhs, this means thawvill pass the semi-join operator and the grouping opernator
creates a group with > 0. Thust will not pass the selection and it follows that rhg.=

Case 2: Az €es(t): Ay €Ees: z.cn = y.cn
For the lhs, this means thawill pass the selection and therefore Ihg.=
For the rhs, this means thawill not pass the semi-join operator and the grouping operat
will create a group witlke = 0. Thust will pass the selection and it follows that rhg =

The proof ford = ’ # ' is analog to the proof above.

A.4 Proof of Equivalence 3.4

ng:ewists (62 263)(61) = anicnl7Z(O—C”ng;7nincn (63)((VA (ch/:cn(el))) <62 >))

Assumptions:
e c3independent,
e ¢y dependent ol;, and
e O=">"

Proof by Induction: over the length of the sequeneg
Base Caser; = ¢: Ihs =¢

rhs =e

Inductive Hypothesis:

144 APPENDIX A. PROOFS FOR UNNESTING XPATH QUERIES

A

0@, ina(eazeny(€) = T 5(0 (va(Menrcn(e1))) <ea>))

C’H,ng;m,incn (e3)

Inductive Step:e; —e1 Dt

0@, iserseny @B =TT 2o, oq (va(Mewien(er @1))) <ez>))
S OQ i (e22e) () B OQ (e (D) =
02 o 3@ (o) (Pa(Menricn(e1))) <e2>)) @
4 (@i (o) Hentien(t 0 [A s maz(TLa(va(er))) + 1)(t)) <e2>))

cnien’ A

As we know that

(0’ ((VA(ch’:cn(el))) <ez >))

— 174
Ugm;emists(e2263)(el) - ch:cn/,z Cﬂ:ng;mmm(es)

we have to proof that

ng;msts(QZ%)(?ﬁ) = an:cn’,Z(Ucnzgm;mmm(es)(HC”":C"(tO[A smax(Ia(va(er)))+1](t)) <e2>))

Casel: 3z €ex(t) : Jy €e3: z.cn > y.cn
For the lhs, this means thatvill pass the selection operator. Hence,

O@,.crists (not(ez>es)) (t)=t.

For the rhs, this means thawill pass the selection operator. As all tuples have the same
attribute values for, the final projection will reduce this to a single tupland restore the
original attributecn from sequence; .

Case 2: Az € es(t) : Ay € eg: z.cn > y.cn

For the lhs, this means thatvill not pass the selection and therefore Ihe. =
For the rhs, this means thawill pass the selection operator ang is independent from
sequence;. It follows that rhs =.

The proofs foW € {>, <, <} are analog to the above proof.

A.5 Proof of Equivalence 3.5

Jg’y:ewists (not(e2>e3)) (e1) = ch:cn”,Z(JCZO (E))
with £ VA (el)WC;A:A’;count (O.C"Zgz;mmcn (e3) ((ch”:cn(VA’ (@1))) <eg >))

Assumptions:
e ¢3independent,
e ¢, dependent oly, and
o 0=">"

A.5. PROOF OF EQUIVALENCE 3.5 145

Proof by Induction: over the length of the sequeneg

Base Caser; = ¢: Ihs =¢

rhs =¢, by definition of binary operators, if their left input is etyp
Inductive Hypothesis:

Ugy;emists (not(62 263)) (el) =
ch:cn/@Z(‘Zx:O (VA (el)WC;A:A/;count (Ucnzgm;mmm (e3) ((chn en (VA' (61))) <ey >))))

Inductive Step:e; — e1 &t

Ugy;mm(n(,t(622€3))(61 ®t) =11, 0w 7(0c=0(valer ® 1)
W(z;A:A’;count(Ucnzgx;mmun(63)((ch”:cn(VA’ (e1®1))) <ez2>))))
OQ inva(not(eazes () P I@ otiersen)) D) = Mepony 7(Te=0(valer © 1)
M, A=Arscount (Ucnzgx;mmm (es) (Menrren(var(er 1)) <ea>))))

OQ e asors (not(es>es)) €1 DO (not(easeq)) () =

epenr a(0e=0(va(e1))) ® I, 7(0c=0(t o [A : maz(Ila(va(er))) + 1](¢)))
M, A=Arscount (Ucnzgx;mmm(63)((ch”:cn(VA’ (e1))) <e2>)) @
(Ucnzgx;mmm(63)((ch”:cn(t o [A":maz(Ilar(var(er))) +1](t))) <e2>))

For the grouping operator tuples in

ch:cn”7Z(UCZO(VA (61)))

will match only other tuples in

(Jcnzgmnnincn (e3) ((ch”:cn (VA, (61))) <e2 >))
while tuples in

Iy a(0e=0(t o [A s maz(Ila(va(er))) +1](1)))

will match only other tuples in

(O, (o) [enricn(t o [A": maz(Ia (var(e1))) + 1)(£))) <ez2>)))

So we can divide up the operator into the concatenation of twooperators.
SO, i ot(eaze)) () D OB, o (mot(eazea)) () =

(M pienr A(Te=0(va(e1)) e a=aricount (Ucnzgmmm(%)
((ch”:cn(VA’ (61))) <e2 >))) @
(ch:cn“,Z(Uc:O (t 0 [A : max(HA(VA (61))) + 1](t)))WC;A:A';COUnt
(O s @ (o) ((Menrien(t 0 [A s maz(ILas (vas(er))) + 1](1))) <e2>)))

As we know that the hypothesis holds it suffices to proof that

ng;exists (nOt(ezzeS))(t) = (ch:cn”,z(aczo(t °© [A :maz(Ila(va(er))) + 1](t)))
Wc;A:A’;count (O'(ngz;mmcn (e3)

(Menrsen(t o [A” : maz(ILa (var (1)) + 1)(1)) <e2>))

146 APPENDIX A. PROOFS FOR UNNESTING XPATH QUERIES

Case l: 3z € ex(t) : 3w € eg : z.cn > w.cn
For the lhs, this means thawill not pass the selection operator. Hence,

Ugy;emists (not(ez>es)) (t) =€

For the rhs, this means thawill pass the selection operator and the grouping opepvator
creates a group with > 0. Thust will not pass the final selection and it follows that rhs.=

Case 2: Az € ex(t) : Aw € e3 : z.cn > w.cn
For the lhs, this means thatvill pass the selection and therefore lhg.=
For the rhs, this means thatvill not pass the selection operator, because even the eshall
z.cn € eg is bigger than anyw.cn. The grouping operator will create a group with= 0
andt will pass the selection. The final projection will rename dhigjinal cr. attribute of the
sequence;. It follows that rhs =.

The proofs fo € {>, <, <} are analog to the above proof.

A.6 Proof of Equivalence 3.6

Q. coiataler=(op(e)) (1) = To>0(E)
with B = 11, 2(Dg=a;countoor, (VA(enien(e1))) <e2>))
Assumptions:
e ¢3 independent,
e ¢, dependent on;, and
o (e1 <es>) =es.

Proof by Induction: over the length of the sequeneg
Base Caser; = ¢: Ihs =¢

rhs =e¢, by definition of the grouping operator.
Inductive Hypothesis:

ng:ewists(€2:(01’(€3))) (61) = O'g>0(ch:cnr7z(Pg;:A;countoop(
(VA(ch’:cn(el))) <eg >)))

Inductive Step:e; —e1 Dt

Ugm;emsts(62:(%(63)))(61 ot) =
Ug>0(HC”:C”/,Z(Fg;:A?m“mO”p((VA(ch’;cn(el P t))) <es >)))
= ng;emists(EQZ(Up(63)))(61) @ ng);ey)ists(eZZ((fp(es)))(t) =
Ug>0(HC”:C”/,Z(Fg;:A?m“mO”p((VA(ch’;cn(el P t))) <es >)))
< ng;”““(@:("p(eﬁ)))(61) @ ng:ewists(€2:(gl’(€3)))(t)
Ug>0(H(;n:cn/7Z(Fg;:A;countoap((Z/A(ch,:cn(el))) ®
(e ien(t o [A s maz(Tla(va(er))) + 1](¢))) <ea>)))

A.7. PROOF OF EQUIVALENCE 3.7 147

At this point, we should actually replace the unary grougipgrator I') by the binary grouping
operator k), as in the definition of the operator. As a shortcut, we ship step, because the
grouping attributed in tuplet is different from all other attributel from tuples ine;. Hence, we
can safely emerge the grouping operator into two groupiregatprs.

S 0@, e (ea=(r(e)) E) B OA, (a0 (e0) >>(t)
Ug>0(ch;cngZ(Fg;:A;countwp((VA(ent:en(€1))) <
(Lgi=a;countoa, (t 0 [A : maz(Ila(va(er))) +](t))

SO, inlea=(op (e) P OG a0 e3>>>(t)
(0g>0(IL,,,.cn 2(Lg; Acountoap((VA(ensien(€1))) <€2>)))) ©
(0950(IL,,,.cns T(Lgi=Ascounton, (t 0 [A : maz(lla(valer))) + 1)(t)) <e2>)))

)
>)))

/\ @

As we know that the hypothesis holds it suffices to proof that

Ugm;emsts(@:(%(eg)))(t) = (Ug>0(ch:cn’,Z(PQ;ZA;COUW‘/O%
(to[A:max(Ilg(valer))) +1](1)) <ex>)))
Case 1: 3z € ex(t) : Jy € e3 : op(e3) = z.cn
For the lhs, this means thatvill pass the selection operator. Hence,

Ugfn;efnists (eZZ(Gp(es)))(t) =t.

For the rhs, this means thatill be in a group whose g value is greater than zero. In this
caset will pass the selection operator and it follows that = t.

