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A rigorous mathematical treatment of a general binarization process for computer generated binary
Fourier transform hologram is developed. Further a generalized error diffusion coefficient matrix is
derived. In the view of these mathematical results we distinguish different binarization methods by
the error diffusion process. Some binarization methods, their properties, and computational demands
are investigated. Examples are presented.

1.Introduction
Superior characteristics of binary holograrns in terms of ease of production [1,2] and 10wer
noise sensitivity [3], compared to gray-sc ale ho10grams, have 1ed to an increased research
over the last years.
Coherent light diffracted by ho10grams forms a reconstruction wave. We are particu1ar1y
interested in a certain sub-region in the reconstruction, which we call reconstruction region.
Different methods exist to generate binary ho10grams, where the emphasis of exactness lies
on1y on the reconstruction region; the surrounding area may have arbitrary reconstruction
errors.
While hard clipping uses a constant thresho1d for binarization, error diffusion additionally
diffuses the binarization error 10cally [5-10]. Direct binary search [11-13] starts with a
random1y generated binary ho10gram. Iterative1y, one pixel value at a time is flipped where
the flip is accepted on1y if the error in the reconstruction region is reduced. Iterative
binarization [14-16] is based on repeating the following steps: From a part1y binarized
ho10gram a reconstruction is calcu1ated. In the reconstruction, the reconstruction region is
rep1aced by the original object, and from the modified reconstruction a new ho10gram is
computed. Each step leads to areduction of errors in the reconstruction region.
In this paper a general binarization process fot binary Fourier transform ho10gram is
deve10ped. A genera1ized error diffusion coefficient matrix is derived. Section 2 describes the
mathematical framework that details the binarization process. In seetion 3, properties of the
generalized error diffusion coefficients are investigated. Binarization noise appeared in the
reconstruction region is estimated in section 4. These results are app1ied to noniterative
algorithm, errar diffusion, and to iterative a1gorithm, which are described in seetion 5 and
section 6. Some generated binary holograrns and their simu1ated reconstruction are presented.
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2. Mathematical foundations of the binarization process
Starting from a desired object wave u(x,y), its diffraction wave U(Il,v) on the ho10gram plane
is calcu1ated by a digital Fourier transformation. We use capital1etters to denote quantities in
Fourier transform domain, corresponding small 1etters denote quantities in object (or
reconstruction) domain. u(x,y) is common1y modified with certain pseudo-phase model to
reduce the dynamic range of U(Il,v). As in experimental ho10graphy, a plane reference wave
R(Il,v)=exp{ +j21t(xoll+YoV)} is introduced, where (xo,Yo) determines the direction of the
reference wave. R(Il,v) is then superposed on the diffraction wave U(Il,v) to form a positive
rea1-valued interference pattern H(Il,v):

H(Il,v)= Y\[(IU(ll,v)lcos[ <I>(Il,v)-21t(x0Il+Yov)]-Bs)
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where U(J.L,v)=IU(J.L,v)lexp{j<I>(J.L,v)}is normalized to 1, Bs is a constant bias to ensure
H(J.L,v)~O,Bs=min{ IU(J.L,v)lcos[<I>(J.L,v)-21t(xoJ.L+Yov)]},.'7{is normalization factor. Thus, it is
ensured that O::;H(J.L,v):::;l.
If the interference pattern H(J.L,v)is exposed onto a photo material, e.g. a film or plate as
amplitude transmission, then an amplitude Fourier transform hologram is obtained.
A common Fourier transform configuration is used for the replay of the hologram. That is, the
hologram H(J.L,v) is located in the front focal plane of the system, and illuminated by a
collimated wave parallel to the optical axis. The reconstruction h(x,y) appears in the back
focal plane, which contains the object wave u'(x,y) offaxis with an offset (xo,yo), its
conjugate, and adelta function in the center. The offset (xo,yo) must be large enough to
separate u'(x,y) from both its twin image and the delta function. If H(J.L,v)is analog valued and
the amplitude transmission of the photo material is proportional to H(J.L,v), then the
reconstruction u'(x,y) is identical to the original object wave u(x,y), i.e., u'(x+xo,y+Yo)
=u(x,y). Quantization of H(J.L,v)leads to an error of u'(x,y) in respect to u(x,y). This error
mainly depends on the number of quantization levels. Obviously the quantization error is the
largest for binary holograms. To minimize this error, many methods have been proposed as
mentioned in introduction.
In the following a g~neral relation between the binarized pixels in the hologram and the
resulting error in the recünstruction region is inferred. Without loss of generality, we assurne
that the hologram H(J.L,v)has NxN pixels, and the reconstruction region w in h(x,y) has
MxxMy (O<Mx, My<N!2) pixels. That is, in hologram domain we have a 2-dimensional
amplitude gray-scale hologram H(J.L,v)given by Eq. (1) with NxN=N2 pixels (J.L,v=O,1,2, ... ,
N-1); and in object domain we want to have the function u(x,y) reconstructed by a binarized
H(J.L,v)in the reconstruction region w. This region has MxxM pixels and is centered at
(XO,yo).We use the Mean-Squared Error (MSE) to measure the difference between the desired
object u(x,y) and the reconstructed one. The latter is contained in the reconstruction h(x,y) in
region w:

1
MSE=-- L lu(x-xO,y-yo)-ah(x,y)12

MxMy (X,y)E W

where a is a scaling factor.
L.w u(x-xo,y-yo)h*(x,y)

MSE reaches the minimum if a - 2' where h* (x,y) is the conjugate
L.w Ih(x,y)1

ofh(x,y).
Substituting a into (2) and normalizing (2) by Lw lu(x-xo,y-yo)12,we arrive at

ILw u(x-xO,y-yo)h*(x,y)12
MSE=1.0- 2 2 . (3)

Lw lu(x-xo,y-yo)1 Lw Ih(x,y) I
Thus, MSE has value range O:::;MSE:::;1.Note that MSE calculated by (2) or (3) is independent
of the actual values of h(x,y). That is, MSE=O if h(x,y) in region w is only an amplification of
the magnitude and/or a constant phase shift of the original signal. In the following we use the
normalized MSE, Eq. (3).
Our aim is to generate a binary Fourier transform hologram, with that to reproduce the desired
signal u(x,y) in the reconstruction region as weIl as possible. In other words, the aim is to
minimize MSE.
We perform the binarization process as follows:
First, we binarize K (1:::;K<N2)pixels in the gray-scale hologram. These K pixels are chosen
uniformly and randomly. Then we observe their effect on the reconstruction by simulating the
reconstruction of the hologram, and evaluating MSE in the reconstruction region with respect
to the desired object wave. Non-zero MSE is resulted due to the binarization of the K pixels in
the hologram. Subsequently, we correct pixel values in the reconstruction region by
eliminating binarization error in this region. Finally, from this modified reconstruction a new
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hologram is eomputed. Thus, the new hologram is eormeeted with the partly binarized
hologram by the eorreetion of the reeonstruetion region.
This binarization proeess is represented mathematieally as follows:
Let H(Il,v)=H(l)(Il,V) be the original gray-seale hologram. The upper index indieates the step
number of the iterative proeess. And let the binarization error in the hologram be E(1)(Il,v) for
CIl,V)=(lll,VI), (1l2,V2),..., (IlK,v0:

