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Abstract
The Steiner problem in networks is the problem of connecting a set of required vertices in a weighted
graph at minimum cost. This is a classical NP-hard problem and a fundamental problem in network
design with many practical applications. We approach this problem by different means: Relaxations,
which relax the feasibility constraints, to get close to an optimal solution; heuristics to find good, but
not necessarily optimal solutions; and reductions to simplify problem instances without abandoning
the optimal solution. In each case, we study and improve existing methods, introduce new ones, and
evaluate them experimentally. We integrate these components into an exact algorithm, which repre-
sents the state of the art for the optimal solution of this problem. Many of the presented methods could
also be useful for similar problems.

Kurzzusammenfassung
Das Steiner-Problem in Netzwerken ist das Problem, in einem gewichteten Graphen eine gegebene
Menge von Knoten kostenminimal zu verbinden. Es ist ein klassisches NP-schweres Problem
und ein fundamentales Problem bei der Netzwerkoptimierung mit vielen praktischen Anwendun-
gen. Wir nehmen dieses Problem mit verschiedenen Mitteln in Angriff: Relaxationen, die die
Zul ässigkeitsbedingungen lockern, um eine optimale L ösung ann ähern zu k önnen; Heuristiken, um
gute, aber nicht garantiert optimale L ösungen zu finden; und Reduktionen, um die Probleminstanzen
zu vereinfachen, ohne eine optimale L ösung zu zerst ören. In allen F ällen untersuchen und verbessern
wir bestehende Methoden, stellen neue vor und evaluieren sie experimentell. Wir integrieren diese
Bausteine in einen exakten Algorithmus, der den Stand der Algorithmik f ür die optimale L ösung
dieses Problems darstellt. Viele der vorgestellten Methoden k önnen auch f ür verwandte Probleme von
Nutzen sein.
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1.1 About this Work

The Steiner problem in networks is the problem of connecting a set of required vertices in a weighted
graph at minimum cost. This is a classical NP-hard problem and a fundamental problem in network
design with many practical applications.

We approach this problem by different means: Relaxations, which relax the feasibility constraints,
to get close to an optimal solution; heuristics to find good, but not necessarily optimal solutions;
and reductions to simplify problem instances without abandoning the optimal solution. In each case,
we study and improve existing methods, introduce new ones, and evaluate them experimentally. We
integrate these components into an exact algorithm, which represents the state of the art for the optimal
solution of this problem. Many of the presented methods could also be useful for similar problems.

This work summarizes our research on this subject, which has been partly presented at conferences
(APPROX, ESA, WEA) and published in journals (Discrete Applied Mathematics, Operations Re-
search Letters). It has already received considerable recognition in the research community, visible in
citations in recently published literature [RUW02, PW02, UdAR02, BKM01, Uch01, KMV01, CT01]
and university lectures [JKP+02].

The implementation and most of the results presented were produced jointly with Tobias Polzin
[PV00a, PV01a, PV01c, PV01e, PV02a, PV02b, PV03, APV03a]. I declare that my contribution
constitutes at least half of this work.

1.1.1 Motivation

The study of the Steiner problem is motivated by its central role in network design [CD01, HRW92,
MW95] and by its numerous practical applications (see Section 1.3.3). New theoretical results on
this problem lead automatically to corresponding results for many other problems [HRS00, JMS03,
KKPS00], and the analysis methods can be used for related problems (see for example Section 2.8.1).

From an algorithmic point of view, classical NP-hard combinatorial optimization problems like
the traveling salesman problem (TSP) or the Steiner problem have always served as “engines-of-
discovery” for new methods that can also be applied to other problems. The outcome has been such
general concepts as the cutting-plane method, which was introduced in the TSP context [ABCC03].

Why do we try to solve such problems exactly? Of course, we cannot deny that the challenge
is tempting: These prominent NP-hard problems have attracted researchers as test environments
for their methods for decades. As a consequence, all relevant techniques in the fields of operations
research and combinatorial optimization have been tried on these problems, leading to a respected
competition for the best results. Furthermore, our ability to solve many non-trivial problem instances
exactly helps us (and also other researchers) to design or evaluate heuristics and relaxations. On the
other hand, the results of our exact algorithm set a high benchmark, such that many popular heuristics
cannot be motivated by their results anymore (alternative justifications could be ease of design or im-
plementation). Additionally, to get a successful exact algorithm we have to design extremely effective
and efficient techniques for computing bounds and reducing the instances, so afterwards each (com-
bination) of these components can be used, as adequate to the requirements. Finally, we even profit
from the exact algorithms as a part of each of these components (see Section 5.3.1).

Should one try the same enterprise for every (hard) combinatorial optimization problem one en-
counters? Even if this were possible, the effort would probably not be justified. Nevertheless, it is
instructive to see by the example of these prominent problems how far the limits can be pushed.
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1.1.2 Experimental Studies in this Work

The primary aim of this work has not been delivering new complexity results, which, for example,
enlarge the knowledge about (non-) approximability of the problem (on certain classes of instances).
We do go into depth, presenting many proofs and using sophisticated algorithmic techniques, but
always with the aim to improve the practical performance of the algorithms, preferably contributing
to the (fast) solution of instances of a size or type that were beyond the reach before. We wish to stress
that not the mere solution of such instances really matters, but the fact that to achieve this, one has to
come up with new methods that perform well in practice.

In this work, algorithms are regularly evaluated by experimental studies. We do not claim that
algorithms can be evaluated beyond doubt by running them on a set of test instances. But when con-
sidering (exact) algorithms for an NP-hard problem, there is no fully satisfactory alternative. Proving
guaranteed performance ratios for certain components (like heuristics for computing upper bounds)
cannot be a complete substitute, because such results are often too pessimistic due to their worst-case
character or lack of better proof techniques. From a comparative point of view, a much sharper differ-
entiation is necessary; particularly in the context of exact algorithms, where even marginal differences
(small fractions of a percent) in the value of the bounds can have a major impact on the behavior of the
algorithm. In addition, we consider the comparability of results a critical issue, which strongly sug-
gests using benchmark instances. For the Steiner problem in networks, the well-established benchmark
library SteinLib [Ste97, KMV01] meanwhile contains over a thousand instances of many different
types, contributed over the years by different researchers, sometimes from practical applications (see
Appendix A for a description of the instance groups). Since giving experimental results for all these
instances in each section would make the work unreasonably long, we have chosen a compromise
option: In each chapter (for example for upper bounds or reductions), we give average results on each
group of the problem instances from SteinLib (if the gap to the optimal solution value is measured,
we restrict ourselves to those groups where all optimal values are known). For the final results of the
complete exact algorithm, however, we additionally give results on single instances of SteinLib in
the Appendix A. (We leave aside only those groups that nowadays can be considered as “too easy”.)
The tables in this work reflect thousands of individual runs; we used ExpLab [HPKS02] and CVS
[CVS03] to address the issue of reproducibility of experiments. Unless stated otherwise, all tests were
performed on a SPARC III+ 900 MHz processor in a Sunfire 15000 (see Appendix A for a description
of the computing environment). Also it must be mentioned that for actual tests, we did not always
implement the data structures and algorithms with the best known (worst-case) time bound, especially
if the extra work did not seem to pay off. So, statements concerning worst-case time bounds for a
component merely mean the possibility of implementation of that component with that bound.

1.1.3 List of Main Contributions and Structure of the Thesis

In the following, we will give a list of our main contributions and where they can be found.

Relaxations and Lower Bounds (Chapter 2)

• There are many (mixed) integer programming formulations of the Steiner problem. The corre-
sponding linear programming relaxations are of great interest particularly, but not exclusively,
for computing lower bounds, but not much was known about the relative quality of these relax-
ations. We compare the linear relaxations of all classical, frequently cited integer programming
formulations of this problem from a theoretical point of view with respect to their optimal val-
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ues. We present several new results, establishing very clear relations between relaxations which
have often been treated as unrelated or incomparable, and construct a hierarchy of relaxations.

• We introduce a collection of new relaxations that are stronger than any known relaxation that
can be solved in polynomial time, and place the new relaxations into our hierarchy. Further, we
derive a practical version of such a relaxation and (later) show how it can optimized efficiently.

• For geometric Steiner problems, the state-of-the-art algorithms follow a two-phase approach:
A first phase uses the geometric properties to produce the input for a second phase that is
independent of the underlying geometry. The bottleneck of this approach has usually been the
second phase, where the hitherto most successful approach is based upon an LP relaxation of
the minimum spanning tree in hypergraph (MSTH) problem. We study this original and some
new relaxations of the MSTH problem and show that they are all equivalent. We also clarify
their relations to the relaxations of the Steiner problem. Later (in Section 5.4.1) we will see that
our program outperforms the currently best MSTH-based algorithm.

• From an algorithmic point of view, the usefulness of a relaxation is decided not only by its op-
timum value, but also by the consideration how fast this value can be determined or sufficiently
approximated. We analyze and improve some algorithmic approaches to the relaxations.

• Especially in the context of exact algorithms, a major problem arises when none of the (practi-
cally tractable) relaxations is strong enough to solve the instance without resorting to branching
(or to enable further reductions). We present two theoretically interesting and practically ap-
plicable techniques for improving the relaxations, namely graph transformation and local cuts.
These techniques have proven to be quite powerful, especially for the solution of large and com-
plex instances. In particular, the method of graph transformation, which was applied by us for
the first time to a network optimization problem, seems quite promising.

Reductions to Simplify Problem Instances (Chapter 3)

• For some of the classical reduction tests, which would have been too time-consuming for large
instances in their original form, we design efficient realizations, improving the worst-case run-
ning time to O(m + n log n) in many cases. Furthermore, we design new tests, filling some of
the gaps left by the classical tests.

• Previous reduction tests were either alternative based or bound based. That means to simplify
the instance they either argued with the existence of alternative solutions, or they used some
constrained lower bound and upper bound. We develop a framework for extended reduction
tests, which extends the scope of inspection of reduction tests to larger patterns and combines
for the first time alternative-based and bound-based approaches.

• In the solution process, particularly as the result of our other reduction techniques, we frequently
encounter graphs of (locally) low connectivity; but the standard methods based on partitioning
are not helpful for exploiting this situation. We present the new approach of using partitioning
to design reduction methods. As we will show, the resulting methods have been quite effective
in the context of Steiner problem, and the approach can also be useful for other problems.

• We integrate all tests into a reduction packet, which performs stronger reductions than any other
package we are aware of. Additionally, the reduction results of other packages can be achieved
typically in a fraction of the running time (see for example the comparison in [CT01]).
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Heuristics and Upper Bounds (Chapter 4)

• We present improved variants of known path heuristics, including an empirically fast variant
with worst-case running time O(m+ n log n).

• We introduce the new concept of reduction-based heuristics. On the basis of this concept, we
develop heuristics that achieve in most cases sharper upper bounds than the strongest known
heuristics for this problem despite running times that are smaller by orders of magnitude.

Exact Algorithms (Chapter 5)

• We present an algorithm that exploits small width in (sub-) graphs, and show how it can be used
profitably in combination with our other techniques in a more general context.

• We describe the interaction between different components and how we take advantage of it to
design a very powerful reduction process. Then we outline how this reduction process is used
in a branch-and-bound framework.

In each chapter, we present summarized experimental results, including comparisons of our results
to the best other results we are aware of. Detailed results for the exact algorithm are given in the
appendix. Considering these results, we can sum up:

• We could solve all instances in SteinLib that have been solved before; in most cases in running
times that are smaller than those of all other authors by orders of magnitude (see Table 5.1 on
page 123 and also the comparison in [CT01]).

• There were 74 instances in SteinLib that have not been solved by any other research group. We
have been able to solve 33 of them. All still unsolved instances have been constructed to be
difficult for known techniques (see Table A.2 on page 130).

• For geometric Steiner problems, our algorithm for general networks outperforms, for large in-
stances by orders of magnitude, the specially tailored MSTH approach [WWZ00], which has
received much attention (see Tables 5.2 and 5.3 on page 124).

Similar to other elaborate optimization packages, our program package for the Steiner problem
consists of a large collection of different components that interact extensively. In fact, our best pro-
grams for generating upper bounds, lower bounds, and exact solutions all use essentially the same
code, and just arrange the use of the components in different ways. Therefore, it is not possible to give
a concise description of “how to produce a good upper bound” in some dozen lines of pseudocode.
Hence, we have to give a bottom-up description: We will first describe the different building blocks
separately and give pointers to the necessary connections of the blocks elsewhere. Still, we cannot
provide a fine-grained picture of our program. This becomes obvious given the fact that merely print-
ing the code without any further explanation requires roughly 1000 pages. Therefore, we describe the
algorithms on a rather abstract level, and in case we use standard techniques, we give only pointers to
them.

Some background information is given in the rest of this chapter, much more can be found in a
book by Hwang, Richards and Winter [HRW92]; we have tried to keep the notation compatible with
that book. The basic definitions are given in the next section, the rest is distributed over the chapters.
The index should help the reader to find the searched terms.
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1.2 Basic Definitions and Notations

We use the usual definitions concerning graphs, see for example [CLR90]. For any undirected graph
G = (V,E), we define n := |V |, m := |E|, and assume that (vi, vj) and (vj , vi) denote the same
(undirected) edge {vi, vj}. For any directed graph ~G = (V,A), we use [vi, vj ] to denote the directed
edge, or arc, from vi to vj , and define a := |A|. A network is here a weighted graph (V,E, c) with
an edge cost function c : E → �

. We sometimes refer to networks simply as graphs. For each edge
(vi, vj), we use terms like cost, weight, length of (vi, vj) interchangeably to denote c ((vi, vj)) (also
denoted by c(vi, vj), c(vi ,vj) or cij). For any network H , c(H) denotes the sum of the edge weights of
H .

The Steiner problem in networks can be formulated as follows: Given a network G = (V,E, c)
and a non-empty set R, R ⊆ V , of required vertices (or terminals), find a subnetwork TG(R) of
G such that in TG(R), there is a path between every pair of terminals, and the value c(TG(R)) is
minimized.

We define r := |R|. For ease of notation we sometimes assume R = {v1, . . . , vr}. If we want
to stress that vi is a terminal, we will write zi instead of vi. The vertices in V \ R are called non-
terminals. Without loss of generality, we assume that the edge weights are positive and that G (and
TG(R)) are connected. Now TG(R) is a tree, called Steiner minimal tree (for historical reasons).
A Steiner tree is an acyclic, connected subnetwork of G, spanning (a superset of) R. We call non-
terminals in a Steiner tree its Steiner nodes.

The directed version of this problem (also called the Steiner arborescence problem) is defined
similarly (see [HRW92]): In addition to ~G and R, a root zr ∈ V is given and it is required that the
solution contains a path from zr to every terminal in R. Every instance of the undirected version can
be transformed into an instance of the directed version in the corresponding bidirected network, by
fixing an arbitrary terminal zr as the root. We define Rzr := R \ {zr}.

With dG(vi, vj) (or d(vi, vj) or dij) we denote the distance (length of a shortest path) between vi

and vj in G. For a given network G = (V,E, c) and W ⊆ V , the corresponding distance network is
defined as DG(W ) := (W,W ×W,d). We define D := DG(V ). It is easy to see that c(TG(R)) =
c(TD(R)), so every instance of the Steiner problem can be transformed into an equivalent instance
in a metric network in time, for example, O(n3). Furthermore, by computing a minimum spanning
tree for DG(R) and replacing its edges with the corresponding paths in G, we get a feasible solution
of the Steiner problem for the original instance; this is the core of a well-known heuristic with a
worst-case performance ratio of (2 − 2/r) for the Steiner problem which we call DNH (for Distance
Network Heuristic; see for example [HRW92]). Mehlhorn [Meh88] showed how to compute such a
tree efficiently by using a concept similar to that of Voronoi regions in algorithmic geometry; we will
use this concept also in other contexts. For each terminal zi, one can define a neighborhood N(zi),
called the Voronoi region of zi, as the set of vertices that are not closer to any other terminal. More
precisely, a partition of V is defined:

V =
·

⋃

zi∈R

N(zi) with vk ∈ N(zi) ⇒ d(vk, zi) ≤ d(vk, zj) (for all zj ∈ R).

If vk ∈ N(zi), we call zi the base of vk (written base(vk)). We consider two terminals zi and zj as
neighbors if there is an edge (vk, vl) with vk ∈ N(zi) and vl ∈ N(zj). Consider a graph G′ with
the vertex set R and an edge between each two neighbor terminals zi, zj with the cost c′(zi, zj) :=
min{d(zi, vk) + c(vk, vl) + d(vl, zj) | vk ∈ N(zi), vl ∈ N(zj)}. A minimum spanning tree T ′ for G′

will also be a minimum spanning tree T ′
D(R) for DG(R). The neighborhoods N(z) for all z ∈ R, the

graph G′ and the tree T ′ can be constructed in total time O(m+ n log n) [Meh88].
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1.3 Background

The Steiner problem is one of the best-known and most-studied problems in (combinatorial) optimiza-
tion. For the Steiner problem in networks, as we study it in this work, there are more than a hundred
publications; this number grows to several hundreds if one also considers variants of this problem.
There are several books devoted to the Steiner problem, for example [Voß90, HRW92, Cie98, DSR00,
CD01, PS02].

1.3.1 History

The Steiner problem in networks is the combinatorial variant of the much older Euclidean Steiner
problem, which asks for a shortest tree that connects a given set of points in the plane. A special case
of this problem was discussed before 1640 by Fermat:

Given three points in the plane, find a point the sum of whose distances from the given points is
minimal.

Jakob Steiner (1796-1863) considered a generalization of this problem for r points (the general
Fermat problem), but not the (Euclidean) Steiner problem. These two problems are identical only
in the case r = 3. The “Steiner” problem is believed to have been proposed for the first time by
Gauß (see [CD01]). The first (terminating) algorithm for the Euclidean Steiner problem was given by
Melzak [Mel61]. More information on the Euclidean Steiner problem and its history can be found in
[HRW92]. Its relation to the network variant will be discussed below.

The Steiner problem in networks was explicitly formulated for the first time by Hakimi [Hak71]
and Levin [Lev71]. A good (although not fully up-to-date) overview is given in Hwang et al.
[HRW92].

1.3.2 Geometric Steiner Problems

In geometric Steiner problems, a set of points (in the plane) is to be connected at minimum cost under
some geometric norm. Two famous versions are:

Euclidean Steiner Problem: Given a finite set R of points in the plane, find a point set S together
with a spanning tree T for R ∪ S such that T has minimum length under L2 norm (Euclidean
distance).

In comparison to the Euclidean version, the Steiner problem in networks is in some sense more
general: The cost function can be general and the network does not need to reflect geometric
properties. On the other hand, in a network the set of potential Steiner nodes is finite, whereas
in the Euclidean version every point on the plane can be part of a feasible solution. But it can
be proven that an Euclidean Steiner minimal tree has at most |R| − 2 Steiner points (of degree
3) and that the number of the possible topologies of it is finite [HRW92].

Furthermore, every Euclidean instance I can be approximated for any ε > 0 by a network
instance Iε with less than const r2

ε2
vertices (i.e., the quotient of the lengths of the optimal

solutions of Iε and I is at most 1 + ε). The basic idea is to lay a grid with proper granularity on
the convex hull of the given points and allow only the grid points as possible Steiner nodes (for
details see [HRW92]). But a direct application of this method is not practical: For a guarantee
of 1% one ends up with a complete network with up to const 104 r2 vertices.
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Rectilinear Steiner Problem: Given a finite set R of points in the plane, find a point set S together
with a spanning tree T for R ∪ S such that T has minimum length under L1 norm (rectilinear
or Manhattan distance).

The rectilinear version is actually a special case of the network version, as shown by Hanan
[Han66]: Draw horizontal and vertical lines through the given points. Define a network G =
(V,E, c), with V being the set of all line crossings and E corresponding to the resulting line
segments. Hanan showed that an optimal solution in G is an optimal solution for the original
rectilinear instance. But again, this approach is not very practical, since the special geometric
information is mainly lost. Furthermore, for say 10,000 given points we could end up with a
network with up to 100 millions of vertices, which is completely beyond the reach of current
(exact) algorithms. But as we describe below, rectilinear instances with 10,000 points can now
be regularly solved in relatively small times.

Both problems are very well studied and there is a huge amount of literature on them (see
[HRW92] for an overview and [WWZ00] for some recent successful methods).

In this work, we do not work directly with geometric Steiner problems. However, as we will
describe in Section 2.8, for Euclidean and rectilinear Steiner problems (and some variations of them)
the currently most successful approach uses a geometric preprocessing (first) phase to convert the
given problem into one that is independent of the underlying geometry. We will study this converted
problem, both theoretically and experimentally. It turns out that our program is currently the fastest
one for the second phase, solving instances with about 10,000 terminals usually in a matter of minutes
to hours (see Section 5.4.1).

1.3.3 Applications

Various versions of the Steiner problem belong to the most-applied problems in combinatorial opti-
mization. A voluminous book [CD01] is devoted to the applications of Steiner trees in industry. As
examples, we briefly describe some applications of the Steiner problem in networks from various
fields:

Routing in (Computer) Networks

In the multicast routing problem we are given a network G = (V,E, c) with a source s ∈ V and a
set of destinations S ⊆ V \ {s}. The cost mapping c can be a complicated function with arguments
like delay of a channel, fees, and so on. Two well-known special cases are |S| = 1 (single destination
routing) and |S| = |V | − 1 (broadcasting). A routing tree T is a subnetwork of G, rooted at s and
containing all vertices of S. The cost-optimal routing asks for a routing tree with minimum total cost.

An approach for cost-optimal routing calculates a Steiner (minimal) tree T for G with R = S ∪
{s}. The source sends a copy of the message to each of its neighbors in T , together with information
on the respective subtree. Each vertex that receives a message repeats this procedure for its subtree
[BKJ83].

For more information on this application, see [NRK01].

VLSI Layout

Several variants of the Steiner problem have numerous applications in VLSI layout. A simple scenario
is to find a connection for a set of points on a chip that should carry the same signal.
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Some (classical) problems in VLSI layout used to be formulated as rectilinear Steiner problems.
But for many applications, a network formulation is indicated, e.g., because there are obstacles on the
chip (see for example [KM98]). Besides, often additional constraints are to be considered, which can
be better modeled in a network framework.

For an overview of applications of Steiner problems in VLSI layout see [KPS90] or [Len90].

Phylogeny

Phylogeny is the study of the evolution of life forms. A central problem in phylogeny is the task of re-
constructing an evolutionary tree for a set of (biological) species. One typical variant is the following:

Each given species is represented by some segment of its DNA code. Each DNA sequence is
identified with a sequence of s letters of a finite alphabet A (i.e., a vector from As). Now we have a
(complete) network G = (V,E, c) with V = As, where the cost function c represents the “distance”
between two sequences; in the simplest case this is the Hamming distance of the vectors. The task
is now to find a Steiner (minimal) tree in G, where the set of given species corresponds to the set of
terminals.

The literature in this area is very voluminous and deals with a number of very heterogeneous
definitions and goals. An overview is given in [HRW92].

Of course, one cannot work directly with the (huge) network described above. One of the rec-
ognized methods is to work in a so-called quasi-median network [BFR99], which is guaranteed to
contain all relevant Steiner minimal trees. A software package that combines methods for computing
such networks and variants of our program for computing Steiner minimal trees is already in use and
frequently cited [For03].

1.4 Complexity Results

The decision variant of the Steiner problem in networks (with c : E → � ) is strongly NP-complete
(Karp [Kar72]). Consequently, the optimization variant is NP-hard.

For most important metrics, the Steiner problem remains NP-hard, for example:

• distance in networks (direct consequence of c(TG(R)) = c(TD(R)), see Section 1.2),

• Euclidean distance (Garey, Graham and Johnson [GGJ77]),

• Manhattan distance (Garey and Johnson [GJ77]),

• Hamming distance (Foulds and Graham [FG82]).

1.4.1 Special Cases

For most important classes of networks, the Steiner problem remains NP-hard, for example:

bipartite networks, even if all edges have weight 1. The proof is a simple reduction from EXACT-
COVER BY 3-SETS, see for example [HRW92].

planar networks (Garey and Johnson [GJ77]), the special case for edge weights 1 is open.

complete networks with edge weights from {1, 2} (Bern and Plassman [BP89]).

An overview is given in [Joh85].
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Polynomially Solvable Cases

Some important special cases of the Steiner problem can be solved very efficiently. The most important
ones are:

r = 2 : The solution is a shortest path between the two given terminals. It can be computed, for
example, in time O(m+ n log n). See [Tho97] for a more recent result.

r = n : The solution is a minimum spanning tree (MST) for G. It can be computed, for example, in
time O(m+ n log n). See [KKT95, PR00] for more recent results.

These facts can be slightly generalized:

• A Steiner minimal tree can be computed in time O(n3r +n22r +n3) with a dynamic program-
ming algorithm which uses the case r = 2 as the base case (Dreyfus and Wagner [DW71]). For
(e.g.) constant r, we get a polynomial-time algorithm. However, this algorithm is practical only
for very small r (as a guideline: at most 10); and even then, it is regularly outperformed by other
exact algorithms empirically.

• A Steiner minimal tree can be computed in time O(min{2n−r, (n−r)r−2}r2 +n3) by enumer-
ation of minimum spanning trees for supersets ofR (Hakimi [Hak71] and Lawler [Law76]). For
(e.g.) constant n− r or r , we get a polynomial-time algorithm. If n is not large, this approach
is practical for small n− r (as a guideline: at most 15).

Only very special classes of networks (like trees, series-parallel networks, Halin networks, . . . )
are known to admit polynomial-time algorithms for the Steiner problem (see [HRW92, Chapter 5]).
More interesting (and general) are networks with certain restrictions on (tree, branch, or path) width.
In Section 5.2, we discuss this class of networks and show how to exploit restricted (path) width in
the networks to derive a theoretically efficient and practically useful algorithm.

1.4.2 Approximability

The Steiner problem in networks is APX -complete, even in complete networks with edge weights
from {1, 2} (Bern and Plassman [BP89]). So, there is some fixed ε > 0 such that computing (1 + ε)-
approximations for this problem is NP-hard (see Arora [Aro94]). The currently best lower bound for
this ε is 1/95 (Chlebı́k and Chlebı́ková [CC02]).

Most classical Steiner tree heuristics guarantee an approximation ratio of (almost) two. In recent
years, better ratios were obtained step by step by a series of algorithms. The first one had a ratio of
11/6 (Zelikovsky [Zel93]) and an efficient implementation of it has running time O(r(m+ n log n+
rn)). But the empirical results of this algorithm are only mediocre and do not justify the relatively
long running times [DV97]. The currently best approximation ratio is 1+ln(3)/2 ≈ 1.55 (Robins and
Zelikovsky [RZ00]), but the polynomial describing the corresponding running time contains a k in the
exponent that has to approach ∞ to reach this ratio. Thus, this result is hardly of practical relevance.
For a recent survey on approximation results, see [GHNP01].

We mention here that for the Euclidean Steiner problem, Arora [Aro96] (and, independently,
Mitchell [Mit96]) developed polynomial-time approximation schemes. The methods used are quite
general and the results extend to a huge number of other geometric problems (in constant dimensions)
under some Lp norm for p ≥ 1 [Aro03]. (In fact the scheme was designed originally for the traveling
salesman problem.) However, these algorithms seem to be not competitive for the traveling salesman
or Steiner problem [Aro03], at least if the worst-case guarantees are to be maintained.
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2.1 Introduction

To attack a (hard) combinatorial optimization problem, a starting point could be a reformulation of
the problem as an integer program. Dropping (relaxing) some of the constraints in such a program can
make it more tractable. The solution of such a relaxation provides us with a lower bound (in case of
minimization) for the original problem, which is a major component of many exact algorithms (see
Chapter 5). But as we will show in Chapter 3 on reduction techniques and Chapter 4 on upper bounds,
the information we get from handling such a relaxation can also be used beyond the computation of
lower bounds.

Some of the most successful approaches to hard combinatorial optimization problems are based
on linear programming, consider for example the long history of research for the traveling salesman
problem (TSP) focusing on linear programming [ABCC03]. Here, the problem is first formulated as
an integer linear program. Dropping the integrality constraints leads to the so-called LP relaxation
(or linear relaxation) of the problem. In this way one can profit from the numerous sophisticated
techniques for solving or approximating linear programs.

For NP-hard optimization problems, unless P = NP , any linear relaxation of polynomial size
(and any polynomial-time solvable relaxation) is bound to have a deviation from the solution of the
original problem in some cases. The quality of the used relaxation can have a decisive impact on the
performance of the algorithms based on it. For the Steiner problem in networks, many (mixed) integer
programming formulations have been suggested as the starting point for relaxations, but not much was
known about the relative quality of the corresponding relaxations. In Sections 2.2 to 2.5, we compare
the linear relaxations of all classical and some modified or new integer programming formulations of
this problem from a theoretical point of view with respect to their optimal values. We present several
new results, establishing clear relations between relaxations that have often been treated as unrelated
or incomparable. In Section 2.6, we introduce a collection of new relaxations that are stronger than all
previous linear relaxations. We will also discuss some variants for application in practical algorithms.
Finally, in Section 2.7 we build a hierarchy of all discussed relaxations.

For geometric Steiner problems, the state-of-the-art algorithms follow a two-phase approach: First,
by exploiting geometric properties a proper collection of the so-called full Steiner trees (FSTs) is gen-
erated. Then one chooses a subset of the generated FSTs whose concatenation yields a Steiner minimal
tree. The bottleneck of this approach has usually been the second phase, where the hitherto most suc-
cessful approach treats the generated FSTs as edges of a hypergraph and uses an LP relaxation of the
minimum spanning tree in hypergraph (MSTH) problem. In Section 2.8, we study this original and
some new relaxations of the MSTH problem and show that they are all equivalent. We also clarify
their relations to the relaxations of the Steiner problem. An experimental comparison of these relax-
ations is presented in Section 2.13. Later (in Section 5.4.1) we will see that our program outperforms
the currently best MSTH-based algorithm.

From an algorithmic point of view, the usefulness of a relaxation is decided not only by its opti-
mum value, but also by the consideration how fast this value can be determined or sufficiently approx-
imated. In Sections 2.9 to 2.11, we study some algorithmic approaches to the relaxations. In Section
2.9, we study several old and new algorithms for computing lower (and upper) bounds using dual-
ascent and primal-dual strategies. We present several new results and some improvements, show that
none of the known algorithms can both generate tight lower bounds empirically and guarantee their
quality theoretically, and we present a new algorithm that combines both features. In Section 2.10, we
outline some approaches based on Lagrangian relaxation. In Section 2.11, we describe how a row and
column generation technique can be used to optimize an LP relaxation and show how to adapt this
approach to one of our stronger relaxations.
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Especially in the context of exact algorithms, a major problem arises when none of the (practically
tractable) relaxations is strong enough to solve the instance without resorting to branching (or to
enable further reductions). In Section 2.12, we present two theoretically interesting and practically
applicable techniques for improving the relaxations, namely graph transformation and local cuts, in
the context of the Steiner problem. These techniques have proven to be quite powerful, particularly
for the solution of large and complex instances.

In Section 2.13, we report some experimental results for computing lower bounds based on the
relaxations. We also demonstrate the impact of our techniques for improving relaxations in the solution
of the largest benchmark instances ever solved.

2.1.1 Additional Definitions for Relaxations

We often use directed formulations, because the corresponding relaxations can be stronger. Remember
(from Section 1.2) that every instance (G = (V,E, c), R) of the undirected Steiner problem can
be transformed into an instance of the directed Steiner problem in the corresponding (bi-) directed
network ~G = (V,A, c) (A := {[vi, vj], [vj , vi] | (vi, vj) ∈ E}, c defined accordingly) by fixing an
arbitrary terminal (say z1) as the root.

A cut in ~G = (V,A, c) (or in G = (V,E, c)) is defined as a partition C = (W,W ) of V
(∅ ⊂ W ⊂ V ;V = W ∪̇W ). We use δ−(W ) to denote the set of arcs [vi, vj ] ∈ A with vi ∈ W and
vj ∈W . For simplicity, we write δ−(vi) instead of δ−({vi}). The sets δ+(W ) and, for the undirected
version, δ(W ) are defined similarly. A cut C = (W,W ) is called a Steiner cut if z1 ∈ W and
Rz1 ∩W 6= ∅ (for the undirected version: R ∩W 6= ∅ and R ∩W 6= ∅).

In the (integer) linear programming formulations we use (binary) variables x [vi,vj ] or xij for each
arc (respectively x(vi,vj) or Xij for each edge (vi, vj) ∈ E), indicating whether an arc is part of
the solution (xij = 1) or not (xij = 0). Thus, the cost of the solution can be calculated by the
dot product c · x, where c is the cost vector. For any B ⊆ A, x(B) is short for

∑

b∈B xb, and
A(W ) denotes {[vi, vj ] ∈ A|vi, vj ∈ W} for any W ⊆ V . For example, x(δ−(W )) is short for
∑

[vi,vj ]∈A,vi 6∈W,vj∈W xij .
We use the notation Pq for integer linear programs, where the abbreviation q describes the program

further (see Table 2.1 for an explanation of the abbreviations). The corresponding linear relaxation is
denoted by LPq; the dual of such a relaxation is denoted by DLPq and a Lagrangian relaxation
by LaPq . These notations denote a program corresponding to an arbitrary, but fixed instance of the
Steiner problem. The value of an optimal solution of an integer programming formulation, denoted
by v(Pq), is of course the value of an optimal solution of the corresponding Steiner problem. Thus,
in this context we are interested in the optimal value v(LPq) of the corresponding linear relaxation,
which can differ from v(Pq) (integrality gap).

We compare relaxations using the predicates equivalent and (strictly) stronger: We call a relax-
ation R1 stronger than a relaxation R2 if the optimal value of R1 is no less than that of R2 for all
instances of the problem. If R2 is also stronger than R1, we call them equivalent, otherwise we say
that R1 is strictly stronger than R2. If neither is stronger than the other, they are incomparable.

2.2 Cut and Flow Formulations

In this section, we state the basic flow- and cut-based formulations of the Steiner problem. There are
some well-known observations concerning these formulations, which we cite without proof.
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C cut Section 2.2.1

F flow Section 2.2.2

FR common-flow Section 2.6.3

F k1,k2 restricted version of FR (multiple roots) Section 2.6.4

F 2 restricted version of FR (only one root) Section 2.6.4

2t two-terminal Section 2.2.2

T tree Section 2.3

mT multiple trees Section 2.5

T0 degree constrained spanning tree Section 2.3.1
~T directed version of T

Uq undirected version of q

q + FB q with added flow-balance constraints Section 2.5.2

q− weaker version of q

q + + aggregated version of q

q′ modified version of q

Table 2.1: Abbreviations for Linear programs and their meaning.

2.2.1 Cut Formulations

The directed cut (or dicut) formulation was stated by Wong [Won84].

PC c · x → min,

x(δ−(W )) ≥ 1 (z1 6∈W,R ∩W 6= ∅), (1.1)

x ∈ {0, 1}|A|. (1.2)

The constraints (1.1) are called Steiner cut constraints. They guarantee that in any arc set corre-
sponding to a feasible solution, there is a path from z1 to any other terminal.

A formulation for the undirected version was stated by Aneja [Ane80]:

PUC c ·X → min,

X(δ(W )) ≥ 1 (W ∩R 6= R, W ∩R 6= ∅), (2.1)

X ∈ {0, 1}|E|. (2.2)

Lemma 1 LPC is strictly stronger than LPUC ; and sup
{

v(LPC )
v(LPUC)

}

= 2 [CR94a, Dui93].

We just mention here that v(PUC )
v(LPUC ) ≤ 2 [GB93]; and that when applied to undirected instances,

the value v(LPC) is independent of the choice of the root [GM93]. For much more information on
LPC , LPUC and their relationship, see [CR94a]. Also, many related results are discussed in [MW95].
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2.2.2 Flow Formulations

Viewing the Steiner problem as a multicommodity flow problem leads to the following formulation
(Wong [Won84]).

PF c · x → min,

yt(δ−(vi)) = yt(δ+(vi)) +

{

1 (zt ∈ Rz1 ; vi = zt),
0 (zt ∈ Rz1 ; vi ∈ V \ {z1, zt}), (3.1)

yt ≤ x (zt ∈ Rz1), (3.2)

yt ≥ 0 (zt ∈ Rz1), (3.3)

x ∈ {0, 1}|A|. (3.4)

Each variable yt
ij denotes the quantity of the commodity t flowing through [vi, vj ]. Constraints (3.1)

guarantee that for each terminal zt ∈ Rz1 , there is a flow of one unit of commodity t from z1 to zt.
Together with (3.2), they guarantee that in any arc set corresponding to a feasible solution, there is a
path from z1 to any other terminal.

Lemma 2 LPC is equivalent to LPF [Won84].

The correspondence is even stronger: Every feasible solution x for LPC corresponds to a feasible
solution (x, y) for LPF .

The straightforward translation of PF for the undirected version leads to LPUF with v(LPUF ) =
v(LPUC) (see [GM93]). There are other undirected formulations (see [GM93]), leading to relaxations
that are all equivalent to LPF ; so we use the notation LPFU for all of them.

Of course, there is no need for different commodities in PF . In an aggregated version, which we
call PF++, one unit of a single commodity flows from z1 to each terminal zt ∈ Rz1 (see [Mac87]).
This program has only Θ(|A|) variables and constraints, which is asymptotically minimal. But the
corresponding linear relaxation LPF++ is not a strong one (see Lemma 3).

PF++ c · x → min,

Y (δ−(vi)) = Y (δ+(vi)) +

{

1 (vi ∈ Rz1),
0 (vi ∈ V \ R),

(4.1)

(r − 1)x ≥ Y, (4.2)

Y ≥ 0, (4.3)

x ∈ {0, 1}|A|. (4.4)

The variables Y describe a flow of one unit from z1 to each terminal in Rz1 .

Lemma 3 LPF is strictly stronger than LPF++. The worst-case ratio v(LPF )
v(LPF++) is r − 1 [Mac87,

Dui93].

The formulation PF is based on the flow formulation of the shortest path problem (the special case of
the Steiner problem with |Rz1 | = 1). Liu [Liu90] stated the two-terminal formulation P2t, which is
based on the special case with |Rz1 | = 2, namely the two-terminal Steiner arborescence problem. In a
Steiner tree, for any two terminals zk, zl ∈ Rz1 , there is a two-terminal tree consisting of a path from
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z1 to a splitter node vs and two paths from vs to zk and zl (vs can belong to {z1, zk, zl}). In P2t, y̌, ỳ
and ý describe flows from z1 to vs, from vs to zk, and from vs to zl.

P2t c · x → min,

y̌kl(δ−(vi)) − y̌kl(δ+(vi)) ≥
{

−1 ({zk, zl} ⊆ Rz1 ; vi = z1),
0 ({zk, zl} ⊆ Rz1 ; vi ∈ V \ {z1}), (5.1)

(y̌kl + ỳkl)(δ−(vi)) − (y̌kl + ỳkl)(δ+(vi)) =

{

1 ({zk, zl} ⊆ Rz1 ; vi = zk),
0 ({zk, zl} ⊆ Rz1 ; vi ∈ V \ {z1, zk}),

(5.2)

(y̌kl + ýkl)(δ−(vi)) − (y̌kl + ýkl)(δ+(vi)) =

{

1 ({zk, zl} ⊆ Rz1 ; vi = zl),
0 ({zk, zl} ⊆ Rz1 ; vi ∈ V \ {z1, zl}),

(5.3)

y̌kl + ýkl + ỳkl ≤ x ({zk, zl} ⊆ Rz1), (5.4)

y̌kl, ýkl, ỳkl ≥ 0 ({zk, zl} ⊆ Rz1), (5.5)

x ∈ {0, 1}|A|. (5.6)

Note that the flow described by y̌ can have an excess at some vertices (because of the inequality
(5.1)), this excess is carried by the flows described by ỳ and ý to zk and zl (because of (5.2) and (5.3)).

Lemma 4 LP2t is strictly stronger than LPF [Liu90].

2.3 Tree Formulations
In this section, we state the basic tree-based formulations and prove that the corresponding linear
relaxations are all equivalent. We also discuss some variants from the literature, which we prove to be
weaker.

2.3.1 Degree-Constrained Tree Formulations

The Steiner problem can also be stated as finding a degree-constrained minimum spanning tree T0 in
a modified network G0 = (V0, E0, c0), produced by adding a new vertex v0 and connecting it through
zero-cost edges to all vertices in V \R and to a fixed terminal (say z1) [BP87, Bea89]. The problem
is now equivalent to finding a minimum spanning tree T0 in G0 with the additional restriction that
in T0 every vertex in V \R adjacent to v0 must have degree one. To see this, observe that T0 can be
transformed into a Steiner (minimal) tree of the same cost in G by removing edges (v0, vi) that are
part of T0, and vice versa. Beasley [Bea89] stated this reformulation as an integer program:

PT0
c ·X → min,

{(vi, vj) | Xij = 1} : builds a spanning tree for G0, (7.1)

X0k +Xki ≤ 1 (vk ∈ V \R ; (vk, vi) ∈ δ(vk)), (7.2)

X ∈ {0, 1}|E0 |. (7.3)

The requirement (7.1) can be stated by linear constraints. In the following, we assume that (7.1) is
replaced by the following constraints.

X(E0) = n, (7.4)

X(E0(W )) ≤ |W | − 1 (∅ 6= W ⊂ V0). (7.5)
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The constraints (7.4) and (7.5), together with the non-negativity of X , define a polyhedron whose
extreme points are the incidence vectors of spanning trees in G0 (see [Edm71, MW95]). Thus, no
other set of linear constraints replacing (7.1) can lead to a stronger linear relaxation.

Again, a similar directed formulation using a network ~G0 can be stated, this time by adding zero-
cost arcs [v0, vi] (for all vi ∈ V \R) and [v0, z1] to ~G.

P~T0
c · x → min,

x(δ−(vi)) = 1 (vi ∈ V ), (8.1)

x(A0(W )) ≤ |W | − 1 (∅ 6= W ⊆ V0), (8.2)

x0i + xij + xji ≤ 1 (vi ∈ V \R ; [vi, vj ] ∈ δ+(vi) ), (8.3)

x ∈ {0, 1}|A0 |. (8.4)

The constraints (8.1) and (8.2), together with the non-negativity of x, define a polyhedron whose
extreme points are the incidence vectors of spanning arborescences with root v0 (see [MW95]). Note
that δ−(v0) = ∅ by the construction of ~G0.

In the literature on the Steiner problem, one usually finds a directed variant P ~T0−
that uses

x0i + xij ≤ 1 (vi ∈ V \ R ; [vi, vj ] ∈ δ+(vi) )

instead of the constraints (8.3) (see for example [HRW92]). Obviously v(P ~T0−
) = v(P~T0

), and
v(LP~T0−

) ≤ v(LP~T0
). The following example shows that LP ~T0

is strictly stronger than the version
in the literature.
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Figure 2.1: Example with v(LP ~T0−
) � v(LP~T0

) = v(LPT0
) < v(PT0

).

Example 1 Figure 2.1 shows the network ~G with R = {z1, z2}, γ ≥ 100 and the network ~G0. The
minimum Steiner arborescence has the value γ + 10.
The following ẋ is feasible (and optimal) for LP ~T0−

and gives the value 11: ẋ01 = 1, ẋ03 = ẋ04 =

ẋ34 = ẋ43 = ẋ32 = ẋ42 = 1
2 and ẋij = 0 (for all other arcs). But for LP ~T0

, ẋ is infeasible. The
optimal value here is: v(LP ~T0

) = γ
3 +14 (this value is reached for example by x̂ with x̂01 = 1, x̂03 =

x̂04 = x̂13 = x̂23 = x̂32 = 1
3 , x̂42 = x̂34 = 2

3 and x̂ij = 0 (for all other arcs)). So the ratio
v(LP~T0−

)/v(LP~T0
) can be arbitrarily close to 0.

2.3.2 Rooted Tree Formulation

The rooted tree formulation is stated, for example, in [KPH93]:
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P~T
c · x → min,

x(δ−(vi)) = 1 (vi ∈ Rz1), (9.1)

x(δ−(vi) \ {[vj , vi]}) ≥ xij (vi ∈ V \ R ; [vi, vj ] ∈ δ+(vi)), (9.2)

x(A(W )) ≤ |W | − 1 (∅ 6= W ⊆ V ), (9.3)

x ∈ {0, 1}|A|. (9.4)

To get rid of the exponential number of constraints for avoiding cycles, many authors have considered
replacing (9.3) by the subtour elimination constraints introduced in the TSP-context (known as the
Miller-Tucker-Zemlin constraints [MTZ60]), allowing additional variables ti for all vi ∈ V :

ti − tj + nxij ≤ n− 1 ([vi, vj ] ∈ A). (9.5)

This leads to the program P ~T− with Θ(|A|) variables and constraints, which is asymptotically mini-
mal. The linear relaxation LP ~T− was used by [KP95]. We will now prove the intuitive guess that LP ~T

is stronger than LP~T−. Indeed, the ratio
v(LP~T−

)

v(LP~T
) can be arbitrarily close to 0 (see Figure 2.2 on page

29).

Lemma 5 v(LP~T−) ≤ v(LP~T
).

Proof: Let x̂ denote an (optimal) solution for LP ~T
. Obviously x̂ satisfies the constraints (9.1) and

(9.2). We now show that it is possible to construct t̂ such that (x̂, t̂) satisfies (9.5), too.
We start with an arbitrary t̂ (e.g., t̂i = 0 (for all vi ∈ V )). We define for every arc [vi, vj ] ∈ A:
sij := (n− 1) − (t̂i − t̂j + nx̂ij); and call an arc [vi, vj ] good, if sij ≥ 0; used, if sij ≤ 0; and bad,
if sij < 0. Suppose [vi, vj ] is a bad arc (if no bad arcs exist, (x̂, t̂) satisfies (9.5)).
We now show how t̂j (and perhaps some other t̂p) can be increased in a way that [vi, vj ] becomes
good, but no good arc becomes bad. By repeating this procedure we can make all arcs good and prove
the lemma.
In each step we denote by Wj the set of vertices vk ∈ V that can be reached from vj through paths
with only used arcs. We define ∆ as min{skl | [vk, vl] ∈ δ+(Wj)}, if this set is non-empty, and
∞ otherwise. Now we increase for all vertices vp ∈ Wj the variables t̂p by min{−sij,∆} (these
values can change in every step). By doing this, no arc of δ+(Wj) becomes bad. For arcs [vp, vq] with
vp, vq ∈Wj or vp, vq 6∈Wj the value of spq does not change; and for arcs [vq, vp] ∈ δ−(Wj) sqp does
not decrease.
Because t̂j is increased in every step, there is only one situation that could prevent that [vi, vj ] becomes
good: In one step vi is absorbed by Wj . But then, according to the definition of Wj , there exists a path
vj ; vi with only used arcs. Thus, there exists a cycle C := (vi, vj = vk1

, . . . , vkl
= vi), with

sklk1
< 0 and skt−1kt ≤ 0 (for all t ∈ {2, . . . , l}). Summation of the inequalities for arcs on the cycle

C leads to: nx̂(C) > l(n−1). On the other hand, since x̂ satisfies the constraints (9.3), x̂(C) ≤ l−1.
The consequence, l−1

l
> n−1

n
, is a contradiction. 2

2.3.3 Equivalence of the Tree-Class Relaxations

We now show the equivalence of the tree-based relaxations LPT0
, LP~T0

, and LP~T
.

