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Abstract

This thesis discusses several aspects of the simulation of stochastic partial differential equa-
tions. First, two fast algorithms for the approximation of infinite dimensional Gaussian random
fields with given covariance are introduced. Later Hilbert space-valued Wiener processes are
constructed out of these random fields. A short introduction to infinite-dimensional stochas-
tic analysis and stochastic differential equations is given. Furthermore different definitions of
numerical stability for the discretization of stochastic partial differential equations are pre-
sented and the numerical stability of the heat equation with additive and multiplicative noise
is explicitely computed using semigroup theory. Finally stochastic active contours are used
for segmentation. This thesis generalizes work done by Juan et al. and does the simulation
of different stochastic partial differential equations. The results are compared to equations
without stochastics.

Zusammenfassung

In dieser Dissertation werden verschiedene Aspekte der Numerik von stochastischen partiellen
Differentialgleichungen betrachtet. Dabei fasst man stochastische partielle Differentialgleichun-
gen als hilbertraumwertige stochastische Differentialgleichungen im Sinne von Da Prato und
Zabczyk auf. Das erste Kapitel beschäftigt sich zunächst mit der Approximation von hilber-
traumwertigen Wiener-Prozessen. Es werden zwei Algorithmen entwickelt, die mittels FFT
effizient und schnell Gaußsche Zufallsfelder mit vorgegebener Kovarianz erzeugen. Simulatio-
nen zeigen, dass die erzeugten Felder die gewünschten Eigenschaften haben. Außerdem werden
zur Verdeutlichung Bilder der Kovarianzen und der erzeugten Zufallsfelder gezeigt. Im zwei-
ten Kapitel werden anfangs die Theorie von hilbertraumwertigen stochastischen Prozessen und
Integralen, sowie Differentialgleichungen mit additivem und multiplikativem Rauschen behan-
delt. Weiter wird beschrieben, wie man diese Gleichungen diskretisiert, und insbesondere, wie
aus den im ersten Kapitel erzeugten Zufallsfeldern Wiener-Prozesse generiert werden können.
Schließlich wird numerische Stabilität von Diskretisierungen von stochastischen partiellen Dif-
ferentialgleichungen thematisiert. In der Literatur findet man bisher nur Untersuchungen bzgl.
der Konvergenz von Diskretisierungen, die nicht alle äquivalent sind. Diese werden mit den
damit erzielten Ergebnissen zusammengefasst, bevor eine Definition von numerischer Stabi-
lität für stochastische Differentialgleichungen von Kloeden und Platen und eine andere aus
dem Bereich der deterministischen partiellen Differentialgleichungen von Sewell für stochasti-
sche partielle Differentialgleichungen verallgemeinert werden. Die eine Definition erweist sich
in späteren Rechnungen als ungeeignet, da bei Simulationen von errechnet stabilen Schemata
Effekte auftreten, die man verhindern möchte. Die beiden Definitionen werden anhand un-
terschiedlicher Gleichungen überprüft, insbesondere wird eine mit einem expliziten Verfahren
diskretisierte Wärmeleitungsgleichung mit additivem und multiplikativem Rauschen auf nume-
rische Stabilität untersucht. Die numerischer Stabilität nach Sewell wird für diese Gleichungen
mit Restriktionen an die Gitterfeinheit und die Kovarianz im Ort des Rauschens mit Hilfe von
Halbgruppentheorie bewiesen. Im Anhang findet sich zudem eine Möglichkeit, die Gleichung
mit additivem Rauschen mit Fouriermethoden und mit Hilfe von Fundamentallösungen auf nu-
merische Stabilität zu untersuchen. Das dritte Kapitel widmet sich der Anwendung im Bereich
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der Bildverarbeitung. Die Segmentierung von Bildern in zwei Teilbereiche wird durch implizit
dargestellte Kurven berechnet. Dabei liegt dem Ganzen ein zu minimierendes Energiefunktional
zugrunde, welches mit Hilfe von Variationsrechnung in eine Euler-Lagrange-Gleichung umge-
wandelt wird und durch Einführen einer künstlichen Zeit eine partielle Differentialgleichung
ergibt. Beim Simulieren dieser Differentialgleichung tritt häufig das Problem auf, dass die Kur-
ve in lokalen Minima stecken bleibt. Juan et al. haben vorgeschlagen, dies durch das Einführen
von zusätzlichem endlichdimensionalem Rauschen zu überwinden. In dieser Arbeit wird der
Vorschlag zu hilbertraumwertigem Rauschen verallgemeinert, welches auf die Theorie in den
ersten beiden Kapiteln zurückzuführen ist. Welche Auswirkungen verschiedenes Rauschen auf
Differentialgleichungen hat, wird mit Hilfe einer Wärmeleitungsgleichung mit gradientenge-
koppeltem Rauschen verdeutlicht. Die Arbeit schließt mit Segmentierungsergebnissen, die vor
allem auch die Unterschiede von verschiedenem Rauschen verdeutlichen sollen.
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Introduction

The simulation of stochastic partial differential equations (SPDEs) is a relatively new field
which is used in different applications, e.g. in image processing and in finance. In this thesis
we will focus on image processing, especially on active contours and segmentation. There are
different approaches to the problem of segmentation which is still not solved satisfactorily in
all cases. One idea is to use a closed curve and define inside and outside of the curve. An
image energy depending on the curve is calculated. The goal is to place the curve on the image
such that the energy is minimized. By calculus of variation the minimization problem can
be transformed to an Euler–Lagrange equation which results in a partial differential equation
(PDE) by parameterizing the descent direction with an artificial time. Thereby the problem
of segmentation is transformed to a PDE that has to be solved. This PDE describes the
evolution of the curve but this evolution might get stuck in a “false” local minimum. To
overcome this problem, Juan, Keriven, and Postelnicu suggested in “Stochastic Motion and
the Level Set Method in Computer Vision: Stochastic Active Contours” [47] to add noise to
the PDEs resulting from variational problems and deterministic approaches made so far. The
authors base their theory on recent work by Lions and Souganidis concerning viscosity solutions
of SPDEs with finite-dimensional stochastic Stratonovich integrals [57, 58, 60, 61]. Juan et al.
simulate the following SPDE

du(t, x) = F (D2u(t, x), Du(t, x), x, t) dt+ |Du(t, x)|
m∑

i=1

φi(x) ◦ dWi(t),

where W (t) = (W1(t), . . . ,Wm(t)) is an m-dimensional Brownian motion, F is the diffusion
coefficient, and the elements φi : RN → R are smooth functions with compact support. The
authors choose an equally distributed grid {xi, i = 1, . . . , n} on the region of simulation. They
set

φi(x) = φ(x− xi),

where φ is some convenient regular function, and for all i, j it holds that φi(xj) = δij . In
this thesis this approach is generalized to infinite-dimensional Brownian motions, also called
Q-Wiener processes, where Q is the operator describing the space correlation. The theory is
based on the work of Da Prato and Zabczyk [16] on infinite-dimensional stochastic equations.
In order to do fast simulations of these SPDEs which can be understood as Hilbert space-valued
stochastic differential equations, the question of how to model infinite-dimensional noise arises.
It turns out that this process can only be approximated by a finite-dimensional random field
because a computer is only able to do simulations on a finite number of points. In our case these
points are arranged on a grid because the theory is supposed to be applied to images which
consist of a finite grid of pixels. Therefore the infinite-dimensional processes are approximated
by Gaussian random fields on a grid and its dimension is the number of grid points while Juan
et al. take a smaller subgrid for the noise model which implies a smaller noise dimension. The
fast algorithms that are developed in this thesis will generate Gaussian random fields with
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Introduction

mean zero and given covariance which is one of the input parameters of the algorithms. These
random fields ensure that segmentation does not take too much longer than simulating the
corresponding deterministic equations.

Once the implementation of the Gaussian random fields and of different SPDEs — especially
those usable for segmentation — is done, it turns out that the discretized time step size Mt
has to be pretty small in comparison to the space grid size Mx. Otherwise the simulations
will be numerically instable, i.e. approximation errors will dominate the calculations and the
simulation results are useless. There are different ways to overcome this problem. One way to
ensure stability is to implement a CFL condition [72, 84] in the following way: The condition
requires that the curve, also called front, should not move more than one grid point per
simulation step. Therefore using an explicit scheme, the time step size is chosen such that the
increment of the current simulation step is not larger than one. Similarly this can be done
for SPDEs but one has to keep in mind that the stochastic increment is scaled with

√
Mt and

not like the deterministic part with Mt. This approach of forcing the simulation scheme to be
numerically stable will always work but the question arises of how to prove numerical stability
mathematically. There exist different definitions of numerical stability that all try to describe
the phenomenon that approximation errors spread and finally dominate the simulation. A
summary of the work done so far for SPDEs is given in this thesis. So far there does not exist
a method to check numerical stability for nonlinear SPDEs especially if the noise is coupled to
the size of the gradient of the function. To give an idea of how calculations can look like, these
are explicitely done for the case of the heat equation perturbed with additive and multiplicative
noise. It will be proved that two different definitions of numerical stability lead to different
results. So finally we will see that one of the definitions seems to be useless in the context of
SPDEs. It should be possible to get a result that yields for a given linear SPDE bounds on
the discretization step sizes in space and time, and accuracy conditions on the approximation
of the operators such that the resulting approximation scheme is numerically stable.

This thesis is structured in the following way and covers the topics presented next. Chapter 1
introduces Gaussian random fields. We give heuristics that use Dirac distributions and give an
idea of how to derive efficient methods for generating special random fields. Therefore let C be
a positive continuous semi-definite function on Rd. According to Bochner’s theorem C can be
written as the Fourier transform of a positive measure µC on Rd. For the practical purposes
addressed in this thesis, there is no loss of generality if we assume that µC has a Lebesgue
density denoted by γ such that C can be written as

C(x) =
∫

Rd

e−2πi(p,x)γ(p) dp,

where γ is an even, positive function and (·, ·) denotes the inner product on Rd. Then a
Gaussian random field ϕ with covariance C can be written as

ϕ(x) = (F−1γ1/2FW )(x),

where W is white noise and F denotes the Fourier transform. The expression FW can be
rewritten without Fourier transform such that one Fourier transform can be omitted for the
calculation of ϕ, i.e.

ϕ(x) = (F−1γ1/2(π+W + iπ−W ))(x),
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where π+ and π− denote the projection onto the even and odd part of W . These two formulae
lead to two algorithms for fast random field generation via FFT with independent normal
distributed random numbers on input. Using a mathematically correct approach to generalized
random fields and white noise, the same algorithms are achieved. In that case a generalized
random field ϕ is defined as a real- or complex-valued mapping from the Schwartz space on
Rd to the real- or complex-valued random variables, respectively. A generalized random field
W on Rd is then called white noise, if its characteristic function is given by

ΞWN(f) = e
− 1

2
(f,f)

L2(Rd) .

Moreover operations on generalized random fields are introduced and used for the construction
of stationary centered Gaussian random fields ϕ defined by their covariance

Cov (ϕ(f), ϕ(g)) = (f, Cg)L2(Rd) ,

where C is assumed to be given by an integral kernel K which is supposed to have a density γ.
Then

ψ(f) = (F−1γ1/2FW )(f)

has the same properties as ϕ. Another realization of ϕ is given by

χ(f) = (F−1γ1/2(π+W + iπ−W ))(f),

where similarly to π+ and π−, π+ and π− denote the projection onto the even and the odd part
but this time in the language of generalized random fields. Next two efficient algorithms are
formulated explicitly. Afterwards a class of covariance functions is presented that is symmetric
under rotation and that has exponential decay, which might be desirable in order to have only
local perturbations. At the end of the chapter the implementations of the algorithms are tested
and the resulting random fields are visualized.

In Chapter 2 SPDEs are introduced as Hilbert space-valued SDEs and their simulations
including numerical stability are discussed. A short summary about the theory of Hilbert space-
valued stochastic processes and integrals is done in the sense of Da Prato and Zabczyk [16].
Furthermore existence and uniqueness results are given for linear differential equations with
additive noise of the form

{
dX(t) = [AX(t) + f(t)] dt+B dW (t),
X(0) = ξ,

where A : D(A) ⊂ H → H and B : U → H are linear operators, f is an H-valued stochastic
process. We assume that the deterministic Cauchy problem

{
u′(t) = Au(t),
u(0) = x ∈ H

is uniformly well posed and that B is bounded, i.e. A generates a strongly continuous semigroup
S(·) in H and B ∈ L(U,H). Moreover we require that f is a predictable process with Bochner
integrable trajectories on an arbitrary finite interval [0, T ] and that ξ is F0-measurable. Then
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Introduction

the equation has exactly one weak solution and under further assumptions also a strong solution
exists. A lemma states under which conditions Ak can be applied to the solution of the SPDE.
Next a similar differential equation with multiplicative noise is examined. Let

{
dX(t) = [AX(t) + f(t)] dt+B(X(t)) dW (t),
X(0) = ξ,

be given on a finite time interval [0, T ], where again A : D(A) ⊂ H → H is the infinitesimal
generator of a strongly continuous semigroup S(·), ξ is an H-valued F0-measurable random
variable, f is a predictable process with locally integrable trajectories and B : D(B)→ L0

2 is a
linear operator. For f ≡ 0 this SPDE has a unique strong solution that is also a weak solution
and the unique mild solution. This concludes the section about the theory of SPDEs and we
continue with numerical discretizations. For the deterministic part we give a short summary
on existing discretization methods and introduce the approximation of the Laplace operator
via finite differences. Furthermore it is discussed how to approximate a stochastic process with
the aid of the Gaussian random fields introduced in the first chapter. The main section of the
second chapter is about numerical stability of SPDEs. This section starts with a summary
of the literature that exists about convergence of approximations. Papers by Hausenblas [39],
Hofmann et al. [44], Tocino [90] on SDEs and by Gyöngy [35], Hausenblas and Marchis [40],
Lord and Rougemont [63], and Shardlow [87] on SPDEs are reviewed. Then a definition of
numerical stability for SDEs by Kloeden and Platen [52] is generalized to SPDEs and checked
on different SDEs as well as on the heat equation with additive and multiplicative noise. It
turns out that this definition does not seem to catch all effects that should be omitted because
the heat equation is always stochastically numerically stable, independent of the choice of Mx
and Mt, but the simulations show effects that one would call numerically instable. Finally
another definition of numerical stability for ODEs and PDEs by Sewell [85] is generalized to
SPDEs and checked on the same equations. For the heat equation with additive noise

du(t) =
1
2
∆u(t) dt+ σ(t) dW (t),

the discretization of the Laplacian with finite differences is numerically stable if Mt ≤ (Mx)2,
where the noise is approximated by the Gaussian random fields introduced in Chapter 1. For
the corresponding equation with multiplicative noise

du(t) =
1
2
∆u(t) dt+ u(t) dW (t)

stability is achieved if Mt < (Mx)2. Therefore the bound is in this case a bit more restrictive
than the one for the heat equation with additive noise and the one known from deterministic
stability analysis.

Finally Chapter 3 is about the application of the results of the previous chapters to segmen-
tation. First zero level sets are introduced and calculus of variations is described. Then two
different energy functionals and their corresponding Euler–Lagrange equations used in deter-
ministic active contours are derived. The first was introduced by Chan and Vese [10] and is
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based on work by Mumford and Shah [68]. Their energy functional is given by

J(c1, c2, φ) := µ

∫

Λ
δ(φ(x, y)) |∇φ(x, y)| dx dy

+ ν

∫

Λ
H(φ(x, y)) dx dy

+ λ1

∫

Λ
|u0(x, y)− c1|2H(φ(x, y)) dx dy

+ λ2

∫

Λ
|u0(x, y)− c2|2 (1−H(φ(x, y))) dx dy.

where Λ is the area, µ, ν, λ1, λ2 > 0 are weighting coefficients, H denotes the Heavyside func-
tion, c1 is the average gray value inside the curve, c2 is the average gray value outside the
curve, and u0(x, y) is the gray value of the pixel (x, y). The Euler–Lagrange equation is given
by

δε(φ) (µ κ(φ)− ν − λ1 |u0 − c1|2 + λ2 |u0 − c2|2) = 0,

where κ(φ) denotes the mean curvature of φ and δε is a regularized delta function. The
second approach by Rousson and Deriche [83] models each region by a Gaussian distribution
of unknown mean and variance. The energy to be minimized is given by

E(Γ, µ1, Q1, µ2, Q2) =
∫

in(Γ)
e1(x) dx+

∫

out(Γ)
e2(x) dx+ νL(Γ),

where Γ is the curve, integration is done inside and outside the curve, L(Γ) is the length of the
curve, and ei(x) = − log pµiQi(I(x)) with

pµiQi(I(x)) = ((2π)m det(Qi))−1/2e−
1
2
〈I(x)−µi,Q

−1
i (I(x)−µi)〉

being the m-dimensional Gaussian density for a given value I(x) with respect to the hypothesis
(µi, Qi). The parameters (µi, Qi), estimated from the pixel currently inside and outside Γ, are
functions of Γ. The corresponding Euler–Lagrange equation is given by

e2(x)− e1(x) + νκ(u) = 0.

Then randomness is added to the resulting PDEs. This was suggested by Juan et al. [47]
with finite-dimensional noise and will be modified to Hilbert space-valued SPDEs and infinite-
dimensional noise introduced in the second chapter of this thesis and approximated with Gaus-
sian random fields presented in Chapter 1. Equations of the form

du(t, x) = F (D2u,Du, x, t) dt+ |Du(t, x)| dW (t, x)

are simulated, where F is given by one of the two presented deterministic minimization prob-
lems. In order to get a feeling how different types of noise and covariances affect the simulations,
a stochastic heat equation and stochastic motion by mean curvature are implemented. Finally
different examples of image segmentation are given and the influence of the noise on the result
is tested.
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The Appendix A gives an introduction to strongly continuous semigroups. In Appendix B
a stability proof of the heat equation with additive noise in the sense of Sewell using Fourier
methods and fundamental solutions is given. It turns out that this approach is a lot more
laborious than using semigroups as done in the main part of this thesis. Appendix C summa-
rizes different representations of curvature, e.g. of a parameterized curve and of an embedded
curve, and their connections.

6



1. Gaussian Random Fields

This chapter gives an introduction to Gaussian random fields (GRFs) and leads finally to
fast algorithms for the generation of random field with given spacial correlation using white
noise and FFT. There are two major parts in this chapter. The first part introduces GRFs
in the language of applications with delta functions. In the second part another approach to
the same topic is given. Both approaches lead to the same algorithms presented afterwards.
Finally some possible and in the context of this thesis useful covariance functions are studied
and simulations as well as statistical tests on a two-dimensional square are done.

1.1. Introduction

Assume that ϕ is a real-valued stationary Gaussian random field (GRF) on Rd, i.e. let (Xi, i ∈
Rd) be a family of equally distributed random variables on a probability space (Ω,F , P ) that
satisfies for any subset

{
i1, . . . , in ∈ Rd

}
and αk ∈ R that the random variable

∑n
k=1 αkXik is

normal distributed. Then its only statistical parameters are its mean m = E(ϕ(x)) = E(ϕ(0)),
x ∈ Rd, and its covariance C(x) = E(ϕ(0)ϕ(x)) − m2 = E(ϕ(y)ϕ(x + y)) − m2, x, y ∈ Rd.
Without loss of generality we will assume that m = 0. For simulations on a computer we
will later assume GRFs on a finite grid, i.e. discrete random fields. Figure 1.1 shows two
two-dimensional examples of how discrete GRFs in applications may look like.

(a) picture with random pixels,

81 105 255 111 33 143 136 101
120 231 85 140 118 180 134 93
99 134 180 83 75 168 166 153
57 130 76 100 217 156 107 69
70 183 118 110 75 146 135 129
92 141 26 85 80 71 133 0
95 120 68 97 56 124 76 181
79 69 169 36 71 61 160 145

(b) random number array,

Figure 1.1.: Example of a discrete GRF.

1.2. Heuristics

Our goal is to construct GRFs with given Covariance C. For the one-dimensional case, the
construction ideas presented in this section are given in [81]. We first make some observations
and assumptions concerning C. We note that C is a positive semi-definite function and assume
that it is continuous. Then Bochner’s theorem [8] states that C is the Fourier transform of a
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1. Gaussian Random Fields

positive measure µC on Rd, i.e. C can be written as

C(x, y) =
∫
e−2πi(p,x−y) dµC(p), x ∈ Rd

where (·, ·) denotes the Euclidean inner product on Rd. We observe that C is even because
of the stationarity and therefore so is µC . For the practical purposes addressed in this thesis,
there is no loss of generality if we assume that µC has a Lebesgue density denoted by γ which
also has to be an even and positive function. Then C can be written in the following way:

C(x, y) =
∫

Rd

e−2πi(p,x−y)γ(p) dp, x ∈ Rd.

LetW be a Gaussian white noise random field on Rd, i.e. informally, W is a centered Gaussian
family

{
W (x), x ∈ Rd

}
with covariance E(W (x)W (y)) = δ(x− y), x, y ∈ Rd. Set

ϕ(x) = (F−1γ1/2FW )(x), x ∈ Rd, (1.1)

where F denotes the d-dimensional Fourier transform and F−1 denotes its inverse. Then, since
W is centered Gaussian, so is ϕ. Next we will calculate the covariance of ϕ.

E(ϕ(x)ϕ(y))

=
∫∫∫∫

e−2πi((p,x)+(q,y))γ(p)1/2γ(q)1/2e2πi((p,x′)+(q,y′))E(W (x′)W (y′)) dx′ dy′ dp dq

=
∫∫

e−2πi((p,x)+(q,y))γ(p)1/2γ(q)1/2

∫
e2πi(p+q,x′) dx′ dp dq

=
∫
e−2πi(p,x−y)γ(p) dp

= C(x, y).

Thus Equation (1.1) provides our first algorithm to generate samples of ϕ with given covariance
C. This algorithm is presented in Section 1.4.

Next we will work out a more efficient algorithm by replacing one Fourier transform with
a faster operation. The goal is to construct FW directly, i.e. a complex GRF with the same
properties as FW has to be constructed. We consider the complex-valued random field FW :

FW (p) =
∫

Rd

e2πi(p,x)W (x) dx

This is obviously centered Gaussian and the covariance is given by

E(FW (p)FW (q)) =
∫∫

e2πi((p,x)−(q,y))E(W (x)W (y)) dx dy

=
∫
e2πi(p−q,x) dx

= δ(p− q),
and similarly

E(FW (p)FW (q)) = δ(p+ q).

The following lemma gives a direct construction of FW .
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1.2. Heuristics

Lemma 1.1. Let V be a complex-valued random field defined by

ReV = π+W,

ImV = π−W,

where

π+W (p) = 1
2 (W (p) +W (−p)),

π−W (p) = 1
2 (W (p)−W (−p)).

Then V and FW have the same law.

The following argumentation explains the claim. As both random fields are centered Gaus-
sian, one only has to show that they have the same covariance. First we observe that π+W
and π−W are uncorrelated:

E(π+W (p)π−W (q))
= 1

4 E((W (p) +W (−p))(W (q)−W (−q)))
= 1

4 (E(W (p)W (q)) + E(W (−p)W (q))− E(W (p)W (−q))− E(W (−p)W (−q)))
= 1

4 (δ(p− q) + δ(p+ q)− δ(p+ q)− δ(p− q)) = 0.

Next we use this observation to see that

E(V (p)V (q)) = E(π+W (p)π+W (q))− E(π−W (p)π−W (q))
= 1

4(2δ(p− q) + 2δ(p+ q)− (2δ(p− q)− 2δ(p+ q)))
= δ(p+ q),

and similarly

E(V (p)V (q)) = δ(p− q).

.
Therefore we can write ϕ in the following way:

ϕ(x) = (F−1γ1/2(π+W + iπ−W ))(x). (1.2)

From the definition of V it follows that V (−x) = V (x). Since ReV (x) and ImV (x) are
uncorrelated and Gaussian which implies that they are independent, as shown before, we set

V (x) = Ux + iVx,

V (−x) = Ux − iVx,

where Ux and Vx are independent centered Gaussian random variables. We know that W (x)
is white noise for all x. To calculate the scaling factor of Ux and Vx, we have for x 6= 0

E(U2
x) = E((1

2(W (x) +W (−x)))2) = 1
4(E(W (x)2) + 2E(W (x)W (−x)) + E(W (−x)2)) = 1

2δ(0)
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1. Gaussian Random Fields

and for x = 0

E(U2
0 ) = δ(0).

Similarly we calculate

E(V 2
x ) =

1
2
δ(0), x 6= 0

E(V 2
0 ) = δ(0).

In the case of a d-dimensional cube with periodic boundary conditions, the corners also satisfy
W (x) = W (−x). Therefore similar to x = 0 for all corners c of the cube Uc and Vc have a
scaling factor of 1. The corresponding algorithm implementing Equation (1.2) in an efficient
way and using the observations made above can be found in Section 1.4.

1.3. Mathematical Approach

This section is devoted to give a mathematically rigorous approach to random fields and white
noise. It avoids the problems with delta functions and is based on distribution theory. For
further details, the reader is referred to [27], [42], [93], and [98].

1.3.1. Generalized Random Fields

Consider the real Hilbert space L2(Rd) with inner product (·, ·). Let α = (α1, . . . , αd) and
β = (β1, . . . , βd) denote multiindices in Nd

0, and set

Dβ = ∂ β1
1 · · · ∂ βd

d ,

where ∂ j , j = 1, 2, . . . , d is the partial derivative on Rd with respect to the j-th coordinate.
Similarly, if u = (u1, . . . , ud) ∈ Rd, then uα is the abbreviation for

uα := uα1
1 · · ·uαd

d .

Furthermore define the seminorm

‖ϕ ‖α,β := sup
u∈Rd

∣∣∣uαDβϕ(u)
∣∣∣ . (1.3)

Definition 1.2. The Schwartz space S(Rd) of smooth functions of rapid decrease is the set
of all (real- or complex-valued) functions in C∞(Rd), having finite seminorm (1.3) for every
α, β ∈ Nd

0. S(Rd) is topologized by the system of seminorms (1.3). The Schwartz space S ′(Rd)
of tempered distributions is the dual of S(Rd).

We remark that S(Rd) is a Fréchet space, i.e. a quasi-normed complete linear space. More-
over the chain rule and the triangle inequality imply that it is an algebra under pointwise
multiplication.
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The above defined topology on S(Rd) is known to be equivalent to the one described in the
following (see e.g. [78]). Let H be the Hamiltonian of the harmonic oscillator. The operator
H is the unique self-adjoint operator on L2(Rd), which on S(Rd) is given by

Hϕ(u) = (−∆ + (|u|2 + 1))ϕ(u), ϕ ∈ S(Rd),

where ∆ is the Laplacian on Rd. Define a system of seminorms {‖ · ‖2,p , p ∈ N0} on S(Rd)
by setting ‖ϕ ‖2,p = ‖Hpϕ ‖2, were the last norm is the one of L2(Rd). Then this system
is equivalent to the initial system of seminorms on S(Rd) and therefore it defines the same
topology on S(Rd).

Given p ∈ N0, we denote by Sp(Rd) the Hilbert space which is the completion of S(Rd) (more
precisely of the equivalence class of S(Rd) in L2(Rd)) under the norm ‖ · ‖2,p. Denote by Š(Rd)
the projective limit of the chain

L2(Rd) ⊃ S1(Rd) ⊃ · · · ⊃ Sp(Rd) ⊃ · · · ,

i.e. we put Š(Rd) = ∩pSp(Rd) as a set, and equip this space with the topology generated by
the neighborhoods of zero which are determined by the choice of p ∈ N0, ε > 0, and are given
by Up,ε = {ϕ̌ ∈ Š(Rd), ‖ ϕ̌ ‖2,p < ε}. (Note that the system of seminorms {‖ · ‖2,p , p ∈ N0} is
ordered.)

Then Š(Rd) and S(Rd) are in one-to-one correspondence: every equivalence class ϕ̌ ∈ Š(Rd)
contains exactly one representative ϕ ∈ S(Rd), and to each ϕ ∈ S(Rd) corresponds exactly one
class in Š(Rd). Moreover, since on S(Rd) the topologies defined by both systems of seminorms
above are equivalent, we see that this correspondence is a topological isomorphism. Unless
there is danger of confusion, we shall identify these two spaces.

It is well-known that the spectrum of H is given by the set

{2(n1 + · · ·+ nd) + d+ 1, n1, . . . , nd ∈ N},

e.g. [78] or any introductory book on quantum mechanics. Thus H−(d+1) is a trace class
operator on L2(Rd), and it follows that S(Rd) is a nuclear countably Hilbert space.

Furthermore we may identify L2(Rd) with its dual by Riesz’ representation theorem [98,
Thm. III.6], and this entails that we can consider L2(Rd) as a subspace of regular elements in
S ′(Rd), the dual of L2(Rd). Thus we have

S(Rd) ⊂ L2(Rd) ⊂ S ′(Rd).

We shall equip S ′(Rd) with its weak topology. The dual pairing between S ′(Rd) and S(Rd)
will be denoted by 〈·, ·〉. For f ∈ L2(Rd), g ∈ S(Rd), we have

〈f, g〉 = (f, g) .

Consider now the complexifications of L2(Rd) and S(Rd)

L2
C(Rd) = L2(Rd)× L2(Rd),

SC(Rd) = S(Rd)× S(Rd),

11



1. Gaussian Random Fields

equipped with the product topology and a pointwise multiplication of functions which follows
the pattern of multiplication of complex numbers. If f ∈ SC(Rd), we write f1 = Re f , f2 =
Im f , and f = Re f + i Im f , and similarly for f ∈ L2

C(Rd). The inner product on L2
C(Rd) is

defined such that it is conjugate linear in the first and linear in the second argument, that is
for f, g ∈ L2

C(Rd):

(f, g) = (Re f,Re g) + i (Re f, Im g)− i (Im f,Re g) + (Im f, Im g) , (1.4)

where the inner products on the right-hand side are those of L2(Rd). S ′C(Rd) inherits a com-
plex structure in a natural way, compatible with L2

C(Rd) as a subspace of complex, regular
distributions and (1.4) as follows. By construction, the projection

SC(Rd)→ S(Rd)
f 7→ Re f

is R-linear and continuous, hence

T : S(Rd)→ C
f 7→ 〈T, f〉

is well-defined, R-linear and continuous. Therefore Re 〈T, ·〉 and Im 〈T, ·〉 define two elements
in S ′(Rd), and we set

〈ReT, f〉 := Re 〈T, f〉, f ∈ S(Rd),

and
〈ImT, f〉 := −Im 〈T, f〉, f ∈ S(Rd). (1.5)

Then for f ∈ SC(Rd),

〈T, f〉 = 〈ReT,Re f〉+ i〈ReT, Im f〉 − i〈ImT,Re f〉+ 〈ImT, Im f〉,

i.e. the dual pairing 〈·, ·〉 between S ′C(Rd) and SC(Rd) is conjugate linear in its first and linear
in its second argument.