{
S(l)(Il,v)-H(l)(Il,V) if (Il,V)=(llbVl),(1l2,V2), ...,(IlK,VK);

E(I)(Il,V)= .o otherwlse

{
0 if H(l)(Il,v)<T

where S (l)(Il,V)= . (1)
1 If H (ll,v);::T

CIl,V)=(lll,Vl),(1l2,V2), ... , (IlK,v0.
Here T is a eonstant threshold. S(l)(Il,v) is the binarized pixels with value of {O,l}.
Mter the binarization we ean write the new hologram transmission as:

H(l)(Il,v)=H(l)(Il,v)+E(l)(Il,V) Il, v=O, 1,2, ..., N-l.
The operation above introduees errors in the reeonstruetion inside and outside the region w,
i.e., the original signal with additional noise is obtained:

h'(I)(x,y)=I.'PT{H(l)(Il,v)}
=h (l)(x,y)+e(l)(x,y)

x, y=O, 1,2, ... , N-l,
where I :PT is the Inverse Fourier Transforrn, h (l)(x,y) is the reeonstruetion of the gray-se ale
hologram H(l)(Il,v), e(l)(x,y)=I .1''T{E(l)(Il,V)} is error in the reeonstruetion eaused by the
binarization of H(l)(Il,v). We eaH e(l)(x,y) binarization noise in the reeonstruetion. Note that
e(l)(x,y) spreads over the whole reeonstruetion plane, h(l)(x,y) eontains u(x,y) in region w
without error.
To improve the reeonstruetion in region w, we eliminate binarization noise only in this region.
Thus, the signalieft is identical to that reconstrueted by the original gray-scale holograrn. This
operation is performed in region w, as weH as in its conjugate region:

h(2)(x,y)=h'(l)(x,y)-Rec{X~:O, y~:O }(l)(X,Y)-ReC{X::O, Y::O }(l)(X,Y)

=hCl)(x,y)",,(l)(x,y)-[Rec{ X~:O, Y~:O} Rec{ X::O ,Y::O }e(l)(x,y) (5)

x, y=O, 1,2, ... , N-l,

(

X y) {I if (-al2~x~+a/2) and (-b/2~y~+b/2)
with the definition Reet -,- = .

abO otherwlse
h(2)(x,y) is then transformed into its holograrn. Thus, the partly binarized hologram H(l)(Il,V)
is ehanged by the eorreetion (5) into H(2)(Il,V):

H(2)(Il,V)=0£P)(1(e [.1''T{h (2)(x,y)}]-Bs(2»)

='}'[P)( H(l)(Il,v)+E(l)(Il,v)

- [2M~~y Sin{~' }in{ V:
y )ci2~(Xo~+YOv)) ]ciS>E(l)ij!, V)-BSC2») (6)

Il, v=O, 1, 2, ..., N-l,
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where 'pr is the Fourier Transform, 1\.e [] takes the real part of a complex function, Bs (2)is a
constant bias, and '11[.(2) is normalization factor. BS(2)and '11[.(2) are defined same as in Eq. (1).
Thus, it is ensured that OgI(2)(fl,V)~1.
The bias term BS(2) and the normalization factor '11[.(2) in H(2)(fl,V) of (6) do not have any
effects on the reconstruction quality measured by (3), since Bs(2) produces adelta function in
the center of the reconstruction, which is outside of the reconstruction region w, and '11[.(2) is
onl?, an amplification. Therefore, H(2)(fl,V)will still produce an error-free reconstruction in
regIOn w.
The difference between H(2)(fl,V)and H(I)(fl,v) is completely determined by the binarization
error E(l)(fl,v) of the K pixels. How these errors influence the hologram H(2)(fl,V)at position
(fl,v) can be investigated by defining a generalized error diffusion coefficient D(l)J.1J.1'w';

.. (J.1K,VK)
H(2)(fl,V)='1I[.(2)[H(I)(fl,V)+ L D~~'vv'E(l)Ql',v') -Bs (2)] (7)

(J.1',v')=(J.11,Vl)
fl, v=O, 1,2, ..., N-1.

That means by diffusing the binarization error E(I)(fl,V) of Eq. (4) to the neighbors with
diffusion coefficientsD(I)J.1J.1'w"an error-free reconstruction in region w is achieved. From (6)
and (7) above it follows:

fl, v=O, 1,2, ..., N-1; (fl', V')=(fll, VI), (fl2, V2), ..., (!-lX, v0.