Lemma 6 v(LP~T0
) = v(LPT0

).
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Proof:
I) v(LP~T0

) ≥ v(LPT0
): Let x denote an (optimal) solution for LP ~T0

. Define X with Xij := xij +xji

(for all (vi, vj) ∈ E), X0i := x0i (for all vi ∈ V \ R) and X01 := x01. It is easy to check that X
satisfies all constraints of LPT0

and yields the same value as v(LP ~T0
).

II) v(LPT0
) ≥ v(LP~T0

): Now let X denote an (optimal) solution for LPT0
. Define Γ with Γij ∈ [0, 1]

arbitrarily (for all (vi, vj) ∈ E) and set x to xij := ΓijXij , xji := (1−Γij)Xij (for all (vi, vj) ∈ E),
x0i := X0i (for all vi ∈ V \ R) and x01 := X01. Again, it is easy to validate that x satisfies the
constraints (8.2) and (8.3) and yields the same value as v(LPT0

).
The only question is, whether there is a Γ such that x satisfies the constraints (8.1), too. This question
can be stated in the following way:
Is it possible to distribute the “supply” Xij of each edge (vi, vj) in such a way to its end-vertices that
every vertex vi ∈ V gets one unit at the end?
It is known that this problem can be viewed as a flow problem: Construct a flow network with source
s, sink t, and vertices uij (for all (vi, vj) ∈ E0) and ui (for all vi ∈ V0). Every uij is connected with
ui and uj through arcs [uij , ui] and [uij , uj ] with capacity ∞. Furthermore, there are arcs [s, uij ] with
capacity Xij and arcs [ui, t] with capacity 1 (or 0, if i = 0). The question above is equivalent to the
question, whether a flow from s to t with value n can be constructed. The max-flow min-cut theorem
says that this is possible if and only if there is no cut C = (U,U ) (with s ∈ U and t 6∈ U ) with
capacity less than n (Obviously U = {s} and U = V \{t} correspond to cuts with capacity n).
Suppose that U corresponds to a cut C with minimum capacity. Define W := {vi ∈ V0 | ui ∈ U},
EW := {(vi, vj) ∈ E0 | vi, vj ∈ W}, and EU := {(vi, vj) ∈ E0 | uij ∈ U}. For every [vi, vj] ∈ EU

(uij ∈ U), ui and uj must belong to U ([vi, vj ] ∈ EW ), because otherwise the capacity of C would
be ∞, which is not minimal. It follows that: EU ⊆ EW .
The capacity of C is:

|W \ {v0}| +X(E0 \ EU ) ≥ |W \ {v0}| +X(E0 \ EW ) (since EU ⊆ EW )

≥ |W | − 1 +X(E0) −X(EW )

= |W | − 1 + n−X(EW ) (because of 7.4)

≥ n. (because of 7.5)

It follows that the minimal cut has capacity n. 2

Lemma 7 v(LP~T
) = v(LP~T0

).

Proof:
I) v(LP~T0

) ≥ v(LP~T
): Let x̂ denote an (optimal) solution for LP ~T0

. Define x̃ with x̃ij := x̂ij (for

all [vi, vj ] ∈ A). Because x̂ satisfies the constraints (8.1) and in ~G0 only arcs in A are incident with
terminals in Rz1 , x̃ satisfies the constraints (9.1).
Furthermore, x̃ satisfies the constraints (9.2), because for every arc [vi, vj ] ∈ A with vi ∈ V \ R it
holds that:

x̃(δ−(vi) \ {[vj , vi]}) = x̃(δ−(vi)) − x̃ji (δ in ~G)

= x̂(δ−(vi)) − x̂0i − x̂ji (δ in ~G0)

= 1 − x̂0i − x̂ji (because of (8.1) )

≥ x̂ij (because of (8.3) )

= x̃ij.
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Finally x̃ satisfies (9.3), because x̂ satisfies (8.2).
II) v(LP~T

) ≥ v(LP~T0
): Let x̃ denote an (optimal) solution for LP ~T

. Define x̂ with x̂ij := x̃ij (for
all [vi, vj ] ∈ A) and x̂0i := 1 − x̃(δ−(vi)) (for all vi ∈ V \ Rz1). Notice that for an optimal x̃,
x̃(δ−(vi)) > 1 could only be forced by (9.2) for some arc [vi, vl] with x̃(δ−(vi) \ {[vl, vi]}) = x̃il,
and it would follow that 1 < x̃(δ−(vi)) = x̃li + x̃il, but this is ruled out by (9.3) (for W = {vi, vl}).
So x̂ satisfies (8.1) in a trivial way.
The constraints (8.2) are satisfied by x̂ for every W ⊆ V , because x̃ satisfies (9.3). For W ⊆ V0 with
v0 ∈W it holds that:

x̂(A0(W )) ≤
∑

vi∈W\{v0}

x̂(δ−(vi)) (in ~G0)

=
∑

vi∈W\{v0}

1 (because of (8.1) )

= |W | − 1.

Finally, for every [vi, vj ] ∈ A with vi ∈ V \R:

x̂0i + x̂ij + x̂ji = 1 − x̃(δ−(vi)) + x̃ij + x̃ji (in ~G)

= 1 − x̃(δ−(vi) \ {[vj , vi]}) + x̃ij

≤ 1. (because of (9.2) )

Thus, x̂ also satisfies the constraints (8.3). 2

2.4 Relationship between the Two Classes

In this section, we settle the question of the relationship between flow and tree-based relaxations by
proving that LPC is strictly stronger than LP ~T

. Our proofs also show that LPC cannot be strengthened
by adding constraints that are present in LP ~T0

or LP~T
.

First, we show that every (optimal) solution x̂ of LPC has certain properties:

Lemma 8 For every (optimal) solution x̂ of LPC , W ⊆ V \{z1} and vk ∈W the following holds:

x̂(δ−(W )) ≥ x̂(δ−(vk)).

Proof: Suppose that x̂ violates the inequality for some W and vk. Among all such inequalities,
choose one for which |W | is minimal. For this inequality to be violated, there must be an arc
[vl, vk] ∈ δ−(vk)\δ−(W ) with x̂lk > 0. Because of the optimality of x̂, x̂lk cannot be decreased with-
out violating a Steiner cut constraint, so there is a U ⊂ V with z1 /∈ U, U ∩R 6= ∅, [vl, vk] ∈ δ−(U),
and x̂(δ−(U)) = 1. Now one has the inequality †:

x̂(δ−(U)) + x̂(δ−(W )) = x̂(δ−(U ∪W )) + x̂(δ−(U ∩W )) +

x̂({[vi, vj ] ∈ A | vi ∈W\U, vj ∈ U\W ) +

x̂({[vj , vi] ∈ A | vi ∈W\U, vj ∈ U\W )

≥ x̂(δ−(U ∪W )) + x̂(δ−(U ∩W ))
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Since z1 /∈ U ∪W and (U ∪W )∩R 6= ∅, U ∪W corresponds to a Steiner cut, and x̂(δ−(U ∪W )) ≥
1 = x̂(δ−(U)). Using †, one obtains: x̂(δ−(W )) ≥ x̂(δ−(U ∩W )). This implies that x̂ also violates
the lemma for U ∩W and vk. Since vl ∈ W\U , we have |U ∩W | < |W |, and this contradicts the
minimality of W .1 2

Lemma 9 For every (optimal) solution x̂ of LPC and vk ∈ V \{z1} the following holds:

x̂(δ−(vk)) ≤ 1.

Proof: Suppose x̂ violates the inequality for vk. There is an arc [vl, vk] ∈ δ−(vk) with x̂lk > 0.
Because of the optimality of x̂, x̂lk cannot be decreased without violating a Steiner cut constraint, so
there is a W ⊂ V with z1 /∈ W, W ∩R 6= ∅, [vl, vk] ∈ δ−(W ), and x̂(δ−(W )) = 1. Together with
Lemma 8 (for vk and W ), one gets a contradiction. 2

Lemma 10 For every (optimal) solution x̂ of LPC , vl ∈ V \{z1}, and [vl, vk] ∈ A the following
holds:

x̂(δ−(vl) \ {[vk, vl]}) ≥ x̂lk.

Proof: This follows directly from Lemma 8 (for vk and W = {vl, vk}) by subtracting x̂(δ−(vl) \
{[vk, vl]}) from both sides. Note that the special case vk = z1 is trivial, because x̂l1 = 0 in every
optimal solution. 2

Theorem 11 v(LP~T
) ≤ v(LPC).

Proof: Let x̂ be an (optimal) solution for LPC . We will show that x̂ is feasible for LP ~T
:

Because {vi} corresponds to a Steiner cut for vi ∈ Rz1 , by Lemma 9, x̂ satisfies (9.1).
Because of Lemma 10, x̂ satisfies (9.2).
Let W ⊆ V be a non-empty set. If z1 ∈W :

x̂(A(W )) ≤
∑

vi∈W

x̂(δ−(vi))

=
∑

vi∈W\{z1}

x̂(δ−(vi)) (optimality of x̂)

≤
∑

vi∈W\{z1}

1 (Lemma 9)

= |W | − 1.

Now we assume z1 6∈W and define ∆ := x̂(δ−(W )). There are two cases:
I) ∆ ≥ 1 :

x̂(A(W )) =
∑

vi∈W

x̂(δ−(vi)) − x̂(δ−(W ))

≤
∑

vi∈W

x̂(δ−(vi)) − 1 (∆ ≥ 1)

≤
∑

vi∈W

1 − 1 (Lemma 9)

= |W | − 1.

1In a different context this argumentation was used in [GM93].
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II) ∆ < 1 :

x̂(A(W )) =
∑

vi∈W

x̂(δ−(vi)) − x̂(δ−(W ))

≤
∑

vi∈W

x̂(δ−(W )) − x̂(δ−(W )) (Lemma 8)

= (|W | − 1)x̂(δ−(W ))

< |W | − 1. (∆ < 1)

It follows that x̂ satisfies (9.3) too. 2

Corollary 11.1 The proof shows that adding constraints of LP ~T
to LPC cannot improve v(LPC).

Corollary 11.2 Because the proofs of the equivalence of the tree relaxations require the optimality
only in one step of Lemma 7 to show that x̃(δ−(vi)) ≤ 1, which is forced by Lemma 9 for each
(optimal) solution of LPC , adding constraints of LP ~T0

to LPC cannot improve v(LPC) either.

To show that LPF and LPC are strictly stronger than the tree-based relaxations LPT0
, LP~T0

, and
LP~T

, it is sufficient to give the following example.
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Figure 2.2: Example for v(LP ~T−) � v(LP~T
) � v(LPF ) = v(PF ).

Example 2 For the network G (or in the directed view ~G) in Figure 2.2 set α � 1 and γ � α.
Obviously, v(PF ) = v(LPF ) = γ. For LP~T

is x̂ with x̂23 = x̂34 = x̂42 = 2
3 , x̂25 = x̂56 = x̂62 = 1

3 ,
and x̂ij = 0 (otherwise) feasible, even optimal, and gives the value v(LP ~T

) = α + 2. Thus, there is

no positive lower bound for the ratio
v(LP~T

)

v(LPF ) .

With respect to LP~T− and LP~T
, one observes that (ẋ, ṫ) with ṫi = 0 (for all vi ∈ V ), ẋ23 = ẋ32 =

ẋ34 = ẋ43 = ẋ24 = ẋ42 = 1
2 , and ẋij = 0 (otherwise) is an (optimal) solution for LP ~T− with the

value 3. So, there is no positive lower bound for the ratio
v(LP~T−

)

v(LP~T
) .

2.5 Multiple Trees and the Relation to the Flow Model

In this section, we consider a relaxation based on multiple trees and prove its equivalence to an aug-
mented flow relaxation. We also discuss some variants of the former relaxation.
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2.5.1 Multiple Trees Formulation

Khoury, Pardalos and Hearn [KPH93] stated a variant of P ~T
, using the idea that an undirected Steiner

tree can be viewed as |R| different Steiner arborescences with different roots.

P
m~T

c ·X → min,

X(δ(vi)) ≥ 1 (vi ∈ R), (10.1)

X(δ(vi)) ≥ 2si (vi ∈ V \ R), (10.2)

si ≥ Xij (vi ∈ V \R ; (vi, vj) ∈ δ(vi) ), (10.3)

xk
ij + xk

ji = Xij (vk ∈ R ; (vi, vj) ∈ E), (10.4)

xk(δ−(vi)) =

{

1 (vk ∈ R ; vi ∈ R \ {vk}),
0 (vk ∈ R ; vi = vk),

(10.5)

xk(δ−(vi)) = si (vk ∈ R ; vi ∈ V \ R), (10.6)

{[vi, vj ] | xk
ij = 1} : contains no cycles (vk ∈ R), (10.7)

X ∈ {0, 1}|E|, (10.8)

xk ∈ {0, 1}|A| (vk ∈ R), (10.9)

si ∈ {0, 1} (vi ∈ V \ R). (10.10)

In any feasible solution for P
m~T

, each group of variables xk describes an arborescence (with root zk)
spanning all terminals. The variables s describe the set of the other vertices used by these arbores-
cences.

We will relate this formulation to the flow formulations. First, we have to present an improvement
of LPF .

2.5.2 Flow-Balance Constraints and an Augmented Flow Formulation

There is a group of constraints (see for example [KM98]) that can be used to make LPF stronger. We
call them flow-balance constraints:

x(δ−(vi)) ≤ x(δ+(vi)) (vi ∈ V \R). (11.1)

We denote the linear program that consists of LPF and (11.1) by LPF+FB . It is obvious that LPF+FB

is stronger than LPF . The following example shows that it is even strictly stronger.
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Figure 2.3: Example with v(LPF ) < v(LPF+FB) = v(PF+FB).
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Example 3 The network ~G in Figure 2.3 with z1 as the root and Rz1 = {z2, z3} gives an example for
v(LPF ) < v(LPF+FB): v(PF+FB) = v(LPF+FB) = 6, v(LPF ) = 51

2 .

Now consider the following formulation:

PF ′+FB c ·X → min,

xij + xji = Xij ((vi, vj) ∈ E), (12.1)

(x, y) : is feasible for PF+FB . (12.2)

Lemma 12 If (X,x, y) is an (optimal) solution for LPF ′+FB with root terminal za, then there exists
an (optimal) solution (X, x̌, y̌) for LPF ′+FB for any other root terminal zb ∈ R\{za}.

Proof: One can verify that (X, x̌, y̌) with x̌ij := xij + yb
ji − yb

ij, y̌
t
ij := max{0, yt

ij − yb
ij} +

max{0, yb
ji−yt

ji}, y̌a
ij := yb

ji (for all [vi, vj ] ∈ A, zt ∈ R\{za, zb}) satisfies (12.1) and (3.2). Because
of

∑

[vj ,vi]∈δ−(vi)(y̌
t
ji− y̌t

ij) =
∑

[vj ,vi]∈δ−(vi)(max{0, yt
ji−yb

ji}+max{0, yb
ij −yt

ij}+min{0,−yt
ij +

yb
ij} + min{0,−yb

ji + yt
ji}) =

∑

[vj ,vi]∈δ−(vi) y
t
ji − yb

ji + yb
ij − yt

ij (for all vi ∈ V, zt ∈ R\{za, zb})

the constraints (3.1) are satisfied, too. From (3.1) for yb, it follows that x(δ−(vi)) = x̌(δ−(vi)) and
x(δ+(vi)) = x̌(δ+(vi)) for all vi ∈ V \R; therefore x̌ satisfies the flow-balance constraints (11.1).
Because this translation could also be performed from any (optimal) solution with root terminal zb to
a feasible solution with root terminal za, the value v(LPF ′+FB) is independent of the choice of the
root terminal and (X, x̌, y̌) is an (optimal) solution. 2

It follows immediately that LPF ′+FB is equivalent to LPF+FB .

2.5.3 Relationship between the Two Models

We will now show that the linear relaxation LP
m~T

(where (10.7) is replaced by linear constraints of
the form (9.3)) is equivalent to LPF+FB .

Lemma 13 v(LP
m~T

) = v(LPF ′+FB).

Proof:
I) v(LP

m~T
) ≥ v(LPF ′+FB): Let (X̂, x̂, ŝ) denote an (optimal) solution for LP

m~T
. Define x with

x := x̂1 , and y with yt := max{x̂1 − x̂t, 0} (for all zt ∈ Rz1). Because of (10.4) and the definition
of y, yt

ij = 0 if yt
ji > 0 (for all [vi, vj ] ∈ A and zt ∈ Rz1 ).

For all zt ∈ Rz1 , vi ∈ V \{z1, zt} it holds that:

yt(δ−(vi)) − yt(δ+(vi)) = (x̂1 − x̂t)({[vj , vi] ∈ δ−(vi)|x̂1
ji > x̂t

ji}) −
(x̂1 − x̂t)({[vi, vj ] ∈ δ+(vi)|x̂1

ij > x̂t
ij})

= (x̂1 − x̂t)({[vj , vi] ∈ δ−(vi)|x̂1
ji > x̂t

ji}) +

(x̂1 − x̂t)({[vj , vi] ∈ δ−(vi)|x̂1
ji < x̂t

ji}) (because of (10.4) )

= (x̂1 − x̂t)(δ−(vi)) = 0 (because of (10.5) or (10.6) ).

With the same argumentation adapted to vi = zt, it follows that y satisfies (3.1).
The other constraints (3.2) are satisfied in a trivial way. A substitution of (10.4) and (10.6) into (10.2)
gives the flow-balance constraints (11.1). Thus, (X,x, y) is feasible for LPF ′+FB .
II) v(LP

m~T
) ≤ v(LPF ′+FB): Let (X,x, y) denote an (optimal) solution for LPF ′+FB . From lemma

12 we know that there is an (optimal) solution (X, x̂r, ŷr) for each choice of the root vertex zr ∈ R,
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with the property that ŝi := x̂t(δ−(vi)) (for any vi ∈ V \R) has the same value for any choice of
zt ∈ R. With the argumentation of Theorem 11 it follows that (X, x̂, ŝ) is feasible for LP

m~T
. 2

Corollary 13.1 The constraints (10.1), (10.3), and (10.7) are useless with respect to the value of the
linear relaxation LP

m~T
.

Corollary 13.2 The linear program LP
m~T− (with the same objective function as LP

m~T
) that contains

(beside non-negativity constraints) only the equations (10.4), (10.5), and (10.6) is equivalent to LPF .

2.6 A Collection of New Formulations

In [PV01a] we introduced the common flow relaxation LPF 2 . Concerning this relaxation we have
frequently been asked three questions: How we developed the new relaxation, whether the result can
be strengthened (the notation LPF 2 looks as if there could be an LPF 3 ) and how a relaxation of this
kind could be used in a practical algorithm. We will address all three issues in the following.

2.6.1 Integrality Gap of the Flow/Cut Relaxations

z1

2 2

1 1

2 2

22 1

4

z2
z

3

76 vv v

v5

Figure 2.4: Example with v(LPC) < v(PC).

A network with a deviation between the integral and the linear solution for the flow formulation
is shown in Figure 2.4. Choosing z1 as root yields the value 7.5 as v(LPF ) (setting all x-variables
in the direction away from z1 to 0.5 leads to an optimal solution), while an optimal Steiner tree (and
v(PF )) has value 8. Thus the integrality gap is at least 16

15 . Goemans [Goe98] extended the example in
Figure 2.4 to networks Gk whose integrality gap comes arbitrarily close to 8

7 . The networkGk consists
essentially of

(k
2

)

copies of the network in Figure 2.4. It has k+1 terminals a0, a1, ..., ak , and k2 non-
terminals b1, ..., bk, c12, ..., cij , ..., ck−1,k, d12, ..., dij , ..., dk−1,k . For any i and j, 1 ≤ i < j ≤ k one
includes the network of Figure 2.4 with the following labeling: z1 is a0, z2 is ai, z3 is aj , v4 and v5

are cij and dij , and v6 and v7 are bi and bj . An optimal Steiner tree has value 4k and the optimal LPC

solution is obtained by setting all x-variables in the direction away from a0 to 1
k

, yielding the value
1
k
(4k + 7

(k
2

)

) = 3.5k + 0.5. Thus, the integrality gap approaches 8
7 with increasing k. This is the

largest deviation known for LPF . 2

2Independently, we constructed other examples with the same asymptotic integrality gap. For example, the edges be-
tween ai and bi can be deleted for every i > 0 without deteriorating the asymptotic result.
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Figure 2.5: y-variables and decomposition into trees.

Figure 2.5 shows how the y-variables of the LPF solution for Figure 2.4 can be viewed as a
linear combination of incidence vectors of paths in some trees. The upper-left network shows the y 2

variables; each arc [vi, vj ] corresponds to y2
ij = 0.5. The upper-right figure shows the same for y3.

The y-values can be decomposed into two rooted trees T1 and T2 that are depicted in the two figures
at the bottom. For any zt ∈ Rz1 , yt is a linear combination of the incidence vectors of the paths from
z1 to zt in T1 and T2 (in this example both incidence vectors have weight 0.5).

If the x-values were a linear combination of the incidence vectors of these trees, the optimal value
of the linear relaxation would be the same as of the integral formulation. In this example, we see
that the arc [v4, v5] causes the problem: The linear combination of the incidence vectors of the trees
yields 1 for [v4, v5], while x45 has the value 0.5. Looking at the flow-variables y2 and y3 one can
see that at the vertex v4 flows of different commodities enter from different arcs (y2

74 = y3
64 = 0.5),

but depart together on arc [v4, v5]. We denote this situation as a rejoining. Formally, a rejoining of
flows of the commodities {zi1 , zi2 , . . . , zik} =: B at a vertex vi ∈ V is defined by the condition
∑

[vj ,vi]∈δ−(vi) max {yt
ji|zt ∈ B} > ∑

[vi,vk]∈δ+(vi) max {yt
ik|zt ∈ B}. In Section 2.6.3 we will show

how to attack rejoining of flow in an extended linear program.
This situation is typical. In fact, we do not know of any example for a network with an integral-

ity gap for LPC that does not include a variant of Figure 2.4. Of course, there may be additional
edges, edges replaced by paths, other edge weights and non-terminals replaced by terminals, but still
Figure 2.4 is a minor of the network (a minor of a graph is obtained by a sequence of deletions and
contractions, for the relevance of minors to linear relaxations of the Steiner problem see [CR94a]).
Furthermore, the rejoining of flows of different commodities is a common property of all examples for
integrality gap known to us, although more than two flows can rejoin (as we will show in Figure 2.6)
and it may need a change of the root to see a rejoining. Figure 2.4 can be used to illustrate the latter:
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If we turn v4 into a terminal z4 and choose z4 as root, the optimal linear solution value stays the same
(setting all x-variables in the direction away from z4 to 0.5 leads to an optimal solution). Again, the
y-variables can be decomposed into the same trees T1 and T2 (just with a reorientation of the arcs),
but now there is no rejoining of flows.

2.6.2 Common Flow

As we have seen in the last subsection, the basic problematic situation for LPF can be described as
the rejoining of flows of different commodities. We capture this condition in linear constraints with
the help of additional variables yB (for all subsets B ⊆ Rz1) that describe the amount of flow going
from the root to any terminal zt ∈ B: yB ≥ yt for all zt ∈ B. In Figure 2.5, it is easy to see that
the flow to z2 and z3 (y{z2,z3}) incoming at v4 is greater than the flow outgoing from v4. This cannot
be the case for x-values corresponding to a feasible Steiner tree. Thus, we can introduce additional
constraints that assure that for each common flow the outgoing flow at any vertex has at least the value
of the incoming flow.3

As already noted in Section 2.6.1, the same network can or cannot show rejoining of flow, depend-
ing on the choice of the root. To detect all rejoinings we have to consider all possible roots. Thus, the
variables that will be used in the common flow formulation will have the shape yr,B and they describe
a flow from zr to all terminals zt ∈ B ⊆ Rzr (we will skip the chosen root in the notation if it is clear
from the context).

2.6.3 A Template for Common Flow Formulations

We first state an exhaustive common flow formulation that has an exponential number of constraints
and variables, and describe afterwards how to reduce it to different formulations (e.g., of only poly-
nomial size).

PF R c ·X → min,

yr,{zt}(δ−(zr)) = yr,{zt}(δ+(zr)) − 1 (zr ∈ R; zt ∈ Rzr), (13.1)

yr,{zt} − yr,{zs} ≤ ys,{zt} ({zr, zs, zt} ⊆ R), (13.2)

y
r,{zs}
ji − y

r,{zt}
ji ≤ y

s,{zt}
ij ({zr, zs, zt} ⊆ R; [vi, vj ] ∈ A), (13.3)

yr,B(δ−(vi)) ≤ yr,B(δ+(vi)) (zr ∈ R;B ⊆ Rzr ; vi ∈ V \ (B ∪ {zr}), (13.4)

yr,B ≤ yr,C (zr ∈ R;B ⊂ C ⊆ Rzr), (13.5)

yr,Rzr

ij + yr,Rzr

ji ≤ Xij (zr ∈ R; (vi, vj) ∈ E), (13.6)

yr,{zr} = 0 (zr ∈ R), (13.7)

y ≥ 0, (13.8)

X ∈ {0, 1}|E|. (13.9)

It follows from the proof of Lemma 12 that the constraints (13.2) and (13.3) redirect the flows
from a root zr to flows from any other root zs ∈ R to each terminal zt ∈ R. In particular, from these
constraints in combination with (13.7) it follows that yt,{zr}

ji = y
r,{zt}
ij for all zr, zt ∈ R. For each

flow from a root zr to a terminal zt, described by the variables yr,{zt}, the constraints (13.1) guarantee

3In [PV01a] we used a semantically inverse, but mathematically equivalent definition of the common flow. Meanwhile,
we find the new definition more intuitive and compact.
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an outflow of one unit out of zr, and (together with the previous observation) an inflow of one unit in
zt. Together with the constraints (13.4) (with B = {zt}) and (13.8) this guarantees a flow of one unit
from zr to each terminal zt ∈ Rzr .
The constraints (13.4) also guarantee for any root zr and set of terminals B that there is no rejoining
at any vertex vi (to be more precise, there is a penalty for rejoined flows in form of increased yr,B

values). The constraints (13.5) set each common flow from a root zr to a set of terminals C to at least
the maximum of all flows from zr to a subset B ⊂ C of the terminals.
Finally the constraints (13.6) build the edgewise maximum over all flows from all terminals in the
edge variables X .

We do not know of any network where the relaxation LPF R has an integrality gap. Unfortunately,
we are neither able to prove that there is no integrality gap, nor to do a really broad experimental
study to support this (see Section 2.11.1). Note that due to the exponential number of constraints
and variables the possibility that there is no integrality gap is not ruled out by known complexity
arguments (and common assumptions).

2.6.4 Polynomial Variants

We will now show how to derive polynomial-size relaxations from LPF R : We limit the number of
terminal sets B polynomially, e.g., by choosing two constants k1 ≥ 1 and k2 ≥ 1 (k1 + k2 < |R|),
and using only those variables yr,B with |B| either at most k1 or at least |R| − k2. We denote the
resulting relaxation with LPF k1,k2 . It has O(r1+max{k1,k2−1}|A|) variables and O(r2max{k1,k2−1}|A|)
constraints. For example, if we choose k1 = 2 and k2 = 1 and also use only one fixed root zr we get a
relaxation that is equivalent to LPF 2 presented in [PV01a]. Here, we state that relaxation in the form
as it is derives from PF R , using the variables yr,B for a fixed zr and for B ∈ B = {C ⊆ Rzr | |C| ∈
{1, 2, |R| − 1}}.

PF 2 c · x → min,

yr,{zt}(δ−(zr)) = yr,{zt}(δ+(zr)) − 1 (zt ∈ Rzr), (14.1)

yr,B(δ−(vi)) ≤ yr,B(δ+(vi)) (B ∈ B; vi ∈ V \ (B ∪ {zr}), (14.2)

yr,B ≤ yr,C (B ⊂ C ∈ B), (14.3)

yr,Rzr
= x, (14.4)

y ≥ 0, (14.5)

x ∈ {0, 1}|A|. (14.6)

The drawback of this limitation is that not all rejoinings will be detected by the limited relaxation,
as the following example shows: In Figure 2.6, using LPF with z1 as the root, there is a rejoining of
3 different flows (y2, y3 and y4) at the central vertex. As LPF 2 captures only rejoining of 2 flows,
there will still be some integrality gap. The figure also shows how the choice of k2 can weaken the
relaxation: Only if the common flow yr,B to a set of terminals B is considered where z2, z3 and z4 are
in B, but z5 is not in B, the relaxation gives the optimal integer value. On the other hand, for k1 ≥ 3
or k2 ≥ 2 there is no integrality gap.

The example in Figure 2.6 can be generalized to networks G[k1, k2], which produce an integrality
gap for any common flow relaxation that is limited by some constants k1 and k2 (Figure 2.6 shows the
network G[2, 1]): Around a central vertex v0 put k1 + 2 edges [v0, v1], [v0, v2], . . . , [v0, vk1+2] of cost
1. Additionally use k1 + 2 terminals (a1, a2, . . . , ak1+2). Each of these terminals is connected to all
vj , j 6= 0, j 6= i with edges of cost k1 + 1. Then connect the central vertex to k2 different terminals
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Figure 2.6: v(LPF ) = 141
3 < v(LPF 2,1) = 142

3 < v(LPF R) = 15 = v(PF R).

(b1, b2, . . . , bk2
) with edges of cost 1. An integer optimal solution has the cost k2 + (k1 + 1)(k1 +

2) + 2, but the following X-values are feasible for the (k1, k2)-limited common flow relaxation: Set
X-variables of edges connected to bi, 1 ≤ i ≤ k2 to 1, the X-variable for (v0, v1) to 1 − (k1 + 1)−1

and all other X variables to (k1 +1)−1. Thus, the optimal value of the relaxation is at most k2 +(k1 +
1)(k1 + 2) + 2 − (k1 + 1)−1.

As a consequence, we have derived a collection of polynomial relaxations LPF k1,k2 , where
LPF k1,k2 can be related to LPF j1,j2 . We assume that k1 + k2 ≤ j1 + j2:

if k1 ≤ j1, k2 ≤ j2: The relaxation LPF j1,j2 is stronger than LPF k1,k2 (since it contains a superset
of the constraints and variables). If additionally k1 < j1 or k2 < j2, the relaxation LPF j1,j2

is even strictly stronger. Consider the network G[min{k1, j1},min{k2, j2}], LPF j1,j2 gives the
optimal integral solution, while LPF k1,k2 has an integrality gap.

otherwise: The relaxations are incomparable, consider the networks G[min{k1, j1},max{k2, j2}]
and G[max{k1, j1},min{k2, j2}].

Now, we show why considering all roots is important. The only difference between the relaxations
LPF 2,1 and LPF 2 is that LPF 2,1 considers all terminals as root.

Lemma 14 The relaxation LPF 2,1 is strictly stronger than LPF 2 .

Proof: The relaxation LPF 2,1 is stronger than LPF 2 , as it contains a superset of the constraints and
variables. The network G[1, 1] can be used to show that LPF 2,1 is even strictly stronger than LPF 2 .
Here, LPF 2,1 gives the optimal value, but for LPF 2 it depends on the choice of the root: Using any of
the terminals a1, a2, or a3 as the root gives the integer optimal value, while with b1 as root there is an
integrality gap. 2

2.6.5 Practical Adaptations

We have experimented with different restricted versions of the common flow relaxation, with no
definitive conclusion which one is the best. Nevertheless, we can present a strongly restricted, but
still very useful approach.
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We observed that in many cases the tracing of the common flow to all |R| − 1 terminals (k2 = 1)
catches most of the problematic situations except for insightfully constructed pathological instances.
As depicted in Figure 2.6, to fool the relaxation with k2 = 1, typically there has to be a terminal di-
rectly connected to the vertex at which the rejoining happens. In most of the cases where this happens,
the terminal is the vertex itself. To attack those situations without the need to introduce a quadratic
number of constraints or variables, we restrict the common flow relaxation by k1 = k2 = 1 on non-
terminals, and to k2 = 2 on terminals, but only considering the set R \ {zr, zi} at a terminal zi (with
respect to root zr). Additionally, we restrict the relaxation to one fixed root zr, and because we do not
need the X-variables anymore, we can replace the yRzr with x-variables.

In a cut-and-price framework (see Section 2.11) it is highly desirable to introduce as few variables
as possible. Working with flow-based relaxations makes this difficult, because if a flow variable on one
edge is needed, all variables and all flow conservation constraints have to be inserted to get something
useful. Therefore the cut-based formulations are more suitable in this context. In analogy to PC , we
can use constraints of the form y{zi}(δ−(W )) ≥ 1 for all W ∩ {zr, zi} = zi.

Finally, we eliminate all variables y{zi} and yR\{zr ,zi}
e if e is not in δ−(zi) in the following way:

Unwanted y{zi} variables are replaced by yR\{zr ,zi} if the replacement is possible using the constraints
(13.5). Similarly, unwanted yR\{zr ,zi} variables are replaced by x if possible. All constraints that still
use unwanted variables are deleted.

Now, we have the following formulation:

PC′ c · x → min,

x(δ−(W )) ≥ 1 (zr 6∈W,R ∩W 6= ∅), (15.1)

yR\{zr ,zi}(δ−(W ) ∩ δ−(zi)) + x(δ−(W ) \ δ−(zi)) ≥ 1 (zr 6∈W,Rzi ∩W 6= ∅), (15.2)

x(δ−(vi)) ≤ x(δ+(vi)) (vi ∈ V \ R), (15.3)

yR\{zr ,zi}(δ−(zi)) ≤ x(δ+(zi)) (zi ∈ Rzr), (15.4)

y ≥ 0, (15.5)

x ∈ {0, 1}|A|. (15.6)

This new formulation has less than 2|A| variables. Although it has an exponential number of
constraints, solving the linear relaxation is relatively easy. This will be described in Section 2.11.1.

2.6.6 Relation to Other Relaxations

Lemma 15 The relaxation LPF 1,1 is equivalent to LPF+FB.

Proof: The relaxations are nearly the same. The only difference is that LPF 1,1 considers all possible
roots. But as we have seen in Lemma 12, the choice of the root does not change the value of the
solution and the transformation of a solution for one root into a solution for another is covered exactly
by the constraints (13.2) and (13.3). 2

Lemma 16 The relaxation LPF 2 is strictly stronger than LPC′ and LPC′ is strictly stronger than
LPF 1,1 .

Proof: It is obvious that LPF 2 is stronger than LPC′ , as LPC′ is a restricted and aggregated version of
LPF 2 . Similarly, LPC′ contains a superset of variables and constraints of LPC+FB , which is equiva-
lent to LPF 1,1 . To see that they are also strictly stronger, consider the network G[1, 1]. If we choose
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a1, a2, or a3 as root, LPC′ has an integrality gap, but not LPF 2 . And if we contract the edge (v0, b1),
LPC′ gives the integer optimal value, while LPF 1,1 still has an integrality gap. 2

Lemma 17 The relaxation LPF 2 is strictly stronger then LP2t+FB .

Proof: Let (x, y) be an (optimal) solution of LPF 2 . For all {zk, zl} ⊆ Rzr and k < l define ỳkl :=
yr,{zk}−yr,{zk,zl}, ýkl := yr,{zl}−yr,{zk,zl}, and y̌kl := yr,{zk,zl}. The variables (x, y̌, ỳ, ý) satisfy the
constraints of LP2t. Because of (14.2) and (14.4), x satisfies also the flow-balance constraints (11.1),
so LPF 2 is stronger than LP2t+FB . The following example shows that it is even strictly stronger. 2
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Figure 2.7: Example with v(LP2t) < v(LPF+FB) = v(LPF 2) = v(PF 2).

Example 4 In Figure 2.7, setting all x-variables to 0.5 leads to a feasible (and optimal) solution for
LP2t with the value 13.5. An optimal solution for LPF 2 is x13 = x35 = x56 = x62 = x64 = 1, which
forms a Steiner tree with value 14. Notice that this is also an example with v(LP2t) < v(LPF+FB).
On the other hand, if v5 is moved to R, v(LPF+FB) = v(LPF ) = 12 < v(LP2t) = v(LP2t+FB) =
13.5 < v(LPF 2) = v(PF 2) (The optimal value for LPF+FB is reached by x̂ with x̂12 = x̂13 =
x̂14 = x̂25 = x̂35 = x̂45 = 1/3, x̂56 = x̂62 = x̂63 = x̂64 = 2/3). Thus, LPF+FB and LP2t are
incomparable.
This example has been chosen because it is especially instructive. For v(LP2t+FB) < v(LPF 2), as
for all other statements in this work that one relaxation is strictly stronger than another, we also know
(originally) undirected instances as examples.

Both relaxations LPF 2 and LP2t make it difficult for flows to two different terminals to split up
and rejoin by increasing the x-variables on arcs with rejoined flow. One could say that rejoining has
to be “payed” for. To get an intuitive impression why LPF 2 is strictly stronger than LP2t (or even
LP2t+FB), notice that in LPF 2 , there is one flow to each terminal and rejoining of each pair of these
flows has to be payed for; while in LP2t, it is just required that for each pair of terminals there are two
flows and rejoining them has to be payed for. The latter task is easier; for example it is possible (for
given x-values) that for each pair of terminals there are two flows that do not rejoin, but there are not
|Rz1 | flows to all terminals in Rz1 that do not rejoin pairwise; this is the case in Figure 2.7 (setting all
x-variables to 0.5).

2.7 A Hierarchy of Relaxations

2.7.1 Summary of the Relations

The following Figure 2.8 summarizes the relations stated before. All relaxations in the same box are
equivalent. A line between two boxes means that the relaxations in the upper box are strictly stronger
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than those in the lower box. Notice that the “strictly stronger” relation is transitive. For an overview
of the meaning of the abbreviations, see Table 2.1 on page 21.
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Figure 2.8: Hierarchy of relaxations.

2.7.2 Extensions to Polyhedral Results

It should be mentioned that some of the stated results on the relationship between the optimal values
of linear relaxations extend directly to polyhedral results concerning the corresponding feasible sets.
This is always the case if optimality is not used in the proofs (e.g., in Lemmas 5 or 6); and hence
the feasible set of one relaxation (projected into the x-space) is mapped into the corresponding set of
some other. The situation is different in the other cases (e.g., the proofs of Lemma 7 or Theorem 11).
Here the assumption of optimality of x can obviously be replaced by the assumption of minimality of
x (a feasible x is minimal if there is no feasible x′ 6= x with x′ ≤ x). In such cases, the presented
results extend directly to polyhedral results in the sense of inclusions between the dominants of the
corresponding polyhedra (projected into the x-space). (The dominant of Q is {x ′ | x′ ≥ x ∈ Q}.)

Note also that polyhedral results concerning the facets of the Steiner tree polyhedron (like those
in [CR94a, CR94b]) fall into a different category. Our line of approach has been studying linear re-
laxations of general, explicitly given (and frequently used) integer formulations; not methods for de-
scribing facet defining inequalities. Applying such descriptions is typically possible only if the graph
has certain properties (e.g., that it contains a special substructure) and involves separation problems
that are believed to be difficult.
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2.8 Steiner Trees and Minimum Spanning Trees in Hypergraphs

For geometric Steiner problems (Section 1.3), an approach based on full Steiner trees has been suc-
cessful (Warme, Winter and Zachariasen [WWZ00]). In geometric Steiner problems, a set of points
(in the plane) is to be connected at minimum cost according to some geometric distance metric. The
resulting interconnection, a Steiner minimal tree, can be decomposed into its full Steiner trees by
splitting its inner terminals (a full Steiner tree (FST) is a tree with no inner terminals, i.e., all termi-
nals have degree 1). The FST approach consists of two phases. In the first phase, the FST generation
phase, a set of FSTs is generated that is guaranteed to contain (all FSTs of) a Steiner minimal tree.
In the second phase, the FST concatenation phase, one chooses a subset of the generated FSTs whose
concatenation yields an Steiner minimal tree. Although there are point sets that give rise to an expo-
nential number of FSTs in the first phase, usually only a linear number of FSTs are generated, and
empirically the bottleneck of this approach has usually been the second phase, where originally meth-
ods like backtracking or dynamic programming have been used. A breakthrough occurred as Warme
[War98] observed that FST concatenation can be reduced to finding a minimum spanning tree in a hy-
pergraph whose vertices are the terminals and whose hyperedges correspond to the generated FSTs.
Although the minimum spanning tree in hypergraph (MSTH) problem is NP-hard, a branch-and-cut
approach based on the linear relaxation of an integer programming formulation of this problem has
been empirically successful.

In this section, we first compare the mentioned relaxation to some other, new relaxations of the
MSTH problem. We show that all these relaxations are equivalent (yield the same value), and thereby
refute a conjecture in the literature that a (straightforward) directed version of the original relaxation
might be stronger. Then we compare these relaxations with other relaxations that are based directly on
formulations of the Steiner problem in graphs. Note that the union of (the edge sets of) the FSTs gen-
erated in the first phase is a graph and the FST concatenation problem reduces to solving the classical
Steiner problem in this graph. Some experimental results, both on the quality of the relaxations and on
FST concatenation methods based on them, can be found in Sections 2.13 and 5.4.1, demonstrating
that our program package, which is designed for general networks, is an efficient alternative to the
MSTH-based method. Although the approach used by us was known, previous attempts had lead to
the assumption that it is unlikely to become competitive to the MSTH approach [War98].

Further Definitions for the MSTH approach

A Steiner tree T for a subset Q ⊆ R is called a full Steiner tree (FST) if all terminals in Q are
leaves of T . Let F be the set of FSTs constructed in the FST generation phase. By identifying each
FST T ∈ F with its set of terminals, we get a hypergraph H = (R,F ). For each FST T , let cT be
the sum of its edge weights. Any FST T can be rooted from each of its k leaves, leading to a set of
directed FSTs {~T1, . . . , ~Tk}. We denote the set of directed FSTs generated from F in this way by ~F .
In the following, we use the term FST both for the tree T and the corresponding hyperedge in H , the
meaning should be clear from the context.

Cuts in hypergraphs can be defined similarly to those in usual graphs (Section 2.1.1); here we use
∆ instead of δ (for example, ∆(S) := {T ∈ F | T ∩ S 6= ∅, T ∩ S̄ 6= ∅}).

2.8.1 Minimum Spanning Trees in Hypergraphs: Formulations and Relaxations

We begin with a formulation of Warme [War98] for the MSTH problem:
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PFST

∑

T∈F

cTXT → min,

∑

T∈F

(|T | − 1)XT = |R| − 1, (16.1)

∑

T, T∩S 6=∅

(|T ∩ S| − 1)XT ≤ |S| − 1 (∅ 6= S ⊂ R), (16.2)

XT ∈ {0, 1} (T ∈ F ). (16.3)

Lemma 18 Any feasible solution of PFST describes a spanning tree for the hypergraph (R,F ) and
vice versa.

Proof: A proof (with slightly different syntax) is given in [War98]. 2

Using the directed counterpart of F and following the same line as for minimum spanning trees
for usual graphs in Magnanti and Wolsey [MW95], we get the following integer program:

P
FS ~T

∑

~T∈~F

c~T
x~T

→ min,

∑

~T∈~F

(|~T | − 1)x~T
= |R| − 1, (17.1)

∑

~T , ~T∈∆−(zt)

x~T
= 1 (zt ∈ Rz1), (17.2)

∑

~T , ~T∩S 6=∅

(|~T ∩ S| − 1)x~T
≤ |S| − 1 (∅ 6= S ⊂ R), (17.3)

x~T
∈ {0, 1} (~T ∈ ~F ). (17.4)

It is easy to see that P
FS ~T

is a valid formulation of the MSTH problem.

Lemma 19 LP
FS ~T

is equivalent to LPFST .

Proof: The equivalence can be shown by a (proper) choice of the variables representing each FST T
and corresponding directed FSTs ~T1, . . . , ~Tk such that XT = x~T1

+ · · · + x~Tk
. The basic ideas are

similar to those in the proof of Lemma 6 in Section 2.3.3. Details can be found in [PV01d]. 2

Now consider the following cut-formulation of the MSTH problem:

PFSC

∑

~T∈~F

c~T
x~T

→ min,

∑

~T∈~F

(|~T | − 1)x~T
= |R| − 1, (18.1)

∑

~T , ~T∈∆−(S)

x~T
≥ 1 (z1 6∈ S, S ∩Rz1 6= ∅), (18.2)

x~T
∈ {0, 1} (~T ∈ ~F ). (18.3)

It can be verified (and follows from the proof of the next lemma) that PFSC is a valid formulation of
the MSTH problem.
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Lemma 20 LP
FS ~T

is equivalent to LPFSC .

Proof: First observe that for any x feasible for LPFSC summing (18.2) for all zt ∈ Rz1 we have:

|R| − 1 ≤
∑

zt∈Rz1

∑

~T∈∆−(zt)

x~T
≤

∑

~T

(|leaves(~T )|)x~T
=

∑

~T

(|~T | − 1)x~T
.

Together with (18.1) this means that x satisfies (17.2). It follows that
∑

~T∈∆−(z1) x~T
= 0.

Now consider any x that is feasible for LPFST or LPFSC ; we will show that in either case x is
feasible for both. For any partition S∪̇S̄ = R, we have:

∑

~T , ~T∩S 6=∅

(|~T ∩ S| − 1)x~T
=

∑

~T , ~T∩S 6=∅

(|leaves(~T ) ∩ S| + |root(~T ) ∩ S| − 1)x~T

=
∑

~T , ~T∩S 6=∅

|leaves(~T ) ∩ S|x~T
−

∑

~T , ~T∩S 6=∅, root(~T ) 6∈S

x~T

=
∑

zt∈S

∑

~T∈∆−(zt)

x~T
−

∑

~T , ~T∈∆−(S)

x~T

= |S ∩Rz1 | −
∑

~T , ~T∈∆−(S)

x~T

Now there are two cases:

(I) z1 ∈ S̄:

∑

~T , ~T∩S 6=∅

(|~T ∩ S| − 1)x~T
= |S| −

∑

~T , ~T∈∆−(S)

x~T

This means that x satisfies (17.3) if and only if it satisfies (18.2).