Case 2: Az € eq(t) : Ay € ez : op(es) = z.cn
For the lhs, this means thatvill not pass the selection and therefore Ihs. =

For the rhs, this means thawill be in a group whose g value is zero. Hentwiill not pass
the selection operator an@s = e.

A.7 Proof of Equivalence 3.7

Ugy;emists(e2:efi)(el) = H?n en! A(U('n Pg((VA(ch’:cn(el))) <e2 >))

Assumptions:
e c3is single-valued as well as independent,
e ¢y dependent ol;, and
e 0="=".

Proof by Induction: over the length of the sequeneg
Base Casee; = e:lhs =e =rhs.
Inductive Hypothesis:

Ugy;emists(ezzea)(el) = an en’ A(O-("'7 =es3 ((VA(HC"/icn(el))) <e2 >))

148 APPENDIX A. PROOFS FOR UNNESTING XPATH QUERIES

Inductive Step:e; — e1 Dt

TQ, e iae (eames) (€1 BE) = I 7(Tenmes (Vaensien(e1 @ 1)) <ez>))
N TN U
fn;cnrz(gcn:es (va(Ilepricn(er @ t))) <ez>))
G 0q (o)) DO () =
2 7 (Ten=es (va(enicn(en))) <e2>)) @

an:m/’z(acn:eg (Henszen((t o [A :max(Ila(va(er))) + 1](t)))) <ez>)

As we know that

OQ, cwints(ea=es) (e1) = anzcn/j(acn:es (va(Ilenrien(e1))) <e2>))

we have to proof that

cn:icn

08, ereny D =T (Genmey (Henren(t 0 [A = maz(ILa(va(en))) + 1]())) <e2>)

Case 1: 3z € ex(t) : z.cn = eg.cn
Remember, thats is single-valued.
For the lhs, this means thatvill pass the selection operator, Hos = t.
For the rhs, this means thawill pass the selection operator. As all tuples have the same
attribute values for, the final projection will reduce this to a single tupland restore the
original attributecn from sequence; . It follows, that rhs =.

Case 2: Az € ey(t) : z.cn = e3.cn
For the lhs, this means thatvill not pass the selection and therefore Ihe. =
For the rhs, this means thawill also not pass the selection operator and it followst tha
= €.

The proofs fo € {#, >, >, <, <} are analog to the proof above.

A.8 Proof of Equivalence 3.8

ng;_f(e”:% (61) = ch:cn”,Z(F%:A;f(VA (ch”:cn(el)) <eéz >)l><g:C’ﬂ/ (ng’:cn(e?))))

Assumptions:
e c3isindependent,
e ¢, dependent ol
e fis an aggregation function, e.g. count, and
e H="=".

Proof by Induction: over the length of the sequeneg

Base Caser; = ¢: Ihs =¢

rhs =¢, by definition of binary operators if their left input is engpt
Inductive Hypothesis:

A.8. PROOF OF EQUIVALENCE 3.8 149

Jg“?.f(ez):% (61) = ch:cn”,Z(F%:A;f(VA (ch”ic’ﬂ(el)) <ez >)l><g:Cn/ (ng’cn(e3)))

Inductive Step:e; — e; &t

Ugw:f(62>:e3 (61 ® t) = ch:cn”,Z(Fg;:A;f(VA (ch“:cn(el 83 t)) <e2 >)I><g:cn’

(Hch/ ien (63))

A ng;_f(eg)zea (61) ® O-gz;;f(eg)zeg (t) = ch:cn“,z(]‘—‘%:A;f(VA (ch”iﬂl(el S t)) <62 >)
Xg=cn’ (H(:Dn’:(:n(e3)))
< Ugw:f(ez):e3 (61) S Ugw;f(e2>:€3 (t) = ch:cn”,z((rg;:A;f(VA (HC”L”:CTL (61))

S (Menren(t 0 [A s maz(la(va(en))) + (1)) <e2>))Xgcn (gy.en (€3)))

At this point, we should actually replace the unary groupipgrator by the binary grouping
operator, as in the definition of the operator. As a shorteatskip this step. Because the grouping
attribute A in tuplet is different from all other attributel from tuples ine;, we can safely emerge
the grouping operator into two grouping operators.

Q. f(eq) =5 (e1) ® Q.. f(eq) =5 (t) =
ch:cn“,Z((Fg;:A;f(VA(ch”:cn(el)) <ex>) B
Lgimasf (Wepmien (t o [A : maz(Ila(va(er))) +1](£)) <ea>))Xgmen (e cn(es)))
< ng;.f(eg>:€3 (1) & ng;f(ez>:€3 (t) =
e 270G = A; f(aenren(er)) <eo>)Xgmen (TT5,,(€3))) ®
O, enn Z(Lgi=a5 (Henicn (t o [A s maz(Ila(va(er))) + 1](t)) <e2>)Xg—cn
(5 .cn(ea))
As we know that
I, e =es @) = oo 2(Cgi= A f(Va(llenricn(e1)) <e2>)Xg—ecn (I .en(e3)))

we have to proof that

(1) = Mo 2Tgims (Merien(t o [A : maz(Tava(er))) + 1)) <ez>)

Xg=cn (Hch’ ien (63)))

Casel: Jz €ex(t): Jy€es: f(z) =y.cn
For the lhs, this means thawill pass the selection operator, Bos = ¢.
For the rhs, this means that thealue, computed by using the grouping operator will match
any cn value that stems frorag within the semi-join. Sa will pass the semi-join operator.
As all tuples have the same attribute values Agrthe grouping operator will reduce this
to a single tuple. The final projection restore the origintitaute cn from sequence;. It
follows, that rhs =.

Case 2: Az €cey(t) By ces: f(z) =y.cn
For the lhs, this means thawill not pass the selection and therefore Ihs. =
For the rhs, this means thatvalue, computed by using the grouping operator will not
match anyen value that stemsgs within the semi-join. Sa will not pass the semi-join
operator. It follows, that rhs =

O
gm;f(ez):€3

150 APPENDIX A. PROOFS FOR UNNESTING XPATH QUERIES

The proofs foW € {#, >, >, <, <} are analog to the proof above.

A.9 Proof of Equivalence 3.9

O count(cn—cy (Xoys g (emy (1)) =COURL(T 11— (Xt 17 ey (1)) (€)

Assumptions: = dependent oa.

Proof by Induction: over the length of the sequenee

Base Case:
e=¢€
lhs =¢

rhs =¢ by definition of the d-join if its left argument is empty.

Inductive Hypothesis:

T count(m—cy (X (eny (1)) =c0unt (@1 _o, (ot 7 (emy (7)) (€)

Inductive Step:
e—edt

T count(nec; (X (emy (1)) =COURE(1 _or, (Xt 7 omy (1)) (€ B E)

<~ Ocount(on=c; (Xp. s’ (en) (7)) =count(

Ocount(on=cy (Xp. s’ (en) (T)))=count(o,,/—

As we know that

(Xt 17 emy (7)) (€) B
(Xt 57 emy () ()

e <Il oy =y (xy:2(B)
Mqulrie (Fy;:w;count

(Fw;:n;count(E))))) >

On=c1Vn=cs (Xn:f’(cn) (ﬂ-))

e <Ily oy =y (xy:2(B)
:Mllflr:ie (Fy;:.’r;count

(Pai=nicount (£))))) >
On=ciVn=cz (Xn:f’(cn) (71—))

(e®t) <oy =y(xy:2(D)

Y,y
y:2
:Mtrue (Fy;:.’r;count

(Fw;:n;count(E))))) >
On=ciVn=cs (Xn:f’(cn) (71—))

(e) < HW(Uy’:y (xy:2(D)
2

Milru,e (Fy;:w;count

(F-’E;:n;count(E))))) > ®

(t) <HW(0'y/:y (Xy/:g(l:‘)
2

Milru,e (Fy;:w;count

(F:E;:n,;cou11t (E))))) >

On=c1Vn=cs (Xn:f/(cn) (ﬂ-))

A.10. PROOF OF EQUIVALENCE 3.10 151

T eount(0n=ey (X ey (F))=COUE(1o (Xt g1 ey () (€)= (€) - <Hggr(ayr =y (Xy:2(0)

y:2
:Ntrue (Fy;:.’r;count

(Fm;:n;count (E))))) >
E = On=ciVn=co (Xn:f/(cn) (71—))

we have to proof that

Tcount(on=c, (Xp. 4/ (e (7)) =COUNE(T 1 _ o, (X 57 (em) (7)) ity =)< HW(Uy/:y (Xy/:Q(D)
:Ng;"ie (Py;:m;count
(Pa:;:n;count (E))))) >
E = On=c1Vn=cg (Xn:f’(cn) (ﬂ-))

The latter holds because evefyc w that passes the two selections on the lhs also passes the

operators of expressiafi on the rhs. After the selection there exists (among all siple 7) two
values for the attribute valueg i.e.c; andcs. For each such value, the subsequent grouping operator
creates one group. Further, it adds the number of tuplescin g@up to the attribute. In a next
step, the second grouping operator creates a group forzesalue and also counts the tuples per
group, storing the result in the attribujelf there exist an equal number of tuples for betlvalues,
this grouping operator creates exactly one group havingtaptes, i.ey = 2. This one tuple is
joined (using a left outer-join) with one tuple that contaan attribute)’ with value two. The (one)
tuple from the join result that passes the selection opefetonparingy’ = y) the two count-values
are equal becauge= 2. In this caset is in the result. In contrast,is not contained in the result,
if the tuple from the join result does not pass the selectienif the two count-values are not equal.
In case the last group is empty (i.e. if there does not exigtrasult inpi) the outer join handles
empty groups. For an empty group, the value 2 is assignedcetatthibutey and, hence, the tuple
also qualifies.