It shows that the generalized diffusion coefficients D(l)J.1J.1'w'depend only on the parameters
Mx/N, My/N, xo/N, yo/N, on (fl-fl') and (v-v'), they are independent of the step number of the
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iteration, independent of which and now many pixels are binarized. In the following D(l)/-l/-l'vv'
is therefore denoted by D(~-~',v-v').
Observing Eg. (7), we find that L(/-l',V')D(~_~I,V-VI)E(l)(~I,V')can be interpreted as a general
version of filters in context of signal processing. The filter for the generation of binary
holograms to produce an error-free reconstruction in region w is completely determined by
D(~-~',v-v'). Since D(~_~',V-V') produces zero-value in the reconstruction region, the sum
L(/-l',v')D(~-~',V-V')E(l)(~',V'), which represents the convolution of D(~,v) and E(l)(~,v), has
zero-value too in this r~gion. From Eg. (7), it follows immediately h (2)(x,y)=v\£P)h<l)(x,y)only
in the reconstruction region, the surrounding area is filled with noise. Conseguently, the
desired object contained in h (l)(x,y) in region wis reproduced by H(2)(~,V).
The analysis above indicates if the binarization error E(l)(~,v) of the hologram is diffused to
the neighbors with diffusion coefficients of Eg. (8), an error-free reconstruction in region w
(MSE=O) is achieved. For this reason, we call D(~_~',V-V') optimal diffusion coefficients.
Eg. (7) is an iterative representation of the binarization process. Nevertheless, this algorithm
does not converge for further iterations. That is, MSE does not decrease for subseguent
binarization of K pixels chosen randomly in H(i)(~,V) (i;:::2).We say the binarization process
stagnates. To find the reason of the stagnation, let us observe how the term L(/-l',v')D(~-~',v-
v')E (1)(~' ,v') in (7) influences the distribution of H(l)(~,V).
Normally the hologram distribution is locally correlated due to the carrier wave (reference
wave). The correlation degree and direction are determined by the extension and fine structure
of the signal, and by the direction of the carrier wave. The extension of the signal is just
reflected in D(~-~',v-v') by the size of the reconstruction region, and the direction of the
carrier wave by the position where the reconstruction region is located, whereas the fine
structure of the signal is reflected by the distribution of E(l)(~,v). One should pay attention
that D(~_~',V-V') has a minus sign except binarized pixels. That means, the binarization of K
hologram pixels is done under penalty of smoothing other not binarized pixels. In other
words, L(/-l',v')D(~-~',V-VI)E(l)(~',v') smears the distribution of H(l)(~,V) except K binarized
pixels. The following two cases are considered:
Case one: the number of binarized pixels K is very small compared to N2. Thus, K pixels
chosen in the (i+l)-th iteration (i=I,2, ... ) fall into the effective diffusion area of the K
binarized pixels of the i-th iteration with small prob ability, because they are randomly chosen,
independent of each other. Here the effective diffusion area means that two pixels just
overlap, or are adjacent. Conseguently, the distribution of binarization error of the (i+ l)-th
iteration is similar to that of the i-th iteration statistically. It is difficult to predict the
reconstruction guality in region w, in comparison with that of the i-th iteration. In other
words, MSE(i+l) and MSE(i) do not have a dear relation in this case. One can not say the
algorithm converge or not.
Case two: K is large enough but sm aller than N2. In contrast to case one, there are many
pixels chosen in the 0+ l)-th iteration falling into the effective diffusion area of the K
binarized pixels of the i-th iteration. Obviously, if a pixel binarized in the (i+l)-th iteration is
the one that was binarized in the i-th iteration, E(i+l)(~,v)::;E(i)~,v) is resulted. We say it
results in a constructive reconstruction in region w. If a pixel binarized in the (i+ l)-th iteration
is the one that was smoothed in the i-th iteration (neighborhood of a binarized pixel),
E(i+l)(~,v):2:E(i)(~,V)happens with high prob ability. We say it results in a destructive
re~onstruction in region w. Moreover, many pixels having values near the threshold value T in
the i-th iteration have changed their relationship to T due to the smoothness, i.e., H(i)(~,v);:::T
to H(i+l)(~,v)<T, or H(i)(~,v)<T to H(i+l)(~,v);:::T. Thus, the binarization error E(i+l)(~,V) of
such pixels changes sign compared to B(i)(~,V), which seriously destroys the reconstruction in
region w. As a result, when K is sufficiently large, destructive reconstruction is stronger than
constructive in the (i+l)-th iteration statistically. It results in MSE(i+l);:::MSE(i), or the
binatization process stagnates.
The analysis above indicates the stagnation can be avoided if the smoothing to the hologram
distribution (see (7)) is slowed down, so that the constructive reconstruction is dominate
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statistically. This can be realized by enhancing the signal in the reconstruction region w.We
modify the correction of (5) into:

hCi+l)(x,y)=hCi)(x,y)+eCi)(x,y)-[Rect(X-XO , y-yoJ+ Rect(X+XO , y+yoJ]eCi)(X,y)
Mx My Mx My

+ßCi)[Rect(X-XO, y-yoJ+ Rect(X+XO, y+YOJ]hCi)(X'Y) (9)
Mx My Mx My

x, y=O, 1, 2, ... , N-1,
where ßCi)~Orepresents the enhancement of the signal in region w. We call ßCi)enhancement
factor.
Then, (9) is transformed into its hologram:

1 C~K,VK)
HCi+l)(/-l,v)=0£Ci+l)[HCi)(/-l,v)+--. L D(/-l-/-l',v-v')ECi)(/-l',v')

1+ ßCl)(~',v)=(~1,VI)
ßCi) (~K,VK)

---. L D(/-l-/-l',v-v')HCi)(/-l',v')-BsCi+l)] (10)
1+ßCl) (~',V)=C!J.I,Vj)

/-l,v=O, 1,2, ..., N-1.
Eq. (10) represents a general binarization process. We call H(i+l)(/-l,V)pseudo-binary hologram
for i~1. Note that pseudo-binary holograms produce an error-free reconstruction only in
region w.
Two terms in (10) play the role to resist the smoothing of the hologram distribution H(i)(/-l,V).
L(!J.',v')D(/-l-/-l',v-v')E(i)(/-l',v')is reduced by factor (1~ß(i» c9mpared to (7). From ~he analyses
above, the smoothing is reduced. The other term _ß(l)/(1+ß(l)L(~',v') D(/-l-/-l',v-v')H(l)(/-l',V')even
enlarges the contrast of the hologram, under penalty of reducing the binarized pixel value.
If ß(i) is too small, (10) degenerates into (7), the binarization process stagnates as analyzed
above. On the other hand, if ß (i) is too large, that is, the signal is over enhanced, the binariza-
tion process stagnates too. In this case, (10) becomes

C~K,VK)
H(i+l)(/-l,v)=0£(i+l)[HCi)(/-l,V)- L D(/-l-/-l',V-V')HCi)(/-l',V')-BsCi+l)]

C!J.',V)=(!J.I,Vj)

=0£(i+I)[ 2M~~y Sin{~x }in{ v~y ) co{21t(XO~+YOV)}?5)HCi)(/-l,v)-BsCi+l)]

which does not produce any binarization noise inside and outside the reconstruction region.
Over enhancement of the signal has the effect that the binarization noise in the entire recons-
truction plane is suppressed after normalization. This is much similar to the reconstruction of
H(1)(/-l,v).Consequently, HCi+l)(/-l,v)-tHCI)(/-l,V),the binarization process is slowed down, or in
extreme case stagnates.
These show the importance and subtlety of the enhancement factor ßCi)to the convergence of
the algorithm, so it must be determined rationally.
Ac tually , the basic idea of iterative algorithms comes from the iterative Fourier transform
algorithm [17]. The iterative binarization algorithm described above uses the same principle,
but different constraints. The significance of Eq. (10) is that the connections between
hologram domain and reconstruction domain are cut off. Consequently, the generation of a
binary hologram from its gray-sc ale one becomes repeatedly performing error diffusion
processes. In section 6, two approaches are suggested to determine ß(i). The error in the
reconstruction region can also be estimated only in hologram domain (see section 4).
The flow-chart shown in Fig. 1 depicts the iterative binarization process, where the stop
criterion can be set as the reduction degree of MSE(i), for example, or the number of
iterations.
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IFT{H'(i)(fJ., v)}
_____ ._ compute MSE(i) in region W of h,(i)(x,y)

(Gray-scale hologram H (l)(j..l.vV

randomly binarize K pixels in H(i)(j..l.v)
to form H'(i)(j..l.v), i=l, 2, ...