(II) z1 ∈ S:

∑

~T , ~T∩S 6=∅

(|~T ∩ S| − 1)x~T
= |S| − 1 −

∑

~T , ~T∈∆−(S)

x~T

So x satisfies (17.3), because it is non-negative.

2

Note that we have actually proved a stronger result: The sets of feasible solutions (and correspond-
ing polyhedra) are identical for both relaxations. With respect to optimal solutions, our assumption
that the edge costs are positive leads directly to the observation that

∑

~T∈∆−(z1) x~T
= 0. A more de-

tailed analysis (similar to our proofs of Lemmas 8 and 9 in Section 2.4) leads to the observation that for
any optimal solution for LPFSC without (18.1) and for every zt ∈ Rz1 , it holds:

∑

~T∈∆−(zt)
x~T

= 1.
So dropping the constraints (18.1) does not change the optimal solution value of LPFSC .
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2.8.2 Relation to the Relaxations of the Steiner Problem in Graphs

Lemma 21 LPFSC is (strictly) stronger than LPC and LPC+FB .

Proof: Let x̂ be an optimal solution of LPFSC . For each arc [vi, vj ] ∈ A that is part of directed FSTs
~T1, . . . , ~Tl, let x∗ij := x̂~T1

+ · · · + x̂~Tl
. It is easy to verify that x∗ is feasible for LPC and yields

the same value as v(LPFSC). Now consider a non-terminal vj . Any directed FST containing an arc
[vi, vj ] ∈ δ−(vj) includes also at least one arc [vj , vk] ∈ δ+(vj), so x∗ satisfies also the flow-balance
constraints (11.1).

The following example shows that v(LPFSC) can indeed be larger than v(LPC+FB). 2

z1

2 2

1 1

2 2

22 1

s1 s3
s

z2 s4 z
3

2

z
1

4

Figure 2.9: Example with v(LPC+FB) < v(LPFSC) = v(PFSC)

Example 5 In Figure 2.9, we have v(PFSC) = v(LPFSC) = 9, v(LPC) = v(LPC+FB) = 8.5.

Lemma 22 LPFSC is incomparable to LP2t or LPC′ or LPF 2 .

Proof: The lemma follows from the following two examples. 2

Example 6 After contracting the edge (s3, z4) in Figure 2.9, we have v(LPFST ) = 7.5 (by setting
to 0.5 the X-values for the FSTs (z1, s1, z4, z2), (z1, s2, z4, z3) and (z4, s4, z2, z3)), but v(LP2t) =
v(LPC′) = v(LPF 2) = v(PF 2) = 8.

Note that this is also an example where the choice of FSTs in the first phase influences the value
of LPFST : If only the FSTs (z1, s1, z2), (z1, s1, z4), (z1, s2, z3), (z1, s2, z4) and (z4, s4, z2, z3) are
generated in the first phase (a Steiner minimal tree can be constructed by the concatenation of the
second and the last FST), then v(LPFST ) = v(PFST ) = 8. Note also that v(LPC) = v(LPC+FB) =
7.5 in both cases.

Example 7 In Figure 2.9, if we choose z4 as the root we get v(LP2t) = v(LPC′) = v(LPF 2) = 8.5,
but v(PFSC) = v(LPFSC) = 9.

We note that the argumentation above can be extended to LPF k1,k2 for restricted k1, k2.
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2.9 Approximation: (Primal-) Dual Algorithms

To use an LP relaxation algorithmically, many approaches are based on the LP duality theory. Any
feasible solution to the dual of such a relaxation provides a lower bound for the original problem. The
classical dual-ascent algorithms construct a dual feasible solution step by step, in each step increasing
some dual variables while preserving dual feasibility. This is also the main idea of many recent approx-
imation algorithms based on the primal-dual method, where an approximate solution to the original
problem and a feasible solution to the dual of an LP relaxation are constructed simultaneously. The
performance guarantee is proved by comparing the values of both solutions [GW96].

In this section we study some old and new dual-ascent based algorithms for computing lower and
upper bounds for the Steiner problem. Two approximation ratios will be of concern: the ratio between
the upper bound and the optimum, and the ratio between the (integer) optimum and the lower bound.
The main emphasis here will be on lower bounds, with upper bounds mainly used in a primal-dual
context to prove a performance guarantee for the lower bounds. Despite the fact that calculating tight
lower bounds efficiently is highly desirable (for example in the context of exact algorithms (Chapter 5)
or reduction tests (Chapter 3)), this issue has found much less attention in the literature. For powerful
techniques for computing upper bounds, see Chapter 4.

We begin with the classical primal-dual algorithm for the (generalized) Steiner problem based on
the undirected cut relaxation. We give some new insights into this algorithm, and show that its bounds
can even be computed in time O(m + n log n), improving the previous time bound of O(n2 log n).
Then we study a classical dual-ascent approach based on the directed cut relaxation, and show that it
cannot guarantee a constant approximation ratio for the generated lower (or upper) bounds. Finally, we
introduce a new primal-dual algorithm based on the directed cut relaxation which guarantees a ratio
of at most 2 between the upper and lower bounds, while producing tight lower bounds empirically.
Detailed computational experiments and some additional explanations are given in [PV00b].

For LPC , the dual linear program DLPC uses dual variables uW for each Steiner cut (W,W )
(z1 ∈W and Rz1 ∩W 6= ∅):

DLPC

∑

uW → max,
∑

W, [vi,vj ]∈δ−(W )

uW ≤ cij ([vi, vj ] ∈ A), (19.1)

u ≥ 0. (19.2)

The constraints
∑

uW ≤ cij are called the (cut) packing constraints. The dual of the undirected
program LPUC is similar, replacing directed cuts and edges with undirected ones.

2.9.1 Undirected Cuts: A Primal-Dual Algorithm

Some of the best-known primal-dual approximation algorithms are designed for a class of constrained
forest problems which includes the Steiner problem (see [GW95]). These heuristics are essentially
dual-ascent algorithms based on undirected cut formulations. For the Steiner problem, such an algo-
rithm guarantees an upper bound of 2 − 2/r on the ratio between the values of the provided primal
and dual solutions. This is the best possible guarantee when using the undirected cut relaxation LPUC ,
since it is easy to construct instances (even with r = n) where the ratio v(PUC)/v(LPUC) is exactly
2 − 2/r (see for example [GB93]). In the following, we briefly describe such an algorithm when re-
stricted to the Steiner problem, show how to make it much faster for this special case, and give some
new insights into it. We denote this algorithm with PDUC (PD stands for Primal-Dual and UC stands
for Undirected Cut).
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The algorithm maintains a forest F , which initially consists of isolated vertices of V . A connected
component S of F is called an active component if (S, S) defines a Steiner cut. In each iteration, dual
variables corresponding to active components are increased uniformly until a new packing constraint
becomes tight, i.e. the reduced cost c(e)−∑

uS of some edge e becomes zero, which is then added to
F (ties are broken arbitrarily). The algorithm terminates when no active component is left; at this time,
F defines a feasible Steiner tree and

∑

(S,S) Steiner cut uS represents a lower bound on the weight of
any Steiner tree for the observed instance. In a subsequent pruning phase, every edge of F that is
not on a path (in F ) between two terminals is removed. In [GW95], it is shown how to make this
algorithm (for the generalized problem) run in O(n2 log n) time; see also [GGW93, Kle94] for some
improvements.

When restricted to the Steiner problem and as far as the constructed Steiner tree is considered, the
algorithm PDUC is essentially the DNH (Section 1.2), implemented by an interleaved computation of
shortest paths trees out of terminals and a minimum spanning tree for the terminals with respect to their
distances. In fact, every Steiner tree T provided by Mehlhorn’s O(m+ n log n) time implementation
of DNH can be considered as a possible result of PDUC . We observed that even the lower bound
calculation can be performed in the same time: Let T ′ be a minimum spanning tree for R provided by
Mehlhorn’s implementation of DNH and let e′1, . . . , e

′
r−1 be its edges in non-decreasing cost order.

The algorithm PDUC increases all dual variables corresponding to the initially r active components

by c′(e′
1
)

2 , then the components corresponding to the vertices of e′1 are merged. The dual variables

of the remaining r − 1 components are increased by c′(e′
2
)−c′(e′

1
)

2 (which is possibly zero) before
the next two components are merged, and so on. Therefore, the lower bound provided by PDUC

is (defining c′(e′0) := 0) simply
∑r−1

i=1 (r − i + 1)
c′(e′i)−c′(e′i−1

)

2 = 1
2 (c′(e′r−1) +

∑r−1
i=1 c

′(e′i)) =
1
2(c′(e′r−1) + c′(T ′)), which can be computed in O(r) time once T ′ is available.

Using this line of argumentation, the results concerning the bounds provided by PDUC can be
proven without the notion of primal-dual algorithms altogether:

Lemma 23 Let Topt be an optimal Steiner tree for an instance (G,R) of the Steiner problem and T ′ a
minimum spanning tree in the distance network DG(R) with edges e′1, . . . , e

′
r−1 as described before.

Define L := 1
2 (c′(e′r−1) + c′(T ′)). It holds: L ≤ c(Topt) ≤ c′(T ′) ≤ (2 − 2

r
)L.

Proof: Consider a preorder walk around the tree Topt beginning with an arbitrary terminal as the root.
Such a walk will traverse every edge of Topt exactly twice. Introduce a new edge e′′j with the same
cost c′′(e′′j ) as the corresponding path in the walk every time a new terminal is encountered and when
the walk terminates at the root. Let e′′1 , . . . , e

′′
r be the so constructed edges in non-decreasing cost

order. The edges e′′1 , . . . , e
′′
r−1 build a tree T ′′ with the cost c′′(T ′′) = c′′(e′′1) + · · · + c′′(e′′r−1) which

spans all terminals. Obviously, T ′′ is no cheaper than T ′; and its longest edge e′′r−1 is not cheaper than
e′r−1 (otherwise, replacing e′r−1 by a suitable edge of T ′′ would create a tree spanning all terminals and
cheaper than T ′). So we have: 2c(Topt) = c′′(T ′′)+c′′(e′′r ) ≥ c′′(T ′′)+c′(e′r−1)−c′′(e′′r−1)+c

′′(e′′r ) ≥
c′′(T ′′) + c′(e′r−1) − c′′(e′′r ) + c′′(e′′r ) = c′′(T ′′) + c′(e′r−1) ≥ c′(T ′) + c′(e′r−1) = 2L.
On the other hand, we have: 2L = c′(T ′) + c′(e′r−1) ≥ c′(T ′) + 1

r−1c
′(T ′) = (1 + 1

r−1)c′(T ′), so
c(Topt) ≤ c′(T ′) ≤ (2 − 2

r
)L. 2

From this new viewpoint at PDUC we get some insight about the gap between the provided upper
and lower bounds. Assuming that the cost of T ′ is not dominated by the cost of its longest edge and
that the Steiner tree corresponding to T ′ is not much cheaper than T ′ itself (which is usually the case),
the ratio between the upper and lower bound is nearly two; and this suggests that either the lower
bound, or the upper bound, or both are not really tight.
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Empirically, results on different types of instances (from SteinLib [Ste97]) show an average gap
of about 45% (of optimum) between the upper and the lower bounds calculated by PDUC . This is in
accordance with the relation we established above between these two values. This gap is mainly due
to the lower bounds, where the gap to optimum is typically over 30%. So although this heuristic can
be implemented to be very fast empirically (small fractions of a second even for fairly large instances
(several thousands of vertices)), it is not suitable for computing tight bounds.

2.9.2 Directed Cuts: A Dual-Ascent Algorithm

In the search for an approach for computing tighter lower and upper bounds, the directed cut relaxation
is a promising alternative. Although no better upper bound than the 2 − 2/r one from the previous
section is known on the integrality gap of this relaxation, the gap is conjectured to be much closer to
1, and the worst instance known has an integrality gap of approximately 8/7 (Section 2.6.1). There
are many theoretical and empirical investigations that indicate that the directed relaxation is a much
stronger relaxation than the undirected one (see for example [CGR92, CR94a]). As an example, for all
D-instances of the OR-Library v(LPC) is equal to v(PC ). Even for the instances where there is a gap,
the knowledge of a solution of LPC has often been sufficient to solve the instance exactly (without
branching) through bound-based reduction techniques (Section 3.3). So, a really interesting problem
is how to calculate (or sufficiently approximate) a solution for LPC .

In [PV01c], we could achieve impressive empirical results (including extremely tight lower and
upper bounds) using this relaxation. In that work, extensions of a dual ascent algorithm of Wong
[Won84] played a major role. Although many works on the Steiner problem use variants of this heuris-
tic (see for example [Dui93, HRW92, Voß92]), none of them includes a discussion of the theoretical
quality of the generated bounds. In this section, we show that none of these variants can guarantee a
constant approximation ratio for the generated lower or upper bounds.

The dual-ascent algorithm in [Won84] is described using the multicommodity flow relaxation.
Here we give a short alternative description of it as a dual-ascent algorithm for the (equivalent) relax-
ation LPC , which we denote with DAC . The algorithm maintains a set H of arcs with zero reduced
costs, which is initially empty. For each terminal zt ∈ Rz1 , define the component of zt as the set of
all vertices for which there exists a directed path to zt in H . A component is said to be active if it
does not contain the root. In each iteration, an active component is chosen and the dual variable of
the corresponding Steiner cut is increased until the packing constraint for an arc in this cut becomes
tight. Then the reduced costs of the arcs in the cut are updated and the arcs with reduced cost zero
are added to H . The algorithm terminates when no active component is left; at this time, H (regarded
as a subgraph of G) is a feasible solution for the observed instance of the (directed) Steiner problem.
To get a (directed) Steiner tree, in [Won84] the following method is suggested: Let Q be the set of
vertices reachable from z1 in H . Compute a minimum directed spanning tree for the subgraph of G
induced by Q and prune this tree until all its leaves are terminals. In [HRW92], this method is adapted
to the undirected version, mainly by computing a minimum (undirected) spanning tree instead of a
directed one.

To investigate the quality of the bounds generated by DAC , two difficulties must be considered.
The first one is the choice of the root: although the value v(LPC ) for an instance of (undirected)
Steiner problem is independent of the choice of the root [GM93], the lower bound generated by
DAC is not, so the argumentation must be independent of this choice. The second difficulty is the
choice of an active component in each iteration. In the original work of Wong [Won84], the chosen
component is merely required to be a so-called root component. A component S corresponding to
a terminal zt is called a root component if for any other terminal zs in this component, there is a
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path from zt to zs in H . This is equivalent to S being a minimal (with respect to inclusion) active
component. An empirically more successful variant uses a size criterion: at each iteration, an active
component of minimum size is chosen (see [Dui93, PV01c]). Note that such a component is always a
root component. So, in this context it is sufficient to study the variant based on the size criterion. For
reference in later sections, we give a high-level description of DAC using the size criterion, which we
simply denote with DUAL-ASCENT:

• Initialize the reduced costs (c̃ := c), the lower bound (lower := 0) and assume all dual variables
u have been set to zero.

• In each iteration, choose a terminal zt ∈ Rz1 not reachable from the root by edges of zero
reduced cost. Let W , zt ∈W , be the smallest set such that (W,W ) is a Steiner cut and c̃ij > 0
for all [vi, vj ] ∈ δ−(W ). Set the dual variable uW to ∆ := min{c̃ij | [vi, vj ] ∈ δ−(W )} and let
lower := lower + ∆ and c̃ij := c̃ij − ∆ (for all [vi, vj ] ∈ δ−(W )).

• Repeat until no such terminal is left.

A good implementation of this algorithm has running time O(a · min{a, rn}) (see for example
[Dui93]). Although the algorithm usually runs much faster than this bound would suggest, we have
constructed instances on which every dual-ascent algorithm following the same scheme must perform
Θ(n4) operations.

Now we show that the bounds generated by DAC can deviate arbitrarily from optimum.
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Figure 2.10: Arbitrarily bad case for DAC .

Example 8 In Figure 2.10, there are c2 +c+1 terminals (filled circles); the top terminal is considered
as the root. The edges incident with the left c terminals have costs c2, all the other edges have costs
c. According to the size criterion, each of the terminals (i.e. their components) at the left is chosen
twice before any of the terminals at the bottom can be chosen a second time. But then, there is no



48 CHAPTER 2. RELAXATIONS AND LOWER BOUNDS

active component anymore and the algorithm terminates. So, the lower bound generated by DAC is in
Θ(c3). On the other hand, it is easy to see that for this instance: v(LPC) = v(PC) ∈ Θ(c4).

Now imagine c copies of this graph sharing the top terminal. For the resulting instance, we have
v(LPC) = v(PC) ∈ Θ(c5); but the lower bound generated by DAC will be in Θ(c4) independent of
the choice of the root, because the observation above will remain valid in at least c− 1 copies.

Now we turn to upper bounds: By changing the costs of the edges incident to the left terminals
from c2 to c+ ε (for a small ε) in Figure 2.10 we get an instance for which the ratio between the upper
bound calculated by the algorithm described in this section and v(PC) can be arbitrarily large. This is
also the case for all other approaches in the literature for computing upper bounds based on the graph
H provided by DAC , because v(PC) ∈ Θ(c3) for such an instance, but there is no solution with cost
o(c4) in the subgraph H generated by DAC .

Despite its bad performance in the worst case, the algorithm typically provides fairly tight lower
bounds, with average gaps ranging from a small fraction of a percent to about 2%, depending on the
type of instances. For example, out of the 20 D-instances of the OR-Library, a run of DUAL-ASCENT
yields a lower bound equal to the optimum (i.e., v(PC )) for 12 instances; the average gap between
lower bound and optimum is 0.4%. The upper bounds are not good, with average gaps from 8% to
30%, again depending on the type of instances. The running times are still quite tolerable (less than
one second even for fairly large instances).

The described choices in DAC , namely the choice of the root and the choice of zt in each iteration,
can also have a great practical impact. For this reason we start DAC with different roots if a strength-
ening of the bound is necessary. Again, for the D-instances, considering up to ten different roots
improves the average gap to 0.1%; achieving the optimum for 16 instances. Further improvements
can be achieved by using the reductions and upper bound calculations, which are done in combination
with DAC (see Sections 3.3.2 and 4.4).

We also tested different criteria for the choice of zt in each iteration (our standard criterion is the
size criterion). We had some success with the following idea that tries to guide DAC with the help
of a heuristically constructed Steiner tree: Assume that the upper bound is already optimal. DAC can
reach the optimum only if in each set δ−(W ) there is exactly one edge of the corresponding Steiner
tree. Of course this criterion can not always be realized, especially if the best known Steiner tree is
not optimal or v(LPC) < v(PC). Nevertheless, it is a heuristic criterion that in many cases leads to
better lower (and, indirectly, upper) bounds.

Here a question arises naturally: Is there another (efficient) strategy that always leads to better
lower bounds or even v(LPC) itself? Note that the latter would not be surprising from a complexity
theory point of view, because v(LPC) can be calculated in polynomial time. This problem is partic-
ularly relevant if an instance is to be solved to optimality: although the lower bounds generated by
DAC usually come close to v(LPC), the remaining gap is sometimes larger than desired in the context
of exact algorithms. If such instances are very large, a modification of DAC seems to be the most ef-
ficient approach. A principal difficulty here is that LPC might have only fractional optimal solutions
and so v(LPC) might be fractional even for integer edge costs; something which is never the case for
the solutions provided by DAC . But this could be remedied by allowing dual variables to be increased
by a suitable fraction of (reduced) edge costs (see also the next subsection). So the question here is:
Is there a variant of DAC , probably involving a more sophisticated strategy for choosing active com-
ponents and allowing arbitrary increment of dual variables, which always reaches the value v(LPC)?
We answer this question in the negative by presenting an instance for which no order of choosing the
components can lead to the “correct” cuts.
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Figure 2.11: No choice in DAC leads to correct cuts.

Example 9 In Figure 2.11, the top terminal is considered as the root; and all edges have costs 1. It is
easy to see that for this instance, v(PC) = v(LPC) = 6 (the relevant cuts are sketched using dashed
lines). Now consider the behavior of DAC : If the dual variables corresponding to the terminals in the
middle are not raised over 1, the dual variables of the components corresponding to the terminal at the
bottom will sum to 3, and the generated lower bound will be 5. Now assume that the dual variables
corresponding to a terminal in the middle sum to 1 + α, 0 < α ≤ 1. In the network with the resulting
reduced costs, it is easy to find a Steiner tree with the cost 5−2α, so the generated lower bound would
be at most (1 + α) + (5 − 2α) = 6 − α. Again, the argumentation can be made independent of the
choice of the root by letting several copies of this graph share the top terminal.

2.9.3 Directed Cuts: A New Primal-Dual Algorithm

The previously described heuristics had complementary advantages: The first, PDUC , guarantees an
upper bound of 2 on the ratio between the generated upper and lower bounds, but empirically, it
does not perform much better than in the worst case. The second one, DAC , cannot provide such a
guarantee, but empirically it performs much better than the first one, especially for computing lower
bounds. In this section we describe a new algorithm that combines both features.

An idea which is promising at the first sight is the direct application of the primal-dual method of
PDUC (simultaneous increasing of all dual variables corresponding to active components and merging
components that share a vertex) to the directed cut relaxation. The obtained lower bound (using an
additional trick to make it independent of the choice of the root) is the weight of a minimum spanning
tree in a graph Ĝ similar to the graph G′ defined in Section 1.2, but with the cost of each edge (zi, zj)
defined as ĉ(zi, zj) := min{min{dG(zi, vk), dG(zj , vl)} + c(vk, vl) | vk ∈ N(zi), vl ∈ N(zj)}. We
will use this lower bound l̂ in Section 3.3.1 in the context of reduction techniques. It holds that l̂ ≥
1
2c

′(T ′), where T ′ is a minimum spanning tree for G′: Let zi − v̂k − v̂l be the path in G corresponding
to the edge (zi, zj) in Ĝ. Since v̂l ∈ N(zj), we have dG(zj , v̂l) ≤ dG(zi, v̂k)+c(v̂k, v̂l), so ĉ(zi, zj) ≥
1
2(dG(zi, v̂k) + c(v̂k, v̂l) + dG(zj , v̂l)) ≥ 1

2c
′(zi, zj), and the claimed relation between the weights

of the corresponding minimum spanning trees follows straightforwardly. So, we have again a ratio
of at most 2 between the upper and the lower bound, and we can calculate both bounds in O(m +
n log n) time, as it was the case for PDUC ; although the two methods for computing lower bounds are
incomparable (neither method always generate tighter bounds than the other). But the main drawback
of PDUC remains: Empirically, the generated lower bounds are again not nearly as tight as those
provided by DAC .
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The main idea for a successful new approach is not to merge the components, but to let them grow
as long as they are (minimally) active. As a consequence, dual variables corresponding to several cuts
that share the same arc may be increased simultaneously. Because of that, the reduced costs of arcs
that are in the cuts of many active components are decreased much faster than the other ones and we
have constructed instances where a straightforward primal-dual algorithm based on this approach fails
to give a performance ratio of two.

Therefore, we group all components that share a vertex together and postulate that in each it-
eration, the total increase ∆ of dual variables corresponding to each group containing at least one
active component must be the same. If we denote the number of active components in a group Γ with
activesInGroup(Γ), the dual variable corresponding to each of these components will be increased by
∆/activesInGroup(Γ). Similar to the case of DAC , a component is called active if it does not contain
the root or include an active component of another terminal (ties are broken arbitrarily). A terminal is
called active if its component is active; and a group is called active if it contains an active terminal (by
this definition it is guaranteed that each active root component corresponds to one active terminal). If
we denote with activeGroups the number of active groups, the lower bound lower will be increased in
each iteration by ∆·activeGroups.

To manage the reduced costs efficiently, a concept like that of distance estimates in the algo-
rithm of Dijkstra is used (see for example [CLR90]). For each arc f , the value d(f) estimates
the value of dGroup (amount of uniform increase of group duals, i.e. the sum of ∆-values) that
would make f tight (set its reduced cost c̃(f) to zero). Because of the definition of groups, for
an arc f with reduced cost c̃(f) > 0, all active components S with f ∈ δ−(S) will be in
the same group Γ. If there are activesOnArc(f) such components, then d(f) should be c̃(f) ·
activesInGroup(Γ)/activesOnArc(f)+dGroup . For updating the d-values we use two further vari-
ables for each arc f : reducedCost(f) and lastReducedCostUpdate(f); they are initially set to c(f)
and 0, respectively. If activesOnArc(f) and/or activesInGroup(Γ) change, the new value for d(f) can
be calculated by:

reducedCost (f) := reducedCost (f) − (dGroup − lastReducedCostUpdate (f)) ·
activesOnArcold(f)/activesInGroupold(Γ);

d(f) := reducedCost (f) · activesInGroupnew(Γ)/activesOnArcnew(f) + dGroup ;
lastReducedCostUpdate (f) := dGroup .

Below we give a description of the algorithm PDC in pseudocode with macros (a call to a macro is
to be simply replaced by its body). A priority queue PQ manages the arcs using the d-values as keys.
The groups are stored in a disjoint-set data structure Groups. Two lists ~H andH store the tight arcs and
the corresponding edges. A Stack is used to perform depth-first searches from vertices newly added to
a component. The array visited[z, v] indicates whether the vertex v is in the component of the termi-
nal z; firstSeenFrom[v] gives the first terminal whose component has reached the vertex v; active[z]
indicates whether the terminal z is active; d[f ] gives the d-value of the arc f ; activesInGroup[Γ]
stores the number of the active components in the group Γ; and activesOnArc[f ] gives the number of
components that have the arc f in their cuts.

PDC(G,R, z1)

1 initialize PQ, Groups, H , ~H;
2 forall z ∈ Rz1 : (initializing the components)
3 Groups.MAKE-SET(z); activesInGroup[z] := 1; active[z] :=TRUE;
4 forall f ∈ δ−(z) :
5 activesOnArc[f ] := 1; d[f ] := c(f); PQ.INSERT(f, d[f ]);
6 forall v ∈ V : visited[z, v] := FALSE;
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7 visited[z, z] := TRUE; firstSeenFrom[z] := z;
8 forall v ∈ V \R : firstSeenFrom[v] := 0;
9 activeGroups := r − 1; dGroup := 0; lower := 0;
10 while activeGroups > 0 :
11 f := [vi, vj ] := PQ.EXTRACT-MIN(); (get the next arc becoming tight)
12 ∆ := d[f ]−dGroup; dGroup := d[f ]; lower := lower + ∆·activeGroups;
13 mark [vi, vj ] as tight;
14 if (vi, vj) is not in H : (i.e. [vj , vi] is not tight)
15 H .APPEND((vi, vj)); ~H .APPEND([vi, vj ]);
16 zi := firstSeenFrom[vi ]; zj := firstSeenFrom[vj ];
17 if zi = 0 : firstSeenFrom[vi] := zj ;
18 else if Groups.FIND(zi) 6= Groups.FIND(zj) : MERGE-GROUPS(zi, zj);
19 forall active z ∈ Rz1 :
20 if visited[z, vj ] and not visited[z, vi ] : EXTEND-COMPONENT(z, vi);

21 H ′ := H; ~H ′ := ~H; PD-PRUNE(H ′, ~H ′);
22 return H ′, lower; (upper: the cost of H ′)

EXTEND-COMPONENT(z, vi) (modified depth-first search)
1 Stack.INIT(); Stack.PUSH(vi);
2 while not Stack.EMPTY() :
3 v :=Stack.POP();
4 if (v = z1) or (v ∈ R \ {z} and active[v]) :
5 REMOVE-COMPONENT(z);
6 break;
7 if not visited[z, v] :
8 visited[z, v] := TRUE;
9 forall [v, w] ∈ δ+(v) :
10 if visited[z, w] :
11 activesOnArc[[v, w]] :=activesOnArc[[v, w]] − 1;
12 update the key of [v, w] in PQ;
13 else :
14 if [w, v] is already tight : Stack.PUSH(w);
15 else :
16 activesOnArc[[w, v]] :=activesOnArc[[w, v]] + 1;
17 update the key of [w, v] in PQ;

MERGE-GROUPS(zi, zj)
1 gi := Groups.FIND(zi); gj := Groups.FIND(zj);
2 if activesInGroup[gi ] > 0 and activesInGroup[gj ] > 0 :
3 update in PQ the keys of all arcs entering these groups;
4 activeGroups := activeGroups−1;
5 Groups.UNION(gi, gj); gnew :=Groups.Find(gi);
6 activesInGroup[gnew ] := activesInGroup[gi ] + activesInGroup[gj ];

REMOVE-COMPONENT(z)
1 active[z] :=FALSE; g :=Groups.FIND(z);
2 update in PQ the keys of all arcs entering g or the component of z;
3 activesInGroup[g] := activesInGroup[g] − 1;
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4 if activesInGroup[g] = 0 : activeGroups := activeGroups −1;

PD-PRUNE(H ′, ~H ′)

1 forall [vi, vj ] in ~H ′, in reverse order :
2 if H ′ without (vi, vj) connects all terminals :

3 H ′.DELETE((vi, vj)); ~H
′.DELETE([vi, vj ]);

In PDC , all initializations in Lines 1-9 need O(rn + a log n) time. The loop in the Lines 10-
20 is repeated at most a times, because in each iteration an arc becomes tight and there will be
no active terminal (or group) when all arcs are tight. Over all iterations, Line 11 needs O(a log n)
time and Lines 12-20 excluding the macros O(ar) time. Each execution of MERGE-GROUPS needs
O(a log n) time and there can be at most r − 1 such executions; the same is true for REMOVE-
COMPONENT. For each terminal, the adjacency list of each vertex is considered only once during
all executions of EXTEND-COMPONENT, so each arc is considered (and its key is updated in PQ)
at most twice for each terminal, leading to a total time of O(ra log n) for all executions of EXTEND-
COMPONENT. So the Lines 1-20 can be executed in O(ra log n) time. The following lemma enables
us to perform the reverse order deletion in PD-PRUNE efficiently.

Lemma 24 Consider a graph H̃ with the edge setH in which the weight of each edge ẽ is the position
p(ã) of the corresponding arc ã in the list ~H . Let T ′ be the (edge set of a) tree generated by computing
a minimum spanning tree for H̃ and pruning it until it has only terminals as leaves. Then we have:
T ′ = H ′.

Proof: First notice that there is a unique minimum spanning tree in H̃ , since no two edge weights are
equal. Now consider the computation of the minimum spanning tree T̃ for H̃ with the algorithm of
Kruskal. Let e∗ be an edge in H ′. By the construction of H ′, we know that the endpoints of e∗ are not
connected by edges in E1 := {ẽ ∈ H ′ | p(ẽ) > p(e∗)} ∪ {ẽ ∈ H | p(ẽ) < p(e∗)}, because adding e∗

to E1 changes the connectivity relation for at least one pair of terminals. Consequently, the endpoints
are not connected by edges in {ẽ ∈ T̃ | p(ẽ) < p(e∗)}, which is a subset of E1. Thus, e∗ is included
in T̃ by the algorithm of Kruskal.
Now we have H ′ ⊆ T̃ . No edge ẽ in T̃ \ H ′ can be on a path between two terminals in T̃ , because
then there would be another path between these two terminals in H ′ (and hence in T̃ ) that does not
use ẽ and T̃ would contain a cycle. So, no edge in T̃ \H ′ will be present in T ′, meaning that T ′ ⊆ H ′.
Now observe that T ′ is a tree that contains all terminals. No edges can be added to such a tree without
creating cycles or non-terminals of degree 1, both features that are not present in H ′ by its construc-
tion. So we have H ′ = T ′. 2

Using Lemma 24, PD-PRUNE can be implemented by (mainly) computing a minimum spanning
tree in H̃ . Since the edges of H̃ are already available in a sorted list, this minimum spanning tree can
be computed even in O(m α(m,n)) time. This leads to a total time of O(ra log n) for PDC .

Below we show that the ratio between the upper bound upper and the lower bound lower generated
by PDC is at most 2.

Let ~T be (the arcs of) the directed tree obtained by rooting H ′ at z1. For each component S, we
denote with activesInGroupOf(S) the total number of active components in the group of S.

Lemma 25 At the beginning of each iteration in the algorithm PDC , it holds:

∑

S active

| ~H ′ ∩ δ−(S)|
activesInGroupOf (S)

≤ (2 − 1

r − 1
) · activeGroups.
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Proof: Several invariants are valid at the beginning of each iteration in PDC :

(1) All vertices in a group are connected by the edges currently in H .
(2) For each active group Γ, at most one arc of δ−(Γ) will belong to ~T , since all but one of the

edges in δ(Γ)∩H will be removed by PD-PRUNE because of (1). So ~T will still be a tree if for
each active group Γ, all arcs that begin and end in Γ are contracted.

(3) For each group Γ and each active component S ⊆ Γ, no arc [vi, vj] ∈ δ−(S) with vi, vj ∈ Γ

will be in ~H ′, since it is not yet in ~H (otherwise it would not be in δ−(S)) and if it is added to
~H later, it will be removed by PD-PRUNE because of (1).

(4) For each active group Γ and each arc [vi, vj ] ∈ ~T ∩ δ+(Γ), there is at least one active terminal
in the subtree ~Tj of ~T with the root vj . Otherwise (vi, vj) would be removed by PD-PRUNE,
because all terminals in ~Tj are already connected to the root by edges in H .

(5) Because of (2), (4) and since at least one arc in ~T leaves z1, it holds:
∑

Γ active group |~T ∩ δ−(Γ)| ≥ 1 +
∑

Γ active group |~T ∩ δ+(Γ)|.
(6) Because of (3), for each active group Γ holds:

∑

S⊆Γ, S active | ~H ′ ∩ δ−(S)| ≤ activesInGroup(Γ) · | ~H ′ ∩ δ−(Γ)|.

We split ~H ′ into ~H ′ ∩ ~T and ~H ′\~T . Because ~H ′ and ~T differ only in the direction of some arcs,
~H ′\~T is just ~T\ ~H ′ with reversed arcs. Now we have:

∑

S active

| ~H ′ ∩ δ−(S)|
activesInGroupOf (S)

=
∑

Γ active group

∑

S active, S⊆Γ

| ~H ′ ∩ δ−(S)|
activesInGroup(Γ)

≤
∑

Γ active group
| ~H ′ ∩ δ−(Γ)| (because of (6))

=
∑

Γ active group
| ~H ′ ∩ ~T ∩ δ−(Γ)| + |(~T \ ~H ′) ∩ δ+(Γ)|

≤







∑

Γ active group
| ~H ′ ∩ ~T ∩ δ−(Γ)| + |~T ∩ δ−(Γ)|






− 1 (because of (5))

≤ 2 · activeGroups− 1. (because of (2))

Because activeGroups ≤ r − 1 this proves the lemma. 2

Theorem 26 Let upper and lower be the bounds generated by PDC . It holds that: upper
lower ≤ (2− 1

r−1).

Proof: Let ∆i be the value of ∆ in the iteration i. For each directed Steiner cut (S, S), let uS be the
value of the corresponding dual variable as (implicitly) calculated by PDC (in iteration i each dual
variable uS corresponding to an active component S is increased by ∆i/activesInGroupOf(S)). Since
all arcs of ~H ′ have zero reduced costs, we have: upper =

∑

f∈ ~H′ c(f) =
∑

f∈ ~H′

∑

S, f∈δ−(S) uS =
∑

S | ~H ′ ∩ δ−(S)| · uS . This value is zero at the beginning and is increased by
∑

S active | ~H ′ ∩
δ−(S)| ·∆i/activesInGroupOf(S) in the iteration i. By Lemma 25, this increase is at most (2− 1

r−1) ·
activeGroups·∆i. Since lower is zero at the beginning and is increased exactly by activeGroups·∆i

in the iteration i, we have upper ≤ (2 − 1
r−1) · lower after the last iteration. 2

The following two examples show that the proven approximation ratios for upper and lower
bounds are both tight.
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l

k

Figure 2.12: PDC : v(PC) = v(LPC) ≈ 2 · lower.

Example 10 In Figure 2.12, the top-left terminal is considered as the root; and all edges have costs 1.
Note that this graph is even bipartite. It is easy to see that for this instance, v(PC) = v(LPC) = 2l+k.
But PDC will deliver the lower bound l + k + l+k

k+1 . Choosing l = k2 >> 1 we will get a gap of
approximately 2.
Again, the argumentation can be made independent of the choice of the root by letting l copies of this
graph share the top-left terminal.
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Figure 2.13: PDC : upper ≈ 2v(PC ) = 2v(LPC).

Example 11 In Figure 2.13, setting k = 1 + ε for a small ε will ensure that for all terminals not
adjacent to the (arbitrary) root, the incident arcs with costs 1 will be inserted into ~H before those with
cost k, meaning that PD-PRUNE will remove the latter. So we will have upper = 2(r− 2) + (1 + ε),
whereas v(PC) = v(LPC) = (r−1)(1+ε). By choosing a large r we will get a gap of approximately
2.

The discussion of the algorithm PDC assumes exact real arithmetic. Of course, actual comput-
ers cannot handle infinite precision arithmetic; and simply replacing real numbers with floating-point
numbers is not appropriate due to the unpredictable perturbations caused by the roundoff errors. But
even if we adopt the (usual) assumption that all numbers in the input are integers, using exact arith-
metic could deteriorate the worst-case running time due to the growing denominators. But if we allow
a deterioration of ε (for a small constant ε) in the approximation ratio, we can overcome this difficulty
as follows.
We rescale the reducedCost-values using 1/step r units and the d-values using 1/stepd units, where
stepr and stepd are integers described below. In each recalculation of a d-value (see page 50), we
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round up the result of the division in the first assignment and round down in the second assignment;
this can be done by appropriately using the integer DIV operation. The only inaccuracy introduced
this way is that the reduced costs of some arcs in ~H can be slightly larger than zero. For each arc f
in ~H , this error can be bounded by splitting it up into the error made by rounding down in the final
d-value calculation (at most r · stepr/step

2
d) and the sum of the errors made by rounding up in all up-

dates of reducedCost(f). The effect of the latter errors can be kept small by choosing step r � stepd,
because then the error made in each updating of reducedCost(f) is relatively small (at most r/stepr)
when compared to the change in reducedCost(f) (at least 1/(r ·step d)), meaning that the total relative
error made this way is small (at most (r/stepr)/(1/(r · stepd)) = r2 · stepd/stepr over all updates
of reducedCost(f)). Finally, since there are at most n arcs in ~H ′, a maximum error of ε in the approx-
imation ratio can be guaranteed with polynomially large factors step r and stepd (e.g. (4n/ε)3r5 and
(4n/ε)2r3, respectively), meaning that all numbers involved in the computation are (up to a constant
factor) of the same size as those in the input.

Empirically, this algorithm behaves similarly to (our improved version of) DAC . The lower bounds
are again fairly tight, with average gaps from a fraction of a percent to about 2%, depending on the
type of instances. The upper bounds, although more stable than those of DAC , are not good; the
average gaps are about 8%. The running times (using the same test bed as before) are, depending on
the type of instances, sometimes better and sometimes worse than those of DAC ; altogether they are
still tolerable (several seconds for large and dense graphs).

2.9.4 Further Remarks on Primal-Dual Algorithms

A major point to be improved is the approximation ratio of 2. Assuming that the integrality gap of the
directed cut relaxation is well below 2, an obvious desire is to develop algorithms based on it with
a better worst-case ratio between the upper and lower bounds (thus proving the assumption). There
are two major approaches for devising approximation algorithms based on linear programming relax-
ations: LP rounding and primal-dual schema. A discussion in [RV99] indicates that no better guarantee
can be obtained using a standard LP rounding approach based on this relaxation. The discussion in this
section indicates the same for a standard primal-dual approach. Thus, to get a better ratio, extensions
of the primal-dual schema will be needed. Two such extensions are used by Rajagopalan and Vazirani
[RV99], where a ratio of 3/2 is proven for the special class of quasi-bipartite graphs (no edges between
non-terminals).

Another area for further development are the fully polynomial-time approximation schemes by
Garg and K önemann [GK98] and Garg and Khandekar [GK02] which are applicable to LPF . Our
preliminary tests indicate that these algorithms (at least in their current form) are not practical, because
the convergence is too slow.

2.10 Lagrangian Relaxation and Subgradient Optimization

In this section, we only briefly (and mainly for the sake of completeness) outline some approaches
based on Lagrangian relaxation of the integer programming formulations; they do not play a major
role in this work. We assume that the reader is familiar with the basic ideas of Lagrangian relaxation
and subgradient optimization (see for example [AMO93]). In this context, the Lagrangian subprob-
lems often have the integrality property, meaning that solving the Lagrangian multiplier problem is
equivalent to solving the LP relaxation of the original (integer) problem, so a subgradient method can
be used to approximate the solution value arbitrarily well.
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2.10.1 Relaxing the Spanning Tree Formulation

A Lagrangian relaxation LaPT0
of the tree formulation PT0

is described by Beasley [Bea89], relax-
ing the degree constraints (7.2). After this, a subgradient optimization of the Lagrangian multiplier
problem can be used, which involves calculating a minimum spanning tree in each iteration. Using
this approach, the value v(LPT0

) can be approximated fairly fast (the integrality property is given).
The problem here is the value v(LPT0

) itself. Theorem 11 already indicates theoretically that LPT0

is not a generally tight relaxation. Empirically, we observed that usually the bound v(LPT0
) is only

satisfactory for instances where the average distance between terminals is not too high in comparison
to the average edge length (e.g., random networks with many terminals). A bad situation for this re-
laxation typically arises from instances modeling points in the plane with respect to a given metric.
For instances with Euclidean distances or grid instances with few terminals, gaps of more than 50%
are not exceptional. Nevertheless, we have further investigated the mentioned Lagrangian relaxation,
since it can be useful for some instances.

We obtained a minor improvement in the speed of the subgradient optimization by applying a
sensitivity analysis for the Lagrangian multipliers. Using data structures for efficient handling of tree
bottlenecks and alternative chords (see [Tar79, VJ83]) allows fast calculation of the quantities by
which each multiplier can be changed without affecting the validity of the calculated minimum span-
ning tree. Modifying the multipliers by these quantities improves the lower bound immediately.

In [DV87], some modifications for this relaxation are suggested, for example adding (and relaxing)
further constraints and using another structure for G0. In our experiments, these modifications did not
improve the overall results of the lower bound calculation: In situations where LaPT0

leads to a
substantial gap, no decisive improvements could be achieved using these modifications.

In [BL98], a relaxation constructed by adding the Steiner cut (and some other) constraints to LPT0

is used. This indeed leads to a stronger relaxation than LPT0
. However, as we have proved in Corollary

11.1 in Section 2.4, LPC cannot be strengthened (i.e., v(LPC) does not change) by adding constraints
like those present in LPT0

; this motivates concentrating on LPC itself.

2.10.2 Relaxing the Cut Formulation

A natural way for a tight approximation of v(LPC) builds upon a Lagrangian relaxation of the mul-
ticommodity flow formulation; an approach already used in in [Bea84] (but with the much weaker
undirected relaxation; see also [HRW92]). Relaxing the constraints that bind edge and flow variables
together, the problem decomposes into (mainly) r − 1 single pair shortest path problems, which can
be solved in time O(r(m+ n log n)). The integrality property is given, so this relaxation can be used
in combination with subgradient optimization to approximate v(LPC ). In [PV97], we have investi-
gated this approach and presented some improvements, particularly in combination with the algorithm
DUAL-ASCENT and with sophisticated reduction techniques. Although this approach is quite effec-
tive in many cases, for large instances with many terminals it tends to be too slow. So, it is not used in
this work and is replaced by the approach described in the next section.

2.11 Optimization by Row and Column Generation: Cut and Price

To get an optimal solution for LPC , the direct approach of solving the complete linear program using
a standard LP solver is not practical, even for the equivalent multicommodity flow relaxation LPF ,
which has approximately ra variables and r(a + n) constraints: This is still too much for moderate
and large instances; and the resulting linear programs are often highly degenerated.
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Instead, one can begin with a subset of constraints of LPC as the initial program, and successively
solve the current program, find Steiner cut inequalities violated by the current solution x, add them
to the program, and iterate this process by re-optimizing the program, until no Steiner cut inequality
is violated anymore. This is an approach already used by many authors (see for example [CGR92,
BL98, KM98]).

In order to find violated Steiner cut inequalities (or to establish that no such inequality exists),
one can compute a minimum capacity cut in each of the r − 1 flow networks constructed from G
by choosing the root (z1) as the source, a terminal zt ∈ Rz1 as the sink and the current xij-value
as the capacity of the arc [vi, vj ]. Although there are other (heuristical) ways to find such violated
inequalities, using those corresponding to minimum cuts usually leads to better overall results. Indeed,
it is even very advantageous to find in each case a minimum capacity cut with a minimum number
of cut edges, an idea already used by Koch and Martin [KM98]. This can be realized by adding a
small ε to the capacity of each edge before solving the minimum cut problem. Although this leads
to much denser flow networks, the linear programs obtained are easier to (re-) optimize (and the
corresponding constraints seem to be much stronger). As a consequence, the overall results (especially
the total number of necessary re-optimizations) are clearly superior. It must be mentioned that in our
implementation, the time for finding all the r − 1 minimum cuts is dominated by the time for re-
optimizing the linear programs.

For computing minimum cuts, we implemented the highest-label preflow-push algorithm with
several auxiliary heuristics, including the global and the gap relabeling heuristics [CG97]. Although no
better time bound than O(n2√m) can be given for this algorithm, using the heuristics mentioned the
empirical running times were much better described by O(n1.5). As long as only minimum cuts from
the sink-side are to be computed, only the first stage of the algorithm has to be performed. Besides,
in this context several additional heuristics can be used to improve the empirical times further; for
example, sinks that are reachable from the root (or another terminal) by paths of capacity no less than
1 need not be considered.

For (re-) optimizing the linear programs, we use the dual simplex routine in the callable library of
CPLEX 8.0. Here, the warm-start ability of the simplex algorithm can be particularly utilized.

We have achieved considerable speedups by inserting the cuts generated by the algorithm DUAL-
ASCENT into the initial linear program. In this case the lower bound provided by DUAL-ASCENT
(which is often very close to v(LPC)) is already reached in the first iteration; and the number of
necessary re-optimizations and the time needed per re-optimization are comparable to the case without
these cuts after reaching this lower bound value. As a consequence, the overall times are clearly
improved.

As mentioned earlier, the flow-balance constraints (11.1) can used to strengthen the linear pro-
grams. Empirically, we found it advantageous in terms of running times to insert all the flow-balance
inequalities into the initial program. Although the other additional constraints used in [KM98] cannot
enhance the value of the relaxation (see the corollaries of Theorem 11), a group of them (namely
constraints (9.2) of LP ~T

) can speed up the process if its violated members are added to the current
program.

To save time and space, we do some garbage collection every ten iterations, purging the constraints
that have had large positive slack values in all the iterations since the last garbage collection. Further
we make sure that no constraint is present in a linear program more than once.

