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Abstract

In dealing with denotational semantics of programming languages partial orders
resp. metric spaces have been used with great benefit in order to provide a meaning
to recursive and repetitive constructs. This paper presents two methods to define
a metric on a subset M of a cpo D such that M is a complete metric spaces and
the metric semantics on M coincides with the cpo semantics on D when the same
semantic operators are used. The first method is to add a 'length' on a cpo which
means a function p : D ---+ IN0U{00 } of increasing power. The second is based on the
ideas of [9] and uses pseudo rank orderings, i.e. monotone sequences of monotone
functions 1rn : D ---+ D. We show that SFP domains can be characterized as special
kinds of rank orderded cpo's. We also discuss the connection between the Lawson
topology and the topology induced by the metric.
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1 Introduction

In dealing with semantics of programming languages partial orders resp. metric spaces
have been used with great benefi.t in order to provide a meaning to recursive and repetitive
constructs. There have been various attempts to reconcile or to relate the two approaches
[10, 19, 27, 29]. The observation that the Scott topology associated with a cpo D is not
Hausdorff and consequently cannot be obtained by a metric on D led some authors to
search for weaker notions of metric as the partial metric [19] and the quasi uniformities
[27]. The most promising approach is based on generalized metric spaces as proposed by
Lawvere [15]. Both partial order and metric can be considered as special cases of gen-
eralized metric. Generalized fixed point theorems that specialize to the classical Banach
theorem and Tarski theorem can be proved [24].

The Lawson topology is metrizable under certain conditions, e.g. if D is a compact
algebraic cpo with a countable basis, but compactness is too strong a condition in many
applications. On the other hand, looking at concrete mathematical stuctures one may
observe that

• many structures (e.g. strings, Mazurkiewicz traces, pomsets, event structures and
various kinds of trees) allovvfor both ametrie and a partial order setting

• there are certain features of languages that give rise to problems in the partial order
setting, e.g. the sequential operator which can easily be handled in the metric
setting [3]' and viceversa, e.g. unguarded recursion.

In this paper we establish two concepts by which we may obtain ametrie from a partial
order. First we consider partial orders with a length, i.e. a function p which assigns to
each element :1: of D a length p(:r:) E !No U {oo}. If the elements of D are interpreted as
processes the length p(:r:) is the maximal number of atomic steps which are needed for the
execution of :1:. E.g. the length of astring is its usual length, the length of a tree is its
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height. We show that a length on a partial order D induces an ultrametric on a subset M
of D. In order to ensure the completeness of M we introduce the concept of continuous
weight. A weight means a length which ensures the existence of finite cuts where the
n-cut :1:[n] of an element :r E D represents a process whose behaviour is given by the first
n steps of x. Continuity of a weight means that the function x f-7 x[n] is continuous.

The second concept is based on the idea of [9] introducing a pseudo rank ordering on a
partial order D (i.e. a monotone sequence of monotone functions 1fn : D -t D). We show
that a pseudo rank ordering induces an ultrametric on a subset M of D which is complete
if D is a cpo and that continuous weights can be considered as special cases of pseudo
rank orderings.

The paper is organized as follows: In section 2 we introduce the concepts of a length,
weight, continuous weight resp. pseudo rank ordering and study the properties of the
induced metric space. Section 3 treats semantic operators and establishes conditions that
guarantee that these operators display the necessary contraction properties for the induced
metric space. In section 4 we sketch some examples that show that existing settings fit
in our framework. Section 5 shows that Plotkins SFP domains [22] can be characterized
as special kinds of rank ordered cpo's. In section 6 we discuss the relationship between
the Lawson topology and the topology induced by the metric on a weighted resp. rank
ordered cpo. In section 7 we briefl.y discuss the connection to related work.

2 From partial order to metric

In this section we introduce three types of 'measuring' functions of increasing power on
a partial order: the length (section 2.1) , the weight (section 2.2) and continuous weight
(section 2.3). In section 2.4 we investigate the connection to the work of Bruce and
Mitchell [9]. vVeshow that a continuous weight induces a ranking in the sense of [9].

In the following aposet means a pair (D,~) consisting of a set D and a partial order C
on D. vVeoften write D instead of (D, C). By a pointed poset we mean aposet D which
has a bottom element (denoted by ..1D or ..1). If D is aposet and x E D then

x -!- = {y E D: y ~ x}, x t = {y E D : x ~ y}

and for each subset X of D:

X -!- = U x -!-, X t = U x t
xEX xEX

X is called leftclosed iff X is nonempty and X -!- = X. X is called directed iff X is
leftclosed and each pair of elements in X has an upper bound in X. A dcpo means a
pointed poset in which each directed subset X has aleast upper bound (which is denoted
by U X or lub(X)). We use the notion cpo to denote a pointed poset in which each
monotone sequence (.1:n) has aleast upper bound (denoted by U .1:n). Then each dcpo is a
cpo. If D, D' are pointed posets then we say a function 1:D -t D' is continuous iff 1is
monotone and for each monotone sequence (.1:n) in D for which U :L'n exists then U l(xn)
exists and

1 (Ux,,) = U 1(.7:,,).

3



2.1 Pointed posets with a length

Definition 2.1 A length on a pointed poset (D, C) is a function p : D ~ /No U {<X)}
such that for all :r:, y E D:

(i) p(x) = 0 {:::=:} x = .LD

(ii) x ~ y ==:} p(x)::; p(y)

Fin(D, p) or shortly Fin(D) denotes the collection of all y E D such that p(y) < 00. For
all x E D we define:

.J,; (x) {y E D: y ~ .7:, p(y) ::; n}

.J,~n(x) = U .J,; (x) = Fin(D) n x.J,
n2;O

An element x E D is called approximable (w. r. t. p) iff x is the least upper bound of
.J,fin(x). X is ealled finitely approximable iff x is approximable and.J,; (x) is finite for
all n ~ O.

M(D, C,p) or shortly M(D) denotes the set of approximable elements, Mfin(D, ~,p) or
shortly Mfin(D) the set offinitely approximable elements.

In the fo11owing we often omit the index p and write .J,n (x) or .J,fin(x).

Theorem 2.2 Let (D,~) be a pointed poset and p a length on (D, ~). Then

d(p](x, y) = inf { ~ :.J,n (x) =.J,n (y) }
2n

is a pseudo ultmmetric on D and an ultmmetric on M (D). Mfin (D) is a closed subspace
of M(D).

Proof: It is clear that 0 ::; d[p](x, y) = d(p](y, x) ::; 1. The strong tri angle inequality
can easily be verified. Now we assume that x and y are approximable and we show that

d(p](x, y) = 0 {:::=:} x = y.

<== is cleal'. Now we assume that x, y are approximable and d[p](:r:, y) = O. Then
.J,n (.7:) =.J,n (y) far a11n ~ O. Hence .J,fin(x) = .J,fin(y). Since x and y are approximable:

Next we show that Mfin(D) is a closed subspace. If.7: = limxn where (.7:n) is a Cauchy
sequence in Mfin (D) then we have to show that .7:is finitely approximable, i.e. that.J, m (:1:)
is finite for a11m ~ O. Let m 2 O. There exists n ~ 0 such that d[p](J:, :r:n) ::; I/2m.
Then

is finite. 0
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Remark 2.3 Let (D,~) be a pointed poset. Then p : D -+ lNo U{oo},

p(X) = { ~ if x = l..D
otherwise

•'"

is a length on (D, C), called the discrete length. The induced metric space M(D) is
D with the discrete metric.

Lemma 2.4 Let p be a length on a pointed poset (D,~) and (xn) a monotone seq1.lence
in M(D) such that limxn exists. Then UXn exists and

lim Xn = U Xn.11.-+00
11.2:0

Proof: Let x = lim Xn. First we show that Xn C x for all n ~ O.

Claim 1: .j..fin(xn) ~ .j..fin(x) for all n ~ 0

Proof: Let n ~ 0 and y E .j..fin(xn). Then y E.j..m(xn) for some m ~ O. Since x = limxn
there exists k ~ n with d[p](Xk,X) ~ I/2m. Since Xn ~ Xk we have.j..m (xn) ~.j..m (:Ek)'
Hence

y E.j..m(xn) ~.j..m(Xk) =.j..m(.7:).

By Claim 1 we get that x is an upper bound of .j..fin(.7:n).Since .7:11.is approximable:

Claim 2: x = U .7:11.

Proof: Let y E D with .7:11.~ Y for all n ~ O. First we show that .j..fin(.7:)~ .j..fin(y).

LetzE .j..fin(:E).ThenzE.j..m (x')forsomem~O. Letk~Osuchthatd[p](.Tk,.7:) < I/2m.
Then (since .Tk ~ V):

z E.j..m (.7:) =.j..m (.7:k) ~.j..m (y) ~ .j..fin(y).

We conclude that y is an upper bound of .j..fin(.7:).Since.7: is approximable:

.7: = lub (.j..fin(.7:))~ y.

o

Theorem 2.5 Let p be a length on a cpo (D,~) such that (M (D), d[p]) is a complete
metric space. Then

U .7:11.= lim .7:11.11.-+00
n~O

for each Cauchy sequence (.7:11.)in M(D) which is monotone in D.

