
REIHE INFORMATIK
25/95

Enable++: A Second Generation FPGA Processor

H. Högl, A. Kugel, J. Ludvig, R. Männer, K.-H- Noffz, R. Zoz
Universität Mannheim
Seminargebällde A5
D-68131 Mannheim

Enable++: A second generation FPGA processor*

H. Högl, A. Kugel, J. Ludvig, R. Männer, K.H. Noffz, R. Zoz
Lehrstuhl für Informatik V
Universität Mannheim

Abstract

In the computing community field programmable
processors are going to fill the niche for special pur-
posecomputing devices. A typical example is ultra-fast
pattern recognition in experimental partiele physics -
a task for which we constructed two years ago Enable-
I, an FPGA processor rather specialized for pattern
recognition algorithms in I1-S domain, but also provided
with modest features for coping with more general ap-
plications.

This paper presents the follow-up modell Enable++,
a 2nd generation FPGA processor that offers several
substantial enhancements over the previous system for
a wider range of applications:
Enabfe++ .is structured into three different state-of-

tlle-art modules for providing computing power, flex-
ible and high-speed 1/0 communication and powerful
intermodule communication with a raw bandwidth of
3.2 GByte/s by an active backplane. The technical
realization of all three modules is guided by the max-
imum usage of field programmable logic. The actual
demand of computing-and I/O-power can be satisified
by the number of modules plugged into the crate.

Enhanced features of Enable++ comprise the con-
figurable processor topology provided by programmable
crossbar switches. In combination with the 4-x 4- FPGA
array and 12 MByte distributed RAM the Enable++
computing core offers a strongly increased and scal-
able computing power. For building new applications
the system offers a comfortable programming and de-
bugging environment consistiilg of a compiler for the
C-like hardware description language spC, a simula-
tor and a source level debugger for hardware design.
The goal in planning the hardware design environment
for Enable++ from scrati:h is to transfer established
methodologies in software design to the design of dig-
ital logic.

*This work has been performed within the RD-ll and AT-
LAS collaborations and has been supported by the Bundesmin-
isterium für Forschung und Technologie (BMFT) under grant
PH/-RS6-93/09 and the Gesellschaft für Schwerionenforschung
(GS!) in Darmstadt, Germany, under grant MAMÄK.

Concerning pattern recognition tasks, we estimate
that Enable++surpasses modern RISC processors by
a factor of 100 to 1000.

1 Introduction

Reconfigurable hardware built with field pro-
grammable components is an ideal concept for con-
structing special-:-purpose proce'ssors combining both
the speed of a hardware and the flexibility of a software
solution. This type of processor consists of a com-
puting core using a set of Field Programmable Gate
Arrays (FPGAs) which are configurable by software
to form a hardware implementation of an algorithm.
Two exemplary implementations of this concept are
Enable-l1and DeePeRLe-12•
Both processors were designed with different goals

is inind. Enable-1 was tailored for a specific pat-
tern recognition task (calIed triggering in high energy
physics) at the ATLAS/LHC experiment and realized
an architecture optimized for a general dass of systolic
algorithms with similarities in dataflow.' The high de-
gree of parallelism and the execution of the algorithms
in hardware, both provided by two FPGA matrices
conisting of 36 FPGAs, were the major advantages
that made the Enable-1 machine superior to others at
a benchmark arranged from the EAST RD/113 co1-
laboration [BBB+93].
DeePeRLe-1 was introduced later and is based on

a more general architecture and thus has a broader
range of applicability than Enable-l. It is built around
a computational core of 4x4 XC 3090 FPGAs. Sur-
rounding the matrix there is 4 x I MByte of static
RAM. For interfacing to the external world DeePeRLe-
1 uses three general purpose real-time links (e.g.

1BuHt at Lehrstuhl für Informatik V, Universität Mannheim
[NZK+93].
2DecPeRLe-l has been developed at the Paris Research Lab-

oratory (PRL), a research laboratory of Digital Equipment
(DEC) [BRV93].
3The RDll/EAST collaboration within CERN is responsible

for the ATLAS realtime pattern recognition (trigger) system.