Let (Ω,F , P ) be a probability space, and denote by L0(P ) the space of real- or complex-
valued random variables. If it is necessary to distinguish these cases, we shall write L0

R(P ) and
L0
C(P ).

Definition 1.3. A generalized random field on Rd is a K-linear mapping

ϕ : SK(Rd)→ L0
K(P ),

where K stands either for R or for C.

In the following we consider onlyK = R. A concrete realization of certain generalized random
fields can be constructed as follows.

Let σw denote the σ-algebra on S ′(Rd) generated by the weak topology. The following
theorem is a generalization of Bochner’s theorem [8] and states that characteristic functions
can be rewritten as Fourier transforms. This will be important in the algorithms for efficient
random field generation with given covariance.
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1.3. Mathematical Approach

Theorem 1.4 (Minlos’ theorem [27, 42]). Let Ξ be a characteristic function on S(Rd), i.e.

1. Ξ is continuous in S(Rd),

2. Ξ is positive definite,

3. Ξ(0) = 1.

Then there exists a unique probability measure µ on (S ′(Rd), σw), such that for all f ∈ S(Rd)
∫

S′(Rd)
ei〈ω,f〉 dµ(ω) = Ξ(f), (1.6)

i.e. Ξ(f) is the Fourier transform of a countably additive positive normalized measure.

Using this theorem, we set

ϕ : S(Rd)→ L0(S ′(Rd), σw, µ)
f 7→ ϕ(f)(ω) := 〈ω, f〉 (1.7)

and obtain a generalized random field ϕ with characteristic function Ξ:

E
(
eiλϕ(f)

)
=

∫

S′(Rd)
eiλϕ(f)(ω) dµ(ω) =

∫

S′(Rd)
ei〈ω,λf〉 dµ(ω) = Ξ(λf), λ ∈ R.

Corollary 1.5. Let Q be a non-degenerate continuous symmetric bilinear form on S(Rd), and
consider

Ξ(f) := e−
1
2
Q(f,f), f ∈ S(Rd). (1.8)

Then Ξ is a characteristic function on S(Rd).

Proof. First, we observe that
Ξ(0) = e−

1
2
Q(0,0) = e0 = 1.

It also holds that Ξ is continuous because of the continuity of the exponential function and Q.
Finally it has to be shown that Ξ is positive definite. Therefore choose for n ∈ N f1, . . . , fn ∈
S(Rd). Without loss of generality we may assume that the elements f1, . . . , fn are linearly
independent. Define an n× n matrix K by

Klm = Q(fl, fm).

K is symmetric and positive definite because of the properties of Q. Assume that there is
a non-trivial eigenvector e = (e1, . . . , en) with eigenvalue zero. Then for all l ∈ {1, . . . , n} it
holds

0 = Ke =
n∑

m=1

Klmem =
n∑

m=1

Q(fl, fm)em = Q(fl,

n∑

m=1

fmem) =: Q(fl, g)

where g =
∑n

m=1 fmem. Therefore

Q(g, g) =
n∑

l=1

Q(fl, g)el = 0
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and by the properties of Q and e this gives g = 0. This implies that f1, . . . , fn must be linearly
dependent and leads to a contradiction. Therefore all eigenvalues are strictly greater than zero
and K is invertible. Consider now the symmetric, strictly positive definite n× n matrix K−1,
and let µn denote the measure on Rn with density

((2π)n det(K))−1/2 exp(−1
2(x,K−1x)), x ∈ Rn.

Then µn is a Gaussian probability measure on Rn with
∫

Rn

ei(λ,x) dµn(x) = E(ei(λ,X)) = e−
1
2
(λ,Kλ), λ ∈ Rn,

and for l,m ∈ {1, . . . , n}
∫

Rn

ei(el−em,x) dµn(x) = e−
1
2
(el−em,K(el−em)) = e−

1
2
(Kll−2Klm+Kmm)

= e−
1
2
(Q(fl,fl)−Q(fl,fm)−(Q(fm,fl)−Q(fm,fm)))

= e−
1
2
Q(fl−fm,fl−fm).

Finally let z1, . . . , zn ∈ C, then

n∑

l,m=1

zlz̄me
− 1

2
Q(fl−fm,fl−fm) =

n∑

l,m=1

zlz̄m

∫

Rn

ei(el−em,x) dµn(x)

=
∫

Rn

n∑

l,m=1

zle
i〈el,x〉zmei〈em,x〉 dµn(x)

=
∫

Rn

∣∣∣
n∑

l=1

zle
i〈el,x〉

∣∣∣
2
dµn(x) ≥ 0,

and exp(−1/2K) is positive semi-definite. Therefore Ξ is positive definite and the assertion is
true.

If the random field ϕ is constructed by (1.6), (1.7), and (1.8), then it is centered Gaussian
with covariance given by

Cov (ϕ(f), ϕ(g)) = E(ϕ(f)ϕ(g)) = Q(f, g).

By the nuclear theorem [78, Thm. V.12], Q can be represented by Q̂ ∈ S ′(Rd × Rd) as

Q(f, g) = 〈Q̂, f × g〉

and vice versa. Let Q̂ = tr ∈ S ′(Rd × Rd) be the trace operator, then

〈tr, f × g〉 =
∫

Rd

f(x)g(x) dx = (f, g)L2(Rd) .

Informally, tr is given by the integral kernel δ(x−y). Thus we are now able to define a rigorous
version of white noise on Rd.
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Definition 1.6. A generalized random field W on Rd is called white noise, if its characteristic
function is given by

ΞWN(f) = e
− 1

2
(f,f)

L2(Rd) .

Next we construct a complex-valued generalized random field ψ using real-valued generalized
random fields ϕ1 and ϕ2, (1.5), and (1.7). Therefore for f ∈ SC(Rd), we set

ψ(f) = ϕ1(Re f) + i ϕ1(Im f)− i ϕ2(Re f) + ϕ2(Im f). (1.9)

Then ψ 7→ ψ(f) is conjugate linear: Let λ = λ1 + iλ2 ∈ C, ψ and ψ̂ as defined before,

(λψ + ψ̂)(f) = ((λ1 + iλ2)(ϕ1 + iϕ2))(f) + ψ̂(f)

= λ1(ψ(f)) + λ2(−ϕ2 + iϕ1)(f) + ψ̂(f)

= λ1(ψ(f)) + λ2(−ϕ2(Re f)− iϕ2(Im f)− iϕ1(Re f) + ϕ1(Im f)) + ψ̂(f)

= λ1(ψ(f))− iλ2(ϕ1(Re f) + iϕ1(Im f)− iϕ2(Re f) + ϕ2(Im f)) + ψ̂(f)

= λ̄(ψ(f)) + ψ̂(f).

It is easy to show that f 7→ ψ(f) is linear. Note that if ϕ1, ϕ2 are independent, then Reψ(f)
and Imψ(f) will not necessarily be independent. If however ϕ1 and ϕ2 are in addition Gaussian,
and f is real, or f is purely imaginary, or ϕ1 and ϕ2 have the same law, then Reψ(f) and
Imψ(f) are independent.

In what follows, we will show that the domain of W can be extended to elements of L2(Rd).
Therefore consider real-valued white noise on Rd, i.e. we are given a linear mapping

W : S(Rd)→ L0(Ω,F , P ),

where (Ω,F , P ) is some probability space, so that the family
{
W (f), f ∈ S(Rd)

}
is a centered

Gaussian family with

Cov (W (f),W (g)) = E(W (f)W (g)) = (f, g)L2(Rd) .

A possible construction of these random fields was shown before.

Lemma 1.7. Let f ∈ L2(Rd) and assume that (fn, n ∈ N) is a sequence in S(Rd) converging
in L2(Rd) to f . Let p ≥ 1, then (W (fn), n ∈ N) converges in Lp(P ) to some random variable
Wp(f). Furthermore for p, q ≥ 1: P (Wp(f) = Wq(f)) = 1, i.e. W (fn) → W (f) in all
Lp(P ), p ≥ 1.

Finally for f, g ∈ L2(Rd)
‖W (f)−W (g)‖22 = ‖f − g‖22

and therefore W extends to an isometric embedding of L2(Rd) into L2(P ).

Proof. First of all W (fn) ∈ Lp(P ) for all n ∈ N because the law of W (fn) has Gaussian density
with mean zero and variance ‖fn‖22, and therefore the inequality of arithmetic and geometric
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means holds. Hölder’s inequality allows to assume that p = 2m, m ∈ N. As W is linear, we
have for n, l ∈ N

‖W (fn)−W (fl) ‖2m
2m = ‖W (fn − fl) ‖2m

2m

=
(√

2π ‖fn − fl‖22
)−1

∫

Ω
z2m exp

(− z2

2‖fn−fl‖22
)
dz

= (2m− 1)!! ‖fn − fl‖m2
which tends to zero with n, l → +∞ by the assumption that (fn, n ∈ N) converges in L2(Rd).
This implies that (W (fn), n ∈ N) is Cauchy in Lp(P ). Because of the completeness of Lp(P ),
(W (fn), n ∈ N) converges in every Lp(P ) to some random variable Wp(f). Let p, q ≥ 1, q > p,
then Lq(P ) ⊆ Lp(P ) and P (Wp(f) = Wq(f)) = 1.

Finally the calculation above gives for f, g ∈ L2(Rd)

‖W (f)−W (g)‖22 = ‖f − g‖22 ,

and therefore the map W extends to an isometric embedding of L2(Rd) into L2(P ).

In the following we assume that f is continuous and that its support is in the d-dimensional
cube C = ([a1, b1], . . . , [ad, bd]), ai, bi ∈ R. Let (Zn, n ∈ N) be a sequence of partitions of C,
such that the maximum over the mesh sizes Mi

n, i = 1, . . . , d in all directions converges to zero
with n→ +∞, and that the grid points are given by xn

k with xn
0 = (a1, . . . , ad), xn

N(n)+(1,...,1) =
(b1, . . . , bd), and N(n) = (N1(n), . . . , Nd(n)), k = (k1, . . . , kd), ki ∈ {0, . . . , Ni(n)}. Define

fn :=
N(n)∑

k=0

f(xn
k)1Mn

k
,

where the small cube Mn
k= ([xk1 , xk1+1), . . . , [xkd

, xkd+1)), except if there exists i ∈ {1, . . . , d}
such that ki = Ni(n), then Mn

k= ([xk1 , xk1+1), . . . , [xNi(n), bi], . . . , [xkd
, xkd+1)).

Corollary 1.8. With the definitions made above, it holds that

fn −→
n→∞ f in L2(Rd)

and
W (fn) −→

n→∞W (f) in L2(P )

with

W (fn) =
N(n)∑

k=0

f(xn
k)Wn

k |Mn
k | , Wn

k := |Mn
k |−1W (1Mn

k
),

where |Mn
k | denotes the volume of the cube Mn

k .

Proof. Since fn and f are zero outside of C, we can restrict the proof to C. Let ε > 0 be
given, then there exists δ > 0 such that for all x, y ∈ C, |x− y| < δ, |f(x)− f(y)| < ε because
f is uniformly continuous on C. For n0 large enough so that maxi=1,...,d Mi

n0
< δ, we have for
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all n ≥ n0, supx∈C |fn(x)− f(x)| < ε. But then ‖fn − f‖2 < ε · V (C)1/2 where V (C) denotes
the volume of the cube.

The convergence of (W (fn), n ∈ N) follows applying Lemma 1.7 and

W (fn) =
N(n)∑

k=0

f(xn
k)W (1Mn

k
) =

N(n)∑

k=0

f(xn
k)(|Mn

k |−1W (1Mn
k
)) |Mn

k |

implies the last open claim of the corollary.

Next we will give some details on Wn
k . First we observe that the family of random variables

(Wn
k , k = 0, . . . , N(n)) forms a centered Gaussian family with

E(Wn
k W

n
l ) = (|Mn

k | |Mn
l |)−1

(
1Mn

k
, 1Mn

l

)
L2(Rd)

= |Mn
k |−1 δkl,

i.e. the family is independent. A special case consists of a sequence of partitions (Zn, n ∈ N)
with equidistant mesh sizes defined by

∏d
i=1(Ni(n) + 1) points and the elements Ni(n) are

fixed by Mi
n= (b1 − a1)/(N1(n) + 1) for all k ∈ {1, . . . , d}. Then |Mn

k | =
∏d

i=1 Mi
n= ((b1 −

a1)/(N1(n) + 1))d. In this case, the family Wn = (Wn
k , k = 0, . . . , N(n)) is i.i.d. and centered

Gaussian with variance ((N1(n) + 1)/(b1 − a1))d.

Definition 1.9. The i.i.d., centered Gaussian family Wn as defined above associated with the
equidistant partition Zn is called discrete white noise on a cube C ⊂ Rd.

1.3.2. Operations on Generalized Random Fields

Let ϕ be a generalized random field. In analogy of the realization of white noise W as the
canonical coordinate map on S ′(Rd) under the white noise measure, where

W (f)(ω) = 〈ω, f〉,

we define operations on ϕ via dual pairing.

Definition 1.10.

1. The complex conjugation C is defined by

(Cϕ)(f) := C(ϕ(Cf)).

2. The reflection operator ρ, which is defined on S(Rd) resp. SC(Rd) as (ρf)(x) = f(−x),
is defined on ϕ as

(ρϕ)(f) := ϕ(ρf).

3. The Fourier transform F and its inverse F−1 are defined on ϕ via

(Fϕ)(f) := ϕ(F−1f),

(F−1ϕ)(f) := ϕ(Ff).

17



1. Gaussian Random Fields

4. If g ∈ C∞(Rd) with at most polynomial growth, then

(gϕ)(f) := ϕ(ḡf).

Remark 1.11. The Fourier transform and its inverse on SC(Rd) are defined by

Ff(p) =
∫

Rd

e2πi(p,x)f(x) dx, f ∈ SC(Rd), p ∈ Rd,

F−1g(x) =
∫

Rd

e−2πi(p,x)g(p) dp, g ∈ SC(Rd), x ∈ Rd.

Moreover we have
Cρ = ρ C, Fρ = ρF

on SC(Rd). We remark that the real and imaginary part of elements of SC(Rd) are given by

Re = 1
2 (1l + C), Im = 1

2i (1l− C).

1.3.3. Construction of Stationary Gaussian Random Fields

Let ϕ be a stationary, real-valued, centered Gaussian random field with covariance

Cov (ϕ(f), ϕ(g)) = (f, Cg)L2(Rd) , f, g ∈ S(Rd)

with C : S(Rd)→ L2(Rd). Assume that C is given by an integral kernel, which by stationarity
can be written as

Cf(x) =
∫

Rd

K(x− y)f(y) dy,

where K is even because of the symmetry of C, and positive definite. Hence if K is continuous,
K can be written as

K(x) =
∫
e−2πi(x,p) dΓ(p)

for some positive measure Γ by Bochner’s theorem [98, Thm. XI.2]. Henceforth we consider
only the case where Γ has density γ which is supposed to be strictly positive and C∞. Then γ1/2

is a strictly positive smooth root of γ. Assume that W is white noise as defined in Section 1.3.1
and set

ψ(f) := (F−1γ1/2FW )(f), f ∈ S(Rd). (1.10)

Corollary 1.12. ψ is centered Gaussian and

ψ(f) = W (F−1γ1/2Ff), f ∈ S(Rd).

Proof. We calculate for f ∈ S(Rd)

ψ(f) = (F−1γ1/2FW )(f)

= W (F−1γ̄1/2Ff)

by Definition 1.10. The assertion follows by the observation that γ1/2 is real.
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1.3. Mathematical Approach

Next we set

π+ = 1
2 (1l + ρ),

π− = 1
2 (1l− ρ).

In order to prove that ψ is a realization of ϕ, we need the following corollary. For further
information on Fourier transforms, we refer to [79].

Corollary 1.13. The Fourier transform has the following properties:

1. CF = FCρ,
2. ImF = F 1

2i (1l− Cρ) and ReF = F 1
2 (1l + Cρ),

3. π+Im = Imπ+,

4. π±F = Fπ±,

5. π+ImF = Fπ+Im ,

6. π−ReF = iFπ−Im and π−ImF = −iFπ−Re ,

7. for f ∈ SR(Rd) it holds π−ReFf = 0 and π+ImFf = 0.

Proof.

1. For f ∈ SC(Rd) we have

CFf(p) =
∫

Rd

e−2πi(p,x)(Cf(p)) dp =
∫

Rd

e2πi(p,x)(Cρf(p)) dp = FCρf(p).

2. Using the previous statement and the definition of the imaginary part (see Remark 1.11),
we have

ImF =
1
2i

(1l− C)F = 1
2i (F − FCρ) = F 1

2i (1l− Cρ),
and

ReF = 1
2 (1l + C)F = 1

2 (F + FCρ) = F 1
2 (1l + Cρ).

3. Remark 1.11 implies

π+Im = (1l + ρ) 1
2i (1l− C) = 1

2i (1l + ρ− C − Cρ) = 1
2i (1l− C)(1l + ρ) = Imπ+.

4. The commutativity of the Fourier transform and ρ leads to

π±F = (1l±ρ)F = F±Fρ = Fπ±.

5. The following calculations use the second, third, and forth statement of this corollary,
ρ2 = 1l, and the commutativity of C and ρ.

π+ImF = ImFπ+ = F 1
2i (1l− Cρ)(1l + ρ) = F 1

2i (π+ − (ρ+ 1l)C) = Fπ+Im
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1. Gaussian Random Fields

6. With 2. and 4. it follows

π−ReF = π−F 1
2 (1l + Cρ) = F 1

4 (1l− ρ)(1l + Cρ) = F 1
4 (1l− ρ− C + ρ C) = iFπ−Im .

Similarly we have

π−ImF = π−F 1
2i (1l−Cρ) = −iF 1

4 (1l−ρ)(1l−Cρ) = −iF 1
4 (1l−ρ+C−ρ C) = −iFπ−Re .

7. Finally using the previous statement, for f ∈ SR(Rd) it holds

π−ReFf = iFπ−Im f = 0,

and the fifth statement of this corollary implies for f ∈ SR(Rd)

π+ImFf = Fπ+Im f = 0.

Using this corollary, we can prove some properties of ψ.

Corollary 1.14. F−1γ1/2Ff is a real function in S(Rd) for f ∈ S(Rd) and therefore ψ is a
real random field.

Proof. First we observe that the Fourier transform is a one-to-one map of the Schwartz space
onto itself [79, Thm. XI.1]. As γ1/2 is positive, bounded, even, and in C∞, its multiplication
with Ff , f ∈ S(Rd) is again in the Schwartz space with even real and odd imaginary part,
and thus its inverse Fourier transform is in S(Rd) and real. Therefore let f be a real function,
then

Ff = ReFf + i ImFf = (π+ + π−)ReFf + i (π+ + π−)ImFf = π+ReFf + i π−ImFf

where we used Corollary 1.13 in the last step. This implies that Ff has even real and odd
imaginary part. Next let g ∈ SC(Rd) have even real and odd imaginary part, then its inverse
Fourier transform is real by Corollary 1.13 and

ImF−1g = (π+ + π−)ImF−1g = F−1π+Im g − iF−1π−Re g = 0.

Moreover ψ is a real-valued random field because of the random field construction in Sec-
tion 1.3.1.

Corollary 1.15. It holds Cov (ψ(f), ψ(g)) = (f, Cg)L2(Rd) and therefore ψ is a realization
of ϕ.

20



1.3. Mathematical Approach

Proof. Using Plancherel’s theorem [98, Ch. VI.2] twice and the natural embedding of L2
R(Rd)

into L2
C(Rd), we calculate

E(ψ(f)ψ(g)) = E(W (F−1γ1/2Ff)W (F−1γ1/2Fg))
=

(
F−1γ1/2Ff,F−1γ1/2Fg

)
L2
R(Rd)

=
(
γ1/2Ff, γ1/2Fg

)
L2
C(Rd)

= (Ff, γFg)L2
C(Rd)

=
(Ff,F(F−1γ) ∗ g)

L2
C(Rd)

= (Ff,FCg)L2
C(Rd)

= (f, Cg)L2
R(Rd) = Cov (ϕ(f), ϕ(g)).

Another realization of ϕ will be constructed next. Let W be a white noise random field as
constructed in Section 1.3.1 and set

V := π+W + iπ−W.

Define
χ := F−1γ1/2V. (1.11)

Corollary 1.16. χ is another realization of ϕ.

Proof. The proof will be divided into several parts. First note that Equation (1.9) and Defini-
tion 1.10 imply for f ∈ SC(Rd) ,

χ(f) = (F−1γ1/2V )(f)

= V (γ1/2Ff)

= π+W (γ1/2Ff) + i π−W (γ1/2Ff)

= W (π+γ
1/2Ff) + iW (π−γ1/2Ff)

= W (π+Re γ1/2Ff)− iW (π−Re γ1/2Ff) + iW (π+Im γ1/2Ff) +W (π−Im γ1/2Ff).

Assuming now that f is real-valued it follows — using the fact that π±Re and π±Im commute
with the multiplication by γ1/2 — with Corollary 1.13 that

π−Re γ1/2Ff = 0,

π+Im γ1/2Ff = 0,

and therefore χ(f) is real-valued. Furthermore f 7→ χ(f) is linear and χ is a real-valued
generalized random field for real-valued f .

Next we will calculate the covariance of χ. Let f, g ∈ S(Rd), then

E(χ(f)χ(g))

= E
((
W (π+Re γ1/2Ff) +W (π−Im γ1/2Ff))(W (π+Re γ1/2Fg) +W (π−Im γ1/2Fg))

)
.
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1. Gaussian Random Fields

Note that π+ and π− are orthogonal projections in L2
C(Rd), i.e. for a, b ∈ L2

C(Rd), (π+a, π−b) =
0. This implies

(
π+Re γ1/2Ff, π−Im γ1/2Fg

)
=

(
π−Im γ1/2Ff, π+Re γ1/2Fg

)
= 0.

Thus the calculations of the covariance can be reduced to

E(χ(f)χ(g)) =
(
π+Re γ1/2Ff, π+Re γ1/2Fg

)
L2
R(Rd)

+
(
π−Im γ1/2Ff, π−Im γ1/2Fg

)
L2
R(Rd)

.

Since π−Re γ1/2Ff = π+Im γ1/2Ff = π−Re γ1/2Fg = π+Im γ1/2Fg = 0 as seen before, we
can also rewrite this as

E(χ(f)χ(g)) =
(
Re γ1/2Ff,Re γ1/2Fg

)
L2
R(Rd)

+
(
Im γ1/2Ff, Im γ1/2Fg

)
L2
R(Rd)

=
(
γ1/2Ff, γ1/2Fg

)
L2
C(Rd)

= (Ff, γFg)L2
C(Rd)

=
(Ff,F(F−1γ) ∗ g)

L2
C(Rd)

= (f, Cg)L2
R(Rd) ,

where we used Plancherel’s theorem [98, Ch. VI.2] in the last step. Therefore χ gives another
realization of ϕ.

1.4. Algorithms

The following algorithms are based on the previous sections. They allow a fast generation of
d-dimensional stationary Gaussian random fields with given covariance using the advantage
of fast Fourier transforms. The boundary conditions implemented here are periodic. For
Neumann or Dirichlet boundary conditions, fast sine and cosine transformations have to be
used.

The first algorithm is an implementation of Equation (1.1) in Section 1.2 and of Equa-
tion (1.10) in Section 1.3.

Algorithm 1.17.
Remarks:

1. The functions FFT and FFT−1 include all necessary rescaling depending on the used
FFT algorithm and the integers Ni.

2. A is a d-dimensional complex-valued array, B is real-valued.

3. xk1···kd
denotes the grid point corresponding to the integers (k1, . . . , kd). The grid points

are distributed equidistantly in each direction.

Input:

1. d-dimensional cube D, where l1, . . . , ld is the length of the edges,
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Figure 1.2.: Alignment of the random numbers in Algorithm 1.18 in the two-dimensional case.

2. N1, . . . , Nd number of discretization points in each direction, all even,

3. γ1/2 a symmetric, positive function on D,

4. R() a function that generates independent N (0, 1)-distributed random numbers.

Output: GRF B with covariance depending on γ.

for ki = 0, . . . , Ni
2 , i = 1, . . . , d do

B(k1, . . . , kd)← R();
end for
A← FFTB;
for ki = 0, . . . , Ni

2 , i = 1, . . . , d do
A(k1, . . . , kd)← A(k1, . . . , kd) · γ(xk1···kd

)1/2;
end for
B ← FFT−1A;

The second algorithm is based on Equation (1.2) in Section 1.2 or Equation (1.11) in Sec-
tion 1.3. The important fact is that the Fourier transform of the white noise random field has
even real and odd imaginary part. Figure 1.2 shows how the random numbers are organized in
the Fourier transformed array in the two-dimensional case. The black dots are the real-valued
grid points. Lines and areas with the same color but arrows in different directions denote the
conjugate pairs which is emphasized by the + and − signs. The long arrows in green and
magenta indicate the periodic boundary conditions.

If we use d-dimensional DFT on a grid with Ni discrete points in direction ei, where the set
{ei, i = 1, . . . , d} is the standard basis in Rd, the following algorithm generates a GRF with
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1. Gaussian Random Fields

approximated covariance C, where the covariance of points having a distance larger than half
of the length of the edges of the cube should be small, in order to be locally in the situation of
Rd. The exact implemented covariance is given by

N−1∑

k=0

γ(k)ek ⊗ ek,

where k,N ∈ Nd
0 and 1 is the d-dimensional vector with all entries equal to one and

{
ek, k ∈ Nd

}
is a Hilbert space basis that induces periodic boundary conditions. Our choice is the basis
generated by the exponential function.

Algorithm 1.18.
Remarks:

1. All calculations have to be done modulo Ni in the i-th direction.

2. The function FFT−1 includes all necessary rescaling depending on the used FFT algo-
rithm and the integers Ni.

3. A is a d-dimensional complex-valued array, B is real-valued.

4. xk1···kd
denotes the grid point corresponding to the integers (k1, . . . , kd). The grid points

are distributed equidistantly in each direction.

Input:

1. d-dimensional cube D with l1, . . . , ld length of the edges,

2. N1, . . . , Nd number of discretization points in each direction, all even,

3. γ1/2 a symmetric, positive function on D,

4. R() a function that generates independent N (0, 1)-distributed random numbers.

Output: GRF B with covariance depending on γ.

for ki = 0, . . . , Ni
2 , i = 1, . . . , d do

if (ki ∈ {0, Ni}, for all i = 1, . . . , d) or ki = Ni
2 , for all i = 1, . . . , d) then

ReA(k1, . . . , kd)← R() · γ(xk1···kd
)1/2;

ImA(k1, . . . , kd)← 0;
else

ReA(k1, . . . , kd)← 1√
2
R() · γ(xk1···kd

)1/2;

ImA(k1, . . . , kd)← 1√
2
R() · γ(xk1···kd

)1/2;
ReA(N1 − k1, . . . , Nd − kd)← ReA(k1, . . . , kd);
ImA(N1 − k1, . . . , Nd − kd)← −ImA(k1, . . . , kd);

end if
end for
B ← FFT−1A;
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1.5. Covariance Functions

This section presents a class of covariance functions on R2 × R2 that can be used for the
algorithms presented in the previous section and that will be useful in Chapter 2 and 3.

Let f be a positive symmetric function and define the covariance function by

C(x, y) =
∫

R2

e−2πi(p,x−y)f(p) dp.

As we chose f to be positive and symmetric, C(x, y) = C(y, x). Moreover we want C to
have exponential decay for |x− y| À 1 and vice versa (which follows automatically because
of the symmetry property). It seems to be reasonable to have the same covariance in every
direction. Therefore we will choose f to be also symmetric under rotation. The following
lemma introduces a class of functions f that satisfy the required assumptions.

Lemma 1.19. Let C(x, y) be a covariance function defined by

C(x, y) =
∫

R2

e−2πi(p,x−y)f(p) dp.

This covariance function is positive, symmetric under rotation and has exponential decay in
|x− y| if

1. f(p) = (1 + |p|2)−1 with rate bounded by

const. |x− y| e−2π|x−y|,

2. f(p) = (|p|2 + 1)−n for n ≥ 2 with rate bounded by

π e−2π|x−y|(π2 |x− y|+ 1),

3. f(p) = (|p|2n + 1)−1 for n ≥ 2 with rate bounded by

5π/
√

2 e−
√

2π|x−y|.

Proof.

1. The proof can be found in [29]. We note that this function is not defined for x = y and
therefore moments higher than one do not exist.

2. It is easy to see that the function is positive and symmetric under rotation. Without loss
of generality we may assume that y = 0 and prove the claim for C(x, 0). Next we reduce
the statement to an easier one. Therefore notice that for n > 2

1
(1 + |p|2)n

≤ 1
(1 + |p|2)2

for all p ∈ R2. It follows that
∫

R2

e−2πi(p,x)(|p|2 + 1)−n dp ≤
∫

R2

e−2πi(p,x)(|p|2 + 1)−2 dp,
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and therefore if this function has exponential decay for n = 2, it will have exponential
decay for all n > 2.

C(x, 0) =
∫

R2

e−2πi(p,x)(|p|2 + 1)−2 dp

=
∫

R

∫

R
e−2πip1|x|(p2

1 + p2
2 + 1)−2 dp1 dp2,

where p1 is chosen to be in x direction. We define µ2 := µ(p2)2 := p2
2 + 1. Then C can

be rewritten in the following way:

C(x, 0) =
∫

R

∫

R
e−2πip1|x|(p1 + iµ)−2(p1 − iµ)−2 dp1 dp2.

Let g(p) = exp(−2πi p1 |x|)(p1+iµ)−2(p1−iµ)−2. By the residue theorem we can calculate
the inner integral

∫

R
g(p) dp1 = −2πi res (g(p), −iµ) = π

2 µ
−2 (2π |x|+ µ−1) e−2πµ|x|.

Finally we work out some estimates using µ =
√
p2
2 + 1 ≥ 1 and the convergence of the

integral, so we get

C(x, 0) =
∫

R
π
2 µ

−2e−2πµ|x|(2π |x|+ µ−1) dp2

≤ π
2 e

−2π|x|
∫

R
2π |x|µ−2 + µ−3 dp2

= π (π2 |x|+ 1) e−2π|x|.

3. This part is similar to the second part of this proof. Again it is easy to see that C is
symmetric under rotation and positive. Simple calculations show that

1
1 + |p|2n ≤

d

1 + |p|4

for n ≥ 2, p ∈ R2 and

d ≥
(
1− (2/n)2/(n−2) (1− 2/n)

)−1
.