Proof: follows immediately by Lemma 2.4. 0

Definition 2.6 Let p be a length on a pointed poset (D,~). A tower in (D, C, p) 1,s a
sequence (:1:11.)in M (D) with :1:0 ~ .T[ ~ .7:2 ~ ... and

for aU n ::::O .
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(Xn) is a tower in (D,~, p) if and only if d[p](xn, Xm) ::; 1/2n for all m ~ n ~ O.
In particular, each tower is a Cauchy sequence. On the other hand, a sequence (:rn) in
M(D) is a Cauchy sequence if and only if there exists a subsequence (xnk) of (:rn) such
that (xnk) is a tower and

for all n ~ nk and k ~ O. We obtain:

Lemma 2.7 Let p be a length on a pointed poset (D, C) . Then (M (D) , d[p]) is a com-
plete metric space 'tf and only 'tf for each tower (xn) in (D, C, p) there exists x E M(D)
with .!-n (xn) =.!- n (:r) for aU n ~ O.

2.2 Pointed posets with a weight

In this seetion we consider a special kind of a length on a pointed poset, called a weight.
A weight on a pointed poset means a length which ensures the existence of 'n-cuts', i.e.
a greatest element in .!-n (x).

Definition 2.8 Let (D,~) be a pointed poset. A weight on (D,~) '/,s a length p on
(D, C) such that

x[n] = lub ( r (x) )

exists for aU .7: E D) n ~ 0 and
p( x[n]) ::; n.

The tripel (D,~, p) is caUed a weighted poset. x[n] is caUed the n-cut of x w. r. t. p.
We define:

p~ : D -+ D, P~Jx) = x[n].

If (D,~) is a cpo and p a we'tght on (D,~) then we put

pP = U p~ : D -+ D, i.e. p.P(x) = U x[n].
n~O n~O

Remark 2.9 In general, a length is not a weight: Let D
given by

..L ~ :rl ~ T, ..L ~ X2 ~ T.

Then p(..L) = 0, P(.7:l) = P(X2) = 1 and p(T) = 2 is a length on (D, C) but not a weight
since .!-~(T) = {..L,Xl, .7:2} does not have a greatest element. 0

If p is a length on a cpo then in general M (D) is not a cpo. In the case of a weight we
have:

Lemma 2.10 Let p be a weight on a cpo (D, C) and let (xn) be a monotone sequence in
M(D). Then U X'n E M(D).

In partic'lJ,lar: M(D) endowed with the restrtction of~ is a cpo and the inci'lJ,sionM(D) -+ D
is contim.lO'lJ,s.
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Proof: Let x = U Xn and x' = /l.P(x) = U x[k]. Then x' ~ x and x' E M(D). We
have to show that :E' = x.

Since :En ~ .7: we have :r:n[k] ~ .7:[k] for a11n, k :2: O. Therefore

U .7:n[k] ~ x[k]
n~O

for a11k :2: O. Since .7:n E M(D):

.7: = U .7:n = U U .7:n[k]
n~O n~O k~O

We conclude.7: = x' EM(D). 0

2.3 Continuous weights

u U .7:n[k] C U .7;[k]
k~O n~O k~O

,
.7: .

In general the metric space M (D) induced by a weight is not complete even if D is a
dcpo. In this section we present a condition which ensures that the induced metric space
M (D) of a weighted poset (D,~, p) is complete. We start with a characterisation of
those weighted posets whose induced metric space is complete: We show that if M(D) is
complete then the functions J-l~ are in some sense 'continuous'.

Lemma 2.11 Let p be weight on a cpo (D, ~). Then the following are eq7J,ivalent:

(i) (M(D),d[p]) is a complete metric space.

(i'i) J-l~ (U .7:m) = Um~O J-l~(.7:m) for each tower (.7:m) in (D,r;;;"p).

If p is a weight on a po in ted poset (D, r;;;,) then we have the implication (i) ===:} (ii).

Proof: Let (D, C) be a pointed poset and p a weight on (D, C). For simplicity lvI =
M (D), d = d[p], J-ln= J-l~, J-l = J-lp.

(i) ===:} (ii): If (.7:n) is a tower in (D, C, p) then (.7:n) is a monotone Cauchy sequence. Since
lVf is complete lim.7:n exists and and limxn = U .7:n (Lemma 2.4). Since d(xn, .7:m) :s;
1/2n for a11m ~ 0 we have: d(xn, x) :s; 1/2n, i.e.

for a11m ~ n ~ O. Therefore J-ln(x) = J-ln(xn) = J-ln(xm) for a11m ~ n. Hence

(ii) ===:} (i): Let (D, r;;;,) be a cpo, (xm) a tower and x = U :Em. Then by (ii):

.7:[n] = U xm[n] = .7:n[n].
rn~O

Therefore tn (x) = tri. (xn). By Lemma 2.7 we get the completenessof M(D). 0
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Definition 2.12 Let (D, C) be a pointed poset. A continuous weight on (D, C) ~s a
weight p on (D,~) such that the functions J-l~ are continuous.

Theorem 2.13 Letp be a continuous weight on a cpo (D,I;;;;). Then (M(D),d(pD and
(Mnn (D), d(pD are complete metric spaces with

lim Xn = U Xnn-tao
n~O

for each Cauchy sequence in M(D) resp. Mfin(D) which is monotone in D.

Proof: follows by Theorem 2.5 and Lemma 2.11. 0

Definition 2.14 Let p be a weight on a pointed poset (D,~). (D,~) is called p-complete
ijj for each tower (xn) in (D, C, p) the least upper bound U Xn exists.

By definition, eaeh tower is monotone. Henee eaeh weighted epo is p-eomplete.

Lemma 2.15 Let p be a continuous weight on a pointed poset (D, C). Then the following
are equivalent:

(i) (M(D), d(pD is a complete metric space.

(ii) (D, C) is p-complete.

If p is a weight then we have the implication (i) =} (ii).

Proof:

(i) =} (ii): Let p be a weight and (xn) a tower. Then (xn) is a Cauehy sequence.
Since M(D) is eomplete x = lim:rn exists. By Lemma 2.4: .r = Uxn. Hence (D,~) is
p-eomplete.

(ii) =} (i): By Lemma 2.7 we have to show that for eaeh tower (xn) there exists x E M (D)
with -t.m (x) = -t.m (xm) for all m 2:: o.
Let (.rn) be a tower and let x = U xn. Since p is a continuous weight we have: pfn is
continuous and therefore (since (xn) is a tower):

x[m) U xn(m) = xm[m).
n~O

Lemma 2.16 Let p be a continuous weight on a cpo (D,I;;;;) and Mfm
Let (xn) be a monotone sequence in Mfin•

(a) If (.J:n) is a towe'r and.r = U .rn exists in D then x E lv'hn'

(b) If (:1:n) }w,s an upper bound y 'in Mnn and x = U Xn then:r; E Mfin and there exists
a <mbsequence (.1:nkh~o of (.1:n) such that

8



/or aU n 2: nk, k 2: O.

In partieular': I/.I is the least upper bound 0/ (.In) in Mrm then:r: is the least upper
bound 0/ (xn) in D.

Proof: ad (a): Let :1: = UXn where (:r:n) is a tower in Mfm. Then x E M(D) by Lemma
2.10 and xn[k] = :.r:k[k] for an n 2: k 2: O. Since p is continuous:

x[k] = U xn[k] = xk[k].
n2:0

Since Xk E Mfm we get: xk[k] {. = .I[k] {. = {.k (x) is finite. Le. x E 1V!fin'

Now we show (b): We assume that Xn ~ Y where (xn) is a monotone sequence in Mfin
and y E Mfin, X = U Xn' Far an k 2: 0 we have:

C y[k] {.

Since y[k] {. is finite there exists Nk 2: 0 with

for an n 2: Nk. Hence :r:NJk] = xn[k] for an n 2: Nk. Let

Then xnk [k] = xn[k] for an n 2: nk. In particular (xnk) is a tower in Mfin and x
By (a) we get: x E Mrm and as we saw above:

far an n 2: nA" k 2: O. 0

Remark 2.17 Let p be a length on a pointed poset (D, ~). Then p can be considered as
a length on the pointed posets NI = M(D) and on 1V!fin = Mfin(D). All elements of M
are approximable. The finite approximable elements of 1V! are the finitely approximable
elements of D. In 1V!fm an elements are finitely approximbale.

If pis a weight on D then also on 1V! and Mfin' In this case the n-cut Of.I E 1V! or .I E lV1fin
in l'vf resp. Mfin is the n-cut of x in D.

If p is a continuous weight and D is a cpo then p is also a continuous weight on j\1 and
on 1V!fin' Here we use the fact that the least upper bounds in 1V! resp. Mfm (if they exist)
are the least upper bounds in D (Lemma 2.10 and Lemma 2.16). In this case M is p-
complete if and only if the induced metric space is complete if and only if D is p-complete
(by Lemma 2.15). Since Affin is a closed subspace of 1V! we get: If Dis p-complete then lV1
and then also Mfin are complete metric spaces. By Lemma 2.15 1V!fin is also p-complete.

Lemma 2.18 Let (D, C) be a epo and p a continuous weight on D such that

D[n] = {.I E D : p(x) ~ n }

is finite /or aU n 2: O. Then M(D) = Mfin(D) is a eompaci metne spaee.
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Proof: It is clear that M(D) = Mfin(D). Now we show the compactness of M(D): Let
(.1;m) be a sequence in M(D). We define by induction on n a subsequence (.'EmJ and an
infinite subset In of INo such that .'EmJn] = .'Em[n] for an m E I.n.