HIPPI) and one ThrboChannel adaptor.
This paper is the result of two years of in-depth

experience with FPGA processors. It presents En-
able++ as a genuine 2nd generation of FPGA pro-
cessors which is intended for multiple-purpose appli-
cations. The new processor combines advantages from
Enable-l and DeePeRLe-l and introduces several new
features. Section 2 gives abrief overview of the hard-
ware architecture of Enable++. The most important
improvement is that Enable++ is programmable in a
high-level language similar to C, that makes applica-
tion devolopment more convinient. This programming
environment is discussed in section 3. Section 4 deals
with the expected performance of Enable++ as areal
time pattern recognition system. The last chapter
closes with an overview over the current status of the
project.

2 The Enable++-System

The general view of the whole system will be a stan-
dard workstation which is connected to the Enable++
hardware. All hardware parts are contained in one (or
up to three) 9HU sized VME crates. The workstation
will remain in any respect an ordinary 'working envi-
ronment', enhanced with additional capabilities by the
fact that it is connected to a powerful FPGA proces-
sor. For this purpose one can use either a standalone
model or a VMEbus based plug-in board. The phys-
ical connection depends on the type of frontend: If a
VMEbus type workstation is used, one has the advan-
tage of connecting both by a high bandwidth system
bus (e.g. SBus) and/or by aserial bus which is part
of the systems service network and is realized by a
transputer link. Using a standalone workstation one
is restricted to use only the serial bus because of the
distance between both systems. Both buses offer the
same functionality, which means that both have the
ability to access all system resources.
After connecting the frontend workstation to En-

able++, the user will concentrate on writing applica-
tions. For this purpose he will deal with the Enable++
Development Environment (EDE) which offers all the
functionality for breaking down a high-level specifica-
tion of a new application to an Enable++ configura-
tion. The user can choose among different functions
as there are compiling of a system description, hard-
ware source level debugging and simulation. EDE of-
"fers with spC its own brand of hardware description
language. It is derived from both Cand Hardware-C
and flavoured with additional constructs for describing
systolic data processing. spC is the attempt to realize a

2

Figure 1: Enable++ system overview

hardware description language which is intermediary
with respect to abstraction level and hardware con-
trol. Because EDE is planned to fit tightly in a UNIX
environment, the user will have in addition dozens of
useful and weIl established tools for free.

After outlining the main 'look-and-feel' ofthe whole
Enable++ system, this section will proceed with a
closer look at the hardware components of Enable++.
As depicted in figure 1 there are three different types
of components:

• Computing Array Boards (CA)
• 1/0 Boards (1/0)
• an active Backplane (AB)

Computing power is mainly located on the Com-
puting Array Boards. On each board a matrix of FP-
GAs is connected with high-speed RAM and a network
of I-Cube4 crossbar-switches (F,PIDs) building an ex-
tremely high-powered computing core which can be
adapted to a broad range of different topologies.
The 1/0 Boards deal with incoming and outgo-

ing data from different sources and. sinks (SBus5,
FibreChannel6, HIPPI7 ,SCI8, etc.) and may use dif-
ferent types of receivers and transmitters. A single
board uses four different ports for data transmitters
or receivers. By the use of FPIDs another convenient
usage of this board is that of a router. Source and
destination of all four ports can be other ports or the
active backplane.
The concept of an active backplane was realized af-

ter investigating generalized backplane concepts. The
backplane now constitutes a field programmable mod-
ule in the same way as the other two components. It

4 Field Programmable Interconnect Devices (FPIDs). We use
the IQ240, wh ich offers 240 connectable 1/0 pins.
5SUN System 1/0 Expansion Bus
6FibreChannei is ~ high-speed optical connection, 1062 MBd
7High Performance Parallel Interface with 100 MByte / s data

rate.
8Scalabel Coherent Interface

connects 1/0 boards and CA boards and is mainly re-
sponsible for high-speed data transfer between them.
Hs open interconnection scheme has the ability to im-
plement a variety of communication models in mul-
tiprocessing applications. A possible protocol could
be token-ring based with a raw bandwidth of 3.2
GByte/s.