Another idea, which is promising at first sight, is pricing: To achieve further speedups one can
begin with a subset of variables as active variables and at certain stages (especially when a correct
lower bound is necessary) add variables that do not price out correctly (have negative reduced costs)
to the program (activate them); a correct lower bound is given when all non-active variables have
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non-negative reduced costs with respect to the current dual solution. We have tried several schemes
for using this idea, but could not achieve decisive additional improvements through these schemes.
The main reason is that because of our massive usage of reduction techniques (see Chapter 3), most
variables that could be priced out are eliminated anyway. It seems that the information provided by the
linear relaxations (like reduced costs) are more effectively used in bound-based reduction techniques
(see Section 3.3). However, we could use a more sophisticated pricing scheme profitably for our
stronger relaxations, as described in the following.

2.11.1 Adaptations for Stronger Relaxations

Here we outline our approaches for actually using stronger relaxations than LPC algorithmically.
The complete common flow relaxation LPF R is not a good starting point for designing algorithms,

because its exponential size makes it difficult (if not impossible) to come up with a practical algorithm
using it. Simply writing down the linear program and starting an LP solver fails already on instances
of toy size. But also a branch-cut-price approach fails, because too many variables and constraints
have to be included and each iteration of the column and row generation method can take too much
time without making any substantial progress.

Although a more efficient utilization cannot be ruled out, turning to the restricted version LPC′

(see Section 2.6.5) of the common flow relaxation is a by far more appealing approach. Here one
can start with the x-variables and the flow-balance constraints (15.3), and then use a column and row
generation approach. We work in three levels. In each iteration, we process a level only if the previous
levels could not find a new row or column.

1. We look for violated Steiner cut constraints (15.1) as described before.

2. For those yR\{zr ,zi} that have already been inserted, we look for violated Steiner cut constraints
(15.2), again with the same procedure as previously described.

3. Now, we are looking for violated constraints (15.4) of the form yR\{zr ,zi}(δ−(zi)) ≤ x(δ+(zi))
for some zi. Here, we assume that all yR\{zr ,zi} that are not already included in the linear
program are equal to x if x(δ+(zi)) > 0. Otherwise, a lot of unnecessary y-variables would
have to be included because of negative reduced costs. If we find violated constraints (15.4), we
also include the necessary variables yR\{zr ,zi}.

With this procedure the linear program will reach the value v(LPC′), which is in some cases signif-
icantly higher than v(LPC+FB) (see Section 2.13). Some other practical approaches for improving
the relaxations are described in Section 2.12.

2.12 Improving Relaxations

The methods described in the previous sections already generate quite tight lower bounds (see Sec-
tion 2.13), but in some cases, the gaps are still larger than desired. Especially for large and complex
problem instances, very small differences in the integrality gap can cause an enormous additional
computational effort in the context of an exact algorithm. Therefore, methods for improving the qual-
ity of the relaxations are very important. We present here two approaches for improving the lower
bounds, using the directed cut relaxation as the starting point.
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• In Section 2.12.1, we introduce the “vertex splitting” technique: We identify locations in the
network that contribute to the integrality gap and split up the decisive vertices in these loca-
tions. Thereby, we transform the problem instance into one that is equivalent with respect to the
integral solution, but the solution of the relaxation may improve.

This idea is inspired by the column replacement techniques that were introduced by Balas and
Padberg [BP75] and generalized by Haus et al. [HKW01] and Gentile et al. [GHK+02]. In these
and other papers a general technique for solving integer programs is developed. However, these
techniques are mainly viewed as primal algorithms, and extensions for combinatorial optimiza-
tion problems are presented for the stable set problem only. Furthermore, these extensions are
not yet part of a practical algorithm (the general integer programming techniques have been
applied successfully). Thus, we are the first to apply this basic idea in a practical algorithm for
a concrete combinatorial optimization problem.

• In Section 2.12.2, we show how to adopt the “local cuts” approach, introduced by Applegate,
Bixby, Chvátal, and Cook [ABCC01] in the context of the TSP: Additional constraints are
generated using projection, lifting and optimal solutions of subinstances of the problem. To
apply this approach to the Steiner problem, we develop new shrinking operations and separation
techniques.

We have applied both methods successfully; in particular, they have played a decisive role for the
solution of the largest benchmark instances ever solved (see Section 2.13). Furthermore, we believe
that these new techniques are also interesting for other combinatorial optimization problems.

2.12.1 Graph Transformation: Vertex Splitting

In this section, we describe a new technique for effectively improving the lower bound corresponding
to the directed cut relaxation by manipulating the underlying network.

We use the property that in an optimal directed Steiner tree, each vertex has in-degree at most 1.
Implicitly, we realize a case distinction: If an arc [vi, vj ] is in an optimal Steiner tree, we know that
other arcs in δ−(vj) cannot be in the tree. The only necessary operation to realize this case distinction
for the Steiner problem is the splitting of a vertex. A vertex vj is replaced by several vertices vi

j , one
for each arc [vi, vj ] entering vj . Each new vertex vi

j has only one incoming arc [vi, v
i
j ], and essentially

the same outgoing arcs as vj . In Figure 2.14, the splitting of vertex vj is depicted. The explanation
of the figure also provides some intuition how splitting can be useful. Later we will describe how we
identify candidates for splitting.

The splitting operation is described formally by the pseudocode below. We maintain an array orig
that points for each vertex in the transformed network to the vertex in the original network that it
derives from. Initially, orig[vj ] = vj for all vj ∈ V . With P (vi) we denote the longest common
suffix of all paths from z1 to vi after every path is translated back to the original network. The intu-
ition behind this definition is that if vi is in an optimal Steiner arborescence, P (vi) must also be in
the arborescence after it is translated into the original network. Note that the path P (vi) consists of
vertices in the original network and may contain cycles; in this case, vi cannot be part of an optimal
arborescence. In Figure 2.14, P (va) consists of va and P (va

j ) is the path of length 1 from va to vj .
To compute P (vi), one can reverse all arcs and use breadth-first-search. The main purpose of using
P (vi) is to avoid inserting unnecessary arcs. This can improve the value of and the computation times
for the lower bound. It is also necessary for the proof of termination.
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Figure 2.14: Splitting of vertex vj . The filled circles are terminals, z1 is the root, all arcs have cost 1. An
optimal Steiner arborescence has value 6 in each network. In the left network v(LPC+FB) is 5.5 (set the x-
values of the dashed arcs to 0.5 and of [vj , z4] to 1), but 6 in the right network (again, set the x-values of the
dashed arcs and of [va

j , z4] and [vb
j , z4] to 0.5). The difference is that in the left network, there is a situation that

is called “rejoining of flows”: Flows from z 1 to z2 and from z1 to z3 enter vj on different arcs, but leave on the
same arc, so they are accounted in the x variables only once. Before splitting, the x-value corresponding to the
arc [vj , vc] is 0.5, after splitting the corresponding x-values sum up to 1.

For the ease of presentation, we assume that the root terminal z1 has no incoming arcs, and that
all other terminals have no outgoing arcs. If this is not the case, we simply add copies of the terminals
and connect them with appropriate zero-cost arcs to the old terminals.

SPLIT-VERTEX(G,R, vj,orig) (assuming vj 6∈ R)
1 forall [vi, vj ] ∈ δ−(vj) :
2 if P (vi) contains a cycle or orig[vj ] in P (vi) :
3 continue with next arc in δ−(vj);
4 insert a new vertex vi

j into G, orig[vi
j ] := orig[vj ];

5 insert an arc [vi, v
i
j ] with cost c[vi,vj ] into G;

6 forall [vj , vk] ∈ δ+(vj) :
7 if orig[vk] not in P (vi) :
8 insert an arc [vi

j, vk] with cost c[vj ,vk] into G;

9 delete vj;
10 delete all vertices that are not reachable from z1;

Correctness

Now we prove that the transformation is valid, i.e., it does not change the value of an optimal Steiner
arborescence.

Lemma 27 Any optimal Steiner arborescence with root z1 in the original network can be transformed
into a feasible Steiner arborescence with root z1 in the transformed network with the same cost and
vice versa.

Proof: We consider one splitting operation on vertex vj ∈ V \ R, transforming a network G into G′.
Repeating the argumentation extends the result to multiple splits. We use a condition (†) for a tree T



2.12. IMPROVING RELAXATIONS 61

denoting that for every vk, vl in T, it holds: orig[vk] = orig[vl] ⇔ vk = vl. Note that condition (†)
holds for an optimal Steiner arborescence in the original network.

Let T be an optimal Steiner arborescence with root z1 for G satisfying (†). If vj 6∈ T , T is part
of G′ and we are done. If vj ∈ T , there is exactly one arc [vi, vj ] ∈ T . When [vi, vj ] is considered
in the splitting, P (vi) is a subpath of the path from z1 to vi in T after it is translated to the original
network. Together with (†) follows that neither orig[vj ], nor orig[vk] for any [vj , vk] ∈ T is in P (vi).
Therefore, all arcs [vj , vk] ∈ T can be replaced by arcs [vi

j , vk] and the arc [vi, vj ] can be replaced by
[vi, v

i
j ]. The transformed T is part of G′, connects all terminals, has the same cost as T and satisfies

condition (†).
Now, let T ′ be an optimal Steiner arborescence for G′. Obviously, T ′ can be transformed into a

feasible solution T with no higher cost for G. 2

Termination

The following lemmas show that iterating the splitting operation will terminate.

Lemma 28 For all non-terminals vj , P (vj) is the common suffix of all paths P (vi) appended by
orig[vj] for all vi, [vi, vj ] ∈ δ−(vj).

Proof: As the Line 10 of SPLIT-VERTEX guarantees that there is always a path from z1 to vj , the
claim follows directly from the definition of P (vj). 2

Lemma 29 For any two non-terminals vs and vt, vs 6= vt, P (vs) is not a suffix of P (vt).

Proof: Assume the lemma is not true. We choose two vertices vs and vt, vs 6= vt, P (vs) is a suffix of
P (vt) such that the length of P (vs) is minimal. Obviously, orig[vs] = orig[vt]. Thus, vs and vt were
inserted in some splits. After these splits, vs and vt have in-degree 1. Only splitting a vertex v ′s with
[v′s, vs] ∈ δ−(vs) can increase the in-degree of vs, but orig[v′s] is the same for all [v′s, vs] ∈ δ−(vs).
Together with Lemma 28 for P (vs) follows that P (vs) contains at least two vertices. As it is a suffix of
P (vt), this also holds for P (vt). For any two vertices v′s, v

′
t with [v′s, vs] ∈ δ−(vs) and [v′t, vt] ∈ δ−(vt)

it holds that v′s 6= v′t, P (v′s) is a suffix of P (v′t) and it is shorter than P (vs), a contradiction. 2

Lemma 30 After splitting a vertex vj with in-degree greater than 1, for any newly inserted vertex v i
j

it holds that P (vi
j) is longer than P (vj) was before the split.

Proof: Assume that there is a newly inserted vertex va
j such that P (va

j ) is not longer than P (vj).
From Lemma 28 for P (va

j ) and P (vj) follows that P (va
j ) = P (va) appended by orig[vj] and that

P (vj) is a suffix of P (va
j ). Together with the assumption follows P (vj) = P (va

j ). As vj had in-
degree greater than 1 before the split, we know that there was a vertex vb, vb 6= va, [vb, vj ] ∈ δ−(vj).
From Lemma 29 follows that P (va) was not a suffix of P (vb). Thus, the common suffix of P (va) and
P (vb) did not contain P (va). Using Lemma 28 for P (vj), it follows that P (vj) did not contain P (va),
a contradiction to P (vj) = P (va

j ). 2

Lemma 31 Repeated splitting of vertices with in-degree greater than 1 will stop with a network in
which all non-terminals have in-degree 1. As a consequence, there is exactly one path from z1 to vi

for all non-terminals vi.
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Proof: As long as there is a non-terminal with in-degree greater than 1, we can split it, which will
delete the vertex and possibly replace it by some vertices with in-degree 1. We only have to show that
this procedure terminates, as a split may increase the in-degree of other vertices.

If splitting a vertex vj deletes it without inserting any new vertex, we label vj as invalid.
Now, we examine the changes in the network as an arbitrary vertex vj with in-degree greater than

1 is split. Let vm be any non-terminal after the split that was not newly inserted. From the definition
of P (vm) follows that P (vm) can only change if some vertex or arc is not inserted because of the
conditions in Lines 2 and 7 of SPLIT-VERTEX and some paths from z1 to vm do not exist any longer.
Since there is sill a path from z1 to vm left, P (vm) can only become longer, it may even visit some
vertex twice (i.e., P (vm) contains a cycle). In the latter case, vm becomes invalid.

From Lemma 27 follows that a transformed optimal tree will always be contained in the current
network, thus after at most |V | splits, there will be a split of a valid vertex. If a split is performed
on a valid vertex vj , at least one new vertex vi

j will be inserted. From Lemma 30 follows that P (vi
j)

is longer than P (vj) was before the split. But as P (vi
j) does not contain a cycle (Line 2 of SPLIT-

VERTEX), its length is bounded by the number of vertices in the original network. Thus, the procedure
terminates. 2

Implementation Issues

Of course, for a practical application one does not want to split all vertices, which could blow up the
network exponentially. In a cutting-plane algorithm one first adds violated Steiner cut or flow-balance
constraints (Section 2.11). If no such constraint can be found, we search for good candidates for the
splitting procedure, i.e., vertices where more than one incoming arc and at least one outgoing arc have
an x-value greater than zero. After splitting these vertices, the modified network will be used for the
computation of new constraints, using the same algorithms as before. To represent this transformation
in the linear program, we add new variables for the newly added arcs, and additional constraints that
the x-values for all newly added arcs corresponding to an original arc [vi, vj ] must sum up to x[vi,vj ].
Using this procedure the constraints calculated for the original network can still be used.

2.12.2 Project, Separate, and Lift: Local Cuts

Let S = (G,R) = (V,E, c,R) be an instance of the Steiner problem. Let ST (S) be the set of all
incidence vectors of Steiner trees of S; for ease of notation, we sometimes identify a Steiner tree with
its incidence vector. Define SG(S) := ST (S) +

� |E|
+ ; we call the elements of SG(S) the Steiner

graphs of S. We consider Steiner graphs, since Steiner graphs are invariant under the shrink operation
(defined later). Note that the values x(vi,vj) are not restricted to be integral or bounded. It is obvious
that if the objective function is non-negative, there exists a minimum Steiner graph that is a Steiner
tree. Thus all vertices of the polyhedron conv(SG(S)) are Steiner trees. Furthermore, conv(SG(S))
is full dimensional if G is connected.

From a high-level view, local cuts can be described as follows. Assume we want to separate x∗

from conv(SG(S)). Using a linear mapping φ, we project the given point x∗ into a small-dimensional
vector φ(x∗) and solve the separation problem over conv(φ(SG(S))). If we can find a violated in-
equality a · x̃ ≥ b that separates φ(x∗) from conv(φ(SG(S))), we know that the linear inequality
a · φ(x) ≥ b separates x∗ from conv(SG(S)). The method is illustrated in Figure 2.15.

To make this method work, we have to choose φ such that

1. there is a good chance that φ(x∗) /∈ conv(φ(SG(S))) if x∗ /∈ conv(SG(S)),
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Figure 2.15: The feasible integer solutions are marked as dots, the fractional solution to separate by the cross.
If we project the solutions to the line l1, we can obtain a valid violated inequality and lift it back to the original
space. If we project to the line l2, the fractional solution falls into the convex hull of the integer solutions and
no such inequality can be found.

2. we can solve the separation problem over conv(φ(SG(S))) efficiently and

3. the inequalities a · φ(x) ≥ b are strong.

We choose φ in such a way that for every solution x ∈ SG(S) of our Steiner problem instance S,
the projected φ(x) is a Steiner graph of a small Steiner problem instance Sφ, i.e., conv(φ(SG(S))) =
conv(SG(Sφ)) for an instance Sφ of the Steiner problem. Since our Steiner tree program package
tends to be very efficient for solving small Steiner problem instances, we can handle the separation
problem, as we will see later.

We use iterative shrinking to obtain the linear mappings. First, we review the well-known concept
of shrinking. After that, we introduce our separation algorithm for small Steiner graph instances. So
far, we always assumed that we are looking at the undirected version of the Steiner problem, since our
separation algorithm is much faster for this variant. As explained before, the directed cut relaxation
is stronger than the undirected variant. At the end, we will discuss how we can use the directed
formulation without solving directed Steiner graph instances in the separation algorithm.

Shrinking

We define our linear mappings as an iterative application of the following simple, well-known map-
ping, called shrinking. For the Steiner problem, shrinking was introduced by Chopra and Rao [CR94a].

Shrinking means to replace two vertices va and vb by a new vertex 〈va, vb〉 and replace edges
(vi, va) and (vi, vb) by an edge (vi, 〈va, vb〉) with value x∗(vi ,va) + x∗(vi,vb)

(We assume x∗(vi,vj)
= 0 if

(vi, vj) /∈ E). The new vertex 〈va, vb〉 is in the set of terminals R if va or vb (or both) are in R. This
informally defines the mapping φ and the instance Sφ. Note that for any incidence vector of a Steiner
graph for the original problem, the new vector is the incidence vector of a Steiner graph in the reduced
problem. Furthermore, for every Steiner graph x̃ in SG(Sφ) there is a Steiner graph x ∈ SG(S) such
that φ(x) = x̃. Thus conv(φ(SG(S))) = conv(SG(Sφ)).

Note that if we iteratively shrink a set of vertices W ⊂ V into one vertex 〈W 〉, the obtained
linear mapping is independent of the order in which we apply the shrinks. We denote the unique linear
mapping that shrinks a subset W ⊂ V into one vertex by φW .

We have developed conditions on x∗ under which we can prove that φ(x∗) is not in the convex
hull of SG(Sφ) if x∗ is not in the convex hull of SG(S).
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Lemma 32 Let x∗ ≥ 0.

1. (edge of value 1): Let x∗(va,vb)
≥ 1 and W = {va, vb}. x∗ ∈ conv(SG(S)) ⇔ φW (x∗) ∈

conv(SG(SφW
)).

2. (non-terminal of degree 2): Let va be in V \ R and the vertices (v1, . . . vk) in V be or-
dered according to their x∗(·,va) value (in decreasing order). Furthermore, let W = {va, v1}.

If x∗(v3,va) = 0, then x∗ ∈ conv(SG(S)) ⇔ φW (x∗) ∈ conv(SG(SφW
)).

3. (cut of value 1): Let W be such that x∗(δ(W )) = 1 and ∅ 6= R ∩W 6= R. Let W = V \W .

x∗ ∈ conv(SG(S)) ⇔ φW (x∗) ∈ conv(SG(SφW
)) ∧ φW (x∗) ∈ conv(SG(SφW

)).

4. (biconnected components): Let U,W ⊂ V and va ∈ V be such that U∪W = V ,U∩W = {va}
and x∗(vk,vl)

= 0 for all vk ∈ U \ {va} and vl ∈ W \ {va}. Furthermore, let ∅ 6= R ∩W 6= R.

x∗ ∈ conv(SG(S)) ⇔ φU (x∗) ∈ conv(SG(SφU
)) ∧ φW (x∗) ∈ conv(SG(SφW

)).

5. (triconnected components): Let U,W ⊂ V and va, vb ∈ V be such that U ∪W = V \ {va},
U ∩W = {vb} and x∗(vk,vl)

= 0 for all vk ∈ U \ {vb} and vl ∈ W \ {vb}. Let furthermore

x∗(δ(va)) = 1 and va, vb ∈ R. x∗ ∈ conv(SG(S)) ⇔ φU (x∗) ∈ conv(SG(SφU
))∧φW (x∗) ∈

conv(SG(SφW
)).

Proof: We already argued that if x∗ ∈ conv(SG(S)) then φ(x∗) ∈ conv(SG(Sφ)) for every linear
mapping obtained by iterative shrinking independent of x∗. Thus we only have to show the reverse
direction of the claims, i.e., if φ(x∗) ∈ conv(SG(Sφ)) (for the last three claims, if both projections
are in the convex hull) then x∗ ∈ conv(SG(S)).

It suffices to prove the claims for the case that x∗ is rational.

1. We can find a large integer N and, for 1 ≤ i ≤ N , (incidence vectors of) Steiner trees t̃i in
ST (SφW

) such that NφW (x∗) ≥ ∑

1≤i≤N t̃i.

The idea is as follows: We will create Steiner trees ti,j out of t̃i by including the edge (va, vb)
in every tree and for every edge (vk, 〈W 〉) in t̃i we use either the edge (vk, va) or (vk, vb). The
number of Steiner trees in which we use a specific edge (vk, va) or (vk, vb) is determined by the
ratio between x∗(vk ,va) and x∗(vk ,vb)

.

Let M be a large integer such that Mx∗(vk ,vl)
/φW (x∗)(vk ,〈W 〉) is integral for every vk ∈ V \W

and vl ∈W . We know that φW (x∗)(〈W 〉,vk) = x∗(va,vk) + x∗(vb,vk) for all vk ∈ V \W . For every

t̃i and 1 ≤ j ≤M we define ti,j with

• ti,j(va,vb)
= 1,

• ti,j(vk ,vl)
= t̃i(vk ,vl)

for vk, vl ∈ V \ {va, vb},

• for vk ∈ V \ {va, vb} we make a case distinction:
If j ≤Mx∗(va,vk)/φ

W (x∗)(〈W 〉,vk) : ti,j(va,vk) = t̃i(〈W 〉,vk), t
i,j
(vb ,vk) = 0,

otherwise: ti,j(va,vk) = 0, ti,j(vb ,vk) = t̃i(〈W 〉,vk).

As ti,j(va,vk) + ti,j(vb,vk) = t̃i(〈W 〉,vk), it can be verified that NMx∗ ≥ ∑

1≤i≤N

∑

1≤j≤M ti,j .

It also follows that if t̃i contained a path from a vertex vk to v〈W 〉, each ti,j contains a path from
vk to va and to vb. As a consequence, each pair of terminals is connected in ti,j .
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2. We can find a large integer N and, for 1 ≤ i ≤ N , Steiner trees t̃i in ST (SφW
), such that

NφW (x∗) ≥ ∑

1≤i≤N t̃i.

The idea is as follows: We only need to consider the case that 〈W 〉 is used in a tree t̃i. Since
there are at most two edges with positive x∗-values adjacent to va, we can replace all edges in
the tree t̃i adjacent to 〈W 〉 (except (v2, 〈W 〉)) by edges adjacent to v1. Further, we have to take
care of the edge (v2, 〈W 〉), if it is in t̃i. In this case, we create trees ti,j using either the edge
(v2, v1) or the two edges (v2, va) and (va, v1). Again the number of trees in which we use the
two alternatives is given by the ratio of x∗(v2 ,v1)

and x∗(v2,va).

Let M be a large integer such that Mx∗(v2,vl)
/φW (x∗)(v2 ,〈W 〉) is integral for vl ∈ {v1, va}. For

every t̃i and 1 ≤ j ≤M we define ti,j with

• ti,j(vk ,vl)
= t̃i(vk ,vl)

for every vk, vl ∈ V \ {va, v1},

• ti,j(vk ,v1) = t̃i(vk ,〈W 〉) for vk ∈ V \ {v2},

• ti,j(vk ,va) = 0 for vk ∈ V \ {v2},

• If j ≤Mx∗(v1 ,v2)
/φW (x∗)(〈W 〉,v2): t

i,j
(v2,v1) = t̃i(v2,〈W 〉), t

i,j
(v2,va) = 0,

otherwise: ti,j(v2,v1) = 0, ti,j(v2 ,va) = t̃i(v2,〈W 〉),

• ti,j(va,v1)
= ti,j(v2,va).

As x∗(va,v1)
≥ x∗(va,v2), it can be verified that NMx∗ ≥ ∑

1≤i≤N

∑

1≤j≤M ti,j .

If there is an edge (vk, 〈W 〉) in t̃i, then in each ti,j there is either the edge (vk, v1) or (in the
case that k = 2 and j is large enough) the two edges (vk, va) and (v1, va). Thus ti,j is a Steiner
tree.

3. We can find a large integer N and, for 1 ≤ i ≤ N , Steiner trees ti in ST (SφW
) and Steiner

trees t̄i in ST (SφW
) such that NφW (x∗) ≥ ∑

1≤i≤N ti and NφW (x∗) ≥ ∑

1≤i≤N t̄i.

Since x∗(δ(W )) = 1, it follows that in each tree ti there is exactly one edge in δ(〈W 〉) and
in each tree t̄i there is exactly one edge in δ(〈W 〉). For each edge (vk, 〈W 〉), vk ∈ W , there
are NφW (x∗)(vk ,〈W 〉) trees ti containing this edge. We assign each such tree ti to one edge
(vk, vl), vl ∈ W such that there are Nx∗(vk,vl)

trees assigned to this edge. This is possible

because φW (x∗)(vk ,〈W 〉) =
∑

vl∈W x∗(vk ,vl)
. We do the same for all trees t̄i. Now, we join the

trees ta \ {(vk, 〈W 〉)} and t̄b \ {(vl, 〈W 〉)} by an edge (vk, vl) to a new tree t̂i if they are
assigned to this edge.

It can be verified that Nx∗ ≥ ∑

1≤i≤N t̂i.

It remains to show that there is a path between each pair of terminals z1, z2 in each tree t̂i,
originating from ta and t̄b, both assigned to an edge (vk, vl). If z1, z2 ∈W , they were connected
in ta and as ta contained only one edge (vk, 〈W 〉), they are still connected in t̂i. The case
z1, z2 ∈W is similar. For z1 ∈W, z2 ∈W , we can use the path between z1 and 〈W 〉 in ta, the
edge (vk, vl) and the path between 〈W 〉 and z2 in t̄b.

4. We can find a large integer N and, for 1 ≤ i ≤ N , Steiner trees ti in ST (SφW
) and Steiner

trees si in ST (SφU
) such that NφW (x∗) ≥ ∑

1≤i≤N ti and NφU (x∗) ≥ ∑

1≤i≤N si.

We join the trees ti with 〈W 〉 replaced by va and si with 〈U〉 replaced by va to a new tree t̂i.
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It can be verified that Nx∗ ≥ ∑

1≤i≤N t̂i.

Since t̂i contains the complete Steiner trees ti and si with the respective shrunken vertex re-
placed by va, we know that t̂i is a Steiner tree.

5. We can find a large integer N and, for 1 ≤ i ≤ N , Steiner trees ti in ST (SφW
) and Steiner

trees si in ST (SφU
) such that NφW (x∗) ≥ ∑

1≤i≤N ti and NφU (x∗) ≥ ∑

1≤i≤N si.

Note that φW (x∗)(δ(va)) = 1 and thus every ti has exactly one edge adjacent to va. Thus there
are i′ = N −NφW (x∗)(va,〈W 〉) Steiner trees ti that do not use the edge (va, 〈W 〉). Let these be
the Steiner trees 1 to i′. Analogously there are i′′ = N −NφU (x∗)(va,〈U〉) Steiner trees si that
do not use the edge (va, 〈U〉). Let these be the Steiner trees i′ + 1 to i′ + i′′. First, we replace
〈W 〉 and 〈U〉 by vb in all ti and si.

For i ≤ i′ we join ti and the subgraph si \ {(va, 〈U〉)} to t̂i.

For i′ < i ≤ i′′ we join the subgraph ti \ {(va, 〈W 〉)} and si to t̂i.

Finally, for i > i′ + i′′ we join the subgraph ti \ {(va, 〈W 〉)}, the subgraph si \ {(va, 〈U〉)},
and the edge (va, vb) to t̂i.

As
∑

1≤i≤N t̂i(va,vb)
= N(φW (x∗)(va,〈W 〉) + φU (x∗)(va,〈U〉) − 1) = N(x∗(δ(va)) + x∗(va,vb)

−
1) = Nx∗(va,vb)

, it can be verified that Nx∗ ≥ ∑

1≤i≤N t̂i.

Finally, we show that all t̂i are Steiner trees. If i ≤ i′, t̂i contains the complete Steiner tree
ti with 〈W 〉 replaced by vb. Thus all terminals in U ∪ {va} are connected. Since si contains
(va, 〈U〉) and two subtrees connecting each terminal in W \ {vb} either to va or to vb and since
va and vb are connected in ti, we know that t̂i is a Steiner tree. A similar argument holds for
i′ < i ≤ i′ + i′′. For i > i′ + i′′, we know that va and vb are connected directly by the edge
(va, vb) and every other terminal is connected either to va or to vb. Thus t̂i is a Steiner tree.

2

Applying these “exact” shrinks does not project the solution of the current linear program into
the projected convex hull of all integer solutions, i.e., if the solution of the current linear program has
not reached the value of the integer optimum, we can find a valid, violated constraint in the shrunken
graphs. Unfortunately, in many cases the graphs are still too large after applying these shrinks and we
have to apply some “heuristic” shrinks afterwards.

In the implementation, we use a parameter max-component-size, which is initially 15. If the num-
ber of vertices in a graph after applying all “exact” shrinks is not higher than max-component-size,
we start the algorithm FIND-FACET described below, otherwise, we start a breadth-first-search from
different starting positions, shrink everything except the first max-component-size vertices visited by
the BFS, try the “exact” shrinks again and start FIND-FACET. If it turns out that we could not find a
valid, violated constraint, we increase max-component-size. We also tried other “heuristic” shrinks by
relaxing “exact” shrinks, e.g., accepting minimum Steiner cuts with value above 1, or edges that have
an x-value close to 1. But we could not come up with a definitive conclusion which shrinks are best,
and we believe that there is still room for improvement.

As we will see in the following, our separation algorithm finds a facet of conv(SG(Sφ)). As
shown in Theorem 4.1 of [CR94a], the lifted inequality is then a facet of conv(SG(S)).
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Separation: Finding Facets

Assume we want to separate x∗ from conv(SG(S)). Note that we actually separate φ(x∗) from
conv(SG(Sφ)), but this problem can be solved with the same algorithm.

As we will see, the separation problem can be formulated as a linear program with a row for
every Steiner graph. Trying to solve this linear program using cutting planes, we have the problem
that the number of Steiner graphs (contrary to the case of Steiner trees) is infinite and optimal Steiner
graphs need not exist. Note that the same complication arises when applying local cuts to the traveling
salesman problem.

The solution for the separation problem is much simpler and more elegant for the Steiner tree case
than for the TSP case. The key is the following Lemma, a slight variation of Lemma 3.1.2 in [CR94a].

Lemma 33 All facets of conv(SG(S)) different from x(va,vb) ≥ 0 for an edge (va, vb) ∈ E can be
written in the form a · x ≥ 1 with a ≥ 0.

Thus, if x∗ /∈ conv(SG(S)), we can find an inequality of the form a · x ≥ 1, a ≥ 0, that separates
x∗ from conv(SG(S)). Note that if a ≥ 0, there is a Steiner tree t ∈ SG(S) minimizing a · t.

Thus an exact separation algorithm can be stated as follows (the name arises from the fact that the
algorithm will find a facet of conv(SG(S)), as we will show later).

FIND-FACET (G = (V,E), R, x∗)
1 T := incidence vector of a Steiner tree for G,R;
2 repeat:
3 solve LP: minx∗ · α, Tα ≥ 1, α ≥ 0; (basic solution)
4 if x∗ · α ≥ 1 : return “x∗ ∈ conv(SG(S))”;
5 find minimum Steiner tree t for (V,E, α), R;
6 if t · α < 1 : add t as a new row to matrix T ;
7 else: return “ α · x ≥ 1”;

The algorithm terminates, since there are only a finite number of Steiner trees in ST (S) and as
soon as the minimum Steiner tree t computed in Line 5 is already in T , we terminate because α · t ≥ 1
is an inequality of the linear program solved in Line 3.

Lemma 34 If FIND-FACET does not return an inequality, x∗ ∈ conv(SG(S)).

Proof: Consider the dual of the linear program in Line 3: max
∑

i λi, T
Tλ ≤ x∗, which has the

optimal value x∗ · α ≥ 1. We divide λ by x∗ · α, with the consequence that
∑

i λi = 1. Now, T Tλ is
a convex combination of Steiner trees and it still holds T Tλ ≤ x∗. 2

Lemma 35 If FIND-FACET returns an inequality α ·x ≥ 1, this inequality is a valid, separating, and
facet-defining inequality.

Proof: The value of the last computed minimum Steiner tree t is t · α ≥ 1. Therefore, if x ∈
SG(S), the value can only be greater and it holds x · α ≥ t · α ≥ 1.

As x∗ · α < 1, the inequality is separating.
From the basic solution of the linear program, we can extract |E| linearly independent rows that

are satisfied with equality. For each such row of the form α · t ≥ 1, we add the tree t to a set Sλ and
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for each row αe ≥ 0, we add the edge e to a set Sµ. Note that |Sλ| + |Sµ| = |E| and the incidence
vectors corresponding to Sλ ∪ Sµ are linearly independent.

There is at least one tree tj in Sλ. For each edge e ∈ Sµ we add to Sλ a new Steiner graph tk
that consists of tj added by the edge e. Since αe = 0 we know that α · tk = 1. Since the incidence
vectors corresponding to Sλ ∪ Sµ were linearly independent, replacing e with the tk yields a new set
of linearly independent vectors.

Repeating this procedure yields |E| linearly independent ti ∈ Sλ with α · ti = 1. Thus, α · x ≥ 1
is a facet. 2

As in [ABCC01], we can improve the running time of the algorithm by using the following
fact. If we know some valid inequalities a · x ≥ b with a · x∗ = b then x∗ ∈ conv(SG(S)) ⇔
x∗ ∈ conv(SG(S)∩{x ∈ � |E| | a · x = b}). Thus we can temporarily remove all edges (vi, vj) with
x∗(vi,vj)

= 0, since x∗(vi,vj)
≥ 0 is a valid inequality. Call the resulting instance S ′. We use our algo-

rithm to find a facet of conv(SG(S ′)). We can use sequential lifting to obtain a facet of conv(SG(S)).
For details see [ABCC01] and Theorem 4.2 of [CR94a].

Directed versus Undirected Formulations

For computing the lower bounds, we focus on the directed cut formulation, because its relaxation is
stronger than the undirected variant. However, in the local cut separation algorithm we want to solve
undirected Steiner graph instances, since they can be solved much faster.

The solution is to use another linear mapping that maps arc-values of a bidirected Steiner graph
instance ~S = (V,A, c,R) to edge-values of an undirected Steiner graph instance S = (V,E, c ′, R).

We define S by E = {(vi, vj) | [vi, vj ] ∈ A} and c′(vi ,vj)
= c[vi,vj ] = c[vj ,vi]. For a vector

x ∈ � |A| we define ψ(x) ∈ � |E| by ψ(x)(vi ,vj) = x[vi,vj ] + x[vj ,vi].

Lemma 36 It holds:

• x∗ ∈ conv(SG(~S)) ⇒ ψ(x∗) ∈ conv(SG(S)),

• x̄ ∈ conv(SG(S)) ⇒ ∃x∗ ∈ conv(SG(~S)) with ψ(x∗) = x̄,

• if c ·x∗ is smaller than the cost of an optimal Steiner arborescence, then ψ(x∗) /∈ conv(SG(S)).

Proof: Let z1 be the root in the directed formulation. It suffices to prove the claims for the case that
x∗ is rational. We show the claims in turn.

If x∗ ∈ conv(SG(~S)), we can find a large integer N and directed Steiner trees ti ∈ ST (~S) such
that Nx∗ ≥ ∑

1≤i≤N ti. Clearly Nψ(x∗) ≥ ∑

1≤i≤N ψ(ti). Furthermore, ψ(ti) are Steiner graphs,
since each directed path in ti from the root z1 to a terminal zk gives an undirected path between z1

and zk in ψ(ti).
If x̄ ∈ conv(SG(S)), we can find a large integer N and undirected Steiner trees ti ∈ ST (S)

such that Nx̄ ≥ ∑

1≤i≤N ti. Let t̃i be the directed tree obtained by rooting ti at z1. Clearly t̃i is a

directed Steiner tree and ψ(t̃i) = ti. Let x′ = N−1 ∑

1≤i≤N t̃i. We know that x′ ∈ conv(SG(~S)) and

ψ(x′) ≤ x̄. Thus there exists x∗ ≥ x′ with x∗ ∈ conv(SG(~S)) and ψ(x∗) = x̄.
Note that we have defined the objective function c′ of the undirected Steiner graph instance such

that c′ · ψ(x) = c · x for all x ∈ � |A|. Assume ψ(x∗) ∈ conv(SG(S)). We know that there is
x′ ∈ conv(SG(~S)) with ψ(x′) = ψ(x∗). Thus there is a Steiner tree t ∈ SG(~S) with c · t ≤ c · x′ =
c′ · ψ(x′) = c′ · ψ(x∗) = c · x∗. 2
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For lifting the undirected edges to directed arcs, one can use the computation of optimal Steiner
arborescences. For the actual implementation, we used a faster lifting using a lower bound to the
value of an optimal Steiner arborescence, provided by the fast algorithm DUAL-ASCENT (Section
2.9.2). For producing facets for the directed Steiner problem, one could compute optimal Steiner
arborescences in the algorithm FIND-FACET.

2.12.3 Concluding Remarks

We presented two theoretically interesting and empirically successful approaches for improving lower
bounds for the Steiner tree problem: vertex splitting and local cuts. Vertex splitting is a new technique
and improves the lower bounds much faster than the local cut method, but the local cut method has
the potential of producing tighter bounds. Vertex splitting, although inspired by a general approach,
is not directly transferable to other problems, while local cuts are a more general paradigm. On the
other hand, the application needs some effort, e.g., developing proofs for shrinks and implementation
using exact arithmetic. A crucial point is the development of heuristic shrinks, where a lot of intuition
comes into play and we believe that there is room for improvement. Although the local cut method
was originally developed for the traveling salesman problem, its application is much clearer for the
Steiner tree problem.

Both methods are particularly successful if there are some local deficiencies in the linear program-
ming solution. On constructed pathological instances the lower bounds are still improved significantly,
but the progress is not fast enough to solve such instances efficiently.

Another interesting observation is that the power of the vertex splitting approach can be improved
by looking at multiple roots simultaneously. In fact, we do not know any instance where repeated
vertex splittings would not bring the lower bound to the integer optimum if multiple roots are used. It
remains an open problem to find out if this is always the case.

2.13 Some Experimental Results

In this section, we present summarized results of some different approaches for computing lower
bounds on benchmark instances from SteinLib [Ste97] (see Section A for a description of the instance
groups). Note that the stand-alone computation of a lower bound on an unreduced instance is a very
artificial setting in our context. Obviously, it cannot reveal the true value of a technique as a part of
an exact algorithm. Usually, one would first try reduction techniques (even those involving bound
calculations) before starting time-consuming lower bound calculations, becauce reductions can not
only accelerate the following computations, but also make them more effective. On the other hand,
measuring running times and lower bound gaps on reduced instances would make a comparison with
other implementations difficult.

In Table 2.2, we report running times and the average gap between the lower bound (rounded up
to the next integer) and the known optimum. The main purpose of this table is to provide a rough
overview of the power of the different methods. We give results for all groups of instances from
SteinLib where all optimal values are known. To ensure comparability, we did not use reductions
before starting the lower bound computation. But this meant that the row generating method could not
be carried out on all instances in reasonable time; a stroke in the table means that the corresponding
computation was aborted for some of the instances of the group because of running time constraints.

An experimental comparison of the directed cut relaxation LPC with the (stronger) MSTH-based
relaxation LPFST is also interesting (a theoretical study was already presented in Section 2.8.2).



70 CHAPTER 2. RELAXATIONS AND LOWER BOUNDS

instance DUAL-ASCENT DUAL-ASCENT, 10 roots LPC , row generation
group time (s) gap (%) time (s) gap (%) time (s) gap (%)
1R 0.01 3.49 0.02 2.03 — —
2R 0.01 5.87 0.04 4.41 — —
D 0.02 0.40 0.08 0.10 662.29 0.00
E 0.12 0.26 0.62 0.25 5714.26 0.00
ES10000FST 257.30 1.19 2434.40 1.18 — —
ES1000FST 0.31 1.20 2.58 1.16 264.53 0.008
I080 0.01 1.25 0.05 0.76 10.81 0.14
I160 0.04 1.10 0.31 0.83 4726.18 0.22
I320 0.17 1.24 1.55 1.05 — —
LIN 0.39 2.49 3.39 1.88 — —
MC 0.01 2.51 0.04 2.32 1941.06 0.54
TSPFST 1.72 0.67 16.95 0.60 5897.02 0.007
VLSI 0.23 2.00 2.16 1.51 — —
WRP3 0.03 0.0006 0.20 0.0005 — —
WRP4 0.01 0.0008 0.10 0.0006 929.24 0.000003
X 1.02 0.06 6.04 0.06 — —

Table 2.2: Average results for lower bound calculations on unreduced instances.

In Table 2.3 we compare the average gaps to integer optimum and computation times for the
relaxations LPFST and LPC on the geometric instances from SteinLib. For the first approach, we
used GeoSteiner 3.1 [WWZ01], a software package developed by Warme, Winter and Zachariasen for
solving Euclidean and rectilinear Steiner problems and the MSTH problem, by taking as v(LPFST )
the value of the last linear program before any branching was performed. A comparison of the running
times for the whole concatenation phase is given in Section 5.4.1. For these comparisons, we have
excluded some TSPFST instances that could not be solved by GeoSteiner in one day (results of our
program on such instances can be found in Section 5.4.1). These tests were performed on a PC with an
AMD Athlon XP 1800+ (1.53 GHz) processor and 1 GB of main memory (for details see Appendix
A).

instance LPFST (GeoSteiner) LPC (our program)
group time (s) gap (%) time (s) gap (%)
ES1000FST 99.2 0.0078 80.1 0.0079
TSPFST 129.6 0.009803 28.6 0.009806

Table 2.3: Comparison of LPFST and LPC .

Studying the data (detailed results on single instances can be found in [PV01d]), one observes:

• Both relaxations yield almost always the same value. Only on a couple of instances, LPFST is
tighter than LPC by a relatively small margin.

• Both relaxations are fairly tight on the considered instances. The average gap to integer optimum
is in both cases less than 0.01%.

• The average running times for computing v(LPC) have been smaller, but this does not say much
about which method is faster on a specific instance.

However, note that when solving the instances to optimality, our program would also use our
improvements of the relaxation LPC . For example, on the ES1000FST instances the usage of LPC′

(Sections 2.6.5 and 2.11.1) reduces the average gap from 0.008% to 0.001%, which is a substantial
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improvement in the context of an exact algorithm. The impact of our improvement techniques for
relaxations (Section 2.12) is even more drastic: Using the vertex splitting technique (Section 2.12.1)
in combination with LPC reduces the average gap to 0, meaning that the integer optimum is reached
for all instances of this group. The running times for the lower bound computation were increased
only by about 10%.

In Table 2.4, we present the impact of both vertex splitting and local cuts on the largest benchmark
instances ever solved (some additional experimental results can be found in [APV03b]). Here we have
chosen the approach of first applying some reduction methods. Note that without the reductions, the
impact of these techniques would be even more impressive, but then these instances could not be
handled in reasonable time. In all cases, the lower bound reached the value of the integer optimum
(and a tree with the same value was found). Without the lower bound improvement techniques, the
exact solution of the instances would take much longer (or was not even possible in case of d15112).

instance original size red. reduced size LPC+FB + vertex splitting + local cuts
|V | |R| time |V | |R| value time value time value time

d15112 51886 15112 5h 22666 7465 1553831.5 20.4h 1553995 21.9h 1553998 21.9h
es10000 27019 10000 988s 4061 1563 716141953.5 251s 716174280 284s —
fnl4461 17127 4461 995s 8483 2682 182330.8 5299s 182361 6353s —
lin37 38418 172 28h 2529 106 99554.5 1810s 99560 1860s —

Table 2.4: Results on large benchmark instances. A dash means that the instance was already solved to opti-
mality without local cuts. For the instance d15112, we used the program package GeoSteiner-3.1 to translate the
TSPLIB [Rei91] instance into an instance of the Steiner problem in networks with rectilinear metric. No bench-
mark instance of this size has been solved before. The SteinLib instances es10000 and fnl4461 were obtained
in the same way. Warme et al. solved the es10000 instance using the MSTH approach [WWZ00] and local cuts.
They needed months of cpu time. The instance fnl4461 was the largest previously unsolved geometric instance
in SteinLib. The SteinLib instance lin37 originates from some VLSI-layout problem, is not geometric, and was
not solved by other authors.
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3.1 Introduction

Informally, reductions are here methods to reduce the size of a given instance without destroying the
optimal solution. It has been known for some time that reductions can play an important role as a
preprocessing step for the solution of NP-hard problems. In particular, the importance of reductions
for the Steiner problem has been widely recognized and a large number of techniques were developed
[HRW92]; a milestone was the PhD thesis of Cees Duin [Dui93].

More precisely, a reduction method (also called a reduction test) is an algorithm that tries to
transform an instance I of the problem into an instance I ′ of “smaller” size (in this context: with
fewer vertices or edges), such that an optimal solution for I can be reconstructed (efficiently) from an
optimal solution for I ′. The motivation is that the reduced instance I ′ is (hopefully) simplified in some
sense. The algorithm tests, using some information from the instance, whether a certain condition
(test condition) is satisfied. If this is the case, a transformation (called test action) is performed.
This action can be deleting an edge or removing a non-terminal (possibly after inserting a clique for
vertices adjacent to it); such tests are called exclusion tests. It can also be the contraction of an edge
(into a terminal); such tests are called inclusion tests.

We find it helpful to distinguish between two major approaches for designing reduction tests:

alternative-based: Such tests use the existence of alternative solutions. For example in case of exclu-
sion tests, it is shown that for any solution containing a certain part of the graph (e.g., a vertex
or an edge) there is an alternative solution of no greater cost without this part; the inclusion tests
use the converse argument (absence of a proper alternative). For example, the simple exclusion
test Long Edges checks for each edge (vi, vj) (test object) whether c(vi, vj) > d(vi, vj) (test
condition); if this is the case, the edge (vi, vj) can be deleted (test action). The test is valid,
because every feasible solution containing the edge (vi, vj) could be transformed into one of
smaller cost by replacing (vi, vj) with a shortest path between vi and vj .

bound-based: Such tests use a lower bound for the value of an optimal solution with the additional
constraint that a certain part of the graph is contained (in case of exclusion tests) or is not
contained (in case of inclusion tests) in the solution; these tests perform their action if such
a lower bound exceeds a known upper bound. This can also be interpreted as a kind of an
implicit branch-and-bound approach. As an example, consider a dual feasible solution of value
lower for an LP relaxation of the problem (say LPC ) and the corresponding reduced costs c̃ij
(c̃ij = cij −

∑

W,[vi,vj ]∈δ−(W ) uW for LPC , see Section 2.9). An arc [vi, vj ] can be excluded
(the variable xij can be fixed to zero) if lower + c̃ij > upper, where upper is the cost of
a feasible (heuristic) solution for the original problem. Such tests are often called “variable
fixing by sensitivity analysis”. The validity of the test follows from basic observations on linear
programs; in Lemma 48 we will prove a much more general result.