In the case n = 0 we may define mo = 0 and 10 = INo. Now we assume that n ;::::0 and
that .'Emnand In are defined. For an mEIn we have: .'Em[n+ 1] is an element of the finite
set D[n + 1]. Hence there exists an infinite subset In+1 of In and mn+l EIn, mn+l > mn
with:

.'Em[n+1] = .'Emn+1[n+1] VmEIn+1

Then (.'Emn[n])n2;Ois a monotone sequence in D. Since D is a cpo .7:
By Lemma 2.10: .'EE M (D). Since p is a continuous weight we get:

for an k ;::::n ;::::O. We conclude lim.'Emn = .'E.0

2.4 Pseudo rank ordered cpo's

U .'Emn [n] exists.

Rank ordered sets were introduced in [9]. They are special kinds of uitrametric spaces.
Here we extend the notion of rank orderings on cpo's. We show that the induced ultra-
metric space of a rank ordered cpo D is complete. In addition we show that the concept
of continuous weights can be considered as a special case of rank orderings.

Definition 2.19 Let lv[ be a nonempty set. A pseudo rank ordering on lvI is a family
7r = (7rn)n2;O of f7.tnctions 7rn: Al-+ jVf such that:

(i) 7ro is constant

(ii) 7rn 0 7rm = 7rm 07rn = 7rn for alt 0 ~ n ~ m.

ir is calted a rank ordering on IVf iff in addition

(iii) If.'E, Y E l'v1 and 7rn(.'E) = 7rn(Y) for alt n ;::::0 then .'E = y.

A (pseudo) rank ordered set is a pair (iVf, ir) consisting of a set AI and a (pseudo)
rank ordering ir on NI.

Lemma 2.20 If (lVf, ir) is a pse7.tdo rank ordered set then

is a pseudo ultrnmetric on l'v1. If ir is a rank ordering on M then d[ir] is an ultrametrie
on lvI.

Definition 2.21 Let (D,~) be a pointed poset. A (pseudo) rank ordering on (D,~)
is a pSe'udo rank orr1er"ing ir = (7rn)n2;O on D such that:

10



(i) 7fo = AX.l..D

(i'i) 7fn is continuO'/,ls

(i'ii) 7fn C idD

A (pseudo) rank ordered poset is a tripel (D,~, 7f) consisting 0/ a pointed poset (D, C)
and a (pseudo) rank ordering 7fon (D, ~). A (pseudo) rank ordered cpo is a (pseudo)
rank or'dered poset (D,~, 7f) where (D,~) is a cpo.

Lemma 2.22 Let (D,~, 7f) be a pseudo rank ordered poset. Then:

(a) (7fn)n~O is monotone.

(b) 1/ (D, C) is a cpo and 7f is a rank ordering on (D,~) then U 7fn idD.

(c) 1/ U 7fn = idD then 7f is a rank ordering on (D, ~).

Proof:

(a) Let x E D. Since 7fn = 7fn+1 07fn and 7fn(x)~ X we get by the monotony of 7fn+!:

(b) Let (D, C) be a cpo and 7f a rank ordering on (D, ~). We have to show that
:r: = U 7fn(:1:). Let y = U 7fn(x). Since 7fm is continuous we get for a11m ~ 0:

7fm(Y) = U 7fm (7fn (x)) = U 7fm (7fn (x))
n~O n~m

By condition (iii) of rank ordered sets: x = y.

U 7fm (x) = 7fm (x) .
n~m

(c) If x, Y E D, 7fn(x) = 7fn(Y) for a11n ~ 0 then x = U 7fn(x) = U 7fn(Y) = y. 0

Lemma 2.23 Let (D, C, 7f) be a rank ordered cpo. Then (D, 7f) is a complete rank ordered
set, i.e. (D, d(7fD 'is a complete metric space. 1/ (,7:n)n~O is monotone Cauchy seq'IJ,encein
D then

lim Xn = U Xn'
n-+oo n~O

Proof: Let d = d(7fJ. First we show the completeness of D as ametrie space: Let
(xm) be a Cauchy sequence in D. W.l.o.g. d(xm, Xm+!) ::; I/2m for a11m ~ O. Then
7fn(x'm) = 7fr.(xn) and

for a11m ~ n ~ O.Since D is a cpo and (7fm(:1:m))m~0 is monotone :1: = U 7fm(:r:.",) exists.
Since 7fn is continuous we get:

7f.,.(:L') = U 7fn( 7fm(,7:m) )

m~O

11

U 7fn( 7fm(:L'm) )

m~n

7fn(:I:n).



We conclllde: d(:r:, Xn) ~ 1/2n for a11n ~ 0, i.e. lim Xn = x.

Now we assume that (:1:m) is a monotone Callchy sequence in D, x = lim Xm and
y = U Xm. We have to show that :1: = y.

First we show that x C y. There exists a seqllence (rnk)k>O of natural numbers
rno < rnl < rn2 < ... with d(x, .'1:m) < 1/2k for a11 rn ~ rnk. H~nce

7fk(X) 7fk (:r:mk) C xmk

far a11k ~ O. Therefore

.'1: - U 7fk(X) C U Xmk U Xm - y.
k20 k20 m20

Now we show that y ~ x. Let (rnn)n20 be a sequence in !No as above. If n ~ rn
then rnn ~ n ~ rn and hence .'1:m ~ Xm". Then 7fn(Xm) C 7fn(XmJ = 7fn(.'1:) for a11
n ~ rn. Therefore for a11rn ~ 0:

Xm = U 7fn(xm) C U 7fn(x) X.
n2m n2m

Le. x is an upper bound of (.'1:m)m20' Hence y ~ x. 0

Definition 2.24 Let if be a psendo rank ordering on a pointed poset (D, C). An elernent
.'1: E D is ealled approximable (w. r. t. if) iff

M(D, C, if) denotes the set of approxirnable elernents in D.

The fo11owingtheorem shows that adding a continuous weight on a pointed poset is a
special case of adding a pseudo rank ordering.

Theorem 2.25 Let p be a continuous weight on a pointed poset (D, C). Then

'tS a psendo rank ordering on (D, ~). In addition we have:

M(D) = M(D,~,P,)

and

for all :r:, y E M(D).

d[p](x, y) d[P,](x, y)

Proof: easy verification. Uses the fact that if x, y are approximable and :r;[n] = y[n] for
a11n 2: 0 then

o

.1: = U :r:[n]
n20

12
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Remark 2.26 Let ir be a pselldo rank ordering on a pointed poset (D, C) with ir (I-l~)
for some weight p on D then

P(.L) = inf {n : 7rn(:r) = .L }

for a11 :1: E D (where inf 0 = OCJ). On the other hand, if ir is a pselldo rank ordering on
D then in general the fllnction

p(ir] : D -+ !No U {OCJ}, p(ir](x) = inf {n : 7rn(x) = X }

is not a length on D since we cannot gl1arantee the monotonicity of p(irj. If we reqllire
the monotonicity of p(ir] then p[ir] is a continllolls weight on D with ir = (f-l~[ir])n?:O.

Next we show that for pselldo rank ordered cpo's we get a similar reslllt as in Theorem
2.13:

Lemma 2.27 Let ir be a pseudo rank ordering on a pointed poset (D, C). Then:

(a) 1/ (xn) is a monotone sequence in M(D,~, ir) and x = UXn exists in D then
.L E M (D, C, ir) and x is the least upper bound 0/ (xn) in M (D, C, ir). 1/ in addition
(xn) is a Ca'lJ,chysequence in M(D,~, ir) then limxn exists and x = limxn.

(b) 1/ (D,~) is a cpo then also M (D,~, ir) is a cpo and the inclusion M (D, C, ir) -+ D
is continuous.

(c) 1/(.Ln) is a monotone Ca'lJ,chysequence inM(D,~,ir) such thatlimxn e:r:ists then
U Xn exists and U Xn = limxn.

(d) ir is a rank ordering on M(D,~,ir).

Here we assume that the partial order on M (D,~, ir) is the restriction o/C on M (D,~, ir)
and the /unctions 7rn are considered as /unctions M(D,~, ir) -+ M(D, C, ir).

Proof: Let IV! = M (D, C, ir) and d = d[ir].

(a) Let.L = U :rn, .'En E IV!. We have to show that x E j\1.

Since 7rm C idD we have: 7rm(.'E) C .'E. I.e . .'E is an llpper bOllnd of (7rm(x))m?:O'
Since 7rm is continllolls

7rm(x) = U 7rm(.'En).
n?:O

If y E D, 7rm(x) C Y for a11m 2:: 0 then 7rm(xn) ~ y for a11m 2:: 0 and n 2:: O.
Hence for a11n 2:: 0:

.Ln = U 7rm(xn) ~ y.
m?:O

Therefore x = U.Ln C y. vVeconclllde: .L = U 7rm(.7:) E J\1.

(b) fo11owsby (a).
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(c) Let (xn) be a monotone Cauchy sequence in 1\1 and x

for a11n 2 m 2 O. Then d(.'Em,.'E) :::; I/2m and therefore

limxn. W.l.o.g.

for a11n 2 m 2 O. If 0 :::;n > m then (since Xn C xm):

Hence 7rm(xn) C x for a11m 2 0 and n 2 O. Since Xn is approximable we get:

Xn = U 7rm(xn) C X
m~O

for a11n 2 O. I.e .. 'E is an upper bound of the sequence (xn).
If y E D, Xn ~ Y for a11n 2 0 then for a11m 2 0:

Since x is approximable: :1: = U 7rm(x) ~ y. I.e. x U .'En.