Furthermore both CA and 1/0 boards are supplied
with a novel bus interface architecture based on FP-
GAs and local accessible dual-ported RAM. This in-
terface is capable of doing high-speed pre- and post-
processing of data flowing to and from the board (e.g.
formatting) and of synchronizing the data flow be-
tween the on-board logic and the backplane.

For the purpose of system maintenance we intro-
duced the concept of Local Control Modules (LCMs)
which are connected via an autonomous service net-
work. All of the modules introduced above contain a
LCM module which serves for standalone board level
test, board initialization, board monitoring and de-
bugging support.

2.1 Computing Array Boards

cubes and hypercubes (see figure 3). This highly reg-
ular connection scheme allows for very fast and broad
pipelined flows of data as needed with systolic algo-
rithms. We believe that with this architecture high
utilization is achievable for many regular systolic de-
signs and that even random logic can be mapped on
this topology with acceptable losses. In comparison
with Enable-l we have nearly the same count of con-
figurable logic blocks (CLBs) due to less but high er
integrated FPGAs. By the new design we end up with
improved routingpossibilities, high er 1/0 bandwidth
and extended interconnect possibilities.

In addition there will be 96 high-speed 128 kByte
synchronous SRAM chips on board. This is in total 12
MByte of extremely faSt local RAM. These RAMs are
located at the direct interconnections between neigh-
bouring FPGAs as shown in the right part of figure 2.
A scheme like that is suitable for pipelined lookup ta-
bles (FPGAI-RAM-FPGA2) with up to 17 input bits
and 16 output bits and general read/write RAM. In
both cases these RAMs have no wait state and one
dock cyde latency at 50 MHz system dock. The total
throughput is thus 4.8 GBytes/s.

The main functional parts of the Computing Array
Board (CA) are the FPGA array and the bus interface.
In terms of absolute FPGA resources each CAB has
a complexity of approx .. 288,000 gates (using the Xil-
inx figures for sixteen XC4013- and eight XC4010-type
FPGAs). The FPGA array consists of 4x4 XC4013-
type FPGAs which are connected as shown in the left
part of figure 2 (for the sake of darity we omitted the
connections to the lower half of the bus interface).

~GA~:I
i.
I

~;;~;;W::!
Chalnllllng

rmlm
@m~~~:~~qJ qJ [j [j :~~~

. il~~:;:;:::;:;:;:~:~:~:;:;:;:;:~:~:;:I:::::::~:::;:;:;:;:;:;:~:f~:1111I:::i:::::::;::::::::::::~[Il
IlesWfONS Broadcasl

Figure 3: Examples of possible configurations .

..~::;:;:::::: ;';" ;";";";";:;";:;:;:. ;:;:;" :;:::::;:::;:;:::::::::::::;
e

e-Ocllon!W1
~GA L-. -'-_"'" .•...•...•..

CUbe . Hyporcubo

III-Cube Cressb.r Swilch Im Mauix FPa,.. Xilj~ xc .•O:Jot ~ QUIll t.O FPGA. ~ QUIll ported RAM

Figure 2: Major building blocks of a Computing Array
Board.

Besides nearest neighbour connections, FPGAs are
connected through I-Cube crossbars so that different
global topologies can be achieved via configuration.
Possible topologies are for example linear arrays, rings,

Computlng Arr.y
(16 x XC4013. 8 x 10240)

auslntltrf80e
(hXC4010) .~.Illlic

3

The computing array is connected via the cross-
bars to a bus interface (shown in the middle part of
figure 2), comprising eight XC4010~type FPGAs and
fast dual-ported RAMs. This circuit decouples the
synchronously operating array from asynchronous bus
protocols on the backplane and buffers incoming or
outgoing data. Connection to the backplane is done by
eight 40-bit buses (32 bit plus 8 bit control) which can
be operated synchronously up to the full dock speed
of 50 MHz. This equals a data rate of 1.6GByte/s.

;,r',~. _!

