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Abstract. A distributed asynchronous system is investigated. Its processing elements execute
common operations concurrently and distributively. They are implemented as combinatorial circuits

and exchange data via open collector bus lines. A method is presented to identify and to minimize
the duration of an operation and therefore to increase the performance of the system. No hardware

modifications are required.

Introduction.

A distributed asynchronous system (DAS) consists of a number of processing elements

(PEs) that concun"ently execute common operations, e.g., search, comparison or sorting. The PEs

are implemented as combinatorial circuits and exchange data via open collector bus lines. Generally
every PE can participate or not in an operation, depending on the state of the system, the type of

operation, and the actual operands. In this case the problem arises how to determine the duration of
the operation, i.e., the moment when all signals on the bus lines of the DAS settled. The problem is

caused by possibly ditl'erent speeds of PEs, the unknown set of participants of the operation, and
their unknown input data (operands). Assuming a high number of PEs and a short duration of the

operation, it is not possible to exchange such data before the start of an operation. Instead an asyn-
chronous type of operation is advantageous whose duration is determined, e.g., by the PE that
terminates its own part of the operation latest. However a PE cannot determine the exact duration of
the operation by its own since it depends generally on unknown parameters. It therefore has to
assume the worst case. This causes unnecessary waiting time of PEs. An important example is the
distIibuted arbitration operation on multiprocessor buses like Futurebus+ [I] which is executed by a
DAS. Here this DAS determines the next bus master, i.e., the PE having the highest priority among
all participants of the operation.

1. Duration of an Asynchronous Operation.

To analyze the problem of finding the duration of an asynchronous operation we introduce
the following notations. We consider a DAS consisting of a set Z={1, ... ,E} of PEs that execute
an operation W (see Fig. I).

eH This work has been supported by t1le Deutsche Forschungsgemeinschaft (DFG) under grants Ma 1150/8-1 and
436-WER-113-1-0 (438 1131117/0).
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All inputs and outputs of the DAS are binary. The PEs operate asynchronously and can have

different speeds. They are interconnected by N buses Li, i= 1 ,2, ... , N, and by three synchroniza-
tion lines [2,3] (in Fig. 1, for clarity, these lines have been omitted). Each j-th PE, jE {I, ... ,E},
is assembled as a pipeline of N units Unit (j,i) that are eombinatorial cireuits. Every two eonsecu-

tive units ofthe same PE are connected by a set ofindividual controIIines Ctrl (j,i). All eircuits 01'

the same pipeline stage iE { 1 ,2 , ... , N} execute together one step of the operation. They use

common input data from bus Li-l as weIl as Ioeal input data Data (j,i), and assert output data onto
bus I..j. This bus eonsists of open collector lines that are used for exchanging data and for eomput-
ing a bit-wise global OR function of the binary words that are distributed over all PEs.
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Fig. 1. Interconnection of the units of the PEs of a DAS.

Thus W is a multi-step operation and every unit i of a PE executes a corresponding step.
Every step has two parts, a distributed part that is executed distributively by all PEs, and a global



part following it (Fig. 2). It is called global since partial results from all PEs are combined here. In

the special case considered, all PEs, together with the interconnecting lines used for the global

operation of every step, form one combinatorial circuit. This means signals asserted at the input of

the PEs are combined - maybe in a complicated way but without feedback loops - to output signals.

Since all signals in the circuit propagate forward only, the state of these signals settles in the for-

ward direction. The signals corresponding to the global part of step 1, e.g., will have stabilized at a
certain time. Only from then on the combination of these signals in step 2 - although computed all

the time - is useful. In this sense a step is started automatically when the output computed in the

previous step is available. Thus no synchronization is required during the execution of an operation,

only after every operation. Therefore PEs can start the following operation only after the previous
one is completed by all of them. Identification of this moment is a complicated problem in asyn-

chronous distributed systems.
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Fig. 2. A multi-step operation.

Step #N

Let Si be the bus-propagation delay, i.e, the time to compute the global part of the i-th step
of the operation, and 'tj be the individual gate delay to execute any distributed part of each step of

the operation by Unit U,i). We define dj,i = 1, if Unit U,i) takes longest to complete the

execution of the distributed part of the i-th stepl, dj,i = 0 else, so that LjE zdj,i = 1. Then the

If more than one PE needs the same time to complete the i-th step then any but only üne PEj can be chosen für
which dj,i = 1.