(d) It is dear that if is a pseudo rank ordering on A1. By Lemma 2.22 (c): if is a rank
ordering on 1\1. 0

Theorem 2.28 If if be a pseudo rank ordering on a cpo (D,~) then M(D, C, if) en-
dowed with the distance d[if] is a complete metrie space and

lim Xn = U Xnn-+oo
n~O

for each Cauchy sequence in M(D,~,if) wh'ich is monotone in D.

Proof: fo11owsimmediately by Lemma 2.27 and 2.23. 0

Lemma 2.29 Let if = (7rn)n~O be a pseudo rank ordering on a cpo (D, G) such that for
alt n 2 0 the set 7rn(D) is finite. Then M(D, G, if) is a compact metric space.

Proof: similar to Lemma 2.18. 0

3 Metric and partial order semantics

Semantic operators on a given domain model the syntactic operators of a given language.
In the case of the domain being a cpo continuity of the operators guarantees the existence
of the semantic model. In this chapter we investigate the conditions which a semantic
operator has to satisfy in the case of a weighted poset resp. a pseudo rank ordered
cpo. Here we would like to characterize the properties that ensure that the semantic
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operator ean be viewed as one in the poset framework as weH as one in the induced
metrie framework. Moreover the two semantic models obtained by the two views should
coincide. We show that continuous and contraeting operators do achieve the desired
behaviour.

In the foHowing Ifp(f) resp. fix(f) denotes the least resp. unique fixed point (if it exists)
of a funetion f : D --t D resp. f: M --t M where D is a pointed poset and M a metric
space.

Let ~ be a nonempty set of operator symbols. Iwl denotes the arity of w E ~. / df is a
nonempty set of variables. Then the language I:- = I:-(~, / df) is given by the produetion
system

s ::= w(sl, ... ,sn)I~lfix(~=s)

where w E ~, Iwl = n, ~ E / df. A semantics for I:- in some semantie domain A can be
defined as a function <P: I:- --t (Env[A] --t A) where Env[A] is the set of environments,
i.e. the set of functions cr : / df --t A. If cr : / df --t A is an environment and ~ E / df,
:I: E Athen the environment cr[x /~] : / df --t A is defined by

cr[x/~]( ) = {cr(TJ) : ~fTJ# ~
TJ x: If TJ= ~.

If (D, C:) is a cpo together with a continuous operator WD : Dn --t D for each w E ~,
Iwl = n, then a denotational semantics for I:- on D can be defined by structural induction
and Tarski's fixed point theorem. The meaning funetion <pD : I:- --t (Env[D] --t D) is
given by [3]:

• <pO(~)(cr) = cr(~)

• <pD(w(s[, ... ,sn) )(cr) = Wo (<pD(st}(cr), ... ,<pD(Sn)(cr))

• <pD
( fix(~ = s) )(cr) = lfp(f,f[s,~])

where f,f[s,~] : D --t D is given by

More generaHy: Let £' be a sublanguage of £ which is elosed under the operator symbols
w E ~ (i.e. W(SI, ... , sn) E £' if Si E £', i = 1, ... , n). For each sE £' let /(s) be the set
of identifiers ~ E /df with fix(~ = s) E £'. Then:

If (D, C:::) is aposet (which might be not complete) and WD : Dn --t D, w E ~, Iwl = n,
are semantic operators on D such that for a11s E £' and ~ E /(s) the functions f,f[s,~]
(defined as above) have aleast fixed point in D then we also get a partial order semantics

<I>0: £' --t (Env[D] --t D)

which is defined as above.

The metric approach works analogously [3]: here we consider non-distance-increasing
operators instead of continuous operators, restrict recursion to guarded reeursion which
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ensures the existence of fixed points and may substitute least fixed points by uniqlle fixed
points which is guaranteed by Banach's fixed point theorem.

For each w E ~ let deg(w) the degree of gl1ardedness of w, i.e. deg(w) is a natural number
between 0 and jwl. Ir deg(w) = k, Iwl= n, then we say that wensures guardedness in its
last k arguments. vVedefine guardedness of a variable ~ in a term 8 E £ by structural
induction:

1. ~ is guarded in each constant symbol w E ~ (i.e. in each operator symbol of the
arity 0).

2. Ir w E ~, Iwl= n ~ 1, deg(w) = k, then ~ is guarded in W(81, ... ,8n) iff whenever ~
occurs in a subterm 8i then either n - k + 1 ::; i ::;n or ~ is guarded in 8i.

3. ~ is guarded in a term fix( T]= 8) iff either ~ is guarded in 8 ar ~ = TI.

£9 denotes the set of guarded terms, i.e. £9 is the set of terms 8 E £ such that for each
subterm fix(~ = t) of 8 the variable ~ is guarded in t.

Example 3.1 The prefixing operator of ces [21] has the degree 1 of guardedness. All
other ces operators have degree of guardedness O. This leads to the usual definition of
guardedness of a variable ~ in a ces term 8: ~ is guarded in 8 if and only if each free
occurrence of ~ in 8 is in the scope of aprefixing operator.

The sequential operator; of eS? [13] has the degree of guardedness 1. Then a variable ~
is guarded in a term 8; t if and only if either 8 is closed (i.e. each occurence of a variable
T] is within a subterm fix(T] = t)) ar ~ is guarded in 8.

Let (lvI, d) be a complete metric space together with non-distance-increasing operators
WM : i\;1n --+ i\;1 which are contracting in those arguments in which wensures guardedness.
More precisely, for each w E ~, Iwl = n, deg(w) = k, there exists a constant e with
o ::; e < 1 such that

d(WM(X,.i:'),WM(Y,f/)) ::; max {d(x,y), e. d(x',y') }

far all :1:, y E Alk-I, x', y' E MI. A denotation al semantics for £9 on j\;1 can be defined by
structural induction and Banach's fixed point theorem:

llJM : £9 --+ (Env[A1] --+ 1\;1)

is given by:

• llJM(~)(O") = O"(~)

• llJM ( W(Sl,"', Sn) )(0-) = WM (llJM (81)(0-), ... , llJM (8n)(0-))

• llJ M ( fix( ~ = S) )( 0-) = fix(j ~ [S, ~])
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where f;'[s, e] : M -+ M is given by

It is easy to see that for all s E £P, e E I £1f and (J E Env[ M] the function f;' [s, e] is
non-distanee-increasing. If e is guarded in s then f;'[s, e] is contracting.
Now we assume that (D,~) is a epo, <I>D : £, -+ (Env[D] -+ D) a denotational semantics
and £1a metric on a subset M of D (induced by a length or a pseudo rank ordering) such
that j\1 is closed W.r.t. the semantie operators WD, W E ~, and the restriction of WD on
M, i.e. the function

is non-distance-increasing and contracting in its last k arguments where k = deg(w). If
M is eomplete then the metrie denotational semantics 'lJM : £,9 -+ (Env[M] -+ j\1) ean
be defined as described above. If M is incomplete we get a metric semanties 'lJM on the
metric completion of j\1 where we use the canonical extensions of the semantic operators
WM. The question arises in which way the cpo semanties <I>D and the metric semanties
'lJ = 'lJM resp. 'lJ = 'lJM are related. Gur aim is to find conditions whieh ensure that

<I>D(S)((J) = 'lJ(s)((J)

for all guarded statements sand environments (J : I £1f -+ 1.\1. vVe observe that this
consistency result is equivalent to the following: For eaeh term fix(e = s) in £,9 the
function f~\1[s, e] has a unique fixed point in M and

Lemma 3.2 Let (D,~) be a epo, (M, £1) a eomplete metric spaee an£1 'P : 1\1 -+ D a
funet'ion s'l./,eh that ..1D E 'P(M) an£1 'P(lim.7:n) = U 'P(.Ln) fOT eaeh Cauehy sequenee
(:En) in j\1 with 'P(xo) C 'P(:L'd ~ .... Then:

If f : D -+ D is a eontinuous funetion, F : 1\1 -+ M a eontracting function with
'P 0 F = f 0 'P then

lfp(J) = 'P(fix(F)).

Proof: Let :1;0 E 'P-1 (..1), :r:n+1 = F(xn.) and Yo
induction on n):

Henee

..1D, Yn+l f(Yn)' Then (by

o

'P(fix(F)) 'P (lim .7:n) lfp(J).

Theorem 3.3 Let (D,~) be a epo, (M, £1) a eomplete metrie spaee and 'P : j\1 -+ D
a fnnction such that ..1D E 'P(M) and 'P(limxn) = U 'P(:r:n) for each Cauchy sequenee
(:1;".) in 1'vl w'ith 'P(:1;0) G;; 'P(:r;d ~ .... Let£' = £(~, I£1f) be a language as abo'Ue and
fOT each W E ~, Iwi = n, deg(w) = k, let WD : Dn -+ D be a continuous operator on D
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and W M : Mn -t M a non-distance-increasing operator on M which is contracting 'in its
last k arguments such that

for all :El"" ,:1:n E AI. Then

for all s E £9 and (]": I df -t M.

Proof: fo11owsby structural induction on s E £9 and Lemma 3.2. 0

As a special case of Theorem 3.3 we get with M ~ D and the inclusion 'P : j\l[ -t D the
fo11owing consistency result for denotational semantics:

Theorem 3.4 Let D be a cpo and M a complete metric space such that l..D E 1\11 ~ D
and

lim Xn = U Xnn-+oo n2:0
for each Cauchy sequence (:1:n) 'inM which is monotone in D.