Analogously, the same argument holds for the sum function.

A.10 Proof of Equivalence 3.10

UE((W) [62]) = Hgtring-vmuecn)((ﬂ)[eﬂ <ex >)
withE = not(Agexists(€1X((pre :: *)|(anc :: x))[ez]/e1))

Assumptions:

e ¢ is single-valued,
e ¢ is context dependent gir)[e], and

e ¢, does not contain a call to position or last.

Proof by Induction: over the length of the sequente

Base Case:

™ = €.

lhs =¢

rhs =e by definition of the d-join if its left argument is empty.

152 APPENDIX A. PROOFS FOR UNNESTING XPATH QUERIES

Inductive Hypothesis:

UE((T‘-)[P/Q]) = Hgtring-va|uecn)((77)[€2] <e >)
withE = not(@exsts(€1X((pre :: *)|(anc :: x))[ez]/e1))

Inductive Step: m > 7 d ¢t
In the following, E denotesiot(@,.exists(e1X((pre ::)|(anc :: x))[e2]/e1)).

op((r®t)el]) = HsDtring-valuecn)((W @ t)ea] <eg>)
op((m)[e2]) ® op((t)les]) = HSDtring-valuem)((”) lea] <e1>) @
Mstring-valugen (D)e2] <e1>)

The last equation holds, becausedoes not contain a call to position or last.
As we know that

O'E((Tr)[eQ]) = Hgtring-va|uecn)((7r)[62]<el>)

we have to proof that

UE((t)[€2]) = Hgtring-va|uecn)((t)[62]<€1>)

On the Ihs, suppose for the tupleéhere exists a tuple g X((pre :: *)|(anc :: *))][e2]/es.
This means, that there exists a tuplecin(evaluated in the context @j that is equal to any tuple
in e; that is evaluated in the context of all preceding or ancestarthat also satisfies,, i.e.
((pre :: #)|(anc == x))][e2]/e1. Then, the tuple does not pass the selection because of the not
function call. If there does not exist a preceding or anadb®tuplet contributes to the result. The
comparison of the semi-join is done using the string-vabfdéke two input context nodes.

This semantics is exactly resembled by the semantics of gplicdte elimination projection
IIp that keeps the first tuple in a sequence and throws away themgrg ones. The projection also
eliminates duplicates based on the string-values.

Appendix B

DTD for the University Schema

<! ELEMENT

<! ELEMENT
< ATTLI ST

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
< ATTLI ST
<! ELEMENT
<l ATTLI ST

<! ELEMENT
<! ELEMENT
<! ELEMENT
< ATTLI ST

<! ELEMENT
< ATTLI ST
<! ELEMENT
< ATTLI ST

<! ELEMENT
<! ELEMENT
<! ELEMENT
< ATTLI ST

<! ELEMENT
<l ATTLI ST
<! ELEMENT
<! ELEMENT
<! ELEMENT
<I ATTLI ST
<! ELEMENT
<! ELEMENT

uni versity (enpl oyeex|studentx|| ecturex*|examnm)*>

enpl oyee (nane, (professor|research-assistant)?)>
enpl oyee id | D #REQUI RED>

prof essor (degree
degree (#PCDATA) >
room (#PCDATA) >

t eaches EMPTY>
teaches | ecture | DREF #REQUI RED>
exam nes EMPTY>

exam nes | ecture | DREF #REQUI RED>

roomn| teaches*| exam nesx)x>

resear ch-assi stant (research-topic|worksfor)*>

research-topi c (#PCDATA) >

wor ksf or EMPTY>

wor ksfor professor | DREF #REQUI RED>

student (name| senester| exam nationx | attends)x*>
student id | D #REQUI RED>

attends EMPTY>

attends | ecture | DREF #REQUI RED>

name (#PCDATA) >

senester (#PCDATA) >

exam nati on EMPTY>

exam nation id | DREF #REQUI RED>

| ecture (helpers|title|credits|attendi es||ecturer?)*>

lecture id | D #REQUI RED>

title (#PCDATA) >

credits (#PCDATA) >

| ecturer EMPTY>

| ecturer professor |DREF #REQUI RED>
attendi es (attendeex)>

attendee EMPTY>

153

154

< ATTLI ST
<! ELEMENT
<! ELEMENT
<I ATTLI ST

<! ELEMENT
< ATTLI ST
<! ELEMENT
<! ELEMENT
<l ATTLI ST

<! ELEMENT
< ATTLI ST

<! ELEMENT
<I ATTLI ST

APPENDIX B. DTD FOR THE UNIVERSITY SCHEMA

attendee student | DREF #REQUI RED>
hel pers (hel per+)>

hel per EMPTY>
hel per student | DREF #REQUI RED>

exam (gr ade| bel ongst o] exam ner | examni nee) * >
examid | D #REQUI RED>

grade (#PCDATA) >

bel ongst o EMPTY>

bel ongsto | ecture | DREF #REQUI RED>
exam ner EMPTY>

exam ner professor | DREF #REQUI RED>

exani nee EMPTY>

exam nee student | DREF #REQUI RED>

Appendix C

Proofs for Unnesting SQL Queries

For the following proofs leths denote the left-hand side anusthe right-hand side
of an equivalence.

C.1 Proof of Equivalences 5.2 and 5.6

We proof only Equivalence 5.6 repeated below. The correstnéEquivalence 5.2
follows immediately when we replace the correlation praticA, = B, by the
constaniTRUE.

O-aAlzBl (UA2=B2 (S))VP(R) = 61 U 62
er = o, (R)
€2 = (010_ (R))KAlzBl/\AQZB?S

it F(p) € A(R), A(R) N A(S) = 0, A; € A(R), B, € A(S), (for Equiva-
lence 5.6 in additiom, € A(R), By € A(S))

rhs = o} (R) U ((0, (R))Xa,=B,n4,=B,(5))
= {rlreRAp}U{rlre{zlzr € RA-p}ATs€ SAT.A; = 5B A1 Ay = 5.8y}
= {rlre RAp}U{rlre RA-pAIs € SAT.A; = 5.B1 Ar. Ay = 5.Bs}
= {rlreRA(pV(-pAIs€ SAr.A1 =3s.B1 Ar.Ay = s.Bs))}
= {rlreRA(pV(-pAIse{tite SAr.Ay=t.Ba} Ar.Ay =3s.B1))}

= Opv3a,=5,(04,=8,(S5)) (R)
= 1hs

Note that predicates and —p partition the tuples of? into two disjoint sets.
We explicitly use this property in the bypass selection toidthe creation of du-
plicates. Together with the short-circuit evaluation @ thsjunction duplicate se-

155

156 APPENDIX C. PROOFS FOR UNNESTING SQL QUERIES

mantics are preserved. For this reason and because alliegaperators preserve
duplicates this equivalence holds for bags.

C.2 Proof of Equivalences 5.3 and 5.7

We proof only Equivalence 5.7 repeated below. The corrsstoéEquivalence 5.3
follows immediately when we replace the correlation praticA, = B, by the
constanfTRUE.

U3A1:B1(0A2:BQ(S))VP(R) = e Ue
€1 = RxxlzBl/\AQZBQS
€2 = JP(RKX1:B1/\A2=BQS)
if F(p) € A(R), A(R) N () =0, A, € A(R), B, € A(S), (for Equiva-

lence 5.7 in additiond, € A(R), B, € A(S)

ths = (RX} _p aa,=5,5) U (0p(RX4 _p nay=5,5))
= {rlre RA3s€ SAT.A; =5B Ar.Ay = 5.Ba} U
{rlre RApAN—-3s € SAT.A1 =38.B1 ANr.Ay = 5.Bs}
= {rlre RA((3s€ SATr.A) =5.B1 Ar.As =5.Bs) V
(pA—-Ise€ SAr.A; =8By Ar.Ay = s.Bs))}
= {rlreRA(pV (3s€ SATr.AL =s.By Ar.Ay =5.B))}
= {rlreRA(pV(@3se{tft e SAr.As =t.Ba} Ar.A; = 5.B1))}

= Opvaa,—p, (0ay—5,(5)) (1)
= lhs

Again, we rely on a disjoint partitioning ok and short-circuit evaluation of
the disjunction in the last step. The correctness for netkisollows for the same
reasons as for Equivalences 5.2 and 5.6.

C.3 Proof of Equivalences 5.4 and 5.8

We proof only Equivalence 5.8 repeated below. The correstoéEquivalence 5.4
follows immediately when we replace the correlation pratkcA, = B, by the
constanfTRUE.

C.4. PROOF OF EQUIVALENCES 5.5 AND 5.9 157

OFa, =B, (0ay=B, (S))VP(R) = €& y €2
er = o, (R)
€y = (O—; (R‘))DAIZBI/\AQZBQS

it F(p) € A(R), A(R) N A(S) = 0, A; € A(R), B, € A(S), (for Equiva-
lence 5.8 in additiom, € A(R), By € A(S))

rhs = o (R) U ((0, (R))>A,=B,nas=B,(S5))
= {rlre RApyU{rlre{zlz € RA-p}A-Ts€ SAr.A; =s.B; Ar.Ay = 5.By}
= {rlre RAp}U{rlre RA-pA—-Is € SAT.A] =5.B) Ar.Ay = 5.B2}
= {rlre RA(pV(-pA—-3Ise€SAr.A; =s.BiAr.Ay =5.Bs))}
= {rlre RA(pV (-pA-Ise{tlte SAr.As =t.Bs} Ar. Ay = s.B1))}

= OpvAa =B, (04y=5,(5)) (R)
= Ihs

Again, we rely on a disjoint partitioning ok and short-circuit evaluation of
the disjunction in the last step. The correctness for naetiisollows for the same
reasons as for Equivalences 5.2 and 5.6.