2.2 Enable++ 1/0 subsystems

The Enable++ r/o subsystems connects the com-
puting core of Enable++ to its real-world environment
via high-speed datapaths. It is scalable to achieve an
overall data throughput capability equivalent to the
installed computing power. To provide a maximum
flexibility in connecting to external data sources or
destinations a modular design of the r/Oboards was
selected. Every r/o motherboard can carry up to four
r/o daughterboards, each one implementing a specific
transmission protocol and media access. The LCM
module described in section 2.4 can be used as a fifth
virtual r/o port in addition to its primary functions.
Together with the four buffered portsconnecting to
the backplane bus, there is a total 6f 9 ,data channels
on one r/o motherboard. Every channel can be arbi-
trarily configured as input or output. Programmable
logic (FPGAs and FPIDs) serves for routing and pre-
processing of the data. All 9 data channels can delib-
erately be connected to any one or more of the, other
channels.

With these features the r/o system is weIl suited
to perform complex routing operations which go far
beyond a trivial point-to-point connection. Possible
operations are interleaving of two external channels
to one of the backplane's subbuses, replication of in-
coming or outgoing data, even format or protocol con-
version can be done. The on-board bandwidth for ev-
ery one of the 9 channels is 50 MHz by 32 bits (200
MByte/s). Although the 4 backplane ports can keep
up with this speed, this value is obviously limited in
the case of the outbound channels by the properties of
the specific r/o daughterboard. r/o daughterboards
to be manufactured in the nearest future will connect
to the RIPpr channel and to the SBus of SUN-type
workstations. There are also plans for ATM9 and Fi-
breChannel interfaces. For special purposes there will
also be a module providing several Megabytes (approx.
32 ... 128) of buffer memory with a bandwidth of 200
Mbyte/s in block access mode.

2.3 Backplane

Handling as high data rates as done by Enable++
is viable only with a special kind of bus system. Since
Enable++ is intended tobe a multiprocessing system
care must be taken to avoid any kind of bottleneck.
For this reason a configurable active backplane bus is
integral part of the system. It will have a multiple-T

9ATM is a network protocol used in high-speed serial con-
nections (155 MBd, 622 MBd available) .

4

topology where at every slot the 'same kind of router
circuit will buffer, split, bridge and route signals com-
ing from neighbouring slots. Thus static and dynamic
reconfiguration of the system is possible. It furt her-
more enhances overall data rates since an active rout-
ing scheme makes it feasible to use wider buses on the
backplane than on the Computing Array Boards and
haveother than nearest-neighbour connections. Ev-
ery slot is splitted horizontally into eight 40 bit wide
subbuses, each having 32 bit of data and 8 bits for
control. With this architecture it is straightforward
to implement systolic datapaths with the full system
speed of 8 x 200 MByte/s,data-rate in total.

2.4 Enable++ Local Control

One important feature of the Enable++ system is
the implementation of a uniform local controlrnod-
ule (LCM) on each of its module boards. The main
elements of this LCM are a T425 transputer with 4
to 32 MByte pynamic RAM and 4 transputer links
plus an XC4005-type FPGA. Mechanically the LCI'.'I
is a piggy-back daughterboard to be plugged onto the
specific Enable++ motherboard: Computing Array,
Backplane or r/o board respectively. An additional
LCM may be used in conjunction with a special in-
terface board in the host computer, if needed. Each
LCM can be connected via its transputer links to up to
4 other LCM modules or other link interfaces. Typ-
ically all LCM modules in the system form a daisy-
chain by connecting via two links each to its left and
right neighbour. At least one link connects from the
daisy-chain to the host computer. Through the FPGA
the transputer gains access to all hardware resources
of the motherboard it is controlling. Additionally the
FPGA has the capability to interrupt the transputer
on an internal event or on request from the mother-
board, and to perform direct-memory-access to the
dynamic RAM.

The tasks of the LCM are

• standalone board level test
• board initialization
• board monitoring
• debugging support

2.4.1 Standalone board level test

rn this basic mode the LCM is connected to a host
computer via one of its links. The transputer performs
JTAG/boundary-scan compliant board level testing
plus special test algorithms, if necessary. Our goal is

to achieve 100% test of all coimections and functions '
of the motherboard.