Let £ = £('L.,Idf) be a language as above and let WD, W E 'L., be contin'uous semantic
operators on D such that for all W E 'L.: WD (J\I[n) ~ j\l[ and

is non-distance-increasing and contracting in its last k arguments where k = deg(w) and
TI. = Iwl. Then

for all s E £9 and (]": I df -t iW.

Now we omit the assumption that lvI is complete and we consider the metric semantics
\!iM on the metric completion of 1.\1.

Theorem 3.5 Let (D,~) be a cpo and (1.\1, d) a metric space such that 1..D E M ~ D.
Let £ = £('L.,Idf) be a language as above and let WD, w E 'L., be contim.lOus semantic
operators on D such that for all w E 'L. and (]": I df -+ JV!:

is non-distance-'increasing and contracting in its last k arguments where k = deg( w)
and n = Iwl.

(ii) FOT' each tenn fix(~ = s) in £9 the function f~\lf[s,~] : lvI -+ J.'v1 has a unique fi::ced
po'int in JV! and

lfp(f~[s,~]) = fix(f~\If[s, ~]).
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Then the cpo semantics <I>D on D and the metric semantics \lJM on the metric completion
of M (which is defined by 'lJ,sing the canonical extensions of the semantic operators WM)
coincide:

for' alt sE £9 and a : Idf -+ M.

Proof: by structural induction on s E £9. Uses the fact that f:[s,e] is the restrietion
of f:[s, e] on M and that

o

lfp(J cf [s , e]) fix(J:[s, e]) fix(J,;.W[s, e]).

3.1 Metric and partial order semantics on weighted posets

In Theorem 3.6 we present conditions which ensure that for weighted posets the partial
order on D and the metric semantics on M (D) coincide. Remark 3.12 shows that this
result carries over to metric semantics on Mfin (D).

Theorem 3.6 Let £ = £(~, I df) be a language as before, p a weight on a pointed poset
(D,~) and M = M(D). For each W E ~, Iwi = n, deg(w) = k, let WD : Dn -+ D be an
operator such that wD (Mn) ~ j\1 and

is non-distance-'increasing and contracting in its last k arguments, Then:

(a) If D and j\1 aTe complete and WD is contim.lous for alt w E ~ then the cpo semantics
on D and the metTic semantics on J\1 aTe the same. More pTecisely:

<I>D(s)(a) = 'lJ,\o[ (s)(a)

for alt s E £9 and a : Idf -+ M.

(b) If D is a cpo and WD is continuous for alt w E ~ then the cpo semantics <I>Don D
and the metric semantics on the completion j\1 of Mare the same. More precisely:

for alt sE £9 and a : Idf -+ M.

(c) If J\1 is complete and the operators wD are monotone then the partial order semantics
<I>D can be defined for the s1.lblanguage £9. The metric semantics 'lJ M and the partial
order sernantics <I>D are the same. More precisely:

fOT alt s E £9 and a : Idf -+ lvf.
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Theorem 3.6 follows by Theorem 3.4, Theorem 3.5, Lemma 2.4 and the results which are
presented in Lemma 3.10 and Lemma 3.11.

Definition 3.7 Let PD resp. Pe be weights on pointed posets (D, ~D) resp. (C, ~e)
and let MD = M(D), Me = M(C). Let k ~ 1 and k > l > O. A /unction
/ : Dk -+ C is called cut-preserving of the degree l ijj

IUvf';;) ~ Me

/or all n ~ 1 and .7:1"", Xk E j\10' I/ l = k then / is ealled strong cut-preserving.
We say / is cut-preserving 'tjj I is eut-preserving 0/ degree O.

Notation 3.8 Let P be a weight on a pointed poset D and k ~ 1, Z = (Zl, ... , zn) E Dk
and X = (.7:1, ... , Xk), fJ = (Yl, ... , Yk) E Mk where lvf = M(D). Then we pv,t:

z[n] = (zt(n], ... , Zk[n])

d[p](i, fJ) = max { d[P](Xi, Yi) : 1:::; i :::;k }

Lemma 3.9 Let Po resp. Pe be weights on pointed posets (D, ~D) resp. (C, Ce). Let
k ~ 1, k ~ l ~ 0 and / : Dk -+ C a funetion with /(1\1'0) ~ Me where MD = M(D),
Me = M(C). Then:

I is strong c'ut-preserving of the degree l if and only if IIM'D -+ Me is non-distanee-
increasing and contraeting in the last l arguments. In particular:

(a) I is wt-preserving if and only if f IM'D -+ Me is non-distance-increasing.

(b) I is strang cut-preserving if and only if ll.i\1'D -+ j\1e is contraeting with contracting
constant 1/2.

Proof: Let dD = d[PD], de = d[pc). If f is cut-preserving of the degree l then we have to
show that for each natural number n ~ 1:

de (I(:1;,i'), f(fJ,il')) :::; 21n {::=:} dD(i,fJ):::; 21n 1\ dD(.i',fJ'):::; 2n1_1

Since I is cut-preserving of degree l we have

I(z, z')[n] = I(z[n], z'[n - l])[n]

where z E M'D-1, Z' E lvfb. We get:

If do(::r;, Yi) :::;1/2n, i= 1, ... , k -l, and do(.7:;, Yi) :::;1/2n-L, i = k -l + 1, ... , k, then

.i[n] = fJ[n]' .i'[n - 1] = fJ'[n - 1].

Hence

I(.i,:i')[n] I (.i[nJ, i'[n - 1]) [n]
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and therefore dc (I(x, x'), f(fj, i/)) ~ 1/2n.

If f is non-distance-increasing and contracting in the last l arguments then for all x E
D,k-I, x' E Mb:

d D (x, ::c(n]) ~ 21n' d D (x' , ,r' (n - 1]) ~ 21n

Here we use the fact that contracting W.r.t. dD and dc implies contracting with contracting
constant 1/2. Then:

dc (I(x,x'), f(x(n],i"(n -1])) ~ ;n
and therefore f(::C, ,;')(nj = f(x(n]' x'(n - l])[nj. We get that fis cut-preserving of degree
l. 0

In the following two lemmas we present conditions which ensure the existence of a unique
resp. least fixed point of a contracting resp. monotone operator M(D) -+ M(D) resp.
D -+ D in absence of the assumption that D resp. M(D) is complete.

Lemma 3.10 Let p be a weight on a cpo D, M = M(D) and f : D -+ D a continuo'Us
and strong cut-preser'lJing function. Then:

(a) lfp(J) E M

(b) 1f Xo E lilI, .rn+l = f(xn) then the sequence (xn)n20 is a Cauchy sequence in the
complete metric space liII and

x = lim Xnn-roo

is the 'I.tnique fixed point of the contracting function flliII -+ M. (Note that we do
not require the completeness of M.)

Proof: Let :1; = lfp(J). Then (by Tarski's fixed point theorem):

x = U .rn
n2::0

where .ro = J..D and Xn+l = f(xn). Since f(l'vf) ~ liII and J..D E M we get by induction
on n that :£n E li1I. By Lemma 2.10: x E lilI. I.e. x is a fixed point of fl1\1 -+ 1\1. By
Lemma 3.9: fl}\1 -+ 1\1 is contracting. It can be shown by induction on n that

Hence .r limxn. If x' E 1\1 is also a fixed point of f then

d(p](x, .r') = d(pj(J(x), f(x')) :s; ~. d(p](x, x').

Hence d(p](:L", :£') = 0, i.e. :£ = x'. 0

Lemma 3.11 Let p be a weight on a pO'inted poset (D,~) such that 1\1 = M (D) 'is a
complete metr'ic space. Let f : D -+ D be a monotone and strang cut-pr-eseT'lJ'ing function.
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(a) Then lfp(J) exists and
lfp(J)

wheTe Xo = 1.D and :r:n+l = f(xn).

(b) lfp(J) is the 7mique fixed po'tnt of f 'tn M(D).

Proof: Since 1'v1 is complete and flM -+ M contracting (Lemma 3.9) f has a unique
fixed point x in M and

x = lim Xn
n-+oo

where Xo E M and :r:n+1
we get:

f(xn). Now we assume that Xo = 1.0' Since f is monotone

1. = Xo ~ .'1:1 ~ X2 ~ ...

By Lemma 2.4 we get: x = Uxn. If y E D is also a fixed point of f then we can show
by induction on n that Xn C y: The basis of induction n = 0 is clear since Xo = ..L. In
the induction step n ===} n + 1 we use the monotony of f:

Hence x = U Xn ~ y. vVeconclude: x = lfp(J). 0

Remark 3.12 Let.c, p, D and 1\1be as in Theorem 3.6 and let Mfin = Mfin(D). Then:
If M is a complete metric space then also iV/fin (as a closed subspace of M) is a complete
metric space. If in addition the semantic operators Wo preserve finitely approximability
(i.e. Wo (A1finn) ~ .l\1fin) then we get ametrie semantics

using the semantic operators wDIA1fin n -+ J.V1fin. In this case we have:

for all s E £ß and (J: Idf -+ Mfin' Here <po is as in Theorem 3.6(a) or (c).

3.2 A consistency result for partial order semantics on weighted
posets

In Theorem 3.14 we present a condition which guarantees the consistency of two partial
order semantics on weighted posets. The following lemma relates the least fixed points of
monotone and strong cut-preserving functions on weighted posets (which exist by Lemma
3.11).

Lemma 3.13 Let p 'f'esp. p' be weights on pointed posets D Tesp. D', 1\1 = M(D),
M' = M (D'), and let <p: D -+ D' a continuous fl./,nction with

<p(x[n]) = <p(:r:)[n]

fOT all :1: E D, n 2: O. Then:
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(a) 'P(M) ~ M'

(b) 1f M and M' are complete metric spaces and f : D -+ D, f' : D' -+ D' are monotone
and strang cut-preserving with 'P 0 f = f' 0 'P then

lfp(f') = 'P( lfp(f) ).