Therefore again it is sufficient to show that C has exponential decay for n = 2. For this
function the poles are given by

|p|4 + 1 = p4
1 + p4

2 + 2p2
1p

2
2 + 1

=
(
p1 −

√
−p4

2 + i
)(
p1 +

√
−p4

2 + i
)(
p1 −

√
−p4

2 − i
)(
p1 +

√
−p4

2 − i
)
.
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The elements with negative imaginary part are
√
−p4

2 − i and −
√
−p4

2 + i. Define g(p) =

exp(−2πip1 |x|) (|p|4 +1)−1, ρ+ =
√√

p4
2 + 1 + p2

2, and ρ− =
√√

p4
2 + 1− p2

2. Therefore
we can calculate the integral by the residues and get

C(x, 0) =
∫

R2

e−2πi(p,x) (|p|4 + 1)−1 dp

=
∫

R
−2πi

(
res

(
g(p),

√
−p4

2 − i
)

+ res
(
g(p),−

√
−p4

2 + i
))

dp2

=
∫

R
π e−

√
2πρ+|x|

(
cos(
√

2π |x| ρ−)
(√

2
√
p4
2 + 1 ρ+

)−1

+ sin(
√

2π |x| ρ−)
(√

2
√
p4
2 + 1 ρ−

)−1
)
dp2

≤ π√
2

∫

R
e−
√

2πρ−|x|(
√
p4
2 + 1

)−1(ρ−1
+ + ρ−1

− ) dp2.

Again we note that similar to the second part of this lemma ρ− ≥ 1 and that the integral
converges. We finish the proof with

C(x, 0) ≤ π/
√

2e−
√

2π|x|
∫

R

(√
p4
2 + 1

)−1(ρ−1
+ + ρ−1

− ) dp2 ≤ 5π√
2
e−
√

2π|x|.

We can modify and generalize C and f with a parameter m. Then Lemma 1.19 extends to
the following lemma.

Lemma 1.20. Let C(m,x, y) be a covariance function defined by

C(m,x, y) =
∫

R2

e−2πi(p,x−y)f(m, p) dp

with m ∈ R>0. This covariance function is positive, symmetric under rotation and has expo-
nential decay in |x− y| if

1. f(m, p) = (m2 + |p|2)−1 with rate bounded by

const. |x− y| e−2π m|x−y|,

2. f(m, p) = (|p|2 +m2)−n for n ≥ 2 with rate bounded by

m1−2n π e−2π m|x−y|(π2m |x− y|+ 1),

3. f(m, p) = (|p|2n +m2n)−1 for n ≥ 2 with rate bounded by

5π/
√

2m1−2ne−
√

2π m|x−y|.

Proof. We will only show that for these choices of f we can reduce the covariance functions to
those of Lemma 1.19.
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1. We can rewrite C(m,x, y) in the form

C(m,x, y) =
∫

R2

e−2πi(p,x−y) (|p|2 +m2)−1 dp

=
∫

R2

e−2πi (p,x−y)m−2((|p| /m)2 + 1)−1 dp.

Next a variable transformation is done by p̃ = p/m and dp = mdp̃. Therefore we get

C(m,x, y) = m−2

∫

R2

e−2πi (p̃,m(x−y))(|p̃|2 + 1)−1m dp̃ = m−1C(1,m(x− y))

Applying Lemma 1.19 to C(1,m(x− y)) yields the claim.

2. This proof is similar to the previous one.

C(m,x− y) =
∫

R2

e−2πi(p,x−y) (|p|2 +m2)−n dp

=
∫

R2

e−2πi (p,x−y)m−2n((|p| /m)2 + 1)−n dp.

Let p̃ = p/m, then the equation transforms to

C(m,x, y) = m−2n

∫

R2

e−2πi (p̃,m(x−y))(|p̃|2 + 1)−nm dp̃ = m1−2nC(1,m(x− y))

and the claim is proven.

3. Similarly we prove

C(m,x, y) =
∫

R2

e−2πi(p,x−y) (|p|2n +m2n)−1 dp

=
∫

R2

e−2πi (p,x−y)m−2n((|p| /m)2n + 1)−1 dp.

The variable transformation p̃ = p/m leads to

C(m,x, y) = m−2n

∫

R2

e−2πi (p̃,m(x−y))(|p̃|2n + 1)−1m dp̃ = m1−2nC(1,m(x− y)),

and applying Lemma 1.19 finishes the proof.
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1.6. Simulations and Statistical Tests

This section shows the results of an implementation in C++ of the algorithms presented in
Section 1.4. The simulations were done on a square in R2. It turns out that both algorithms
lead to the same results but that Algorithm 1.18 is twice as fast as Algorithm 1.17.
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Figure 1.3.: Example of how statistical tests on lines were done using the center point.

In order to test the covariance or correlation — there is no difference between the two in
the simulations because the variance is scaled to 1 — statistical tests on lines were done. This
means that one grid point x0 was picked and the product was calculated with points on the
horizontal, the vertical, and different diagonal lines. The lines on which statistical tests where
done for the two-dimensional graphics are illustrated in Figure 1.3 in the case of a middle
point. The results are shown in Figure 1.4 where the solid line shows the covariance function
and the dots are the results of the statistical tests with the simulated random fields. The
predictions and the simulations are pretty much the same. In the center part they are the
same while at the edges there are some differences which are due to the periodic boundary
conditions. We remark that the covariance was plotted as a function of R2. Therefore it is
necessary that the values of the covariance function at the edges are small in order to have
very small perturbations of the covariance because of the boundary conditions. In Figure 1.5,
four different covariance functions are presented which are the result of simulations. It is an

interesting observation that the yellow graph has negative covariance while f is positive. A
physical interpretation would be some kind of countermove against the displacement of a point
like an elastic band. The red graph shows a covariance function that is not symmetric under
rotation. Functions like that might be interesting in physical and engineering applications with
various correlations in different directions.

The simulated random fields are visualized in Figure 1.6, 1.7, and 1.8. Two different possi-
bilities how to visualize the data are presented in Figure 1.6. On the left-hand side the random
numbers are plotted as the graph of a function from R2 to R. On the contrary, the figure on
the right-hand side presents the random numbers in the form of colors where blue stands for
small numbers and red for the large ones. Figure 1.7 uses this hot color map to compare corre-
lated random fields that use the same white noise but different covariance functions. There are
differences between all of the pictures but it stands out that there are hardly any differences
between the three pictures where f is of degree −4, while Picture (a) where f is of degree −2
is completely different. This phenomenon can be observed for all tested other degrees as well.
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Figure 1.4.: Tested covariances on lines from the center point.
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Figure 1.5.: Simulation results using different covariance functions.
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Figure 1.6.: Two different ways visualizing the same GRF.

Figure 1.8 shows that using the same white noise and the same type of covariance function
with different degrees of f leads to similar random fields but the higher the degree of the
polynomial, the smoother the resulting noise. Setting m to something larger than 1 will result
in faster decreasing correlations which can be seen in Figure 1.5.
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Figure 1.7.: Images of size 512× 512 with the same white noise.
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Figure 1.8.: Images of size 512× 512 with the same white noise.
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2. Simulation of Stochastic Partial Differential
Equations

In this chapter we will present stochastic partial differential equations (SPDEs) in the terms of
Da Prato and Zabczyk [16]. The discretization of differential equations of this type is discussed
including stochastic processes with given covariance in space and time. One section summarizes
the literature on convergence of discretizations of SDEs and SPDEs. At the end of this chapter,
a definition which is well known for SDEs and a classical definition of numerical stability for
PDEs are generalized to SPDEs and tested on SDEs as well as on the heat equation with
additive and multiplicative noise.

2.1. SDEs in Infinite Dimensions

This section will give a short introduction to Banach space resp. Hilbert space-valued Wiener
processes and integrals. Moreover, stochastic partial differential equations (SPDEs) will be
presented in the sense of Hilbert space-valued SDEs and the existence of different types of
solutions will be summarized. Further background material can be found in [16].

Assume that E is a separable Banach space and B(E) is the σ-field of its Borel subsets.
Denote the corresponding norm by ‖ · ‖. Let (Ω,F , P ) be a probability space with filtration
and let I be an interval of R+. If (Ω,F) and (E,G) are two measurable spaces, then a mapping
X from Ω into E, such that the set {ω ∈ Ω : X(ω) ∈ A} = {X ∈ A} belongs to F for arbitrary
A ∈ G, is called a random variable from (Ω,F) into (E,G). A random variable is called simple
if it takes on only a finite number of values. An important lemma which is also known from
the theory of real-valued random variables is the following.

Lemma 2.1. Let E be a separable metric space with metric ρ and let X be an E-valued random
variable. Then there exists a sequence (Xm)m∈N of simple E-valued random variables such that,
for arbitrary ω ∈ Ω, the sequence (ρ(X(ω), Xm(ω)))m∈N is monotonically decreasing to zero.

Before starting with stochastic processes we define independence of Banach space-valued
random variables and how to integrate them.

Definition 2.2. Let {Fi}i∈I be a family of sub σ-fields of F . These σ-fields are said to be
independent, if for every finite subset J ⊂ I and every family {Ai}i∈J such that Ai ∈ Fi,

P
(⋂

i∈J

Ai

)
=

∏

i∈J

P (Ai).

Random variables {Xi}i∈I are independent if the σ-fields {σ(Xi)}i∈I are independent.

Assume now that E is a separable Banach space. For a simple random variable X

X =
N∑

i=1

xi χAi
, Ai ∈ F , xi ∈ E,
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2. Simulation of Stochastic Partial Differential Equations

set ∫

B
X(ω) dP (ω) =

∫

B
X dP =

N∑

i=1

xi P (Ai ∩B)

for all B ∈ F . Here χAi denotes the indicator function of Ai. The integral for general random
variables uses Lemma 2.1 which states that every random variable can be approximated by
a sequence of simple random variables {Xn}n∈N. Under the assumption that X is Bochner
integrable or simply integrable, i.e.

∫

Ω
‖X(ω) ‖ dP (ω) < +∞,

the integral of X is defined by
∫

B
X(ω) dP (ω) = lim

n→∞

∫

B
Xn(ω) dP (ω)

where Xn → X and B ∈ F . This limit exists because the sequence of simple random variables
(Xm) satisfies that (‖X(ω)−Xm(ω) ‖) decreases to zero for all ω ∈ Ω and

‖
∫

Ω
Xm(ω)dP (ω)−

∫

Ω
Xn(ω)dP (ω)‖

≤
∫

Ω
‖X(ω)−Xm(ω) ‖ dP (ω) +

∫

Ω
‖X(ω)−Xn(ω) ‖ dP (ω) ↓ 0

for m,n→ +∞.

Definition 2.3. A family X = {X(t)}t∈I of E-valued random variables X(t), defined on Ω,
is called a stochastic process. Set X(t, ω) = X(t)(ω) for all t ∈ I and ω ∈ Ω. The functions
X(·, ω) are called the trajectories of X(t). A stochastic process Y is called a modification of
X if

P (ω ∈ Ω : X(t, ω) 6= Y (t, ω)) = 0 ∀t ∈ I.
In the following we will summarize several definitions of regularity for Banach space-valued

processes which are similar to those known from real-valued stochastic processes.

Definition 2.4.

1. X is measurable if the mapping X(·, ·) : I × Ω→ E is B(I)⊗F-measurable.

2. X is stochastically continuous at t0 ∈ I if for all ε > 0 and all δ > 0, there exists ρ > 0
such that

P (‖X(t)−X(t0) ‖ ≥ ε) ≤ δ, ∀t ∈ [t0 − ρ, t0 + ρ] ∩ [0, T ].

3. X is stochastically continuous in I if it is stochastically continuous at every point of I.

4. X is stochastically uniformly continuous in I = [0, T ] if for all ε > 0 and all δ > 0, there
exists ρ > 0 such that

P (‖X(t)−X(s) ‖ ≥ ε) ≤ δ, ∀t, s ∈ [0, T ], |t− s| < ρ.
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2.1. SDEs in Infinite Dimensions

5. X is mean square continuous at t0 ∈ I if

lim
t→t0

E(‖X(t)−X(t0) ‖2) = 0.

6. X is mean square continuous in I if it is mean square continuous at every point of I.

7. X is continuous with probability 1 (or continuous) if its trajectories X(·, ω) are continuous
almost surely.

8. X is α-Hölder continuous with probability 1 (or α-Hölder continuous) if its trajectories
X(·, ω) are α-Hölder continuous almost surely.

Theorem 2.5 (Kolmogorov-Chentsov). Let X(t), t ∈ [0, T ] be a stochastic process with values
in a separable Banach space E such that, for some positive constants C > 0, ε > 0, δ > 1 and
all t, s ∈ [0, T ]

E(‖X(t)−X(s) ‖δ) ≤ C |t− s|1+ε .

Then there exists a modification of X with P -almost all trajectories being Hölder continuous
functions with an arbitrary exponent smaller than ε/δ. In particular X has a continuous
modification.

From this point on, we will focus on Hilbert spaces. If the results also apply to more
general spaces, this will be mentioned in the corresponding theorems. In order to be able to
construct the Hilbert space-valued stochastic integral next, we need some more prerequisites.
Therefore let H and U be two Hilbert spaces and Q ∈ L(U) a symmetric nonnegative operator.
Furthermore let tr (Q) < +∞. Then there exists a complete orthonormal system {ek} in U ,
and a bounded sequence of nonnegative real numbers λk such that

Qek = λkek, k = 1, 2, . . .

Proposition 2.6. Assume that E and F are separable Banach spaces and A : D(A) ⊂ E → F
is a linear closed operator with domain D(A) which is a Borel subset of E. If X : [0, T ]×Ω→ E
is a stochastic process such that X(t, ω) ∈ D(A) almost surely, then AX is an F -valued random
variable and X is a D(A)-valued random variable, where D(A) is endowed with the graph norm
of A, i.e. ‖x ‖D(A) := ‖x ‖E + ‖Ax ‖F . If moreover

∫ t

0
‖AX(s, ω) ‖ ds < +∞, t ∈ [0, T ],

then

A

∫ t

0
X(s, ω) ds =

∫ t

0
AX(s, ω) ds. (2.1)

Furthermore for X ∈ D(Ai), i = 1, . . . , k, k ∈ N, A : D(A)→ F := E and
∫ t

0

∥∥AiX(s, ω)
∥∥ ds < +∞, i = 1, . . . , k,

it holds

Ak

∫ t

0
X(s, ω) ds =

∫ t

0
AkX(s, ω) ds.
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2. Simulation of Stochastic Partial Differential Equations

Proof. As D(A) is a separable metric space endowed with the graph norm, by Lemma 2.1 there
exists a sequence (Xm)m∈N of simple D(A)-valued random variables with

‖Xm(s, ω)−X(s, ω) ‖D(A) = ‖Xm(s, ω)−X(s, ω) ‖E + ‖AXm(s, ω)−AX(s, ω) ‖F ↓ 0

decreases monotonicly to zero for m→ +∞ and for all s ∈ [0, T ], ω ∈ Ω.
Consequently, the application of the monotone convergence theorem [5, Thm. 11.4],

∫ t

0
‖Xm(s, ω)−X(s, ω) ‖E ds+

∫ t

0
‖AXm(s, ω)−AX(s, ω) ‖F ds ↓ 0

decreases monotonically to zero as well. Then
∫ t

0
Xm(s, ω) ds→

∫ t

0
X(s, ω) ds in E,

∫ t

0
AXm(s, ω) ds→

∫ t

0
AX(s, ω) ds in F

because
∥∥∥∥

∫ t

0
Xm(s, ω) ds−

∫ t

0
X(s, ω) ds

∥∥∥∥
E

≤
∫ t

0
‖Xm(s, ω)−X(s, ω) ‖E ds ↓ 0

and similarly for the second integral. The definition of the integral and the linearity of A imply
∫ t

0
AXm(s, ω) ds = A

∫ t

0
Xm(s, ω) ds.

Therefore the facts that
∫ t
0 Xm(s, ω) ds is a Cauchy sequence in D(A) and convergent in E,

A
∫ t
0 Xm(s, ω) ds is convergent in F to

∫ t
0 AX(s, ω) ds, and that A is a closed operator imply

that
∫ t
0 X(s, ω) ds ∈ D(A) and that

A

∫ t

0
X(s, ω) ds = lim

m→+∞A
∫ t

0
Xm(s, ω) ds = lim

m→+∞

∫ t

0
AXm(s, ω) ds =

∫ t

0
AX(s, ω) ds.

The last claim follows by the application of Equation (2.1) recursively.

In the more general case of a separable Banach space E, Da Prato and Zabczyk define in [16]
that a probability measure µ on (E,B(E)) is said to be a Gaussian measure, if and only if the
law of an arbitrary linear function h ∈ E? considered as a random variable on (E,B(E), µ),
is a Gaussian measure on (R,B(R)). Following this approach and observing that in a Hilbert
space H with inner product (·, ·) the Hilbert space H and its dual H? are isomorphic, we have
the following definition.

Definition 2.7. A Hilbert space-valued random variable X : Ω→ H is called Gaussian with
law N (µ,Q), if and only if for all h ∈ H, (h,X) has law N ((h, µ) , (h, hQh)) in R. Furthermore
a finite family of random variables (X1, . . . , Xn) is called Gaussian, if for all α1, . . . , αn ∈ R,∑n

i=1 αiXi is Gaussian in the sense of the first phrase. And finally a family of random variables
(Xi)i∈N is called Gaussian, if any finite subset is Gaussian.
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2.1. SDEs in Infinite Dimensions

This definition of Hilbert space-valued Gaussian random variables implies for the covariance
Q the following.

Proposition 2.8 ([16, Prop. 2.15]). Let µ be a Gaussian probability measure on a Hilbert space
with mean 0 and covariance Q. Then Q is a trace class operator, i.e. tr Q = E(‖X ‖2) < +∞.

For real-valued random variables it is known that a convergent sequence of Gaussian random
variables (Xi)i∈N is Gaussian in the limit, see e.g. [41, 70]. In Chapter 2 we will need a similar
statement for Hilbert space-valued random variables. This is proved in the following using the
definition above.

Lemma 2.9. Let H be a Hilbert space and (Xn)n∈N a sequence of H-valued Gaussian random
variables converging in L2(Ω)⊗H to X, i.e.

‖Xn −X‖22 = E(‖Xn −X ‖2) −→ 0

for n→ +∞. Then X is Gaussian distributed.

Proof. Using Definition 2.7 it suffices to show that for all h ∈ H the real random variable (h,X)
is Gaussian. Therefore we can reduce the problem to the real case and apply Theorem A.7
of [70]. All we have to check is the convergence of (h,Xn) to (h,X) in L2(Ω). This is done in
the following using the Cauchy-Schwarz inequality.

0 ≤ E(((h,Xn)− (h,X))2) = E((h,Xn −X)2) ≤ ‖h ‖2 E(‖Xn −X ‖2) −→ 0

for n→ +∞ by the assumptions on X. Therefore the claim is proved.

Definition 2.10. A U -valued stochastic process W (t), t ≥ 0 is called a Q-Wiener process on
[0, T ], if

1. W (0) = 0,

2. W has continuous trajectories,

3. W has independent increments,

4. the increments W (t)−W (s) are N (0, (t− s)Q) distributed for t ≥ s ≥ 0.

An important result for simulations is the following proposition.

Proposition 2.11. Assume that W is a Q-Wiener process with tr Q < +∞. Then the follow-
ing statements hold:

1. W is a Gaussian process on U and

E(W (t)) = 0, Cov (W (t)) = tQ, t ≥ 0.
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2. Simulation of Stochastic Partial Differential Equations

2. For arbitrary t, W has the series expansion

W (t) =
∞∑

j=1

√
λjβj(t)ej , (2.2)

where
βj(t) =

1√
λj

〈W (t), ej〉, j = 1, 2, . . . ,

and the elements βj are independent real-valued Brownian motions. The series in (2.2)
is convergent in L2(Ω,F , P ).

Definition 2.12. Let {Ft}t≥0 be a normal filtration in F , i.e.

1. F0 contains all A ∈ F such that P (A) = 0,

2. Ft = Ft+ , ∀ t ∈ T , where Ft+ is the intersection of all Fs where s > t.

Moreover assume that for t ≥ 0

1. W (t) is Ft-measurable,

2. W (t+ h)−W (t) is independent of Ft, ∀h ≥ 0,

then W is called a Q-Wiener process with respect to {Ft}t≥0.

Definition 2.13. Let P∞ be the σ-field generated by sets of the form

(s, t]× F, 0 ≤ s < t < +∞, F ∈ Fs and {0} × F, f ∈ F0.

This σ-field is called a predictable σ-field and its elements predictable sets. The restriction of
the σ-field P∞ to [0, T ] × Ω will be denoted by PT . an arbitrary measurable mapping from
([0,+∞)× Ω,P∞) or ([0, T ]× Ω,PT ) into (E,B(E)) is called a predictable process.

Lemma 2.14. Let A be a linear closed operator and for all t ≥ 0 let W (t) ∈ D(A). Assume
that tr Q1/2A2Q1/2 < +∞. Then AW (t) is a Gaussian process with mean zero and covariance
tQ1/2A2Q1/2.

Proof. To show that AW (t) is Gaussian we first remark that

E
( ∥∥

n∑

j=1

√
λjβj(t)ej −

∞∑

j=1

√
λjβj(t)ej

∥∥2) ≤ t
∞∑

j=n+1

λj ‖Aej ‖2 ↓ 0

because λj ≥ 0 for all j ∈ N and the process is in the domain of A. Applying Lemma 2.9, we
have that AW (t) is Gaussian.

Next we observe that because of linearity

A
n∑

j=1

√
λjβj(t)ej =

n∑

j=1

√
λjβj(t)Aej ,
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2.1. SDEs in Infinite Dimensions

and the closedness of A implies

A

∞∑

j=1

√
λjβj(t)ej =

∞∑

j=1

√
λjβj(t)Aej .

In order to interchange the converging sum and the expectation we observe that

‖ fn ‖ :=
∥∥

n∑

j=1

√
λjβj(t)ej

∥∥ ≤ ‖W (t) ‖ =: ‖ f ‖

by Bessel’s inequality and

∥∥
∫

Ω
(fn − f) dµ

∥∥ ≤
∫

Ω
‖ fn − f ‖ dµ ≤

∫

Ω
‖ fn ‖+ ‖ f ‖ dµ ≤ 2

∫

Ω
‖ f ‖ dµ < +∞.

Now we can apply the dominated convergence theorem [5, Thm. 15.6] and we have

E(AW (t)) = E
( ∞∑

j=1

√
λjβj(t)ej

)
=

∞∑

j=1

√
λjE(βj(t))ej = 0.

Finally, to calculate the covariance operator we use the independence of the Brownian motions.
This leads to

Cov (A(W (t)) = E((AW (t))⊗2) = E
( ∞∑

j,k=1

βj(t)βk(t)A
√
λjej ⊗A

√
λkek

)

=
∞∑

j,k=1

E(βj(t)βk(t))AQ1/2ej ⊗AQ1/2ek) =
∞∑

j=1

t(AQ1/2ej)⊗2

= t
∞∑

j=1

ej ⊗Q1/2A2Q1/2ej = t Q1/2A2Q1/2,

because Q is positive definite and the convergence follows from the assumptions.

Next we will define the stochastic integral for elementary processes. An L = L(U,H)-valued
process Φ(t), t ∈ [0, T ], is said to be elementary, if there exist a sequence 0 = t0 < t1 < · · · <
tk = T < +∞ and a sequence Φ0,Φ1, . . . ,Φk−1 of L-valued random variables taking only a
finite number of values such that Φm is Ftm-measurable and

Φ(t) = Φm, for t ∈ (tm, tm+1], m = 0, 1, . . . , k − 1

and Φ(0) = Φ0.

Definition 2.15. The stochastic integral for elementary processes Φ is defined by the formula

∫ t

0
Φ(s) dW (s) :=

k−1∑

m=0

Φm(W (tm+1 ∧ t)−W (tm ∧ t))

and denoted by Φ ·W (t), t ∈ [0, T ].
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Define another Hilbert space U0 := Q1/2(U) ⊂ U with inner product

〈u, v〉0 :=
∞∑

k=1

1
λk
〈u, ek〉〈v, ek〉 = 〈Q−1/2u,Q−1/2v〉,

where 〈·, ·〉 is the inner product on the Hilbert space U . Moreover let L0
2 = L2(U0,H) be the

space of all Hilbert–Schmidt operators from U0 into H which can be proved to be a separable
Hilbert space equipped with the norm

‖Ψ ‖2L0
2

=
∞∑

h,k=1

|〈Ψgh, fk〉|2 =
∞∑

h,k=1

|〈Ψeh, fk〉|2 = ‖ΨQ1/2‖2 = tr[ΨQΨ?],

where
{
gj :=

√
λjej

}
, {ej}, and {fj}, j = 1, 2, . . ., are complete orthonormal bases in U0, U ,

and H, respectively. For a measurable L0
2-valued process Φ(t), t ∈ [0, T ], define the norm

|||Φ |||t := E
(∫ t

0
‖Φ(s) ‖2L0

2
ds

)1/2 = E
(∫ t

0
tr(Φ(s)Q1/2)(Φ(s)Q1/2)?

)1/2
, t ∈ [0, T ].

After these definitions, we can now formulate a Hilbert space-valued Itô isometry for elementary
processes.

Proposition 2.16. If a process Φ is elementary and |||Φ |||T < +∞, then the process Φ ·W is
a continuous, square integrable H-valued martingale on [0, T ] and

E(|Φ ·W (t)|2) = |||Φ |||2t , 0 ≤ t ≤ T.
To extend the definition of the stochastic integral to more general processes, it is convenient

to regard integrands as random variables defined on the product space ΩT = [0, T ]×Ω equipped
with the product σ-field B([0, T ]) ⊗ F . The product of the Lebesgue measure on [0, T ] and
the probability measure P is denoted by PT . Finally Proposition 4.7 and Lemma 4.8 in [16]
allow to extend the definition of the stochastic integral to all L0

2 predictable processes Φ with
|||Φ |||T < +∞. These processes form a Hilbert space which will be denoted by N 2

W (0, T ;L0
2) =

N 2
W (0, T ) = N T

W , and the elementary processes form a dense set in this space. By a localization
procedure the definition of the stochastic integral can be extended to L0

2 predictable processes
satisfying the weaker condition

P (
∫ T

0
‖Φ(s) ‖2L0

2
ds < +∞) = 1.

These processes are called stochastically integrable on [0, T ]. The linear space formed by these
processes is denoted by NW (0, T ;L0

2) = NW (0, T ) = NW .
Two important properties of the stochastic integral are formulated in the the following:

Proposition 2.17. Assume that Φ1,Φ2 ∈ N 2
W (0, T ;L2

0). Then

E(Φi ·W (t)) = 0, E(‖Φi ·W (t) ‖2) < +∞, t ∈ [0, T ], i = 1, 2.

Moreover, the covariance operators are given by the formula

Cov (Φ1 ·W (t),Φ2 ·W (s)) = E
(∫ t∧s

0
(Φ2(r)Q1/2)(Φ1(r)Q1/2)? dr

)
.
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Corollary 2.18. Under the hypotheses of the previous proposition, we have

E(〈Φ1 ·W (t),Φ2 ·W (s)〉) = E
(∫ t∧s

0
tr[(Φ2(r)Q1/2)(Φ1(r)Q1/2)?] dr

)
.

Using this integration theory, we will next state some results on the existence and uniqueness
of solutions for linear SPDEs. Therefore let W (t) be a Q-Wiener process as defined above.
Consider the linear equation

{
dX(t) = [AX(t) + f(t)] dt+B dW (t),
X(0) = ξ,

(2.3)

where A : D(A) ⊂ H → H and B : U → H are linear operators, f is an H-valued stochastic
process.

Assumption 2.19. Assume that the deterministic Cauchy problem
{
u′(t) = Au(t),
u(0) = x ∈ H

is uniformly well posed and that B is bounded, that is

1. A generates a strongly continuous semigroup S(·) inH, which is explained in Appendix A,

2. B ∈ L(U,H).

Assumption 2.20. Furthermore we require that

1. f is a predictable process with Bochner integrable trajectories on an arbitrary finite
interval [0, T ],

2. ξ is F0-measurable.

Remark 2.21. If W is a Q-Wiener process in U , then W1 = BW is a BQB?-Wiener process in
H. So we could assume, without loss of generality, that U = H.

Definition 2.22. An H-valued predictable process X(t), t ∈ [0, T ], is said to be a strong
solution to Equation (2.3) if X takes values in D(A), PT -a.s.,

∫ T
0 |AX(s)| ds < +∞, P -a.s.,

and for t ∈ [0, T ],

X(t) = x+
∫ t

0
[AX(s) + f(s)] ds+BW (t), P -a.s.

This definition is only meaningful, if BW is a U -valued process and therefore requires that
tr BQB? < +∞.

Moreover, an H-valued predictable process X(t), t ∈ [0, T ], is said to be a weak solution of
Equation (2.3) if the trajectories of X(·) are P -a.s. Bochner integrable and if for all ζ ∈ D(A?)
and all t ∈ [0, T ] we have

〈ζ,X(t)〉 = 〈ζ, x〉+
∫ t

0
[〈A?ζ,X(s)〉+ 〈ζ, f(s)〉] ds+ 〈ζ,BW (t)〉, P -a.s..
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Theorem 2.23. Let the stochastic convolution WA be given by

WA(t) :=
∫ t

0
S(t− s)B dW (s),

let Assumption 2.19 hold, and

∫ T

0
‖S(r)B ‖2L0

2
dr =

∫ T

0
tr[S(r)BQB?S?(r)] dt < +∞. (2.4)

Then

1. the process WA(·) is Gaussian, continuous in mean square and has a predictable modifi-
cation,

2. it holds

Cov (WA(t)) =
∫ t

0
S(r)BQB?S?(r) dr, t ∈ [0, T ].

Theorem 2.24. Let Assumption 2.19, Assumption 2.20, and Equation (2.4) hold. Then
Equation (2.3) has exactly one weak solution which is given by the formula

X(t) = S(t)ξ +
∫ t

0
S(t− s)f(s) ds+

∫ t

0
S(t− s)B dW (s), t ∈ [0, T ].

Lemma 2.25. Let A be the generator of a semigroup. Assume tr Q < +∞ and set

Y (t) :=
∫ t

0
S(t− s)W (s) ds, t ≥ 0.

Then Y (·) belongs to C1([0,∞);D(A)), P -a.s., and

WA(t) = W (t) +A

∫ t

0
S(t− s)W (s) ds

=
∂

∂ t

∫ t

0
S(t− s)W (s) ds =

∂

∂ t
Y (t), t ≥ 0.