2.4.2 System initialization

The host computer transfers all configuration data to
the LCM module which first stores it in its internal
memory. For a full-scale Enable++ CA board this
will take about 1.5 Mbyte of memory. Depending
on the memory resources on the LCM, alternate con-
figuration data sets may be transmitted subsequently
to provide means for dynamic configuration changes.
The LCM transpu'ter performs configuration of the
motherboard, by selecting any group of up to 32 con-
figurable logic chips and transferring the data either
under program contro1 or via direct-memory-access.
Typical configuration or reconfiguration times will be
less than 50 ms for a full-scale Enable++ CA board.
With a large memory to store different configuration
data sets the LCM may perform complete or partial
dynamic reconfigurations of the motherboard, either
on demand by the host computer or after an interrupt
generated by the motherboard. Algorithms may take
advantage of this self-modifying-hardware capability.

2.4.3 Board monitoring

The FPGA chip on the LCM can be connected to
some user defined status lines on the motherboard.
Application specific designs can be developed for the
LCM to trigger on certain conditions on these sta-
tus lines. Various timers, counters or logical equation
checks may be implemented. As the. transputer is not
fast enough to keep up with the speed of the moth-
erboard, the FPGA brings the real-time capability to
the LCM module.

Any kind of error handling and logging procedures
can be run on the transputer. Sampies of data can be
taken for online monitoring, either small data sets at
full speed or arbitrary data sets with a reduced speed.
Thus data can be transferred to thehost computer via
the transputer link without interfering with the main
datapath on the backplane bus.

2.4.4 Debugging support

Support for debugging relies on several properties of
the components used on all boards or modules and on
special features of the LCM:

• The dock system of each motherboard can be con-
trolled by the LCM
• All FPGA and FPID components support full JTAG
boundary scan capability

5

• All FPGA components support a non-destructive
readback capability of all internal states and memory
locations / registers
• Each motherboard provides a set of programmable
status lines
• Each LCM runs a special debug task communicating
with the Enable++ system debugger
• High-speed trigger conditions on the motherboard
can be handled by the LCM
• All LCM modules form a link-based network inde-
pendent from the main datapath.

The LCM performs the mapping of source level
node names to local hardware resources with the help
of the debugging database (see chapter 3). The aver-
age access time from the LCM to any given resource
on its motherboard varies with the location of that re-
source (memory, 1/0 buffer, FPGA internal register)
but will not exceed a fewmilliseconds - fast enough for
interactive debugging. As the data flow between the
host computer and the LCM modules consists mainly
in control information the speed of 20 MBd on the link
network will be fairly sufficcent.

Debugging of the Enable++ system can be per-
formed not only board-by-board but on system level
and with the comfort of a high-level debugging tool.
The LCM assists the main debugging task running on
the host computer by virtualizing the hardware on the
Enable++ board components.

3 The Design Environment

One major criterion in the design of the Enable++
machine is the underlying general hardware architec-
ture which allows a broad range of applications in
different fields such as pattern recognition, number
crunching, fast networking and logic simulation. Be-
cause the system's configuration space is enormous, it
is most important to supply the Enable++ hardware
environment with powerful tools for designing and de-
bugging new applications. Our goal is to establish a
toolset which shifts the design process for hardware
as far as possible to a standard which has been well
established for years in software design.

The EDE (Enable++ Development Environment)
we are currently building is designed with the follow-
ing principles in mind:

• The procedure of building an application for En-
able++ should be very similar to building an ordinary
software application.

T'r;napu's.-ur*

• The operation of Enable++ is tightly bound into a
program running on the hostworkstation. Both host
and Enable++ functionality is specified in one com-
mon set of source files.
• A source level debugger allows comfortable test-
ing and debugging ofEnable++ applications while the
hardware is actually operating .
• A simulation tool provides the possibility to test En-
able++ algorithms completely prior to any hardware
implementation.

3.1 Overall structure of the design envi-
ronment

The usefulness of a large FPGA processor like En-
able++ depends heavily onhow easily the system can
be used and adapted to new applications. In an ex-
treme scenario a human operator would solely write
ordinary software without being aware of using ap-
plication specific reconfigurable logic. An intelligent
design system would decompose the software specifi-
cation and automatically map parts of the software to
hardware. With Enable++ we will provide a design
environment which offers an intermediate solution to
the design problem which is much more useful in appli-
cation design than the above 'radical' solution: Both
hardware and software is explicitely specified in one
common set of source files. In case of the software part
on the host computer the language is C, in case of the
hardware part it is spC (systolic parallel C, a deriva-
tive of both C and Hardware-Cl, which is designed for
describing systolic and parallellogic systems.