C.4 Proof of Equivalences 5.5 and 5.9

We proof only Equivalence 5.9 repeated below. The correstoéEquivalence 5.5
follows immediately when we replace the correlation praticA, = B, by the
constanfl RUE.

03A1=B1(0A2=B2(S))VP(R) = e Ue
o +
e1 = R _pgaa,—B,O
€2 = ap(bel:Pq/\AQ:BQS)

if 7(p) € A(R), A(R) N A(S)

=0, A; € A(R), B, € A(S), (for Equiva-
lence 5.9 in additiom, € A(R), B, € A

5y

158 APPENDIX C. PROOFS FOR UNNESTING SQL QUERIES

rhs = (RDL:BlAAzszs) u (UP(R[);Xl:Bl/\Azsz S))
= {rlre RA-3s€ SAr.A; =8By Ar.Ay = 5.By} U
{rlre RApAIse€ SAr.Ay =s.By Ar.Ay = 5.Bs}
= {rlre RA((-3s € SAr.A; =8B Ar.Ay = $.Bs) V
(pANIse€e SATr.A =5.B1 Ar.Ay = 5.B9))}
{rlre RA(pV (—-3s e {t|t e SAr.Ay =t.Bs} A1r. A1 = 5.B1))}

lhs

OpVAa =8, (0a,=8,(5)) (R)

Again, we rely on a disjoint partitioning ak and short-circuit evaluation of
the disjunction in the last step. The correctness for netkisollows for the same
reasons as for Equivalences 5.2 and 5.6.

C.5 Proof of Equivalence 5.10

035, _p, (0ay=pyvp () (R)
€1
€2

€3

€1 U €9

R‘IXX1:B163
(RK11:B163)KA1:B1AA2:BQ (Op_ (S))
a, (9)

p

if F(p) C A(S), A(R) NA(S) =0, A1, Ay € A(R), By, B, € A(S)

C.5. PROOF OF EQUIVALENCE 5.10 159

rhs = (RX} _p, (0, (9) U
(RX3, —p, (07 ()X A, =B, as=B, (0, (5)))
= {rlre RA3se{tfte SAp} AT.A; =s.B1} U
{tlt € {rjr € (R\{z|zr e RA3se{tlte SAp} Ax.A1 =s.Bi}})A
Ise{ylye SA-p} ANt.A; =5.By ANt.Ay =5.Bs}
= {rlre RANIs€ SAT.AL =s.By Ap}U
{tlt e {rlre R\ {z|lr e RAIs € SAz. A1 =s.B1 Ap}} A
dse SA-pAt. AL =8By ANt. Ay = s.Ba}
= {rlre RANIs€ SAT.AL =s.By Ap}U
{rlre (R—{zlx e RAIs€ SAx.A; =s.B1 Ap})A
dse SA-pATr.A) =38.B1 Ar.As = 5.Bs}
= {r[((re RAN3Ise€ SAr.A; =s.B Ap)V
(re(R—{zlr€e RANIs€ SAx.A1 =s.B1 Ap})A
dse SA-pAT.A; =38.B1 Ar.As = 5.Bg))}
= {rlre RA((3s€ SAr.A; =s.B Ap)V
(3s€ SA—pAr.AL =8.B1 Ar.Ay = 5.B3))}
= {rlreRANIse SA((pAT.A1 =5.B1)V(-pAr.A; =s.B1 Ar.Ay =5.Bs))}
= {rlreRANIs€ SAT.A1=sBiA(pV(-pAr.As =5.B2))}
= {rlreRAIse{tite SApV (-pAr.Ay=tB2)} Ar.Ay =s.B1}
= 034,25, (0ay=yvp(5) (1)
= lhs

In the last step we assume short-circuit evaluation of tegidction. In the step
marked * we rely on the more general definition of the bypass-$ein where the
negative stream is defined by set difference.

er<gey = {x|lr €er NIy € ey Ap}

61K;62 = e —(61|><;r€2)

For the correctness of this equivalence for multisets itripartant to realize
that the bypass semi-join partitions the tupleg:dhto two disjoint streams. Either
stream is correct under multiset semantics. Finally themubst union merges both
streams without changing the number of duplicates.

160

C.6

APPENDIX C. PROOFS FOR UNNESTING SQL QUERIES

Proof of Equivalence 5.11

0-3A1:B1(UA2:B2VP(S))(R) = a U €2
e = RDX1:B163
ea = (Rby _p €3)>A,=Biaa=B,(0, (5))
es == o, (S)

if Z(p) € A(S), A(R)NA(S) =0, A1, Ay € A(R), By, By € A(S)

rhs

Il

(R}, —p, (0, (9))) U

(B4, —p, (0 ()P a1=B1740=5, (0, (5)))

{rlre RA-3se{tit e SApt Ar.Ay =5.B} U

{tlt e {rlr € (R\ {z|z € RA—-3s{tlt € SAp} Nz Ay =5.B1}}) A
—Jds e {yly e SA—-p} ANt. Ay =s.By Nt.Ay = s.Bs}

{rlre RA-3s€ SAr.Ay =s.B; Ap}U

{tit e {r|r €e R\ {z|]r e RA—-Is € SANx. Ay =5s.B Ap}} A
—ds € SA-pAt.A =5s.B Nt. Ay =5.By}

{rlre RA-3s€ SAr.Ay =s.B; Ap}U

{rlre (R—{z|lr € RA—-3s € SAz. Ay =s.By Ap})A
—ds € SA-pAr.A; =s.By Ar.Ay = s.Bs}

{rl((re RAN—-3s€ SA1r. Ay =s.BiAp)V
(re(R—{xlr€e RAN—-3s€ SAx.Ay =3By Ap})A
—ds € SA-pAT.A =8B Ar. Ay =5.By))}

{rlre RA((-3s € SAr.Ay =s.B1 Ap)V

(mIs e SA-pAT.AL =8By Ar.Ay = 5.By))}

{rlre RA(({s|lse SAr.Ay=s.BiAp}=0)V

({s|]s€ SA-pAr.Ay =s.B Ar.Ay =58} =0))}

{rlre RA ({s|s€ SA((r.Ay =s.By Ap)V

(-pAT.Ay =5.B Ar. Ay =5.Bs))} =0)}

{rlre RAN—=3s€ SA((pAr.A =s.By)V

(-pAT.A; =5.By A1Ay = 5.B3))}

{rlre RAN—-3s € SAr.Ai=sBiAN(pV (-pAr.Ay =s.Bs))}

{rlre RAN—-3se{tlt e SA(pV (-pA1.Ay =t.By))} Nr.A; = s.B1}

JﬁﬂAlzsl(UAQ:BQVp(S))(R)

lhs

C.7. PROOF OF EQUIVALENCES 5.15 AND 5.16 161

In the last step we assume short-circuit evaluation of tegidction. In the step
marked * we rely on the more general definition of the bypadgoamwhere the
negative stream is defined by set difference.

eryer = {zlr € ey A=y € ex Ap}

e, ey = 61—(61D;62)

For the correctness of this equivalence for multisets itripartant to realize
that the bypass anti-join partitions the tuplesidinto two disjoint streams. Either
stream is correct under multiset semantics. Finally themmubst union merges both
streams without changing the number of duplicates.

C.7 Proof of Equivalences 5.15 and 5.16

J14191JC(S)(R) = JA1919(Xg¢f(5)(R)) (Cl)

We observe that the equivalence holds if and only if the agntrto the selec-
tions is equivalent. To see this, we rewrite the Ihs as fadlow

lhs = UAlef(S)(R)
= {rlre RANA10f({s|s € S})}
= {tamlt € {rolg: f({sls € Sl € R} Atght.Ar)

= 0a,09(Xg:5(5)(R))
= rhs

As aresult, all proofs presented next are also valid whenabalt of the nested
scalar query block is returned with the tuples of the outergblock. Hence, these
equivalences are also valid for disjunctive correlationedted scalar queries in the
select clause.

C.7.1 Proof of Equivalence 5.15

Opvaibf(oa,_n,s)(R) = e1Ue
e = a;r(R)
— B @
er = T (gen, (o (R) 241 (Do pyis(9))))

if Z(p) € A(R), A(R) N A(S) = 0, A1,A; € A(R), B, € A(S), g &
A(R) U A(S)

162 APPENDIX C. PROOFS FOR UNNESTING SQL QUERIES

We definel’ := o, (R) = {r|r € R A —p} and
S" =T g—p, () = {sip,0lg : G]|s € SAG = f({yly € SAy.By = 5.B5})}.

ths = o (R) UTLagay (090, (0 (R)25]ED, (Do ir(9)))
= {rlre RAp}U
{rlre R"ANs€ S " Ar.Ay = s.By A s.gfr. A1} U
{rlre RRA=3s€ 5" :1.As =5.Bo ANA(z) = A(S") Ag € A(S") A
Vae A(S)\ g: (z.a: NULL) A z.g : f(D) A 2.g0r. A1}
= {rlreRA(pV (-pA((s€ S Ar.As = s.Ba As.g0r. A1)V
(-3s€ S8 :r.As =8By ANA(z) = A(S") Ag € A(S") A
Va € A(S)\ g: (z.a: NULL) A z.g : f(0) A 2z.g0r.A1))))}
= {rlreRA(pV (-pA
(se{tip,olg:Glltc SANG = f({yly € SANy.By =t.By})}
Ar.Ag = 8.By A s.g0r. A1) V
(~Fse{tip,olg:Gllte SAG = f({yly € SAy.By =t.Ba})} : 1. Ay = 5.B2 A
A(z) = A(S)ANge A(S)AVa € A(S)\ g: (z.a : NULL) A z.g : f(0)
Azgbr A1)
= {rlre RA(pV(-pA((s€ SANG=f({yly € SANy.Bs =s.Ba}) A
r.Ag = $.Bo ANGOr.Ay) vV (-3ds € S 1 r.Ay = s.Ba AN A(z) = A(S) A
Va € A(S) : (z.a : NULL) AG = f(0) AGOr.A1))))}
{rlre RA(pV (-pANG = f({yly € SAr.Az = y.Ba}) ANGOr.A;y))}
= OpvAOf(oay—py(5)(RR)
lhs

For the correctness of this equivalence over multisets, ote that the bypass
selection partitions the tuples iR into two disjoint sets. The left outer-join finds
at most one match with the tuples of expressign.,.;S because the grouping
operator creates a key on the join attribdte Additionally, the left outer-join
returns by definition at least one tuple for each tupl&iand thus handles the case
for empty groups. Hence, duplicatesinare handled properly.