Lemma 2.26. Let A be a linear closed generator of a semigroup. For fixed k ∈ N let

∫ t

0

∥∥∥Ak+1S(t− s)W (s)
∥∥∥

2
ds < +∞,

where W (s) ∈ D(Ai), i = 1, . . . , k + 1 and S(t− s)W (s) ∈ D(Ak+1). Then

Ak

∫ t

0
S(t− s) dW (s) = AkW (t) +

∫ t

0
S(t− s)Ak+1W (s) ds.
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Proof. First an application of Lemma 2.25 and the linearity of A lead to

Ak

∫ t

0
S(t−s) dW (s) = Ak(W (t)+A

∫ t

0
S(t−s)W (s) ds) = AkW (t)+Ak+1

∫ t

0
S(t−s)W (s) ds.

Then Proposition 2.6 yields

Ak

∫ t

0
S(t− s) dW (s) = AkW (t) +

∫ t

0
Ak+1S(t− s)W (s) ds.

And finally Theorem 1.2.4 in [74] implies

Ak

∫ t

0
S(t− s) dW (s) = AkW (t) +

∫ t

0
S(t− s)Ak+1W (s) ds.

Theorem 2.27. Assume that

1. tr Q < +∞, U = H, B = 1l, ImQ1/2 ⊂ D(A), and tr(AQ1/2) < +∞),

2. f ∈ C1([0, T ];H) ∩ C([0, T ];D(A)), P -a.s.,

3. ξ ∈ D(A), P -a.s..

Then Problem (2.3) has a strong solution.

Theorem 2.28. Assume that

1. (−A)β ∈ L2(H) for some β ∈ (1
2 , 1),

2. f ∈ Cα([0, T ];H) ∩ C([0, T ];DA(α,∞)) for some α ∈ (0, 1), P -a.s.,

3. ξ ∈ D(A), P -a.s..

Then Problem (2.3) has a strong solution.

Having considered linear SPDEs with additive noise, we will next look at results about those
with multiplicative noise. Therefore let the following Cauchy problem be given

{
dX(t) = [AX(t) + f(t)] dt+B(X(t)) dW (t),
X(0) = ξ,

(2.5)

on a time interval [0, T ], where A : D(A) ⊂ H → H is the infinitesimal generator of a strongly
continuous semigroup S(·), ξ is an H-valued, F0-measurable random variable, f is a predictable
process with locally integrable trajectories, and B : D(B)→ L0

2 is a linear operator.
Let {gj} be a complete orthonormal basis in U0 := Q1/2U , where U is a Hilbert space. Since

for arbitrary x ∈ D(B), B is a Hilbert–Schmidt operator from U0 into H,

∞∑

j=1

|B(x)gj |2 < +∞, x ∈ D(B).
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The operators
Bjx = B(x)gj , x ∈ D(B), j = 1, 2, . . .

are linear and

B(x)u =
∞∑

j=1

Bjx〈u, gj〉U0 , x ∈ D(B), u ∈ U0.

Consequently if

W (t) =
∞∑

j=1

βj(t)gj ,

then Equation (2.5) can equivalently be written as
{
dX(t) = [AX(t) + f(t)] dt+

∑∞
j=1BjX(t) dβj(t),

X(0) = ξ,

Similar to Definition 2.22 for additive noise, we define strong, weak, and mild solutions.

Definition 2.29. A strong solution of Problem (2.5) is an H-valued predictable process X(t),
t ∈ [0, T ], which takes values in D(A) ∩D(B), PT -a.s. such that

P
(∫ T

0
(|X(s)|+ |AX(s)|) ds < +∞)

= 1,

P
(∫ T

0
‖B(X(s)) ‖2L0

2
ds < +∞)

= 1,

and, for arbitrary t ∈ [0, T ] and P -a.s.,

X(t) = ξ +
∫ t

0
[AX(s) + f(s)] ds+

∫ t

0
B(X(s)) dW (s).

An H-valued predictable process X(t), t ∈ [0, T ], is said to be a weak solution to Problem (2.5)
if X takes values in D(B), PT -a.s.,

P
(∫ T

0
|X(s)| ds < +∞)

= 1, (2.6)

P
(∫ T

0
‖B(X(s)) ‖2L0

2
ds < +∞)

= 1, (2.7)

and, for arbitrary t ∈ [0, T ] and ζ ∈ D(A?),

〈ζ,X(t)〉 = 〈ζ, ξ〉+
∫ t

0
[〈A?ζ,X(s)〉+ 〈ζ, f(s)〉] ds+

∫ t

0
〈ζ,B(X(s))〉 dW (s), P -a.s..

An H-valued predictable process X(t), t ∈ [0, T ] is called a mild solution to (2.5), if X takes
values in D(B), PT -a.s., (2.6) and (2.7) hold, and, for arbitrary t ∈ [0, T ],

X(t) = S(t)ξ +
∫ t

0
S(t− s)f(s) ds+

∫ t

0
S(t− s)B(X(s)) dW (s).
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Theorem 2.30. Assume that A : D(A) ⊂ H → H is the infinitesimal generator of a C0-
semigroup S(·) in H. Then a strong solution is always a weak solution and a weak solution is
a mild solution of Problem (2.5). Conversely if X is a mild solution of (2.5) and

E(
∫ T

0
‖B(X(s)) ‖2L0

2
ds) < +∞,

then X is also a weak solution of (2.5).

Theorem 2.31. Assume that A is the infinitesimal generator of a C0-semigroup S(·) in H,
E(|ξ|2) < +∞, and B ∈ L(H,L0

2). Then Equation (2.5) has a unique mild solution X ∈
N 2

W (0, T ;H), identical with a weak solution.

Proposition 2.32. Assume that the hypotheses of Theorem 2.31 hold, ξ = x ∈ D(A), and
f ≡ 0. Let moreover 0 ∈ ρ(A) and BA, given by

BA(x)u := AB(A−1x)u, x ∈ H, u ∈ U,
belong to L(H,L0

2), where ρ(A) denotes the resolvent set of A. Then Equation (2.5) has a
unique strong solution.

2.2. Numerical Discretization of SPDEs

For the implementation of an SPDE using a computer, we have to discretize the deterministic
part of the equation in space and in time. Moreover we have to approximate operators and the
Wiener process. The following subsections explain shortly how discretization is done in this
thesis. We will just focus on simple schemes, but there exists a wide range of discretizations
of SPDEs. The following methods can for instance be used for solving SPDEs numerically:
finite difference methods [2, 17, 33, 34, 38, 75, 80, 88, 95, 96, 97], the splitting up method
[6, 7, 22, 35, 37, 45, 69], Galerkin approximation [31, 63], finite element methods [28], spectral
methods [88].

2.2.1. Discretization of PDEs

The approximation of deterministic partial differential equations has been studied a lot. Ref-
erences for possible discretization schemes are e.g. [19, 32, 53, 55, 56, 77, 80, 85].

In the examples of this chapter we will focus on explicit finite difference schemes for the
deterministic part and we will compare the known bounds for the deterministic heat equation
to those of the corresponding SPDEs with additive and multiplicative noise. It turns out that
we get similar results but the constants are not exactly the same. For an introduction to finite
difference methods see for instance [80]. On a finite interval [0, b] we will use an explicit scheme
in time and we will discretize the Laplacian by the three point formula, i.e.

∆un(kMx) ≈ un((k − 1)Mx− 2un(kMx) + un((k + 1)Mx)
(Mx)2 ,

where Mx is the grid size and kMx denotes the grid points. For the first and the last grid point
the boundary conditions play an important role, i.e. they define un(−Mx) and un(b+Mx). In the
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following we will use periodic boundary conditions for convenience. Therefore un(−Mx) = un(b)
and un(b + Mx) = un(0). The approximation error of the Laplace approximation by centered
differences, as denoted before, is of order O((Mx)2) if the fourth derivative of u in x exists and
if it is bounded, see e.g. [85].

2.2.2. Simulation of Hilbert Space-Valued Stochastic Processes

In the following we will see how to combine the Hilbert space-valued stochastic processes of the
previous section and the random field algorithms of Chapter 1. We first consider a Q-Wiener
process W which was defined in Definition 2.12. Let 0 = t0 < t1 < · · · < tn = t be a partition
of the interval [0, t], then W (t) can be expressed in the following way:

W (t) = W (t)−W (0) =
n−1∑

i=0

(W (ti+1)−W (ti)),

where the increments are independent with variance ti+1−ti in time and covariance Q in space.
In Chapter 1 we approximated random fields ϕ with covariance C in space. If we scale these
by
√
ti+1 − ti, the resulting GRFs will have the properties of the increments of a Q-Wiener

process, also called Brownian motion. Thus a Q-Wiener process can be approximated and
efficiently simulated by scaling the GRFs constructed in the previous chapter.

In simulations it might be interesting to simulate stochastic processesX with covariance Q in
space, but another covariance in time. Then the calculations are similar to those of real-valued
stochastic processes [52] but instead of a real-valued Brownian motion, the Q-Wiener process
is used. The following example illustrates this construction.

Example 2.33. An Ornstein-Uhlenbeck process ϕ(t, x) is either defined by the differential
equation

{
dϕ(t, x) = −γϕ(t, x) dt+ dW (t, x),
ϕ(0, x) = ϕ0(x),

or by the solution of this SDE

ϕ(t, x) = e−γt ϕ0(x) +
∫ t

0
e−γ(t−s) dW (s, x),

where γ is a real-valued constant. These two definitions lead immediately to two different ways
of implementing ϕ. The first is to simulate the SDE, i.e.

ϕ(t+ Mt, x) = ϕ(t, x)− Mt γ ϕ(t, x) + (W (t+ Mt, x)−W (t, x)),

and therefore the increments in each time step are approximated by

ϕ(t+ Mt, x)− ϕ(t, x) = −Mt γ ϕ(t, x) + (W (t+ Mt, x)−W (t, x)),

where the last expression is the increment of the Q-Wiener process which can be simulated as
presented before.

The second possible construction is to construct ϕ directely using the solution of the SDE but
the problem is that many exponential functions have to be calculated which is computationally
expensive. Therefore I recommend to use the simulation of the SDE.
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(a) heat equation, (b) motion by mean curvature, (c) segmentation,

Figure 2.1.: Examples of numerical instability when simulating SPDEs.

2.3. Numerical Stability of SPDEs

This section summarizes the work that has been done in the analysis of convergence of dis-
cretization schemes and in numerical stability analysis. Extensions of a definition of stability
from PDEs [85] and one from SDEs [52] to SPDEs are made and studied. A general problem
concerning numerical stability is that a big amount of different mathematical definitions exists.
All theses definitions try to catch the phenomenon that during a simulation on a computer
numerical errors explode and dominate the simulation such that the solution is not usable at
all. Examples are shown in Figure 2.1 in the case of a heat equation, motion by mean cur-
vature, and segmentation. In the following we will first look at what research has been done
using different definitions. Afterwards we will generalize stochastically numerical stability of
Kloeden and Platen in [52] and show that this definition does not seem to be useful for SPDEs.
Afterwards we extend the definition of numerical stability of Sewell [85] from classical PDE
theory to SPDEs. We will explicitely calculate the critical values for stability for the heat
equation with additive and multiplicative noise using these two definitions. It turns out that
the stability results are different.

2.3.1. Convergence in the Literature

Numerical stability of SDEs and SPDEs has rarely been studied in the literature so far. All
that has been done are proofs for the convergence of discretization schemes. It turns out that
many different definitions of stability and convergence are used and it is not easy to compare
the different approaches. We will look at [35, 37, 39, 40, 44, 63, 86, 87, 88, 90] where we start
with SDEs and proceed to SPDEs afterwards.

Papers written about SDEs are [39, 44, 90]. We start in alphabetical order with [39] written
by Erika Hausenblas.
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Error Analysis for Approximation of Stochastic Differential Equations Driven by Poisson
Random Measures

This section summerizes [39] by Erika Hausenblas. Let Xt be a real-valued process and solution
to

Xt(x0) = x0 +
∫ t

0

∫
σ(Xs−, z)(µ− γ)(dz, ds) +

∫ t

0
b(Xs−) ds (2.8)

where µ is a Poisson random measure satisfying certain conditions and γ is its compensator.
Assume that b : R→ R and σ : R× R→ R are Lipschitz continuous in x. The SDE admits a
unique solution and the solution is a semimartingale. Let Xn

t be the approximation of Xt by
the Euler scheme with step size 1/n defined by

{
Xn

t = Xn
[t]n

+ b(X[t]n)(t− [t]n) +
∫ t
[t]n

∫
σ(Xn

[t]n
, z)(µ− γ)(dz, ds),

Xn
0 = x0,

where [t]n = [tn]/n. The entity E(f(Xt)), f ∈ L∞, will be approximated by a finite sum over
a large number N of independent trajectories, i.e.

E(f(XT )) ≈ 1
N

N∑

i=1

f(XN
t (ωi)).

The resulting error e(n,N) depends on the sample size N and on the step size 1/n, i.e.

e(n,N) ≤ ∣∣ 1
N

N∑

i=1

f(XN
t (ωi))− E(f(Xn

T ))
∣∣ +

∣∣E(f(Xn
T ))− E(f(XT ))

∣∣ =: I + II.

If the driving process has finite variance, an upper bound for (I) can be found by the central
limit theorem or large deviation results. The main result of the paper is an error bound for
the entity (II) under appropriate hypotheses for σ and b.

Let µ be a random measure generated by a Poisson point process whose characteristic mea-
sure is Lebesgue, γ is its compensator. Let Xt be a solution of (2.8).

Definition 2.34 (Bass and Cranston [4, p. 513]). σ(x, z) is called quasi-stable of order k
between the indices α− and α+ if there exist 0 ≤ z0 < +∞ and 0 < c1, c2 < +∞ such that

c1 |z|−
1

α−−i ≤ ∣∣∂i
zσ(x, z)

∣∣ ≤ c2 |z|−
1

α+−i (2.9)

for i = 0, . . . , k, |z| > z0, and all x.

Theorem 2.35. Let Xt be the solution of SDE (2.8), where σ(x, z) is quasi-stable of order
five between the indices α− and α+, 0 < α− ≤ α+ < 2, such that ∂zσ(x, z) = σz(x, z) ≥ 0.
Moreover, assume that there exist constants 1 ≤ M < +∞ and 1 ≤ mb ¿ M such that σ and
b satisfy the following hypotheses:

(H0) For 0 < j ≤ 5, x ∈ R, and i = 1, . . . , 5− j, either ∂j
x σ(x, z) = 0 or estimate (2.9) holds

for ∂j
x σ(x, z).
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(H1) For all x and z the quantities |∂i
z∂

j
xσ(x, z)| are uniformly bounded by M in z and x for

all i and j, i+ j ≤ 5, j 6= 0.

(H2) supx

∣∣∂i
xb(x)

∣∣, i = 1, . . . , 5, is bounded by mb and supx

∣∣∂i
xσ(x, z)

∣∣, i = 1, . . . , 5, is bounded
by hσ(z) such that ‖hσ ‖p ≤M for all p ≥ 2.

(H3) Let z̄ = supz

{|σz(s, z)| > 1
4 for all x

}
. Then the functions (∂x + σx(x,z)

σz(x,z)∂z)iσx(x, z), i =
1, 2, 3, 4, are uniformly bounded by M in x for all |z| < z̄ with the convention that 0/0 = 0.

If Xt is approximated by the Euler scheme, i.e. by Xn
t , then for f ∈ L∞

|E(f(XT ))− E(f(Xn
T ))| ≤ C(T ) · n−1 ·M21(1 + exp(M16)).

The Optimal Discretization of Stochastic Differential Equations

The following paper [44] of Hofmann, Müller-Gronbach, and Ritter from 2001 studies the
pathwise approximation of scalar stochastic differential equations and shows an optimal dis-
cretization in the sense of a mean squared L2-error. Let

dXt = a(t,Xt) dt+ σ(t,Xt) dWt, t ∈ [0, 1] (2.10)

be given with one-dimensional Brownian motion W , drift coefficient a, diffusion coefficient σ,
and initial value X0. A pathwise approximation to the solution X is a stochastic process X̄
whose paths are close to the respective paths of X. The error e(X̄) of the method X̄ is defined
by

e(X̄) = E(
∥∥X − X̄∥∥2

2
)1/2,

i.e. the quality of X̄ is characterized globally on [0, 1] and not only on a finite number of points.
The authors answer the question of how much it costs to achieve an error of at most ε, i.e.

they give an upper bound for specific methods and lower bounds for arbitrary methods. Thus
they determine the smoothness of the solution at the point (t,Xt) by

E((Xt+δ −Xt)2|Xt) = σ2(t,Xt) · δ + o(δ),

and they call |σ| (t,Xt) a conditional Hölder constant. Their method X̂∗∗
h works in the following

way. For h > 0 take kh ∈ N such that

lim
h→0

kh · h = 0

and
lim
h→0

k2
h · h = +∞.

Set
τi,0 = i/kh, i = 0, . . . , kh − 1

and suppose that
xi = X̂∗∗

h (τi,0)
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is already computed, where x0 = X(0). Put

σi = σ(τi,0, xi), ai = a(τi,0, xi),

and define an adaptive discretization of the subinterval (τi,0, τi+1,0) by

τi,j+1 = τi,j + h/ |σi|
as long as the right-hand side is less than τi+1,0. Here τkh,0 = 1. On the subinterval (τi,0, τi+1,0)
the Euler method is used

X̂∗∗
h (τi,j+1) = X̂∗∗

h (τi,j) + ai · (τi,j+1 − τi,j) + σi · (W (τi,j+1)−W (τi,j)),

without updating the drift and diffusion coefficient. The approximated solution at the right
endpoint xi+1 = X̂∗∗

h (τi+1,0) is computed by a single Milstein step of length 1/kh starting at
the left endpoint τi,0 with initial value xi. The Milstein step is based on W (τi,j+1)−W (τi,j).
Globally piecewise linear interpolation is used. This method satisfies

lim
h→0

n(X̂∗∗
h )1/2 · e(X̂∗∗

h ) = E
(∫ 1

0
|σ| (t,Xt) dt

)
/
√

6,

where h > 0 is the basic step size and n(X̂∗∗
h ) is the expected number of observations of W ,

and gives an asymptotic upper bound for the method. The matching asymptotic lower bound
reads

lim inf
N→∞

N1/2 · e(X̄N ) ≥ E
(∫ 1

0
|σ| (t,Xt) dt

)
/
√

6,

for every sequence of methods X̄N such that n(X̄N ) ≤ N . It follows that the method X̂∗∗
h is

asymptotically optimal, that the best order of convergence is 1/2 in terms of n(X̄), and that
the best asymptotic constant is given by the mean of the conditional Hölder constant in space
and time.

Mean-Square Stability of Second-Order Runge-Kutta Methods for Stochastic Differential
Equations

The paper [90] published in 2005 by Tocino shows numerical stability of second-order Runge-
Kutta methods using test equations. The author considers the scalar Itô SDEs

{
dXt = a(t,Xt) dt+ b(t,Xt) dWt, t0 ≤ t ≤ T,
Xt0 = x0,

where a, b : [t0, T ] × R → R are the drift and diffusion coefficients, {Wt}t0≤t≤T represents the
one-dimensional standard Wiener process and for simplicity x0 ∈ R is nonrandom. In order to
ensure existence and uniqueness of solutions as well as the existence of absolute moments, he
assumes

1. (Lipschitz) There exists a constant K1 > 0 such that

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K1 |x− y|
for all t ∈ [t0, T ] and x, y ∈ R.
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2. (Linear growth bound) There exists a constant K2 > 0 such that

|a(t, x)|2 + |b(t, x)|2 ≤ K2(1 + |x|2)
for all t ∈ [t0, T ] and x ∈ R.

The numerical schemes presented in the paper are all constructed along time discretizations
t0 ≤ t1 ≤ · · · ≤ tN = T with constant step size

∆ =
T − t0
N

> 0,

therefore tn denotes the n-th step point. Let Cβ
P be the space of all f : [t0, T ] × R → R for

which f and all its partial derivatives up to order β have polynomial growth, i.e. there exist
K > 0 and r ∈ N, r < +∞ such that |f(t, x)| ≤ K(1 + |x|r) for all t ∈ [t0, T ] and x ∈ R.

Definition 2.36. A discrete approximation X̄ =
{
X̄0, X̄1, . . . , X̄N

}
(based on a step size ∆)

is said to converge weakly with order β towards the solution X = {Xt} of the SDE if for each
g ∈ C2β+2

P there exist constants Kg > 0 (not depending on ∆) and δ0 > 0 such that
∣∣E(g(X̄N )− g(Xt))

∣∣ ≤ Kg∆β

for all ∆ ∈ (0, δ0).

For weakly convergent approximations, the author proposes a second-order Runge-Kutta
method but proves mean-square stability only for the test equation

dXt = λXt dt+ µXt dWt, t > t0, λ, µ ∈ C, (2.11)

where mean-square stability is defined in the following way.

Definition 2.37. Let Xt be the solution of Equation (2.11) then

lim
t→∞E(|Xt|2) = 0

is called mean-square stability.
Similarly, a numerical solution {Xn}n∈N generated by a scheme with equidistant step size

applied to test equation (2.11) is mean-square stable (MS-stable) if

lim
n→∞E(|Xn|2) = 0.

Using this definition Tocino shows MS-stability for second-order Runge-Kutta methods and
proves that the domain of MS-stability of a Runge-Kutta scheme depends on just one dis-
cretization parameter. He also confirms his theoretical result with numerical experiments.

This finishes the presentation of literature about convergence of discretization schemes of
SDEs. More literature about stability analysis can be found in the references of the papers
presented above and in [52]. Numerical stability of SDEs will be presented in Section 2.3.2.
Next we will have a look at some work that has been done on the numerical stability analysis
of SPDEs. We will start with an overview paper written by Gyöngy.

53



2. Simulation of Stochastic Partial Differential Equations

Approximations of Stochastic Partial Differential Equations

In [35] Gyöngy summarizes results of [37] and [95, 96]. The methods he uses are the splitting
up method and a finite difference scheme. For the splitting up method the following equation
is considered

du(t, x) =
d1∑

r=1

(Lru(t, x) + fr(t, x)) dt

+(L0u(t, x) + f0(t, x)) dV 0
t + (Mku(t, x) + gk(t, x)) dY k

t ,

where t ∈ (0, T ], x ∈ Rd, d1 ∈ N with initial condition u(0, x) = u0(x), the operators Lr and
Mk are of the form

Lr = aij
r (t, x)Dij + ai

r(t, x)Di + ar(t, x), Mk = bik(t, x)Di + bk(t, x),

and Y is a d0-dimensional continuous Ft-martingale and V0 is an Ft-adapted continuous in-
creasing process.

Assumption 2.38 (Smoothness of the coefficients). All the coefficients aij
r (t, x), ai

r(t, x),
ar(t, x), bik(t, x), bk(t, x) are predictable for any x ∈ Rd and, for any (ω, t) ∈ Ω × (0,∞),
their derivatives up to order m + 3 exist, are continuous, and by magnitude are bounded by
K.

Assumption 2.39. For each ω ∈ Ω, the functions fr(t) = fr(t, ·) are weakly continuous as
Hm+3-valued functions, gk(t) = gk(t, ·) are weakly continuous as Hm+4-valued functions, and
u0 ∈ L2(Ω,F0;Hm+3). Furthermore, fr and gk are predictable and

E( sup
t∈[0,T ]

‖ f ‖pm+3) + E( sup
t∈[0,T ]

‖ g ‖pm+4) + E(‖u0 ‖pm+3) ≤ K,

where ‖ f ‖2m+3 =
∑

r ‖ fr(t) ‖2m+3 and ‖ g ‖2m+4 =
∑

k ‖ gk(t) ‖2m+4.

Assumption 2.40. The process V 0
t is predictable, continuous, increasing, and starting at zero.

We have V 0
T + 〈Y 〉T ≤ K. The matrices (aij

r ) are nonnegative and, for any ω ∈ Ω, x, λ ∈ Rd,
we have

2aij
0 (t, x)λiλj dV 0

t − bik(t, x)bjr(t, x)λiλj d〈Y k, Y r〉t ≥ 0

in the sense of measures on [0, T ].

Assumption 2.41. There exists a continuous Ft-martingale

Zt = (Z1
t , . . . , Z

d2
T )

and for any x ∈ Rd there exist bounded predictable functions

hr(t, x) = (aij
γr(t, x), a

i
γr(t, x), aγr(t, x), fγr(t, x))

defined on Ω× (0, T ] for r = 0, 1, . . . , d2, such that

1. d〈Z〉t ≤ dVt,
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2.

h(t, x) = h(0, x) +
∫ t

0
h0(s, x) dVs +

d2∑

r=1

∫ t

0
hr(s, x) dZr

s

for all ω and t, where, as usual, the summation in r is carried over all possible values,
which in this case are 1, 2, . . . , d2. Furthermore, all hr are continuously differentiable
with respect to x up to order m+ 1 and

∣∣Dβhr

∣∣ ≤ K for |β| ≤ m+ 1.

Theorem 2.42 ([36]). Under Assumptions 2.38, 2.39, 2.40, and 2.41 there is a constant N
depending only on d, d0, d1, d2, K, p, M , and T , such that

E
(
max
t∈Tn

‖u(n)(t)− u(t)‖pm
) ≤ N n−p

for all integers n ≥ 1.

Let C l = C l(Rd) denote the Banach space of functions f = f(x), x ∈ Rd, having continuous
derivatives up to order l, such that ‖ f ‖Cl := supx∈Rd

∑
|β|≤l

∣∣Dβf(x)
∣∣ < +∞, then we have

the following two corollaries.

Corollary 2.43 ([36]). Assume the conditions of the previous theorem. If Assumptions 2.38,
2.39, and 2.41 hold with m > l + d/2 and nonnegative integer l, then for some N , where
N := N(d, d0, d1, d2,K, p,m),

E(max
t∈Tn

‖u(n)(t)− u(t)‖p
Cl) ≤ N n−p

for all n ≥ 1.

Corollary 2.44 ([36]). Assume the conditions of Theorem 2.42. If Assumption 2.39 holds
with p > κ, for some κ > 1, then there exists a random variable ξ, such that almost surely

max
t∈Tn

‖u(n)(t)− u(t)‖X ≤ ξ n−1+1/κ,

for all n ≥ 1, where X = Hm, or X := C l can also be taken if m > l + d/2.

In the second part of the paper approximations and estimates on finite difference schemes
are considered. The results summarized in this part are due to Yoo [95, 96, 97] and based on
an L2-theory for SPDEs. Therefore consider the SPDE

{
du(t, x) = (Di(aijDju(t, x) + f i(t, x)) dt+ (Dib

i
k(t, x) + gk(t, x)) dW k

t ,

u(0, x) = u0(x), x ∈ Rd,
(2.12)

where W is a d1-dimensional Wiener process and aij , bik, f
i, gk are functions on Ω× [0, T ]×Rd.

Let T , K, and λ > 0 be fixed positive numbers and let m ≥ 0 be a fixed integer. Assume that
the following conditions are satisfied.
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Assumption 2.45. The coefficients aij(t, x), bik(t, x), are predictable for any x ∈ Rd, and their
derivatives up to order m are continuous and by magnitude are bounded by K. Furthermore,
for l ≤ m and

Kl(t) :=
∫ t

0

(∑

i

∥∥ f i(s)
∥∥2

l
+

∑

k

‖ gk(s) ‖2l
)
ds,

let
E(‖u0 ‖2m) + E(Km(T )) < +∞.

Assumption 2.46. For all ω ∈ Ω, t ≥ 0, x, z ∈ Rd

(2aij(t, x)− bikbjk(t, x))zizj ≥ λ
∑

i

∣∣zi
∣∣2 .

These assumptions imply that the Cauchy problem (2.12) has a unique solution u, and

E
(

sup
0≤t≤T

‖u(t) ‖2m
)

+ E
(∫ T

0
‖u(t) ‖2m+1 dt

)

≤ N
(
E

(‖u0 ‖2m
)

+ E
(∫ T

0

(∑

i

∥∥ f i(t)
∥∥2

m
+

∑

k

‖ gk(t) ‖2m
)
dt

))

with some constant N .
Let Zd

h :=
{
hz = (hz1, hz2, . . . , hzd), z ∈ Zd

}
be the grid for some fixed constant h ∈ (0, 1),

where Zd is a fixed grid. Define the finite difference operators δ+i and δ−i by

δ+i v(x) := h−1(v(x+ hei)− v(x)),
δ−i v(x) := h−1(v(x)− v(x− hei)),

where e1, e2, . . . , ed is the standard basis in Rd, and consider the equation

duh(t, x) = δ−i (aij(t, x)δ+j uh(t, x) + f i(t, x)) dt

+ (bik(T, x)δ
+
i uh(t, x) + gk(t, x)) dW k

t , t ∈ [0, T ], x ∈ Zd
h.

(2.13)

Define the discrete Sobolev space Hm
h to be the space of all real-valued functions f on Zd

h with
norm

‖ f ‖Hm
h

:=
(∫

[−π/h,π/h]d
(1 + |y|2)m

∣∣∣f̂(y)
∣∣∣
2
dy

)1/2
< +∞,

where f̂(y) := (2π)−d
∑

z∈Zd
h
eih(z,y)f(z) is the discrete Fourier transform of f .

Theorem 2.47 ([95],[96]). Let Assumptions 2.45, 2.46 hold with m > d/2 + 1 and let m′ ≥ 0
be such that m < m′ + d/2. Then Equation (2.13) has a unique solution uh, and

E
(

sup
0≤t≤T

‖uh(t) ‖2
Hm′

h

)
+ E

(∫ T

0
‖ eh(t) ‖2

Hm′+1
h

)
dt

≤ N
(
E

(‖u0 ‖2Hm′
h

)
+ E

(∫ T

0

(∑

i

∥∥ f i(t)
∥∥2

Hm′
h

+
∑

k

‖ gk(t) ‖2Hm′
h

)
dt

))

56



2.3. Numerical Stability of SPDEs

with a constant N . Assume moreover that m < m′ + 2 + d/2. Then for the error eh := u− uh

we have

E
(

sup
0≤t≤T

‖ eh(t) ‖2
Hm′

h

)
+ E

(∫ T

0
‖uh(t) ‖2

Hm′+1
h

)

≤ Nh2
(
E

(‖u0 ‖2m
)

+ E
(∫ T

0

(∑

i

∥∥ f i(t)
∥∥2

m
+

∑

k

‖ gk(t) ‖2m
)
dt

))
,

with some constant N , depending only on λ, K, m, and T .

Next Equation (2.13) is discretized in time along the partition Tn := {ti = i T/n, i = 0, . . . , n}
of [0, T ] for a fixed integer n ≥ 1. Then the Euler approximation applied to Equation (2.13)
gives





Mun
h(t, x) = δ−i (aij(t, x)δ+j u

n
h(t, x) + f i(t, x))Mt

+(bik(t, x)δ
+
i u

n
h(t, x) + gk(t, x)) MW k

t , t ∈ Tn, x ∈ Zd
h,

un
h(0, x) = u(0, x), x ∈ Zd

h.

In order to estimate the error enh := uh − un
h, one needs assumptions on the dependence of the

coefficients aij , bik, and the free terms f i, gk on t.

Assumption 2.48. For all ω ∈ Ω, t ∈ [0, T ], x ∈ Rd, and for all multiindices |α| ≤ m
∑

i,j

∣∣ ∂
∂ t
Dαaij

∣∣ +
∑

i,k

∣∣ ∂
∂ t
Dαbik

∣∣ ≤ K.