As shown in figure 4, the EDE consists mainly of
four different tools. The spC compiler spcc, the host
C compiler gcc, the hardware debugger spcdebug
and the hardware simulator spcsim. The principal
processing of the two paths (host software/Enable++
hardware) of an application program is done by the
compilers gcc and spcc.

The paradigm shift of specifying hardware by soft-
ware makes weIl established rules in traditional soft-
ware design applicable in hardware design. One of the
most important rules states that a prograinming sys-
tem is only as useful as its debugging facilities. We
adopted this rule and plan the source level debug-
ger spcdebug to have complete control of the hard-
ware design in the debugging phase similar to the de-
bugging capabilities of C source level debuggers (gdb,
ups) in traditional software design. For this purpose
spcdebug makes use of the LCM service network to
access Enable++ hardware.

With the simulator spcsim we want to enhance the
development environment with a tool to verify the

6

C~M_'~'Molho.I(C) ~end Enable++ (apC) LJnc'cnahly

............................ "p.

t

~ .-..~;:1-:'~=<lED:"..
,;;;:;",',}"","",:::..':','..: ."..... ":':'.." .'.,,.... ., .~ .;;;;••~~' (S~~~~~~~i":j/:

~- i~~~' ~Cf5 ~

s

(m~;'.""':"':'::(Lr.~'::""""""'(L~~~N~;
~ ~ ~ ~

Figure 4: Overview of Enable++ Development Envi-
ronment EDE.

behavior of algorithms prior to any mapping in En-
able++ hardware.

Figure 4 alsp shows' the approach we chose in com-
municating between host and FPGA processor. There
are in principle two possibilities for connecting a host
workstation to the hardware. First, if the host com-
puter is a standalone workstation, then the connec-
tion is established via a Transputer Link to the Ser-
vice Network. Second, a VMEbus based host machine
can be plugged into the Enable++ crate with either
Link or SBus connection or both to an 1/0 board. A
layered communication software provides an abstract
and structured way of accessing and exchanging data
between both entities. The access point for services
like EDE and application programs is the Enable++
access library. The low-Ievel device driver and phys-
ical 1/0 are in this way hidden from the application
programmer.

3.2 The development cycle

As shown in figur es 4 and5, a mixed description
consisting of C and spC code is the starting point for
a new design. A preprocessor handles the separation
in C a:nd spC code.

C path: The C code output by the preprocessor
constitutes the host computer part of the application
program. For accessing the FPGA processor the code
hasfurthermode to be linked with the Enable++ ac-
cess library.

Common speclflcalkln 01 hasl ~JSPC
.nd FPGA prooessor

(....)

Figure 5: Design paths for building Enable++ appli-
cations.

spC path: The spC code is processed with the spcc
compiler which uses a configuration file for controlling
various task specific hardware parameters (e.g. con~
figuration ofthe FPIDs). spcc outputs code for three
different purposes:

a) VHDL code for specifying the functionality of the
FPGAs.
spcc converts the spC description to VHDL code.
We chose this format because of the recent avail-
ability of commercial CAD tool whichmap VHDL
code to different FPGA technologies, e.g., Synop-
sys and Asyl+. With one ofthese tools the VHDL
code is further processed to Xilinx configurations
(LCA files).

b) A simulator database which can be "executed"
with the simulator kernel spcsim. The simulator
database contains data structures which are built
during compilation with spcc.

c) A debugger database which allows source level
debugging of the Enable++ hardware with
spcdebug (see also seetion 2.4.4). For source level
debugging it is essential, that the elements of the
synthesized logic are mapped to corresponding
code fragments of the initial spC description.

Relevant parts of the debug database are dis-
tributed across the LCM network. The debugger task
on each LCM module transparently performs the. ac-
cesses to the hardware ressources, setting and checking

7

of breakpoints and inspecting/modifying of variable
registers.