The result of the aggregation is computed correctly by theygrouping oper-
ator. It simply precomputes the value of the aggregate fongt for each value of
attributeB, in S, i.e. for each non-empty group.

The proof of Equivalence 5.16 for the special case of equatedicates follows
directly from the proof of the following Lemma. Note howeytrat we required,
in R to be a key. Otherwise, as the lemma tells us, attribytand other attributes
of R are not available after binary grouping.

Lemma:

HAQUQ(RM,];(QQZBQ (Fg;:Bg;f(S))) = (R)Wg;AzzBmf(S) (C-2)

Proof:

C.7. PROOF OF EQUIVALENCES 5.15 AND 5.16 163

lhs = {ra,osylrc RAsc{to[g:GllteSA
G=f({ylye SAt.Ba =y.Ba})} Ar.Ay = s.Ba} U
{ria,ozglr € RA-Fy € S:r. Ay =y.Ba NA(z) = A(S) A g € A(S) A
Va € (A(S)\ g): (z.a: NULLA z.g: f(0))}
= {ra,olg:Gllrc RAsc SAT. Ay =5Bs NG = f({yly € SAs.By =y.Ba})} U
{ria,olg:Gllre RA(-3s€ S:1.Ay =5.By) NG = f(0)}
= {ra,olg:Gllre RA((s€ SAr Ay =5By NG = f({yly € SAs.Bs =y.Ba})) V
(G=f0)AN—-Ts€ S:r.Ay =5.By))}
— {na,olg: Glir€ RAG = f({yly € S Ar-As = 4. Ba}))
= (R)Wg;AziBz;f(S)
= rhs

C.7.2 Proof of Equivalence 5.16

HA1,A2 (Uva191f(UA292B2 (9)) (R)) = HA1,A2 (61 U 62)
€1 = U;—(R)
€y = 040, 4 (0'; (R)Wg;Agasz;f(S))

if F(p) € A(R), A(R)n A(S) = 0, A1,Ay € A(R), B, € A(S), g ¢
A(R) U A(S) and the functional dependengy — A; holds.

rhs = Ila, a,(0; (R) U (ILgg) (0o, 4, (0, (R)Xg: 4,60, B4:5(5)))))
= {rja,alr € RAPI U {tja, alt €{rolg:Gllr € RAGH Ay A—pA
G = f({yly € SAr.As02y.Ba})}}
= {rMa,a,lr€e RAPV (pANGHAL NG = f({yly € SAT.A202y.B2})))}
= {ra,a,lr€e RAPV (pANGOHAIG = f({yly € S AT.A202y.Ba})))}

= a4, (0pv 4101 f(0a0, 5, (5)) ()
lhs

For the correctness of this equivalence over multisets, ote that the bypass
selection partitions the tuples iR into two disjoint sets. The returns exactly one
tuple per input tuple of; () extended with the result of the aggregate functfon
Thereby empty groups are initialized and handled prop&h final union merges
the disjoint subsets of the bypass selection establishmgarrect final result.

164 APPENDIX C. PROOFS FOR UNNESTING SQL QUERIES
C.8 Proof of Equivalences 5.17 and 5.18

C.8.1 Proof of Equivalence 5.17

Tpvarb(i(oa,—5,) (R) = Tlam)(er Uer)
A£(0
e = Ug+9A1((R)Miziﬁz(rg%ﬂ??f(s)))
_ £(0
e = 0y, (R)IEL, (Tgoni(9))))

if F(p) € A(R), AR)NA(S) = 0, A4, € AR), B, € A(S), g ¢
A(R) U A(S)
First, we simplify the following subexpression that occurs both im; andes:

X = Tamug(R)IFI (Dep,(S)))
= {rosylre RAsec{tolg:G][tcSA
G=f({ylyc SAt.By=y.Ba})} A1.Ay = 5.Ba} U
{rozglre RA-3ye S :rAy=y.BsNA(z) = A(S) A g € A(S) A
Va € (A(S)\ g) : (z.a: NULL A z.g: f(0))}
= {rofg:Gllre RAse SAT.Ay=5.Bo NG = f({yly€e SAs.By=y.Ba})} U
{rolg:Gllre RA—-3s€ S:1r.As =5.Bys NG = f(0)}
= {rofg:Gllre RA((s€ SAr.As =8B NG = f({yly € SAs.By =y.Ba}))V
(G=f@)AN—-Ts€ S:r.Ay =s.Bs))}
= {rofg:Gllre RAG=f({ylye SAr.As =y.Ba})}

Now we useX to complete the proof:

rhs = Ty (094, (X)) U (0p(094, (X))
= {zjamlr € X ANa.ghz. A1} U {z ar)lz € X A —(z.g02.A1) Ap}
= {zjamlr € X A ((z.g02.A1) V (—(2.9g02.A1) Ap))}
— (sl € {rolg: Glr € RAG = f({yly € S Ar.As = y.B})}
A((x.g0z.A1) V (= (x.g0z. A1) A D))}
= {rlreRANG=f{ylye SAr.Ay =y.Ba}) A ((GOr.A1) VvV (=(GOr.A1) Ap))}

= OpvA0f(oay—ny(S)) (1)
= lhs

The correctness of this equivalence over multisets followshe same argu-
mentation as for Equivalence 5.15.
C.8.2 Proof of Equivalence 5.18

The proof of Equivalence 5.18 fés as equality predicate follows from Lemma C.2.
Again the A must be a key of?.

C.9. PROOF OF EQUIVALENCES 5.19 AND 5.20 165

For the general case we have:

T4, 45 (Opvas6: (Hoag0,m,) R)) = Ta, a;(e1 Ue)
e = O';%lAl ((R)Wg;A292B2;f(S))
€2 = UP(Ug_01A1 ((R)WQ;A292B2§f(S)))

if F(p) € A(R), A(R) N A(S) = 0, A;,Ay € AR), B, € A(S), g ¢
A(R) U A(S) and the functional dependengy — A; holds.
To simplify the following expression we defing as:

X = (R)W9§A292B2§f(s)

= {ra,a,0[9:Gllr e RANG = f({s|s € SAr.Az025.B2})}

rhs = HA17A2 (UgelAl ((R)Wg;Azesz;f(S)) U JP(UgelAl ((R)W%AszBz?f(S))))

{ta, a,lt € ({z|z € X ANz.gbrz. A1} U {yly € X A —(y.g01y.A1) Ap})}

{ta, a,lt € X ANx.gb12x.A1 V p}

{ta, At €{rja, 4,09 : Gllr € RAG = f({s|s € S A1.A2025.Ba})} A
(GO1z. A1V p)}

{ra, a,Jr € RANG = f({s|s € S Ar.As028.B2}) A (GO1r. A1 V p)}

HA1 ,Az (U;DVA1 01f(0az04B5(S5)) (R))
= 1Ihs

The correctness of this equivalence for multisets followtie same arguments
as for Equivalence 5.16.

C.9 Proof of Equivalences 5.19 and 5.20

C.9.1 Proof of Equivalence 5.19

JA19f(UA2=B2VP(S))(R) = HA(R)(UAlég(Xg:fo(ghez)(61)))
fr(0 -
e = RM‘Z;QQ](B’Q)(FQUZB%JCI (ap (5)))

ez = fi(o,(9))

if F(p) C A(S), A(R) N A(S) = 0, A; € A(R), i = 1,2, B, € A(S),
9,91 ¢ A(R)UA(S), f is decomposable [30], i.e. there are sEtsY’, andZ, with
X=YUZandY NZ=0.

166 APPENDIX C. PROOFS FOR UNNESTING SQL QUERIES

The scalar aggregate functigh: X — A is decomposablé there exist func-
tions

f1: X — N
fO:NlaNl - N
with f(X) = fo(f1(Y), f1(Z)).

To simplify the expressions we defide.

X = Mg (B Ty, g, (5))))
= {rosglre RAse{tolgi:Gllte SA—pA
G=fi{ylye SA—pAt.By=y.Bs})} Nr.Ay = s.Bo} U
{rozg|lre RAN-3ye S:rAy=y.By N—pAAz) = A(S)
Ng1 € A(S) AVa € (A(S)\ ¢1) : (z.a : NULL A z.g1 = f1(0))}
= {rolgi:Gllre RAG = fi{yly € SA-pA1.Ay =y.Bs})} U
{rozglre RAN-3Jye S:rAy=y.By A—pAAz) =A(S) A
g1 € A(S)AVa € (A(S)\ g1) : (z.a : NULL A z.g7 = f1(0))}
= {rolg:Gllre RAG = fi({yly € SA-pAr.Ay = y.Bo})} U
{rofgi:Gllre RAN—-Fy € S:r.Ay=y.BoAN-pAG=f(0))}
= {rofg:Gllre RANG=fi{ylye SA-pAr.Ay=y.By})}

Using Equivalence C.1, this equivalence also holds withloatfinal selection
on both sides. Hence, we remove can it in the remainder ofrthaf .p

ths = TLamug(Xg:fo g1, (o5 (57) (X))
= {zolg: folg, fri{yly € S Ap})aruglr € X}
= {xolg:Gllamuglr € {rolgi:Gllre RA
G=fi{ylye SA-pAr.Ay =y.By})} A

G = folgi, fr{yly € S Ap}))}
= {rolg:G|lre RA

G = fo(fi{yly e SA-pAr.Ay =y.Bs}), fil{yly € S Ap}))}
= {rolg: fl{yly € SA(r.Ay =y.BaVp)})llr € R}
= Xgf(oay=nyun(s) (1)
= lhs

To establish the correctness for multisets we observe thatple of R is dupli-
cated. Hence, we only have to be careful that at most one tienatches with
every tuple ofR.