Ff{h(i+l)(x, y)}

code Ff{h(i+l)(x,y)} intoH(i+l)(j..l. v) --.-----
correct, enhance the signal in region w
and its conjugate to form h(i+l)(x,y)

stop criterion is satisfied

(lIa)
(llb)
(lIe)
(lId)
(lle)

pseudo-binary hologram H(i+1)(j..l.v)

Fig. 1. Flow-chart of iterative binarization algorithm.

Normally D(O,O)<l. Thus, pseudo-binary holograms are still gray-seale holograms, but
always tending to binary ones. Therefore, it is theoretieally impossible to generate a binary
hologram with that to produee an error-free reeonstruetion in region w. Even a partly
binarized hologram (K<N2) eannot be expeeted to produee the same reeonstruetion quality in
region was a gray-se ale hologram does. We eonclude that binarization noise in region wean
only be redueed, but not eompletely eliminated.
In next seetions we investigate under whieh eonditions the reeonstruetion ean be improved,
that is, under whieh eonditions MSE ean be redueed. For noniterative algorithms we use Eq.
(7), whereas for iterative algorithms we use Eq. (10) and Fig. 1.

3. Properties of diffusion coefficients D(~-~ I,V_VI)
The proeedure performed in the preeeding seetion for an error-free reeonstruetion in region w
requires region w, its eonjugate, and the delta funetion in the reeonstruetion do not overlap
eaeh other. That means, parameters Mx, My, N, Xoand Yoin D(~-~',v-v') must be restrieted in
allowed value ranges. We first determine these ranges and their implicit relations before
diseussing D(~-~',v-v').
• (-NI2, -NI2)$;(xo, yo)<O, or O«xo, yo)«+NI2, +NI2).
• O<Mx$;N,O<My$;N.
• At least, one of the following eonditions must be fulfilled:

CMx<N/2) and (Mxl2<lxol$;(N-Mx)/2),
CMy<NI2) and (Myl2<lyol$;(N-My)I2).

Taking into aeeount of these restrietions, some properties of the diffusion eoefficients D(~-
~',V-V')are listed below. The binarized pixel is denoted by (~',V').
• D(~_~',V-V')deerease oseillatedly with an inerement of I~-~'I and Iv-v'l;
• D(~_~',V-V')is symmetrie to pixel (~',V');
• D(~-~',v-v') ~/lJ.l'w' ifMx-70 and My-70;
• D(~-~',v-v') -70 ifMxMy-7N212;
• L(J.t,v) D(~-~',v-v') -711).

1)

This result is obtained by using the following integral:

7



Two examples shown in Fig. 2 illustrate the behavior of coefficients D(l-t-l-t',Y-Y') in a 7xJ
neighborhood around binarized pixel (l-t',Y'), where Xoand Yoremain unchanged.
In the first example, Fig. 2(a), Mx=My=3N/8, (xO,yo)=(N/4,N/4); and in the second example,
Fig. 2(b), Mx=My=N/8, (xO,yo)=(N/4,N/4) too. Numerical values of D( - ',Y -v') correspond-
ing to Fig. 2(a) and Fig. 2(b) are given in Table I(a) and I(b) respectively.

0.8 1

0.8 0.6 1 0.8

0.4 0.8 0.60.6
0.6 0.4

0.4 0.2
0.4 0.2

0.2 0 00.2
0 -0.2 0 -0.2

-3 -3
-0.2 -2 -0.2 -2

-1 -1
0 0

1 v-v' 1 v-v'
2 2

3 3

w ~
Fig. 2. Dependence of diffusion coefficients D( - " v-v') on parameters Mx andMy, where
(X(),yo)=<N/4,N/4). (a) Mx=My=3N/8, (b) Mx=My=N/8. Black posts represent negative values.

+0.00330 0 +0.02388 0 -0.02388 0 -0.00330

0 -0~02533 0 +0.08440 0 -0.02533 0

+0.02388 0 +0.17297 0 -0.17297 0 -0.02388

0 +0.08440 0 +23/32 .c,y.1 0 +0.08440 0

-0.02388 0 -0.17297 0 +0.17297 0 +0.02388

0 -0.02533 0 +0.08440 0 -0.02533 0

-0.00330 0 -0.02388 0 +0.02388 0 +0.00330

v

Table I. Values of D( - " v-v') corresponding to Fig. 2(a) for Mx=My=3N/8 and Fig. 2(b) for
Mx=My=N/8. (xO,YO)=(N/4,N/4).

(a) (Mx=My=3N/8) ~

.!.

(b) (Mx=My=N/8) ~

1
a

+= 1
J sinc(ax)cos(21tbx)dx= 2a
-=

o

~
for r;l<1
for I~=l

I~
for r;l>1
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v

+0.01922 0 -0.02388 0 +0.02388 0 -0.01922

0 -0.02533 0 +0.02813 0 -0.02533 0

-0.02388 0 +0.02968 0 -0.02968 0 +0.02388

0 +0.02813 0 +31/32 .L.Y). 0 +0.02813 0

+0.02388 0 -0.02968 0 +0.02968 0 -0.02388

0 -0.02533 0 +0.02813 0 -0.02533 0

-0.01922 0 +0.02388 0 -0.02388 0 +0.01922

The binarized pixel is denoted by L.:,y ], in Table 1. It has been shown that the largest error
component is diffused to the binarized pixel itself (23/32 and 31/32 for the examples above
respective1y). With a reduction of the reconstruction region (Mx and My change from 3N/8 to
N/8), a larger error amount (change from 23/32 to 31/32) is diffused to the binarized pixel,
whereas errors diffused to its neighbors change from a small region and a large amount to a
large region and a small amount. In other words, the smaller the reconstruction region, the
more error is diffused to the binarized pixel and the less to its neighbors.
Two more examples shown in Fig. 3 illustrate the dependence of diffusion coefficients D( -
',v- v') on the position of the reconstruction region (xo,Yo), where Mx and My remain
unchanged. Related values to Fig. 3 are given in Table II.