Since each reduction method is specially effective on a certain type of instances, and has less (or
even no) effect on some others, it is important to have a large arsenal of different methods at one’s
disposal. Our contribution in this field has been:

• development of fast reduction methods, both variants of classical methods and new ones,

• introduction of new approaches for designing reduction methods and realizing effective and
efficient techniques based on them,

• efficient implementation and integration of these methods into various heuristic and exact algo-
rithms, not only as preprocessing.
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In Section 3.2, we present a collection of (fast) alternative-based reductions, including effi-
cient variants of classical tests and some new tests, which can all be realized with worst-case time
O(m + n log n). The achieved efficiency greatly enhances the applicability of reductions, especially
for integration into heuristics (Section 4.3).

In Section 3.3, we present a collection of bound-based reductions. On the one hand, we present fast
(for example O(m+n log n) time), but still relatively effective bound-based tests. On the other hand,
we develop an extremely powerful reduction scheme by integrating, for the first time, advanced tests
into the optimization process of LP relaxations, which is a major component of our exact algorithm
(Chapter 5).

The classical reduction tests just consider single vertices or edges. Recent and more sophisticated
tests extend the scope of inspection to more general patterns. In Section 3.4, we present such an
extended reduction test, which generalizes various tests from the literature. We introduce the new
approach of combining alternative- and bound-based arguments, which substantially improves the
impact of the tests. We also present several algorithmic contributions. The experimental results show
a large improvement over previous methods using the idea of extension.

In the solution process, particularly as the result of our other reduction techniques, we frequently
encounter graphs of (locally) low connectivity; but the standard methods based on partitioning are not
helpful for exploiting this situation. In Section 3.5, we present the new approach of using partitioning
to design reduction methods. As we will show, the resulting methods have been quite effective in the
context of Steiner problem, and the approach can also be useful for other problems.

In Section 3.6 we outline the integration of different reduction methods into a reduction package.
This integration is of great importance, because the most impressive achievements of reductions are
mainly due to the interaction of different tests.

Finally, in Section 3.7 we present some experimental results for different combinations of our
reduction methods. It turns out that our reduction package is by far both faster and stronger than other
existing reduction programs: On the one hand, it needs much less time to achieve each intermediate
degree of reduction. On the other hand, the final reduced instances are generally much smaller.

3.1.1 Additional Definitions for Reductions

With G− (vi, vj) we denote the graph obtained by removing the edge (vi, vj) from G. A bottleneck
of a path P is a longest edge in P . The bottleneck distance b(vi, vj) or bij between two vertices vi and
vj in G is the minimum bottleneck length taken over all paths between vi and vj in G. The restricted
bottleneck distance b̄(vi, vj) or b̄ij between vi and vj in G is the bottleneck distance between vi

and vj in G − (vi, vj). An elementary path is a path in which only the endpoints may be terminals.
Any path between two vertices can be broken at inner terminals into one or more elementary paths.
The Steiner distance along a path P between vi and vj is the length of a longest elementary path
in P . The bottleneck Steiner distance (sometimes also called “special distance”) s(vi, vj) or sij

between vi and vj in G is the minimum Steiner distance taken over all paths between vi and vj in G.
The restricted bottleneck Steiner distance s̄(vi, vj) or s̄ij between vi and vj in G is the bottleneck
Steiner distance between vi and vj in G− (vi, vj). Note that if R = V , then bij = sij and b̄ij = s̄ij .

In a (Steiner) tree T , non-terminals of degree at least 3 (in T ) and terminals are considered as key
nodes. A key path is a path in T in which (only) the endpoints are key nodes. The unique path in T
between two nodes vi and vj is called the fundamental path between vi and vj . A tree bottleneck
between two nodes vi and vj in T is a longest subpath on the fundamental path between vi and vj in
which only the endpoints may be key nodes.
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3.2 Alternative-Based Reductions

In this section we present a collection of fast alternative-based tests, including some efficient variants
of classical tests and some new tests, which can all be realized in time O(m+ n log n).

For the classical tests, we adopt the notation in the book [HRW92] (and not the notations in origi-
nal works), because the coverage of reductions in that book is more comprehensive and systematic.

3.2.1 Deletion of Edges by Using Distance Measures

To identify unnecessary edges, many tests based on the existence of alternatives have been suggested.
For example, the simple test LE (Long Edges) [Bea84] excludes edges (vi, vj) with c(vi, vj) >
d(vi, vj). Duin und Volgenant [DV89] introduced the test PTm (Paths with many Terminals), which
generalizes most of these tests.

PTm test: Every edge (vi, vj) with c(vi, vj) > s(vi, vj) can be removed from G.
Since the idea behind this test is central, we repeat the proof.

Lemma 37 The test PTm is valid.

Proof: Suppose all Steiner minimal trees contain an edge (vi, vj) with cij > sij . Let T be such a
tree. Removing (vi, vj) from T divides it into two components. Let P be a path such that the Steiner
distance between vi and vj along P is sij . On this path there is an elementary path P ′ that connects
the two components of T . The cost of T will decrease if (vi, vj) is replaced by P ′, a contradiction. 2
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Figure 3.1: Example for the PTm test.

In Figure 3.1, the edge (v1, z4) can be removed with this test, because c(v1, z4) = 5 > 4 =
s(v1, z4). To see that s(v1, z4) = 4, consider the path (v1, z2, v3, v6, v7, z9, z8, v5, z4).

The test PTm is one of the most effective classical exclusion tests, but in its original form it is too
time consuming for large instances, because it requires the calculation of the s-values for all edges,
which needs time O(n(m + n log n)) and space Θ(n2) [Dui00]. Here we consider a fast realization
of this test, which also uses alternative information. The modifications follow the same principal
ideas as used by Duin [Dui93]. Later we will simply refer to this modified version as the PTm test.
Experimentally, one generally observes only a marginal difference in the effectiveness of the original
test and its modified version.

For two terminals zi and zj , one observes that the bottleneck Steiner distance s(zi, zj) can be
computed by determining a bottleneck on the fundamental path between zi and zj in the spanning tree
T ′

D(R) (Section 1.2), which can be constructed in time O(m+ n log n). Each such bottleneck can be
trivially computed in time O(r), leading to a total time O(qr) for q queries (q ∈ O(min{m, r2})).
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Observing that one actually has a static-tree variant of the bottleneck problem, one can use a strategy
based on depth-first search (as described in [VJ83]) to achieve time Θ(r2) for all queries. One can
go further and solve the problem as an off-line variant for all q queries in time O(qα(m, r)) using
the Eval-Link-Update data structure [Tar79]. But this data structure is rather complex and leads to
relatively large constant factors, and this bound is dominated by the worst-case time of other test
operations anyway. So we suggest another method to achieve the desired worst-case time O(m +
n log n) for all queries: Sort the edges of T ′

D(R) and then process them as links in increasing cost
order, building a binary tree (whose internal nodes represent the edges of T ′

D(R)) using a suitable
auxiliary union-find data structure. This transforms the problem to an instance of the off-line nearest-
common-ancestor problem, which is solvable, for example, in O(q) using a depth-first search strategy
[Tar79]. This leads to a total time O(q + r log r) for all q queries.

For arbitrary vi and vj , one can use an upper bound for the bottleneck Steiner distance s(vi, vj)
considering only paths of the form vi − zi,a − zj,b − vj , where zi,a and zj,b are the a-th respectively
b-th nearest terminals to vi and vj . The k (k constant, say 3) nearest terminals to all non-terminals
(forbidding intermediary terminals on the corresponding paths) can be computed using a modifica-
tion of the algorithm of Dijkstra in time O(m + n log n), as described in [Dui93]. After that, one
works with the upper bound ŝ(vi, vj) := mina,b∈{1,...,k}{max{ d(vi, zi,a) , s(zi,a, zj,b) , d(zj,b, vj)}}
instead of s(vi, vj). But we do not precompute the ŝ-values, because very often not all the k2

combinations have to be checked; for example if the test condition turns out to be already satis-
fied during the computation (or, of course, if vi or vj is a terminal). More importantly, many ad-
ditional observations can be used to do without ŝ(vi, vj) altogether. For example the lower bound
š(vi, vj) := max{d(vi, base(vi)), d(vj , base(vj))} (which is readily available) is often helpful: If
both vertices vi and vj belong to the same Voronoi region, then we simply have š(vi, vj) = ŝ(vi, vj).
If vi and vj belong to different Voronoi regions and c(vi, vj) < š(vi, vj), then the test cannot be
successful for (vi, vj). Furthermore, precomputing the ŝ-values (which can need time Θ(n2)) would
destroy the total time O(m+ n log n) for performing this test on all edges.

An additional observation leads to a simple, very fast test, which is sometimes very powerful:

Lemma 38 Let Ŝ be the length of a longest edge in T ′
D(R). Every edge (vi, vj) with c(vi, vj) > Ŝ

can be removed from the network.

Proof: Suppose there is a Steiner minimal tree T containing an edge (vi, vj) with cij > Ŝ. Removing
this edge from T divides it into two components: Ci containing vi and Cj containing vj . In each
component, there is at least one terminal. Let zk and zl be two arbitrary terminals in Ci respectively
Cj . In G, there is a path between zk and zl, corresponding to the fundamental path in T ′

D(R), with
Steiner distance at most Ŝ. This path contains an elementary path P connecting Ci and Cj , whose
length is at most Ŝ. Reconnecting Ci and Cj by P yields a graph H spanning all terminals with
c(H) < c(T ), a contradiction. 2

Note that using this test, one can eliminate some edges that could not be eliminated by the PTm test
(even in its original form).

Since these variants consider only paths with at least one terminal, they miss some of the edges
the simple test LE would eliminate. On the other hand, after execution of other tests the graph is often
sparse. So a weakened version of LE, which simply searches for shorter paths from both ends of an
edge, can be helpful. With the additional restriction that during the examination of each edge not more
than a constant number of edges are visited in search for an alternative path, one gets the total time
Θ(m) for this modified test, which we call Triangle.
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A test like PTm can actually be extended to the case of equality with restricted bottleneck Steiner
distances: An edge (vi, vj) can be removed from G if cij ≥ s̄ij (remember that s̄ij is sij in G after
removing (vi, vj)). But removing edges with this test condition can change the (restricted) bottleneck
Steiner distances, which makes a recalculation of these distances after each deletion necessary. For
example, consider the network in Figure 3.1 without the edge (z8, z9). Both edges (z2, v5) and (v5, z9)
satisfy the test condition with equality, but after one of them is removed, the condition is not satisfied
for the other anymore. Because of such difficulties, in the literature it was assumed that the test PTm

cannot be performed in the case of equality without recalculation of the necessary information. We
observed that the few problematic cases can be efficiently identified, so that in all other cases the
test actions can be performed even in case of equality (without recalculation). The details are rather
technical, with a long list of case differentiations (see [PV97]). But it must be mentioned that this
observation has a greater impact than one would assume, because in some cases the reduction process
is blocked in face of many alternatives with equal weights and can be reactivated with a measure like
this.

3.2.2 Substitution of Non-Terminals

To identify non-terminals that are not key nodes in at least one Steiner minimal tree, the following test
NTDk (Non-Terminals of Degree k) was introduced by Duin and Volgenant [DV89].

NTDk test: A non-terminal vi has degree at most 2 in at least one Steiner minimal tree if for each
set ∆, |∆| ≥ 3, of vertices adjacent to vi the following holds: The sum of the lengths of the edges
between vi and vertices in ∆ is not less than the weight of a minimum spanning tree for the network
(∆,∆ × ∆, s).

Later (in Lemma 49), we will prove a much more general test condition, which also shows the
validity of the above test.

If the test condition is satisfied, one can remove vi and incident edges, introducing for each two
vertices vj and vk adjacent to vi an edge (vj , vk) with length cij + cik (and keeping only the shortest
edge between each two vertices).

The special cases with k (degree of vi) in {1, 2} can be implemented with total time O(n) (for ex-
amination of all non-terminals). For k ∈ {3, . . . , 7} we use the ŝ-values instead of the exact bottleneck
Steiner distances, as described in Section 3.2.1. Again, empirically only a marginal difference in effec-
tiveness is observed between the original and the modified version. As before, we do not precompute
the ŝ-values, so the modified version has total time O(m+ n log n).

Because the addition of new edges can be a delicate matter and the necessary ŝ-values are already
available, it is a good idea to check whether each new edge could be eliminated using the PTm test. In
this case it need not be inserted in the first place.

3.2.3 Contraction of Edges

The test NV (Nearest Vertex) is a classical inclusion test [Bea84, HRW92]:
NV test: Let zi be a terminal with degree at least 2, and let (zi, v

′
i) and (zi, v

′′
i ) be the shortest and

second shortest edges incident to zi. The edge (zi, v
′
i) belongs to at least one Steiner minimal tree, if

there is a terminal zj, zj 6= zi, with c(zi, v
′′
i ) ≥ c(zi, v

′
i) + d(v′i, zj).

The original version of the test NV requires the computation of distances, which is too time con-
suming for large instances. But one can accelerate this test without making it less powerful, using
the lemma given below. For this purpose, we use Voronoi regions again, saving some extra infor-
mation while computing the regions. Let distance(zi) be the length of a shortest path from zi to
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another terminal zj over the edge (zi, v
′
i), computed as follows: Each time an edge (vk, vl) with

vk ∈ N(zi), vl ∈ N(zj), zj 6= zi is visited, it is checked whether vk is a successor of v′i in the
shortest paths tree with root zi (simply done through marking the successors of v ′i). In such a case
distance(zi) is updated to min{distance(zi), d(zi, vk) + c(vk, vl) + d(vl, zj)}. Now we have:

Lemma 39 The condition of the test NV is satisfied if and only if:
c(zi, v

′′
i ) ≥ c(zi, v

′
i) + d(v′i, base(v′i)), if v′i /∈ N(zi), and

c(zi, v
′′
i ) ≥ distance(zi), if v′i ∈ N(zi).

Proof: Assume the condition formulated in the lemma is satisfied for a vertex zi: If v′i 6∈ N(zi),
the NV test condition is satisfied for zj = base(v′i). If v′i ∈ N(zi), then a terminal zj exists with
c(zi, v

′
i) + d(v′i, zj) = distance(zi) ≤ c(zi, v

′′
i ). Hence, the NV test condition is satisfied.

Now assume that the condition of the test NV, c(zi, v
′′
i ) ≥ c(zi, v

′
i) + d(v′i, zj), is satisfied: If v′i 6∈

N(zi), it follows from d(v′i, zj) ≥ d(v′i, base(v′i)) that c(zi, v
′′
i ) ≥ c(zi, v

′
i) + d(v′i, base(v′i)). If

v′i ∈ N(zi), we could get c(zi, v
′
i) + d(v′i, zj) ≥ distance(zi), assuming that v′i is on a shortest path

between zi and zj . But the latter must be true, because otherwise we have c(zi, v
′′
i ) ≥ c(zi, v

′
i) +

d(v′i, zj) > d(zi, zj) ≥ c(zi, v
′′
i ), a contradiction. 2

Using this lemma, the test NV can be performed for all terminals in time O(m + n log n). Note that
in inclusion tests, each included edge is contracted into a terminal.

The Voronoi regions can also be used to perform a related inclusion test, which we call SL (stand-
ing for Short Links):

Lemma 40 Let zi be a terminal, and (v1, v
′
1) and (v2, v

′
2) the shortest and second shortest edges

that leave the Voronoi region of zi (v1, v2 ∈ N(zi), v
′
1, v

′
2 /∈ N(zi); we call such edges links). The

edge (v1, v
′
1) belongs to at least one Steiner minimal tree, if c(v2, v

′
2) ≥ d(zi, v1) + c(v1, v

′
1) +

d(v′1, zj), where zj = base(v′1).

Proof: Suppose that the edge (v1, v
′
1) is not in any Steiner minimal tree. Consider such a tree T and

the path between zi and zj in T . An edge on this path must leave the Voronoi region of zi. Removing
this edge and inserting (v1, v

′
1) and two shortest paths between v1 and zi and between v′1 and zj , we

get a subgraph H that includes (v1, v
′
1) and spans all terminals with c(H) ≤ c(T ), a contradiction. 2

This test can also be performed for all terminals in total time O(m+n log n). An application of these
tests is shown in Figure 3.2.
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Figure 3.2: Example for the application of the NV and SL tests.

The classical test SE (Short Edges) [DV89, HRW92] is a more powerful inclusion test. We ob-
served for the first time that even this test can be implemented with time O(m + n log n), using the
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same methods and data structures as in section 3.2.1. But although this test is more effective than
NV and SL in a single application, the difference diminishes when the reduction tests are iterated.
Therefore, we did not include this test in our packet of fast tests.

3.2.4 Exclusion of Paths

We designed another alternative-based reduction test that is more general than the previous tests in
two ways: It examines several edges along a path, instead of examining elementary graph objects
(like single edges and vertices). If the test is successful, some of these edges can be deleted at once.
The other more general aspect is a consequence of the first: Searching for alternatives for a path, it
is no longer sufficient to find one alternative, because the edges of the path can be involved in many
different ways in a Steiner tree. As a consequence, such a test can only be efficient if it has a rather
restricted test condition.

The basic idea is to start with a single edge as the path and then try to find alternative paths for the
vertices adjacent to those on the path. If this is not possible for exactly one adjacent vertex, the path
is extended by the edge to this vertex and the search for alternative paths is restarted. Such successive
extensions could finally lead to the desired situation.

We describe the lemma that leads to the formal specification of the test in a simplified way: We
give only the description for deleting one edge of the path and define it only for the special case
that the starting vertex v0 has degree 3. The extensions to deleting many edges on the path and to
vertices with higher degree are not too complicated. (For degree(v0) > 3 the additional condition
dP (v0, vi) ≥ d0(v

k0

0 , v
k
i ) + c(vi, v

k
i ) is required in the last line of the definition of the test condition.)

Lemma 41 Let P be a path (v0, . . . , vl) with degree(v0) = 3 and vi ∈ V \R for all i ∈ {0, . . . , l}. We
denote by v1

i , v
2
i , . . . the vertices adjacent to each vi on P that are not contained in P . Let d0(vi, vj)

be the length of a shortest path between vi and vj that does not contain (v0, v1), and dP (vi, vj) (for vi

and vj in P ) the length of the subpath of P between vi and vj .
The edge (v0, v1) can be deleted if for all i ∈ {1, . . . , l} there are functions f i and gi such that:
I) for all vk

i adjacent to vi and for k0 = f i(k): dP (v0, vi) ≥ d0(v
k0

0 , v
k
i ),

II) for all vk0

0 adjacent to v0 and for k = gi(k0): dP (v0, vi) ≥ d0(v
k0

0 , v
k
i ), c(v0, v

k0

0 ) ≥ c(vi, v
k
i ).

Proof: Suppose all Steiner minimal trees contain the edge (v0, v1). Consider such a tree T , and let
t ≥ 1 be the smallest index such that there is an edge (vk

t , vt) in T . Notice that the degree of v0 in T
must be greater than 1 and that all edges between v0 and vt on P must be in T . There are two cases:
1) In T , v0 has degree three. Choose k such that (vk

t , vt) is in T . Let k0 = f t(k). Remove the
edges on the path (v0, v1, . . . , vt−1, vt) from T . The resulting components can be reconnected without
reinserting (v0, v1) by a path between vk0

0 and vk
t which is not longer.

2) In T , v0 has degree two. Choose k0 such that (vk0

0 , v0) is in T . Let k = gt(k0). Remove the edges
on the path (vk0

0 , v0, v1, . . . , vt−1, vt) from T . The resulting components can be reconnected without
reinserting (v0, v1) by a path between vk0

0 and vk
t and the edge (vk

t , vt). Again the inserted edges
together are not longer than the removed edges.
In both cases, we obtain a subgraph H that does not contain (v0, v1) and spans all terminals with
c(H) ≤ c(T ), a contradiction. 2

One problem for an efficient implementation of this test is the calculation of the distances
d0(vi, vj). Since we do not want to have running times like Θ(n3) for the calculation of shortest
paths, we work with a weakened version: To determine an upper bound for d0(v

k0

0 , v
k
t ), we examine

only those paths that contain only vertices in {vk′

t′ | 0 ≤ t′ ≤ t}. This makes it easy to maintain
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shortest paths trees for each vi
0, i ∈ {1, . . . , degree(v0) − 1}, during the successive extensions of P .

It is also possible to determine up to which vertex vs in P the edge (vs, vs+1) can be deleted, under
the assumption that all edges between v0 and vs have been deleted. If finally a situation is reached
in which – according to the lemma above – (v0, v1) can be deleted, then all edges of P between v0

and vs+1 can be removed. Our implementation assures that each edge is considered as a part of P not
more than twice (once in each direction). We have observed that if the test is successful, all involved
vertices have low degrees. If one fixes a small constant g, e.g. g = 10, and aborts the successive
extension of P each time a vertex with degree larger than g is visited, a total running time (for the
whole network) of O(m) can be guaranteed. We call this fast version PS (for Path Substitution). This
version of the test is usually effective only for some sparse graphs (including some VLSI-instances).
For such instances, 5-10% of edges could frequently be removed using this test alone.

3.3 Bound-Based Reductions

Since one cannot expect to solve all instances of an NP-hard problem like the Steiner problem only
through reduction tests with a (low-order) polynomial worst-case time (like the tests in the previous
section), the computation of (sharp) lower bounds is a common part of the standard algorithms for the
exact solution of such a problem. The information gained during such computations can be used to
reduce the instance further. Besides, by using fast heuristics for generating bounds small worst-case
running times can be guaranteed even for this kind of tests.

3.3.1 Using Voronoi Regions

The Voronoi regions can be used to determine a lower bound for the value of an optimal solution
with additional constraints (for example, that the solution contains a certain non-terminal). For any
terminal z, we define radius(z) as the length of a shortest path from z leaving its Voronoi region
N(z). These values can be easily determined while computing the Voronoi regions. For convenience,
we assume here that the terminals are numbered according to non-decreasing radius -values. For each
non-terminal vi, let zi,1, zi,2 and zi,3 be the three terminals next to vi, as described in Section 3.2.1.
The following lemma can be used to eliminate a non-terminal.

Lemma 42 Let T be a Steiner minimal tree and assume that vi is a Steiner node in T . Then
d(vi, zi,1) + d(vi, zi,2) +

∑r−2
t=1 radius(zt) is a lower bound for the weight of T .

Proof: For each terminal zl, we denote the path between zl and vi in T with Pl. Among such paths,
there must be at least two (edge-) disjoint ones. For any path P , define ∆(P ) as the number of edges
on P that have their vertices in two different Voronoi regions. Let Pj and Pk be two disjoint paths
such that ∆(Pj) + ∆(Pk) is minimal. Note that no path Pl can have edges in common with both Pj

and Pk. For each terminal zl 6∈ {zj , zk}, let P ′
l be the part of Pl from zl up to the first vertex not in

N(zl); P ′
l is well-defined, because otherwise Pl would be the only path with ∆(Pl) = 0 (namely for

zl = base(vi)) and would have been chosen as Pj or Pk. Obviously, all P ′
l are disjoint. Now suppose

that Pj has an edge in common with some P ′
l . Let vl be a vertex of this edge with vl ∈ N(zl). The

part of Pj between zj and vl contains an edge with only one vertex in N(zl), so ∆(Pl) < ∆(Pj),
which contradicts the choice of Pj . So Pj (or, similarly, Pk) has no edge in common with a path P ′

l .
Since Pj , Pk and the r − 2 paths P ′

l are all disjoint, the sum of their lengths cannot be larger than the
weight of T . The sum of the lengths of Pj and Pk is at least d(vi, zi,1) + d(vi, zi,2). The sum of the
lengths of the r − 2 paths P ′

l is at least
∑r−2

t=1 radius(zt). 2
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A non-terminal vi can be eliminated if this lower bound exceeds a known upper bound. This method
can be extended for eliminating edges:

Lemma 43 Let T be a Steiner minimal tree and assume that T contains an edge (vi, vj). Then
c(vi, vj) + d(vi, zi,1) + d(vj , zj,1) +

∑r−2
t=1 radius(zt) is a lower bound for the weight of T .

Proof: Analogous to the proof of Lemma 42. 2

One can also define a test performing the same actions as NTDk when it is successful, using the
following lemma:

Lemma 44 Let T be a Steiner minimal tree and assume that vi is a Steiner node whose degree in T
is at least three. Then d(vi, zi,1) + d(vi, zi,2) + d(vi, zi,3) +

∑r−3
t=1 radius(zt) is a lower bound for the

weight of T .

Proof: Analogous to the proof of Lemma 42. 2

Intuitively, one expects that an even better lower bound should be achievable through this line of
argument, because the paths between the terminals in a Steiner tree not only leave the corresponding
Voronoi regions, but also span all terminals. Indeed, one can use this idea:

Lemma 45 Consider the auxiliary network Ĝ = (R, Ê, ĉ), in which two terminals are adjacent if and
only if they are neighbors in the original network, defining:
ĉ(zi, zj) := min{min{d(zi, vk), d(zj , vl)} + c(vk, vl) | vk ∈ N(zi), vl ∈ N(zj)}.
The weight of a minimum spanning tree for Ĝ is a lower bound for the weight of any Steiner tree for
the original instance (G,R).

Proof: Observe that the graph Ĝ is identical to that defined in Section 2.9.3, page 49, on primal-dual
approaches, so the same assertions about the bounds follow. 1

2

This lemma can be extended to test conditions; for example, for any non-terminal vi, the weight of
such a spanning tree minus the length of its longest edge plus d(vi, zi,1) + d(vi, zi,2) is a lower bound
for the weight of any Steiner minimal tree that contains vi. The resulting test is very fast: The network
Ĝ can be determined without much extra work while computing the Voronoi regions, and a minimum
spanning tree for it can be computed in time O(m+ r log r).

For computing upper bounds in this context, we use a modified path heuristic with time O(m +
n log n), which is described in Section 4.2. So, all these tests can be performed in timeO(m+n logn);
we call this combined test VR (standing for Voronoi Regions). With a heuristic solution available, all
these tests can be easily extended to the case of equality of lower and upper bound. As intuition
suggests, the VR test is most effective for sparse networks with relatively few terminals; in this sense,
it is a nice complement to the alternative-based tests, which are often especially successful if the ratio
of terminals to all vertices is large. Additionally, this test was the basis for the development of the
strong PRUNE-heuristics, which are presented in Section 4.3.

3.3.2 Using Dual Ascent

The information provided by the algorithm DUAL-ASCENT (section 2.9.2), namely the lower bound
with value lower and the reduced costs can be used to design another bound-based reduction test.
Here we use a simple, yet very helpful lemma, which we will exploit frequently later on:

1In [PV01c] we gave a detailed, more tedious proof without using the notion of primal-dual algorithms.
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Lemma 46 Let G = (V,A, c) be a (directed) network (with a given set of terminals) and c̃ ≤ c. Let
lower ′ be a lower bound for the cost of any (directed) Steiner tree in G′ = (V,A, c′) with c′ := c− c̃.
For any x̃ representing a feasible Steiner tree for G of cost c · x̃, it holds that lower ′ + c̃ · x̃ ≤ c · x̃.

Proof: c · x̃ = c′ · x̃+ c̃ · x̃ ≥ lower′ + c̃ · x̃. 2

Now consider the reduced costs provided by DUAL-ASCENT as c̃: One can observe that the lower
bound lower ′ provided by DUAL-ASCENT in G′ is the same as lower . So for any x̃ representing a
feasible (directed) Steiner tree ~T , lower + c̃ · x̃ represents a lower bound on the weight of ~T .

This lemma can be used to compute lower bounds for the cost of an optimum Steiner tree with
additional constraints, for example, that the tree contains a certain non-terminal. The resulting tests
follow the same line as the tests IRA and IRAe, which were introduced by Duin [Dui93], using a
somewhat more tedious argumentation.

Let vk be a non-terminal, and ~T any optimal (directed) Steiner tree containing vk, represented by
x̃. The lower bound c̃ · x̃ on the weight of ~T minus lower can be further estimated from below by
the length of a shortest path (with respect to the costs c̃) from the root to vk plus the length of an
(arc-disjoint) shortest path from vk to another terminal; and the last value can be again estimated from
below by the distance of vk to its nearest terminal, as described in Section 3.2.1. The non-terminal vk

can be eliminated if this lower bound exceeds a known upper bound. Similar tests can be developed
for the elimination of edges and for the elimination of vertices after replacing incident edges (as in
NTDk). All these tests can be performed in time O(m+n log n) after a run of DUAL-ASCENT (and
computation of an upper bound). With a heuristic solution available, these tests can be easily extended
to the case of equality of lower and upper bound. We call this collection of tests DA (standing for Dual
Ascent).

When dealing with the Steiner problem in undirected networks, it is a good idea to try different
terminals as the root. Although the optimal value DLPC is independent of this choice, the value of
the lower bound provided by DUAL-ASCENT is not, and, much more important, different roots can
lead to the elimination of different parts of the network, even if the value of the lower bound does not
change. Trying a constant number (at most 10) of terminals as roots, we have substantially improved
the effectiveness of this test. Notice also that each repetition profits from the reductions achieved by
the previous ones.

The test DA is very effective, and usually it is fast empirically. But the time bound O(a ·
min{a, rn}) (resulting from DUAL-ASCENT) is, in comparison to the time O(m + n log n) of the
other tests hitherto presented, somewhat unsatisfactory, especially because the other parts of the test
can indeed be performed in time O(m+ n log n).

One can try to achieve a better time bound by using a faster dual ascent algorithm, even if the
provided lower bounds are worse: The tests described above use both the reduced costs and the lower
bound, and a worse lower bound can be compensated to some degree by larger reduced costs.

One successful variant with running time O(m + n log n) uses the observation that it is possible
to increase many dual variables around a terminal simultaneously.

Lemma 47 Choose a terminal zt ∈ Rz1 . Define d′(vi) := min{d(vi, zt), d(z1, zt)}. For all Steiner
cuts (W̄ ,W ) set the dual variable uW := max{0,minvj 6∈W{d′(vj)} − maxvj∈W {d′(vj)}}. Then
∑

W,[va,vb]∈δ−(W ) uW = max{0, d′(va) − d′(vb)} ≤ cab for all arcs [va, vb] ∈ A.

Proof: Let v1, v2, . . . , vn be the vertices in V sorted by their distance to zt in ascending order. Con-
sider a Steiner cut (W̄ ,W ). Obviously uW = max{0, d′(vh)−d′(vi)} for h = min{j | vj 6∈W}, i =
max{j | vj ∈W}. If there are two vertices vh and vi with h < i, vh 6∈W, and vi ∈W , then uW = 0.
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So if uW > 0, there must be a vertex vk with vl ∈ W for all l ≤ k and vl 6∈ W for all l > k, and we
can denote W by Wk: Wk = {v1, . . . , vk}; uWk

= d′(vk+1) − d′(vk). For any arc [va, vb] we have:

∑

W,[va,vb]∈δ−(W )

uW =
∑

b≤k<a

uWk

=
∑

b≤k<a

(d′(vk+1) − d′(vk))

= max{0, d′(va) − d′(vb)}
= max{0,min{d(va, zt), d(z1, zt)} − min{d(vb, zt), d(z1, zt)}}
≤ max{0,min{cab + d(vb, zt), d(z1, zt) + cab} − min{d(vb, zt), d(z1, zt)}}
= cab.

2

It follows immediately that u is feasible forDLPC . Since the dual variables u are not used explicitly in
the reduction process, it is sufficient to work with the reduced costs and the calculated lower bound; so
the updating process for one terminal can be performed very quickly, because we just need a shortest
paths tree rooted at zt that spans z1. Then the reduced costs for any involved arc [va, vb] are decreased
by max{0, d′(va)− d′(vb)} and the lower bound is increased appropriately. After each such updating
there may still be terminals that are not reachable from the root by arcs of zero reduced cost, so the
updating can be repeated with other terminals, but then with respect to the remaining reduced costs.
We guide this calculation by the structure of a heuristic solution: The terminals are sorted according
to non-decreasing distances from the root in this solution and considered one at a time.

Note that using this method, an edge can be visited by several terminals. To limit the effort,
we simply abort the calculation of a shortest paths tree if it reaches a vertex that has already been
visited by a constant number of terminals (e.g., 5). This leads to a worst-case running time for the
calculation of a lower bound and reduced costs of O(m + n log n). The other operations of the test
can be performed in the same time, as previously described. To construct a heuristic solution, we
use a heuristic described in Section 4.2, which has the same running time. So the whole test can be
performed in total time O(m+n logn). We call this test LDA (Limited Dual Ascent). Despite its low
running time, it is fairly effective, especially if the ratio of terminals to all vertices is not very large.

3.3.3 Using the Row Generation Strategy

The modification above aimed at making the reduction technique based on reduced costs faster. A
legitimate question is if it is possible to make that technique stronger. For this goal, we use the row
generation method described in Section 2.11.

Every iteration of the row generation method provides a dual feasible solution for the underlying
relaxation (for example LPC or LPC′ ) and appropriate reduced costs. Using this information, the
same reduction techniques as described in Section 3.3.2 can be used. The only enhancement here is
that edges are allowed to be deleted only in one direction during the row generation process (remember
that the relaxations LPC and LPC′ use directed networks). This can amplify the effect of subsequent
reductions considerably. In the linear program itself, the deletion of arcs is realized by fixing the
corresponding variables to zero.

In many cases the mentioned reductions during the row generation make further alternative-based
reductions possible. But it would be a bad idea to delay these reductions until the row generation
terminates, because they could possibly accelerate the computation and raise the optimal value of the
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relaxation. On the other hand, it would be problematic to abort the row generation, do the alternative-
based reductions and then start it again, because the constraints generated in the meantime could
not be used anymore, at least not directly. Our approach for dealing with this problem is to per-
form alternative-based reductions in an undirected copy of the current directed instance (which is not
necessarily bidirected). After that, the reduced undirected instance is translated back into a directed
instance, with the performed reductions translated into fixing of variables. We call the whole reduction
method RG (for Row Generation).

The row generation approach can also be exploited for even stronger reductions in combination
with the extended reduction techniques that will be described in the next section.

Note that using a lower bound and reduced costs produced by an LP solver like CPLEX in the
context of reduction techniques is a delicate matter. As the LP solver works with floating point arith-
metic and gives hardly any guarantee for the quality of the returned solution, the output of the LP
solver cannot be used directly. One reliable and very efficient solution is the use of integer arithmetic.
The floating point numbers are scaled by some factor and rounded to integers.

In this process, we distinguish between the primal and the dual variables. The primal variables
are less critical, as they are only used for the computation of new constraints, e.g., by minimum cut
computations. Note that the preflow-push algorithm used only works reliably using exact arithmetic.
As we always round up while transforming the primal values, we make it less probable, yet not im-
possible, to find an already satisfied cut constraint that has a capacity less then one according to the
rounded capacity values. Also, it is possible that we miss some violated cut constraints with a capac-
ity very close to one. Neither of the two situations is really harmful. As primal variables are always
between zero and one, we can choose a very large factor for the scaling.

The dual side is more interesting. The basic idea is to round the dual values to integers and compute
a valid lower bound and reduced costs in exact arithmetic. A minor issue is that we have to store the
integer constraint matrix A of the linear program. The major problem is that the dual values may not
be feasible any more. Here we can use a nice extension of Lemma 46.

Lemma 48 For any linear program

min{c · x | Ax ≥ b; 1 ≥ x ≥ 0} = max{b · λ− 1 · µ | ATλ− µ ≤ c; λ ≥ 0; µ ≥ 0},
any (feasible or infeasible) dual values λ̄ ≥ 0, µ̄ ≥ 0 and any feasible primal values x̃ it holds that:

b · λ̄− 1 · µ̄+ (c+ µ̄−AT λ̄) · x̃ ≤ c · x̃.
Proof: Let x+ be an optimal solution for the linear program min{c+ · x | Ax ≥ b; x ≥ 0} with
c+ = AT λ̄. Note that x̃ is feasible for this linear program, and λ̄ is feasible for the dual of the
program. It follows that b · λ̄ ≤ c+ · x+ ≤ c+ · x̃. As x̃ ≤ 1, it follows that µ̄ · x̃ ≤ 1 · µ̄. Both
inequalities together prove the claim. 2

Corollary 48.1 If µ̄ ≥ AT λ̄− c, then for any primal feasible x̃, b · λ̄− 1 · µ̄ is a lower bound for c · x̃.

To use the inexact dual values in the context of bound-based reductions, we do the following:

1. We round the dual values to integers λ̄. We choose the scaling factor such that the current
difference between upper and lower bound corresponds to an integer rest that uses nearly the
full bit length of the computer’s integers. We can ensure that all numbers computed in the bound-
based reductions are not greater than 2 rest+1. On the one hand, this prevents overflows. On the
other, the accuracy is increased in the row generation iterations automatically, as the difference
between upper and lower bound decreases.
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2. We set any negative λ̄i to zero.

3. We try a “test and repair” strategy: If AT λ̄ ≤ c is violated for some arc [vi, vj ], we try to shift
the dual values associated to constraints containing xij a little so that the violation gets smaller.
This is done in a heuristical way.

4. Using exact arithmetic, we compute µ̄ := max{0, AT λ̄ − c}. From Corollary 48.1 it follows
that lower := b · λ̄− 1 · µ̄ is an exact lower bound for the cost of an optimum Steiner tree.

5. We compute reduced costs c̃ := c+ µ̄−AT λ̄. Note that c̃ ≥ 0.

6. Now, we can perform bound-based reductions as described in the previous subsection with
lower and c̃, using that lower + c̃ · x̃ is a lower bound for the cost of a Steiner tree represented
by x̃.

3.4 Extension and Combination of Reduction Techniques

The classical reduction tests just consider single vertices or edges. Recent and more sophisticated
tests extend the scope of inspection to more general patterns. In this section, we begin with a generic
framework for extended reduction tests, which also generalizes various tests from the literature. The
generic algorithm is then substantiated by presenting the applied test conditions and criteria for guid-
ing and truncation of expansion. We use the new approach of combining alternative- and bound-based
methods, which substantially improves the impact of the tests. We also present several algorithmic
contributions. The experimental results show a large improvement over previous methods using the
idea of extension, leading to a drastic speed-up in the optimal solution process and the solution of
several previously unsolved benchmark instances.

Additional Definitions for Extended Reduction Techniques

For every tree T in G, we denote by V (T ) the vertices of T , by L(T ) the leaves of T , and by c(T )
the sum of the costs of edges in T . Let T ′ be a subtree of T . The linking set between T and T ′ is the
set of vertices vi ∈ V (T ′) such that there is a fundamental path from vi to a leaf of T not containing
any edge of T ′. Note that the paths can have zero length and if a leaf of T ′ is also a leaf of T it will be
in the linking set. If the linking set between T and T ′ is equal to L(T ′), T ′ is said to be peripherally
contained in T (Figure 3.3). This means that for every leaf vj of T the fundamental path connecting
vj to T ′ ends in a leaf of T ′. A set L′ ⊆ V (T ), |L′| > 1, induces a subtree TL′ of T containing for
every two vertices vi, vj ∈ L′ the fundamental path between vi and vj in T . We define L′ to be a
pruning set if L′ contains the linking set between T and TL′ .

4
v

v1

v2

v5

v6

v7

v3

For the depicted tree T , let T ′ be the sub-
tree of T after removing the edges (v4, v6)
and (v6, v7). The linking set between T and
T ′ is {v1, v2, v4, v5}, and therefore T ′ is not
peripherally contained in T . But if we add
(v4, v6) to T ′, it is.

Figure 3.3: Depiction of some central notions for extended reductions.
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3.4.1 Extending Reduction Tests

The classical reduction tests for the Steiner problem inspect only simple patterns (a single vertex or a
single edge). There have been some approaches in the literature for extending the scope of inspection
[Win95, Dui00, UdAR02]. The following function EXTENDED-TEST describes in pseudocode a
general framework for many of these approaches. The argument of EXTENDED-TEST is a tree T
that is expanded recursively. For example, to eliminate an edge e, T is initialized with e. The function
returns 1 if the test is successful, i.e., it is established that there is an optimal Steiner tree that does not
peripherally contain T .

In the pseudocode, the function RULE-OUT(T,L) contains the specific test conditions (see Sec-
tion 3.4.2): RULE-OUT(T,L) returns 1 if it is established that T is not contained with linking set L
in at least one optimal Steiner tree. The function TRUNCATE checks some criterion to truncate the
recursive expansion, and PROMISING tries to identify promising candidates for expansion.

EXTENDED-TEST(G,R, T )
(returns 1 only if T is not contained peripherally in an optimal Steiner tree)

1 if RULE-OUT(T,L(T )) :
2 return 1; (test successful)
3 if TRUNCATE(T ) :
4 return 0; (test truncated)
5 forall leaves vi of T :
6 if vi 6∈ R and PROMISING(vi) :
7 success := 1;
8 forall non-empty extension ⊆ {(vi, vj) :

not RULE-OUT(T ∪ {(vi, vj)}, L(T ) ∪ {vj})} :
9 if not EXTENDED-TEST(G,R, T ∪ extension) :
10 success := 0;
11 if success :
12 return 1; (no acceptable extension at vi)
13 return 0; (in all inspected cases, there was an acceptable extension)

Assuming that RULE-OUT is correct, the correctness of EXTENDED-TEST can be proven easily
by induction, using the fact that if T ′ is a subtree of an optimal Steiner tree T ∗ and contains no inner
terminals, all leaves of T ′ are connected to some terminal by paths in T ∗ \ T ′.

Clearly the decisive factor for the performance of this algorithm is the realization of the functions
RULE-OUT, TRUNCATE and PROMISING.

Using this framework, previous extension approaches can be outlined easily:

• In [Win95] the idea of expansion was introduced for the rectilinear Steiner problem.

• In [UdAR02] this idea was adopted to the Steiner problem in networks. This variant of the test
tries to replace vertices with degree three; if this is successful, the newly introduced edges are
tested again with an expansion test. The expansion is performed only if there is a single possible
extension at a vertex, thus eliminating the need for backtracking.

• In [Dui00] backtracking was explicitly introduced, together with a number of new test condi-
tions to rule out subnetworks, dominating those mentioned in [UdAR02].
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• In Section 3.2.4, we used a different test that tries to eliminate edges. Expansion is performed
only if there is at most one possible extension (thus inspecting a path) and only if the elimination
of one edge implies the elimination of all edges of the path.

All previous approaches use only alternative-based methods. We present an expansion test that explic-
itly combines the alternative-based and bound-based methods. This combination is far more effective
than previous tests, because the two approaches have complementary strengths. Intuitively speaking,
the alternative-based method is especially effective if there are terminals in the vicinity of the currently
inspected subgraph T , because it uses the bottleneck Steiner distances. On the other hand, the bound-
based method is especially effective if there are no close terminals, because it uses the distances (with
respect to reduced costs) to terminals. Furthermore, for the expansion test to be successful, usually
many possible extensions must be considered and it is often the case that not all of them can be ruled
out using exclusively the alternative- or the bound-based methods, whereas an explicit combination
of both methods can do the job.

Although the pseudocode of EXTENDED-TEST is simple, designing an efficient and effective
implementation requires many algorithmic ideas and has to be done carefully, taking the interaction
between different actions into account, which is highly non-trivial. Since writing down many pages of
pseudocode would be less instructive, we prefer to explain the main building blocks. In the following,
we first describe the test conditions for ruling out trees (the function RULE-OUT), using the results of
Duin [Dui00] and introducing new ideas. Then we explain the criteria used for truncation and choice
of the leaves for expansion (the functions TRUNCATE and PROMISING). Finally, we will address
some implementation issues, particularly data structures for querying different types of distances.

3.4.2 Test Conditions

For the following test conditions we always consider a tree T where terminals may appear only as
leaves of the tree, i.e., V (T ) ∩ R ⊆ L(T ). A very general formulation of the alternative-based test
condition is the following:

Lemma 49 Consider a pruning set L′ for T . If c(TL′) is larger than the cost of a Steiner tree T ′ in
G′ = (V, V ×V, s) with L′ as terminals, then there is an optimal Steiner tree that does not peripherally
contain T . This test can be strengthened to the case of equality if there is a vertex v in TL′ that is not
in any of the paths used for defining the s-values of the edges of T ′.

Proof: Assume that T is peripherally contained in an (optimal) Steiner tree T ∗ in G. As L′ is a
pruning set for T and the leaves of T are a pruning set for T ∗, L′ is also a pruning set for T ∗. It follows
that after removing the edges of TL′ from T ∗, each of the remaining subtrees contains one vertex of
L′. The plan is to reconnect these subtrees to a new Steiner tree by replacing each necessary edge of
T ′ with a path in G of no larger cost. Consider the forest F consisting of these subtrees together with
the remaining nodes of T ′ (i.e., nodes that are not in any of these subtrees). Merge all vertices of T ′

that are in one component of F , breaking emerging cycles by deleting an arbitrary edge of each cycle.
This operation does not increase the cost of T ′. Now, each component Ci of F corresponds to one
vertex ti of T ′. We will ensure this invariant during the whole process of updating T ′ and F .

Choose a shortest edge (ti, tj) of T ′. Let Pij be a path with Steiner distance sij between vi and
vj , vertices of V corresponding to ti and tj (before merging). Let Pkl be a subpath of Pij in which
only the endpoints vk and vl are in R ∪ {vi, vj}, and vk and vl are in different components Ck and Cl

of F . Remove an arbitrary edge on the fundamental path in T ′ between tk and tl and merge tk and tl
in T ′. Finally, connect Ck and Cl in F by adding the necessary edges from Pkl. The sum of the costs
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of these edges is not larger than sij . Because (ti, tj) was a shortest edge of T ′, the added cost in F is
also not larger than the cost of the edge that was removed from T ′.

Repeating this procedure leads to a new network that connects all terminals of G and has cost at
most c(T ∗) − c(TL′) + c(T ′). If c(T ′) < c(TL′) or c(T ′) = c(TL′) and there is at least one vertex in
V (TL′) that is not in the new tree (because it was not in any of the paths that were used for defining
the s-values of the edges in T ′), we have a Steiner tree of cost not larger then c(T ∗) that does not
peripherally contain T .2 2

A typical choice for L′ is L(T ), often with some leaves replaced by vertices added to T in the first
steps of the expansion. If computing an optimal Steiner tree T ′ is considered too expensive, the cost
of a minimum spanning tree for L′ with respect to s can be used as a valid upper bound.