In the first part of the proof tuples of, (S) are partitioned by the join predicate
Ay = B,. Matching tuples iny, (S) are combined to exactly one value — the

C.9. PROOF OF EQUIVALENCES 5.19 AND 5.20 167

result of the aggregation functiofi. This value produces exactly one output tuple
for matching tuple ink. Tuples inR that do not find any matching tuple i (.S)
are padded with the value of the aggregation function formaptg input.

In the second part no new tuples are produced or filtered. ,Tthescorrect
number of result tuples are produced. When we investigateahrectness of the
final aggregate value we note that the tuplesSadre partitioned by predicate
(resp. —p). The latter were handled properly in the first part of thegbroThe
former are aggregated independently in the subscript ainye operato. When
both partitions are combined according to the definitionesmfamposable aggregate
functions the correct aggregate value is computed.

C.9.2 Proof of Equivalence 5.20

HA17A2 (O'A191f(UA292B2W7(S))(R)) = HAl,Ag (0A1919(X95f0(91’e2)(61)))
e = (R)W91§A29232§f1 (UIJ_(S>)
€y = fI(UJ(S))

if (p) C A(S), A(R)NA(S)=0,A; € A(R),i=1,2,By € A(S), 9,91 &
A(R) U A(S), the functional dependency, — A; holds, andf is decomposable
as discussed in the proof for Equivalence 5.19.

Using Equivalence C.1, this equivalence also holds withloetfinal selection
on both sides. Hence, we remove can it in the remainder ofrihaf.pln addition,
we ignore the final projection as it is only needed to esthlii® same schema of
the result tuples.

thS = Xgifo (o1, fr (o (5)) ()€ 1:420: Baifi (07, (5)))
= {zolg: fo(z.gr, fri{yly € SAp}))llz € {rofg : Gllr € RA
G=fr{yly € SA-pAr.Asfy.B2})}
= {rolg: fo(fi{yly € S A—p Ar.Az02y.B2}), fi{yly € S Ap}))]r € R}
= {rolg: f{yly € S A (r.A262y.B2 vV p)})]|r € R}

Xg:f(0 4505 Byvp(S)) (R)
= 1hs

To establish the correctness for multisets we observe thatpie of R is du-
plicated. The binary grouping takes care that for everyablz a single group
exists.

The bypass selection partitions the tuples'afto two disjoint sets. The binary
grouping matches all tuples of, () to the groups established frof Tuples of
R that do not find a join partner are properly initialized by thieary grouping.
Hence exactly the same tuplesi®f extended with the result of aggregation — are
returned by the binary grouping operator.

168 APPENDIX C. PROOFS FOR UNNESTING SQL QUERIES

In the map operator does not produce or filter any tuples. ,Tthescorrect
number of result tuples are produced. When we investigatedirectness of the
final aggregate value we note that the tuplesSadre partitioned by predicate
(resp.—p). The latter were handled properly by the binary groupingrator. The
former are aggregated independently in the subscript ofnidye operator. When
both partitions are combined according to the definitionesfanposable aggregate
functions the correct aggregate value is computed.

C.10 Proof of Equivalence 5.21

T 0180 ay0, 5,005 (B) = TLam) (04,0, (R)9Cg1=1r, 5 (pr1rsn (€1 U €2))))
R/ = l/ﬂ(R)
er = Ry pS
€2 = 0Op (R,N:{QHQ B> S)

if F(p) C A(R)UA(S), A(R)NA(S) =0, A; € A(R),i = 1,2, B, € A(S),
g9 & A(R)UA(S)

Let us point out that we assume thetidreturned by the numbering operator is
computed deterministically. For an ordered set, this miighthe position of a tuple
within the set, it might be a tuple identifier as it is commoun$ed to store tuples in
relational databases, or simply the key attribute of aimiatVe may only use that
fort € R ands € R’ it holds that ift.t1 = s.t1 = t = s. Note thatt1 is a key for
the tuple it is generated for.

We useX as a shortcut:

X = Pt’1<—t1 (61 U 62)
= Pti—t; ((R/Mzzﬁst) U (O.i"(R/N;\z@sz S)))
= {rosyculr € R'Ase SAr.Axfrs. By} U
{ye—r,ly € {roslr e R" As € SA—(r.As025.Ba)} Ap}
= {rosy_ylr€ R'Ase SAr.Axfrs.By} U
{rosyulre R'Ns €S A—(r.As02s.Bs) A p}
= {rosy_y|rec R Asc SA(r.Axlys.ByV (—(r.Az025.B2) Ap))}

Thanks to Equivalence C.1 we can safely remove the final ts@teon both
sides. We also remove the final projection on the rhs becaissenly required for
syntactic reasons.

C.10. PROOF OF EQUIVALENCE 5.21 169

ths = (R)™gu=n5(X)

= {tolg:GIte RRANG=f({ylye X Att1 =yt })}

= {tolg:Glte RRAG=f({ylye{[sor]y—ylre R"FAseSA

(r.A2028.Ba V (—(1.A2028.Ba) Ap))} Atty =yt })}

{tolg:Gllte RAG = f({s|s € SA (t.A2025.By V (—(t.A2025.B2) Ap))})}
{tolg:Gllt€e RANG = f({s[s € S A (t.A2025.B2 V p)})|}
[
(

s =

{t olg: ({S|S eSA (t As055.B5 \/p)})]|t S R}

Xg: £ (04305 55vp(S)) (1)
lhs

In the step marked * we use the bijectivity of the numberingrapor mentioned
in the beginning of the proof. Hence we resume witlinstead ofRR’. In the step
marked ** we make use of short circuit evaluation\of

Note that employing the numbering operator makes this atgmee applicable
for either sets or multisets.

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullmai@ompilers: principles, techniques,
and tools Addison-Wesley Longman Publishing Co., Inc., Boston, MISA, 1986.

[2] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, MggWu, Nick Koudas, and
Divesh Srivastava. Structural joins: A primitive for eféiat XML query pattern
matching. INICDE [61], pages 141-.

[3] Sihem Amer-Yahia, Zohra Bellahsene, Ela Hunt, Rainefaldd, and Jeffrey Xu
Yu, editors. Database and XML Technologies, 4th International XML Datsh
Symposium, XSym 2006, Seoul, Korea, September 10-11 R2006edingsvolume
4156 ofLecture Notes in Computer Scien&pringer, 2006.

[4] Andrey Balmin, Fatma&zcan, Kevin S. Beyer, Roberta Cochrane, and Hamid Pira-
hesh. A framework for using materialized xpath views in xméry processing. In
Nascimento et al. [86], pages 60-71.

[5] Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovskin the memory require-
ments of XPath evaluation over XML streands. Comput. Syst. S¢if3(3):391-441,
2007.

[6] Denilson Barbosa, Alberto O. Mendelzon, John Keenlysand Kelly A. Lyons.
ToXgene: a template-based data generator for XML. In Fiardd al. [42], page
616.

[7] Catriel Beeri and Yariv Tzaban. SAL: An algebra for seimistured data and XML.
In WebDB (Informal Proceedingspages 37-42, 1999.

[8] Kevin S. Beyer, Roberta Cochrane, Vanja Josifovski, Bil@ewein, George Lapis,
Guy M. Lohman, Robert Lyle, Fatm@zcan, Hamid Pirahesh, Norman Seemann,
Tuong C. Truong, Bert Van der Linden, Brian Vickery, and Cldlrang. System
RX: One part relational, one part XML. i@zcan [91], pages 347—358.

[9] Klemens Bohm, Karl Aberer, M. Tamé&zsu, and Kathrin Gayer. Query optimiza-
tion for structured documents based on knowledge on thendecutype definition.
In ADL, pages 196-205, 1998.

[10] Peter A. Boncz, Thorsten Grust, Stefan Manegold, Jdtinger, and Jens Teub-
ner. Pathfinder: Relational XQuery Over Multi-Gigabyte XMiputs In Interactive
Time. Technical Report INS-E0503, CWI, March 2005. MonetDB.0, Pathfinder
0.8.0.

171

172

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

BIBLIOGRAPHY

Matthias Brantner. Algebraische Auswertung von XHathNatix. Master’s thesis,
University of Mannheim, Mannheim, Germany, March 2004.German).

Matthias Brantner, Sven Helmer, Carl-Christian Karened Guido Moerkotte. Full-
fledged algebraic XPath processing in NatixI@DE [62], pages 705-716.

Matthias Brantner, Sven Helmer, Carl-Christian Kanaed Guido Moerkotte.
Kappa-Join: Efficient execution of existential quantificatin XML query lan-
guages. In Amer-Yahia et al. [3], pages 1-15.

Matthias Brantner, Sven Helmer, Carl-Christian Kanaad Guido Moerkotte.
Kappa-Join: Efficient execution of existential quantificatin XML query lan-
guages. Technical report, University of Mannheim, 2006tp:Hmadoc.bib.uni-
mannheim.de/madoc/volltexte/2006/1227/.