Moreover ∂
∂ tf

i(t) ∈ Hm, ∂
∂ t g

i
k(t) ∈ Hm for all ω, t, i, k, and

∑

i

E
(∫ T

0

∥∥ ∂
∂ t
f i(t)

∥∥2

m
dt

)
+

∑

i,k

E
(∫ T

0

∥∥ ∂
∂ t
gi
k(t)

∥∥2

m
dt

)
< +∞.

Theorem 2.49 ([95],[96]). Let Assumptions 2.45, 2.46, and 2.48 hold with m > m′ + 2 + d/2
where m′ is a nonnegative integer. Then there exists 0 < θ = θ(λ,K,m, d) such that if
Mt/h2 ≤ θ then

E
(
sup
t∈Tn

‖ enh(t) ‖2
Hm′

h

)
+ E

( n∑

k=0

‖un
h(t, x) ‖2

Hm′+1
h

)
Mt

≤ NMtE
(
‖u0 ‖2m +

∫ T

0

(∑

i

∥∥ f i(t)
∥∥2

m
+

∑

k

‖ gk(t) ‖2m
)
dt

+
∑

i

∫ T

0

∥∥ ∂
∂ t
f i(t)

∥∥2

m
dt+

∑

ik

∫ T

0

∥∥ ∂
∂ t
gi
k(t)

∥∥2

m
dt

)
,

where N is a constant depending only on λ, d, T , K, and m.

And finally the error u− un
h can be estimated in the following way.
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Theorem 2.50 ([95], [96]). Let Assumptions 2.45, 2.46, and 2.48 hold with m > l + 2 + d,
where l is a nonnegative integer. Then there exists 0 < θ = θ(λ,K,m, d) such that if Mt/h2 ≤ θ,
then

E
(
sup
t∈Tn

sup
z∈Zd

h

|δα(u(t, x)− un
h(t, x))|2)

≤ Nh2E
(
‖u0 ‖2m +

∑

i

∫ T

0

(∥∥ f i(t)
∥∥2

m
+

∥∥ ∂
∂ t
f i(t)

∥∥2

m

)
dt

+
∑

i,k

∫ T

0

(∥∥ gi
k(t)

∥∥2

m
+

∥∥ ∂
∂ t
gi
i(t)

∥∥2

m

)
dt

)
,

for all multiindices |α| ≤ l, where N is a constant depending only on λ, d, K, T , l, and m.

The last part of the presented paper applies the results to nonlinear filtering.

A Numerical Approximation of Parabolic Stochastic Partial Differential Equations Driven
by a Poisson Random Measure

In the following paper [40] by Hausenblas and Marchis, the authors give estimates on the error
of their approximation compared to the solution of the SPDE of the following form

{
du(t) = Au(t) dtf(u(t−)) dt ∈Z g(u(t−); z) η̃(dz, dt),
u(0) = u0 ∈ V−ρ,

(2.14)

where f : E → V−δf
and g : E → L(Z;V−δg) are not necessarily Lipschitz continuous functions

and ρ, δf , δg are some non negative constants specified later. Furthermore η̃ = η−γ where η is a
Poisson random measure over a probability space (Ω,F , P ) and γ its compensator, and for δ > 0
Vδ is the domain of the fractional power of A with exponent δ and norm ‖ · ‖δ :=

∥∥ (I −A)δ · ∥∥,
i.e. Vδ := D((I−A)δ). For n ∈ N let V−n be the completion of the Banach space E with respect
to the norm ‖ · ‖−n := ‖ (−A)−n · ‖. If δ < 0 such that δ = −n+β where β ∈ [0, 1) and n ∈ N
then Vδ denotes the domain of the fractional power of A in V−n with exponent β and norm
‖ · ‖δ :=

∥∥ (I −A)β · ∥∥−n
.

The space discretization will satisfy
{
dun(t) +Anun(t−) dt = Pnf(Enun(t)) dt+

∫
Zn
Png(Enun(t); z) η(dz; dt),

un(0) = Pnx,

where An = PnAEn is a bounded operator on Xn approximating A, the operator Pn denotes
a ‘projection’ from X into Xn, where Xn is finite dimensional, of dimension dn. Let En be an
‘interpolation’ operator that associates with each element of Xn an element of X. The space Z
is approximated by Zn, where Zn := PnZ and η is approximated by ηn. The authors assume
that the space discretization satisfies the following assumptions.

Assumption 2.51.

1. X, X1, X2, X3,. . . are all real- or all complex-valued Banach spaces. All norms will be
denoted by ‖ · ‖.
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2. Pn is a bounded linear operator, satisfying ‖Pnx ‖ ≤ p ‖x ‖ for all n ≥ 1, x ∈ X for some
p ≥ 0.

3. En is a bounded linear operator, satisfying ‖Enx ‖ ≤ q ‖x ‖ for all n ≥ 1, x ∈ X and for
some q ≥ 0.

4. PnEnx = x for all n ≥ 1 and x ∈ Xn.

Moreover they assume the following stability condition.

Assumption 2.52. An is a bounded operator and there exist some M < +∞ and ω ∈ R such
that ∥∥ eAnt

∥∥ ≤Meωt for t ≥ 0, n ≥ 1.

Assumption 2.53. Assume that there exist γ > 0 and some function ϕ : N× (0, γ] → [0, γ],
with ϕ(n, δ)→ 0 as n→ +∞ and

‖ (I −EnPn)x ‖ ≤ ϕ(n, δ) ‖x ‖δ ,
‖A(I −EnPn)x ‖ ≤ ϕ(n, δ) ‖An ‖ ‖x ‖δ , for all δ ∈ (0, γ],

for x ∈ Vα, where α is given by Theorem 2.54.

The time discretization is either done by an explicit or an implicit Euler scheme. Let vk
n =

un(kτn) where τn is the step size corresponding to the space Xn. For the explicit scheme we
have

{
vk+1
n = (1 + τnAn)vk

n + τnPnf(Env
k
n) +

∫ (k+1)τn

kτn

∫
Z Png(Enun(t); z) ηn(dz; dt),

v0
n = Pnu0,

(2.15)

and for the implicit scheme
{
vk+1
n = (1− τnAn)−1

(
vk
n + τnPnf(kτn, vk

n) + ξk
n(Enun(t))

)
,

v0
n = Pnu0,

(2.16)

where

ξk
n(Enun(t)) :=

∫ (k+1)τn

kτn

∫

Z
Png(Enun(t); z) ηn(dz; dt).

All these prerequisites are used in the following main result of the paper that gives an estimate
on the error.

Theorem 2.54 ([40]). Let X be a Banach space of M -type p — i.e. there exists a constant
C = C(X, p) such that for any X-valued discrete martingale (M0,M1,M2 . . .) with M0 = 0,
the inequality

sup
n≥1

E(|Mn|p) ≤ C
∑

n≥1

E(|Mn −Mn−1|)

holds — Z ⊂ X, X and Z the Borel σ-fields. Let A be an unbounded operator on X with domain
D(A) generating an analytic semigroup on X. Let (Ω,F , (Ft)t≥0, P ) be the usual filtration and
η a Poisson random measure with symmetric , p-integrable, characteristic measure ν ∈ L(Z).
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We assume that the Poisson random measure η is approximated by a Poisson random measure
ηn with intensity νn such that there exists a function γ : N→ R+ with

∫

Z
|z|p (σ − σn) (dz) ≤ γ(n).

Let 1 < p ≤ 2 and q = pm for some m ∈ N. Let δf and δg be two constants such that
δf < 1− q−1 and δg < p−1− q−1. We assume that f : V−δf

→ X and g : V−δg ×Z → X satisfy
the growth conditions

‖ f(x) ‖−δf
≤ Cf (1 + ‖x ‖), x ∈ X,

∫

Z
‖ g(x; z) ‖pl

−δg
ν(dz) ≤ Cg(1 + ‖x ‖pl

), x ∈ X, l = 1, . . . ,m,

and are globally Lipschitz, i.e.

‖ f(x− y) ‖−δf
≤ Lf ‖x− y ‖ , x, y ∈ X,

∫

Z
‖ g(x; z)− g(y; z) ‖pl

−δg
≤ G(‖x− y ‖)pl

, x, y ∈ X, l = 1, . . . ,m,

‖ g(x; z1)− g(x; z2) ‖−δg−γ ≤ L(‖x ‖) ‖ z1 − z2 ‖−γ , x ∈ X, z1, z2 ∈ Z, 0 < γ < p−1 − q−1,

where G,L : R→ R are globally Lipschitz and continuous. Assume there exists 0 < δ < 1 such
that the initial condition u0 belongs to Vδ. Assume furthermore that the space discretization
satisfies the Assumptions 2.51, 2.52, 2.53 and let vk

n be the approximation of (2.14) given by
Equation (2.15) or (2.16), respectively. Then we have for all 1 ≤ r ≤ p and 0 < ε < α

sup
0≤k≤Nn

E(‖u(kτn)− vk
n‖r)

1
r ≤ C1

ε τα−ε + C2
ε ϕ(n, α− ε) + C3 (ϕ(n, δ) + τ δ

n),

where α = min(1− q−1 − δf , p−1 − q−1 − δg) and T = τnNn < +∞ is fixed.

A Numerical Scheme for Stochastic PDEs with Gevrey Regularity

Lord and Rougemont consider in [63] the SPDE

du(t) = ∆u(t) + F (u(t)) dt+QdW (t) (2.17)

with periodic boundary conditions on [0, 2π) and initial condition u0 ∈ Cper([0, 2π],C), the
space of continuous periodic functions. Here W is a cylindrical Wiener process and Q is a
Hilbert–Schmidt operator on Gevrey space Gα, namely it has exponentially decaying Fourier
coefficients. Therefore QẆ (t) is given by

QẆ (t) =
∑

n∈Z
bnϕnβ̇n(t), with

∑

n∈Z
e2α|n|(1 + n2) |bn|2 < +∞,

where bn ∈ C, {βn ∈ R, n ∈ Z} are mutually independent ordinary Brownian motions, and
ϕn(x) = exp(inx). Let b0 = 0. The authors use a Galerkin discretization to solve Equa-
tion (2.17) similarly to the approximations of deterministic PDEs in [62] and [89]. First, they
take Fourier series and obtain the infinite system of coupled equations

un(t) = e−tn2
un(0) +

∫ t

0
e−(t−s)n2

Fn(u(x)) ds+
∫ t

0
e−(t−s)n2

bn dβn(x), n ∈ Z,

60



2.3. Numerical Stability of SPDEs

where Fn(u) is the nth Fourier coefficient of F (u). This leads to the discretization

uN
n (t) = e−tn2

uN
n (0) +

[t/h]∑

k=1

e−(t−(k−1)h)n2
(hFn(uN ((k − 1)h)) + bn

√
hXk,n) (2.18)

where Xk,n = h−1/2(βn(kh)− βn((k − 1)h)).
Finally, in the following proposition, they prove an estimate on the error of the approxima-

tion.

Proposition 2.55 ([63]). Equation (2.18) converges strongly in H1 to a solution of (2.17) as
N → +∞ and h→ 0. If u0 ∈ Gα, then the error can be estimated by

E( sup
t∈(0,T ]
t/n∈N

∥∥u(t)− uN (t)
∥∥
H) ≤ K(T,m)(N−m + h),

for all m > 0, K a function.

Weak Convergence of a Numerical Method for a Stochastic Heat Equation

In [87] Shardlow shows weak convergence for a finite difference scheme in space and time.
Therefore consider the following stochastic heat equation on [0, 1] with homogeneous Dirichlet
boundary conditions:

{
du+Audt = dW (t),
u(0) = U,

(2.19)

where the initial data U is in L2(0, 1), A := −∆ denotes the Laplacian scaled to be positive
definite with domain H2(0, 1) ∩ H1

0 (0, 1), and W (t) is a Wiener process with covariance Q.
For simplicity, we suppose that Q has eigenvalues αj ≥ 0 corresponding to the eigenfunctions
ej(·) :=

√
2 sin(jπ·) of ∆; in other words,

W (t) =
∞∑

j=1

α
1/2
j ejβj(t),

where the elements βj(t) are independent and identically distributed Brownian motions. Then
Equation (2.19) admits a unique mild solution for initial condition U ∈ L2(0, 1). For further
details see Section 2.1 or [16].

Shardlow uses the following discretization based on the θ method in time and the standard
three point approximation of the Laplacian. Therefore we consider a time step Mt and a grid
size Mx = 1/J for some J ∈ N. The Wiener process is approximated by truncating its Fourier
expansion to J − 1 terms. Let PJ−1 denote the operator taking f to its first J − 1 modes,

PJ−1f = 2
J−1∑

j=1

(f, sin(jπ·)) sin(jπ·).

61



2. Simulation of Stochastic Partial Differential Equations

Define the approximation of the Wiener process by

dBMt(n) :=
∫ (n+1)Mt

nMt
PJ−1 dW (x).

This gives an L2(0, 1) function. The numerical method evaluates this function at the grid
points jMx for j = 1, . . . , J − 1. The chosen initial condition is U0 = PJ−1U . Then, for
0 ≤ θ ≤ 1, we iterate

un+1 − un +
Mt

(Mx)2A∆((1− θ)un + θun+1) =




dBMt(n)(Mx)
...

dBMt(n)((J − 1)Mx)


 (2.20)

where

A∆ =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2



.

Let

ũ(nMt;U) =
J−1∑

j=1

(ũ)j ej , (2.21)

where the elements ũj are chosen such that ũ(nMt;U)(jMx) equals the jth component of un

for j = 1, . . . , J − 1.
The above numerical method has been studied by the author in [86] for the problem of space-

time white noise, i.e. Q = 1l in strong convergence. In that paper he proves that for T, ε > 0,
there exists Kε such that

E(‖u(nMt;U)− ũ(nMt;U) ‖2)1/2 ≤ Kε(Mx)(1−ε)/2(1 + ‖U ‖)(1 + (nMt)ε−1),

0 < nMt ≤ T , as Mt,Mx → 0 with ν := Mt/(Mx)2 constrained by ν(1 − θ) ≤ 1/4. The paper
presented here [87] relaxes the condition to ν(1− 2θ) ≤ 1/2.

The main result of [87] is the following theorem that deals with weak convergence.

Theorem 2.56 ([87]). Let u(t;U) (resp., ũ(t;U)) denote a solution of (2.19) (resp., the
trigonometric interpolant of the numerical solution (2.20) defined in (2.21)) corresponding
to initial data U ∈ L2(0, 1). Suppose that

∑∞
j=1 αjj

r < +∞, for some −2 < r ≤ 0. For
ε, T > 0 and a twice continuously bounded differentiable function φ : L2(0, 1)→ R, there exists
a constant K > 0 such that

∣∣E(φ(u(nMt;U)))− E(φ(ũ(nMt;U)))
∣∣ ≤ K(Mx)2+r−ε(1 + ‖U ‖2), T = nMt

as Mt,Mx→ 0 with ν = Mt/(Mx)2 fixed and (1− 2θ)ν < 1/2.
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2.3.2. Numerical Stability in the sense of Kloeden and Platen

Kloeden and Platen define in [52] when a discrete approximation of an SDE is called stochas-
tically numerically stable. In this section we give some examples for stability and extend the
definition to SPDEs. In the following let the solution of an SDE be denoted by Xt and the
discrete approximation by Ynt .

Definition 2.57 ([52]). Let Y δ denote a time discrete approximation with maximum step size
δ > 0 starting at time t0 at Y δ

0 , and Ȳ δ denotes the corresponding approximation starting at
Ȳ δ

0 . A discrete approximation Y δ is stochastically numerically stable for a given SDE if for
any finite interval [t0, T ] there exists a positive constant ∆0 such that for each ε > 0 and each
δ ∈ (0,∆0)

lim
|Y δ

0 −Ȳ δ
0 |→0

sup
t0≤t≤T

P (|Y δ
nt
− Ȳ δ

nt
| ≥ ε) = 0.

One observes that stochastically numerically stable has nothing to do with the original SDE
and it is not important, if the approximation really approximates the solution of the SDE.
For linear equations it is straightforward to show stability in the sense of Kloeden and Platen.
The following examples of explicit approximation schemes give an idea of how to prove that
an approximation is stochastically numerically stable.

Example 2.58 (Linear SDE with additive noise). Let

dXt = λXt dt+ σ(t)dWt

be a given SDE with λ ∈ R, σ : [t0, T ]→ R and Wt is a Wiener process. Then the discretization

Ytn+1 = Ytn + h · λYtn + σ(tn)ηtn+1 ,

where the interval [t0, T ] is divided into equidistant steps with h = tn+1 − tn for all n and
ηtn+1 =

∫ tn+1

tn
dWt, is stochastically numerically stable for all h > 0.

This can be seen in the following. First we reduce

Ytn = (1 + hλ)Ytn−1 + σ(tn−1)ηtn

= (1 + hλ)((1 + hλ)Ytn−2 + σ(tn−2)ηtn−1) + σ(tn−1)ηtn

= (1 + hλ)nYt0 +
n∑

k=1

(1 + hλ)n−kσ(tk−1)ηtk .

Then for two different starting conditions Yt0 and Ȳt0 we have after n steps

∣∣Ytn − Ȳtn

∣∣ = |1 + hλ|n ∣∣Yt0 − Ȳt0

∣∣
≤ enhλ

∣∣Yt0 − Ȳt0

∣∣
= etnλ

∣∣Yt0 − Ȳt0

∣∣ .
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As tn ∈ [0, T ], the expression etnλ is bounded by eT |λ| for all discretizations and by the calcu-
lations which were done before

lim
|Y δ

0 −Ȳ δ
0 |→0

sup
t0≤t≤T

P (|Y δ
tn − Ȳ δ

tn | ≥ ε) = lim
|Y δ

0 −Ȳ δ
0 |→0

sup
t0≤t≤T

P (|1 + hλ|tn |Y δ
0 − Ȳ δ

0 | ≥ ε)

≤ lim
|Y δ

0 −Ȳ δ
0 |→0

sup
t0≤t≤T

P (etnλ|Y δ
0 − Ȳ δ

0 | ≥ ε)

≤ lim
|Y δ

0 −Ȳ δ
0 |→0

sup
t0≤t≤T

P (e−T |λ||Y δ
0 − Ȳ δ

0 | ≥ ε)

≤ lim
|Y δ

0 −Ȳ δ
0 |→0

P (|Y δ
0 − Ȳ δ

0 | ≥ ε · e−T |λ|)

= 0.

This implies that the discretization scheme is stochastically numerically stable.

A second example for a stochastically numerically stable discretization of an SDE with
multiplicative noise is the following.

Example 2.59 (Linear SDE with multiplicative noise). Similar to Example 2.58 let

dXt = λXt dt+Xt dWt

be a given SDE with λ ∈ R and Wt a Wiener process. Then the discretization

Ytn+1 = Ytn + h · λYtn + Ytnηtn+1 ,

where the interval [t0, T ] is divided into equidistant steps with h = tn+1 − tn for all n and
ηtn+1 =

∫ tn+1

tn
dWt, is stochastically numerically stable for all h > 0.

The important observation in the following proof is the independence of the increments of
the Wiener process. Let again Yt0 and Ȳt0 be two different starting conditions and tn ∈ [t0, T ],
then

Ytn = (1 + hλ+ ηtn)Ytn−1 =
n∏

i=1

(1 + hλ+ ηti)Yt0 ,

and therefore
∣∣Ytn − Ȳtn

∣∣ =
( n∏

i=1

|1 + hλ+ ηti |
) ∣∣Yt0 − Ȳt0

∣∣ .

As the elements ηti are the independent increments of the Wiener processWt, it holds E(ηti) = 0
and E(ηtiηtj ) = δijh. Before we finish the proof, we observe that

E((1 + hλ+ ηti)
2) = (1 + hλ)2 + 2(1 + hλ)E(ηti) + E(η2

ti)

= 1 + h(1 + 2λ+ hλ2)

≤ eh(1+2λ+hλ2).
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Using Chebyshev’s inequality we finally get for all ε > 0

P
( |Ytn − Ȳtn | ≥ ε

)
= P

( n∏

i=1

|1 + hλ+ ηti |
∣∣Yt0 − Ȳt0

∣∣ ≥ ε)

= P
( n∏

i=1

|1 + hλ+ ηti | ≥ ε
∣∣Yt0 − Ȳt0

∣∣−1)

≤
∣∣Yt0 − Ȳt0

∣∣2
ε2

E
( n∏

i=1

(1 + hλ+ ηti)
2
)

=
∣∣Yt0 − Ȳt0

∣∣2 ε−2
n∏

i=1

E((1 + hλ+ ηti)
2)

≤ ∣∣Yt0 − Ȳt0

∣∣2 ε−2 exp(h(1 + 2λ+ hλ2))n

=
∣∣Yt0 − Ȳt0

∣∣2 ε−2 exp(tn(1 + 2λ+ hλ2)).

The last expression is bounded because tn ∈ [t0, T ] for all n and therefore

lim
|Y δ

t0
−Ȳ δ

t0
|→0

sup
t0≤t≤T

P (|Y δ
tn − Ȳ δ

tn | ≥ ε) ≤ lim
|Y δ

t0
−Ȳ δ

t0
|→0

sup
t0≤t≤T

∣∣Yt0 − Ȳt0

∣∣2 ε−2et(1+2λ+hλ2) = 0.

This finishes the proof and shows that there are no restrictions on h.

In the next section we will see that the approximation of Example 2.59 will not be stable
in the sense of Sewell and that for this definition of stability a higher order Milstein scheme
is needed. Therefore the property of being stochastically numerically stable does not imply
stability in the sense of Sewell.

Let us next extend the SDE definition of Kloeden and Platen to SPDEs.

Definition 2.60. Let U (δ,κ) denote a time and space discrete approximation with maximum
step size δ > 0 in time and κ > 0 in space, starting at time t0 at U (δ,κ)

0 , and Ū (δ,κ) denotes the
corresponding approximation starting at Ū (δ,κ)

0 .
A discrete approximation U (δ,κ) is stochastically numerically stable for a given SPDE on a

bounded region G, if for any finite interval [t0, T ] there exist positive constants ∆0 and K0

such that for each ε > 0, each δ ∈ (0,∆0), and each κ ∈ (0,K0),

sup
x∈G

lim˛̨
˛U(δ,κ)

0 (mx)−Ū
(δ,κ)
0 (mx)

˛̨
˛→0

sup
t0≤t≤T

P
( |U (δ,κ)

nt
(mx)− Ū (δ,κ)

nt
(mx)| ≥ ε) = 0.

In the following we will study stability of the heat equation with additive and multiplicative
noise. It turns out that for an explicit scheme there are no restrictions on the relation between
the step size in time and in space. On the contrary for the corresponding deterministic problem
there are bounds of the form δ/κ2 ≤ const. and Figure 2.2 shows that also with noise this
scheme is not stable if δ = 1.5 and κ = 0.1. Therefore the extension of Kloeden and Platen’s
definition of stability does not seem to be a good choice.
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(a) original image, (b) instable simulation,

Figure 2.2.: Instable simulation of the heat equation with additive noise and parameters Mt =
1.5 and Mx = 0.1

Example 2.61 (Heat equation with additive noise). Let

du(t) =
1
2
∆u(t) dt+ σ(t) dW (t),

be the heat equation on a finite interval I with periodic boundary conditions in a finite time
interval [t0, T ] where W (t) is an infinite dimensional Wiener process on I with given covariance
operator Q and σ : R+ × I → R. Then the following approximation scheme is stochastically
numerically stable for all choices h, k > 0 where h is the step size in time and k is the step size
in space, n ∈ N denotes the discretization steps in time, m ∈ N those in space,

Un+1(m) = Un(m) + 1
2hk

−2(Un(m+ 1)− 2Un(m) + Un(m− 1)) + σn(m) · ηn+1(m),

where σn(m) := σ(tn, xm) and ηn+1(m) is the approximation of
∫ tn+1

tn
dW (s, xm).

To prove this let U0 and Ū0 be two different starting conditions, Un(m) and Ūn(m) the
corresponding approximations, and Un := supm

∣∣Un(m)− Ūn(m)
∣∣, then we have for every

h, k > 0 fixed, α := h/k2,
∣∣Un(m)− Ūn(m)

∣∣ ≤ ∣∣1− α∣∣ ∣∣Un−1(m)− Ūn−1(m)
∣∣

+ 1
2 α

( ∣∣Un−1(m+ 1)− Ūn−1(m+ 1)
∣∣ +

∣∣Un−1(m− 1)− Ūn−1(m− 1)
∣∣ )

≤ (∣∣1− α∣∣ + α
) Un

≤ (∣∣1− α∣∣ + α
)n U0.

As for fixed h and k, n is bounded by (T − t0)/h, the expression (|1− α|+ α)n is bounded,
and therefore for U0 → 0 implies stability in the sense of Kloeden and Platen.

Again we can show a similar stability result for the heat equation with multiplicative noise
using Chebyshev’s inequality:
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Example 2.62 (Heat equation with multiplicative noise). Let

du(t) =
1
2
∆u(t) dt+ σ(t)u(t) dW (t),

be the heat equation on a finite interval I with periodic boundary conditions on a finite time
interval [t0, T ] where W (t) is an infinite dimensional Wiener process on I with given covariance
operator Q and σ : R+×I → R bounded in space and time. Then the following approximation
scheme is stochastically numerically stable for all choices h, k > 0 where h is the step size in
time and k is the step size in space:

Un+1(m) = Un(m) + 1
2 hk

−2(Un(m+ 1)− 2Un(m) + Un(m− 1)) + σn(m)Un(m) · ηn+1(m)

where σn(m) := σ(tn, xm) and ηn+1(m) is the approximation of
∫ tn+1

tn
dW (s, xm).

This can be shown in the following way. Let ε > 0, U0 and Ū0 two different starting condi-
tions, Un(m) and Ūn(m) the corresponding approximations, Un := supm

∥∥Un(m)− Ūn(m)
∥∥

2
,

and σ̃ := supn,m |σn(m)|, then it holds

P (|Un(m)− Ūn(m)| ≥ ε) ≤ ε−2 E(
∣∣Un(m)− Ūn(m)

∣∣2)
= ε−2

∥∥Un(m)− Ūn(m)
∥∥2

2

≤ ε−2
(|1− α| ∥∥Un−1(m)− Ūn−1(m)

∥∥
2

+ 1
2 α

( ∥∥Un−1(m+ 1)− Ūn−1(m+ 1)
∥∥

2

+
∥∥Un−1(m− 1)− Ūn−1(m− 1)

∥∥
2

)

+ |σn(m)|E(ηn+1(m)2)1/2
∥∥Un−1(m)− Ūn−1(m)

∥∥
2

)2

≤ ε−2
(|1− α|+ α+

√
hQ(m,m)1/2 σ̃

) U2
n−1

≤ ε−2
(|1− α|+ α+

√
hQ(m,m)1/2 σ̃

)2n U2
0

Similarly to Example 2.61 the first part of the last expression is bounded for every fixed h, k.
And therefore for U0 → 0 we have

P (|Un(m)− Ūn(m)| ≥ ε)→ 0.

2.3.3. Numerical Stability in the sense of Sewell

Another approach to numerical stability for SDEs and SPDEs is to extend the definition which
is used by Sewell in [85] for deterministic ODEs and PDEs.

Definition 2.63. Let Xt be the solution of an SDE and Yt an approximation with approxima-
tion scheme Yt+h = D(Yt, Yt+h) and step size h. Then the approximation scheme is consistent
if for all t ≥ 0

lim
h→0
‖Tt+h‖2 := lim

h→0
‖Xt+h −D(Xt, Xt+h)‖2 = 0,

where Tt is called the truncation error and ‖Tt‖22 = E(T 2
t ). An approximation is called numer-

ically stable if it is consistent and if the size of the error ‖et‖2 := ‖Yt −Xt‖2 → 0 for ‖Tt‖2 → 0
for all t ∈ [t0, T ].
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To get an idea of how to work with this kind of stability, we will look at similar examples as
in the previous section.

Example 2.64 (Linear SDE with additive noise). Let
{
dXt = λXt dt+ σ(t)dWt,

X0 = ξ,

be a given Cauchy problem in R with λ ∈ R, σ : [t0, T ]→ R bounded with bounded derivative,
and Wt a one-dimensional Wiener process. Then the discretization

Ytn+1 = Ytn + h · λYtn + σ(t)ηtn+1

is numerically stable for all h > 0, where h is the step size and ηtn+1 =
∫ tn+1

tn
dWt.

To prove this, we first have to prove consistency and therefore we have to give estimates on
the truncation error. The solution of the SDE is

Xt = eλtξ +
∫ t

0
eλ(t−s)σ(s) dWs,

and we can express Xt+h in terms of Xt in the following way:

Xt+h = eλhXt +
∫ h

0
eλ(h−s)σ(t+ s) dWt+s.

This leads to the truncation error

Tt+h = Xt+h −D(Xt, Xt+h)
= Xt+h − (1 + hλ)Xt − σ(t)ηt+h

= ehλXt +
∫ h

0
eλ(h−s)σ(t+ s) dWt+s − (1 + hλ)Xt − σ(t)ηt+h

= (ehλ − (1 + hλ))Xt +
∫ h

0
eλ(h−s)σ(t+ s)− σ(t) dWt+s

=
∫ h

0
λesλ − λ dsXt +

∫ h

0
eλ(h−s)(σ(t+ s)− σ(t)) + (eλ(h−s) − 1)σ(t) dWt+s

= λ2

∫ h

0

∫ s

0
erλ dr dsXt +

∫ h

0
eλ(h−s)

∫ s

0
σ′(t+ r) dr dWt+s

+
∫ h

0

∫ h−s

0
λ erλσ(t) dr dWt+s.

Next we calculate bounds on the summands.
∥∥∥∥λ2

∫ h

0

∫ s

0
erλ dr dsXt

∥∥∥∥
2

≤ 1
2 h

2e|λ|h ‖Xt‖2
= O(h2),
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if Xt ∈ L2 which is given by the assumptions on σ and ξ. For the second expression we use
the Itô isometry and get

∥∥∥∥
∫ h

0
eλ(h−s)

∫ s

0
σ′(t+ r) dr dWt+s

∥∥∥∥
2

2

=
∫ h

0
e2λ(h−s)

(∫ s

0
σ′(t+ r) dr

)2
ds

≤ e2|λ|h sup
s∈[t,t+h]

∣∣σ′(s)∣∣2
∫ h

0
s2 ds

= O(h3),

as σ′ is bounded. And finally we have using again the Itô isometry
∥∥∥∥
∫ h

0

∫ h−s

0
λ erλσ(t) dr dWt+s

∥∥∥∥
2

2

=
∫ h

0
(
∫ h−s

0
λ erλσ(t) dr)2 ds ≤ λ2e2|λ|h |σ(t)|2

∫ h

0
(h− s)2 ds

= O(h3).