3



execution time of a step iE {l, ...,N} is the sum of the time Si required to compute the i-th global

part plus the time L.jEZ 'tjdj,i required to execute the i-th distributed part. The duration of the

operation T(W,Z) is the sum of the execution times of all steps, i.e.,

T(W,z)=L. jE zCj'tj+L i=l, ... ,NSi, (l)

where cj=Li=l, ...,Ndj,i is the number of the individual delays introduced in the operation by the

j-th PE.
Two cases are distinguished. In the first case each PE has no information about the speed of

the others so that it has to be assumed

(2)

In the second case the PEs can exploit the fact that their speed is bounded, i.e., that

(3)

(4)

2. Minimal Upper Bound for the Duration of an Asynchronous Operation. Case

O<'tj<oo .

The synchronization of the operation in such a DAS is done in accordance with [2]. After all
PEs have been notified of the beginning of the operation W, they assert logic "1" signals onto a

wired-OR logic synchronization line. During execution of W each PEj waits for a certain individual
waiting time t(j,W) before it removes its "1" from the line. When the synchronization line changes

to the "0" state all PEs recognize the end of the operation. Therefore, the total waiting time t(W) for

the DAS to identify the end of the operation W is

t(W)=Max t(j,W).
jEZ

It is obvious that the operation will be finished correctly if this total waiting time is not less
than the duration of the operation. This means that the condition

t(W)~T(W,Z) (5)

must be true for all possible 'tj satisfying either (2) or (3). Therefore t(W) is an upper bound for

the duration of the operation.

Problem of Investigation. In an asynchronous DAS each PEj, jE Z, has only information

about its own characteristics and the ones specified for the whole system. Thus, a PE knows all the
coefficients Cj, i.e., the type of the operation2, all times Si for executing global parts, and its

2 The dependence of the coefficients Cj on a certain type of operation is presented in [3, 4].
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individual delay 'tj- However, it generally has no information about the speed of other PEs, i.e.,

their individual gate delays. Then, according to relations (2) and (3), every PEj has to determine its
individual waiting time t(j,W) independently of other PEs so that condition (5) is always fulfilled
for all possible values 'tj- Moreover the individual waiting times of all PEs should be chosen so that

the total waiting time is minimized. It seems to be impossible that any PE solves this problem by its
own. However if all PEs use the method introduced below, they can determine the moment when
W will be finished. In accordance with [5] we formulate below the task of minirnizing the total
waiting time. We fix the type of the operation and introduce the dimensionless coefficient Dj that
allows to measure time locally so that

Dj'tj=t(j, W)-L i=1,... ,N8i, where j=l, ... ,E. (6)

Let E be the number of PEs participating in the operation W. Then, due to the relations (1),

(4)-(6), one can guarantee that the operation will always be finished cerrectly if at least one relation
of the system

(7)
j*=l, ... ,E,

is fulfilled fer (2) er (3) respectively. Thus the solution of the problem is reduced to the determina-
tion of the coefficients Dj- It is not easy in general to caIculate any specific coefficient Dj* using the
system (7) because Dj* depends on the unknown values 'tj, jE {Z\j*}. However it is possible to

simpIify (7) using the following theorem.

Theorem 1. At least one relation of the system (7) is fulfiIIed for arbitrary values 'tj, O<'tj<oo,

j=l, ... ,E, if and only if

LjE z ~~~ 1. (8)

Proof (suffieient). It has to be shown that, if (8) IS true, there exists a j*E Z, so that

Dj*'tj*~L jE zCj'tj.

Let us assurne the contrary. Then fer every j*E Z we have Dj*'tj* <LjE zCj'tj. From this

inequalitywecanderive 'tj* < ~andtherefore cj*'tj* < Cj*.
D'* Dj*L. zCj'tj j L. zCj'tj

JE JE

If we surn both sides over j*E Z, we obtain the contradiction
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Lj*E ZCj*'tj * =

LjEZCj'tj

1 ~ Cj* ~ Cj
<~.* Z =~. ZJ E Dj* JE Dj

Proof (necessary ). We again will disprove the contrary. Assume that expression (8) is false and
that for every 'tj>0 at least one of the expressions (7) is true. This means that the system

Dj*'tj* - LjEzCj'tj < 0 for every j*E Z,

-'tj* < 0 for every j*E Z

has no solution with respect to 'tj*. It is known from the Voronoi criterion [6] that there always

exists a solution Xj* > 0, Yj* > 0 for the corresponding system of linear equations

Cj*L jE zXj - Dj*Xj* + Yj* = 0, for j*E Z.