D(Jl-Jl',V-v')

1 1

1
0.8 1 0.8

0.8
0.6 0.8

0.6

0.6
0.4 0.6

0.4

0.4
0.2 0.4

0.2

0.2
0 0.2

0

0
-0.2 0

-0.2
-3 -3

-0.2 -2 -0.2 -2
-1 -1

0 0
1 v-v' 1 v-v'

2 2
3 3

W M
Fig. 3. Dependence of diffusion coefficients D( - " v-v') on parameter (xo, YO),whereMx=My=N/4.
(a) (xo,yo)=(N/S,N/S), (b) (xo,yo)=(3N/S,3N/S). BIack posts represent negative values.

0 +0.01689 +0.03377 +0.02653 0 -0.01689 -0.01126

+0.01689 +0.05066 +0.05066 0 -0.05066 -0.05066 -0.01689

+0.03377 +0.05066 0 -0.07958 -0.10132 -0.05066 0

+0.02653 0 -0.07958 +7/8 L..Y:l -0.07958 0 +0.02653

v

Table 11.Values of D( - " v-v') corresponding to Fig. 3(a) for (XO,Yo)=(N/8,N/8) and Fig. 3(b)
for (Xo,y0)=(3N/8,3N/8). Mx=My=N/4.

(a) (xO,yo)=(N/S,N/S) ~

-1-
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0 -0.05066 -0.10132 -0.07958 0 +0.05066 +0.03377

-0.01689 -0.05066 -0.05066 0 +0.05066 +0.05066 +0.01689

-0.01126 -0.01689 0 +0.02653 +0.03377 +0.01689 0

0 -0.01689 +0.03377 -0.02653 0 +0.01689 -0.01126

-0.01689 +0.05066 -0.05066 0 +0.05066 -0.05066 +0.01689

+0.03377 -0.05066 0 +0.07958 -0.10132 +0.05066 0

-0.02653 0 +0.07958 +7/8 .c,y:1 +0.07958 0 -0.02653

0 +0.05066 -0.10132 +0.07958 0 -0.05066 +0.03377

+0.01689 -0.05066 +0.05066 0 -0.05066 +0.05066 -0.01689

-0.01126 +0.01689 0 -0.02653 +0.03377 -0.01689 0
,

v

(b) (xO,YO)=(3N/8,3N/8) ~

.j,

It has been shown that for different (xo,yo) (here (xo,yo)=(N/8,N/8), (3N/8,3N/8)) the same
error amount is diffused to the binarized pixel itself L..Y.1, and the same error amounts but
with different signs are diffused to its neighbors. Here we have only eonsidered the ease
(xo,yo»(O,O). For other eases the results are similar due to the property of the eosine funetion
in D( - " v-v'). With an enlargement of Ixol and IYol,D( - " v-v') ehanges its signs more
frequently, that is, the modulation from the eosine funetion beeomes mueh stronger (in the
main diagonal direetion, D( - ',v- v') ehanges its sign 3 times and 9 times for OUf two
examples above, respeetively). These results will be used to estimate the reeonstruetion
quality in region w.

4. Error estimation
In this seetion we investigate how the diffusion eoeffieients D( - " v-v') and binarization error
ECi)(,v) influenee the reeonstruetion quality in region w. First, we diseuss the influenee of
parameters in D( - " v-v'). Two extreme eases are eonsidered:
Case one: Mx~O and My~O, i.e., the reeonstruetion region is very small. In this ease we have
D( - I, V-V')~ ' w' aeeording to (lle) of seetion 3. This means the binarization error is
prineipally diffused to the binarized ~ixel, hardly to its neighbors. From (7), it follows
H(2)( ,v) ~~(2)[H(l)( ,v)+E(l)( ,v)-Bs ()]. That is, H(2)( ,v) is mueh near to a binary
hologram. The binarization does not introduee serious noise in the reeonstruetion region.
From (10), H(i+1)(,v) ~~' (i+1)[H(i)(,v)+E(i)( ,v)-Bs' (i+1)],i.e., (10) degenerates into Eq. (7).
As a result, noniterative algorithms aehieve the same reeonstruetion quality as iterative
algorithms do, with MSE~O.
Case two: Mx~N/2 and My~N (or Mx~N and My~NI2), i.e., the reeonstruetion region has
the size nearly the half of the entire reeonstruetion plane. In this ease D( - ',v- V')~
aeeörding to (1ld) of seetion 3. This me ans the binarization error ean be diffused neither to
the binarized pixel, nor to its neighbors. From (7), H(2)( ,v) ~H(l)( ,v). That is, one ean not
generate a pseudo-binary hologram to aehieve an improved reeonstruetion. For iterative
binarization proeess, it leads to H(i+1)(,v) ~H(i)( ,v) (see (10)), MSE(i)~ MSE(l) statistieally,
and the binarization proeess stagnates.
These results are welf understood in the reeonstruetion domain. In ease one, sinee the
reeonstruetion region is smalI, the surrounding area is large. Thus, there is more free spaee
available to distribute binarization noise into there. As a result, the reeonstruetion in region w
ean signifieantly be improved. In eontrast, there is no spaee available in ease two to dis tribute
binarization noise. Consequently, the reeonstruetion in region wean not be improved at all.
Parameters xo and Yoin D( - ',v- v') have no influenee on the reconstruction quality.
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In the following we investigate the influenee of E(i)( ,v) on the reeonstruetion quality. Using
the relation h'(i)(x,y)=h (i)(x,y)+e(i)(x,y), we ean rewrite the formula of MSE in (3) in form:

. Lw le(i)(x,y)12-ILw h(i)(x,y)e(i)*(x, y) 1
2/ Lw IhCi)(x,y)12

MSE (1)= . . (12)
Lw le(i)(x,y)12+Lw Ih(i)(x,y)12+2Re[Lw h(i)(x,y)e(i)*(x,y)]

which is represented by the reeonstruetion h (i)(x,y) of the pseudo-binary hologram, and noise
e(i)(x,y) eaused by the binarization of the pseudo-binary holograrn.
Mapping all terms in (12) into hologram domain, i.e., H w le(i)(x,y)l2, H w Ih(i)(x,y)12and
H w h(i)(x,y)e(i)*(x,y), a direet relation between binarization error E(i)( ,v) in the hologram and
resulting MSE in the reconstruction region can be established. Far example,

* . 1 {-j21t(~X+YY)}
Hwh(x,y)e (x,y)= Lw h(x,y) NLfl,v E(~,Y)exp N'

1 {-j21t(~X+YY)}
= Lfl,V E(~,v) NLw h(x,y)exp . N

1 (x-xo y-YoJ {-j21t(X~+YY)}
= Lfl,v E(~,v) NLX,y Reet ~'~ h(x,y)exp N

= Lfl,VE(~,v) [M~~y sin{M~~ }in{M~V}xp( -j21t(X~+YO Y)}8)H(~,V)]