Matthias Brantner, Carl-Christian Kanne, and Guido dvimtte. Let a single
FLWOR bloom. Technical Report TR-2007-007, University oaihheim, July
2007.

Matthias Brantner, Carl-Christian Kanne, and Guido dvimtte. Let a single
FLWOR bloom (to improve XQuery plan generation). XSym 2007.

Matthias Brantner, Carl-Christian Kanne, Guido Mam#tk, and Sven Helmer. Al-
gebraic optimization of nested XPath expressions. In Lal.§76], page 128.

Matthias Brantner, Norman May, and Guido Moerkotte.ngsting SQL queries in
the presence of disjunction. Technical report, Universitilannheim, March 2006.
http://db.informatik.uni-mannheim.de/publication®D6-013.pdf.

Matthias Brantner, Norman May, and Guido Moerkotte n®sting scalar sql queries
in the presence of disjunction. I€DE [63], pages 46-55.

Tim Bray, Jean Paoli, C.M. Sperber-McQueen, Eve Mdkeancois Yergeau, and
John Cowan. Extensible markup language (xml) 1.1. Techrépert, World Wide
Web Consortium, August 2006. W3C Recommendation.

Nicolas Bruno, Nick Koudas, and Divesh Srivastava. istm twig joins: optimal
XML pattern matching. In Franklin et al. [42], pages 310-321

Francois Bry. Towards an efficient evaluation of gaheueries: Quantifier and
disjunction processing revisited. In James Clifford, Br@&. Lindsay, and David
Maier, editors SIGMOD Conferencepages 193—-204. ACM Press, 1989.

Bin Cao and Antonio Badia. A nested relational appro&cprocessing SQL sub-
queries. InOzcan [91], pages 191-202.

Akmal B. Chaudhri, Rainer Unland, Chabane Djeraba, mdfgang Lindner, ed-
itors. XML-Based Data Management and Multimedia Engineering - E2B02
Workshops, EDBT 2002 Workshops XMLDM, MDDE, and YRWS, Bra@eech
Republic, March 24-28, 2002, Revised Papemiume 2490 ofLecture Notes in
Computer Sciencespringer, 2002.

BIBLIOGRAPHY 173

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

James Clark and Steve DeRose. XML path language (XRatBjon 1.0. Technical
report, World Wide Web Consortium (W3C) Recommendatior®9l9

Jens Clauf3en, Alfons Kemper, Guido Moerkotte, and Kl&eithner. Optimiz-
ing queries with universal quantification in object-orehtand object-relational
databases. In Matthias Jarke, Michael J. Carey, Klaus Rridbit Frederick H.
Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfettitors, VLDB, pages
286—295. Morgan Kaufmann, 1997.

Jens ClauRRen, Alfons Kemper, Guido Moerkotte, Klaugiper, and Michael Stein-
brunn. Optimization and evaluation of disjunctive querl&EE Trans. Knowl. Data
Eng, 12(2):238-260, 2000.

Sophie Cluet and Guido Moerkotte. Classification anihogation of nested queries
in object bases. In Nicole Bidoit, editdDA. INRIA, 1994.

Sophie Cluet and Guido Moerkotte. Classification anihogation of nested queries
in object bas es. Technical Report 95-6, RWTH Aachen, 1995.

Sophie Cluet and Guido Moerkotte. Efficient evaluatiddmggregates on bulk types.
In Paolo Atzeni and Val Tannen, editol3BPL, Electronic Workshops in Comput-
ing, page 8. Springer, 1995.

C. J. Date. The outer join. IICOD, pages 76—106, 1983.

Umeshwar Dayal. Of nests and trees: A unified approagitdoessing queries that
contain nested subqueries, aggregates, and quantifiePgtén M. Stocker, William
Kent, and Peter Hammersley, editok4, DB, pages 197-208. Morgan Kaufmann,
1987.

Alin Deutsch, Yannis Papakonstantinou, and Yu Xu. Teerthogical framework for
xquery. In Nascimento et al. [86], pages 168-179.

Yanlei Diao, Peter M. Fischer, Michael J. Franklin, &aymond To. YFilter: Effi-
cient and scalable filtering of XML documents. I@DE [61], pages 341—.

Yanlei Diao, Daniela Florescu, Donald Kossmann, Malhh Carey, and Michael J.
Franklin. Implementing memoization in a streaming XQuerggassor. In Zohra
Bellahsene, Tova Milo, Michael Rys, Dan Suciu, and Raineab, editorsXSym

volume 3186 ol_ecture Notes in Computer Scienpages 35-50. Springer, 2004.

Mostafa Elhemali, César A. Galindo-Legaria, Tors@abs, and Milind Joshi. Exe-
cution strategies for sql subqueries. In Chee Yong Chang Bd1in Ooi, and Aoying
Zhou, editors SIGMOD Conferenggrages 993-1004. ACM, 2007.

Draper et al. XQuery 1.0 and XPath 2.0 formal semantiechnical report, World
Wide Web Consortium, January 2007. W3C Recommendation.

Scott Boag et al. XQuery 1.0: An XML query language. TwEchl report, World
Wide Web Consortium, January 2007. W3C Recommendation.

174 BIBLIOGRAPHY

[39] Leonidas Fegaras. Query unnesting in object-orierdathbases. In Laura M.
Haas and Ashutosh Tiwary, edito®GMOD Conferencepages 49—60. ACM Press,
1998.

[40] Thorsten Fiebig, Sven Helmer, Carl-Christian Kannajd® Moerkotte, Julia Neu-
mann, Robert Schiele, and Till Westmann. Anatomy of a nativik. base manage-
ment systemVLDB J, 11(4):292-314, 2002.

[41] Daniela Florescu and Donald Kossmann. Storing andygugiXML data using an
RDMBS. IEEE Data Eng. Bull.22(3):27-34, 1999.

[42] Michael J. Franklin, Bongki Moon, and Anastassia Aikh editors.Proceedings of
the 2002 ACM SIGMOD International Conference on Manageroéitata, Madi-
son, Wisconsin, June 3-6, 2008CM, 2002.

[43] Ceésar A. Galindo-Legaria and Milind Joshi. Orthogootimization of subqueries
and aggregation. I8IGMOD Conferencepages 571-581, 2001.

[44] Richard A. Ganski and Harry K. T. Wong. Optimization adsted sql queries revis-
ited. In Umeshwar Dayal and Irving L. Traiger, edito®8GMOD Conferencegpages
23-33. ACM Press, 1987.

[45] H. Garcia-Molina, J. D. Ullman, and J. WidonDatabase Systems: The Complete
Book Prentice Hall, 2002. 0-13-098043-9.

[46] Georg Gottlob, Christoph Koch, and Reinhard Pichléficient algorithms for pro-
cessing XPath queries. WLDB, pages 95-106. Morgan Kaufmann, 2002.

[47] Georg Gottlob, Christoph Koch, and Reinhard PichlelPa¥h query evaluation: Im-
proving time and space efficiency. IGDE, pages 379—-390, 2003.

[48] Georg Gottlob, Christoph Koch, and Reinhard Pichléficient algorithms for pro-
cessing XPath querie®ACM Trans. Database SysB0(2):444-491, 2005.

[49] Goetz Graefe. Query evaluation techniques for largatssesACM Comput. Sury.
25(2):73-170, 1993.

[50] Goetz Graefe. Executing nested queries. In Gerhar#Wiei Harald Schoning, and
Erhard Rahm, editor& TW, volume 26 ofLNI, pages 58-77. Gl, 2003.

[51] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Qké and Dan Suciu.
Processing XML streams with deterministic automata anglastrindexes. ACM
Trans. Database SysR9(4):752—-788, 2004.

[52] Torsten Grust, Sherif Sakr, and Jens Teubner. XQue§@h hosts. In Nascimento
et al. [86], pages 252—-263.

[53] Torsten Grust and Maurice van Keulen. Tree awarenesgltional DBMS kernels:
Staircase Join. In Henk M. Blanken, Torsten Grabs, Hang-S6hek, Ralf Schenkel,
and Gerhard Weikum, editor$ntelligent Search on XML Datavolume 2818 of
Lecture Notes in Computer Scienpages 231-245. Springer, 2003.

BIBLIOGRAPHY 175

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Torsten Grust, Maurice van Keulen, and Jens Teubneiircase join: Teach a rela-
tional dbms to watch its (axis) steps. WLDB, pages 524-525, 2003.

Torsten Grust, Maurice van Keulen, and Jens Teubnearelcating XPath evaluation
in any RDBMS.ACM Trans. Database Sys£9:91-131, 2004.

Ravindra Guravannavar, H. S. Ramanujam, and S. Suglars®ptimizing nested
gueries with parameter sort orders. In Klemens Bohm, Ganss. Jensen, Laura M.
Haas, Martin L. Kersten, Pdkke Larson, and Beng Chin Ooi, editokgl DB, pages
481-492. ACM, 2005.

Joseph M. Hellerstein and Jeffrey F. Naughton. Quemcation techniques for
caching expensive methods. In H. V. Jagadish and InderpghSViumick, editors,
SIGMOD Conferencepages 423-434. ACM Press, 1996.

Sven Helmer, Carl-Christian Kanne, and Guido Moerko@ptimized translation of
XPath into algebraic expressions parameterized by pragcamtaining navigational
primitives. In Tok Wang Ling, Umeshwar Dayal, Elisa BertiMgee Keong Ng, and
Angela Goh, editors\VISE pages 215-224. IEEE Computer Society, 2002.

Jan Hidders and Philippe Michiels. Avoiding unnecegsardering operations in
XPath. In Georg Lausen and Dan Suciu, edit®@8PL, volume 2921 ofLecture
Notes in Computer Scienggages 54—70. Springer, 2003.