(c) 1f D and D' aTe cpo's and f : D -+ D, f' : D' -+ D' are contim.107Ls with
'P 0 f = f' 0 'P then

lfp(f') = 'P( lfp(f) ).

Proof: If:E E lvI then x = U x[n]. Since'P is continuous we get

'P(x) = U 'P(x[n]) = U 'P(x)[n] E 1\;['.
n20 n20

Now we assume that M and M' are complete and f, f' monotone and strang cut-
preserving resp. that D and D' are cpo's and f, f' continuous with 'P 0 f = f' 0 'P.
Then lfp(f) and lfp(f') exist by Lemma 3.11 resp. Tarski's fixed point theorem and

lfp(f) = U Xn,
n20

lfp(f') = U X~
n20

where .TO= ..LD, .TO = ..LD' and Xn+l = f(xn), X~+l = f'(X~). Since 'P 0 f
be shown by induction on 71, that .T~ = 'P(xn). Hence

f' 0 'P it can

o

lfp(f') = U x~
n20

= 'P (U Xn)
n20

'P(lfp(f) ) .

Theorem 3.14 Let p resp. p' be weights on pointed posets (D,~) resp. (D', C'), such
that lvI = M (D) and M' = M (D') are complete metric spaces. Let 'P: D -+ D' a
surjective and continuo7Ls function with

fOT all.T E D, 71, ~ O. Then:

'P(x[n]) 'P(x)[n]

(a) 1f w : Dn -+ D is a monotone operator on D such that for all Xl,." Xn, YI, ... Yn E
D:

'P(:I;i) = 'P(Y;), i = 1, ... ,71, => 'P( W(XI,"',Xn)) = 'P( W(YI,"',Yn))

then cp[w]: D'n-+D', 'P[w]('P(xd, ... ,'P(.Tn)) = 'P(W(.TI, ... ,Xn)),is
welldefined and a monotone operator on D'. 1f W is ctd-preserving of degree l then
also 'P[w] is c7Lt-preserving of degree l.
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(b) Let.c = .c(~, Idf) be a language as before and for each operator' symbol W of
.c, Iwi = n, deg(w) = l, let WD : Dn -t D be a monotone operator on D which is
c1J,t-prese'f"uing of degree land which satisfies the condition of (a). Then the partial
order' semantics <I>D and <I>D' can be defined for the language.c9 (w.r'. t. the semantic
operator WD on D and the operators <P[WD]on D') and <I>D resp. <I>D' ar'e consistent
11J.r'.t. <poI.e.

<p( <I>D(s)(a)) = <I>D' (s)(<p 0 a)

for alt sE .c9, a : Idf -t D.

(c) Let (D, C) and (D', C') be cpo's and let.c be a language as abo7Je. For each operator
symbol W of.c, Iwi = n, let WD : Dn -t D be a continuous operator on D which
satisfies the condition of (a) and such that the operator' <p[WD]is continuo1J,s on D'.
Then the cpo semantics <I>D and <I>D' (w.r.t. the semantic operator WD on D and
<P[WD]on D') are consistent 11J.r.t <p, i.e.

<I>D' (s) (<p 0 (J)

for alt s E .c, a : I df -t D.

Proof: (a) is an easy verification. (b) and (c) follow by (a) and Lemma 3.13(b) where
we use the following facts:

• The functions f,f[s,~]: D -t D resp. f;;'[s,~]: D' -t D' are monotone and cut-
preserving resp. continuous for all s E £9, a : I df -t D, a' : I df -t D' and all
identifiers ~. If ~ is guarded in s then f,f [s,~] and f;;' [s,~] is strong cut-preserving .

• <p 0 f,f[s,~] = f~:a[s,~] 0 <p for all s E .c9 resp. s E .c and a : I df -t D.

Then we use Lemma 3.13(b) resp. (c). 0

Remark3.15 LetpbeacontinuousweightonacpoD,M = M(D),.lVffin = Mfin(D).
Let .c = £(~, I df) be a language as before. For each operator symbol W E ~, Iwi = n,
deg(w) = k, let WD : Dn -t D be a continuous operator which is cut-preserving of degree
k. By Remark 2.17 p is a continuous weight on the cpo M and on the pointed poset J\1fin'
Since D is a cpo D and then also j\1finare p-complete (Remark 2.17).

1. Let <I>D denote the cpo semantics on D for the language £ (using the semantic
operators WD ).

2. Let <I>M resp. \lJM denote the cpo semantics resp. metric semantics on M for £
resp . .c9. In both cases we use the semantic operators wDIA1n -t 111where W E ~,
Iwi =n.

Applying Theorem 3.6(b) to the cpo's D and 1\11 we get
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yields

for all s E .c9 and (T : Idf --t M. Applying Theorem 3.14(e) to the epo's D and M and
the function

<p = pP D --t M

J-lP (<I>D(s)(a)) = <I>M(s)(J-lp 0 a)

for all s E .c and a : I df --t D. Here we use the fact that J-lP[WD J is the restrietion of
WD on approximable elements. We eonclude that the epo semanties on D and Mare the
same, i.e. if a : I df --t M then

for all s E .c. Here we use the fact that J-lP 0 a = a and Lemma 2.10:

lfp(J) = U fn(.l)
n20

U J'n (J..) = lfp(J')
n20

where f = f,f[s,eJ and J' = f~[s,eJ.
If eaeh ofthe operators WD preserves finitely approximability (i.e. WD(lWfm n) ~ Mfm where
Iwi = 71,) then

WDIMfm n --t Mfm

is monotone and eut-preserving of degree deg(w) and non-distanee-inereasing and eon-
traeting in its last deg(w) arguments. Henee the partial order semanties <I>~and the
metrie semanties \lJ~ on Mfm ean be defined for the sublanguage .c9. By Theorem 3.6(e):

for all s E .c9 and a : I df --t Affm. By Remark 3.12:

for all s E .c9 and a : I df --t Affin'

3.3 Metrie and partial order semanties on pseudo rank ordered
epo's

Similary to the result of Theorem 3.6(a) we get for pseudo rank ordered epo's the eonsis-
tency of the epo semanties and the metric semanties:

Lemma 3.16 Let (M, n-) a71,d(N, ji) be pseudo rank ordered sets and f : Mk --t N a
function wher'e k ~ 1. Then: f is non-distance-increasing and contracti71,g in 'its last l
arguments (w.r.t. d[n-J resp. d[ji]) if and only 'if

fOT alt n ~ O.

Here 7I',~ : D[ --t D[ is given by 7I'~(:El, ... ,:E[)
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Proof: similar to Lemma 3.9. 0

Theorem 3.17 Let £, = £,(L;, I df) be a language as before and (D,~, if) a pseudo rank
ordered cpo and M = M (D, ~, if). For each operator symbol w E L; let wD : Dn -+ D be
a continU07.lS semantic operator on D with

= 7rrn 0 WD

for all m 2 1 where Iwl = n, k = deg(w). Then the denotational cpo semantics on
(D, C) and the denotational metric semantics on 0\1, d[if]) are the same:

for all sE £,!1 and (j : Idf -+ M.

Proof: follows by Theorem 3.4, Lemma 3.16 and Theorem 2.28. 0

4 Examples: Strings, traces, trees, event structures
and pomsets

In this section we show how the semantic domains of strings (i.e. sequences of actions) and
Mazurkiewicz traces [20] (i.e. equivalence classes of strings W.r.t. the equivalence relation
induced by an independency) together with the prefixing order, the semantic domains of
labelled trees, prime event structures and pomsets together with Winskels partial orders
[30, 31] fit in our framework. In the following Act is a nonempty set of actions.

4.1 Strings

Let ActOO denote the set of (finite or infinite) sequences over Act. ~ denotes the prefixing
order on ActOO, i.e. w ~ w' iff w is aprefix of w'. Then (ActOO,~) is a cpo with bottom
element f/J (the empty sequence). The function

I . I : ActOO -+ !No U {(X)}

(where I.rl denotes the usuallength of the string x) is a continuous weight on (ActOO, C).
The n-cu t ,r [n] of ,r E ActOO is giyen by

[ ] {
,r

xn =
(XI(X2 ... (Xn

if lxi ~ n
if (Xl ..• (Xn is aprefix of x (where (Xi E Act)

V' (:1;) is the set of prefixes of ,r of the length ~ n. It is easy to see that ,r = U .r[n] for
a11,1; E ActOO. -!-'" (:I:) is a finite set and a11sequences x E ActOO are finitely approximable.
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The indueed ultrametrie d on Adoo is the usual metrie on sequenees:

d(x, y) = inf {21n : x[n] = y[n]}

By Theorem 2.13 we get the wellknown result that (AdOO
, d) is a eomplete ultrametrie

spaee.

4.2 Mazurkiewicz traces

Let (Act, I,) be a concurrent alphabet, i.e. t is an irreflexive and symmetrie relation on
Act (ealled independency). A trace is an equivalenee class [xl of a finite string :L' over
Act where the underlying equivalenee relation == is the reflexive, transitive closure of ='
whieh is given by:

.T -, Y : {::::::} 3a, ß E Ad, z, w E Ad* : a t ,8 /\ x = zaßw /\ y = zßaw

If a = [x] is a traee then lai = lxi where lxi means the usual length of x. In the
following D denotes the set of traces W.r.t. a fixed coneurrent alphabet (Ad, I,) and ~
means the lifting of the prefixing ordering on Ad* to D. Le.