=H ,vE( ,Y ) H ',V'C( - I,V_y')H( I, v') (13a)

=H ',V'C(',y')[H(', y')*E( I,y ')] (13b)

') MxMy. (MX(~_~I)). (My(V-v')) {-j21t[xo(~-~I)+yo(V-v')]}where C( - I,y_ Y = . sme . sme' . . exp ,
N2 N N N

whieh we eall coupling eoeffieient; * denotes the eorrelation.
Similarly, we have

Hw le(x,y)12=Hwe(x,y)e*(xs)=H ',V'C( ',y')[E( I, y')*E( I, v')]

Hw Ih(x,y)12=Hwh(x,y)h *(x,y)=H ',V'C(' ,v')[H(', y ')*H(', y')]
To simplify the notation we define

(13e)

(13d)

(14)

y'I;(15a)
(15b)
(15e)
(l5d)
(15e)

ACB=H , vA( , y) H ',V'C( - I,y_ y')B( ',y')=H ',v' C( l,y')[A( I, y')*B( I,Y')].
Thus, MSE is evaluated in hologram domain by

. E(i)CE(i)-IH(i)CE(i)12/ H(i)CH(i)
MSE(l)=' . .

E(i)CE(i)+H(i)CH(i)+ H(i)(C*+C)E(i)
Coupling eoefficient C( - I,y_ v') is related to diffusion coefficients D( - I,y_ v') by

D( - I, y-y')=8, w,-[C*( - I,y_ y')+C( - I,y_ v')]

Similar to D( - I,y -v') in (11), we have:
C( - I,y_ v') deerease in magnit~de oseillatedly with an inerement of 1- '1and Iy-
C( - I,y_ y')=C*[_( - '),_(Y_ v')];
C( - I,y_ v') ~O (constant) if Mx~O and My~O;
[C( - I,y_ y')+C*( - ',y- v')] ~8 ' w' ifMxMy~N2/2;
He V) C( - I,V_ v') ~O.
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The coupling coefficient C( - ',v- V') in MSE of (14) depends on parameters Mx/N, MylN,
XO/N and yalN too. That is, for a given application, coupling coefficient C( - I,V_ v') is
unchanged. Thus, from (14) MSE is tightly connected with integrals of auto-correlation of E,
of H, and cross-correlation of E and H weighted by C( , v).
Different applications are possessed of different coupling degree. The example Mx~O and
My~O discussed above leads to C( - ',v- V')~O (constant). We say it is strongly coupled. The
example Mx~NI2 and My~N (or Mx~N and My~N/2) leads to C( - I,V -v')~112 8w' [1-
exp{-j (- ')}]/j (- ') (or C( - " v-v')~112 8, (l-exp{-j (v-v')}]/j (v-v'». We say it is
decoupled in v-direction (or in -direction).
Eq. (14) gives a general convergence condition for iterative algorithms. The introduction of
enhancement factor ßCi) alters the distribution of the hologram HCi+l)(, v) (see (10», and
therefore the distribution of binarization error ECi+l)(, v). Thus, each term in (14) is changed.
That is, MSECi+l) depends not only on the error distribution of E(i+l)( , v), but also on the
distribution of HCi+l)(, v), and correlation of ECi+l)(, v) and HCi+l)(, v). An appropriate ß(i)
can lead to MSE(i+l).KMSE(i). However, it is quite sophisticated analytically to determine the
value of ßCi).In practice, one can try it for a given application (see section 6).
If all pixels in the hologram are binarized one time, i.e., the number of binarized pixels K is
equal to N2 without overlaps, the binarization process stagnates too [14]. This can be under-
stood as follows: the binarization error diffused to the pixel ( ',v') ( ',V'=O,1,2, ... , N-l) from
its neighbors ( ,v ) ( ,v =0, 1, 2, ... , N-l, ( ,v) (', v'» is always smaller than the binarization
error from itself, i.e., He. v), C,v) C, v') D( - I, v-V')E(i)(, v)<D(O,O)E(i)( ',v') (see (10) and
(11e». Thus the binary state formed by the latter cannot be changed by the former. That
means, the binary states formed by the I-th binarization process cannot be changed by the 2-
th or subsequent binarization processes. In other words, the hologram has arrived at a steady
distribution state. In practice, we choose K sufficiently large, but smaller than N2.

5. Noniterative method
In the following we discuss a noniterative method: error diffusion [5-8]. This algorithm
binarizes holograms sequentially. The number of binarized pixels increases by one each time
until to N2.
Error diffusion was originally developed for displaying gray-value images on black and white
screens by half-toning [4]. Hauck and Bryngdahl applied this technique to computer
holography [5]. The basic concept can be described as follows: The first pixel of the hologram
H(, v), H(O,O), is compared with a threshold T, and a new hologram value Hout(O,O) is
produced. Hout(O,O)=1if H(O,O)<I>T,otherwise ~ut(O,O)=O. This threshold operation intro duces
an error E(O,O)=Hout(O,O)-H(O,O),which is diffused to those pixels in the neighborhood of
(0,0) that have not been processed yet. We use ( " v') to denote the pixel being binarized, then
the new value of anunprocessed pixellocated at ( ,v), (,v )=( '+I,v'), ('+1, v'+I), (',v '+1),
('-I,v'+l), is H'(, v)=H( ,v)+ W, w'E( I,V'), where W 'w' are called diffusion
coefficients. This algorithm is sequential, i.e., it works line by line from left to right.
Many different variations [7-10] of this algorithm have been suggested. They include the use
of non-adjacent pixels, and of different diffusion coefficients which could also vary from
pixel to pixeL Using the results of section 3, we can satisfactorily explain which variation
should be used for which application. Below, we present this analysis and show the limits of
the error diffusion algorithm.
Rather than choosing pixels randomly for binarization as described in section 2, they are
chosen here one by one sequentially. The binarization of the first pixel H(O,O) has already
introduced a binarization error, which has to be diffused to its neighbors. How to diffuse this
error becomes the core of the algorithm. Some improvements have been done using variations
of diffusion coefficients [8-10]. However, none of these variations has taken into account of
the effect of the size of the reconstruction region. Therefore, their application range is limited.
The mathematical analysis of section 2 and from it derived results have shown that the
optimal diffusion coefficients and the diffusion size are closely related to the applications, i.e.,
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they depend on the size of the reconstruction region, MxIN and My/N, on the position where
the reconstruction region is located, xolN and yo/N (see (8)).
If the binarization error is diffused to the neighbors using the optimal diffusion coefficients
D( -', v-v'), MSE=O in region w is achieved. However, we could never generate a binary
hologram. Using the ordinary error diffusion algorithm as described above, we can generate a
binary hologram, but we can never achieve MSE=O, because the binarization error cannot be
diffused to the pixels that have already been processed; besides, the binarized pixel itself
always intro duces error provided Mx>O and My>O as indicated in (8). This is one of
limitations of the error diffusion algorithm.
In the following, a combination of the ordinary error diffusion algorithm with the optimal
diffusion coefficients is used to generate binary holograms. The diffusion coefficients are
then:

and

{

I if (IJ,= /..1,') and (v = v')
D(ED)( - ',v- v')= D(IJ,-IJ,',v-v') if (v~v' and IJ,>IJ,') or (v> v' and 1J,:51J,')

o otherwise
(16)