Therefore the truncation error is bounded by

‖Tt+h‖2 ≤
∥∥∥∥λ2

∫ h

0

∫ s

0
erλ dr dsXt

∥∥∥∥
2

+
∥∥∥∥
∫ h

0
eλ(h−s)

∫ s

0
σ′(t+ r) dr dWt+s

∥∥∥∥
2

+
∥∥∥∥
∫ h

0

∫ h−s

0
λerλσ(t) dr dWt+s

∥∥∥∥
2

= O(h3/2)

and the approximation is consistent with the SDE.
To prove stability we look at the error

etn+1 − (1 + hλ)etn = Ytn+1 −D(Ytn , Ytn+1)− (Xtn+1 −D(Xtn , Xtn+1)) = −Ttn+1 .

If we set Tmax = supn ‖Ttn‖2, we have

‖etn‖2 ≤ |1 + hλ| ∥∥etn−1

∥∥
2
+ ‖Ttn‖2 ≤ eλtn(‖e0‖2 + n · Tmax) ≤ eλtntnO(h1/2)

because tn = n · h, and numerical stability is proved.

In the case of multiplicative noise, a solution does not have to be given explicitly. Therefore,
although an explicit solution is known, we will prove stability in the following example using
integral equations. This is supposed to show in an easy way how to generalize this result to
linear SPDEs later in this section.

Example 2.65 (Linear SDE with multiplicative noise). Let
{
dXt = λXt dt+XtdWt,

X0 = ξ,

be a given Cauchy problem in R with λ ∈ R and Wt is a real-valued Wiener process. Then the
Milstein approximation

Ytn+1 = Ytn + h · λYtn + Ytnηtn+1 + Ytn

η2
tn+1

−h

2 = (1 + λh+ ηtn+1 +
η2

tn+1
−h

2 )Ytn
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is stochastically numerically stable for all h > 0 with h = tn+1 − tn for all n and ηtn+1 =∫ tn+1

tn
dWt.

Similarly to the previous example we first prove consistency. Therefore we observe that the
SDE can be rewritten as the integral equation

Xt = X0 e
λt +

∫ t

0
eλ(t−s)Xs dWs.

We could solve this SDE explicitly and give a similar proof to Example 2.64 but as explicit
solutions are not known for all SDEs, we will choose this easy example to show how in general
stability may be proved. Let us observe next that

Xt+h = eλhXt +
∫ t+h

t
eλ(t+h−s)Xs dWs,

and for all s > t

Xs = eλ(s−t)Xt +
∫ s

t
eλ(s−r)Xr dWr.

Then the truncation error can be calculated in the following way

Tt+h = Xt+h − (1 + λh+ ηt+h +
η2

t+h−h

2 )Xt

= (eλh − (1 + λh))Xt +
∫ t+h

t
eλ(t+h−s)Xs dWs − (ηt+h +

η2
t+h−h

2 )Xt

=
(∫ h

0
λ(eλs − 1) ds

)
Xt +

∫ t+h

t
eλ(t+h−s)e(s−t)Xt dWs

+
∫ t+h

t

∫ s

t
eλ(s−r)Xr dWr dWs − (ηt+h +

η2
t+h−h

2 )Xt

=
(∫ h

0

∫ s

0
λ2eλh dr ds

)
Xt + (eλh − 1)Xtηt+h

+
∫ t+h

t

∫ s

t
eλ(t+h−r)eλ(r−t)Xt dWr dWs − η2

t+h−h

2 Xt

+
∫ t+h

t

∫ s

t

∫ r

t
eλ(t+h−r)eλ(r−p)Xp dWp dWr dWs

=
(∫ h

0

∫ s

0
λ2eλh dr ds+

∫ h

0
λeλs ds (ηt+h +

η2
t+h−h

2 )
)
Xt

+
∫ t+h

t

∫ s

t

∫ r

t
eλ(t+h−p)Xp dWp dWr dWs.

This leads to the estimates

‖Tt+h‖2 ≤ (O(h2) +O(h)(
√
h+

h√
2
)) ‖Xt‖2 + (

∫ t+h

t

∫ s

t

∫ r

t
e2λ(t+h−p) ‖Xp‖22 dp dr ds)1/2

≤ O(h3/2)(‖Xt‖2 + max
s∈[t,t+h]

‖Xs‖2)

≤ O(h3/2) max
s∈[t,t+h]

‖Xs‖2
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and therefore if the solution is in L2, the approximation is consistent. Next we will check that
the solution is in L2. Let s ∈ [0, T ]. The solution of the SDE is given by

Xs = X0 e
Ws+(λ−1/2)s

and this implies

‖Xs‖2 = ‖X0‖2 e(λ−1/2)s
∥∥eWs

∥∥
2

= ‖ξ‖2 e(λ−1/2)s+s = ‖ξ‖2 e(λ+1/2)s.

So for every finite time interval the solution is in L2 for ξ ∈ L2.
Finally we show stability by calculating the error

etn = (1 + λh+ ηtn +
η2

tn
−h

2 etn−1)− Ttn

=
n∏

i=1

(1 + λh+ ηti +
η2

ti
−h

2 ) et0 −
n∑

k=1

n∏

i=k+1

(1 + λh+ ηti +
η2

ti
−h

2 )Ttk

= −
n∑

k=1

n∏

i=k+1

(1 + λh+ ηti +
η2

ti
−h

2 )Ttk ,

and we use the independence of the increments of the Wiener process which leads to

‖etn‖2 ≤
( n∑

k=1

n∏

i=k+1

E
(
(1 + λh+ ηti +

η2
ti
−h

2 )2
)
E(T 2

tk
)
)1/2

≤ O(h3/2)
( n∑

k=1

(
1 + (1 + 2λ+ (λ2 + 1

2)h)h
)n−k

)1/2

≤ O(h3/2)
(n−1∑

k=0

exp
(
(1 + 2 |λ|+ (λ2 + 1

2)h)hk
))1/2

≤ O(h3/2)n exp
(
(1 + 2 |λ|+ (λ2 + 1

2)h)h(n− 1)/2
)

≤ O(h1/2) tn exp
(
(1 + 2 |λ|+ (λ2 + 1

2)h) tn/2
)
.

This expression tends to zero for Tti → 0 and the Milstein scheme is stable in the sense of
Sewell.

Remark 2.66. In Example 2.65 a higher order Milstein scheme is needed to show stability while
at the corresponding Example 2.59 a simpler Euler scheme was sufficient for stability in the
sense of Kloeden and Platen. This scheme would not have been good enough for numerical
stability in the sense of Sewell because in the calculations of the truncation error we had

∥∥∥∥
η2

tn − h
2

∥∥∥∥
2

=
h√
2

and therefore the convergence of the truncation error would have been no better then O(h).
In the error estimates by recurrency, a factor of n appears which compensates the O(h) to tn,
the fixed time where stability is checked. Therefore the final estimate is independent of h and
for h → 0 the error does not converge to zero. We remark that because of this, in all studied
SDEs and SPDEs, the convergence of the truncation error had to be at least of order O(h1+ε)
with ε > 0 in order to get convergence of the error.

71
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Next we will generalize Definition 2.63 to SPDEs. We could look at stability either pointwise
or in terms of functions on a bounded region.

Definition 2.67. Let u(t), t ∈ [t0, T ], be the solution of an SPDE on a bounded region
G with boundary conditions and U(t) an approximation of the solution with approximation
scheme U(t + h) = D(U(t), U(t + h)) and step size h > 0 in time and Mx in space. Then the
approximation scheme is consistent if for all t ≥ 0

lim
h,Mx→0

sup
x∈G
‖Tt+h(x)‖2 := lim

h,Mx→0
sup
x∈G
‖(u(t+ h)−D(u(t), u(t+ h)))(x)‖2 = 0,

where Tt(x) is called the truncation error at time t and point x.
An approximation is called numerically stable, if it is consistent and if for all t ∈ [t0, T ],

x ∈ G
lim

‖Tt(x)‖2→0
‖et(x)‖2 := lim

‖Tt(x)‖2→0
‖(U(t)− u(t))(x)‖2 = 0.

In the following, we will prove numerical stability of the heat equation with noise similarly
to Example 2.61 and 2.62.

For the remainder of this section we will make the following assumptions and definitions.
Let

W (t, x) =
∞∑

k=0

√
ak ek(x)βk(t),

be a Hilbert space-valued Brownian motion with covariance operator Q and ak = (ml + kl)−n,
where m ∈ R+, l/2, n ∈ N, l ≥ 2, and {ek} is a Hilbert space basis on the interval [0, 2π) with
periodic boundary conditions. The elements βk(t) are independent one-dimensional Brownian
motions. Moreover let the approximation of W (t) be given by

ηt+h =
(T/Mx)−1∑

k=0

√
ak ek(x) (βk(t+ h)− βk(t)) ,

which is computed by one of the algorithms given in Chapter 1. The stochastic process

(T/Mx)−1∑

k=0

√
ak ek(x)βk(t),

converges almost surely to W (t) for Mx → 0 [12]. Furthermore let the Laplacian 1
2∆ be

discretized in the following way:

DU(t, x) := 1
2 (Mx)−2 (U(t, x+ Mx)− 2U(t, x) + U(t, x− Mx)) ,

and calculations in x are done modulo 2π.

Proposition 2.68 (Heat equation with additive noise). Let
{
du(t) = 1

2∆u(t) dt+ λ dW (t),
u(0) = u0,
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2.3. Numerical Stability of SPDEs

be the heat equation with additive noise on the interval [0, 2π) with periodic boundary conditions.
Let λ ∈ R and l · n ≥ 14. Assume that

∥∥∆2u0

∥∥
2
< +∞ for all t ∈ [0, T ]. Then the explicit

approximation scheme
U(t+ h) = (1 + hD)U(t) + λ ηt+h

is consistent and numerically stable for h ≤ (Mx)2.

Proof. We start with the calculation of the truncation error. Therefore we observe that the
solution of the SPDE is given by

u(t) = Pt u0 +
∫ t

0
Pt−s λ dW (s)

where P· is the semigroup generated by 1
2∆. Then u(t+ h) can be expressed recursively by

u(t+ h) = Ph u(t) +
∫ h

0
Ph−s λ dW (t+ s).

Thus the truncation error can be calculated similarly to Example 2.64.

Tt+h = u(t+ h)− (1 + hD)u(t)− λ ηt+h

= (Ph − (1 + hD))u(t) +
∫ h

0
Ph−s λ dW (t+ s)− λ ηt+h

=
∫ h

0
(Ps

1
2∆−D)u(t) ds+

∫ h

0
(Ph−s − 1)λ dW (t+ s) + λ(W (t+ h)−W (t)− ηt+h)

= 1
4

∫ h

0

∫ s

0
Pr ∆2u(t) dr ds+ h(1

2∆−D)u(t)

+
∫ h

0

∫ s

0
Pr

1
2∆λ dr dW (t+ s) + λ(W (t+ h)−W (t)− ηt+h)

Next, the norm of the summands will be approximated.

1. ∥∥∥
∫ h

0

∫ s

0
Pr∆2u(t) dr ds

∥∥∥
2
≤

∫ h

0

∫ s

0

∥∥∆2u(t)
∥∥

2
dr ds = O(h2)

∥∥∆2u(t)
∥∥

2
,

2. ∥∥h(1
2∆−D)u(t)

∥∥
2
≤ h ·O((Mx)2) ‖u(t)‖2 = O(h(Mx)2) ‖u(t)‖2 .

3. Lemma 2.14, which can be applied as W (t) ∈ D(∆) [48], and the Itô isometry lead to

∥∥∥
∫ h

0

∫ s

0
Pr∆λ dr dW (t+ s)

∥∥∥
2

2
= |λ|2

∥∥∥
∫ h

0

∫ s

0
Pr dr d(∆W (s))

∥∥∥
2

2

≤ |λ|2
∫ h

0
(
∫ s

0
‖Pr ‖ dr)2 tr(∆2Q) ds

≤ |λ|2
∫ h

0
s2 ds tr(∆2Q) = O(h3).
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4. Finally,

‖λ(W (t+ h)−W (t)− ηt+h)‖2 = |λ|∥∥
∞∑

k=T/Mx

√
ak ek(x)(βk(t+ h)− βk(t))

∥∥
2

≤ |λ|
√
h

∞∑

k=T/Mx

√
ak

≤ |λ|
√
h

(Mx
T

)5

· const. = O(
√
h (Mx)5),

where the last inequality follows by the assumptions on the elements ak.

This implies for the size of the truncation error

‖Tt+h‖2 ≤
∥∥∆2u(t)

∥∥
2
O(h2) +O(h3/2) + ‖u(t)‖2O(h(Mx)2) +O(

√
h (Mx)5)

and if all summands are bounded, consistency follows. The boundedness of the summands
follows from the assumptions and only has to be checked for

∥∥∆2u(t)
∥∥

2
in the following.

∥∥∆2u(t)
∥∥

2
≤ ∥∥∆2Ptu0

∥∥
2
+

∥∥∥λ∆2

∫ t

0
Pt−s dW (s)

∥∥∥
2

≤ ∥∥∆2u0

∥∥
2
+ |λ|

∥∥∥∆2W (t) +
∫ t

0
Pt−s∆3W (s) ds

∥∥∥
2

≤ ∥∥∆2u0

∥∥
2
+ |λ| (t · tr(∆4Q) + t · tr(∆6Q))

follows by applying Lemma 2.25 and the assumptions made above. The assumptions on u0

and Q done in this example finally imply consistency.
Stability follows by setting Et = supx∈[0,2π) ‖et(x)‖2, Tt = supx∈[0,2π) ‖Tt(x)‖2, Tmax =

supt∈[0,T ] Tt, and α = h/(Mx)2 and by the equation

et+h(x) = (1− α)et(x) + 1
2α (et(x+ Mx) + et(x− Mx))− Tt+h(x).

For all x ∈ [0, 2π) and tn ∈ [0, T ], we have

‖etn(x)‖2 ≤
∣∣1− α∣∣ ∥∥etn−1(x)

∥∥
2
+ 1

2α
(‖et(x+ Mx)‖2 + ‖et(x− Mx)‖2

)
+ ‖Tt(x)‖2

≤ (∣∣1− α∣∣ + α
)
Etn−1 + Ttn

≤ (∣∣1− α∣∣ + α
)n
Et0 +

n∑

k=1

(∣∣1− α∣∣ + α
)n−k

Ttk

≤ (∣∣1− α∣∣ + α
)n
n Tmax.

This is only bounded for |1− α|+ α ≤ 1 and therefore h ≤ (Mx)2 leads to

‖etn(x)‖2 ≤ n O(h3/2) = tn O(
√
h)

and the approximation scheme is numerically stable for h ≤ (Mx)2.
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Remark 2.69. The proof of Proposition 2.68 was done with semigroup theory. One can also
prove stability with Fourier methods. Appendix B shows the corresponding calculations which
are done in a slightly informal way but which give an idea of how to get stability without
abstract mathematical theory at least in some cases. On the other hand, it is noticeable that
the Fourier calculations are much longer and harder to read.

We extend the previous proposition to the case where the stochastic integral is of the form
σ(t) dW (t).

Proposition 2.70 (Heat equation with additive noise and time dependent coefficient). Let
{
du(t) = 1

2∆u(t) dt+ σ(t) dW (t),
u(0) = u0,

be the heat equation with additive noise on the interval [0, 2π) and periodic boundary conditions.
Let σ : R→ R, for all t ∈ [0, T ] |σ̇(t)| is bounded and l ·n ≥ 14. Assume that

∥∥∆2u0

∥∥
2
< +∞.

Then the explicit approximation scheme

U(t+ h) = (1 + hD)U(t) + σ(t)ηt+h

is consistent and numerically stable for h ≤ (Mx)2.
Proof. This claim can be proved with the previous example. We first remark that σ(t) dW (t) =
d(σ(t)W (t)) because of linearity. Therefore the SPDE is similar to Example 2.68 but the Q-
Wiener process is transformed to a (σ2Q)-Wiener process which is not stationary.

Again we start calculating the truncation error. Therefore we observe that the solution of
the SPDE is given by

u(t) = Ptu0 +
∫ t

0
Pt−sσ(s) dW (s),

where P· is the semigroup generated by 1
2∆. Then u(t+ h) can be expressed recursively by

u(t+ h) = Phu(t) +
∫ h

0
Ph−sσ(t+ s) dW (t+ s).

Thus the truncation error can be calculated similarly to Proposition 2.68

Tt+h = u(t+ h)− (1 + hD)u(t)− σ(t)ηt+h

= (Ph − (1 + hD))u(t) +
∫ h

0
Ph−s σ(t+ s) dW (t+ s)− σ(t)ηt+h

=
∫ h

0
(Ps

1
2∆−D)u(t) ds+

∫ h

0
Ph−s(σ(t+ s)− σ(t)) dW (t+ s)

+
∫ h

0
(Ph−s − 1)σ(t) dW (t+ s) + σ(t)(W (t+ h)−W (t)− ηt+h)

= 1
4

∫ h

0

∫ s

0
Pr∆2u(t) dr ds+ h(1

2∆−D)u(t)

+
∫ h

0

∫ s

0
Ph−s σ̇(t+ r) dr dW (t+ s) + σ(t)

∫ h

0

∫ s

0
Pr

1
2∆ dr dW (t+ s)

+ σ(t)(W (t+ h)−W (t)− ηt+h).
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Next, the norm of the summands is approximated.

1. ∥∥∥
∫ h

0

∫ s

0
Pr∆2u(t) dr ds

∥∥∥
2
≤

∫ h

0

∫ s

0

∥∥∆2u(t)
∥∥

2
dr ds = O(h2)

∥∥∆2u(t)
∥∥

2
,

2. ∥∥h(1
2∆−D)u(t)

∥∥
2
≤ h ·O((Mx)2) ‖u(t)‖2 = O(h(Mx)2) ‖u(t)‖2 ,

3. the Itô isometry yields

∥∥∥
∫ h

0

∫ s

0
Ph−sσ̇(t+ r) dr dW (t+ s)

∥∥∥
2

2
≤

∫ h

0

(∫ s

0
|σ̇(t+ r)| dr

)2
tr Qds

≤ max
s∈[t,t+h]

|σ̇(s)|2 tr Q O(h3),

4. Lemma 2.14, which can be applied as W (t) ∈ D(∆) [48] and the Itô isometry imply

∥∥∥σ(t)
∫ h

0

∫ s

0
Pr∆ dr dW (t+ s)

∥∥∥
2

2
=

∥∥∥σ(t)
∫ h

0

∫ s

0
Pr dr d(∆W (t+ s))

∥∥∥
2

2

≤ |σ(t)|2 tr(∆2Q)O(h3),

5.

‖σ(t)(W (t+ h)−W (t)− ηt+h)‖2 = |σ(t)| ∥∥
∞∑

k=T/Mx

√
ak ek(x)(βk(t+ h)− βk(t))

∥∥
2

≤ |σ(t)|
√
h

∞∑

k=T/Mx

√
ak

≤ |σ(t)|
√
h

(
MxT−1

)5 · const.

= |σ(t)|O(
√
h(Mx)5),

where the last inequality follows by the assumptions on the elements ak.

This implies for the size of the truncation error

‖Tt+h‖2 ≤
∥∥∆2u(t)

∥∥
2
O(h2) + ( max

s∈[t,t+h]
|σ̇(s)|+ |σ(t)|)O(h3/2)

+ ‖u(t)‖2O(h(Mx)2) + |σ(t)|O(
√
h(Mx)5),

and if all summands are bounded, consistency follows. The boundedness of the summands
follows from the assumptions and only has to be checked for

∥∥∆2u(t)
∥∥

2
in the following

∥∥∆2u(t)
∥∥

2
≤ ∥∥∆2Ptu0

∥∥
2
+

∥∥∥∆2

∫ t

0
Pt−sσ(s) dW (s)

∥∥∥
2

≤ ∥∥∆2u0

∥∥
2
+

∥∥∥∆2

∫ t

0
Pt−s d(σ(s)W (s))

∥∥∥
2
.
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If we define W̃ (t) = σ(t)W (t), where W̃ (t) is Gaussian with mean zero and covariance t σ(t)2Q,
we can use the proof of Example 2.68 and reduce the boundedness of the solution to

∥∥∆2u0

∥∥
2
+ |λ| (t · tr(∆4(σ(t)2Q)) + t · tr(∆6(σ(t)2Q)) < +∞.

Using the assumptions done in this example, consistency is proved.
Stability finally follows, setting Et = supx∈[0,2π) ‖et(x)‖2, Tt = supx∈[0,2π) ‖Tt(x)‖2, Tmax =

supt∈[0,T ] Tt, and α = h/(Mx)2 and observing

et+h(x) = (1− α)et(x) + 1
2α (et(x+ Mx) + et(x− Mx))− Tt+h(x).

For all x ∈ [0, 2π) and tn ∈ [0, T ], we have

‖etn(x)‖2 ≤
∣∣1− α∣∣ ∥∥etn−1(x)

∥∥
2
+ 1

2α
(‖et(x+ Mx)‖2 + ‖et(x− Mx)‖2

)
+ ‖Tt(x)‖2

≤ (∣∣1− α∣∣ + α
)
Etn−1 + Ttn

≤ (∣∣1− α∣∣ + α
)n
Et0 +

n∑

k=1

(∣∣1− α∣∣ + α
)n−k

Ttk

≤ (∣∣1− α∣∣ + α
)n
n Tmax.

This is only bounded for |1− α|+ α ≤ 1 and therefore h ≤ (Mx)2 leads to

‖etn(x)‖2 ≤ n O(h3/2) = tn O(
√
h)

and the approximation scheme is numerically stable for h ≤ (Mx)2.

A combination of Example 2.64 and Proposition 2.68 leads to the following result.

Proposition 2.71 (Heat equation with multiplicative noise). Let
{
du(t) = 1

2∆u(t) dt+ u(t) dW (t),
u(0) = u0,

be the heat equation with multiplicative noise on the interval [0, 2π) with periodic boundary
conditions and l ·n ≥ 10. Assume that ‖∆2u0‖2 < +∞ and ‖∆2u‖2 exists with ‖∆2u‖2 < +∞.
Then the explicit approximation scheme

U(t+ h) = (1 + hD)U(t) +
(
ηt+h + 1

2(η2
t+h − h)

)
U(t)

is consistent and numerically stable for h < (Mx)2.

Proof. First we observe that the solution of the SPDE can be expressed as

u(t) = Ptu0 +
∫ t

0
Pt−su(s) dWs
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and

u(t+ h) = Phu(t) +
∫ t+h

t
Pt+h−su(s) dWs

= Phu(t) +
∫ t+h

t
Pt+h−s(Ps−tu(t) +

∫ s

t
Ps−ru(r) dWr) dWs

= Ph

(
1 + (Wt+h −Wt) + 1

2((Wt+h −Wt)2 − h)
)
u(t)

+
∫ t+h

t

∫ s

t

∫ r

t
Pt+h−p u(p) dWp dWr dWs,

where P· is the semigroup generated by 1
2∆. Then it is easy to calculate the truncation error

using results from Example 2.68

Tt+h = u(t+ h)− (
1 + hD + ηt+h + 1

2(η2
t+h − h)

)
u(t)

=
(
Ph

(
1 + (Wt+h −Wt) + 1

2((Wt+h −Wt)2 − h)
)− (

1 + hD + ηt+h + 1
2(η2

t+h − h)
))
u(t)

+
∫ t+h

t

∫ s

t

∫ r

t
Pt+h−pu(p) dWp dWr dWs

= 1
4

∫ h

0

∫ s

0
Pr∆2u(t) dr ds+ h(1

2∆−D)u(t)

+
∫ h

0
Ps

1
2∆

(
(Wt+h −Wt) + 1

2((Wt+h −Wt)2 − h)
)
u(t) ds

+ (Wt+h −Wt)− ηt+h + 1
2((Wt+h −Wt)2 − h)− 1

2(η2
t+h − h)

+
∫ t+h

t

∫ s

t

∫ r

t
Pt+h−p u(p) dWp dWr dWs

Assume that
∥∥∆2u(t)

∥∥
2
< +∞. This can be shown by standard contraction methods and

expressed as restriction on the coefficients of the covariance of the Brownian motion and of the
starting condition but this proof goes beyond the scope of this thesis. Consistency holds by
the following estimates.

1. First observe that
∫ h

0
Ps ∆

[(
(Wt+h −Wt) + 1

2((Wt+h −Wt)2 − h)
)
u(t)

]
ds

=
∫ h

0
Ps

[
(∆(W (t+ h)−W (t)) + ∆1

2((Wt+h −Wt)2 − h)
]
u(t) ds

+
∫ h

0
Ps

[
(Wt+h −Wt) + 1

2((Wt+h −Wt)2 − h)
]
∆u(t) ds

+ 2
∫ h

0
Ps

[
(∇ (W (t+ h)−W (t)) +∇ 1

2((Wt+h −Wt)2 − h)
]
∇u(t) ds.

Then we have to estimate the properties of the coefficients. This includes

‖∆(W (t+ h)−W (t))‖22 = h · tr(∆2Q),
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using Lemma 2.14 and
∥∥∆(W (t+ h)−W (t))2

∥∥2

2

=
∥∥∥∆

( ∞∑

k=1

√
ak(βk(t+ h)− βk(t))ek

)2
∥∥∥

2

2

=
∥∥∥
∞∑

i,j=1

√
aiaj(βi(t+ h)− βi(t))(βj(t+ h)− βj(t))(i2 + 2ij + j2)eiej

∥∥∥
2

2

≤
∑

i6=j

aiaj(i2 + 2ij + j2)2E((βi(t+ h)− βi(t))2)E((βj(t+ h)− βj(t))2)

+
∑

i

a2
i 16 i4 E((βi(t+ h)− βi(t))4)

= h2(
∑

i 6=j

(i2 + 2ij + j2)2aiaj + 48
∑

i

i4a2
i ) = O(h2)

which follows by the convergence of the sums using the properties of the elements ak and
simple calculus. Similarly we have

‖∇ (W (t+ h)−W (t))‖2 = h · tr(∆Q)

and
∥∥∇ (W (t+ h)−W (t))2

∥∥2

2

=
∥∥∥
∞∑

i,j=1

√
aiaj(βi(t+ h)− βi(t))(βj(t+ h)− βj(t))(i+ j)eiej

∥∥∥
2

2

≤
∑

i 6=j

aiaj(i+ j)2E((βi(t+ h)− βi(t))2)E((βj(t+ h)− βj(t))2)

+
∑

i

a2
i 4 i2 E((βi(t+ h)− βi(t))4)

= h2
(∑

i6=j

(i+ j)2ai aj + 12
∑

i

i2a2
i

)
= O(h2).

So finally we have
∥∥∥∥
∫ h

0
Ps∆

(
(Wt+h −Wt) + 1

2((Wt+h −Wt)2 − h)
)
u(t) ds

∥∥∥∥
2

≤ h
(
(O(
√
h+O(h)) ‖u(t)‖2 + (O(

√
h+O(h)) ‖∆u(t)‖2 + (O(

√
h) +O(h)) ‖∇u(t)‖2)

)

= O(h3/2)
(‖u(t)‖2 + ‖∇u(t)‖2 + ‖∆u(t)‖2

)
.

2. The second estimate that has not been done before is
∥∥∥
∫ t+h

t

∫ s

t

∫ r

t
Pt+h−pu(p) dWp dWr dWs

∥∥∥
2
≤ max

s∈[t,t+h]
‖u(s)‖2O(h3/2).
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So finally

‖Tt+h‖2 ≤
∥∥∆2u(t)

∥∥
2
O(h2) + ‖u(t)‖2O(h(Mx)2) +O(

√
h(Mx)5)

+
(‖∆u(t)‖2 + ‖∇u(t)‖2 + max

s∈[t,t+h]
‖u(t)‖2

)
O(h3/2),

and therefore the the approximation scheme is consistent.
Next we show stability. Set Et = supx∈[0,2π) ‖et(x)‖2, Tt = supx∈[0,2π) ‖Tt(x)‖2, Tmax =

supt∈[0,T ] Tt, and α = h/(Mx)2. Then

et+h(x) =
(
1− α+ ηt+h + 1

2(η2
t+h − h)

)
et(x) + 1

2α
(
et(x+ Mx) + et(x− Mx)

)− Tt+h(x).

For all x ∈ [0, 2π) and tn ∈ [0, T ], we have

‖etn(x)‖2 ≤
(∥∥1− α+ ηtn−1 + 1

2(η2
tn−1
− h)∥∥

2
+ α

)
Etn−1 +

∥∥Ttn−1(x)
∥∥

2

≤
n∑

k=1

n∏

j=k+1

(∥∥1− α+ ηtj + 1
2(η2

tj − h)
∥∥

2
+ α

) ‖Ttk(x)‖2

≤ Tmax
n∑

k=1

n∏

j=k+1

(√
(1− α)2 + h+ 1

2h
2 + α

)

≤ Tmax · n ·
(√

(1− α)2 + h+ 1
2h

2 + α
)n

Finally we have to show for which choices of h and Mx an := (
√

(1− α)2 + h+ 1
2h

2 + α)n is
bounded for all n, i.e. when the sequence converges. Therefore let h = tn/n, where tn is the
fixed time where the error is calculated, and 0 < α = h/(Mx)2 < 1. Then an converges if
n · (an − 1) converges. For α defined as above, we have

n
(√

(1− α)2 +
tn
n

+
t2n
2n2

+ α− 1
)

= (1− α)n
(√

1 +
tn

n(1− α)2
(1 +

tn
2n

)− 1
)

≤ (1− α)n
(
1 +

tn
2n(1− α)2

(
1 +

tn
2n

)− 1
)

=
tn(1 + tn/2n)

2(1− α)

→ tn
2(1− α)

for n→ +∞.

So finally for tn < T and 0 < α < 1 we have

‖etn(x)‖2 ≤ O(h3/2) · n · exp
( tn

2− 2α

)
≤ O(h1/2) tn exp

( tn
2− 2α

)
≤ O(h1/2)T exp

( T

2− 2α

)

and numerical stability follows.

This concludes the second chapter. We have seen some theory on Hilbert space-valued SDEs.
Numerical discretizations of theses SDEs were discussed and different definitions of numerical
stability were introduced. The heat equation with additive and multiplicative noise was used
to compare different numerical stability definitions. It turned out that numerical stability in
the sense of Kloeden and Platen and in the sense of Sewell lead to different stability results.
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3. Segmentation

3.1. Introduction to Level Sets

This section gives an overview about level sets. A good introduction to level set methods and
its applications can be found in [72, 84]. The first applications in computer vision with geodesic
active contours were published by Casellas et al. in [9] and Chan and Vese in [10].

Level sets are a possibility to represent curves in the plane. The goal is to find a representation
that leads to easy and quick calculations of evolving curves, e.g. the motion by mean curvature.
We will use level sets because this method represents curves in implicit form and therefore the
representation is independent of the parameterization of the curve. That is why they are easier
to handle than parameterized curves, especially when the curve splits up or is reunified.