F h. f' d (1 ~ Cj*)~ . - ~ Yj*rom t IS system one In s - ~.* z- ~. zXJ - ~.* z-.J E Dj* JE J E Dj*

~ C.*
If we take now, as assumed, ~.* z-J- > 1 then at least one value Xj* or Yj* is less thanJ E Dj*

zero. This contradicts the Voronoi criterion [6].

Q.E.D.

Example. Let us consider a distributed arbitration system that consists of 64 PEs [2-4]. For a
binary representation of arbitration priorities, the PEs can therefore use 6-bit arbitration words. To

reduce the arbitration time, one has to rninimize the average number of individual gate delays of all
PEs which can be expressed by

L. 0 63Dj
F(DO,... ,D63) _-__ J_=_,._.. ,__

64

Here it is assumed that every PE becomes bus master with the same prob ability . F(DO,... ,D63)=6
is obtained if we take all coefficients Dj equal to 6 according to the standard setting of Taub [3,7,8].
If, however, F is minimized under the boundary conditions (8) so that the coefficients are integer,
we get F=4.6 if we set3

Dj = 6 for j = 16, 17, ... , 31, 36, 37, 38, 39, 41, 42,
= 5 for j = 8, 9, ... , 15, 40, 43, ... , 47, 50, 51, 53,

3 Here to each PEj a binary arbitration word Aj is assigned, e.g., the binary ward <101010> corresponds to PE42.
The duration of the operation depends on the number of 1- and O-intervals in the arbitration words of the PEs parc

ticipating in the operation [3,4].
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= 4 for j = 4, ... , 7, 33, 34, 49, 52, 54, 55, 57, 58,

= 3 far j = 2, 3, 59, 61,
= 2 for j = 1, 32, 48, 56, 60, 62,

= 1 for j = 63,

= 0 for j = O.
This example shows that about 70% of all coefficients nj can be less than 6.

Unexpectedly, the optimal result is achieved if we allow one coefficient to be higher than 6,
l.e.,
nj = 9 for j = 42,

= 6 for j = 21, 37, 41, 43, 45, 53,

= 3 for j = 2, 3, 59, 61,
= 2 for j = 1, 32, 48, 56, 60, 62,

= 1for j = 63,

= 0 for j = 0,
= 4 else.

In this case the average number of individual gate delays for all PEs will be only F=3.9.

By applying Theorem I it is therefore possible to reduce the average duration of the arbitra-

tion operation by 30% without any change of the hardware of the DAS.

3. Minimal Upper Bound for the Duration of an Asynchronous Operation. Case
TL:::;'tj:::;TH.

Obviously condition (8), obtained under the assumption O<'tj<oo, yields an unnecessary

high value of the upper bound t(W) for the duration of operations. This range of 'tj values, intro-
duced in [7,8], is only of theoretical interest, because in all practical cases the 'tj values are

bounded. In order to speed up the DAS we consider a new system of boundary conditions (3)
where TL and TH have the same lower and upper values for all PEs.

Below we prove a theorem that allows to find all possible t(j, W) satisfying the condition

~1x t(j, W)~~ cj 'tj and that, therefore, guarantees a correct result of the operation.

Theorem 2. If at least one of the relations (7) is true, it is a necessary and sufficient condition for

the coefficients nj that

where ßj =

L. (Cj~j + CjTH(l-ßj)) :::;1,
JEZ nJ TL Max nj'

j'EZ

n'TH0, if Max nj' ~ _J__ ,
TL

1, else.

7
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Proof We fix the operation W. Without restriction of arguments we enumerate the elements of the
set Z such that o1~oi~ ...~OE. Then the conditions (7) and (9) can be written as

(7 ')

for j=I, •••,E, TL~'tr:;Tu, and

(9 ')

where ßj = 0, if o1TL~OjTU,

= 1, else.
We define N as the maximal number j that satisfies the condition ßj = 1, and prove the

following assertion.