(18)

H(, v)=H( ,v )+H( ',v') D(ED)( - ',v- v')E( ',v') (17)
In addition, one should choose an appropriate diffusion size. The sum is to all processed
pixels ( " v'), or the predecessors of ( ,v), within the diffusion size.
Asymmetrical diffusion coefficients of error diffusion algorithms introduce disturbances in
amplitude, and principally in phase inside and outside the reconstruction region. Therefore,
this algorithm is more suitable for applications where the reconstruction of intensity signals is
required. We define the following Mean-squared Error for intensity signals:

MSE#=l.O- [Lw IU(X-XO,y-Y20)llh*(x,y)I]22
Lw iu(x-xo,y-yo)1 Lw Ih(x,y)1

where u(x,y) and h(x,y) are defined same as in (3), # denotes the difference from MSE
defined in (3) for complex signals.
The example below shows the error reduction degree and the efficiency of the algorithm (16)
and (17).
The object to be reconstructed is the capitalletter '0' represented by a square region of 37x43
pixels. It is centrally embedded into a zero array of 128x 128 pixels as shown in Fig. 4(a).
Random phases are assigned to it to generate its gray-scale hologram. Fig. 4(b) shows this
hologram with xo=Yo=32, and 256 gray levels.

W .00
Fig. 4. Original object (capitalletter 'G' ) (a), and its gmy scale hologram (256 gray levels) (b).

The reconstruction region w has the size same as the object, narp.ely MxxMy=37x43 pixels.
The center of the reconstruction region is (xo,yo)=(32,32). Fig. 5(a) shows the binary
hologram of Fig. 4(b) generated using (16) and (17), and diffusion size of 9-adjacent
neighborhoods in -direction and 7-adjacent neighborhoods in v-direction. Fig. 5(b) shows
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the computer simulated reconstruction of Fig. 5(a) with MSE=0.l847, MSE#=0.0319. The
diffraction efficiency is given by 11=3.29%.

.W W
Fig.5. Binary hologram generated using the error diffusion algorithm proposed here (Eqs. (16) and
(17)) and diffusion size of 9-adjacent neighborhoods in -direction and 7-adjacent neighborhoods in
y-direction (a), and its simulated reconstruction (b).

For comparison, another binary hologram of Fig. 4(b) is generated using the error diffusion
algorithm given by Ref. [9]. The basic idea of this algorithm can be described as follows: one
designs a filter for gray-scale holograms. This filter intro duces a zero in the center of the
reconstruction region. In addition, this filter function should remain the slope of the neighbor-
hood of the zero point possibly smalL The filter function is the diffusion coefficient matrix. In
the reconstruction domain it is

h'(x,y)=h (l)(x,y)+f(x,y)e(x,y)
The reconstruction h'(x,y) of the binary hologram H( ,v ) is the reconstruction of the gray-
scale hologram H(l)(, v) plus a noise term f(x,y)e(x,y). f(x,y) is the transfer function of the
filter, and is zero in the center of the reconstruction region.
As indicated in [9], large diffusion size reduces the filter effect. Besides, f(x,y) 0 in the
reconstruction region doesnot guarantee f(x,y)e(x,y) 0, i.e., the algorithm is not always
stable. We use the diffusion coefficients given by [9] to binarize the gray-scale hologram Fig.
4(b). Fig. 6(a) shows the generated binary hologram. Its simulated reconstruction is shown in
Fig. 6(b) with MSE=0.1515, MSE#=0.0946, and 11=1.24%.

.w W
Fig.6. Binary hologram generated using the error diffusion algorithm suggested by [9] (a), and
its simulated reconstruction (b).

Because the algorithm suggested by [9] does not take into account of the size of the
reconstruction region, it works well only for the reconstruction of small size objects.
In summary, the algorithm combining the ordinary error diffusion method with optimal
diffusion coefficients (Eqs. (16) and (17)) can generate high quality binary holograms
compared to other algorithms based on error diffusion. High quality means here, the error in
the reconstruction region is small, the diffraction efficiency is relative high. Another
advantage of this algorithm is its stability.
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(19)

-------1

More tests have been done for the algorithm proposed here [18]. The result indicates that a
better reconstruction can be achieved if an appropriate diffusion size is used, but the improve-
ments are limited [18]. We conclude that the computational efficiency of error diffusion,
which is O(N) (N is the size of the hologram), has to be contrasted to its limited reconstruc-
tion quality for intensity signals.

6. Iterative method
As indicated in sections (2) and (4), the convergence of the iterative binarization algorithm
depends on the enhancement factor ß (i)if the number of binarized pixels is smaller than N2. In
the following, two approaches are suggested to determine Wi).The strategy is that the signal
in region w is enhanced proportionally to the strength of the binarization noise in this region.
The binarization process can be performed in several steps [14,16], say S steps. In step s (s=l,
2, ... , S), Ks pixels are binarized. The binarization process is performed in this step until the
stopping criterion is satisfied. Then the (s+ l)-th step is started. In this step Ks+1 (Ks+l>Ks)
pixels are binarized etc .. Each step results in areduction of MSE except the last step, in which
all pixels are binarized to generate the final binary hologram. If MSE does not change very
much with iterations, the hologram distribution arrives at a steady state.
As an example, Fig. 4 is used again here for the iterative binarization algorithm. Other
parameters remain unchanged. We use the iterative algorithm Fig. 1, which is performed in 2
steps (S=2). The algorithm is controlled by the number of iterations. To see the behavior of
MSE more clearly, 24 iterations are performed in the first step, in which K1=12288 pixels
(which is 3/4 of all hologram pixels N2) are chosen randomly and binarized. In the second
step, or the last step, K2=16384 or all N2 pixels are binarized to get the final binary hologram.
Approach one: ßl (i) is chosen according to the following criterion: the signal in region w is
enlarged by factor (1+ßl(i», so that ~he energy in thi~ region, H(x,y) 1(1+ßl(i»h(i)(x,y)12, with
respect to that of the signal, H(x,y)Ih'(I)(X,y)/2=~x,y)Ih(I)(x,y)+e(I)(x,y)/2,remains conservative.
Here h'(I)(X,y)is the reconstruction of the binarized hologram. Thus we have