A relaxed test condition compares bottleneck Steiner distances with tree bottlenecks:

Lemma 50 If for any vi, vj ∈ T , the length of a tree bottleneck between vi and vj in T is larger than
the sij in G, then there is an optimum Steiner tree that does not peripherally contain T . Again, the
test can be strengthened to the case of equality if a path corresponding to sij does not contain a tree
bottleneck of T between vi and vj .

Proof: Consider vi, vj and all key nodes on the fundamental path Pij between vi and vj in T as the
pruning set L′ in the previous lemma. The induced subtree TL′ is the path Pij itself. Removing a tree
bottleneck from Pij , inserting an edge (vi, vj) of cost sij and substituting the c-values for the other
edges with the (not larger) s-values leads to a Steiner tree for L′ in G′ with no larger cost. 2

The bound-based test condition uses a dual feasible solution for LPC of value lower ′ and corre-
sponding reduced costs c̃ (with resulting distances d̃):

Lemma 51 Let {l1, l2, . . . , lk} = L(T ) be the leaves of T . Then lower constrained := lower ′ +
mini{d̃(z1, li) + c̃(~Ti) +

∑

j 6=iminzp∈Rz1 d̃(lj , zp)} defines a lower bound for the cost of any Steiner

tree with the additional constraint that it peripherally contains T , where ~Ti denotes the directed version
of T when rooted at li.

Proof: If T is peripherally contained in an optimal Steiner tree T ∗, then there is a path in T ∗ from
the root terminal z1 to a leaf li of T . After rooting T from li, each (possibly single-vertex) subtree
of T ∗ corresponding to other leaves lj contains a terminal. Now the lemma follows directly using
Lemma 46. 2

In the context of replacement of edges, one can use the following lemma.

Lemma 52 Let e1 and e2 be two edges of T in a reduced network. If both edges originate from a
common edge e3 by a series of replacements, then no optimal Steiner tree for the reduced network
that corresponds to an optimal Steiner tree in the unreduced network contains T .

Proof: Assume that there is an optimal Steiner tree T ∗ for the reduced network containing both
e1 and e2. Back-substituting the edges of T ∗ leads to a solution in the original network in which e3

is used twice. This means that the solution value in the unreduced and consequently in the reduced
network can be decreased by c(e3), which contradicts the optimality of T ∗. 2

The conditions above cover the calls RULE-OUT(T,L) with L = L(T ). In case other vertices
than the leaves need to be considered in the linking set (as in Line 8 of the pseudocode), one can easily
establish that all lemmas above remain valid if we treat all vertices of L as leaves.

2There are proofs in [Dui00, HRW92] for similar (but weaker) conditions, but they are not complete.
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3.4.3 Criteria for Expansion and Truncation

The basic truncation criterion is the number of backtracking steps, where there is an obvious trade-off
between the running time and the effectiveness of the test. A typical number of backtracking steps in
our implementations is five.

Additionally, there are other criteria that guide and limit the expansion:

1. If a leaf is a terminal, we cannot easily expand over this leaf, because we cannot assume any-
more that an optimal Steiner tree must connect this leaf to a terminal by edges not in the current
tree. However, if all leaves are terminals (a situation in which no expansion is possible for the
original test), we know that at least one leaf is connected by an edge-disjoint path to another
terminal (as long as not all terminals are spanned by the current tree). This can be built into the
test by another level of backtracking and some modifications of the test conditions. But we do
not describe the modifications in detail, because the additional cost did not pay off in terms of
significantly more reductions.

2. If the degree deg of a leaf is large, considering all 2(deg−1) − 1 possible extensions would be
too costly and the desired outcome, namely that we can rule out all of these extended subtrees,
is less likely. Therefore, we limit the degree of possible candidates for expansion by a small
constant, e.g. 8.

3. It has turned out that a depth-first realization of backtracking is quite successful. In each step,
we consider only those leaves for expansion that have maximum depth in T when rooted at
the starting point. In this way, the bookkeeping of the inspected subtrees becomes much easier
and the whole procedure can be implemented without recursion. A similar idea was already
mentioned (but not explicitly used) by Duin [Dui00].

4. In case we do not choose the depth-first strategy, a tree T could be inspected more than once.
As an example, consider a tree T resulting from an expansion of T ′ at leaf vi and then at vj . If
T cannot be ruled out, it is possible that we return to T ′, expand it at vj and then at vi, arriving
at T again. This problem can be avoided by using a (hashing-based) dictionary.

3.4.4 Implementation Issues

Precomputing (Steiner) Distances: A crucial issue for the implementation of the test is the cal-
culation of bottleneck Steiner distances as described in Section 3.1.1. An exact calculation of all s ij

would make the test impractical even for medium-size instances. So we need a good approximation
of these distances and some appropriate data structures for retrieving them. Building upon a result
of Mehlhorn [Meh88], Duin [Dui93] gave a nice suggestion for the approximation of the bottleneck
Steiner distances, which needs preprocessing time O(m + n log n), as described in Section 3.2.1.
As we described there, the required time for each query can be made small, or even constant if all
necessary queries are known in advance. Although the resulting approximate values ŝij produce quite
satisfactory results for the original test (PTm in Section 3.2.1), for the extended test the results are
unfortunately much worse than with the exact values. But we observed that s̃ = min{ŝ, d} is almost
always equal to the exact s-values, and therefore can be used in the extended test as well. Still there
remains the problem of computing the d-values: For each vertex vi we compute and store in a neigh-
bor list the distances to a constant number (e.g. 50) of nearest vertices. But we consider only vertices
vj with dij < ŝij . This is justified by the observation that in case dij ≥ ŝij , for all descendants vk
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of vj in the shortest paths tree with the root vi there is a path Pik of bottleneck Steiner distance sik

containing at least one terminal, and in such cases sik is usually quite well approximated by ŝik.
Now, we use different methods for different variants of the test:

1. If we only replace vertices in an expansion test, the d- and s-values do not increase and we can
use the precomputed neighbor lists during the whole test using binary search.

2. If we limit the number of (backtracking) steps, then we can confine the set of all possible
queries in advance. When a vertex is considered for replacement by the expansion test, we first
compute the set of possibly visited neighbors (adjacent vertices, and vertices adjacent to them,
and so on, up to the limited depth). Then we compute a distance matrix for this set according to
the s̃-values. Using this matrix, each query can be answered in constant time.

3. If we also want to delete edges, we have to store for each vertex in which neighbor list com-
putations it was used. When an edge is deleted, we can redo the computation of the s̃-value (or
at least those parts that may have changed due to the edge deletion) and restore the affected
neighbor lists. This can even be improved by a lazy calculation of the neighbor lists. For more
details, see [PV01b].

Tree Bottlenecks: The tree bottleneck test of Lemma 50 can be very helpful, because every distance
between tree nodes calculated for a minimum spanning tree or a Steiner minimal tree computation can
be tested against the tree bottleneck; and in many of the cases where a tree can be ruled out, already
an intermediate bottleneck test can rule out this tree, leading to a shortcut in the computation. This
is especially the case if there are long chains of nodes with degree two in the tree. We promote
the building of such chains while choosing a leaf for extension: We first check whether there is a
leaf at which the tree can be expanded by only one edge. In this case we immediately perform this
expansion, without creating a new key node and without the need of backtracking through all possible
combinations of expansion edges.

The tree bottleneck test can be sped up by storing for each node of the tree the length of a tree
bottleneck on the path to the starting vertex. For each two nodes vi and vj in the tree, the maximum
of these values gives an upper bound for the actual tree bottleneck length. Only if this upper bound is
greater than the (approximated) bottleneck Steiner distance, an exact tree bottleneck computation is
performed.

Computations for the Bound-Based Tests: An efficient method for generating the dual feasible
solution needed for the bound-based test of Lemma 51 is the DUAL-ASCENT algorithm described in
Section 3.3.2. We improve the test by calculating a lower bound and reduced costs for different roots.
Although the optimal value of the directed cut relaxation LPC does not change with the choice of the
root, this is not true concerning the value of the dual feasible solution generated by DUAL-ASCENT
and, more importantly, the resulting reduced costs can have significantly different patterns, leading to
a greater potential for reductions.

Even more reductions can be achieved by using stronger lower bounds, as computed with a row
generating algorithm, see Section 3.3.3. Concerning the tests for the replacement of vertices, we use
only the result of the final iteration, which provides an optimal dual solution of the underlying linear
relaxation. The dual feasible solutions of the intermediate iterations are used only for the tests dealing
with the deletion of edges, because the positive effect of the replacement of a vertex (see the NTDk

test in Section 3.2.2) cannot be translated easily into linear programs.
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Replacement History: Our program package can transform a tree in a reduced network back into
a tree in the original instance. For this purpose, we assign a unique ID number to each edge. When a
vertex is replaced, we store for each newly inserted edge a triple with the new ID and the two old IDs
of the replaced edges. We use this information to implement the test described in Lemma 52. First
we do some preprocessing, determining for each ID the edges it possibly originates from (here called
ancestors); this can be done in time and space linear in the number of IDs. Later, a test for a conflict
between two edges (i.e., they originate from the same edge) can be performed by marking the IDs of
the ancestors of one edge and then checking the IDs of ancestors of the other edge; so each such test
can be done in time linear in the number of ancestors. We perform this test each time the current tree
T is to be extended over a leaf vi (with (vk, vi) in T ) by an edge (vi, vj). Then we check for a conflict
between (vi, vj) and (vk, vi). This procedure implements an idea briefly mentioned by Duin [Dui00],
where a coloring scheme was suggested for a similar purpose. Our scheme has the advantage that it
may even discover conflicts in situations where an edge is the result of a series of replacements.

3.4.5 Variants of the Test

A general principle for the application of reduction tests is to perform the faster tests first so that the
stronger (and more expensive) tests are applied to (we hope) sufficiently reduced graphs. In the present
context, different design decisions (e.g., trying to delete edges or replace vertices) lead to different
consequences for an appropriate implementation and quite different versions of the test, some faster
and some stronger.

We have implemented four versions of expansion tests and integrated them into the reduction
process. Some details of the corresponding implementations were already given in Section 3.4.4.

1. For a fast preprocessing we use the linear time expansion test that eliminates paths, as described
in Section 3.2.4.

2. A stronger variant tries to replace vertices, but only expands at leaves that are the most number
of edges away from the starting vertex.

3. Even stronger but more time-consuming is a version that performs full backtracking.

4. The most time-consuming variant tries to eliminate edges.

Some experimental results of a selection of these methods can be found in Section 3.7.

3.5 Partitioning as a Reduction Technique

Partitioning is one of the basic ideas for designing efficient algorithms, but for NP-hard problems
like the Steiner problem, straightforward application of the classical paradigms for exploiting this
idea rarely leads to empirically successful algorithms. In this section, we present the new approach of
using partitioning to design reduction methods. As we will show, this method has been quite effective
in the context of Steiner problem, and it can also be useful for other problems.

There are several reasons that motivate the use of partitioning in the present or similar contexts:

Efficiency: For any algorithm with superlinear running time, a suitable partitioning of the instance
leads to a superlinear speedup. Note that because exact algorithms in this context use very time-
consuming components (like LP solvers) in their advanced stages and are even exponential in
the worst case, the speedup for solving subproblems can be highly superlinear.
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Effectiveness: Sometimes, a method (a component of an exact algorithm) works well on some group
of instances; but it fails on larger instances of the same type. Methods that are based on LP
relaxations of the problem are good examples, because any LP relaxation of polynomial size
is bound to have some (integrality) errors in this context. In larger instances, such errors can
accumulate and become more and more relevant. Partitioning can help against this accumulation
of errors, as we will show in Section 3.5.4.

Implementation: A reasonable partitioning offers a direct path to a distributed implementation, be-
cause different (reasonably independent) subproblems can be processed on different processors.

However, for applying the idea of partitioning to problems like the Steiner problem, classical ap-
proaches are not very helpful. Divide-and-conquer techniques are not generally applicable, because
one usually cannot find independent subproblems. Dynamic programming techniques can indeed be
applied, but these techniques (at least in their classical form) do not lead to empirically efficient algo-
rithms.

The approach chosen here for partitioning is based on certain separating sets (vertex separators),
these are sets of vertices whose removal makes the graph disconnected (remember that we assumed
our graphs are connected). We consider here (small) separating sets that contain only terminals (ter-
minal separators), although the basic ideas can be extended to general vertex separators. This choice
allows us to keep the dependence between the resulting subinstances manageable.

3.5.1 Partitioning on the Basis of Terminal Separators

Although one cannot assume that a typical instance of the Steiner problem has small terminal separa-
tors, the situation often changes in the process of solving an instance, as described in the following.

Reduced Instances

There are several reduction methods (particularly those described in Section 3.4) that, when success-
ful, tend to transform instances without useful terminal separators into instances with them.

Figure 3.4 shows a VLSI-instance from the library SteinLib [Ste97]. The terminals (black squares)
are to be connected on the grid. Note that there are holes in the grid (corresponding to obstacles on the
chip), so such instances are not geometric (rectilinear). In this figure, one does not detect any useful
terminal separator. But the situation changes after applying some reduction methods: Figure 3.5 shows
the reduced instance, which is produced after a couple of seconds: the black edges are chosen (and
contracted); the grey edges remain as the reduced instance; this reduced instance is redrawn more
compactly in Figure 3.6. Note that the visualization used is not geometric; edges that appear relatively
long may actually have relatively small cost. (Our algorithm is a pure graph algorithm, which does
not use the coordinates of the points anyway.) In this reduced instance, one easily detects many small
terminal separators and corresponding components.

Geometric Steiner Problems

As described in Section 2.8, the bottleneck of the FST approach to geometric Steiner problems is
usually the second phase. As previously described, by building the union of (the edge sets of) the FSTs
generated in the first phase, we get a normal graph and the FST concatenation problem is reduced to
solving the classical Steiner problem in this graph. Such graphs usually have many useful terminal
separators with corresponding small components already at the beginning of the second phase, this is
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Figure 3.4: VLSI-instance taq0377 (|V | = 6836, |E| = 11715, |R| = 136).

outstandingly given in the Euclidean case due to the nature of geometric techniques used in the first
phase [WWZ00]. This property is even amplified after application of other reduction methods.

Combination of Steiner Trees

During the solution process, our program generates many heuristical solutions (Steiner trees). It would
not be the best idea to just keep the best of them and throw the others away, because one could possibly
combine parts of them to construct a new, even better solution. A simple but effective method is
to build the instance corresponding to the union of the edges of different Steiner trees and find a
(heuristical or even exact) solution in that instance (see Section 4.5). Such instances often have small
terminal separators and the methods described here can be applied.

3.5.2 Finding Terminal Separators

It is well known that the vertex connectivity problem can be solved by network flow techniques in the
so-called split graph, which is generated by splitting each vertex into two vertices and connecting them
by edges of low capacity; original edges have high (infinite) capacity. In this way, k-connectedness
(finding a vertex separator of size less than k or verifying that no such separator exists) can be decided
in time O(min{kmn, (k3 + n)m}) [HRG00] (this bound comes from a combination of augmenting
path and preflow-push methods). In case of undirected graphs (as in the present application), the job
can be done in a sparse graph with O(kn) edges, which can be constructed in time O(m) [NI92], so
m can be replaced in the above bound by kn.

However, the application here is less general: we search for vertex separators consisting of ter-
minals only, so only terminals need to be split. Besides, we are interested in only small separators,
where k is a very small constant (usually less than 5, say at most 10), so we can concentrate on the
(easier) augmenting flow methods. More importantly, we are not searching for a single separator of
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Figure 3.5: taq0377, reduced (|V | = 193, |E| = 312, |R| = 67).

Figure 3.6: taq0377, reduced, redrawn (|V | = 193, |E| = 312, |R| = 67).
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minimum size, but for many separators of small (not necessarily minimum) size. These observations
have lead to the following implementation: we build the (modified) split graph (as described above),
fix a random terminal as source, and try different terminals as sinks, each time solving a minimum cut
problem using augmenting path methods. In this way, up to Θ(r) terminal separators can be found in
time O(rm). We accelerate the process by using some heuristics. A simple observation is that vertices
that are reachable from the source by paths of non-terminals need not be considered as sinks. Similar
arguments can be used to heuristically discard vertices that are reachable from already considered
sinks by paths of non-terminals.

Empirically, this method is quite effective (it finds enough terminal separators if they do exist) and
reasonably fast, so a more stringent method (e.g., trying to find all separators of at most a given size)
would not pay off. Note that the running time is within the bound given above for the k-connectedness
problem, which is mainly the time for finding a single vertex separator.

3.5.3 Reduction by Case Differentiation

In this section, we describe a reduction method that exploits small terminal separators S ⊂ R to
reduce a given instance.

warm-up (|S| = 1): The case |S| = 1 corresponds to articulation points (and biconnected compo-
nents), which can be found in linear timeO(m). It is well known [HRW92] that the subinstances
corresponding to the biconnected components can be solved independently. An example can be
found in Figure 3.16 on page 103: There is an articulation point in the middle; the upper and
the lower components can be solved independently and the small component in the middle can
be discarded (see also Lemma 59 in Section 5.3.2).

base case (|S| = 2): The case |S| = 2 corresponds to separation pairs (and triconnected compo-
nents). All (non-trivial) triconnected components can be found in linear time O(m) [HT73].
Consider Figure 3.7, where a separator S of size 2 and the corresponding components G1 and
G2 are shown (black edges for G2). Note that the two subinstances are no longer independent.
Now, for any Steiner minimal tree T , two cases are possible :

I) The terminals in S are connected by T inside G2. A corresponding Steiner tree can be
found by solving the subinstance corresponding to G2.

II) The terminals in S are connected by T inside G1. Now there are two subtrees of T inside
G2, and we do not know in advance how the terminals of G2 are divided between them.
But one can observe that the problem can be solved by merging the terminals in S and
solving the resulting subinstance.

Since we do not know T in advance, for a direct solution we must also consider both cases for
the complementG1. But ifG2 is relatively small, the solution of the complementary subinstance
can be almost as time-consuming as the solution of the original instance, meaning that not
much is gained (or time may even be lost, because now we have to solve it twice). A classical
approach would search for components of almost equal size, but we choose a different approach.
The idea is to solve only the small component twice, and then take edges that are common to
both solutions and discard edges that are included in neither. The result is shown in Figure
3.8, where only one edge from G2 is left undecided (the other edges can be either contracted
(black) or deleted (light grey)). In Figure 3.9, the reduced instance is redrawn; as one sees, the
processed component has almost disappeared.
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Figure 3.7: |S| = 2.

Figure 3.8: (|V | = 133, |E| = 214, |R| = 45).
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Figure 3.9: (|V | = 133, |E| = 214, |R| = 45).

general case (|S| = k): As described in Section 3.5.2, we can find up to Θ(r) separators of size
at most k in time O(krm). The basic approach is the same as for the case |S| = 2; but a
larger number of cases must be considered now. We put each subset of terminals in S that are
connected by one subtree of T inG1 into one group. There can be i = 1, . . . , k such groups. For
each i, we must count the number of ways of partitioning a set of k elements into i non-empty
subsets, which is a Stirling number of the second kind

{k
i

}

. So there are
∑k

i=1

{k
i

}

= B(k)
cases, where B(k) denotes the k-th Bell number. Table 1 contains the concrete numbers for
small k.

k 2 3 4 5 6 7 8
cases 2 5 15 52 203 877 4140

Table 1: Possible cases for a terminal separator of size k

As the numbers in Table 1 suggest, this method can be used profitably usually only for k ≤ 4 (and
for k ≥ 3 only if the processed component is reasonably small). Actually, not all these cases must
always be considered explicitly, because many of them can be ruled out at little extra cost using some
heuristics. A basic idea for such heuristics uses the following lemma:

Lemma 53 Let zi and zj be two terminals in the separator S and let b1ij and s2ij be the bottleneck
distance in G1 and bottleneck Steiner distance in G2 between zi and zj , respectively. Then the cases
in which zi and zj are connected in G1 can be discarded if b1ij ≥ s2ij .

Proof: Consider a Steiner tree T connecting zi and zj in G1. A bottleneck on the fundamental path
between zi and zj has at least cost b1ij . Removing such a bottleneck and reconnecting the two resulting
subtrees of T with the subpath corresponding to s2

ij , we get again a feasible solution of no larger cost
in which zi and zj are connected in G2. 2

Note that for any subset S ⊆ R, all bij, sij with vi, vj ∈ S can be computed in time O(|E| +
|V | log |V | + |S|2) for a graph (V,E) (Section 3.2.1 and [Dui93]).

For the cases in which we assume that zi and zj are connected in G1, we do not merge zi and zj
while solving the subinstance corresponding to G2, but connect them with an edge of weight b1ij . In
case this edge is not used in the solution of the subinstance, this can lead to more reductions.
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This and similar observations can be used to rule out many cases in advance. Nevertheless, a ques-
tion naturally arises: Can we find an alternative method that does not need explicit case differentiation?
We will introduce such an alternative in the following.

3.5.4 Reduction by Local Bounds

Recall that the general principle of bound-based reduction methods is to compute an upper bound
upper and a lower bound under some constraint lower constrained . The constraint cannot be satisfied
by any optimal solution if lower constrained > upper . The constraint is usually that the solution must
contain some pattern (e.g., a vertex or an edge, or even more complex patterns like paths and trees, as
in Section 3.4 on extended reduction techniques). But it is usually too costly to recompute a (strong)
lower bound from scratch for each constraint. Here one can use an approach based on linear program-
ming presented in Section 3.3.2: Any linear relaxation can provide a dual feasible solution of value
lower and reduced costs c̃. We can use a fast method to compute a constrained lower bound with
respect to c̃. From Lemma 46 follows that the sum of the two bounds is a lower bound for the value
of any solution satisfying the constraint.

As an example for such a relaxation, consider the (directed) cut formulation PC from Sec-
tion 2.2.1. Every feasible binary solution represents a feasible solution for the Steiner problem and
each minimum solution (with value v(PC)) a Steiner minimal tree (Figure 3.10). But in the optimal
solution of the LP relaxation LPC variables can have fractional values. In Figure 3.11, the grey arcs
have value 1/2 (the black arcs have value 1, the other arcs have value 0). One observes that a flow of
one unit can still be sent from the root to each terminal, so all cut constraints are satisfied; and if the
costs are adverse, an integrality gap can occur. This is in fact the case in this example, where the linear
relaxation has optimum solution value v(LPC) = 6392.5. As such gaps accumulate (e.g., in larger
instances), the difference between the bounds grows, eventually causing the bound-based reductions
to fail.

In the following, we show how to use locally computed bounds for bound-based reduction. This
approach has two main advantages: The bounds can be computed faster; and there is less chance of
accumulation of errors. The main difficulty is that the bounds must somehow take the dependence on
the rest of the graph into account.

Let S be a terminal separator in G and G1 and G2 the corresponding subgraphs (Figure 3.12). The
bounds will be computed locally in supplemented versions ofG2. LetC be a clique over S. We denote
with (C, b) the weighted version of C with weights equal to bottleneck distances in G1; similarly for
(C, s) with weights equal to bottleneck Steiner distances in G. Let G′

2 and G′′
2 be the instances of

the Steiner problem created by supplementing G2 with (C, s) and (C, b), respectively. We compute
a lower bound lower constrained (G′′

2) for any Steiner tree satisfying a given constraint in G′′
2 and an

upper bound upper (G′
2) corresponding to an (unrestricted) Steiner tree in G′

2. The test condition is:
upper (G′

2) < lower constrained (G′′
2).

Lemma 54 The test condition is valid, i.e., no Steiner minimal tree in G satisfies the constraint if
upper (G′

2) < lower constrained (G′′
2).
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Figure 3.10: v(PC ) = 6393.

Figure 3.11: v(LPC) = 6392.5.
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Figure 3.12: A terminal separator S and corresponding subgraphs G1 and G2.
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Figure 3.13: Construction of T upper (G′) from T opt
con(G).

Proof:

Consider T opt
con(G), an (unknown) optimum Steiner tree of cost optcon(G) satisfying the constraint.

The subtrees of this tree restricted to subgraphs G1 and G2 build two forests F1 (with connected
components Ti) and F2 (Figure 3.13, left). Removing F2 and reconnecting F1 with T upper (G′

2) we
get a feasible solution again, which is not necessarily a tree (Figure 3.13, middle). Let Si be the subset
of S in Ti. Consider two terminals of Si: Removing a bottleneck on the corresponding fundamental
path disconnects Ti into two connected components. Repeating this step until all terminals in Si are
disconnected in Ti, we have removed |Si|−1 bottlenecks, which together build a spanning tree spanT i

for Si (Figure 3.13, right). Repeating this for all Ti, we get again a feasible Steiner tree T upper (G′)
for the graph G′, which is created by adding the edges of (C, s) to G. Note that the optimum solution
value does not change by inserting any edges (vi, vj) of length sij into G (see Lemma 37), so the
optimum solution values in G′ and G are the same.
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Let upper (G′) be the weight of T upper (G′). By construction of T upper (G′), we have:

upper (G′) = optcon(G) + upper (G′
2) − c(F2) −

∑

i

c(spanT i)

The edge weights of the trees spanT i correspond to bottlenecks in F1, so by definition they cannot
be smaller than the corresponding bottleneck distances in G1. By construction of G′′

2 , all these edges
(with the latter weights) are available in G′′

2 . Since the trees spanT i reconnect the forest F2, together
with F2 they build a feasible solution for G′′

2 , which even satisfies the constraint (because F2 did), so
it has at least the cost optcon(G′′

2). This means:

upper (G′) ≤ optcon(G) + upper (G′
2) − optcon(G′′

2)

< optcon(G) + lower constrained (G′′
2) − optcon(G′′

2) (because of the test condition)

≤ optcon(G),

thus optcon(G) > upper (G′) ≥ opt(G′) = opt(G), meaning that the constraint cannot be satisfied
without deteriorating the optimum solution value. 2

Studying the test condition, one detects a weakness of the lower bound used relative to the upper
bound: bottleneck distances used in the lower bound correspond to single edges, whereas the bottle-
neck Steiner distances used in the upper bound correspond to whole paths and can be much larger.
The attempt to use some paths in F1 instead of bottlenecks fails because the tree T opt

con(G) and con-
sequently the forest F1 are unknown. But going through the proof, one observes that we can use the
fact that the tree T upper (G′

2) is available: Instead of removing a single edge in F1, we can remove a
(longest) key path on the corresponding fundamental path in T upper (G′

2). This leads to the following
improvement of the test: While choosing the edge weights for constructing G ′′

2 , we can use the length
of a key path in T upper (G′

2) whenever it is larger than the corresponding bottleneck distance in G1.
However, care must be taken to keep the key paths used disjoint.

An application example for this test is given in Figure 3.14, where a separator of size 4 and the
corresponding component G2 are shown (black edges). Figure 3.15 shows the result of application
of the reduction method presented (black edges contracted, grey edges remaining); in Figure 3.16 the
reduced instance is redrawn.

This is also an example of how reduction methods based on partitioning can reduce the errors in
an LP relaxation: As shown in Figure 3.17, the relaxation LPC has now an integer optimal solution.
It is perhaps interesting that this improvement is mainly achieved by applying the same relaxation
locally.

3.6 Integration and Implementation of Tests

The most impressive achievements of reductions are mainly due to the interaction of different tests.
Often the actions of some tests prepare the ground for the success of some others and vice versa, so
looping over a sequence of tests can be quite effective.

To study the effect of different combinations and orderings of the tests, we designed an interpreter
for command-lines, where each test is encoded by a character. We also implemented a direct con-
trol of loops (through parentheses), their termination criteria, switching of parameters, etc. The main
observation is that the (alternative-based) tests are not very sensitive to the order in which they are
executed. On the other hand, the ordering often has an impact on the total time for reductions; in this
sense the ordering cited in [HRW92] for classical tests is a suitable one (although not necessarily the
only one, as long as a fast version of PTm is performed first).
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Figure 3.14: |S| = 4.

Figure 3.15: (|V | = 121, |E| = 200, |R| = 41).
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Figure 3.16: (|V | = 121, |E| = 200, |R| = 41).

Figure 3.17: v(LPC) = 6393.
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For the implementation, we have chosen a kind of adjacency-list representation of networks (with
all edges in a single array), but we sometimes switch to other auxiliary representations (all linear in
the number of edges) for certain operations. For each test, we perform all actions in a single pass (and
do not, for example, delete an edge and start the test from scratch). The details of the realization of the
various actions are very technical and are omitted here; we merely mention that all actions following
each test can be realized in a time dominated by the worst-case time O(m+ n log n) of the fast tests.

With the additional requirement that in each loop of the selected tests a constant proportion (say
5%) of vertices and edges must be eliminated and that instances of trivially small size are solved
directly (by enumeration), one gets the same asymptotic time bound for all iterations as for the first
one (O(m+ n log n), if one confines oneself to the fast tests).

Another technical aspect is the efficient reconstruction of a solution for the original instance out
of a solution for the reduced instance (which often consists of a single terminal). Saving appropriate
information during the reduction process, this can be done in time O(m). We always perform such a
transformation after each run of the program, checking the feasibility and value of the solution in the
original instance.

3.7 Some Experimental Results

In this section, we present some summarized results of the reduction methods on instance groups of
SteinLib (see Appendix A for a description of the problem instances). To give some impression of the
effect of the different methods, we present results for different subsets of the reduction techniques:

Very fast tests: In these runs, we have only included the fast versions of the reduction tests PTm,
Triangle, NTDk, NV, SL, PS, VR, and LDA, which all can be implemented with a worst-case
running time of O(m+ n log n). For computing an upper bound, we used a fast path heuristic
with the same running time, which will be described in Section 4.2.

+ Dual ascent: These runs additionally use the DUAL-ASCENT algorithm, for generating a lower
bound, the calculation of an auxiliary graph for ASCEND-AND-PRUNE (see Section 4.4), and
for bound-based reductions.

+ Extended reduction techniques: In this column, some extended reduction tests are also used. Note
that using extended reductions, there is an obvious trade-off between effectiveness and running
time, which can be configured by increasing or decreasing the parameter for the maximum back-
tracking depth. A more detailed study on extended reduction techniques is given in [PV01b].

+ Partitioning-based reductions : Here, we additionally use the partitioning-based reductions, pre-
sented in Section 3.5. Note that they also require exact solution of small subinstances. More
results on the impact of these techniques can be found in [PV01e].

The results are summarized in Table 3.1. Note that the columns of this table represent independent
runs on the original instances.

Although reductions are used in most articles reporting experimental results for the Steiner prob-
lem, there are only a few other works where the reported reduction results reach a quality that come
any close to ours. For classical reductions, some of the best results are reported in the PhD thesis of
Cees Duin [Dui93], who had developed with Ton Volgenant several of the most important classical
tests. He modified these tests so that they are applicable at least to medium-size instances. Our results
on these instances are similar, but in general we have better results: On the D-instances of SteinLib
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our fastest reductions already eliminate more than 98% of the edges, while his eliminate 76%. (Duin
did not give results on larger benchmark instances.) The best other results on these instances that were
published in a journal are from Koch and Martin [KM98]. For the D-instances they eliminated 62%
of the edges.

For VLSI instances and using some extended reduction techniques, the best other results are pre-
sented by Uchoa, Poggi de Aragão, and Ribeiro [UdAR02]. With their reduction techniques only 6.2%
of the edges remain, taking 367 seconds on a Sun Ultra Sparc with 167 MHz. With our reductions,
on the average only 0.05% of the edges remain after 4 seconds on a Sparc-III CPU with 900 MHz. A
more detailed comparison of the two reduction packages is given in [PV01b, PV02a].

instance fast tests + dual ascent + extended tests + partitioning
group time remaining time remaining time remaining time remaining

in sec. edges in % in sec. edges in % in sec. edges in % in sec. edges in %
1R 0.08 57.41 0.12 45.60 0.32 0.00 0.20 0.00
2R 0.19 69.99 0.22 64.03 23.46 6.95 20.64 6.24
D 0.08 1.46 0.07 0.52 0.64 0.35 0.31 0.14
E 0.30 3.03 0.27 0.93 4.27 0.55 3.65 0.50
ES10000FST 9.42 62.35 92.68 62.39 874.23 46.05 1048.04 17.41
ES1000FST 0.58 62.67 0.80 62.79 4.82 46.83 9.63 20.32
I080 0.02 43.62 0.02 26.77 0.06 20.63 0.09 15.95
I160 0.05 63.98 0.06 33.61 0.31 28.77 0.43 25.60
I320 0.19 71.82 0.31 47.51 2.48 40.07 3.42 35.72
I640 0.96 79.88 1.89 53.17 15.32 45.12 25.33 43.29
LIN 2.31 31.84 1.72 27.12 207.55 9.29 194.75 6.08
MC 0.03 9.68 0.03 7.05 0.10 6.34 0.17 6.34
PUC 0.34 99.33 0.89 99.33 7.67 99.31 12.77 99.31
SP 0.17 37.50 1.39 37.50 5.75 37.50 7.81 37.50
TSPFST 0.24 30.71 0.80 29.93 7.53 20.37 15.48 7.84
VLSI 0.36 15.70 0.64 10.78 11.00 0.60 4.37 0.05
WRP3 0.15 92.68 0.24 91.41 42.24 58.01 44.26 52.28
WRP4 0.09 96.16 0.20 87.65 14.61 57.63 12.46 44.15
X 0.34 0.39 0.31 0.00 0.28 0.00 0.32 0.00

Table 3.1: Some experimental results for reductions.

It should be stressed that although the results in Table 3.1 are impressive in many cases, they still
do not reveal the whole power of reductions. Some of the strongest reductions are achieved when
using the row-generating method (RG test from Section 3.3.3), for example in the context of an exact
algorithm. Even if (despite using interleaved reductions and improvement methods like those in Sec-
tion 2.12) the relaxation does not reach the integer optimum at the end, often the reductions performed
in the meantime make a reactivation of the reduction process possible. Repeating this procedure often
postpones or eliminates the need for branching. Some results including the RG test are presented in
the context of exact algorithms, in Section 5.4.



Chapter 4

Heuristics and Upper Bounds

106



4.1. INTRODUCTION 107

4.1 Introduction

Since we cannot expect to solve all instances of an NP-hard problem like the Steiner problem in
times that are small (polynomial) with respect to the size of instance, methods for computing “good”,
but not necessarily optimal solutions (heuristics) are well motivated on their own. But the value of
such a solution provides also an upper bound for the value of any optimal solution, which can be used,
for example, in bound-based reductions (Chapter 3) or even in exact algorithms (Chapter 5).

For the Steiner problem, the number of papers on heuristics is enormous; there are many tailored
heuristics, and also every popular meta-heuristic has been tried (often in many variants). A compre-
hensive overview of articles published before 1992 can be found in [HRW92]. But the best results have
been published after that (or even have not been published in a journal yet). In [PV97] we gave a com-
prehensive overview of the most important publications before 1997. Important recent developments
can be found in [RUW02, PW02].

We have developed a variety of heuristics for obtaining upper bounds. Especially in the context
of exact algorithms, very sharp upper bounds are highly desired. So, our main concern was achieving
very strong bounds, reaching the optimum as often as possible. On the other hand, the goal of obtaining
short total empirical running times prohibited us from using heuristics that achieve good solution
values only after long runs. In this chapter, we describe some of the methods we used in our attempt
to achieve both goals simultaneously.

In Section 4.2, we describe some efficient realizations of shortest paths heuristics, which are
among the most successful classical heuristics for the Steiner problem. Our variants are not designed
to be used as stand-alone heuristics, but as components of other algorithms, especially in combination
with reductions. We present also experimental results, partly to make it possible to compare some of
the best-known classical heuristics for the Steiner problem with our new, strong heuristics which will
be presented in the following sections.

In Section 4.3, we use the idea of combining heuristic and exact reductions to design some of the
most powerful heuristics for the problem, which we call PRUNE heuristics.

In Section 4.4, the approach of PRUNE heuristics is further elaborated by using the information
gained from relaxations.

In Section 4.5, we outline our methods for exploiting a collection of available Steiner trees to
compute a possibly better one.

Finally, in Section 4.6, we present some experimental results, comparing our PRUNE heuristics
to the strongest other methods from the literature.

4.2 Path Heuristics

The (repetitive) shortest paths heuristic (SPH) is one of the empirically most successful classical
heuristics for the Steiner problem in networks [TM80, HRW92, WS92, Voß92, PV01c, PW02]. The
basic idea is to construct a Steiner tree in a way similar to that of Prim’s algorithm for building mini-
mum spanning trees: Start with a subtree that initially consists of one vertex. In each step, connect the
subtree by a shortest path to a closest terminal not in the current tree. Repeat this until all terminals
are connected. A final pruning phase computes a minimum spanning tree for the vertices used in the
heuristic tree and removes non-terminals with degree one from the resulting tree until all its leaves
are terminals. The worst-case running time of this heuristic is O(r(m+ n log n)), and it has a perfor-
mance ratio of 2. To improve the quality of the heuristic, one can repeat it with different start vertices
(repetitive SPH).
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The algorithm of Dijkstra for the computation of shortest paths uses tentative distances τi for every
vertex vi ∈ V . A tentative distance τi represents an upper bound for the distance between the current
subtree and vi. In [PW02] Poggi de Aragão and Werneck used a simple, but very helpful observation:
The tentative distances need not be reset every time a terminal is connected to the current subtree,
since the old tentative distances are still valid upper bounds for the distances to the extended subtree.
One can simply re-insert every vertex vi into the priority queue in Dijkstra’s algorithm (with τi = 0)
as soon as it becomes part of the current subtree. Using this technique, the empirical running times
are improved drastically, but unfortunately the worst-case running time is still O(r(m + n log n)).
Furthermore, as SPH is usually used repetitively, very similar information is computed again and
again without taking advantage of the previous computations.

Studying the repetitive shortest paths heuristic one observes that the actions can be divided into
two phases (see [Dui93, DV97]): In the first phase, one can compute shortest paths from each terminal
to all vertices; this can be done in time O(r(m+n logn)). Using the information from the first phase,
each run of the SPH in the second phase (constructing a Steiner tree by successively connecting the
current tree to a closest terminal not in the tree by a shortest path) can easily be realized in timeO(rn).

In [PV97, PV01c], we presented an efficient implementation of this approach and also a version
with a worst-case running time of O(m + n log n). We will describe these heuristics in the next two
subsections. Note that we use these variants only as components of our other algorithms, not as stand-
alone heuristics.

4.2.1 A Two-Phase Realization of the Repetitive Shortest Paths Heuristic

Our concern here is achieving empirical acceleration of the two-phase version of repetitive SPH.
Regarding the first phase, we observe that the shortest paths need not be always computed completely:

Lemma 55 Let P be a shortest path between a terminal z and a vertex v, such that there is a vertex
v′ on P with z′ := base(v′) 6= z and d(z, z′) ≤ d(z, v). If v, but not z, belongs to the current tree T
in the second phase, there exists at least one other path connecting T to a terminal not in T that is not
longer than P . So, when computing shortest paths from z, we need consider neither v nor any vertex
that would become a successor of v in the shortest paths tree.

Proof: There are two cases:
I) z′ ∈ T : Since d(z, z′) ≤ d(z, v), we can choose the path between z ′ and z.
II) z′ /∈ T : Since d(z′, v) ≤ d(z′, v′) + d(v′, v) ≤ d(z, v′) + d(v′, v) = d(z, v), we can choose the
path between v and z′. 2

As a consequence, one can stop computing the shortest paths tree from a terminal z in the first phase
as soon as the Voronoi region of z and the neighboring terminals (as defined in Section 1.2) have
been spanned, because the shortest path between z and every vertex v visited afterwards contains
a vertex v′ ∈ N(z′) with z′ a neighbor of z and d(z, z ′) ≤ d(z, v). Furthermore, no shortest path
via an intermediary terminal needs to be considered. These observations often lead to a considerable
reduction in the empirical times, especially if the instance has many terminals and is not dense (the
latter is almost always the case after applying reductions). Note that for instances with few terminals,
repetitive SPH is fast anyway.

For building the Steiner trees in the second phase, we prefer a realization that uses the concept of
neighborhoods: Using the information from the first phase, we manage for each vertex v a list of close
terminals, sorted by (increasing) distances to v. A priority queue manages candidates for expansion
of the tree, using the distance to the nearest terminal not in the tree as the key for insertion. Each
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time a vertex v is extracted from the queue, two cases can arise: Either the terminal corresponding to
the key is not yet in the tree, in which case the tree is expanded by the corresponding shortest path
(and the queue is updated); or it is already in the tree, in which case the neighbor list of v is scanned
further until either a terminal not in the tree is visited (which delivers the key for re-insertion of v
into the queue) or the end of the list is reached (meaning that v can be ignored). Although the worst-
case time of this implementation (O(rn log n)) is slightly worse than O(rn) of the straightforward
implementations, it is usually much faster, and the worst-case time is dominated by the first phase
anyway.

4.2.2 A Path Heuristic with Small Worst-Case Running Time

In situations where the worst-case time is the primary concern, we used a strengthening of the ideas
above to design a heuristic with time O(m + n log n). Motivated by the fact that the vicinity of each
terminal relevant for SPH often gets smaller with a growing number of terminals, one can simply
force the first phase not to perform more than O(m + n log n) operations. But then it is no longer
guaranteed that the relevant neighborhood of each terminal is captured. To remedy this defect, we
simultaneously use the graph G′ of Mehlhorn’s fast implementation of DNH (see Section 1.2), which
we also compute in the first phase. In addition to the priority queue described above, a second priority
queue, offering expansion of the current tree through edges of G′, is managed in the second phase.
For each expansion, the better offer is accepted and both queues are updated appropriately.

The information gained in the first phase can be used more economically if not only one, but a
(constant) number of Steiner trees are computed in the second phase, using different terminals (or
vertices) as starting points.

This heuristic can be implemented with time O(m+ n log n) and guarantees a performance ratio
of 2.

4.2.3 Some Experimental Results for Path Heuristics

Although we designed the variants of the path heuristic described in the previous two subsections only
to be used as a component of other algorithms (especially in combination with reductions), they yield
reasonable results even on their own. In Table 4.1, we give the average running times and the average
gaps to the optimal solution value for instance groups from SteinLib [Ste97] (see Appendix A for a
description of the instance groups). The following algorithms are tested:

one-phase SPH: improved version of the shortest path heuristic with worst-case running time
O(r(m+ n log n)), using the method of [PW02];

one-phase SPH, repeated: repetitive variant of the above, starting from up to 100 different vertices
(terminals are preferred as starting points);

two-phase SPH, repeated: fast two-phase variant with worst-case running timeO(m+n log n) from
Section 4.2.2, again with up to 100 different starting points;

DNH: fast version of the distance network heuristic with worst-case running time O(m + n log n)
from Section 1.2, for comparison. Note that there is not much point in repeating DNH, because
the constructed tree T ′

D(R) will always have the same cost.

All variants use the final minimum spanning tree pruning phase, as described in the beginning of
Section 4.2.
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We present this table also to make it possible to compare (skillful implementations of) some of
the best-known classical heuristics for the Steiner problem with our new, strong heuristics which will
be presented in the next sections.

instance one-phase SPH one-phase SPH, two-phase SPH, DNH
group repetitive repetitive

time (s) gap (%) time (s) gap (%) time (s) gap (%) time (s) gap (%)
1R 0.001 4.59 0.054 1.40 0.017 3.19 0.001 8.13
2R 0.002 5.82 0.114 2.36 0.032 4.42 0.002 8.98
D 0.002 3.25 0.176 1.27 0.128 1.43 0.004 5.16
E 0.007 4.58 0.521 1.60 0.382 1.58 0.009 7.77
ES10000FST 0.065 2.32 5.682 2.27 6.489 2.23 0.071 3.18
ES1000FST 0.005 2.41 0.446 2.22 0.452 2.13 0.005 3.26
I080 0.001 14.66 0.011 1.35 0.004 1.41 0.001 18.56
I160 0.001 17.52 0.047 1.83 0.013 1.92 0.001 22.36
I320 0.004 19.11 0.193 2.51 0.038 3.80 0.004 25.54
LIN 0.015 3.65 1.176 2.27 0.235 2.14 0.015 5.74
MC 0.001 3.75 0.072 2.39 0.069 2.44 0.002 5.94
TSPFST 0.003 1.39 0.267 1.05 0.323 1.08 0.003 1.95
VLSI 0.004 2.63 0.314 1.12 0.118 1.59 0.004 5.45
WRP3 0.007 0.0007 0.572 0.0003 0.059 0.08 0.001 49.08
WRP4 0.003 0.002 0.282 0.001 0.040 0.12 0.001 42.09
X 0.017 1.05 0.778 0.34 0.285 0.34 0.053 1.05

Table 4.1: Experimental results for path heuristics.

One observes that due to the improvement of [PW02], the one-phase SPH variant is very fast, but
the quality of the results is relatively weak, properties which it shares with DNH. For this reason, the
repetitive variant is usually used. Here, we see that using the fast two-phase variant can often improve
the running time. Furthermore, we can give an O(m+n log n) running time guarantee. The solutions
quality produced by this two-phase variant is often the same as for the one-phase variant. This is
due to the fact that in many cases the computation is focussed very effectively by the application of
Lemma 55, and in spite of the rigid running time bound, all necessary shortest paths can be computed
in the first phase. In these cases, differences in the quality of the solutions of the one-phase and
the two-phase variants reflect only different decisions in situations when ties between paths of equal
length are broken. A different situation happens for example for the WRP3 and WRP4 instances,
where many vertices have similar distances to many terminals. In the one-phase variant this leads to
comparatively high running times, as distance values have to be re-checked again and again. In the
two-phase O(m + n log n) variant, many computations in the first phase have to be aborted. As a
consequence, for many extensions, a precomputed shortest path is not available and one has to use
paths from G′ and the solution quality deteriorates.

Our implementation compares quite well with the implementation given in [PW02]. Although
they use a faster computer (1.7 GHz Pentium 4), the running times for one execution of the one-phase
SPH are similar (e.g., on the VLSI instances they need 8 milliseconds on average while we need only
4). The quality of the solutions is also similar. Note that one cannot expect exactly the same values, as
there is some freedom in the choice of the starting vertex and in choosing a shortest path in the case
of multiple shortest paths. For the two-phase variant they only implemented a simpler version that is
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much slower and runs into memory problems on larger instances (although they cite a paper of ours
[PV01c] where we also presented the fast variant).

4.3 Reduction-Based Heuristics

Working with reductions, one often gets the impression that some of the tests are too cautious. Some-
times nice ideas for strengthening a test turn out to be not universally valid. Of course even the
strangest exception is enough to make a reduction test completely useless for (direct) integration
into an exact algorithm. But with respect to heuristics, the situation is fundamentally different: Here a
much stronger orientation towards the frequent case can be adopted.