[,2'] C [y] : {::::::}

If nEIN then

::J" A t* , - /\ ' - "::JX , Y , z E c : x = x y = Y /\ Y = ,2' Z

(J(n) { a' E D a' i;;;;; a /\ la'l:::; n }.
[16] eonsiders the metric

d(a, T) = inf {2: : a(n) = T(n) }

This is the metrie d[p] where the length p is given by p( a) = lai. If I, =1= 0 then p is not
a weight, e.g. if a, ,8 E Ad, a t ,8 then

tl([aß]) = {-i,[a]'[ß]}

does not eontain a greatest element sinee [al, Lß] are ineomparable. Since we only deal
with finite traees D is not p-eomplete. In [17] it is shown how the coneept of infinite
traces as proposed in [16] fits in our framework.

4.3 Trees

Let Tree denote the set of eountably branehing trees with labelled edges. Formally, a tree
is a 4-tupel (N, K, k, vo) where N is a set of nodes, K ~ N x N is a set of edges such that
(N, K) is a tree in the graph-theoretical sense, k: K -+ Act is a labelling function and
Vo E N is the root. height(T) denotes the usual height of T, i.e. the length of a longest
path in T.

To ensure that Tree is a set we assume that N ~ Nodes where Nodes is a fixed uneountable
set of nodes whieh eontains a fixed element vo. In addition we require that always Vo is
the root of a tree.
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The partial order C on Tree is defined as in [31]:

Here Tl = T2 rNI means that NI ~ N2, K[ = K2 n NI x NI and kl = k2lKl.
(Tree,C) is a epo where the bottom element is the tree Tl.. = ({vo},0,0,vo). If (Ti)
is a monotone sequenee in Tree (where T;. = (Ni, Ki, ki, Uo)) then the supremum of (Ti)
in Tree is

(UNi,UKi,Uki,vo) .

height is a eontinuous weight on the cpo (Tree, ~). The n-cut T[n] of a tree is the tree
which arises from T by removing a11no des of the depth ~ n + 1. I.e. T[n] = Tr N[n]
where N[n] is the set of nodes u E N such that the depth of v in T is at most n. Here
the depth of anode v in T is defined as the length of the path from the root to v. If T is
a tree then UT[n] = T. I.e. a11trees are approximable:

M(Tree) = Tree

The induced metric d on Tree coincides with the usual metric on trees:

A tree T is finitely approximable if and only if for each n ~ 0 the set

-!-n (T) = {S E Tree : S ~ T[n]}

is finite. This is the case if and only if N[n] is finite for a11n ~ 0 if and only if T is finitely
branching. In the fo11owing Treefin denotes the subspace of finitely branching trees. Then:

Mfin(Tree) = Treefin

By Remark 2.17 height is acontinuous weight on the (incomplete) pointed poset (Treefin, [;;;;)
which is height-complete. Hence Treefin is a complete metric space.

Using trees as semantic domain we are not interested in the names of the nodes. Hence
we abstract from the names whieh means that we deal with isomorphism classes. I.e. we
consider the semantic domain

TREE = Tree/ ~

instead of Tree where ~ means isomorphism of trees. It can be shown that the 'lifting'
of [; on TREE is apreorder but not a partial order on TREE. Here by the 'lifting' we
mean the fo11owing relation (which we also denote by C) on TREE:

Tl [; T2 : ~ There exists representants T;. of Ti such that Tl C T2.

It can be shown that [; as an ordering on TREEfin = Treefin/ ~ is an incomplete partial
order. The lifting of the weight height on TREEfin yields a continuous weight on TREEfin
and TREEfin is height-complete. All elements of TREEfin are finitely approximable. Hence
TREEfin is a complete metric space. The n-cut of [Tb is the isomorphism class of T[n].
The canonical fllnction

[Tb
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is continuous ami <p(T[n]) = 't/(T)[n]. Let

treecpo : CC S -+ Tree, treecms: GCC S -+ TREEfin

denote Winskels cpo semanties for C C S resp. the metrie semantics for guarded C C S
on TREEfin where Winskels semantie operators lifted to isomorphism classes of finitely
branehing trees are used. Then by Theorem 3.14, Remark 3.12 and Remark 3.15:

[ treecpo(s)(a) b = treecms(s)(<p 0 a)

for all s E GCC Sand a : I df -+ Treefin.

4.4 Event structures

Let (Ev, C) denote the epo of prime event structures as defined in [30]. A prime event
structure (or shortly event strueture) is a 4-tupel E = (N,:::;, #, l) where N is a set of
events, :::;a partial order on N, # is a binary symmetrie, irrefiexive relation on N and
l : N -+ Ad is a labelling function such that for eaeh e E N the set {e' E N : e' :::;e} is
finite and for all e, e', e" E N:

e :::;e' /\ e#e" ==} e'#e"

The partial order C on Ev of [30] is given by

E'~E:~ E'=ErN'

where E' = ErN iff E = (N,:::;,#, l) and N' is a leftclosed subset of N such that

E' = (N',:::; n N' x N', # n N' x N', II N' ).

The depth of event struetures is a eontinuous weight on Ev. Here the depth of an event
strueture Eis given by

depth(E)

where E = (N,:::;, #, l) and

sup {depthe(e) : e E N}

depthE(e) = max {n E lNo: :3el, ... en E N with el < ... < en = e}

for a11e E N. e < e' means (e :::; e') /\ (e =1= e'). The n-cut of E is ErN(n] where
N(n] denotes the set of a11events e E N with depthe(e) :::;n. All event structures are
approximable, i.e.

M(Ev) = Ev.

The set of finitely approximable elements of Ev is the set of event structures E where
E(n] is finite for a11n 2:: O. Here E = (N,:::;, #, l) is ealled finite iff N is a finite set. Let
EVfin denote the set of finitely approximable event structures. By Remark 2.17 depth is a
continuous weight on the ineomplete pointed poset (EVfin,~) whieh is depth-complete.

Let EV = Ev/ ~ where ~ means that isomorphism, i.e. we abstract from the names
of the events. Similary to the situation above where we consider isomorphism classes of
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trees we get the following results: The 'lifting' of C to EV (whieh we also denote by C)
yields apreorder on isomorphism classes of event struetures. The restriction of C on
EVfin = EVfin/ ~ is an ineomplete partial order and

depth([Eb) = depth(E)

is a eontinuous weight on EVfin. EVfin is depth-eomplete. The indueed eomplete metrie
spaee eoineides with the metric spaee eonsidered in [11]. If evcpo : CCS -t Ev denotes
Winskels epo semanties for CCSand ev cms : GCC S -t EVfin is the metrie semantics for
guarded CCS where Winskels semantic operators lifted to EVfin are used then we get the
following consistency result (by Theorem 3.14, Remark 3.12 and Remark 3.15):

far all s E GCCS and (J : Idf -t EVfin'

4.5 Pomsets

Following the idea of [23] in [7, 8] sets of pomsets are used to describe the linear time
and true parallelism behaviour of CCS-/CSP-like processes. Pomsets ean be defined as
event struetures without conflicts. Here we only deal with finitely approximable pomsets:
In our setting a pomset is a tripel p = (N,:::;, l) such that (N,:::;, 0, l) E EVfin. Let Pom
denote the set of pomsets. It is easy to see that Pom endowed with the restriction of the
partial order ~ on Ev to Pom is a pointed poset. The least upper bound of a monotone
sequence in Pom (if it exists) equals the lea..'ltupper bound in Ev. depth is a continuous
weight on Pom. The n-cut of a pomset p in Pom coincides with its n-cut in Ev. Pom is
depth-complete and all pomsets are finitely approximable.

Mfin(Pom) = M(Pom) = Pom.

Dealing with isomorphism classes of pomsets we get a subspace POM Pom/ ~ of
EVfin. Then POM is a pointed poset (but not a cpo) and the least upper bound of a mono-
tone sequence in POl\![ (if it exists) coincides with its least upper bound in EVfin- depth
is a continuous weight on POM. POM is depth-complete and Mfin(P01VI) = POlv1.
The assoeiated metric space eoineides with the metrie space of (isomorphism classes of)
pomsets as defined in [7].

5 Characterization of SFP domains as rank ordered
cpo's

We show that the SFP domains of Plotkin [22] can be charaeterized as special kinds of
rank ordered epo's.

A SFP domain is a epo D which is the inverse limit of some embedding sequence of finite
epo's (in the eategory CPOE of cpo's and embedding projeetion pairs). An embed(~ing
projeetion pair D -t D' is a pair< e,p > of eontinuous functions e : D -t D', p : D' -t D
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sl1ch that P 0 e = idD and e 0 P ~ idD,. An embedding sequence means a sequence
(Dn, bn)n~O of cpo's Dn and embedding projection pairs bn : Dn ~ Dn+l. For further
details see [22, 26, 28].

Ir ir = (7fn)n~O is a rank ordering on a cpo D then (7fn(D))n~o can be considered as
an embedding sequence where the embedding projection pair bn : 7fn(D) ~ 7fn+l(D) is
given by: bn = < in,jn > where in : 7fn(D) ~ 7fn+l(D) denotes the indusion and
jn : 7fn+l(D) ~ 7fn(D), jn(x) = 7fn(x).

Lemma 5.1 If ir = (7fn)n~O is a rank ordering on a epo D then D is the inverse limit
of (7fn(D))n~o.