Lw Ih(i)(x,y)+e(i)(x,y)12
ßl(i)= ~,1-.:.:...------::--- -1

Lw Ih(i)(x,y)12

Mapping all terms in ßl (i)into hologram domain (referred to (13», we have

H(i)CH(i)+ E(i)CE(i)+ f{(i)(C*+C)E(i) -1
ßl(ib.I---~------- (20)

H(i)CH(i)

where ACB is defined as in (14). (19) is used in algorithm Fig. 1, (20) in algorithm Eq. (10).
Fig. 7(a) shows the binary hologram generated using the iterative binarization algorithm Fig.
l' and enhancement factor ß 1(i). The simulated reconstruction of Fig. 7(a) is shown in Fig.
7(b), where MSE=0.0462, MSE#=0.0347, and the diffraction efficiency Tl =5.03%.

w (~
Fig. 7. Binary hologram generated using iterative binarization algorithm Fig. 1 and ßl (i)
detennined by approach one (a), and its simulated reconstruction (b).
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Fig. 8 below shows the behavior of MSE with iterations for this example.

0.165

0.14

0.115

0.09

0.065

0.04
o 5 10 15 20 25

-e- aIgorithm Fig. 1

--;>(--- aIgorithm Bq. (10)

Iterations
Fig. 8. MSE changes with iterations for ßl (i) of two aIgorithms, Fig. 1 and Eq. (10).

Two MSE curves are shown in Fig. 8. One (dark line with square symbol) is achieved by
using the algorithm Fig. 1, namely changing from hologram domain to reconstruction domain
and inversely, and the other (gray line with cross symbol) by using the algorithm Eq. (10),
namely diffusing binarization error in hologram domain. It shows a good agreement of both.
Note that ßl (i)givenby (20) for algorithm Eq. (10) is computed here by a periodic correlation
to save the computing time. Hence, overlaps in two sides of the correlation function appear,
which give rise to the difference of two MSE curves above.
Obviously, the algorithm Eq. (10) only makes sense for analyses, not for the computation.
Approach two: fu(i) is chosen according to the following criterion: the signal in region w is
enlarged by factor (1+ß2(i»), so that MSE of (1+fu(i»)h(i)(x,y) with respect to signal h'(i)(x,y)
=h(i)(x,y)+e(i)(x,y) is minimum. Here h'(i)(x,y) is the reconstruction of the binarized hologram.
Referred to the definition of factor a in MSE of (2), we have here

. Lw le(i)(x,y)12+Lw h(i)*(x,y)e(i)(x,y)
ß2(1)=-------------Lw lh(i)(x,y)12+Lw h(i)(x,y)e(i)*(x,y)

Lw I e(i)(x,y) 12 + Lw h(i)*(x,y)e(i)(x,y)
1----------- (21)Lw Ih(i)(x,y)12+Lw h(i)(x,y)e(i)*(x,y)

or in hologram domain

I
E(i)C.E(i)+H(i)C*E(i) I

ß (i)- ------ (22)
2 - H(i)CH(i)+ H(i)CE(i)

where ACB is defined as in (14).
The generated binary hologram of Fig. 4(b), using the iterative algorithm Fig. 1 and ß2(i), is
shown in Fig. 9(a). Its simulated reconstruction is shown in Fig. 9(b), where MSE=0.0450,
MSE#=0.0332,11=5.46%.
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W 00
Fig. 9. Binary hologram generated using iterative binarization algorithm Fig. 1 and ß2(i)
determined by approach two (a), and its simulated reconstruction (b).

The behaviors of MSE with iterations far the example above are shown in Fig. 10. Five MSE
curves were presented for different ß(i). Each curve is the average of MSE from five
binarization processes with different initial conditions. The first one (dark line with square
symbol) shows the changes of MSE for ß=ßl (i), ß 1(i) ~s determined by approach one; the
second one (gray line with cross symbol) for ß=ß2(1), .132(1)is determined by approach two; the
third one (gray line with circle symbol) for ß=O.8ß2(1), etc. The results show the dependence
of the convergence rate and the error reduction degree of the algorithm on ß(i).

0.165

0.14

0.115

0.09

0.065

0.04
o 5 10 15 20 25

-D- ß=l.O ßl (i)

..~ ß=l.O ß2 (i)

-e- ß=O.8 ß2 (i)

-l-- ß=1.5 ß2 (i)

~~}-_. ß=0.5 ß2 (i)

Iterations
Fig. 10. MSEs change with iterations for different ß(i).

There is litde difference in convergence rate and error requction degree for the two
approaches determining ß(i). However, if an appropriate ßCi)is used, e.g. ß=O.8fu(i) in Fig. 10,
the convergence is really speeded up. In contrast, inappropriate ß(i) will change the conver-
gence rate, and therefore affect the error reduction degree (see ß=1.5 fu(i) and ß=O.5 fu(i) in
Fig.lO).
In summary, iterative binarization algorithm can be used to applications where high recons-
truction quality of complex signals, and high diffraction efficiency are required. It is also
applicable for reconstruction of intensity signals, if one step in algorithm Fig. 1 is changed,
i.e. instead of correcting complex values in the reconstruction region, only the amplitude is
corrected. MSE# defined in (18) is computed. For reconstruction of intensity signals, higher

17



reconstruction quality and higher diffraction efficiency will be achieved (the example of Fig.
4(b) above gives MSE#=0.0263, 11=7.20%). The computational complexity of iterative
binarization algorithm is O(Nlog2N), where N is the size of the hologram.

Conclusions
A rigorous mathematical analysis of computer generated binary Fourier transform holograms
was performed. Bydetailing the binarization process step by step, a generalized error
diffusion coefficients matrix was derived. Algorithms for generation of binary holograms,
which are normally divided into noniterative methods and iterative methods, were discussed,
their properties and efficiencies were investigated. In the view of the analysis results we
conclude noniterative methods and iterative methods are the same in principle. They are
distinguished only by how to diffuse the binarization error, at one time or at several times.
The examples presented show that the combination of the ordinary error diffusion method
with optimal diffusion coefficients is a valuable tool for binary Fourier transform holography.
However, it is only applicable for reconstruction of intensity signals. Besides, the diffraction
efficiency from such holograms is lower. In contrast, the iterative binarization algorithm with
random binarization of hologram pixels has demonstrated the ability to find the minimum
(local or global) of MSE. It can be used for applications where complex signals, or intensity
signals are required.
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