4.3.1 Heuristic Reductions

The idea used here is to support the normal (exact) reduction tests through some heuristic ones. It
must be emphasized that the goal is not reducing the graphs by brute force, but only giving an impulse
in situations where the exact reduction process is blocked, in order to activate it again. In this context,
it is particularly advantageous if it can be assumed that the actions performed could have been carried
out by a more powerful, but unknown exact test anyway.

A natural basis for such an approach is given by the test VR (see Section 3.3.1). This test is kept
very cautious to make a comprehensible proof possible. Furthermore, one observes readily that in case
the upper bound used is not optimal, the test could potentially perform more (exact) reductions if a
better upper bound was available. The idea is now to perform the usual actions of this test without
an upper bound each time the other tests are blocked. At each application, a certain proportion of
vertices is eliminated (directly or after replacing of incident edges) according to the same criteria as
in the exact version of the test (sum of distances to the next two or three terminals). Motivated by
the fact that for a large ratio r/n the alternative-based reductions are very successful anyway and the
test VR is usually effective only for small r/n, the proportion of the vertices being eliminated is a
function of n and r, getting smaller with growing r/n. With the additional postulation that during
each application of the tests a constant percentage (say 5%) of vertices and edges is eliminated, the
asymptotic time for all iterations together is the same as for the first one, namely O(m+ n log n). To
make sure that the instance is not made infeasible by the heuristic reductions, we further forbid direct
elimination of vertices in the current tree T ′

D(R). The computation of T ′
D(R) also yields as a side

effect a guaranteed performance ratio of 2. We call this whole procedure PRUNE.

4.3.2 Guiding the Heuristic

The idea of not eliminating the nodes of a Steiner tree can be further utilized by using a (good)
heuristic solution instead of T ′

D(R) for guiding the heuristic reductions. We use the implementation
of repetitive SPH described in Section 4.2 (with a constant upper bound for the number of repetitions)
for this purpose, but any other good solution would do, too. On the other hand, we make the actions
of the heuristic reductions somewhat bolder, eliminating vertices only directly (without replacing of
incident edges). Note also that even Steiner nodes of the guiding heuristic solution may be eliminated,
but only by the exact tests; these tests are guaranteed not to deteriorate the optimum. We call this
variant of the PRUNE heuristic GUIDED-PRUNE.
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4.4 Relaxations and Upper Bounds

Computing lower bounds is not the only motivation for dealing with relaxations; the information
obtained can also be used (among other things) to obtain upper bounds.

Consider the (directed) cut formulation PC of the Steiner problem: Given an optimal solution x̂
of its linear relaxation LPC , the complementary slackness conditions state that each (directed) edge
[vi, vj ] with x̂ij > 0 has zero reduced cost. Assuming that there is some similarity between some
optimal solutions of the integer program PC and its linear relaxation LPC , it is well motivated to
search an (optimal) solution in a subgraph containing the edges with reduced cost zero.

4.4.1 Searching in Auxiliary (Sub-) Graphs

The algorithm DUAL-ASCENT, attempting to construct an optimal solution for DLPC , adjusts the
reduced costs favorably. So it is very natural to search for a solution in the set of edges whose re-
duced costs are set to zero by this algorithm, an idea already used in [Won84, Voß92]. The auxiliary
graph to be searched for a good solution need not contain all these edges; we have experimented with
several schemes and gained the best overall results with a subgraph containing the (undirected edges
corresponding to) edges on zero-cost ways (with respect to reduced costs) from the root to another
terminal, although other variants are not inappropriate either.

Having chosen such an auxiliary graph, the key question is how to obtain an (optimal) solution
for the corresponding instance. The structure of such instances is very suitable for the application
of our PRUNE heuristics; in particular, there are often long chains of vertices that are replaced by
long edges through the NTD2 test, making other alternative-based reductions very effective; and the
heuristic reductions do the rest of the job. We call the whole procedure of doing fast reductions,
calling DUAL-ASCENT, determining a subgraph and performing a PRUNE heuristic in the subgraph
ASCEND-AND-PRUNE.

Since we are working in a subgraph of G, the time bounds for the PRUNE heuristics (which are
dominated by the worst-case time of DUAL-ASCENT) are guaranteed in any case. Empirically, since
the PRUNE heuristics run extremely fast on the auxiliary graphs, this kind of computation of upper
bounds should be performed after each call to DUAL-ASCENT.

4.4.2 Searching in the Original Graph

Although the experimental solution quality of this heuristic is impressive, it still sometimes misses the
optimum. We found out that in almost all such cases the reason is simply that the auxiliary graph does
not contain an optimal solution (and not that the PRUNE heuristics do not find it). This observation
suggests a supplementation of this heuristic: The Steiner tree found in the subgraph can be used as
the guiding solution for a call to GUIDED-PRUNE in the original graph. In the cases mentioned, this
approach often improves the solution value, frequently leading to the optimum.

By applying the idea of the PRUNE heuristics directly to the original graph, one can do without
the auxiliary graphs altogether. Let lower and c̃ be the lower bound and the reduced cost vector
provided by DUAL-ASCENT and x̂ an optimal solution of PC with value optimum . The inequality
c̃·x̂ ≤ optimum− lower (see Lemma 46) strongly suggests that normally there cannot be many edges
with large reduced costs in an optimal solution. This motivates another heuristic, SLACK-PRUNE,
that basically follows the same scheme as GUIDED-PRUNE, but uses the condition of the test DA
(Section 3.3.2) for eliminating vertices. The guiding solution is computed by a call of PRUNE in the
auxiliary graph described above, since the necessary information is available after performing DUAL-



4.5. COMBINATION OF STEINER TREES 113

ASCENT anyway. The running time is dominated by the worst-case time of DUAL-ASCENT. Using
the same arguments as in the case of PRUNE, one gets the time bound O(m · min{m,nr}). But in
combination with reductions, the empirical times are much smaller than the above term suggests.

4.4.3 Using the Row Generating Strategy

As in DUAL-ASCENT, dual feasible solutions and corresponding reduced costs for LPC are calcu-
lated during the row generating algorithm (Section 2.11). This information can be used to generate
auxiliary graphs similar to those in ASCEND-AND-PRUNE. But in this case there are not necessarily
paths with reduced cost zero from the root to all terminals. The auxiliary graph in this context contains
all vertices with the property that there is a path from the root over this vertex to another terminal not
longer (with respect to reduced costs) than the longest shortest path from the root to another terminal.
This auxiliary graph can be used as in ASCEND-AND-PRUNE.

A classical method for utilizing the information provided by linear relaxations is to use an ordinary
heuristic in the original network with modified edge costs cij(1− x̄ij) (where x̄ is the primal solution
of the current linear program). But this is not generally a good idea, because the structure of the primal
solutions does not provide a good guide for a primal heuristic until the most advanced stages of the
row generating algorithm.

These latter approaches only work in combination with explicit solution of linear programs and
are therefore not suitable for fast, stand-alone heuristics. But as a complement to the row generating
strategy, they are frequently effective, especially in the advanced stages of the algorithm.

4.5 Combination of Steiner Trees

During the reduction process and especially while solving instances exactly, one usually gets several
distinct heuristic solutions. In general, it is not the best idea to simply keep the best solution and forget
the others. It is possible that solutions with a worse value are better locally, and one can try to keep
the best part of each solution.

We have developed several techniques for realizing the idea above. One simple and effective way
is to consider the graph consisting of the union of the edge sets of two (or more) Steiner trees. In
this graph, one can call a (powerful) heuristic again or even try an exact solution. Such graphs have
frequently several (non-trivial) biconnected components, which makes the (exact) solution consid-
erably faster. Using such schemes, we frequently get improvements in solution values (in case they
were not optimal anyway). Since the instances generated through such combinations (in the following
called combination-instances) are almost always solved to optimality through (fast) reductions, these
improvements are gained at no significant extra cost.

For the results reported here, we simply call a PRUNE heuristic in such combination-instances;
in particular, in the context of the heuristic SLACK-PRUNE we call the same heuristic (only without
combinations) again in each combination-instance.

4.6 Experimental Results and Evaluation

In this section, we present some experimental results for our PRUNE heuristics on instance groups
from SteinLib [Ste97] (see Appendix A for a description of the instance groups). All of our heuristics
have a worst-case time describable by a polynomial of low order, as explained in the previous sections.
Other strong heuristics can be found in [Dui93, DV97, Esb95, Ver96, RUW02].
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For comparison, we include the results of Ribeiro, Uchoa, and Werneck [RUW02], which are the
best other results we are aware of. They use a combination of several techniques: a greedy randomized
adaptive search procedure (GRASP), a weight perturbation strategy (which uses the knowledge which
edges are used frequently in many solutions), a local search procedure, a heuristic for the combination
of good solutions, and many reduction techniques. Unfortunately, they include a preprocessing for
the D, E, and VLSI-instances in their runs, but do not include the preprocessing time in the reported
running times as we did. They report results only for those instances that could not be solved with
their preprocessing routine, but we rescaled the values (assuming that instances solved by the prepro-
cessing produced an optimal solution in zero time), so that at least the values for the average gaps are
comparable. In Table 4.2, we compare the average running times and the average gaps to the optimal
solution value. A stroke means that no results were reported for these instances. The running times for
[RUW02] where measured on a 300 MHz AMD and a Pentium II 400 MHz.

instance PRUNE ASCEND&PRUNE SLACK-PRUNE [RUW02]
group time (s) gap (%) time (s) gap (%) time (s) gap (%) time (s) gap (%)
1R 0.13 1.36 0.07 1.03 0.22 0.00 — —
2R 0.27 1.42 0.16 1.59 10.91 0.00 — —
D 0.10 0.07 0.07 0.02 0.14 0.00 > 11 0.04
E 0.39 0.31 0.25 0.13 1.64 0.00 > 86 0.05
ES10000FST 7.56 1.11 30.88 0.67 2101.89 0.38 — —
ES1000FST 0.57 1.01 0.38 0.53 18.57 0.19 — —
I080 0.07 1.15 0.02 1.65 0.43 0.06 > 2 0.01
I160 0.31 1.97 0.07 1.69 1.68 0.10 > 16 0.13
I320 1.63 2.84 0.30 1.81 7.46 0.14 > 108 0.15
LIN 1.51 1.44 1.09 0.76 153.99 0.04 — —
MC 0.05 1.70 0.04 1.01 0.95 0.42 — —
TSPFST 0.21 0.42 0.38 0.31 32.01 0.04 — —
VLSI 0.33 0.39 0.40 0.35 7.17 0.004 > 830 0.01
WRP3 0.15 0.0006 0.14 0.0003 17.79 0.00003 — —
WRP4 0.10 0.07 0.10 0.0006 6.19 0.00006 — —
X 0.44 0.17 0.29 0.00 0.23 0.00 — —

Table 4.2: Some experimental results on (strong) upper bound calculations.

From Table 4.2, one can see that SLACK-PRUNE is generally superior to the approach of Ribeiro,
Uchoa, and Werneck. Even taking into account the different speed of the machines, our approach is
faster in most cases, while producing tighter upper bounds. Remember also that in [RUW02] the
preprocessing time was not recorded. The quality of the solutions produced by SLACK-PRUNE is
remarkable; even for larger incidence instances (I160, I320), which were constructed to be difficult
for the known reduction techniques, the solutions are satisfactory. Note that the percentage of pruned
vertices is a simple parameter for the trade-off between running time and solution quality, i.e., better
solutions can be achieved simply by decreasing this parameter at the cost of longer running times.

The two heuristics PRUNE and ASCEND-AND-PRUNE are very fast while producing fairly good
results. Note that PRUNE, although it has the better running time guarantee ofO(m+n log n), in many
cases takes longer than ASCEND-AND-PRUNE. The reason is that the techniques used in ASCEND-
AND-PRUNE, in particular DUAL-ASCENT, are on the one hand much faster than the worst-case
time bound suggests, and on the other hand reduce a problem instance much more effectively.
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5.1 Introduction

For an NP-hard problem like the Steiner problem, it is usually not considered as surprising that (not
very large) instances can be constructed that defy existing exact algorithms. On the other hand, it
should not be surprising that relatively large instances can be solved exactly in fairly small times. An
instructive case is the development in the context of the Steiner problem in recent years: Instances that
were assumed to be completely out of the reach of exact algorithms some years ago can now be solved
in reasonable times; and whole instance classes that were considered as of a “hard type” can now
be routinely solved. But this does not happen by itself, say due to faster computers (although more
powerful computers can help): The improvements in the running times are by orders of magnitude
larger than the gains in the speed of the used computers. Major improvements happen when somebody
comes up with new ideas that work well in practice.

For the Steiner problem in networks, there are many published works on exact solution building
upon every classical approach (enumeration algorithms, dynamic programming, branch-and-bound,
branch-and-cut) and the presented algorithms are sometimes quite involved. Again, we point to
[HRW92] for a survey. Later major contributions (beside our work) were presented by Duin [Dui93]
(advanced reductions and heuristics in a branch-and-bound framework), Koch and Martin [KM98]
(improved branch-and-cut), and Uchoa et al. [UdAR02] (further improved reductions, again with
branch-and-cut).

In this chapter, we describe how the components presented in the previous chapters are integrated
into an exact algorithm, acting as an “orchestra”.

In Section 5.2, we present an algorithm which exploits small width in (sub-) graphs, and show
how it can be used profitably in combination with our other techniques in a more general context.

In Section 5.3, we describe the interaction between different components and how we take advan-
tage of it to design a very powerful reduction process. Then we outline how this reduction process is
used in a branch-and-bound framework.

In Section 5.4, we present some summarized experimental results and comparisons to the results
of other authors. Detailed experimental results are included in Appendix A.

Finally, in Section 5.5 we make some concluding remarks, including some paths for further de-
velopments and transfer of the concepts to other problems.

5.2 Using (Sub-) Graphs of Small Width

In this section, we present a practical algorithm for solving the Steiner problem in graphs with a small
width parameter (a formal definition of the used width concept is given in the following). The running
time of the algorithm is linear in the number of vertices when the width is constant, thus it belongs
to the category of algorithms exploiting the fixed-parameter (FP) tractability of NP-hard problems.
But the applicability of this algorithm is much broader in the context of our work. Due to the use
of reduction techniques based on partitioning (Section 3.5) we can already profit from small width
in subgraphs of a given instance. These techniques are in turn applicable to a very wide range of
instances of the Steiner problem in networks after applying extended reduction methods and instances
of geometric Steiner problems after FST generation (see Section 3.5.1).

The width concept here is closely related to path-width, as we will show in Section 5.2.4. For an
overview of subjects concerning path-width and the more general notion of tree-width see [Bod93].
There are already FP-polynomial algorithms for the Steiner problem in graphs; specifically, in [KS90]
a linear-time algorithm for graphs with bounded tree-width is described. But this algorithm is more
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complicated than the one we present here, and its running time grows faster with the (tree-) width (it
is given in [KS90] as O(nf(d)) with f(d) = Ω(d4d), where d is the tree-width of the graph); so it
seems to be not as practical as our algorithm, and no experimental results are reported in [KS90]. In
a different context (network reliability), a similar approach using path-width is described in [PT01],
which is practical for a range of path-widths similar to the one considered here. We also adapted
that approach to the Steiner problem, but the experimental results were not as good as with the one
presented here.

A theoretically more powerful concept is branch-decomposition. It was formalized by Robertson
and Seymour [RS91] and applied successfully to the TSP [CS02] and to the Steiner problem by Cook
et al. [Coo02]. We will not describe this approach, because experimental results indicated that no
further gain can be expected from it. Cook was not able to solve many instances of the TSPFST group
from SteinLib, while we were able to solve them using a combination of our reduction techniques, in
particular the partitioning-based reductions (Section 3.5), and the Dynamic Programming approach
for subgraphs presented here.

5.2.1 The Basic Approach

We maintain a set of already visited vertices and a subset of them (the border) that are adjacent to
some non-visited vertex. In each step, the set of visited vertices is extended by one non-visited vertex
adjacent to the border. For all possible partitions in each border, we calculate (the cost of ) a forest of
minimum cost that contains all visited terminals with the property that each tree in the forest spans
just one of the partition sets. We are finished when all vertices have been visited.

The motivation behind this approach is as follows: For any optimal Steiner tree T , the subgraph
of T when restricted to the visited vertices is a forest, which also defines a partition in the border. The
plan is to calculate these forests in a bottom-up manner, in each step using the values calculated in the
previous step. If the size of all borders can be bounded by a constant, the total time can be bounded
by the number of steps times another constant.

For an arbitrary fixed ordering v1, . . . , vn of the vertices and any s ∈ {1, . . . , n}, we define
Vs := {v1, . . . , vs} and denote with Gs the subgraph of G with vertex set Vs. In the following, we
assume an ordering of the vertices with the property that all Gs are connected. (For example, a depth-
first-search traversal of G delivers such an ordering.)

We denote with Bs the border of Vs, i.e., Bs := {vi ∈ Vs | ∃(vi, vj) ∈ E : vj ∈ V \ Vs}. With
Ls we denote the set of vertices that leave the border after step s, i.e., Ls := (Bs−1 ∪ {vs}) \Bs. The
inclusion of vs in this definition should cover the case that vs has no adjacent vertices in V \ Vs; this
simplifies some other definitions.

Consider a set Q, Bs ∩R ⊆ Q ⊆ Bs, and a partitioning P = {P1, . . . , Pt} of Q into non-empty
subsets, i.e., ˙⋃

1≤i≤tPi = Q and ∅ 6∈ P . For a partition P and a set L ⊆ V we define P − L :=
{P ′

i | Pi ∈ P, P ′
i = Pi \ L}. Let F (s,P) be a forest of minimum cost in Gs containing all terminals

in Vs and consisting of t (vertex-disjoint) trees T1, . . . , Tt such that Ti spans Pi for all i ∈ {1, . . . , t}.
With c(s,P) we denote the cost of F (s,P).

Let V0 = B0 = ∅ and set c(0, ∅) = 0. The value c(s,P) can be calculated recursively using a case
distinction:



118 CHAPTER 5. EXACT ALGORITHMS

I) vs ∈ Q:

c(s,P) = min{c(s− 1,P ′) +C | P ′ = {P1, . . . , Py}, j ∈ {0, . . . , y},
P = ({{vs} ∪

⋃

1≤l≤j

Pl} ∪ {Pj+1, . . . , Py}) − Ls,

∀ 1 ≤ l ≤ j : vl ∈ Pl,

C =
∑

1≤l≤j

c(vl, vs)},

II) vs 6∈ Q:

c(s,P) = min {c(s− 1,P ′) | P = P ′ − Ls}.

The cost of an optimal Steiner tree in G is

min {c(s,P) | R ⊆ Vs, |P| = 1}.

Obviously the forests F (s,P) (and an optimal Steiner tree) can be calculated following the same
pattern.

5.2.2 A Dynamic Programming Realization

By using the recursive formula above, the necessary values can be calculated in a bottom-up manner
by memorizing, for each step s, the values c(s,P). We assume c(s,P) = ∞ if no partition P is
calculated at step s. This leads to the following algorithm BORDER-DP (DP stands for Dynamic
Programming), written in pseudocode:

BORDER-DP(G,R) (assuming an ordering of the vertices)
1 s := 0; q := 0; opt := ∞; (q : number of visited terminals)
2 c(s, ∅) := 0;
3 while s < n :
4 s := s+ 1; determine vs, Bs and Ls;
5 if vs ∈ R : q := q + 1;
6 forall P with c(s− 1,P) 6= ∞ :
7 oldCost := c(s− 1,P);
8 if vs 6∈ R and ∅ 6∈ P − Ls :
9 c(s,P − Ls) := oldCost ;
10 Pcandidates := {Pi ∈ P | ∃vi ∈ Pi : (vi, vs) ∈ E};
11 forall Pconnect ⊆ Pcandidates :
12 connectionCost :=

∑

Pi∈Pconnect minvi∈Pi,(vi,vs)∈E c(vi, vs);

13 Pstay := P\Pconnect ; Pnew := ({{vs} ∪
⋃

Pi∈Pconnect Pi} ∪ Pstay) − Ls;
14 if ∅ 6∈ Pnew and c(s,Pnew) > oldCost + connectionCost :
15 c(s,Pnew) := oldCost + connectionCost;
16 if q = |R| and |Pnew| = 1 : (feasible Steiner tree)
17 opt := min(opt, c(s,Pnew));
18 return opt;
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Running Time

Let ps denote the number of partitions at step s. We have

ps =
∑

R∩Bs⊆Q⊆Bs

|Q|
∑

i=1

{

|Q|
i

}

=
∑

R∩Bs⊆Q⊆Bs

B(|Q|),

where B(b) is the b-th Bell number; so ps = O(2bsB(bs)) with bs := |Bs| . We only main-
tain one global list of partitions, which is updated after each step, keeping for each valid parti-
tion a solution of minimum cost. Because of the loop in Line 11, this list can grow to at most
ls := 2bsps = O(22bsB(bs)) partitions. Eliminating the duplicates can be done by sorting the list:
Each partition can be represented as a (lexicographically) sorted string (of length at most 2bs) of
sorted substrings (of length at most bs) separated by some extra symbol. Using radix sort, all the in-
dividual sortings of ls strings can be done in total time O(n + lsbs). Sorting the resulting list of ls
strings takes again O(n+ lsbs). We set aside for now a total extra time of O(|E|) for the operations on
edges; and assume that an ordering of vertices is given (these points are explained below). The (rest
of the) operations in Lines 12 − 17 can be carried out in time O(bs). This gives the total running time
O(

∑n
s=1 bs2

2bsB(bS)). Note that this bound implicitly contains the extra amortized time O(|E|) by
the following observation: After a vertex is visited for the first time, it remains in the border as long
as it has some non-visited adjacent vertex; so each edge is accounted for by its first-visited endpoint.

Now if we can guarantee an upper bound b for the size of all borders, we have an upper bound
of O(nb22bB(b)) for the running time. Using the very rough upper bound (2b)b for B(b) we get the
running time O(n2b log b+3b+log b). This means that the algorithm runs in linear time for constant b
and, for example, in time O(n2) for b = log n/ log log n.

For the actual implementation, some modifications are used. For example, avoiding duplicate par-
titions is done using hashing techniques, which reduces the amount of necessary memory. In [PV02b],
we describe also some heuristics to recognize partitions that cannot lead to an optimal Steiner tree;
and we give some examples how the presented algorithm works together with other components of
our program to solve some previously unsolved benchmark instances.

5.2.3 Ordering the Vertices

In Section 5.2.4, we will show that finding an ordering of vertices such that the maximum border size
equals b is (up to some easy transformations) equivalent to finding a path-decomposition of path-width
b. The problem of deciding whether the path-width of a given graph is at most b, and if so, finding
a path-decomposition of width at most b is NP-hard for general b [ACP87], but for constant b, this
problem can be solved in linear time [Bod96]. However, already for b > 4 the corresponding algorithm
is no longer practical [R öh98], and it seems that no practical exact algorithm is known for more general
cases [Bod02]. Furthermore, we have a more specific scenario; for example we differentiate between
terminals and non-terminals. So for the actual implementation we use a heuristic, which has produced
quite satisfactory results for our applications. The heuristic chooses in each step a vertex vs adjacent
to the border using a (ad hoc) priority function of the following parameters:

• size of resulting set Ls,

• number of visited vertices in the adjacency list of vs,

• membership of vs in R (1/0),

• number of edges connecting Vs and V \ Vs.
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We select the starting vertex by trying a small number of terminals and performing a sweep through
the graph without actually computing the partitions, thereby estimating their number using another
(ad hoc) function and selecting the one with the smallest overall value.

A straightforward implementation of this heuristic needs time O(n2) for all choices. This bound
could be improved using advanced data structures for priority queues and additional tricks, but the
ordering has not been the bottleneck in our applications; and theoretically a better (linear for constant
b as in our applications) time bound for path-decomposition is available anyway.

5.2.4 Relation to Path-Width

In this section, we show that every path-decomposition with path-width k delivers a sequence of
borders B = (B1, . . . , Bs, . . . , Bn) such that max{|Bs| | 1 ≤ s < n} ≤ k and vice versa.

First, we repeat the definition of path-width: A path-decomposition of a graph G = (V,E) is a
sequence of subsets of vertices (U1, U2, . . . , Up), such that

1.
⋃

1≤i≤p Ui = V ,

2. ∀(v, w) ∈ E ∃i ∈ {1, . . . , p} : v ∈ Ui ∧ w ∈ Ui,

3. ∀i, j, k ∈ {1, . . . , p} : i ≤ j ≤ k ⇒ Ui ∩ Uk ⊆ Uj .

The path-width of a path-decomposition (U1, U2, . . . , Up) is max{|Ui| | 1 ≤ i ≤ p} − 1. The path-
width of a graph G is the minimum path-width over all possible path-decompositions of G.

Note that the 3rd condition in the definition of path-decomposition can be rewritten as follows:
There are functions start , end : |V | → {1, . . . , p} with v ∈ Uj ⇔ start(v) ≤ j ≤ end(v).

We call a path-decomposition bijective if the mapping start is a bijection.

Lemma 56 Every path-decomposition U = (U1, . . . , Up) can be transformed to a bijective path-
decomposition (U ′

1, . . . , U
′
n) of no larger path-width.

Proof: We modify the sequence U as follows:
As long as there is some i with start−1({i}) = ∅, remove Ui from U ; adapting the functions start

and end .
As long as there are v 6= v′ with start(v) = i = start(v′), define Uj+1 = Uj for all j ≥ i and remove
v′ from Ui; adapting the functions start and end .
One easily observes that the final resulting sequence U ′ satisfies the properties for a path-
decomposition, is bijective, and has no greater path-width. 2

We call a path-decomposition with functions start , end minimal if it holds:

end(v) ≥ i⇒ start(v) = i ∨ ∃(v, w) ∈ E : start(w) ≥ i.

(Note that the other direction is satisfied for every path-decomposition.)

Lemma 57 Every (bijective) path-decomposition U can be transformed to a minimal (bijective) path-
decomposition of no larger path-width.

Proof: For every v, set end(v) := max{start(w) | (v, w) ∈ E ∨ v = w}. Delete v from all Ui

with i > end(v). One easily observes that the resulting sequence satisfies the properties for a path-
decomposition, has no greater path-width, is minimal, and remains bijective if the original decompo-
sition was bijective. 2
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Lemma 58 Let (U1, . . . , Un) be a minimal, bijective path-decomposition of G with the functions
start and end . Assume that the vertices are ordered according to their start values, i.e., start(v) =
s⇔ v ∈ Vs \ Vs−1. For each s ∈ {1, . . . , n} it holds: Us = {vs} ∪Bs−1.

Proof:

v ∈ Us ⇔ start(v) ≤ s ∧ end(v) ≥ s

⇔ (start (v) = s ∨ start(v) < s) ∧ (start(v) = s ∨ ∃(v, w) ∈ E : start(w) ≥ s)

⇔ start(v) = s ∨ (start (v) < s ∧ ∃(v, w) ∈ E : start(w) ≥ s)

⇔ v = vs ∨ (v ∈ Vs−1 ∧ ∃(v, w) ∈ E : w ∈ V \ Vs−1)

⇔ v = vs ∨ v ∈ Bs−1

2

It follows that every path-decomposition of G can be transformed to a path-decomposition U =
(U1, . . . , Un) of no larger path-width such that for an ordering of vertices according to the start

function of U it holds: Us = {vs} ∪ Bs−1. On the other hand, it is easy to verify that each ordering
of vertices and the corresponding sequence of borders (B1, . . . , Bn) deliver a (minimal, bijective)
path-decomposition U by setting Us = {vs} ∪ Bs−1. In each case, we have: max{|Us| | 1 ≤ s ≤
n} − 1 = max{|Bs−1| | 1 ≤ s ≤ n}.

5.3 Building an Orchestra: An Exact Algorithm

In this section we describe the synthesis of an exact algorithm from the components described before.

5.3.1 Interaction of the Components

A central feature of our exact algorithm is that the various components (reduction tests, lower bounds
and upper bounds) do not act independently of each other, as described in detail in previous sections:

Reductions

Upper Bounds Lower Bounds

Figure 5.1: Interaction of the different components.

The bound-based reductions depend on upper and lower bounds (Section 3.3); and the computa-
tion of upper and lower bounds profits from reductions, both in terms of running time and quality of
results. The idea behind reduction tests is also the central part of the reduction-based heuristics for
computing upper bounds (Section 4.3). Further we use the structure of heuristic solutions (correspond-
ing to good upper bounds) to guide the computation of lower bounds (see for example Section 2.9.2);
and the information gained during the computation of lower bounds is used to guide the computa-
tion of upper bounds (Section 4.4). All in all, there is a mutual dependence between the three major
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components: reductions, upper bounds, and lower bounds. But the interaction goes even further: The
exact algorithms can be used again profitably in each of the components, namely for improving lower
bounds (Section 2.12.2) and upper bounds (Section 4.5) and performing advanced reductions (Sec-
tions 3.4.2 and 3.5.3). This interdependence is not a drawback, but an advantage: The scenario is that
performing (alternative-based) reductions accelerates the computation of upper and lower bounds and
enhances their qualities; the information gained during the computation of bounds is used to reduce
the instance further (using bound-based reductions), and then the whole pattern repeats. We call this
whole process the reduction process, beginning with fast reductions and switching to more and more
powerful ones as the process advances. This strategy not only is a major reason for the short solution
times our algorithm very often achieves, but also enables us to solve instances that we could not solve
in a reasonable time otherwise. Note especially that the value of the lower bound corresponding to
a certain relaxation can be enhanced through reductions; this helps to solve instances that otherwise
could not be solved (without branching) using the same techniques for computing upper and lower
bounds.

For the experimental results given in this chapter, we use the following components: For com-
puting lower bounds, we use the relaxation LPC through the algorithm DUAL-ASCENT and, in
advanced stages, row generation with LPC′ (Section 2.11) or, if the proportion of terminals to all
vertices is high, the Lagrangian relaxation LaPT0

(Section 2.10.1). To reduce the instances, we use all
described alternative-based techniques (Section 3.2). In addition, we use the bound-based techniques
DA (Section 3.3.2) and, in combination with row-generation, the test RG (Section 3.3.3). Further-
more, we use the extended reduction techniques (Section 3.4) and the partitioning-based reductions
(Section 3.5). For computing upper bounds we use our PRUNE heuristics (Sections 4.3, 4.4), includ-
ing the combination of Steiner trees (Section 4.5). Before starting the time-consuming RG reduction
test, we check, as described in Section 5.2, whether we can solve the (sub-) instance with the algorithm
BORDER-DP.

As described above, the fast methods are applied first, with switching to more time-consuming
ones only if an instance has not already been solved to optimality. Apart from this general principle,
the exact ordering of the components has usually not been critical.

5.3.2 Branch-and-Bound

The reduction process described in the previous subsection is an extremely powerful device, but it
is not guaranteed to solve every instance of the problem. To get an exact algorithm, we integrate it
into a branch-and-bound framework. But one should not be misled by the name branch-and-bound:
Branching is something we generally (and often successfully) try to avoid, it is only a safety net in
case the reduction process is blocked. This also means that we invest a lot of work in each node of the
branch-and-bound tree to keep the tree small.

We use binary, vertex-oriented forward branching [HRW92]. Both depth-first and best-first search
strategies are available in our implementation, with depth-first as default. There are usually not many
nodes in our branch-and-bound trees anyway; moreover, only the currently processed node needs to
be kept in the main memory.

As the branching variable, we choose the non-terminal with the largest degree in the best available
Steiner tree. The intuitive motivation for this choice is an intensification of the search in an area where
a good solution has been found (in case of inclusion) and a diversification of the search to other areas
(in case of exclusion). This strategy also supports the building of several blocks (biconnected compo-
nents). In case several blocks exist, the problem can be solved by solving the instances corresponding
to each relevant block separately (see Section 3.5.3), which generally reduces the total running time
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substantially. Although it usually cannot be assumed that the original instance is not biconnected, this
often changes later during the reduction process and after branching. We use this fact frequently in our
algorithms: Whenever a more time-consuming part is to be performed, we check whether the graph is
biconnected. If this is not the case, we solve the corresponding subinstances separately and transform
the information gained back to information for the original instance. Here one can use the following
observation to identify the blocks that must be considered:

Lemma 59 Let T be a Steiner tree with all leaves being terminals in a network G. A block of G must
be considered if and only if it contains an edge of T .

Proof: It is easy to see that a block must be considered if and only if there are two terminals zk and
zl such that every path between zk and zl contains an edge in B, such blocks are called intermediate.
Obviously, for any intermediate block B, every Steiner tree must contain an edge in B. Conversely,
consider a Steiner tree T with all leaves being terminals that contains an edge in a block B. So there
are two terminals zk and zl such that at least one path between zk and zl contains an edge in B. If zk

(or zl) is in B and it is not an articulation point, B is obviously intermediate. Otherwise there must be
two articulation points vi and vj of B such that a path between zk and vi and a path between vj and
zl contain no edge in B. Now suppose B is not intermediate. Then there is a path between zk and zl
that does not contain an edge in B. Hence, there is also a path between vi and vj that has no edge in
B, which contradicts the definition of B as a biconnected component. 2

5.4 Summarized Experimental Results

In this section, we present some summarized results of our exact algorithm on the instances of SteinLib
[Ste97]. Detailed results for each instance are reported in Appendix A.

We leave it mainly to the reader to compare the given running times to those of other exact al-
gorithms in the literature (see for example [Bea89, BL98, CGR92, Dui93, KM98, Uch01]). As an
orientation, we provide in Table 5.1 the average times (in seconds) for the exact solution of some
instance groups, which have frequently been used by other authors. Note the the machine used by us
is of more recent date and consequently faster than the others (although it is only half as fast as a
(not uo-to-date) PC, see Appendix A). However, as obvious from the times given in the table, our im-
provement of the running times is of a much larger magnitude than could be explained by the relative
machine speeds in each case.

instance- [Bea89] [BL98] [CGR92] [Dui93] [KM98] [Uch01]∗ here
group Cray X-MP SG Indigo VAX 8700 i486 Sun Sparc 20 UltraSparc II Sunfire

D 556 3545 14260 176 117 > 4 0.2
E — — — — 4415 > 181 1.7

TAQ† — — — — 197 4 0.08
TAQ — — — — — 162 1.1

Table 5.1: Average running times of different exact algorithms.

∗In [Uch01] only running times for 5 of the 40 D/E instances are reported; we estimated the averages by assuming that
all other instances were solved by him in zero time.

†Excluding instances not solved by [KM98].
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We could solve every instance from SteinLib that has also been solved by any other author, usually
much faster. Furthermore, we could solve 33 instances from different instance classes of SteinLib that
have not been solved by other authors. See Appendix A for details.

5.4.1 Results on Geometric Instances

As described in Section 2.8, the bottleneck of the FST approach to geometric Steiner problems has
usually been the second phase. The hitherto most successful algorithm for this phase is the one inte-
grated in the program package GeoSteiner [WWZ01], which uses a branch-and-cut approach based
on an MSTH formulation of the problem (Section 2.8.1). In Table 5.2, we compare the the average
running times of GeoSteiner and our program for the second phase on the geometric instances from
SteinLib. These tests (for both programs) were performed on a PC with an AMD Athlon XP 1800+
(1.53 GHz) processor (for details see Appendix A). Detailed results on single instances can be found
in [PV03, PV01d].

instance GeoSteiner our program
group time (s) time (s)
ES1000FST 150.6 10.3
TSPFST‡ 261.8 3.0

Table 5.2: Comparison of GeoSteiner (2nd phase) and our program for the exact solution.

Additionally, we are able to solve some instances (fl1400, fl3795, fnl4461) that have not been
solved before. In Table 5.3, we present the results of our program for the exact solution of the instances
not solved by GeoSteiner in one day. We needed no branching for any of the instances in this section.

instance size optimum time (s)
|R| |V | |E| (our program)

es10000 10000 27019 39407 716174280 758
fl1400 1400 2694 4546 17980523 118
fl3795 3795 4859 6539 25529856 139
fnl4461 4461 17127 27352 182361 6148
pcb3038 3038 5829 7552 131895 2.4
pla7397 7397 8790 9815 22481625 0.1

Table 5.3: Instances not solved by GeoSteiner in one day.

5.5 Concluding Remarks

We have presented several algorithmic contributions for solving the Steiner problem in networks.
Each of the components (methods for computing lower and upper bounds and simplifying instances)
achieves impressive results on its own. Also, the resulting exact algorithm solves many instances of
different types in unprecedented small times, and in many cases, there is not much room left for
improvements. But this is not always the case:

For some instances, (fast) reductions come to a halt at a time when the relaxations used are still
not strong enough; this is for example the case for some of the MC- and I-instances, which were

‡Excluding instances not solved by GeoSteiner.
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constructed to fool the currently available techniques. Here, the algorithm has gone into branching
to solve the instances exactly. Currently, insightfully constructed, “pathological” instances cannot be
solved in reasonable times even if they are of “medium” size (several hundreds of vertices), so new
techniques are required here. On the other hand, the results on the other groups of instances indicate
that such cases rarely arise naturally.

Regarding classes that originate from some application or were constructed “neutrally”, even in-
stances with tens of thousands of vertices can usually be solved in reasonable time. However, very
large instances can still be a challenge. With respect to them, there are two main problems:

First, even though the running times and memory consumptions of many components can be
described by polynomials of low degree, they can grow to a critical value for very large instances.
Particularly, the DUAL-ASCENT procedure which is used relatively early in the reduction process,
can be a bottleneck, especially because of the Θ(rn) memory it requires in our favorite implementa-
tion. Of course, new effective and efficient reduction techniques could be a solution. But in the short
term, alternative (possibly distributed) implementations, which are tailored to very large instances,
can remedy this problem.

A second problem is more severe. As already discussed in Section 3.5.4, when the instances get
larger, the deviations of the linear (relaxed) solution from the integer one, but also the errors heuristics
like DUAL-ASCENT are bound to make while approximating this solution, can accumulate. As a
result, the bound-based methods can get weaker and eventually lose their impact. In the following
subsection, we outline also some possible approaches to deal with this problem.

5.5.1 Some Paths for Further Improvements

Here we mention briefly some paths for further algorithmic improvements, especially for the solution
of large or (currently) hard instances.

Branch-and-cut: Currently, we do not use branch-and-cut with (explicitly) globally valid cuts to im-
prove the quality of the lower bounds. We found it more advantageous to use the calculated
lower bounds and reduced costs for bound-based reductions and then try all reduction tests on
the reduced graph. This process is often sufficient to solve a given instance without branching.
Even when branching is necessary, the whole reduction process can make use of vertex branch-
ing, which is not the case in a branch-and-cut setting, because many operations performed by
the reduction methods (e.g., substitution of a vertex by a clique over vertices adjacent to it, see
Section 3.2.2) are difficult to translate profitably into the linear program maintained by a branch-
and-cut algorithm. On the other hand, in our approach the generated constraints are discarded
after every RG (row generation) test, so for the next such test, they have to be computed from
scratch. For larger instances where most of the time is spent while solving linear programs, a
better integration of the reductions into a branch-and-cut framework could be an improvement.

Using stronger relaxations: We have designed a collection of very strong relaxations (see the hi-
erarchy in Section 2.7), but currently we can use them only restrictively (Section 2.11.1). If
techniques could be developed to use stronger relaxations from the hierarchy efficiently for
large instances, a major improvement could occur.

Improving the improvement methods: As already discussed in Section 2.12.3, the techniques for
improving linear relaxations could be further improved. In particular, the potential of heuristic
shrinks is perhaps still not fully exploited.
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Adaptation to the FST approach: Although our program already achieves the currently best results
for the second phase of this approach (Section 5.4.1), we do not use all information from the first
phase, since we discard the knowledge about individual FSTs. This information could be used
profitably, for example for the computation of lower bounds or in reduction methods. However,
the resulting algorithm would not be a pure network algorithm (which only gets a weighted
graph and the list of terminals as the input) anymore. But the success of the FST approach
on geometric Steiner problems already justifies a tailored algorithm, and this approach could
also be applicable to other Steiner problems, in particular in the context of phylogeny (Section
1.3.3).

Distributed computing: Many components in our program can be implemented distributedly in
a natural manner, in particular the extended reduction techniques (Section 3.4) and the
partitioning-based reductions (Section 3.5). In this way, the solution of very large instances
of different types (for example VLSI instances) with hundreds of thousands of vertices should
be well within reach.

5.5.2 Reliability and Verification

Another algorithmic challenge is the development of methods for reliable computation [Meh02], i.e.,
algorithms that come up with some kind of evidence that they produce correct results. Such algorithms
return additional output (often called a witness) that enables a (fast) verification of the results. A weak
version of a witness is mentioned in Section 3.6: After all reductions are performed, our algorithm
transforms a tree in the reduced instance (which often consists of a single terminal) to one for the
unreduced instance, thus certifying that a tree with the same value exists in the original instance (this
is than checked by our program). Of course, this does not say much about the optimality of this tree.

An approach for certifying the optimality would be to present (the constraints of) a relaxation for
the original instance with the same solution value as the weight of the produced Steiner tree. But since
the reductions can change (improve) the value of relaxations (which is one their advantages after all),
it is not easy to come up with such a relaxation. Note that also a solution and a certificate (for example
a dual solution) should be reconstructed, because for larger instances current LP solvers could not
solve the corresponding LPs even with a linear number of variables and constraints in the the size of
original instance in reasonable time.

As a formal verification of the whole program is unlikely, certifying algorithms as components
would already be an advantage. Major difficulties arise in the context of reduction techniques. Here
we mention some of them:

• For the efficient implementation of reduction tests, we frequently use the following pattern:
First, in a preprocessing step, some data structures are set up (e.g., representing a Steiner tree
produced by some heuristic, a minimum spanning tree T ′

D(R) in a distance network, approxima-
tions of distances and bottleneck Steiner distances, a lower bound and corresponding reduced
costs). Then, reduction tests use these data and modify the network. These modifications are
done in such a way that the precomputed information is still valid (e.g., for the PTm test (in-
cluding the equality case) in Section 3.2.1) or that invalid parts are marked such that they do not
cause harm (e.g., using neighbor lists for tagging some precomputed data as invalid in case an
edge is deleted in Section 3.4.4). Even if it was possible to verify that the data structures were
correct for the original network, it could be very difficult to verify that they are used correctly
after the network is modified. A simple example is the following: When the first edge is deleted
by the PTm test (Section 3.2.1), it is easy to verify that a path exists with Steiner distance not
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larger than the length of the edge by following the parent pointers in the shortest path tree and
the edges in the tree T ′

D(R). For edges that are deleted later, this is no longer possible directly,
as many edges on such paths may have been deleted.

• For many certifying algorithms the required times for producing the witness and verification of
the result is (at least asymptotically) dominated by the running time of the main algorithm. For
the presented reduction tests with running time O(m + n log n) this is not an easy task. Note
that one of the major contributions of this work are techniques for performing reduction tests
so fast that they can be applied extensively. As a consequence, if a certifying reduction test is
much slower than the original version, it cannot be applied in the same way as before. In the
example above, checking the alternative path can take time O(n), while the test condition itself
can be checked in nearly constant time.

Our methods with respect to other paradigms of reliable computation, namely “exact arithmetic”
and “test and repair” have already been discussed in the previous chapters, in particular in the context
of using the output of LP solvers for reductions (Section 3.3.3).

5.5.3 Transfer of Concepts to Other Problems

Many of methods developed or improved in this work in the context of the Steiner problem could also
be useful for other hard combinatorial optimization problems. In the following, we briefly mention
some concepts which appear most promising:

Relaxations and lower bounds: The techniques we used to compare and develop relaxations could
also be helpful for the development or choice of relaxations for similar problems. Also the
approaches we used for improving relaxations seem quite promising. In particular, the method
of graph transformation introduced by us (Section 2.12.1) could be adapted to related problems.

Reduction: The approach of using the reduction process as the motor of the algorithm has proved
to be quite powerful. Also our extended and combined reduction techniques (Section 3.4) and
our approach of using partitioning as the basis for reductions (Section 3.5) could be used for
other problems. In fact, upon our suggestion Hisao Tamaki has already integrated the latter
technique successfully into his record-setting algorithm for computing short traveling salesman
tours [Tam03].

Heuristics and upper bounds: Our reduction-based heuristics (Section 4.3) have proved to be quite
powerful. The approach can also be applied to any other problem when similarly promising
paths for reductions exist.

Finally, the interaction between the components has been a major reason for the efficiency of our
exact algorithm; in fact, we are not aware of any other algorithm for a similar problem where this
interaction has been exploited to such an extent. On the other hand, designing similarly effective and
efficient techniques for each component and integrating them in a likewise efficient manner could take
(if possible at all) many man-years of work.



Appendix A

Experimental Results of the Program
Package

Here we report detailed results of our program package on the instances of the benchmark library
SteinLib [Ste97]. In Table A.1, we give a brief description of the instance classes of SteinLib. For
more comprehensive information, see [Ste97, KMV01]. The column “instances” gives the number
of instances in the class. The column “status” shows whether all instances of this class have been
solved by other authors and by us (“solved”), or only by us (“solved” in italics), or if there are some
“unsolved” instances.

In Tables A.3-A.12, we report the results of our program package on each single instance of
SteinLib, except for the instance groups I080, B, C, P, and ES10FST–ES500FST, which are too easy:
All of them can be solved by our program exactly in very small times (typically less than one second).

For each instance, we give the value of the optimal solution (if reached) and the total time until the
exact solution of the instance (in seconds). We set a time limit of five hours on each run. Within this
time, we have solved most of the considered instances. Only 63 instances have not been solved within
the time limit. For these instances we give the computed lower and upper bounds after five hours
(in italics). However, 9 of these instances could be solved using stronger extended reductions (see
Section 3.4), and 13 could be solved by longer runs. For them we give the time for the exact solution
in Tables A.15 and A.16. In total, there are only 41 unsolved instances left. These instances are from
the instance groups SP, PUC, and I640, which were constructed with the aim of being difficult for
known techniques.

All results were produced by a single run of the same program with the same parameter values,
with the exception of the instance groups I and PUC. These instances were constructed to defy known
techniques, thus currently many of them can only be solved using many branching nodes in a branch-
and-bound framework. Therefore, we made the solution faster by omitting the time-consuming row
generation method (Section 2.11) in the reduction process. Note that instances that arise naturally
from some application can often be solved without branching by using the sophisticated reduction
techniques.

We solved all instances that (to our knowledge) have been solved before. Furthermore, we solved
33 instances from different instance classes in SteinLib that have not been solved by other authors
(see Table A.2).

For many classes, our exact solution program performs several orders of magnitude faster than
programs of other authors, see Section 5.4 for a summarized comparison. It is acknowledged to be the
strongest program for solving general Steiner problem instances at the time being [CD01, Ste97].
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class name instances |V | status description
D 20 1000 solved
E 20 2500 solved

}

sparse with random weights and varying
|E| and |R|, from OR-Library [Bea90].