4 Applications

Although Enable++ is designed as a general pur-
pose processor the first applications will be real-time
pattern recognition in High Energy Physics. The high
data rate of today's particle physics detectors requires
a powerful online pattern recognition system for data
reduction called the trigger system. Typical trigger
tasks for the subdetectors of the ATLAS experiment,
one of the two experiment at the world's largest parti-
cle accelator LHC/CERN (planned for 2004) has to be
handled within 10J.ls. The data rates are in the order
of some 100Mbyte/s. While in the past p1l.rticlephysi-
cists wereforced to build dedicated electronics for each
subdeteetor trigger, Enable++ allows to use one sys-
tem for all subdetectors just by reprogramming.
Three oft he ATLAS trigger tasks are specified as C

programs and implemented on modern RISC proces-
sors (PowerPC, Alpha, Sparc10) [BHL94].This allows
a performance comparison between an FPGA proces-
sor and a standard CPU solution. As long as the En-
able++ hard~ and software is not completed and direct
measurements therefore impossible the benchmark al-
gorithms are formulated in spC, and speed as well as
resources are manually estimated. This method is sim-
plified by the pipelined strueture and the lack of data
dependencies in the algorithms. The accuracy of the
performance estimation is acceptable (between 10%
and 20%) as experiences with a similarmethod for
Enable-l have shown.
The following section gives a short overview about

the three pattern recognition algorithms ;tnd sum-
marizes the performance of an implementation on
standard workstations and Enable++. Detailled de-
criptions of .the algorithms, which are named after
the corresponding subdetectors (Transition Radiation
Tracker TRT, Silicon Tracker.SCT and, Calorimeter)
can be found in [Leg94]and [KM94].
The trigger task of the TRT is to determine the

most significant electron track in the ep/z projection
of the detector. Due to the detector geometry particle
tracks appear as zick zack lines of mean slope dep/dz
in the 96 times 16 2-bit image. In order to cope with
the track geometry the TRT algorithm consists in a
Hough transform for track recognition and a weighted
maximum finding for the electron identification.
The Hough transform is implemented as a lookup

table(64k x 256 channels) distributed over the FPGA

matrix RAM. By asserting the pixel coordinates onto
the RAM in a systolic way a very effectiveimplementa-
tion is reached. The FPGAs histogram the lookup ta-
ble outputs and perform a weighted maximum search
of the histogram channels.
Similar to the TRT algorithm a Hough transform

is used to find tracks in the r-q,-projection of the SCT
(image size is 4 layers of 1000 pixels each). Because
both TRT and SCT use a zero suppressed pixel coor-
dinate list as input, the principle implementation of
the SCT is similar to that of the TRT. The major dif-
ferences to the TRT are the 8 times wider (16 times
less. deep) Hough space (4k X 2048 channels) and a
different histogram evaluation algorithm.
In contrast to the previous algorithms the

Calorimeter requires a huge amount of arithmetic cir~
cuitry. The center of gravity has to be evaluated
within two 16-bit 20x20 data windows. Depending
on the found center of gravity the 2nd moment of one
of the data windows is calculated.
Because of that dependency the algorithm has to

be divided into two steps. In a first step the input
data are accepted by Enable++ and stored in a dual-
port memory. During this step the center of gravity
is calculated using bit-serial (but data parallel) arith-
metic circuitry. The found center of gravity serves
as base pointer for the. 2nd moment coefficent tables.
In a second step the input data are read from the
dual-port memory and the 2nd moment convolution
is performed. At the same time the 2nd moments are
calculated, the center of gravity for the next event can
.be evaluated reducing the required frequency by a fac-
tor of two.
Each algorithm implemented onJ=nable++ requires

less than lOJ.ls, in some cases more than one image can
be executed concurrently. The execution of the trig-
ger tasks onto Enable++ provides a speedup of 100 to
1000 compared with traditional processors. Table 1
summarizes the benchmark results for Enable++ and
compares the results with the performance on three
modern RISC processors (DEC-Alpha, Sparc10, Pow-
erPC). Note that for the workstation implementation
no 1/0 is considered (in contrast to the implementa-
tion on Enable++). Because none of the CPUs shows
significant performance advantages over the others
only a mean speedup (above the mean CPU perfor-
mance) is listed.