Lemma. It is a necessary and sufficient condition for (7') to be fulfilled at least for one j, that the
system

is inconsistent.

F v('t}, •.•,'tE) > 0,

v=I,2, •.. ,N
(7")

Proof of Lemma. We consider only the condition I~N<E, since the case N=E is trivial. From the
inconsistency of the system

F j('t}, •.•,'tE) > 0, j=I,2, ... ,E (10)

follows the inconsistency of the condition of the system (7"). This is true because each inequality
of the system (7") belongs to the system (10).

On the other hand, suppose that conditions (10) are inconsistent and a solution for the
system (7") exists. In this case there also exists an index j=w so that for N<wsE the relation
Fw('t1, ... ,tE) S 0 is true. But according to the assumptions of OUf theorem, N is the maximal
value of the index j which satisfies ßj = 1 and 01TL ~ 0wTu. From these facts and from the
obvious relations 0w'tw ~ 0wTu and 01't1 ~ D1TL, follows that

F1('tt, ... ,'tE) = Fw('t}, .•. ,'tE) + (ow'tw - D1't}) ~ o.
Lemma is proven.

Continuing the proof of the theorem, we consider for v=I,2, ... ,N the auxiliary system
Ev('t}, ... ,'tN) = Fv('t}, ... ,'tN,Tu, ... ,Tu) =

(7"')

L j=1, ... ,NCj'tj +L g=N+1, ... ,ECgTu - Dv'tv > o.
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Let 'ty = by, v=1,2, ..•,N, be a solution of the system (7N'). Then, obviously,

'tj = bj for j=1,2, ... ,N,

= TH for j=N+l,N+2, ... ,E

is a solution of (7N). On the other hand, if 'tj = bj , j=1,2, ... ,E, is a solution of the system

(7") then the expression

Ey('tl, .•. ,'tN) = Fy(bl, ..• ,bE) + L g=N+l, ... ,ECg(TH - bg) > 0

is true for every VE {1,2, ... ,N}. Hence, 'ty=by gives a solution of the system (7'N). Thus we

proved that the system (7"') is inconsistent if the conditions of the theorem are true and vice
versa. According to that we shall prove the theorem with respect to the system (7''').

Proff(necessary). We use N as the maximal index v and assurne that (9) is not true. Then, one can

conclude that

L (~)+ TH L cg > 1.
y=I, ... ,N lly TLDI g=N+l, ... ,p

TLlllHowever, in this case the values 'ty, which can be defined as 'ty = -- forlly
v=1,2, ... ,N, represent a solution of the auxiliary system (7N'). This follows from

E (TLlll TLlll) _ ~ (CylllTL) (~ T ) _ llylllTL -_y --, ... , -- - £..J N --- + £..J ECg H ---III llN y=I, ... , lly g=N+l, ... , lly

and TL~ TLlll ~TH for all VE {l,2, ... ,N}.lly
From here we get a contradiction to the conditions (9) of the theorem.

Q.E.D.

Proof (sufficient). Let the conditions (9) be true. We have to prove that (7"') is inconsistent. We
note that the equations (9) and (8) are identical, and the conclusion is obvious if N=E. Far N<E

THL cg. d h . b g=N+l, ... ,E {I 2 N}we mtro uce t e notatIon y = ----~-~~---, v = " ... , .
lly(l • L , ~)y =1, ... ,N lly'

It is simple to check that the equality Ey(bl, ... ,bN)=O is fulfilled. If we choose
'tl =bl +£1, 't2=b2+E2, ... ,'tN=bN+EN, then

9



Now only the following three cases are possible.
1. If Ev < 0 far every v then there always exists such a value Ev that '1:1=b1 +E1 <TL and the

system (7"') is inconsistent. This is true due to the relation b1<TL and the inequality (9').
2. If Ev~O there exists at least one value v* of the index v such that Ev*=O, therefore
Ev*('t1, •••,'1:N)~0 and (7"') is inconsistent again.

3. Finally, if Er >0, where rE U, U ~ Z, then we can create the system

L uCrEr - "sEs> 0, S E U,rE
Es > 0, S EU,

which is also inconsistent according to the equivalence of the conditions (7) and (8) (see Theorem
1). Therefore, in all cases there is no solution of the system (7''').
Q.E.D.