Proof: It is dear that In = < en,Pn >: Dn ~ D is an embedding projection pair where
en : 7fn(D) ~ D is the indusion and Pn = 7fniD ~ 7fn(D). In addition we have:

In+l 0 bn = In

Ir D' is a cpo and I~ = < i~,j~ >: Dn ~ D' are embedding projection pairs with
1~+10 bn = I~ then it can be shown that < e,p >: D ~ D' which is given by

e(x) = U i~(7fn(x)), p(y) = U j~(y)
n~O n~O

is the unique embedding projection pair with < e,p > 0 In = I~. Hence (D"n) is the
inverse limit. 0

Definition 5.2 A rank ordering ir = (7fn) on a pointed poset (D, C:) is ealled finitary
'ijJ for each n ~ 0 the set 7fn(D) is finite.

Lemma 5.3 Let (Dn, bn) be an embedding sequence of finite cpo 's. Then there exists a
finitary rank ordering on the inverse limit D of (Dn, bn).

Proof: Let (D, In) be the inverse limit where In = < en,Pn >. Then it is easy to see
that (en 0 Pn)n~O is a finitary rank ordering on D. 0

Theorem 5.4 Let D be a cpo. Then D is a SFP domain 'tf and only if there exists a
finitary rank ordering on D.

Proof: follows by Lemma 5.1 and Lemma 5.3. 0

A similar result is presented in [1J where bifinite domains are described in terms of directed
sets of so-called idempotent deflations (which can be considered as a generalization of
finitary rank orderings).

6 The Lawson and the metric topology on weighted
cpo's

In this sectiorl we discuss the connection between the Lawson topology on an algebraic
dcpo and the topology induced by the metric d[p] resp. d[irJ where p is a length and ir a
rank ordering.
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The topology on ametrie space (M, d) is the topology induced by the basis of open balls,
i.e. the sets

B(x, r) = {y E M : d(x, y) < r }
where .x E D and r > O.

Let D be an algebraic dcpo. I.e. for each element .x E D the set

K(x) = {~E K(D) : ~ ~ x }

is directed and.x = lub(K(.x)). Here K(D) denotes the set of compact (or finite or
isolated) elements of D. An element ~ of D is called compact (or finite or isolated) iff
whenever X is a directed subset of D with ~ ~ lub(X) then ~ !;; .x for some .x E X. D
is called w-algebraic iff D is algebraic and K(D) countable. The Lawson topology on an
algebraic dcpo D is defined to be the topology induced by the subbasis ~ t, D \ ~ t where
~ E K(D).

Lemma 6.1 Let (D, C) be an algebraie depo, p a weight on D then D = M(D) if and
only if K(D) ~ Fin(D).

1f p is a length on D and K(D) ~ Fin(D) then D = M(D).

Proof: First we assume that pis a length on D and K(D) ~ Fin(D). For each element
:r E D we have:

K(.x) ~ t fin(.x)

Since .x is an upper bound of tfin(x) and since x = lub(K(.x)) we get:

.x = lub(tfin(.x))

Therefore D = M(D).

Now we assume that p is a weight on D and D = M(D). Let ~ E K(D). Then tfin(~)
is directed (since p is a weight) and

Since ~ is com pact there exists .x E t fin(~) with ~ !;; .x. Therefore ~ = .x E Fin (D). 0

Lemma 6.2 Let (D,~) be an algebraie depo and p a weight on D with K(D) ~ Fin(D).
Then the d[p]-topology 'is finer than the Lawson topology.

Proof: vVe have to show that the sets ~ t and D \ ~ t (where ~ E K(D)) are open W.r.t.
d[p]. Let ~ E K(D) and n = p(~). By assumption n < 00.

If y E ~ t then for all x E B(y, 1/2n):

~ !;; y[n + 1] x[n + 1] C .x

Hence.x E B(y,1/2n). Therefüre B(y, 1/2n) ~ ~ t.
If y E D \ ~ t then für all x E B(y, 1/2n):

~ g y[n+1] = :1:[n+1]

Therefüre ~ g :1:. Hence B(y, 1/2n) ~ D \ ~ t. 0

32



..

Lemma 6.3 Let (D, C) be an algebraic dcpo and p a length on D such that

D[n] = {x E D : p(x)::S; 11, }

'is fin'ite fo1' alt 11, ~ 0 and such that Fin(D) = JC(D) .. Then the Lawson topology on D
is fine1' than the d[p]-topology on D.

Proof: We have to show that the open balls B(y, 1') are open w.r.t. the Lawson topology.
Let y E D, l' > 0 and x E B(y, r). Then 1/2n < r for some natural number 11, ~ O. Let

v = n {~t: ~E D[n]' ~ g x }

Then U and V are Lawson open (since D[n] is finite and D[n] ~ Fin(D) = JC(D)). It is
clear that

Y E U n V = B ( x, 21n)

Hence B(x, 1') is Lawson open. 0

Theorem 6.4 Let p be a weight on an algebraic dcpo (D,~) such that JC(D)
and such that fo1' alt 11, ~ 0 the set

Fin(D)

D[n] = {x E D : p(x)::s; 11, }

is finite. Then D = M(D) and the Lawson topology on D ag1'ees with the topology
induced by the met1'ic d[p].

Proof: follows by Lemma 6.1, Lemma 6.2 and Lemma 6.3. 0

Dealing with rank orderings instead of weights we get similar results. In [26] it is shown
that whenever (D, In) is the inverse limit of an embedding sequence (Dn, in) where Dn
are w-algebraic dcpo's then D is w-algebraic and

JC(D) = U en (JC(Dn))
n2:0

where In = < en,Pn >. Since finite posets are always w-algebraic dcpo's where all
elements are compact we obtain by Lemma 5.1:

Lemma 6.5 If ir = (7fn)n2:0 is a finitary rank o1'de1'ing on a cpo D then D is an w-
algebmic dcpo and

JC(D) = U 7fn(D).
n2:0

Lemma 6.6 Let ir be a rank o1'dering on an algebraic dcpo such that 7fn(D) ~ JC(D) fo1'
alt 11, ~ O. Then the d[ir]-topology on D is fine1' than the Lawson-topology on D.

Proof: analogons to Lemma 6.2 where we have to deal with 7fnCr:) instead of x[n]. 0

Lemma 6.7 Let ir be a finitar-y mnk o1'dering on a cpo D. Then the Lawson topology on
D is fine1' than the d[ir]-topology on D.
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Proof: analogous to Lemma 6.3 where we have to deal with 7f1/,(x) instead of x[n]. 0

Theorem 6.8 Let ir be a fin'itary rank ordering on a cpo D. Then the Lawson topology
on D agrees with the topology irul71,cedby the rnetric d[ir] .

Proof: follows by Lemma 6.6 and Lemma 6.7. 0

By Lemma 2.29, Theorem 5.4 and Theorem 6.8 we condude that each SFP-domain D
(endowed with the Lawson topology) is a compact, metrizable topological space.

7 Related work and future research

Various other authors have attempted to build a bridge between cpo and metrics. E.g.
Matthews [19]introduces the notion of partial metrics and quasi metrics in order to obtain
a topology that is not Hausdorff. Smyth [26] introduces quasi uniformities for the same
propose. In [17] we show that a finite length on a pointed poset induces a continuous
weight (and hence a metric) on the ideal completion and we discuss the relationship
between the metric and the ideal completion as a metric space. There we also show the
connection to the approach of [10] where a metric on the ideal completion of a countable
poset is defined: If p is a finite length on D such that D[n] is finite for all n ~ 0 then the
metric of [10] on the ideal completion is equivalent our metric. In [17] we also discuss the
relation to the approach of vVeihrauch and Schreiber [29]. vVerecall the results: [29] start
with a partial order (D,~) with a function I .1 : D -+ [0,00] that obeys:

From this they construct a distance d:

d(:1:, y) = inf { ~ IZil : Zo, Zl, ... , Zk is a path from x to y }

A path from .1: to y is a (finite) sequence Zo, Zl, ... , Zk in D such that Zo = .1:, Zk = Y and
such that for all i there exists an upper bound of Zi and Zi+1 in D. Those elements x in
D with lxi = 0 form a pseudometric spaee. [29] deseribes a method to select from every
distanee-O-equivalence dass a member and obtain a subset of D that is ametrie spaee.
Condition (*) tells us that l.. is the 'heaviest' element and that the 'largest' elements are
the lightest. E.g. given an alphabet A and ehoosing D = AOO and lxi = 1/1(.1:) where
l (:1:) means the length of astring x' we see that the eonstructed metrie spaee will consist
of infinite strings only. Choosing D = A* with lxi = 1/1(x) there are no elements with
1.1:1 = 0 and the construeted metric spaee of [29] is empty whereas we obtain the epo and
eomplete metric space A 00 of all sequenees.

In [3, 4] we disClISSthe relation between denotational semanties in the cpo and metrie
approach. At present we are studying the eonnection between initial solutions of domain
equations for epo's and unique sollltions of domain equations for eomplete metric spaees
[5]. In eontrast to [24] where fixed point theorems for loeally eontinuous and loeally
contractive endofunetors of the category of quasi llltrametrie spaees are established (and
hence combine the reslllts of [28] and [2]) we show how the sollltions of 'corresponding'
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domain equations D '" Q(D) for cpo's (which are solved by the method of [28]) and
M ~ 1-l(M) complete metric spaces (which are solved by the methods of [2, 18, 25]) are
related.
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