Definition 3.1. Let Λ ⊂ R2 be a region and φ : Λ→ R a continuous map. The zero level set
Γ of φ is given by

Γ := {(x, y) ∈ Λ, φ(x, y) = 0}.
Any level set Γα for a given element α ∈ R is defined by

Γα := {(x, y) ∈ Λ, φ(x, y) = α}.
In most cases we are given a closed curve. This curve can be interpreted as the zero level

set Γ. Therefore in the beginning φ is just defined on Γ. There are many ways of how φ can
be continued outside of Γ. For a smooth continuation we define the signed distance function.

Definition 3.2. Let Γ be an embedded simple closed curve in the region Λ ⊂ R2. The signed
distance function φ : Λ→ R is given by

φ(x, y) |inside(Γ):= d((x, y),Γ)

if (x, y) ∈ Λ is inside of Γ and

φ(x, y) |outside(Γ):= −d((x, y),Γ)

else, where d((x, y),Γ) is the Euclidean distance between the point (x, y) and the curve Γ.
Depending on the simulation that should be done, the minus sign can be swapped, i.e. φ(x, y) <
0 if (x, y) inside of Γ and φ(x, y) > 0 if (x, y) outside of Γ. A general embedded closed curve
can be seen as the union of simple closed curves. Then the signed distance function can be
defined similarly to the one for simple closed curves.

An example of a signed distance function is shown in Figure 3.1. Note that the signed
distance function is just one possibility to initialize φ. There are other possibilities as well.
Evans and Spruck showed in [20] that if φ is initialized as the signed distance function, the
solution of motion by mean curvature is the same as in classical motion by mean curvature with
a parameterized curve. Moreover they showed in [20, Section 5] that the solution of the motion
of the curve is independent of the initial choice of φ. The same was also shown independently
by Chen et al. [11, Thm. 7.1].
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3. Segmentation

Figure 3.1.: Signed distance function of the segmentation result of a black bear.

3.2. Mathematical Background of Calculus of Variations

In the following, calculus of variations is used to derive the Euler–Lagrange equations. The
resulting PDEs will be studied in the following sections, especially in the context of segmen-
tation of images. Most of this section is due to [71]. We will work in the Euclidean space Rd.
More general results on smooth manifolds can be found in [1] and [91]. The explicit calculation
of the first variation for the special case of R2 is due to [14].

In the following let Λ ⊂ Rd an open, connected set with smooth boundary ∂ Λ.

Definition 3.3. A variational problem consists of finding the extrema (maxima or minima)
of the functional

L[u] =
∫

Λ
L(x, u(n)) dx

in some class of functions u(x) = f(x) with f : Λ → Rq. The integrand L(x, u(n)), called the
Lagrangian of the variational problem L, is a smooth function of x, u, and various derivatives
of u.

In the following we denote by 〈·, ·〉 the L2 inner product

Definition 3.4. Let L[u] be a variational problem. The variational derivative of L is the
unique q-tuple

δL[u] = (δ1L[u], . . . , δqL[u]),

with the property that

d

dε

∣∣∣∣
ε=0

L[f + εη] =
∫

Λ
δL[f(x)] · η(x) dx (3.1)

whenever u(x) = f(x) is a smooth function defined on Λ, and η(x) = (η1(x), . . . , ηq(x)) is
a smooth function with compact support in Λ, so that f + εη still satisfies any boundary
conditions that might be entailed on the space of functions over which we are minimizing
L. The component δαL = δL/δuα is the variational derivative of L with respect to uα,
α ∈ {1, . . . , q}.
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3.2. Mathematical Background of Calculus of Variations

Proposition 3.5 ([71, Prop. 4.2]). If u(x) = f(x) is an extremal of L[u(x)], then

δL[f(x)] = 0, x ∈ Λ. (3.2)

For the case that u = f : R2 → R, δL can be calculated in the following way: Let x =
(x1, x2) and let L[u] just depend on u and the first partial derivatives. For the calculations the
abbreviation uxi := d

dxi
u is used. We search for an extremum of

L[u] =
∫

Λ
L(x1, x2, u, ux1 , ux2) dx.

Therefore we have to calculate

d

dε

∣∣∣∣
ε=0

L[f + εη] =
d

dε

∣∣∣∣
ε=0

∫

Λ
L(x1, x2, f + εη, fx1 + εηx1 , fx2 + εηx2) dx.

As we assume L to be smooth, we can change the order of integration and differentiation.

d

dε

∣∣∣∣
ε=0

L[f + εη] =
∫

Λ

d

dε

∣∣∣∣
ε=0

L(x1, x2, f + εη, fx1 + εηx1 , fx2 + εηx2) dx

=
∫

Λ
(η Lf + ηx1Lfx1

+ ηx2Lfx2
) dx.

In order to get an expression of the form δL·η we have to transform the partial derivatives of η.
Therefore we need Gauss’s Theorem, also known as Green’s Theorem or Divergence Theorem,
see e.g. [13], [18], [23] or in a very general form in [54]. A classical version is given in the
following.

Theorem 3.6 (Gauss’s Theorem [13, p. 320]). Let f and g be smooth functions with smooth
derivative mapping elements from a region Λ ⊂ R2 to R, then

∫∫

Λ
fx(x, y) + gy(x, y) dx dy =

∫

∂Λ
(f(x, y) dy − g(x, y) dx)

where the right hand side is a way of writing down the line integral along ∂Λ.

If we apply Theorem 3.6 to our problem, we set f̃(x, y) = η Lfx and g(x, y) = η Lfy . Then

f̃x(x, y) = ηx Lfx + η
∂

∂x
Lfxgy(x, y) = ηy Lfy + η

∂

∂y
Lfy

and Theorem 3.6 yields
∫∫

Λ
ηx Lfx + ηy Lfy dx dy =

∫

∂Λ
η (Lfx dy + Lfy dx)−

∫∫

Λ
η

( ∂

∂x
Lfx +

∂

∂y
Lfy

)
dx dy.

As η was defined to have compact support and therefore should be zero on the boundary, the
equation transforms to

d

dε

∣∣∣∣
ε=0

L[f + εη] =
∫

Λ
(Lf − ∂

∂x
Lfx1

− ∂

∂y
Lfx2

) · η dx.
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3. Segmentation

Comparing this expression with Equation (3.1), we conclude that

δL[f(x)] = Lf − ∂

∂x
Lfx1

− ∂

∂y
Lfx2

and by applying Proposition 3.5 it holds that if u(x) = f(x) is an extremal of L[u(x)], then

Lf − ∂

∂x
Lfx1

− ∂

∂y
Lfx2

= 0.

In the following we state a theorem for the more general case of arbitrary dimensions. There-
fore we first need another definition.

Definition 3.7. For 1 ≤ α ≤ q, the α-th Euler operator is given by

Eα =
∑

J

(−D)J
∂

∂uα
J

,

the sum extending over all multi-indices J = (j1, . . . , jk) with 1 ≤ jk ≤ d, k ≥ 0 and

(−D)J := (−1)kDJ = (−Dj1)(−Dj2) · · · (−Djk
),

where Di denotes the total derivative in the i-th direction. Note that to apply Eα to any given
function L(x, u(n)) of u and its derivatives, only finitely many terms in the summation are
required, since L depends on only finitely many derivatives uα

J .

Theorem 3.8 (Euler–Lagrange equations [71, Thm. 4.4]). If u(x) = f(x) is a smooth extremal
of the variational problem L[u] =

∫
Λ L(x, u(n)) dx, then it must be a solution of the Euler–

Lagrange equations
Eν(L) = 0, ν = 1, . . . , q.

3.3. Active Contours

This section presents different energy functionals and the corresponding Euler–Lagrange equa-
tions for segmentation. These functionals seem to be good choices in order to get segmentation
results that coincide with the intuitively expected results. By parameterizing the descent di-
rection with an artificial time, PDEs are derived which can be simulated and will be modified
to SPDEs later in this chapter. The calculations in this section are done informally because
there is no rigorous mathematical proof so far and this extends the scope of this thesis.

3.3.1. An Energy Functional by Chan and Vese

The standard motion by mean curvature shrinks all curves to a circle and finally they vanish
[26, 30]. Our goal is to use a similar kind of motion for segmentation. Therefore the evolution
has to stop at an extremum. In other words we define an energy functional and try to minimize
it by the corresponding Euler–Lagrange equation. The first approach to a variational level set
method is due to Zhao et al. [99]. In the following we will use the energy functional proposed
by Chan and Vese in [10] and do the calculation of the Euler–Lagrange equation explicitely.
Let Λ ⊂ R2 be a region.
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3.3. Active Contours

Definition 3.9. The Heaviside function H is defined by

H :





Λ → R

x 7→
{

0 if x ≤ 0
1 if x > 0.

Moreover the Delta function δ is defined as the distributional derivative of the Heaviside func-
tion, i.e.

δ(x) := H ′(x).

Similarly to Section 3.1, let Γ be a curve given by the zero level set of a function φ initialized
as signed distance function. Denote in the following the evolving curve by C, depending on
space and time and C is the zero level set of φ(x, y). Then the length of the curve is given by

L(C) =
∫∫

C

√
φ2

x + φ2
y dx dy =

∫

Λ
δ(φ(x, y)) |∇φ(x, y)| dx dy.

Next we calculate the area inside and outside of the curve denoted by in and out .

A(in(C)) =
∫

in(C)
1 dx dy =

∫

Λ
H(φ(x, y)) dx dy,

A(out(C)) =
∫

out(C)
1 dx dy =

∫

Λ
(1−H(φ(x, y))) dx dy.

In order to detect edges in a picture we have to understand what “edge” means in the mathe-
matical language. We can think of it as a place with high gradient in normal direction. If we
think in terms of energy, our goal is to achieve that the difference of the mean value and the
value at every point inside the curve is as small as possible and the same holds for the part
outside the curve. Let u0(x, y) be the value of the picture at (x, y), e.g. the gray value at the
point (x, y). Define c1 to be the average value inside the curve and c2 the average value outside
the curve. If φ is fixed, these values are calculated

c1(φ) =
∫

in(C)
u0(x, y) dx dy /A(in(C))

=
∫

Λ
u0(x, y)H(φ(x, y)) dx dy /

∫

Λ
H(φ(x, y)) dx dy,

c2(φ) =
∫

out(C)
u0(x, y) dx dy /A(out(C))

=
∫

Λ
u0(x, y) (1−H(φ(x, y))) dx dy /

∫

Λ
(1−H(φ(x, y))) dx dy.

Now we are able to formulate the energy J̃ that should be minimized. To this end let

J̃(c1, c2, φ) :=
∫

Λ
|u0(x, y)− c1|2H(φ(x, y)) dx dy +

∫

Λ
|u0(x, y)− c2|2 (1−H(φ(x, y))) dx dy.

It turns out that the minimum of J̃ might not be the curve that gives the desired segmentation
result. The modified functional proposed in [10] also depends on the length of the curve
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Figure 3.2.: The regularized Heaviside function and delta function for ε = 0.2, 0.5, 0.8.

and the area inside the curve. Another modeling question that arises is how to weight the
different curve properties in the resulting energy functional. Denote the weighting coefficients
by µ, ν, λ1, λ2 and define the energy functional by

J(c1, c2, φ) := µ

∫

Λ
δ(φ(x, y)) |∇φ(x, y)| dx dy

+ ν

∫

Λ
H(φ(x, y)) dx dy

+ λ1

∫

Λ
|u0(x, y)− c1|2H(φ(x, y)) dx dy

+ λ2

∫

Λ
|u0(x, y)− c2|2 (1−H(φ(x, y))) dx dy.

The existence of minimizers of this functional can be shown by lower-semicontinuity of the total
variation and classical arguments of calculus of variations. Similar equations were derived in
[67, 68].

Next the Euler–Lagrange equation is calculated but therefore we first take a regularization
of the Heaviside function and denote the regularized functional of J by Jε. Define Hε to be
the regularized version of the Heaviside function [99] by

Hε(x) :=





0 if x < −ε
2−1(1 + x/ε+ π−1 sin(πx/ε)) if − ε ≤ x ≤ ε
1 if x > ε,

and similarly to the standard delta function the regularized version δε by

δε(x) := H ′
ε(x).

Figure 3.2 shows a plot of Hε and δε for ε = 0.2, 0.5, 0.8.
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The regularized energy functional is given by

Jε(c1, c2, φ) :=
∫

Λ
µ δε(φ(x, y)) |∇φ(x, y)|+ ν Hε(φ(x, y))

+ λ1 |u0(x, y)− c1|2Hε(φ(x, y))

+ λ2 |u0(x, y)− c2|2 (1−Hε(φ(x, y))) dx dy.

In order to calculate the Euler–Lagrange equations we observe that the Lagrangian is given by

F (x, y, c1, c2, φ, φx, φy) = µ δε(φ(x, y)) |∇φ(x, y)|+ ν Hε(φ(x, y))

+ λ1 |u0(x, y)− c1|2Hε(φ(x, y))

+ λ2 |u0(x, y)− c2|2 (1−Hε(φ(x, y))).

The partial derivatives necessary for the usage of Theorem 3.8 are:

∂

∂φ
|∇φ| = 0,

∂

∂φ
|u0 − c1|2 = 0,

∂

∂φ
|u0 − c2|2 = 0,

∂

∂φ
Hε(φ) = δε(φ),

∂

∂φ
δε(φ) = 0, for ε small enough.

This implies
Fφ = ν δε(φ) + λ1 |u0 − c1|2 δε(φ) + λ2 |u0 − c2|2 δε(φ).

Moreover we calculate the following partial derivatives

∂

∂φx
δε(φ) = 0 =

∂

∂φy
δε(φ),

∂

∂φx
Hε(φ) = 0 =

∂

∂φy
Hε(φ),

∂

∂φx
|u0 − c1|2 = 0 =

∂

∂φy
|u0 − c1|2 ,

∂

∂φx
|u0 − c2|2 = 0 =

∂

∂φy
|u0 − c2|2 .

The only derivatives with respect to φx and φy that are not equal to zero are

∂

∂φx
|∇φ| = ∂

∂φx

√
φ2

x + φ2
y =

φx

|∇φ| ,
∂

∂φy
|∇φ| = ∂

∂φy

√
φ2

x + φ2
y =

φy

|∇φ| .

So we have

Fφx = µ δε(φ)
φx

|∇φ| ,

Fφy = µ δε(φ)
φy

|∇φ| .
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Finally for ε small enough we have

∂

∂x
δε(φ(x, y)) = 0,

∂

∂y
δε(φ(x, y)) = 0,

so that the last two terms of the Euler–Lagrange equation can be calculated.

∂

∂x
Fφx = µ δε(φ)

φxxφ
2
y − φxyφxφy

|∇φ|3 ,

∂

∂y
Fφy = µ δε(φ)

φyyφ
2
x − φxyφxφy

|∇φ|3

Putting everything together and applying Proposition C.6 and Proposition C.7 we get

∂

∂x
Fφx+

∂

∂y
Fφy − Fφ

= δε(φ)
(
µ
φxxφ

2
y − 2φxyφxφy + φyyφ

2
x

|∇φ|3 − ν − λ1 |u0 − c1|2 + λ2 |u0 − c2|2
)

= δε(φ)
(
µκ(φ)− ν − λ1 |u0 − c1|2 + λ2 |u0 − c2|2

)
= 0.

If we parameterize the descent direction by an artificial time t, i.e. the greater the time the
smaller the energy, we obtain the following non-linear partial differential equation

∂φ

∂t
= δε(φ) (µκ(φ)− ν − λ1 |u0 − c1|2 + λ2 |u0 − c2|2) = 0,

where κ(φ) = ∇ · ∇φ
|∇φ| denotes motion by mean curvature as introduced in Appendix C. As

initial condition we want φ(x, y, 0) to be the signed distance function initialized by the given
curve Γ. In [10] the authors also require that

δε(φ)
|∇φ|

∂φ

∂n
= 0

on the boundary ∂Λ where ∂φ
∂n is the normal derivative and the normal n is pointing outwards.

Therefore they require a Neumann boundary condition, if the curve is on the boundary.
In the following we will use periodic boundary conditions because in the simulations we

would like to extend this PDE to an SPDE and therefore we would like to use the random
fields with periodic boundary conditions that were generated in Chapter 1. For more details
on curvature see also Appendix C.

3.3.2. Energy Functionals Based on Gaussian Distributions

In the following a single Gaussian model by Rousson and Deriche [83] is summarized. A
similar summary can be found in [47]. In their unsupervised segmentation framework [83], the
authors model each region of a gray-valued or color image I by a single Gaussian distribution
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3.3. Active Contours

of unknown mean µi and variance Qi, where µi ∈ Rm and Qi is an m×m-matrix, where m is
the number of different image features, e.g. the color channels red, green, and blue. The case
of two region segmentation turns into minimizing the following energy:

E(Γ, µ1, Q1, µ2, Q2) =
∫

in(Γ)
e1(x) dx+

∫

out(Γ)
e2(x) dx+ νL(Γ),

where the notations are similar to those of Section 3.3.1 and ei(x) = − log pµiQi(I(x)) with

pµiQi(I(x)) = ((2π)m det(Qi))−1/2 exp(−1
2〈I(x)− µi, Q

−1
i (I(x)− µi)〉)

being the m-dimensional Gaussian density for a given value I(x) with respect to the hypothesis
(µi, Qi). The parameters (µi, Qi), estimated from the pixel currently inside and outside Γ, are
functions of Γ. Thus, the energy is a function just depending on Γ. Its Euler–Lagrange equation
is not obvious but finally simplifies to the minimization dynamics

βc = e2(x)− e1(x) + ν κ(u),

where κ(u) denotes motion by mean curvature as introduced in Appendix C. This approach
leads to successful segmentations of two regions, even when they have the same mean but only
different variances. But also the PDE resulting of this approach can easily get stuck in “false”
local minimum.

In [47], Juan et al. extend this model to region statistics modeled by a mixture of Gaussian
distributions of parameters Θi = (π1

i , µ
1
i , Q

1
i , . . . , π

ni
i , µ

ni
i , Q

ni
i ) with

∑ni
j=1 π

j
i = 1, πj

i ∈ [0, 1],
in order to give an example where the Euler–Lagrange equation cannot be computed. Then
the Gaussian density for a given value I(x) is given by

pΘi(I(x)) =
ni∑

j=1

πj
i pµj

i Qj
i
(I(x)).

The next question that arises is how to estimate the number of Gaussian distributions to be
chosen. Juan et al. suggest to estimate these either at the initial time step or dynamically
using a minimum description length criterion [82] or the minimal message length method [92].
For the problem of estimating Θi from input samples they finally chose the K-means algorithm
by MacQueen [64] which seemed to be the best for their application after they had tested
several algorithms to estimate the parameters. The new segmentation problem consists of
minimizing the energy previously defined in [83] with ei = − log pΘi(I(x)). The dependency
of Θi with respect to Γ is a complex problem. The learning algorithm that estimates Θi acts
as a “black box” implementing Γ 7→ Θi(Γ). As a consequence, the Euler–Lagrange equation
of the energy E(Γ,Θ1(Γ),Θ2(Γ)) = E(Γ) cannot be computed explicitly. If, similar to the
case of one Gaussian distribution, the evolution is driven by βc = e2 − e1 + νκ, where κ is
the mean curvature, the deterministic algorithm might also get stuck in local minima because
the evolution is not driven by the exact coefficients but just by a guessed one. In order to
overcome “false” local minima in a better way, stochastic active contours are introduced in the
next section.
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3. Segmentation

3.4. Stochastic Active Contours

This section is devoted to generalize the resulting PDEs of the last section to different types
of SPDEs. First we will review a paper by Juan et al. [47] on which this thesis is based.
Afterwards possible modifications of the stochastic modeling are presented.

3.4.1. Idea of Juan, Keriven, and Postelnicu

This paragraph summarizes the paper “Stochastic Motion and the Level Set Method in Com-
puter Vision: Stochastic Active Contours” by Juan, Keriven, and Postelnicu [47] which was
the starting point of this thesis. The paper suggests using stochastics based on recent work
by Lions and Souganidis [57, 58, 60, 61] to overcome “false” local minima and to get better
segmentation results.

Let F = F (D2u,Du, x, t) be a deterministic driving force, W (t) a one-dimensional Brownian
motion, and the SPDEs

du = F (D2u,Du, x, t) dt+ ε |Du| ◦ dW (t), (3.3)

du = F (D2u,Du, x, t) dt+ |Du| ξ̇α(t) (3.4)

be given, where ε ≥ 0 and ξα is a family of smooth functions ξα : R+ → R. Then the properties
of these equations are proved in the papers of Lions and Souganidis and summarized in the
following theorem which can be found in [47].

Theorem 3.10 ([57, 58, 60, 61]). The following hold a.s. in ω.

1. There exists a unique solution to Equation (3.3).

2. Let {ξα(t)}α>0 and {ηβ(t)}β>0 be two families of smooth functions such that as α and
β → 0, ξα and ηβ converge to W uniformly in t ∈ [0, T ] for any T and a.s. in ω. Let
{uα}α>0 and {vβ}β>0 in BUC(R+ × RN ) (bounded uniformly continuous) be the corre-
sponding solutions of Equation (3.4). If limα,β→0 ‖uα(·, 0)− vβ(·, 0) ‖C(RN ) = 0, then,
for all T > 0, limα,β→0 ‖uα − vβ ‖C([0,T ]×RN ) = 0. In particular, any smooth approxi-
mation of W produces solutions converging to the unique stochastic viscosity solution of
Equation (3.3).

3. As ε→ 0, the solution uε of Equation (3.3) converges in C(R+ ×RN ) to the solution of
Equation (3.3) with ε = 0.

Remark 3.11. For an introduction to viscosity solutions for deterministic PDEs, the reader is
referred to the “User’s Guide” by Crandall, Ishii, and Lions [15], the book of Barles [3], and
the book of Fleming and Soner [21]. An extension of this theory to SPDEs was done by Lions
and Souganidis [57, 58, 60, 61].

The evolution of a curve is simulated as the zero level set of an N -dimensional region Λ.
The authors use the Stratonovich convention because then the result is independent of the
initialization of all points except the zero level set. This can easily be seen by the Itô formula.
Therefore let α : R → R be a smooth increasing function with α(0) = 0. If u(t, x) is the
solution of the SPDE

du = |Du| dW (t), (3.5)
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3.4. Stochastic Active Contours

given some initial condition u0(x), then α(u(t, x)) is not the solution of Equation (3.5) with
initial condition α(u0(x)). Moreover, the solution of Equation (3.5) with initial condition
α(u0(x)) has not the same zero level set as u(t, x). Therefore the evolution depends on the
implicit representation of the initial curve. This can be seen in the following calculations
pointed out in [59] and mentioned in [47]. Consider a function α : R → R such that α′ > 0
and α(0) = 0, and the initial value problem (3.5) with initial condition u(0, ·) = u0(·). If
we consider the solution of (3.5), then v = α(u) should verify the same dynamics but with a
different initial condition v(0, ·) = α(u0(·)) as is the case in the deterministic framework. Using
the Itô formula, we get

dv = dα(u) = α′(u) du+
1
2
α′′(u)(du)2 = |Dv| dW (t) +

1
2
α′′(u) |Du|2 dt,

and the assertion is not verified because there is the additional term 1
2α

′′(u) |Du|2 dt, . Hence
the problem is ill-posed from a level sets point of view. This problem can be overcome by using
the Stratonovich convention because it obeys the chain rule known from real analysis [49], i.e.
for the initial value problem

{
du = |Du| ◦ dW (t),
u(0, ·) = u0(·),

(3.6)

it holds for a smooth increasing function α : R → R with α(0) = 0, that if u is a solution of
Problem (3.6), then it is also a solution of

{
dα(u) = |Dα(u)| ◦ dW (t),
α(u(0, ·)) = α(u0(·)).

Therefore the solution is independent of the initialization of the implicit function, if only the
zero level set is given. For the Itô case we finally observe that the equation is invariant in case
that α is a linear transformation.

The authors of [47] simulate a nonlinear equation of the form

du(t, x) = F (D2u(t, x), Du(t, x), x, t) dt+ |Du(t, x)|
m∑

i=1

φi(x) ◦ dWi(t),

where W (t) = (W1(t), . . . ,Wm(t)) is an m-dimensional Brownian motion, F is the diffusion
coefficient, and the elements φi : RN → R are smooth functions with compact support, i.e.
there is a certain finite number of noise sources xi and

φi(x) = φ(x− xi)

where φ is some convenient regular function and for all i, j it holds that φi(xj) = δij . The
authors modify the elements φi to φ̃i(x) := φi(x)/(

∑m
j=1 φ

2
j (x)) in order to have a constant

unit variance in the whole simulation area. We remark that the existence of a viscosity solution
for this equation is still an open problem. As implicit schemes for nonlinear equations can not
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3. Segmentation

be simulated efficiently (see also Section 3.5.2), the authors transform their equation by the
Wong-Zakai theorem [94] to the following Itô SDE

du = F dt+ |Du|
m∑

i=1

φi(x) dWi(t) +
1
2

(( m∑

i=1

φ2
i (x)

)
D2u

Du

|Du| +
( m∑

i=1

φi(x)Dφi(x)
) ·Du

)
dt.

To make the expression better readable, we omitted the arguments of the functions. These are
similar to the equation written with Stratonovich convention. For the numerical simulations
they use a WENO3 scheme [46]. The convergence of this scheme is verified by statistical tests.
The invariance of the Stratonovich convention is tested by setting α(x) = ex−1 which conserves
the zero level sets.

For the application of this model to computer vision which is called stochastic active contours,
we first have to introduce the simulated annealing algorithm. This algorithm is based on the
work of Metropolis et al. [66] and was first mentioned by Kirkpatrick et al. [51] as an application
of statistical physics to optimization problems. The algorithm applied to computer vision works
in the following way.

Algorithm 3.12. Given some computer vision problem in a variational framework, where
we have to find the region Γ described by a function u that minimizes an energy E(u), the
following simulated annealing decision scheme is used:

1. Start from some initial guess u0.

2. Compute un+1 from un using some dynamics, e.g. du = |Du|∑m
i=1 φi(x) ◦ dWi(t).

3. Compute the energy E(un+1).

4. Accept un+1,

• if E(un+1) < E(un),

• otherwise, accept un+1 with probability exp(−(E(un+1)− E(un))/T (n)).

5. Loop back to step 2, until some stopping condition is fulfilled, e.g. the energy does not
change for a by the user specified time.

Here T (n) is a time-dependent function that plays the same role as a decreasing temperature.
Its choice is not obvious. A classical choice is T (n) = T0/

√
n, where T0 is a constant.

The classical way to solve the minimization problem of Algorithm 3.12 is to use a gradient
descent method. Therefore the Euler–Lagrange equation is computed, leading to some evo-
lution ∂ u/∂ t = βc |Du| in the level set framework. The authors use the classical motion as
heuristics that drives the evolution faster towards a minimum, and they replace the dynamics
of step 2 by

du = βc |Du| dt+ |Du|
m∑

i=1

φi(x) ◦ dWi(t).

The convergence of this algorithm towards a global minimum is still an open problem. The au-
thors claim that practical simulations indicate that Algorithm 3.12 is more likely to overcome

92



3.5. Simulations

Figure 3.3.: Segmentation of two regions modeled by two unknown Gaussian distributions.
From left to right: the initial curve, the final time step of the classical method,
again stuck in a local minimum and the final step of the method presented in [47].

local minima than the classical approach. For their simulations, the energy functionals pre-
sented in Section 3.3.2 are used although one could also use the functionals from Section 3.3.1
or those of Casellas et al. [9]. One of their segmentation results is the zebra shown in Fig-
ure 3.3 which was also successfully segmented by the authors of [73] with supervised texture
segmentation.

3.4.2. Segmentation Using Different Noise Terms

The noise used in the previous section has the disadvantage that there is a fixed finite set
of points that is perturbed and all other points are connected to this set by a deterministic
function. Therefore it might be an interesting modification to use Q-Wiener processes and the
corresponding numerical simulations presented in Section 2.2.2. The existence of solutions can
be found in [16]. The question, when a discretization of a stochastic differential equation of
the form

du(t, x) = F (D2u,Du, x, t) dt+ |Du(t, x)| dW (t, x)

is consistent and numerically stable, is still open. A first idea how these properties can be
checked is given in Section 2.3 in the case of the heat equation with additive and multiplica-
tive noise. Concerning the question whether to use the Itô or the Stratonovich convention,
simulations on both were done which are presented in the next section.

3.5. Simulations

This section summarizes the simulation of SPDEs for segmentation with different numerical
schemes and compares them. To show the effect of different covariances, a heat equation on
an image and motion by mean curvature will be used. Moreover the differential equations
from Section 3.3 and the stochastic ones of the previous section will be implemented and
tested. The implementation was done in C++ and the graphical user interface with Qt. The
random numbers were generated using Marsaglia’s ‘mother of all random number generators”,
which is a multiply-with-carry generator and which was published on the web [65]. These
equally distributed random numbers were transformed by a Box-Muller algorithm to standard
normally distributed random numbers. Most of the algorithms used in the implementation,
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3. Segmentation

Figure 3.4.: Two hibiscus blossoms of size 256× 256 pixels.

e.g. the solution of linear and nonlinear algebraic equations, are due to [76]. The discretization
of differential operators was always done by finite differences. In our case, it seems reasonable
to choose finite grids and this simple type of discretization because images are represented with
rectangular regions subdivided into pixels. All work was done with grayscale pictures. If the
pictures would have been segmented as color images, the segmentation results would probably
have been better in some cases.

3.5.1. Noise Effects

To give an idea what type of noise might be a good choice for different simulations and how
to choose a proper covariance function, a heat equation and motion by mean curvature will be
used in the following. These SPDEs give a good visualization of the effects due to the noise.
Therefore we discretize

du(t) = 1
2∆u(t) + |Du| dW (t)

and choose a grayscale picture of two hibiscus blossoms, see Figure 3.4. The gray value is used
as temperature and dark parts represent cold regions while the white ones are the hot parts
of the image. Figure 3.5 shows the result after 50 simulation steps with Mt = 1 and Mx = 0.5.
The used space covariance for the simulations with noise is given by the Fourier transform of

f(p1, p2) = (m2kn + (p2k
1 + p2k

2 )n)−l,

where n = 2, k = 1, and l = 1 were chosen. The value of m was varied in order to get different
strengths of correlations. Details on the effect of this function on the resulting random fields
can be found in Section 1.6. In the following, the differences of the images in Figure 3.5 will
be described. The first image shows the heat equation without any disturbance and therefore
the contours become diffuse but the shape stays about the same. From Pictures (b) to (f) the
exponential decay of the covariance gets stronger and this entails that perturbations appear
more and more localized. While the whole shape is corrupted in Picture (b), the shape of the
blossoms is more and more similar to the unperturbed image and the size of the perturbation of
the borders decreases. If we make use of these observations in segmentation, this will mean that
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3.5. Simulations

(a) no noise (b) m = 1 (c) m = 5

(d) m = 10 (e) m = 20 (f) m = 50

Figure 3.5.: Heat equation with gradient coupled noise and different covariances after 50 time
steps using Figure 3.4, n = 2, k = 1, l = 1.

m should be chosen large, when the curve has to be perturbed only very locally. Otherwise, if
the object to be found is not very delicate, m has to be chosen small enough.