In formula (9') the parameters defining the total waiting time are

I) The ratio TH of the higher to the lower bound of the values '1:j.
TL

It is important to note that there is no dependence on time directly, but only on the time ratio.
If PEs with similar characteristics are used, conditions (9) permit to take into account the inevitable
spread of parameters which determine their speed. If, however, we consider the ideal system where

TH = TL, then the individual waiting time can be identified by each participant as nj = L. ZCj in
JE

order to terminate the operation correctly.
2) The system used for coding data.

It is very important to find an optimal coding system for the data since this allows to increase
the performance of a DAS without hardware modifications. The optimal system defines minimal
values for the coefficients Cj in respect to the given operation or a group of operations. As an
example, the algarithm to construct the optimal codes for the arbitration operation has been
discussed in [4]. It allows to reduce the total waiting time by, e.g., 30-50% without modifications
of the hardware.

3) The set Z of PEs participating in the operation is characterized by coefficients cl
One example for this dependency is the increase of the total waiting time t(W) with an

increasing number of PEs participating in the operation. It converges to the value given by the
formula Max t(j,W).

jEZ

Therefare for a high number of PEs it might be reasonable to change the synchronization
procedure [2], i.e., to allow any PE to force the end of an operation as soon as it determines that all
other participants cannot longer affect the result of the operation. Conditions for such type of iden-
tification will be discussed in the next section.
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4. Minimization of the Average Value of the Maximal Upper Bound of the
Duration of an Asynchronous Operation.

Below the optimization task will be formulated for the case in which the DAS executes the
operation frequently. Here the function F(Z) to be minimized is proportional to the average number

of time units in the operation. In accordance with the definitions (1,4-7) it can be written as

F(Z)=L. zajnj, where aj are the constants which depend on the type and frequency of the
JE

operation. If all 'tj satisfy condition (2) then aj* is equal to the probability that PEj* participates in

W. Let Pk, k={l, ... ,E}, be the probability that a group of k PEs participate in W. If the coeffi-

L Cd-leients nj are ordered as nl2n22 ... 2nE, then aj= d-l E_J'+lPd Cd E-j, jE Z, where- ,... , E

~ 1 Cd d!(E-d)!L.J Pd=, E- .d=l, ...,E E!

Theorem 3. At least one relation of the system (7) is fulfilled for arbitrary values 'tj, TL~'tr:;TH,

j=l, ... ,E, if

L., z' (_cr) + _T_H_L", z"cj"~l,
J E nr TLnj* J E

where Z'uZ"=Z, Z'nZ"=0; j*,j'E Z'; j"E Z"; nj*TL2nj"TH.

Proof Let us suppose the contrary. Then

for all jE Z. This implies
c . ''t ., C "'t .,_J_J_ > J J
nj''tj' ~ ~ TH

L.Jj'E z,cj''tj'+L.Jj''E z"Cj"'tj* TL

(11)

(12)

(13)

(14)

for j"E Z"
If we take the sum of (13) over j'E Z' and of (14) over j"E Z", and add up the corre-

sponding left and right parts, we obtain the contradiction to the assumption (7).
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Q.E.D.4

Solution of the optimization task of finding the minimal average value for the
duration of the operation. To speed up the operation one has to minimize the function F(Z)
under either condition (8) or (9) and to determine the values nj, jE Z. For that we will formulate

the two theorems.

Theorem 4. If the condition L. z( Cj)=1 holds true then Min F(Z)=(L. z-vcjaj)2.
JE nj JE

Proof We will use polar coordinates in E-dimensional space ( -VaI n I , ... , -VaEnE), where E is
the number of PEs participating in the operation. Then using the system

one can represent the function to be minimized as

F(<p) = clal +
TI sinz<p1=1,... ,E-I I

L _ cdadd-Z, ... ,E-I +
Z TI . Zcos <pd-l l=d, ... ,E-I sm <PI

and

According to the definition of the extremum we have

dF(<p)
---= 0, where 1=1,2, .•• ,E-1.
d<P1

Let us consider 1=1. From (15) and (16) we have

nlal _ sinZ<pI
------
nzaz cosZ<pI

(16)

(17)

4 From (11) we ean derive very important fact that the end of the operation ean be determined, in prineiple, by any
group of PEs or even by only one PE. The only requirement is to seleet the eoeffieient Dj* so that the eondition
Dj*TL2Dj"TH is fulfilled.
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clal C2a2---=
sin4<pl COS4<Pl'

. . . nl -V~ . nkEhmmatmg the parameter <PIwe get - = _~ . In the same way we obtam - =
n2 "C2al nj

any k and j. Now using condition (8) for all jE Z, we find nk= ~ L. z-V cJ.aj .
"ak JE

Taking the sum of aknk over all kE Z yields Min F(Z)=( LjEz-V Cja) 2.