5 Conclusions and Status

The Enable-l machine and DecPeRLe-l have proved
that FPGAprocessors are well suited for high-speed

8

algorithm te [J.ls]a nIMb Tee [J.ls] <S>
Calorimeter 10 4 2.5 430
TRT 9 2 4.5 180
SCT (2.5%)e 8.5 1 8.5 580
SCT (1.0%) 4 1 4 600

Table 1: Benchmark results for Enable++
aExecution time
bNumber of images processed in parallel
Cte/nIM
dSpeedup
eValue in percent is the ratio of set to all pixels

processing requirements, e.g. in feature extraction al-
gorithms. Enable++ is the result of rethinking both
architectures for a more general applicability offering
the following enhancements:

• A new feature of Enable++ is the flexible processor
topology provided by a computing array configurable
by field programmable crossbar switches. In combi-
nation with the state-of-the-art FPGA resources and
12MByte distributed RAM, Enable++ offersstrongly
enhanced computing power.
• A major part of Enable++ focuses on a flexible and
extremely powerful 1/0 system. The division of the
system in Computing Array Boards and 1/0 Boards
connected by a programmable FPGA bus provides a
high degree of scaleability.
• For building new applications the Enable++ Devel-
opment Environment EDE has been planned and up to
now partly realized which consists in the final version
of the following tools: A compiler for the high-level
hardware description language spC, a simulator and a
source level debugger for hardware designs.

Once realized this concept will be an extreme im-
provement in our FPGA-design capabilities, since it
breaks up the design process in small steps which are
well defined and independent. This gives program-
mers freedom in developing complex applications be-
cause they can work most of the time on an abstract
level without thinking about all pitfalls of hardware
design. Debugging of logical errors and first tests can
be done with spC and VHDLcode while optimisation
and hardware debugging are done afterwards. Very
fast designs can be implemented using the low-Ievel
tools if appropriate. Hardware debugging and system
monitorlng allows verification of designs for real-time
data and real system environments. Together with its
inherent sealability Enable++ will be a very powerful,
universal and user-friendly FPGA processor system.
All type of boards are under construction and will

be operating in a-prototype version until summer/fall

1995. An a-release ofthe spC compiler is already avail-
able now and for 9/1995 we scheduled the release ofan
a-version of the EDE. A full featured stable version of
the EDE with complete. debugger and simulator sup-
port is expected to be available at 6/1996.

References

[BBB+93] J. Badier, R.K. Bock, Ph. Busson, S. Cen-
tro, C. Charlot, E.W. Davis, E. Denes,
A. Ghorghe, F. Klefe'nz, W. Krischer,
I. Legrand, W. Lourens, P. Malecki,
R. Männer, Z. Natkaniec, P. Ni, K.-
H. Noffz, G. Odor, D. Pascoli, R. Zoz,
A. Sobala, A. Taal, N. Tchamov, A. Thiel-
mann, J~Vermeulen, andG. Vesztergombi.
Evaluating Parallel Architectures for two
Real-Time Application with 100KHz Repe-
tition Rate. IEEE Tr. Nu cl. Sei., 40(1):45-
55, 1993.

[BHL94] R.K. Bock, R. Hauser, and I. Legrand. AI-
gorithms in econd-Ievel triggers for ATLAS
and benchmark results. ATLAS DAQ note
94-27, EAST note 94-37, 1994.

[BRV93] P. Bertin, D. Rincin, and J. Vuillemin.
Programmable Active Memories: A Per-
formance Assessment. Technical report,
Digital Equipment Corporation. Paris Re-
search Laboratory, 1993.

[KM94] W. Krischer and L. Moll. Implementation
of a pattern recognition algorithm for the
Si tracker on DecPeRLe-1. EAST. note 94-
21, 1994.

[Leg94] I. Legrand. Data collection and prepro-
cessing for the ATLAS second-Ievel trigger.
EAST note 94-30, 1994.

[NZK+93] K.-H. Noffz, R. Zoz, A. Kugel, F. Kle-
fenz, and R. Männer. Results of On-Line
Tests of the ENABLE Prototype, a 2nd
Level Trigger Processor for the TRD of AT-
LAS/LHC. EAST note 94-03, 1993.

9

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010