X 3 52-666 solved complete with Euclidean weights.
ES1000FST 15 2532–2984 solved
ES10000FST 1 27019 solved
TSPFST 76 89–17127 solved















originally rectilinear instances, derived
with GeoSteiner [WWZ01] from 1000
(rsp. 10000) random points in the plane or
from TSPLIB [Rei91], see Section 2.8.

I080 100 80 solved
I160 100 160 solved
I320 100 320 solved
I640 100 640 unsolved















so-called incidence networks, constructed
to be difficult for known reduction tech-
niques, introduced by Duin [Dui93].

MC 6 97–400 solved constructed difficult instances.
PUC 50 64-4096 unsolved constructed difficult instances: hypercubes,

from code covering and bipartite graphs
[RdAR+01].

SP 8 6–3997 unsolved constructed instances, combination of odd
wheels and odd circles, difficult for linear
programming approaches.

VLSI 116 90–36711 solved grid graphs with holes (not geometric)
from VLSI design, SteinLib instance groups
alue, alut, diw, dmxa, gap, msm, and
taq.

LIN 37 53–38418 solved grid graphs with holes (not geometric) from
VLSI design.

WRP3 63 84–3168 solved
WRP4 62 110–1898 solved

}

wire routing problems from industry
[ZR03].

1R 27 1250 solved 2D cross grid graphs [Fre97].
2R 27 2000 solved 3D cross grid graphs [Fre97].

Table A.1: Classes of problem instances in SteinLib
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All results presented here (and indeed all results in this work except in two cases explained below)
were produced single-threaded on a Sunfire 15000 with 900 MHz SPARC III+ CPUs, using the oper-
ating system SunOS 5.9. We used the GNU g++ 2.95.3 compiler with the -O4 flag and the LP solver
CPLEX version 8.0. As the Sunfire is a multi-processor machine with shared memory, it is slower
than a single processor system with the same processor. In two cases (when comparing our program
with the program Geosteiner [WWZ01] in Sections 2.13 and 5.4.1), we used (for both programs) a PC
with an AMD Athlon XP 1800+ (1.53 GHz) processor and 1 GB of main memory, using the operating
system Linux 2.4.9, gcc 2.96 compiler and CPLEX 7.0. This machine was approximately twice faster
than the Sunfire.

instance group Table instances
LIN A.6 lin31, lin32, lin33, lin34, lin35, lin36, lin37
WRP A.5 wrp3-83
TSPFST A.7 fl1400fst, fl3795fst, fnl4461fst
PUC A.13 bipe2p, bipe2u, cc5-3p, cc5-3u, hc8p, hc8u
SP A.14 w3c571
I640 A.12 i640-211, i640-212, i640-213, i640-214, i640-215,

i640-321, i640-322, i640-323, i640-324, i640-325,
i640-341, i640-342, i640-343, i640-344, i640-345

Table A.2: Instances solved by us and not solved by others.
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instance size optimum time
|V | |E| |R|

d01 1000 1250 5 106 0.1
d02 1000 1250 10 220 0.1
d03 1000 1250 167 1565 0.1
d04 1000 1250 250 1935 0.1
d05 1000 1250 500 3250 0.1
d06 1000 2000 5 67 0.3
d07 1000 2000 10 103 0.3
d08 1000 2000 167 1072 0.1
d09 1000 2000 250 1448 0.1
d10 1000 2000 500 2110 0.1
d11 1000 5000 5 29 0.2
d12 1000 5000 10 42 0.1
d13 1000 5000 167 500 0.1
d14 1000 5000 250 667 0.1
d15 1000 5000 500 1116 0.1
d16 1000 25000 5 13 0.2
d17 1000 25000 10 23 0.2
d18 1000 25000 167 223 0.7
d19 1000 25000 250 310 0.5
d20 1000 25000 500 537 0.1

instance size optimum time
|V | |E| |R|

e01 2500 3125 5 111 0.5
e02 2500 3125 10 214 0.3
e03 2500 3125 417 4013 0.1
e04 2500 3125 625 5101 0.1
e05 2500 3125 1250 8128 0.1
e06 2500 5000 5 73 1.2
e07 2500 5000 10 145 1.1
e08 2500 5000 417 2640 0.2
e09 2500 5000 625 3604 0.1
e10 2500 5000 1250 5600 0.1
e11 2500 12500 5 34 0.8
e12 2500 12500 10 67 0.6
e13 2500 12500 417 1280 1.3
e14 2500 12500 625 1732 0.2
e15 2500 12500 1250 2784 0.2
e16 2500 62500 5 15 0.8
e17 2500 62500 10 25 0.5
e18 2500 62500 417 564 21.6
e19 2500 62500 625 758 4.1
e20 2500 62500 1250 1342 0.2

Table A.3: Results on the D and E-instances. Type: Sparse with random weights and varying |E| and
|R|, from OR-Library.

instance size optimum time
|V | |E| |R|

1r111 625 2352 6 28000 0.2
1r112 625 2352 6 28000 0.1
1r113 625 2352 6 26000 0.1
1r121 625 2340 6 36000 0.1
1r122 625 2342 6 45000 0.7
1r123 625 2343 6 40000 0.3
1r131 625 2336 6 43000 0.4
1r132 625 2340 6 37000 0.1
1r133 625 2326 6 36000 0.1
1r211 625 2352 31 77000 0.5
1r212 625 2352 30 81000 0.5
1r213 625 2352 29 70000 0.2
1r221 625 2341 31 79000 0.3
1r222 625 2343 31 68000 0.1
1r223 625 2340 31 77000 0.2
1r231 625 2331 30 80000 0.2
1r232 625 2335 29 86000 0.2
1r233 625 2327 31 71000 0.1
1r311 625 2352 56 108000 0.2
1r312 625 2352 60 113000 0.2
1r313 625 2352 58 106000 0.2
1r321 625 2338 59 118000 0.2
1r322 625 2336 60 113000 0.2
1r323 625 2341 60 117000 0.3
1r331 625 2319 58 103000 0.1
1r332 625 2333 58 109000 0.1
1r333 625 2331 58 113000 0.1

instance size optimum time
|V | |E| |R|

2r111 1000 5800 9 28000 1.0
2r112 1000 5800 9 32000 1.0
2r113 1000 5800 9 28000 0.5
2r121 1000 5766 9 28000 0.2
2r122 1000 5772 9 29000 0.5
2r123 1000 5754 9 25000 0.7
2r131 1000 5726 9 27000 0.4
2r132 1000 5725 9 33000 6.6
2r133 1000 5729 9 29000 0.6
2r211 1000 5800 50 89000 384.5
2r212 1000 5800 49 80000 3.7
2r213 1000 5800 48 76000 45.9
2r221 1000 5764 50 83000 4.5
2r222 1000 5765 50 84000 39.7
2r223 1000 5770 49 84000 74.0
2r231 1000 5737 50 86000 51.0
2r232 1000 5733 49 87000 71.4
2r233 1000 5730 47 83000 18.3
2r311 1000 5800 95 129000 70.6
2r312 1000 5800 92 126000 78.9
2r313 1000 5800 97 128000 41.7
2r321 1000 5771 92 125000 2.1
2r322 1000 5753 92 130000 34.0
2r323 1000 5764 96 142000 92.9
2r331 1000 5736 93 134000 26.2
2r332 1000 5745 95 136000 130.7
2r333 1000 5741 98 143000 100.3

Table A.4: Results on the 1R and 2R-instances. Type: 2D (respectively 3D) cross grid graph [Fre97].
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instance size optimum time
|V | |E| |R|

wrp3-11 128 227 11 1100361 0.1
wrp3-12 84 149 12 1200237 0.1
wrp3-13 311 613 13 1300497 0.5
wrp3-14 128 247 14 1400250 0.1
wrp3-15 138 257 15 1500422 0.1
wrp3-16 204 374 16 1600208 0.2
wrp3-17 177 354 17 1700442 0.1
wrp3-19 189 353 19 1900439 0.1
wrp3-20 245 454 20 2000271 0.3
wrp3-21 237 444 21 2100522 0.2
wrp3-22 233 431 22 2200557 0.5
wrp3-23 132 230 23 2300245 0.1
wrp3-24 262 487 24 2400623 0.7
wrp3-25 246 468 25 2500540 0.2
wrp3-26 402 780 26 2600484 0.5
wrp3-27 370 721 27 2700502 1.2
wrp3-28 307 559 28 2800379 0.3
wrp3-29 245 436 29 2900479 0.2
wrp3-30 467 896 30 3000569 3.6
wrp3-31 323 592 31 3100635 0.8
wrp3-33 437 838 33 3300513 0.6
wrp3-34 1244 2474 34 3400646 397.0
wrp3-36 435 818 36 3600610 4.2
wrp3-37 1011 2010 37 3700485 181.1
wrp3-38 603 1207 38 3800656 17.7
wrp3-39 703 1616 39 3900450 725.6
wrp3-41 178 307 41 4100466 0.8
wrp3-42 705 1373 42 4200598 46.4
wrp3-43 173 298 43 4300457 0.8
wrp3-45 1414 2813 45 4500860 592.5
wrp3-48 925 1738 48 4800552 24.7
wrp3-49 886 1800 49 4900882 131.3
wrp3-50 1119 2251 50 5000673 2769.9
wrp3-52 701 1352 52 5200825 207.7
wrp3-53 775 1471 53 5300847 7.3
wrp3-55 1645 3186 55 [5500887—5500890]
wrp3-56 853 1590 56 5600872 53.3
wrp3-60 838 1763 60 6001164 262.2
wrp3-62 670 1316 62 6201016 68.5
wrp3-64 1822 3610 64 6400931 1549.1
wrp3-66 2521 4858 66 6600922 4483.6
wrp3-67 987 1923 67 6700776 46.4
wrp3-69 856 1621 69 6900841 21.3
wrp3-70 1468 2931 70 7000890 208.1
wrp3-71 1221 2414 71 7101028 248.3
wrp3-73 1890 3613 73 7301207 7104.5
wrp3-74 1019 1941 74 7400759 263.0
wrp3-75 729 1395 75 7501020 11.5
wrp3-76 1761 3370 76 7601028 865.7
wrp3-78 2346 4656 78 7801094 3306.0
wrp3-79 833 1595 79 7900444 28.0
wrp3-80 1491 2831 80 8000849 212.2
wrp3-83 3168 6220 83 [8300888—8300906]
wrp3-84 2356 4547 84 8401094 1243.2
wrp3-85 528 1017 85 8500739 564.8
wrp3-86 1360 2607 86 86000746 677.7
wrp3-88 743 1409 88 88001175 26.4
wrp3-91 1343 2594 91 91000866 265.1
wrp3-92 1765 3613 92 92000764 518.2
wrp3-94 1976 3836 94 94001181 851.2
wrp3-96 2518 4985 96 96001172 3421.5
wrp3-98 2265 4545 98 98001224 3812.8
wrp3-99 2076 4072 99 99001097 1298.3

instance size optimum time
|V | |E| |R|

wrp4-11 123 233 11 1100179 0.1
wrp4-13 110 188 13 1300798 0.1
wrp4-14 145 283 14 1400290 0.1
wrp4-15 193 369 15 1500405 0.2
wrp4-16 311 579 16 1601190 0.2
wrp4-17 223 404 17 1700525 0.4
wrp4-18 211 380 18 1801464 0.2
wrp4-19 119 206 19 1901446 0.1
wrp4-21 529 1032 21 2103283 1.5
wrp4-22 294 568 22 2200394 3.0
wrp4-23 257 515 23 2300376 0.9
wrp4-24 493 963 24 2403332 1.8
wrp4-25 422 808 25 2500828 0.7
wrp4-26 396 781 26 2600443 19.5
wrp4-27 243 497 27 2700441 1.2
wrp4-28 272 545 28 2800466 4.2
wrp4-29 247 505 29 2900484 25.6
wrp4-30 361 724 30 3000526 25.0
wrp4-31 390 786 31 3100526 35.7
wrp4-32 311 632 32 3200554 17.8
wrp4-33 304 571 33 3300655 0.6
wrp4-34 314 650 34 3400525 0.8
wrp4-35 471 954 35 3500601 16.2
wrp4-36 363 750 36 3600596 13.2
wrp4-37 522 1054 37 3700647 50.8
wrp4-38 294 618 38 3800606 2.0
wrp4-39 802 1553 39 3903734 3.0
wrp4-40 538 1088 40 4000758 119.5
wrp4-41 465 955 41 4100695 48.7
wrp4-42 552 1131 42 4200701 119.9
wrp4-43 596 1148 43 4301508 3.2
wrp4-44 398 788 44 4401504 30.0
wrp4-45 388 815 45 4500728 2.9
wrp4-46 632 1287 46 4600756 50.9
wrp4-47 555 1098 47 4701318 10.0
wrp4-48 451 825 48 4802220 3.1
wrp4-49 557 1080 49 4901968 7.0
wrp4-50 564 1112 50 5001625 11.3
wrp4-51 668 1306 51 5101616 10.4
wrp4-52 547 1115 52 5201081 4.0
wrp4-53 615 1232 53 5301351 19.2
wrp4-54 688 1388 54 5401534 14.5
wrp4-55 610 1201 55 5501952 13.3
wrp4-56 839 1617 56 5602299 25.6
wrp4-58 757 1493 58 5801466 27.6
wrp4-59 904 1806 59 5901592 6.6
wrp4-60 693 1370 60 6001782 7.8
wrp4-61 775 1538 61 6102210 2.6
wrp4-62 1283 2493 62 6202100 30.8
wrp4-63 1121 2227 63 6301479 793.4
wrp4-64 632 1281 64 6401996 7.5
wrp4-66 844 1691 66 6602931 18.6
wrp4-67 1518 3060 67 6702800 82.3
wrp4-68 917 1850 68 6801753 40.0
wrp4-69 574 1165 69 6902328 7.2
wrp4-70 637 1269 70 7003022 2.0
wrp4-71 802 1609 71 7102320 4.2
wrp4-72 1151 2274 72 7202807 73.0
wrp4-73 1898 3616 73 7302643 284.5
wrp4-74 802 1620 74 7402046 38.4
wrp4-75 938 1869 75 7501712 25.6
wrp4-76 766 1535 76 7602040 21.1

Table A.5: Results on the WRP-instances. Type: Wire routing problems from industry [ZR03]. In-
stances not solved here could be solved using stronger reductions, see Table A.15.
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instance size optimum time
|V | |E| |R|

alue2087 1244 1971 34 1049 0.1
alue2105 1220 1858 34 1032 0.1
alue3146 3626 5869 64 2240 0.4
alue5067 3524 5560 68 2586 0.9
alue5345 5179 8165 68 3507 3.9
alue5623 4472 6938 68 3413 1.9
alue5901 11543 18429 68 3912 3.3
alue6179 3372 5213 67 2452 0.8
alue6457 3932 6137 68 3057 1.1
alue6735 4119 6696 68 2696 0.9
alue6951 2818 4419 67 2386 0.8
alue7065 34046 54841 544 23881 94.5
alue7066 6405 10454 16 2256 7.3
alue7080 34479 55494 2344 62449 68.3
alue7229 940 1474 34 824 0.1
alut0787 1160 2089 34 982 0.1
alut0805 966 1666 34 958 0.1
alut1181 3041 5693 64 2353 0.5
alut2010 6104 11011 68 3307 1.4
alut2288 9070 16595 68 3843 3.2
alut2566 5021 9055 68 3073 2.5
alut2610 33901 62816 204 12239 95.6
alut2625 36711 68117 879 35459 305.9
alut2764 387 626 34 640 0.1
gap1307 342 552 17 549 0.1
gap1413 541 906 10 457 0.1
gap1500 220 374 17 254 0.1
gap1810 429 702 17 482 0.1
gap1904 735 1256 21 763 0.1
gap2007 2039 3548 17 1104 0.2
gap2119 1724 2975 29 1244 0.2
gap2740 1196 2084 14 745 0.1
gap2800 386 653 12 386 0.1
gap2975 179 293 10 245 0.1
gap3036 346 583 13 457 0.1
gap3100 921 1558 11 640 0.1
gap3128 10393 18043 104 4292 4.3
msm0580 338 541 11 467 0.1
msm0654 1290 2270 10 823 0.1
msm0709 1442 2403 16 884 0.1
msm0920 752 1264 26 806 0.1
msm1008 402 695 11 494 0.1
msm1234 933 1632 13 550 0.1
msm1477 1199 2078 31 1068 0.1
msm1707 278 478 11 564 0.1
msm1844 90 135 10 188 0.1
msm1931 875 1522 10 604 0.1
msm2000 898 1562 10 594 0.1
msm2152 2132 3702 37 1590 0.3
msm2326 418 723 14 399 0.1
msm2492 4045 7094 12 1459 0.4
msm2525 3031 5239 12 1290 0.3
msm2601 2961 5100 16 1440 0.5
msm2705 1359 2458 13 714 0.1
msm2802 1709 2963 18 926 0.1
msm2846 3263 5783 89 3135 0.8
msm3277 1704 2991 12 869 0.1
msm3676 957 1554 10 607 0.1
msm3727 4640 8255 21 1376 0.7
msm3829 4221 7255 12 1571 1.8
msm4038 237 390 11 353 0.1
msm4114 402 690 16 393 0.1
msm4190 391 666 16 381 0.1
msm4224 191 302 11 311 0.1
msm4312 5181 8893 10 2016 3.7
msm4414 317 476 11 408 0.1
msm4515 777 1358 13 630 0.1
taq0014 6466 11046 128 5326 2.9
taq0023 572 963 11 621 0.1
taq0365 4186 7074 22 1914 0.9
taq0377 6836 11715 136 6393 6.2
taq0431 1128 1905 13 897 0.2
taq0631 609 932 10 581 0.1
taq0739 837 1438 16 848 0.1
taq0741 712 1217 16 847 0.1
taq0751 1051 1791 16 939 0.2
taq0891 331 560 10 319 0.1
taq0903 6163 10490 130 5099 5.5
taq0910 310 514 17 370 0.1
taq0920 122 194 17 210 0.1
taq0978 777 1239 10 566 0.1

instance size optimum time
|V | |E| |R|

diw0234 5349 10086 25 1996 1.6
diw0250 353 608 11 350 0.1
diw0260 539 985 12 468 0.1
diw0313 468 822 14 397 0.1
diw0393 212 381 11 302 0.1
diw0445 1804 3311 33 1363 0.1
diw0459 3636 6789 25 1362 0.2
diw0460 339 579 13 345 0.1
diw0473 2213 4135 25 1098 0.1
diw0487 2414 4386 25 1424 0.2
diw0495 938 1655 10 616 0.1
diw0513 918 1684 10 604 0.1
diw0523 1080 2015 10 561 0.1
diw0540 286 465 10 374 0.1
diw0559 3738 7013 18 1570 0.5
diw0778 7231 13727 24 2173 1.1
diw0779 11821 22516 50 4440 8.0
diw0795 3221 5938 10 1550 1.2
diw0801 3023 5575 10 1587 0.9
diw0819 10553 20066 32 3399 3.3
diw0820 11749 22384 37 4167 6.8
dmxa0296 233 386 12 344 0.1
dmxa0368 2050 3676 18 1017 0.2
dmxa0454 1848 3286 16 914 0.2
dmxa0628 169 280 10 275 0.1
dmxa0734 663 1154 11 506 0.1
dmxa0848 499 861 16 594 0.1
dmxa0903 632 1087 10 580 0.1
dmxa1010 3983 7108 23 1488 0.2
dmxa1109 343 559 17 454 0.1
dmxa1200 770 1383 21 750 0.1
dmxa1304 298 503 10 311 0.1
dmxa1516 720 1269 11 508 0.1
dmxa1721 1005 1731 18 780 0.1
dmxa1801 2333 4137 17 1365 0.5

instance size optimum time
|V | |E| |R|

lin01 53 80 4 503 0.1
lin02 55 82 6 557 0.1
lin03 57 84 8 926 0.1
lin04 157 266 6 1239 0.1
lin05 160 269 9 1703 0.1
lin06 165 274 14 1348 0.1
lin07 307 526 6 1885 0.1
lin08 311 530 10 2248 0.1
lin09 313 532 12 2752 0.1
lin10 321 540 20 4132 0.1
lin11 816 1460 10 4280 0.2
lin12 818 1462 12 5250 0.3
lin13 822 1466 16 4609 0.2
lin14 828 1472 22 5824 0.2
lin15 840 1484 34 7145 0.2
lin16 1981 3633 12 6618 0.5
lin17 1989 3641 20 8405 0.7
lin18 1994 3646 25 9714 1.4
lin19 2010 3662 41 13268 1.4
lin20 3675 6709 11 6673 1.6
lin21 3683 6717 20 9143 1.2
lin22 3692 6726 28 10519 2.1
lin23 3716 6750 52 17560 2.9
lin24 7998 14734 16 15076 9.6
lin25 8007 14743 24 17803 12.6
lin26 8013 14749 30 21757 16.3
lin27 8017 14753 36 20678 13.7
lin28 8062 14798 81 32584 119.3
lin29 19083 35636 24 23765 31.7
lin30 19091 35644 31 27684 87.2
lin31 19100 35653 40 [31436—31726]
lin32 19112 35665 53 [39247—39926]
lin33 19177 35730 117 [56010—56061]
lin34 38282 71521 34 [44337—45123]
lin35 38294 71533 45 [49061—50619]
lin36 38307 71546 58 [53106—56043]
lin37 38418 71657 172 [96421—99701]

Table A.6: Results on the VLSI and LIN-instances. Type: Grid graph with holes (not geometric) from
VLSI design. Instances not solved here could be solved using stronger reductions, see Table A.15.
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instance size optimum time
|V | |E| |R|

es10000fst 27019 39407 10000 716174280 1398.9

instance size optimum time
|V | |E| |R|

es1000fst01 2865 4267 1000 230535806 19.7
es1000fst02 2629 3793 1000 227886471 33.4
es1000fst03 2762 4047 1000 227807756 9.3
es1000fst04 2778 4083 1000 230200846 15.0
es1000fst05 2676 3894 1000 228330602 11.1
es1000fst06 2815 4162 1000 231028456 24.3
es1000fst07 2604 3756 1000 230945623 5.7
es1000fst08 2834 4207 1000 230639115 17.6
es1000fst09 2846 4187 1000 227745838 14.1
es1000fst10 2546 3620 1000 229267101 5.5
es1000fst11 2763 4038 1000 231605619 18.8
es1000fst12 2984 4484 1000 230904712 19.2
es1000fst13 2532 3615 1000 228031092 6.7
es1000fst14 2840 4200 1000 234318491 17.1
es1000fst15 2733 3997 1000 229965775 13.6

instance size optimum time
|V | |E| |R|

a280fst 314 329 279 2502 0.1
att48fst 139 202 48 30236 0.3
att532fst 1468 2152 532 84009 4.5
berlin52fst 89 104 52 6760 0.1
bier127fst 258 357 127 104284 0.1
d1291fst 1365 1456 1291 481421 0.1
d1655fst 1906 2083 1655 584948 0.1
d198fst 232 256 198 129175 0.1
d2103fst 2206 2272 2103 769797 0.1
d493fst 1055 1473 493 320137 0.7
d657fst 1416 1978 657 471589 2.8
dsj1000fst 2562 3655 1000 17564659 1.9
eil101fst 330 538 101 605 1.5
eil51fst 181 289 51 409 3.4
eil76fst 237 378 76 513 1.1
fl1400fst 2694 4546 1400 17980523 263.2
fl1577fst 2413 3412 1577 19825626 1.4
fl3795fst 4859 6539 3795 25529856 279.7
fl417fst 732 1084 417 10883190 1.3
fnl4461fst 17127 27352 4461 182361 12967.0
gil262fst 537 723 262 2306 0.1
kroA100fst 197 250 100 20401 0.1
kroA150fst 389 562 150 25700 0.9
kroA200fst 500 714 200 28652 0.4
kroB100fst 230 313 100 21211 0.1
kroB150fst 420 619 150 25217 0.6
kroB200fst 480 670 200 28803 0.7
kroC100fst 244 337 100 20492 0.1
kroD100fst 216 288 100 20437 0.1
kroE100fst 226 306 100 21245 0.1

instance size optimum time
|V | |E| |R|

lin105fst 216 323 105 13429 0.1
lin318fst 678 1030 318 39335 0.6
linhp318fst 678 1030 318 39335 0.6
nrw1379fst 5096 8105 1379 56207 207.6
p654fst 777 867 654 314925 0.1
pcb1173fst 1912 2223 1173 53301 0.1
pcb3038fst 5829 7552 3038 131895 2.9
pcb442fst 503 531 442 47675 0.1
pla7397fst 8790 9815 7397 22481625 0.2
pr1002fst 1473 1715 1002 243176 0.1
pr107fst 111 110 107 34850 0.1
pr124fst 154 165 124 52759 0.1
pr136fst 196 250 136 86811 0.1
pr144fst 221 285 144 52925 0.1
pr152fst 308 431 152 64323 0.1
pr226fst 255 269 226 70700 0.1
pr2392fst 3398 3966 2392 358989 0.1
pr264fst 280 287 264 41400 0.1
pr299fst 420 500 299 44671 0.1
pr439fst 572 662 439 97400 0.1
pr76fst 168 247 76 95908 0.1
rat195fst 560 870 195 2386 1.3
rat575fst 1986 3176 575 6808 23.6
rat783fst 2397 3715 783 8883 18.1
rat99fst 269 399 99 1225 0.2
rd100fst 201 253 100 764269099 0.1
rd400fst 1001 1419 400 1490972006 1.9
rl11849fst 13963 15315 11849 8779590 0.8
rl1304fst 1562 1694 1304 236649 0.1
rl1323fst 1598 1750 1323 253620 0.1
rl1889fst 2382 2674 1889 295208 0.2
rl5915fst 6569 6980 5915 533226 0.1
rl5934fst 6827 7365 5934 529890 0.2
st70fst 133 169 70 626 0.1
ts225fst 225 224 225 1120 0.1
tsp225fst 242 252 225 356850 0.1
u1060fst 1835 2429 1060 21265372 1.5
u1432fst 1432 1431 1432 1465 0.1
u159fst 184 186 159 390 0.1
u1817fst 1831 1846 1817 5513053 0.1
u2152fst 2167 2184 2152 6253305 0.1
u2319fst 2319 2318 2319 2322 0.1
u574fst 990 1258 574 3509275 0.2
u724fst 1180 1537 724 4069628 0.3
vm1084fst 1679 2058 1084 2248390 0.6
vm1748fst 2856 3641 1748 3194670 7.2

Table A.7: Results on the ES10000, ES1000 and TSP-instances. Type: Originally rectilinear instances,
derived with GeoSteiner from 1000 (respectively 10000) random points in the plane or from TSPLIB.

instance size optimum time
|V | |E| |R|

berlin52 52 1326 16 1044 0.1
brasil58 58 1653 25 13655 0.1
world666 666 221445 174 122467 0.8

Table A.8: Results on the X-instances. Type: Complete with Euclidean weights.

instance size optimum time
|V | |E| |R|

mc11 400 760 213 11689 0.1
mc13 150 11175 80 92 2.6
mc2 120 7140 60 71 1.7
mc3 97 4656 45 47 5.4
mc7 400 760 170 3417 0.1
mc8 400 760 188 1566 0.1

Table A.9: Results on the MC-instances. Type: Constructed difficult instances.
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instance size optimum time
|V | |E| |R|

i160-001 160 240 7 2490 0.1
i160-002 160 240 7 2158 0.1
i160-003 160 240 7 2297 0.1
i160-004 160 240 7 2370 0.1
i160-005 160 240 7 2495 0.1
i160-011 160 812 7 1677 0.1
i160-012 160 812 7 1750 0.1
i160-013 160 812 7 1661 0.1
i160-014 160 812 7 1778 0.1
i160-015 160 812 7 1768 0.3
i160-021 160 12720 7 1352 0.2
i160-022 160 12720 7 1365 0.2
i160-023 160 12720 7 1351 0.2
i160-024 160 12720 7 1371 0.2
i160-025 160 12720 7 1366 0.2
i160-031 160 320 7 2170 0.1
i160-032 160 320 7 2330 0.1
i160-033 160 320 7 2101 0.1
i160-034 160 320 7 2083 0.1
i160-035 160 320 7 2103 0.1
i160-041 160 2544 7 1494 0.1
i160-042 160 2544 7 1486 0.1
i160-043 160 2544 7 1549 0.1
i160-044 160 2544 7 1478 0.1
i160-045 160 2544 7 1554 0.1
i160-101 160 240 12 3859 0.1
i160-102 160 240 12 3747 0.1
i160-103 160 240 12 3837 0.1
i160-104 160 240 12 4063 0.1
i160-105 160 240 12 3563 0.1
i160-111 160 812 12 2869 0.1
i160-112 160 812 12 2924 0.6
i160-113 160 812 12 2866 0.8
i160-114 160 812 12 2989 1.1
i160-115 160 812 12 2937 1.5
i160-121 160 12720 12 2363 0.3
i160-122 160 12720 12 2348 0.2
i160-123 160 12720 12 2355 0.3
i160-124 160 12720 12 2352 0.2
i160-125 160 12720 12 2351 0.2
i160-131 160 320 12 3356 0.1
i160-132 160 320 12 3450 0.1
i160-133 160 320 12 3585 0.1
i160-134 160 320 12 3470 0.1
i160-135 160 320 12 3716 0.1
i160-141 160 2544 12 2549 0.3
i160-142 160 2544 12 2562 1.5
i160-143 160 2544 12 2557 0.6
i160-144 160 2544 12 2607 1.2
i160-145 160 2544 12 2578 0.8

instance size optimum time
|V | |E| |R|

i160-201 160 240 24 6923 0.1
i160-202 160 240 24 6930 0.1
i160-203 160 240 24 7243 0.1
i160-204 160 240 24 7068 0.1
i160-205 160 240 24 7122 0.1
i160-211 160 812 24 5583 3.1
i160-212 160 812 24 5643 9.3
i160-213 160 812 24 5647 9.1
i160-214 160 812 24 5720 7.3
i160-215 160 812 24 5518 3.5
i160-221 160 12720 24 4729 0.3
i160-222 160 12720 24 4697 0.3
i160-223 160 12720 24 4730 0.3
i160-224 160 12720 24 4721 0.3
i160-225 160 12720 24 4728 0.4
i160-231 160 320 24 6662 0.3
i160-232 160 320 24 6558 0.9
i160-233 160 320 24 6339 0.1
i160-234 160 320 24 6594 0.1
i160-235 160 320 24 6764 0.9
i160-241 160 2544 24 5086 5.6
i160-242 160 2544 24 5106 5.8
i160-243 160 2544 24 5050 3.7
i160-244 160 2544 24 5076 7.6
i160-245 160 2544 24 5084 5.3
i160-301 160 240 40 11816 0.1
i160-302 160 240 40 11497 0.1
i160-303 160 240 40 11445 0.1
i160-304 160 240 40 11448 0.1
i160-305 160 240 40 11423 0.5
i160-311 160 812 40 9135 14.9
i160-312 160 812 40 9052 29.8
i160-313 160 812 40 9159 12.0
i160-314 160 812 40 8941 9.2
i160-315 160 812 40 9086 15.3
i160-321 160 12720 40 7876 0.2
i160-322 160 12720 40 7859 0.3
i160-323 160 12720 40 7876 0.2
i160-324 160 12720 40 7884 0.3
i160-325 160 12720 40 7862 0.7
i160-331 160 320 40 10414 0.1
i160-332 160 320 40 10806 1.9
i160-333 160 320 40 10561 0.1
i160-334 160 320 40 10327 0.1
i160-335 160 320 40 10589 0.3
i160-341 160 2544 40 8331 7.2
i160-342 160 2544 40 8348 28.5
i160-343 160 2544 40 8275 7.6
i160-344 160 2544 40 8307 11.0
i160-345 160 2544 40 8327 16.1

Table A.10: Results on the I160-instances. Type: Incidence networks, constructed with the aim of
being difficult for known reduction techniques.
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instance size optimum time
|V | |E| |R|

i320-001 320 480 8 2672 0.1
i320-002 320 480 8 2847 0.1
i320-003 320 480 8 2972 0.1
i320-004 320 480 8 2905 0.1
i320-005 320 480 8 2991 0.1
i320-011 320 1845 8 2053 0.5
i320-012 320 1845 8 1997 0.1
i320-013 320 1845 8 2072 1.3
i320-014 320 1845 8 2061 0.3
i320-015 320 1845 8 2059 0.7
i320-021 320 51040 8 1553 1.4
i320-022 320 51040 8 1565 1.4
i320-023 320 51040 8 1549 1.2
i320-024 320 51040 8 1553 1.1
i320-025 320 51040 8 1550 1.1
i320-031 320 640 8 2673 0.1
i320-032 320 640 8 2770 0.1
i320-033 320 640 8 2769 0.1
i320-034 320 640 8 2521 0.1
i320-035 320 640 8 2385 0.1
i320-041 320 10208 8 1707 0.7
i320-042 320 10208 8 1682 0.2
i320-043 320 10208 8 1723 0.3
i320-044 320 10208 8 1681 0.2
i320-045 320 10208 8 1686 0.2
i320-101 320 480 17 5548 0.1
i320-102 320 480 17 5556 0.1
i320-103 320 480 17 6239 0.1
i320-104 320 480 17 5703 0.1
i320-105 320 480 17 5928 0.2
i320-111 320 1845 17 4273 1.9
i320-112 320 1845 17 4213 3.6
i320-113 320 1845 17 4205 2.9
i320-114 320 1845 17 4104 2.4
i320-115 320 1845 17 4238 2.9
i320-121 320 51040 17 3321 1.7
i320-122 320 51040 17 3314 1.4
i320-123 320 51040 17 3332 1.8
i320-124 320 51040 17 3323 1.8
i320-125 320 51040 17 3340 1.8
i320-131 320 640 17 5255 0.6
i320-132 320 640 17 5052 0.1
i320-133 320 640 17 5125 0.1
i320-134 320 640 17 5272 0.1
i320-135 320 640 17 5342 0.1
i320-141 320 10208 17 3606 4.8
i320-142 320 10208 17 3567 3.6
i320-143 320 10208 17 3561 2.1
i320-144 320 10208 17 3512 0.2
i320-145 320 10208 17 3601 3.2

instance size optimum time
|V | |E| |R|

i320-201 320 480 34 10044 0.1
i320-202 320 480 34 11223 0.1
i320-203 320 480 34 10148 0.4
i320-204 320 480 34 10275 0.3
i320-205 320 480 34 10573 0.1
i320-211 320 1845 34 8039 17.5
i320-212 320 1845 34 8044 20.8
i320-213 320 1845 34 7984 26.6
i320-214 320 1845 34 8046 28.8
i320-215 320 1845 34 8015 113.4
i320-221 320 51040 34 6679 1.8
i320-222 320 51040 34 6686 1.9
i320-223 320 51040 34 6695 1.9
i320-224 320 51040 34 6694 1.9
i320-225 320 51040 34 6691 1.5
i320-231 320 640 34 9862 1.8
i320-232 320 640 34 9933 5.1
i320-233 320 640 34 9787 0.1
i320-234 320 640 34 9517 0.6
i320-235 320 640 34 9945 2.0
i320-241 320 10208 34 7027 17.0
i320-242 320 10208 34 7072 39.5
i320-243 320 10208 34 7044 20.4
i320-244 320 10208 34 7078 30.2
i320-245 320 10208 34 7046 16.8
i320-301 320 480 80 23279 0.6
i320-302 320 480 80 23387 0.2
i320-303 320 480 80 22693 0.9
i320-304 320 480 80 23451 1.4
i320-305 320 480 80 22547 0.5
i320-311 320 1845 80 17945 5826.6
i320-312 320 1845 80 [17609—18122]
i320-313 320 1845 80 17991 12932.8
i320-314 320 1845 80 [17542—18108]
i320-315 320 1845 80 [17454—17987]
i320-321 320 51040 80 15648 38.3
i320-322 320 51040 80 15646 72.6
i320-323 320 51040 80 15654 32.9
i320-324 320 51040 80 15667 146.5
i320-325 320 51040 80 15649 51.2
i320-331 320 640 80 21517 23.9
i320-332 320 640 80 21674 2.9
i320-333 320 640 80 21339 19.8
i320-334 320 640 80 21415 5.5
i320-335 320 640 80 21378 14.3
i320-341 320 10208 80 16296 2404.3
i320-342 320 10208 80 16228 88.2
i320-343 320 10208 80 16281 692.3
i320-344 320 10208 80 16295 1178.1
i320-345 320 10208 80 16289 1392.8

Table A.11: Results on the I320-instances. Type: Incidence networks, constructed with the aim of
being difficult for known reduction techniques. Instances not solved here could be solved using longer
runs, see Table A.16.
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instance size optimum time
|V | |E| |R|

i640-001 640 960 9 4033 0.1
i640-002 640 960 9 3588 0.1
i640-003 640 960 9 3438 0.1
i640-004 640 960 9 4000 0.1
i640-005 640 960 9 4006 0.1
i640-011 640 4135 9 2392 0.1
i640-012 640 4135 9 2465 1.2
i640-013 640 4135 9 2399 0.8
i640-014 640 4135 9 2171 0.1
i640-015 640 4135 9 2347 0.1
i640-021 640 204480 9 1749 10.1
i640-022 640 204480 9 1756 10.1
i640-023 640 204480 9 1754 10.2
i640-024 640 204480 9 1751 8.3
i640-025 640 204480 9 1745 10.2
i640-031 640 1280 9 3278 0.1
i640-032 640 1280 9 3187 0.1
i640-033 640 1280 9 3260 0.1
i640-034 640 1280 9 2953 0.1
i640-035 640 1280 9 3292 0.1
i640-041 640 40896 9 1897 5.0
i640-042 640 40896 9 1934 2.3
i640-043 640 40896 9 1931 1.3
i640-044 640 40896 9 1938 2.5
i640-045 640 40896 9 1866 0.9
i640-101 640 960 25 8764 0.2
i640-102 640 960 25 9109 0.1
i640-103 640 960 25 8819 0.1
i640-104 640 960 25 9040 0.2
i640-105 640 960 25 9623 1.0
i640-111 640 4135 25 6167 20.0
i640-112 640 4135 25 6304 21.6
i640-113 640 4135 25 6249 32.9
i640-114 640 4135 25 6308 17.2
i640-115 640 4135 25 6217 21.6
i640-121 640 204480 25 4906 12.1
i640-122 640 204480 25 4911 12.2
i640-123 640 204480 25 4913 12.2
i640-124 640 204480 25 4906 10.7
i640-125 640 204480 25 4920 12.3
i640-131 640 1280 25 8097 3.4
i640-132 640 1280 25 8154 1.6
i640-133 640 1280 25 8021 0.3
i640-134 640 1280 25 7754 0.1
i640-135 640 1280 25 7696 0.6
i640-141 640 40896 25 5199 32.3
i640-142 640 40896 25 5193 34.0
i640-143 640 40896 25 5194 20.5
i640-144 640 40896 25 5205 18.6
i640-145 640 40896 25 5218 39.7

instance size optimum time
|V | |E| |R|

i640-201 640 960 50 16079 1.0
i640-202 640 960 50 16324 0.1
i640-203 640 960 50 16124 1.1
i640-204 640 960 50 16239 0.1
i640-205 640 960 50 16616 0.8
i640-211 640 4135 50 [11498—12062]
i640-212 640 4135 50 11795 1070.3
i640-213 640 4135 50 11879 1873.9
i640-214 640 4135 50 11898 7554.4
i640-215 640 4135 50 12081 6170.4
i640-221 640 204480 50 9821 109.6
i640-222 640 204480 50 9798 99.5
i640-223 640 204480 50 9811 88.9
i640-224 640 204480 50 9805 13.7
i640-225 640 204480 50 9807 13.7
i640-231 640 1280 50 15014 16.5
i640-232 640 1280 50 14630 10.2
i640-233 640 1280 50 14797 8.8
i640-234 640 1280 50 15203 4.1
i640-235 640 1280 50 14803 59.6
i640-241 640 40896 50 10230 190.3
i640-242 640 40896 50 10195 89.6
i640-243 640 40896 50 10215 122.5
i640-244 640 40896 50 10246 526.8
i640-245 640 40896 50 10223 159.7
i640-301 640 960 160 45005 4.1
i640-302 640 960 160 45736 8.2
i640-303 640 960 160 44922 4.7
i640-304 640 960 160 46233 2.1
i640-305 640 960 160 45902 9.8
i640-311 640 4135 160 [34622—36005]
i640-312 640 4135 160 [34691—35997]
i640-313 640 4135 160 [34596—35758]
i640-314 640 4135 160 [34532—35727]
i640-315 640 4135 160 [34683—35934]
i640-321 640 204480 160 31094 4071.8
i640-322 640 204480 160 31068 2485.9
i640-323 640 204480 160 31080 2606.7
i640-324 640 204480 160 31092 2920.8
i640-325 640 204480 160 31081 2967.7
i640-331 640 1280 160 42796 213.2
i640-332 640 1280 160 42548 3636.1
i640-333 640 1280 160 42345 1221.8
i640-334 640 1280 160 42768 16992.6
i640-335 640 1280 160 43035 3761.3
i640-341 640 40896 160 [31842—32089]
i640-342 640 40896 160 [31867—31978]
i640-343 640 40896 160 [31801—32015]
i640-344 640 40896 160 [31799—31998]
i640-345 640 40896 160 [31783—31995]

Table A.12: Results on the I640-instances. Type: Incidence networks, constructed with the aim of be-
ing difficult for known reduction techniques. Instances i640-211, i640-34[1-5] could be solved using
longer runs, see Table A.16.
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instance size optimum time
|V | |E| |R|

cc10-2p 1024 5120 135 [34133—35687]
cc10-2u 1024 5120 135 [331—345]
cc11-2p 2048 11263 244 [61773—64366]
cc11-2u 2048 11263 244 [600—620]
cc12-2p 4096 24574 473 [117941—122925]
cc12-2u 4096 24574 473 [1144—1197]
cc3-10p 1000 13500 50 [12173—12964]
cc3-10u 1000 13500 50 [115—127]
cc3-11p 1331 19965 61 [14883—15816]
cc3-11u 1331 19965 61 [140—154]
cc3-12p 1728 28512 74 [17947—19011]
cc3-12u 1728 28512 74 [171—187]
cc3-4p 64 288 8 2338 10.6
cc3-4u 64 288 8 23 7.8
cc3-5p 125 750 13 3661 447.6
cc3-5u 125 750 13 36 636.3
cc5-3p 243 1215 27 [6773—7299]
cc5-3u 243 1215 27 [66—71]
cc6-2p 64 192 12 3271 2.2
cc6-2u 64 192 12 32 5.0
cc6-3p 729 4368 76 [19847—20456]
cc6-3u 729 4368 76 [194—199]
cc7-3p 2187 15308 222 [54694—57459]
cc7-3u 2187 15308 222 [531—554]
cc9-2p 512 2304 64 [16520—17451]
cc9-2u 512 2304 64 [161—172]

instance size optimum time
|V | |E| |R|

bip42p 1200 3982 200 [24364—24688]
bip42u 1200 3982 200 [232—237]
bip52p 2200 7997 200 [24180—24823]
bip52u 2200 7997 200 [230—235]
bip62p 1200 10002 200 [22436—22959]
bip62u 1200 10002 200 [214—221]
bipa2p 3300 18073 300 [34671—35905]
bipa2u 3300 18073 300 [330—341]
bipe2p 550 5013 50 5616 3328.0
bipe2u 550 5013 50 54 3674.3
hc10p 1024 5120 512 [59202—60679]
hc10u 1024 5120 512 [568—581]
hc11p 2048 11264 1024 [117360—120471]
hc11u 2048 11264 1024 [1126—1160]
hc12p 4096 24576 2048 [232849—241286]
hc12u 4096 24576 2048 [2233—2304]
hc6p 64 192 32 4003 27.7
hc6u 64 192 32 39 13.5
hc7p 128 448 64 7905 14362.7
hc7u 128 448 64 77 17253.5
hc8p 256 1024 128 [15103—15327]
hc8u 256 1024 128 [146—148]
hc9p 512 2304 256 [29866—30310]
hc9u 512 2304 256 [287—292]

Table A.13: Results on the PUC-instances. Type: Constructed difficult instances: hypercubes, from
code covering, and bipartite graphs [RdAR+01].

instance size optimum time
|V | |E| |R|

antiwheel5 10 15 5 7 0.1
design432 8 20 4 9 0.1
oddcycle3 6 9 3 4 0.1
oddwheel3 7 9 4 5 0.1
se03 13 21 4 12 0.1
w13c29 783 2262 406 [500—508]
w23c23 1081 3174 552 [684—694]
w3c571 3997 10278 2284 2854 15910.5

Table A.14: Results on the SP-instances. Type: Constructed difficult instances, combination of odd
wheels and odd circles, difficult for linear programming approaches.

instance size optimum time
|V | |E| |R|

lin31 19100 35653 40 31696 1002
lin32 19112 35665 53 39832 3559
lin33 19177 35730 117 56061 1416
lin34 38282 71521 34 45018 9144
lin35 38294 71533 45 50559 8194
lin36 38307 71546 58 55608 763693
lin37 38418 71657 172 99560 297795
wrp3-55 1645 3186 55 5500888 15569
wrp3-83 3168 6220 83 8300906 115224

Table A.15: Instances solved using stronger extended reductions.

instance size optimum time
|V | |E| |R|

i320-312 320 1845 80 18122 33542
i320-314 320 1845 80 18088 45856
i320-315 320 1845 80 17987 24918
i640-211 640 4135 50 11984 67237
i640-341 640 40896 160 32042 402451
i640-342 640 40896 160 31978 18682
i640-343 640 40896 160 32015 99206
i640-344 640 40896 160 31991 77280
i640-345 640 40896 160 31994 68199
cc5-3p 243 1215 27 7299 41856
cc5-3u 243 1215 27 71 220668
hc8p 256 1024 128 15322 400071
hc8u 256 1024 128 148 511646

Table A.16: Instances solved by longer runs.
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[GK98] N. Garg and J. K önemann. Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. In Proc. of the 39th Annual IEEE Computer Society
Conference on Foundations of Computer Science, 1998.

[GK02] N. Garg and R. Khandekar. Fast approximation algorithms for fractional Steiner forest
and related problems. In Proceedings of 43rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 500–, 2002.

[GM93] M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations. Networks,
23:19–28, 1993.

[Goe98] M. X. Goemans. Personal communication, 1998.

[GW95] M. X. Goemans and D. P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

[GW96] M. X. Goemans and D. P. Williamson. The primal-dual method for approximation al-
gorithms and its application to network design problem. In D. S. Hochbaum, editor,
Approximation Algorithms for NP-hard Problems. PWS, 1996.

[Hak71] S. L. Hakimi. Steiner’s problem in graphs and its implications. Networks, 1:113–133,
1971.

[Han66] M. Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal on Applied
Mathematics, 14:255–265, 1966.
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