Q.E.D.

-V Ckaj f---.or
;j C)ak

Applying this result to the investigated problem we obtain its solution, i.e., the optimal
individual waiting time for each PE in the DAS is

t('* W)- -vcj*~ -~f '* ZJ, -'tj*r=-:-:L.t. Z'JcjajJoranYJ E .
"aj* JE

~ ~") Tu L." z"Cj"Theorem 5, If the condition L.t" Z' _J_ + T J E = 1, J'*E Z, holds true thenJ E j' nj* L nj"

Min F = (--V aj*(cj* + ~: Lj"EZ"cd + LjEZ-\i*"cpr)
2

Consider the two following examples.

Example 1. Let three PEs participate in the operation with T(I,Z)=16'tl+'t2+'t3, and let 'tj

satisfy relation (2). Then according to [9] one solution is nl =n2=n3=18, i.e., F=54. If we use
Theorem 3 then nl=24, n2=n3=12. Therefore, F=36 and the duration of the operation can be
reduced by a factor of 1.5.

Example 2, Let three PEs with the arbitration words 101, 010, 001 participate in the arbitration
operation under condition (2). Arbitration of the first two takes time T(1,Z)=2'tl+'t2, and of the
last two requires time T(2,Z)='t2+'t3. Thus, there are two different possibilities for the operation.
From (15) we find

2 1---- + ------F(<p)
sin2<p1sin2<p2 cos2<p 1sin 2<p2

and
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Example 3. Let the DAS consists of eight PEs. Let them use the 3-bit binary words Ao=OOO,
Al=001, ... ,A7=111 as their arbitration priorities. As every PE can participate in the arbitration

operation, only nine different cases can occur for aIl possible values of 'tj, O<'tj<oo. According to

(8) they correspond to one of the conditions

0<Xj~I,X6+X5~I,X6+X3~I,X6+Xl~I,2x5+X3~1,

2X5+X2~1, X4+X3~1, X4+X2~1, X4+Xl~l, X2+Xl~l,
(18)

where the parameters Aj=~. 0=0, ... ,7) are used. To speed up the arbitration operation according
J

to the discussions above it is necessary to minimize the function F(AO,.••,A7)=L.. 0 7 ~
J= "", A'J

under conditions (18). Below we prove that to reach the minimum it is sufficient to satisfy only
five linear independent equations, i.e., the essential conditions, from the set

A6+A5=1
A4+A3=1,

A6+A3=1,
A4+A2=1,

A6+Al=l,
A4+Al=l,

2A5+A3=1, 2A5+A2=1,

A2+Al=1.

That is the values of four other expressions must be less than one.
Let us, first, suppose that the number of essential conditions is greater than five. Then at

least two conditions will be linearly dependent. Secondly, if the number of essential conditions is
less than five then at least one variable will approach infinity. This contradicts the system (18).

Obviously, the following five conditions are linearly independent

Then the optimal solution of the formulated optimization task is F(AO,... ,A7)=14, and the
optimal values of parameters Aj are

Now using the relation Aj=~, it is possible to find the unknown coefficients nj. If we
J

compare the value of the optimized function to the result of [9] we conclude that according to the
suggested method the duration of the arbitration operation can be reduced by a factor of 1.5 without
any changes of the hardware.

Summary. The suggested method of identification of the duration of distributed operations can be
used to enhance the performance of a DAS. It allows

1) to compute the optimal individual waiting time of PEs where each of them has no infor-
mation about speed characteristics of others,
2) to speed up the operation without any changes to the PEs and to the algorithm of the
operation,

14



3) to determine the duration of the operation dynamieally,
4) to find subproeesses whieh eontribute most to the global waiting time, and
5) to minimize the duration of the operation by seleetion an appropriate hardware eonfigura-
tion of a DAS.
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