Jan Hidders, Philippe Michiels, Jerdme Siméon, &uwkl Vercammen. How to
recognise different kinds of tree patterns from quite a laay away. INPLAN-X
pages 14-24, 2007.

IEEE Computer SocietyProceedings of the 18th International Conference on Data
Engineering, 26 February - 1 March 2002, San Jose, (E&E Computer Society,
2002.

IEEE Computer SocietyProceedings of the 21st International Conference on Data
Engineering, ICDE 2005, 5-8 April 2005, Tokyo, JapdBEE Computer Society,
2005.

IEEE Computer SaocietyProceedings of the 23nd International Conference on Data
Engineering, ICDE 2007, April 15-20, 2007, The Marmara Holstanbul, Turkey
IEEE Computer Society, 2007.

H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastand Keith Thompson.
Tax: A tree algebra for XML. In Giorgio Ghelli and Gosta Grath editors DBPL,
volume 2397 of_ecture Notes in Computer Scienpages 149-164. Springer, 2001.

Matthias Jarke and Jurgen Koch. Query optimizatiordatabase systemsACM
Comput. Sury.16(2):111-152, 1984.

Vanja Josifovski, Marcus Fontoura, and Attila Bartaieg@ying XML streamsVLDB
J., 14(2):197-210, 2005.

176 BIBLIOGRAPHY

[67] Carl-Christian Kanne, Matthias Brar_1_tner, and Guidodvkotte. Cost-sensitive re-
ordering of navigational primitives. I®zcan [91], pages 742—753.

[68] Alfons Kemper, Guido Moerkotte, Klaus Peithner, andchdel Steinbrunn. Op-
timizing disjunctive queries with expensive predicates Richard T. Snodgrass
and Marianne Winslett, editor§IGMOD Conferencepages 336—347. ACM Press,
1994.

[69] Wolfgang Kiessling. SQL-like and Quel-like correlati queries with aggregates
revisited. ERL/UCB Memo 84/75, University of Berkeley, #98

[70] Won Kim. On optimizing an SQL-like nested quemtCM Trans. Database Syst.
7(3):443-469, 1982.

[71] Anthony C. Klug. Equivalence of relational algebra aethtional calculus query
languages having aggregate functiodsACM 29(3):699-717, 1982.

[72] Christoph Koch. XMLTaskForce XPath evaluator, 2004ldased 2004-09-30.

[73] April Kwong and Michael Gertz. Schema-based optima@abf XPath expressions.
Technical report, University of California Davis, 2002.

[74] Michael Y. Levin and Benjamin C. Pierce. Type-basedroation for regular pat-
terns. In Gavin M. Bierman and Christoph Koch, editdd&PL, volume 3774 of
Lecture Notes in Computer Scienpages 184-198. Springer, 2005.

[75] Michael Ley. DBLP XML records. http://dblp.uni-trigle/xml/.

[76] Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianflirang, editorsProceed-
ings of the 22nd International Conference on Data EngimegriCDE 2006, 3-8
April 2006, Atlanta, GA, USAEEE Computer Society, 2006.

[77] Zhen Hua Liu, Muralidhar Krishnaprasad, and Vikas ArdNative XQuery process-
ing in Oracle XMLDB. InOzcan [91], pages 828-833.

[78] Christian Mathis. Integrating structural joins intduple-based XPath algebra. In
Alfons Kemper, Harald Schoning, Thomas Rose, MatthiakeJarhomas Seidl,
Christoph Quix, and Christoph Brochhaus, edit@$W, volume 103 ofLNI, pages
242-261. Gl, 2007.

[79] Norman May, Matthias Brantner, Alexander Bohm, QGahFistian Kanne, and
Guido Moerkotte. Index vs. navigation in XPath evaluatidn.Amer-Yahia et al.
[3], pages 16-30.

[80] Norman May, Sven Helmer, Carl-Christian Kanne, anddduiloerkotte. XQuery
processing in Natix with an emphasis on join ordering. InnBbaanolescu and
Yannis Papakonstantinou, edito’dME-P, pages 49-54, 2004.

[81] Norman May, Sven Helmer, and Guido Moerkotte. Nesteerigs and quantifiers
in an ordered context. [NCDE, pages 239-250. IEEE Computer Society, IEEE
Computer Society, 2004.

BIBLIOGRAPHY 177

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Norman May, Sven Helmer, and Guido Moerkotte. Straedor query unnesting in
XML databasesACM Trans. Database SysB1(3):968—-1013, 2006.

Norman May and Guido Moerkotte. Main memory implemdiotzs for binary

grouping. In Stéphane Bressan, Stefano Ceri, Ela Hunhatsds. Ives, Zohra Bel-
lahsene, Michael Rys, and Rainer Unland, edita{Sym volume 3671 ofLecture

Notes in Computer Sciengeages 162—-176. Springer, 2005.

Philippe Michiels, George A. Mihaila, and Jerdme $n. Put a tree pattern in your
algebra. INCDE [63], pages 246—255.

M. Muralikrishna. Improved unnesting algorithms foirj aggregate sql queries. In
Li-Yan Yuan, editor,VLDB, pages 91-102. Morgan Kaufmann, 1992.

Mario A. Nascimento, M. Tamebzsu, Donald Kossmann, Renée J. Miller, José A.
Blakeley, and K. Bernhard Schiefer, editofe)Proceedings of the Thirtieth Interna-
tional Conference on Very Large Data Bases, Toronto, CapAdgust 31 - Septem-
ber 3 2004 Morgan Kaufmann, 2004.

Thomas NeumannEfficient Generation and Execution of DAG-Structured Query
Graphs PhD thesis, University of Mannheim, Germany, 2005.

Thomas Neumann, Sven Helmer, and Guido Moerkotte. @mfitimal ordering of
maps and selections under factorization!TDE [62], pages 490-501.

Thomas Neumann, Sven Helmer, and Guido Moerkotte. @mfitimal ordering of
maps, selections, and joins under factorizationBNCOD, pages 115-126, 2006.

Dan Olteanu, Holger Meuss, Tim Furche, and Francois BfPath: Looking for-
ward. In Chaudhri et al. [24], pages 109-127.

FatmaOzcan, editor.Proceedings of the ACM SIGMOD International Conference
on Management of Data, Baltimore, Maryland, USA, June 142065 ACM, 2005.

Shankar Pal, Istvan Cseri, Gideon Schaller, Oliveri§eg Leo Giakoumakis, and
Vasili Vasili Zolotov. Indexing XML data stored in a relatial database. In Nasci-
mento et al. [86], pages 1134-1145.

Stelios Paparizos, Shurug Al-Khalifa, H. V. Jagadislks V. S. Lakshmanan, An-
drew Nierman, Divesh Srivastava, and Yuqing Wu. GroupingML. In Chaudhri
et al. [24], pages 128-147.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqgar Hagatiensible/rule based
query rewrite optimization in starburst. In Michael Storaier, editor,SIGMOD
Conferencepages 39-48. ACM Press, 1992.

Neoklis Polyzotis and Minos N. Garofalakis. Xclustgnepses for structured xml
content. In Liu et al. [76], page 63.

Neoklis Polyzotis and Minos N. Garofalakis. Xsketcmggses for xml data graphs.
ACM Trans. Database SysR1(3):1014-1063, 2006.

178 BIBLIOGRAPHY

[97] P. Roy. Optimization of DAG-structured query evaloatiplans. Master’s thesis,
Indian Institute of Technology, Bombay, 1998.

[98] Carlo Sartiani and Antonio Albano. Yet another quergedira for XML data. In
Mario A. Nascimento, M. TameDzsu, and Osmar R. Zaiane, editdBEAS pages
106-115. IEEE Computer Society, 2002.

[99] Praveen Seshadri, Hamid Pirahesh, and T. Y. Cliff Leu@gmplex query decorre-
lation. In Stanley Y. W. Su, editofCDE, pages 450-458. IEEE Computer Society,
1996.

[100] James R. Slagle. An efficient algorithm for finding e@rtminimum-cost procedures
for making binary decisionsl. ACM 11(3):253-264, 1964.

[101] Hennie J. Steenhage®ptimization of Object Query LanguageBhD thesis, De-
partment of Computer Science, University of Twente, 1995.

[102] Hennie J. Steenhagen, Peter M. G. Apers, Henk M. Bian&ad Rolf A. de By.
From nested-loop to join queries in OODB. In Jorge B. BoccaftMas Jarke, and
Carlo Zaniolo, editorsyLDB, pages 618-629. Morgan Kaufmann, 1994.

[103] Jens TeuberPathfinder: XQuery Compilation Techniques for Relationatd@base
Targets PhD thesis, Technische Universitat Minchen, Germanyolezr 2006.

[104] TPC. TPC benchmark H (decision support). Standarcai8pation Version 2.3.0,
Transaction Processing Performance Council, 2006. httpw.tpc.org/tpch/.

[105] TPC. TPC benchmark DS (decision support). Prelinyinaraft Version V 32,
Transaction Processing Performance Council, 2007. fitpw.tpc.org/tpcds/.

[106] Ning Zhang, Shishir Agrawal, and M. Tam@esu. Blossomtree: Evaluating XPaths
in FLWOR expressions. IICDE [63], pages 388—389.

[107] Ning Zhang and M. Tamdbzsu. Optimizing correlated path queries in XML lan-
guages. Technical report, University of Waterloo, 2002-T8&-2002-36.

[108] Ning Zhang, M. Tame©zsu, Ashraf Aboulnaga, and lhab F. llyas. XSEED: Accu-
rate and fast cardinality estimation for XPath queries. ilndt al. [76], page 61.