So far, everything was fixed on the covariance in space and it has just been looked at processes
that are white in time. One example of a heat equation perturbed with gradient coupled noise
in space and an Ornstein-Uhlenbeck process in time is shown in Figure 3.6. This process was
introduced in Example 2.33. In this simulation the covariance is the same as in Figure 3.5(c)
and all simulations were done with the same random numbers. We observe from Example 2.33
that regions that were strongly perturbed up to time t will also be perturbed in the following
time step where the strength depends on γ. The simulation results show that a small value
γ = 0.2 smoothes the noise while a relatively large value γ = 0.9 frays out the contours.
Depending on the effect that should be achieved, an Ornstein-Uhlenbeck process considered in
theory might be a good choice. This is especially the case if in a segmentation problem the
curve is pushed into a corner that would be smoothed out by the corresponding deterministic
equation. Then in the next simulation step the curve will be perturbed at the same place
and therefore hopefully forced deeper into the corner. In the simulations done for this thesis
however, it turns out that this approach does not lead to remarkable better results.

Similar observations to those with the stochastic heat equation are made when implementing
motion by mean curvature. Figure 3.7 shows in (a) the initial state where the zero level set is
the border between red and blue. The unperturbed PDE shrinks the square to a decreasing
circle as shown in (b) and finally vanishes. If the PDE is perturbed with gradient coupled noise,
the square also shrinks. In (c) the covariance is very rapidly decreasing to zero and therefore
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3. Segmentation

(a) no noise, (b) γ = 0, (c) γ = 0.2,

(d) γ = 0.5, (e) γ = 0.7, (f) γ = 0.9,

Figure 3.6.: Heat equation with gradient coupled noise, fixed covariance in space (see Fig-
ure 3.5(c)), and Ornstein-Uhlenbeck process in time with different coefficients γ
after 50 time steps using Figure 3.4.

the general motion of the shape is about the same as without noise but single pixels on the
border are perturbed, while in (d) the noise is smoother and therefore the whole shape changes
and one observes that the curve is moving all over the image and even breaking into several
parts. These impressions should help the reader to find the right noise with given covariance
for his own applications and simulations. Next we move on to segmentation with different
types of noise, especially differently coupled to the PDE.

3.5.2. Implicit Schemes

One possible implementation of SPDEs with Stratonovich convention is to use implicit schemes,
i.e.

∫ t+Mt

t
|∇u(s, x)| ◦ dW (s, x) ≈ 1

2 (|∇u(t+ Mt, x)|+ |∇u(t, x)|) (W (t+ Mt, x)−W (t, x)) .

This leads to nonlinear algebraic equations that can only be solved numerically. The existing
algorithms need a good guess of the solution in order to converge. Possible choices for this
guess are the solution of the SPDE of the previous step or the solution that would come from
an explicit scheme. In the simulations, the problem occurred that these guesses were not good
enough to take a large time step size Mt. If a time step size that was not numerically stable in
the corresponding explicit scheme, was taken, the algorithm for solving the system of nonlinear
equations would not converge. Therefore these equations do not have the advantage that a
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(a) initial condition, (b) without noise, (c) f(p) = (1 + |p|2)−1, (d) f(p) = (1 + |p|2)−2,

Figure 3.7.: Simulation of motion by mean curvature perturbed with different types of gradient
coupled noise.

larger step size can be chosen than for the explicit schemes but the simulation is a lot slower.
The segmentation results are similar to those with explicit scheme. It seems that the zero
level sets are a bit smoother in comparison to the explicit solutions and therefore the implicit
schemes avoid the formation of cusps.

3.5.3. Explicit Schemes

The fastest and easiest way to implement SPDEs is to use explicit schemes and finite differ-
ences. This kind of implementation also leads to fast simulations because no algebraic equation
systems have to be solved. Numerical stability is achieved for Mx = 0.5 and Mt ≤ 0.001, if
the energy functional by Chan and Vese (see Section 3.3.1) is used. In the following we have
to distinguish between five different equations: without noise, with additive noise, with multi-
plicative noise, with gradient coupled noise, and with curvature coupled noise, i.e. the following
SPDEs were implemented:

du(t, x) = F (D2u,Du, x, t) dt+





0,

α dW (t, x),

α u(t, x) dW (t, x),

α |Du(t, x)| dW (t, x),

α

(
1 + div

( ∇u(t, x)
|∇u(t, x)|

))
dW (t, x),

where α ∈ R+ is a constant to regulate the strength of the noise. For the deterministic equation,
a full time simulation was used, i.e. the PDE was simulated up to time T , while the SPDEs
where embedded into Algorithm 3.12. In most cases the results do not differ much. One
example where the gradient coupled noise led to a much better result than the deterministic
equation can be found in Figure 3.8. Before showing other segmentation results, the meaning
of the different types of noise is discussed. Additive and multiplicative noise hardly change
anything. Additive noise disturbs the whole function everywhere and the simulation results
give the impression that if perturbed, the curve is destroyed at the wrong places. Using
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(a) without noise (b) with gradient coupled noise

Figure 3.8.: Segmentation of a zebra.

multiplicative noise means that the function is not perturbed at the zero level set but at
all other places. This means the further a pixel is away from the curve, the stronger it is
perturbed. As the goal is to get better segmentation results and therefore a different shape of
the curve than without noise, this approach does not seem to be a good choice. If the noise
is weighted with the size of the gradient, one observes the best results. It is also noticeable
that the signed distance function is not too much perturbed even without reinitialization. This
can be explained in the following way. The noise is weighted with the size of the gradient
which is equal to one for the signed distance function. If the function becomes much steeper,
i.e. the gradient is much larger than one, these parts will undergo stronger perturbations and
therefore they will probably be pushed back into the direction of the signed distance function.
The gradient coupled noise seems to be the best choice to get small details. The idea of the
curvature coupled noise was to find small details because parts with high curvature will be
perturbed stronger than straight lines. In simulations it turned out that this is better achieved
by gradient coupled noise.

A typical segmentation result with a fixed deterministic equation of Chan and Vese type
and different noise is shown in Figure 3.9. Looking at the complete segmentation, there are
hardly any differences but in Figure 3.10 we compare the details. These show that the gradient
coupled noise is the best to find the edges of the leaves. Therefore it overcomes the problem
that the approach by Chan and Vese [10] smoothes out details if the mean curvature term
dominates the PDE. Finally, Figure 3.11 shows that the segmentation of the zebra shown
in Figure 3.3 also gives good results, if the deterministic PDE presented in Section 3.3.2 is
used, but with stochastics the segmentation result is even better. If the noise developed in
this thesis is applied to segmentation, one observes that the results are comparable to other
segmentation methods with and without stochastics. An advantage of the infinite-dimensional
noise approach presented in Section 1.4 and used here is that the random field generation is
fast. Therefore the segmentation of the images did not take longer than five minutes on a
standard PC. Still, the simulation without noise is the fastest of all versions. We also remark
that the speed of the noise generation depends highly on the size of the image. This is due
to the fact that Algorithm 1.18 uses FFT implemented via fftw3 [25] which is the fastest for
powers of two.
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(a) original image, (b) without noise, (c) additive noise,

(d) multiplicative noise, (e) gradient coupled noise, (f) curvature coupled noise,

Figure 3.9.: Segmentation of a papaya tree with different types of noise.

(a) original image, (b) without noise, (c) additive noise,

(d) multiplicative noise, (e) gradient coupled noise, (f) curvature coupled noise,

Figure 3.10.: Detail of Figure 3.9 showing the differences between various noise types in detail
but with the same deterministic equation.
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(a) without noise,
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(b) gradient coupled noise,

Figure 3.11.: Segmentation of Figure 3.3 using Gaussian distributions.
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Appendix A.

Basic Properties of Strongly Continuous Semigroups

This appendix summerizes some important properties of strongly continuous semigroups. For
more details the reader is referred to [43, 50, 74, 98]. In the following let E be a Banach space
with norm ‖ · ‖.
Definition A.1. A one parameter family S(t), 0 ≤ t < +∞, of bounded linear operators from
E into E is a semigroup of bounded linear operators on E if

1. S(0) = 1l, where 1l is the identity operator on E,

2. S(t+ s) = S(t)S(s) for every t, s ≥ 0.

A semigroup of bounded linear operators S(·) is uniformly continuous if

lim
t↓
‖S(t)− 1l ‖ = 0.

The linear operator A defined by

D(A) =
{
x ∈ E, lim

t↓0
S(t)x− x

t
exists

}

and
Ax = lim

t↓0
S(t)x− x

t
for x ∈ D(A)

is the infinitesimal generator of the semigroup S(·), D(A) is the domain of A.

Definition A.2. A semigroup S(t), 0 ≤ t < +∞, of bounded linear operators on E is a
strongly continuous semigroup of bounded linear operators if

lim
t↓0

S(t)x = x for every x ∈ E.

A strongly continuous semigroup of bounded linear operators on E is called a semigroup of
class C0 or simply a C0 semigroup.

Corollary A.3. If S(·) is a C0 semigroup then for every x ∈ E, t 7→ S(t)x is a continuous
map from the nonnegative real line into E.

Theorem A.4. Let S(·) be a C0 semigroup and let A be its infinitesimal generator.

1. For x ∈ E,

lim
h→0

1
h

∫ t+h

t
S(s)x ds = S(t)x.
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2. For x ∈ E,
∫ t

0
S(s)x ds ∈ D(A) and A

(∫ t

0
S(s)x ds

)
= S(t)x− x.

3. For x ∈ D(A), S(t)x ∈ D(A) and

d

dt
S(t)x = AS(t)x = S(t)Ax.

4. For x ∈ D(A),

S(t)x− S(s)x =
∫ t

s
S(τ)Axdτ =

∫ t

s
AS(τ)x dτ.

Definition A.5. A linear operator A : D(A) ⊂ E → E is closed if its graph

GA := {(x, y) ∈ E × E, x ∈ D(A), Ax = y}
is closed in E × E.

If A is closed, the domain D(A) can be endowed with the graph norm

‖x ‖D(A) := ‖x ‖+ ‖Ax ‖
which can be shown to be indeed a norm.

Corollary A.6. If A is the infinitesimal generator of a C0 semigroup S(·) then D(A), the
domain of A, is dense in E and A is a closed linear operator.

Theorem A.7. Let A be the infinitesimal generator of the C0 semigroup S(·). If D(An) is the
domain of An, then ∩∞n=1D(An) is dense in E.

Definition A.8. A complex number λ belongs to the resolvent set ρ(A) of A if λ1l − A is
one-to-one and onto. If λ ∈ ρ(A), we set

R(λ,A) := (λ1l−A)−1,

and call R(λ.A) the resolvent operator of A. The complement of ρ(A) in C is called the
spectrum of A.

Theorem A.9 (Hille–Yosida). Let A : D(A) ⊂ E → E be a linear closed operator on E. Then
the following statements are equivalent:

1. A is the infinitesimal generator of a C0 semigroup S(·) such that

‖S(t) ‖ ≤Meωt, for all t ≥ 0.

2. D(A) is dense in E, the resolvent set ρ(A) contains the interval (ω,+∞) and the following
estimates hold ∥∥∥Rk(λ,A)

∥∥∥ ≤ M

(λ− ω)k
, for k ∈ N.
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Moreover if either 1. or 2. holds then

R(λ,A)x =
∫ ∞

0
e−λtS(t)x dt, x ∈ E, λ > ω.

Finally
S(t)x = lim

n→+∞ e
tAnx, for all x ∈ E,

where An := nAR(n,A) and the following estimate holds

∥∥ etAn
∥∥ ≤Me

ωnt
n−ω , for all t ≥ 0, n > ω.

The operators An = AJn where Jn := nR(n,A), n > ω, are called the Yosida approximations
of A. The following properties of Yosida approximations are frequently used.

Proposition A.10. Let A : D(A) ⊂ E → E be the infinitesimal generator of a C0 semigroup.
Then

lim
n→+∞nR(n,A)x = x, for all x ∈ E,

lim
n→+∞An x = Ax, for all x ∈ D(A).
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Appendix B.

Stability Using Fundamental Solutions and Fourier
Methods

In the following we will derive Proposition 2.68 in the language of fundamental solutions and
Fourier methods in an informal way instead of semigroup theory. We assume that we are doing
simulations on R and that we do not need boundary conditions. Moreover we assume that
the stochastic integral can be approximated without error. For the calculations we will first
shortly introduce the necessary basics on fundamental solutions. These can be found in [24].

Let (
∂

∂t
− 1

2
4

)
u(t, x) = 0

be the homogeneous heat equation on R with the corresponding Cauchy problem u(0, x) = ϕ(x)
where ϕ is a continuous function on R with

∫
R ϕ(x) dx < +∞.

This PDE has the fundamental solution

K(t, x) =
1√
2πt

e−
x2

2t .

The solution of the heat equation with initial condition u(0, x) = ϕ(x) is given by

u(t, x) = (K(t, ·) ∗ ϕ) (x) =
∫

R
K(t, x− y)ϕ(y) dy.

If we extend the heat equation with an inhomogeneity, i.e.
(
∂

∂t
− 1

2
4

)
u(t, x) = f(t, x)

where f is continuous and locally Hölder continuous, the solution is given by

u(t, x) = (K ∗ f)(t, x) =
∫ t

0

∫

R
K(t− s, x− y)f(s, y) dy ds.

For the corresponding Cauchy problem with u(0, x) = ϕ(x), the solution is given by

u(t, x) = (K(t, ·) ∗ ϕ)(x) + (K ∗ f)(t, x).

Proposition B.1 (Heat equation with additive noise). Let

du(t, x) =
1
2
4u(t, x) dt+ dW (t, x),
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be a stochastic partial differential equation where W (t, x) is a stochastic process with given
space covariance

C(x, y) =
∫

R
e−2πi(x−y)pf(p) dp,

where f(p) is symmetric under rotation, such that C(x, y) is exponentially decreasing for |x− y|
large and

∫
R p

kf(p) dp < +∞, k ∈ {0, . . . , 6}, and the covariance in time is given by a process
dXt = b(Xt) dt + σ(Xt) dBt where σ(Xt) is bounded, i.e. 0 < ε < σ(Xt) < b < +∞ and Bt

denotes Brownian motion. Possible examples for W (t, x) are Brownian motion and Ornstein-
Uhlenbeck processes. Assume that Ktt and Kxxxx are bounded where K denotes the fundamental
solution. Then the approximation method

U(t+ h, x) = U(t, x) +
h

2(Mx)2 (U(t, x+ k)− 2U(t, x) + U(t, x− k)) + η(t, x)

is consistent and stable for h ≤ (Mx)2, t ∈ (0, T ] where η(t, x) = W (t+ h, x)−W (t, x)

Proof. First, we have to calculate the truncation error to prove consistency. Therefore we set
α := h/(Mx)2 in order to make notations easier.

Tt+h(x)

= u(t+ h, x)− (1− h

(Mx)2 )u(t, x)− h

2(Mx)2 (u(t, x+ Mx) + u(t, x− Mx))− η(t, x)

=
∫

R
K(t+ h, x− y)ϕ(y) dy +

∫

R

∫ t+h

0
K(t+ h− s, x− y) dW (s, y) dy −

∫ t+h

t
dW (s, x)

− (1− α)(
∫

R
K(t, x− y)ϕ(y) dy +

∫

R

∫ t

0
K(t− s, x− y) dW (s, y) dy)

− α

2
(
∫

R
K(t, x+ Mx− y)ϕ(y) dy +

∫

R

∫ t

0
K(t− s, x+ Mx− y) dW (s, y) dy)

− α

2
(
∫

R
K(t, x− Mx− y)ϕ(y) dy +

∫

R

∫ t

0
K(t− s, x− Mx− y) dW (s, y) dy)

=
∫

R
(K(t+ h, x− y)− (1− α)K(t, x− y) (B.1)

− α

2
(K(t, x+ Mx− y) +K(t, x− Mx− y)))ϕ(y) dy

+
∫

R

∫ t+h

t
K(t+ h− s, x− y) dW (s, y) dy −

∫ t+h

t
dW (s, x) (B.2)

+
∫

R

∫ t

0
(K(t+ h− s, x− y)− (1− α)K(t− s, x− y) (B.3)

− α

2
(K(t− s, x+ Mx− y) +K(t− s, x− Mx− y))) dW (s, y) dy

In the following we will calculate the L2 norm of the three integrals above separately and show
that

‖T (t, x)‖2 ≤ O(h3/2)
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and therefore that the truncation error converges to zero in L2 as h tends to zero with at least
rate O(h3/2).

The estimates on the first integral are the following: We assume t > 0, because otherwise
the integral is equal to ϕ(x). We also notice that for t > 0 the derivatives in space and time
exist and that the integral over these is finite if ϕ satisfies

∫
R ϕ(y) dy < +∞.

∫

R
(K(t+h, x− y)− (1− α)K(t, x− y)− α

2
(K(t, x+ Mx− y) +K(t, x− Mx− y)))ϕ(y) dy

=
∫

R
(K(t, x− y) + hKt(t, x− y) +

h2

2
Ktt(t̃, x− y)− (1− α)K(t, x− y))

− α

2
(K(t, x− y) + MxKx(t, x− y) +

(Mx)2
2

Kxx(t, x− y)

+
(Mx)3

6
Kxxx(t, x− y) +

(Mx)4
24

Kxxxx(t, x̃− y))

− α

2
(K(t, x− y)− MxKx(t, x− y) +

(Mx)2
2

Kxx(t, x− y)

− (Mx)3
6

Kxxx(t, x− y) +
(Mx)4

24
Kxxxx(t, ˜̃x− y)))ϕ(y) dy

=
∫

R
h(Kt(t, x− y)− 1

2
Kxx(t, x− y))ϕ(y) dy +

h2

2

∫

R
Ktt(t̃, x− y)ϕ(y)dy

− h(Mx)2
48

∫

R
(Kxxxx(t, x̃− y) +Kxxxx(t, ˜̃x− y))ϕ(y) dy

=
h2

2

∫

R
Ktt(t̃, x− y)ϕ(y)dy − h(Mx)2

48

∫

R
(Kxxxx(t, x̃− y) +Kxxxx(t, ˜̃x− y))ϕ(y) dy.

Therefore as Ktt and Kxxxx are bounded by assumption and
∫
R ϕ(y) dy < +∞, we get

∥∥h2

2

∫

R
Ktt(t̃, x− y)ϕ(y)dy − h(Mx)2

48

∫

R
(Kxxxx(t, x̃− y) +Kxxxx(t, ˜̃x− y))ϕ(y) dy

∥∥
2

≤ O(h2) +O(h(Mx)2).

If h ∼ (Mx)2, we have that the first integral is bounded by O(h2).
For the estimates on the second integral we have

∥∥∥∥
∫

R

∫ t+h

t
K(t+ h− s, x− y) dW (s, y) dy −

∫ t+h

t
dW (s, x)

∥∥∥∥
2

2

= E((
∫

R

∫ t+h

t
K(t+ h− s, x− y) dW (s, y) dy)2) + E((

∫ t+h

t
dW (s, x))2)

− 2 · E(
∫

R

∫ t+h

t
K(t+ h− s, x− y) dW (s, y) dy

∫ t+h

t
dW (s, x))

=
∫ t+h

t

∫

R×R
K(t+ h− s, x− y)C(y, z)K(t+ h− s, x− z) dy dz ds

− 2
∫ t+h

t

∫

R
K(t+ h− s, x− y)C(x, y) dy ds+

∫ t+h

t
C(x, x) ds
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=
∫ t+h

t
F(F−1(K(t+ h, x)) · F−1(C(x, x)) · F−1(K(t+ h, x))) ds

− 2
∫ t+h

t
F(F−1(K(t+ h, x)) · F−1(C(x, x))) ds+ hC(x, x)

=
∫ t+h

t

∫

R
e2πi(x−x)qe−2(t+h−s)π2q2

f(q)e−2(t+h−s)π2q2
dq ds

− 2
∫ t+h

t

∫

R
e2πi(x−x)qe−2(t+h−s)π2q2

f(q) dq ds+
∫

R
hf(q) dq

=
∫

R
(e−4hπ2q2 (e4hπ2q2 − 1)

4π2q2
− e−2π2q2 2(e2π2q2 − 1)

2π2q2
− h)f(q) dq

≤
∫

R
(

1
4π2q2

(1− (1− h4π2q2 +
h2

2
(4π2q2)2 − h3

6
(4π2q2)3))

− 2
2π2q2

(1− (1− h2π2q2 +
h2

2
(2π2q2)2)) + h)f(q) dq

= h3 4
3
π4

∫

R
q4f(q) dq = O(h3),

using in the second step the Itô isometry. Therefore it follows that the second integral is
bounded by O(h3/2).

Finally the norm in L2 of the third integral can be estimated in the following way.
∥∥∥∥
∫

R

∫ t

0
(K(t+ h− s, x− y)− (1− α)K(t− s, x− y)

−α
2

(K(t− s, x+ k − y) +K(t− s, x− k − y))) dW (s, y) dy
∥∥∥

2

2

=
∫ t

0

∫

R×R
(K(t+ h− s, x− y)− (1− α)K(t− s, x− y)

− α

2
(K(t− s, x+ k − y) +K(t− s, x− k − y)))

C(y, z)(K(t+ h− s, x− z)− (1− α)K(t− s, x− z)
− α

2
(K(t− s, x+ k − z) +K(t− s, x− k − z))) dy dz ds

=
∫ t

0
F(F−1(K(t+ h− s, x)− (1− α)K(t− s, x)− α

2
(K(t− s, x+ k) +K(t− s, x− k)))

F−1(C(x, x))F−1(K(t+ h− s, x)− (1− α)K(t− s, x)
− α

2
(K(t− s, x+ k) +K(t− s, x− k))) ds

=
∫ t

0

∫

R
e2πi(x−x)q

(
e−2(t+h−s)π2q2 − (1− α)e−2(t−s)π2q2

−α
2

(
e2πikqe−2(t−s)π2q2

+ e−2πikqe−2(t−s)π2q2
))2

f(q) dq ds

=
∫

R

(
e−2hπ2q2 − 1 + α(1− cos(2πkq))

)2
∫ t

0
e−4(t−s)π2q2

ds f(q) dq
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≤
∫

R

1− e−4tπ2q2

4π2q2

(
1− h2π2q2 +

h2

2
(2π2q2)2 − 1 + α(1− 1 +

(Mx)2
2

4π2q2)
)2
f(q) dq

≤
∫

R
1 · h4π6q6f(q) dq = O(h4)

The last equation follows because
∫
R q

6f(q) dq < +∞. Therefore we conclude that the third
integral is bounded by O(h2). So in conclusion we have proved that ‖T (t, x)‖2 ≤ O(h3/2) and
that the approximation method is consistent.

We finish the proof by calculating the error and showing that the method is stable. The
equation

e(t+ h, x)− (1− α)e(t, x)− α

2
(e(t, x+ k) + e(t, x− k)) = −T (t, x)

implies that

‖e(t+ h, x)‖2 ≤ |1− α| ‖e(t, x)‖2 +
α

2
(‖e(t, x+ k)‖2 + ‖e(t, x− k)‖2) + ‖T (t, x)‖2 .

Let the time steps in the simulation be given by tn = h · n, 0 ≤ tn ≤ T and we set

E(tn) = max
x
‖e(tn, x)‖2 ,

T (tn) = max
x
‖T (tn, x)‖2 ,

Tmax = max
tn

T (tn).

E(tn), T (tn), and Tmax exist because an error is just defined on the finite grid of our simulation
in space and time. Then for h ≤ (Mx)2 we get

E(tn+1) ≤ (|1− α|+ α)E(tn) + T (tn)
≤ E(tn) + T (tn)
≤ E(t0) + n · Tmax

≤ 0 + nhO(
√
h)

= tnO(
√
h).

Therefore E(tn+1) tends to zero if Tmax goes to zero and the used approximation method is
stable for h ≤ (Mx)2.
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Appendix C.

Curvature of a Curve

There are three different ways how to represent a curve in the plane: in the parametric form,
explicitely, or implicitely. In the following, we will see the calculations and transformations
of the curvature in the different representations. Note that we use curves in the plane and
therefore that there exists just one curvature value and the mean curvature is equal to the
principal curvature and the curvature.

Definition C.1. Let r : [a, b)→ R2 be the embedding of a curve given by r(s) = (x(s), y(s)).
The curve r(s) is called parameterized by arclength if the tangent vector t(s) = r′(s) satisfies
|t(s)| = 1 for all s ∈ [a, b).

Moreover let n(s) be the normal vector of the curve. The direction of n(s) is given by

n(s) =
(

0 1
−1 0

)
t(s)t.

The orientation is made clear in Figure C.1. Now we are able to define the curvature of a curve
in the plane.

t

n

r(s)

Figure C.1.: A given curve r(s) with tangent vector t and normal n.

Definition C.2. Let r be an embedded curve as defined above and t(s) the tangent vector
at the point r(s). Furthermore let ϕ(s) be the angle between the tangent vector t(s) and the
positive x-axis. Then the curvature of the curve is given by

k(s) :=
dϕ(s)
d s

.

The vector of curvature is defined by

k(s) := k(s) · n(s).
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Lemma C.3. Given an embedded curve r with r(s) = (x(s), y(s)) and let the curve be param-
eterized by arclength with s. Let t be an arbitrary parameterization. Then

d s(t)
d t

= ṡ(t) =
√
ẋ(t)2 + ẏ(t)2. (C.1)

Proof. Let s(t) be the arclength of the curve between t0 and t. Then s(t) is given by

s(t) =
∫ t

t0

√
ẋ(t̃)2 + ẏ(t̃)2 d t̃.

Calculating the derivative of s(t) with respect to t

ṡ(t) =
√
ẋ(t)2 + ẏ(t)2

finishes the proof.

Proposition C.4. If r is an embedded curve with an arbitrary parameterization given by
r(t) = (x(t), y(t)), then the curvature k(t) is given by

k(t) =
ẋ ÿ − ẍ ẏ

(ẋ2 + ẏ2)3/2
, (C.2)

where x := x(t) and y := y(t) and ẋ is the derivative of x with respect to t.

Proof. Let ϕ be the angle between the tangent vector and the positive x-axis, then

tan ϕ =
d y

d x
=
d y

d t
·
(
d x

d t

)−1

=
ẏ

ẋ

and therefore ϕ is given by

ϕ = tan−1
( ẏ
ẋ

)
.

Finally we calculate the derivative using Equation (C.1).

dϕ

d s
=
dϕ

d t
· d t
d s

=

(
1 +

(
ẏ

ẋ

)2
)−1

d

d t

(
ẏ

ẋ

)
· (ẋ2 + ẏ2)−1/2 =

ẋ ÿ − ẍ ẏ
(ẋ2 + ẏ2)3/2

Next let the curve be represented explicitely, i.e. it is given by y = f(x) where f is a map
with f : R→ R.

Proposition C.5. If the curve in the plane is given explicitely by y = f(x), the curvature of
the curve at a point (x, f(x)) is

k(x) =
f ′′(x)

(1 + f ′(x)2)3/2
, (C.3)

where f ′ denotes the derivative of f with respect to x.
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Proof. Let the parameterization be given by x = t and y = f(t), then by using Equation (C.2)
we finish the proof.

k(x) = k(t) =
ẋ ÿ − ẍ ẏ

(ẋ2 + ẏ2)3/2
=

1 · f ′′(t)− 0 · f ′(t)
(12 + f ′(t)2)3/2

=
f ′′(x)

(1 + f ′(x)2)3/2

Finally let the curve Γ be given by the zero level set of a function F : R2 → R, i.e.
Γ = {(x, y), F (x, y) = 0}. Then the curvature is given by the following proposition.

Proposition C.6. The curvature of a curve given implicitely, i.e. by the zero level set of a
function F : R2 → R, is given by

k(x, y) = −FxxF
2
y − 2 · FxyFxFy + FyyF

2
x

(F 2
x + F 2

y )3/2
(C.4)

where Fx denotes the derivative in x-direction and similarly Fy the derivative in y-direction.

Proof. First we assume the Fy 6= 0. Then in a neighborhood of each point the curve can be
represented explicitely by y = f(x). This holds by the implicit function theorem. By the
definition of the zero level set we have F (x, f(x)) = 0 and therefore

∂

∂x
F (x, f(x)) = Fx + Fyf

′(x) = 0

and
∂2

∂x2
F (x, f(x)) = Fxx + F + xyf ′(x) + Fxyf

′(x) + Fyyf
′(x)2 + Fyf

′′(x) = 0.

As Fy 6= 0 we can transform these equations to

f ′(x) = −Fx/Fy

f ′′(x) = F−1
y · (−Fxx + 2FxyFxF

−1
y − FyyF

2
xF

−2
y ).

Finally we use Equation (C.3) and get the claim. The denominator is

(1 + f ′(x)2)3/2 = F−3
y (F 2

x + F 2
y )3/2.

And therefore the final equation is given by

k(x, y) =
f ′′(x)

(1 + f ′(x)2)3/2
= −FxxF

2
y − 2 · FxyFxFy + FyyF

2
x

(F 2
x + F 2

y )3/2
.

We conclude this section by showing an easy expression that is equal to the curvature of an
implicit curve.
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Proposition C.7. The curvature k of a curve represented implicitely is given by the formula

k(x, y) = −∇ · ∇F (x, y)
|∇F (x, y)| ,

where we will denote in the following

κ(F ) = ∇ · ∇F|∇F | = div
( ∇F
|∇F |

)
= div

(
DF

|DF |
)
,

which are other notations common in the literature.

Proof. In order to prove this proposition we just calculate ∇ · ∇F
|∇F | .

∇ · ∇F|∇F | = div


 (Fx, Fy)√

F 2
x + F 2

y


 =

∂

∂x


 Fx√

F 2
x + F 2

y


 +

∂

∂y


 Fy√

F 2
x + F 2

y




=
Fxx ·

√
F 2

x + F 2
y − Fx · (FxxFx + FxyFy) · (F 2

x + F 2
y )−1/2

F 2
x + F 2

y

+
Fyy ·

√
F 2

x + F 2
y − Fy · (FyyFy + FxyFx) · (F 2

x + F 2
y )−1/2

F 2
x + F 2

y

=
FxxF

2
y − 2 · FxyFxFy + FyyF

2
x

(F 2
x + F 2

y )3/2
= −k,

where we used Equation (C.4) in the last step.

114



Bibliography

[1] I. M. Anderson, Introduction to the variational bicomplex, in Mathematical aspects of
classical field theory (Seattle, WA, 1991), vol. 132 of Contemp. Math., Amer. Math. Soc.,
Providence, RI, 1992, pp. 51–73.

[2] D. Barkley, A model for fast computer simulation of waves in excitable media, Phys. D,
49 (1991), pp. 61–70.

[3] G. Barles, Viscosity solutions of Hamilton-Jacobi equations. (Solutions de viscosité
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