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Chapter 1

Introduction

1.1 Motivation

In modern database systems queries are expressed in a declarative query language such as SQL or
OQL [MS92, CBB+97]. The users need only specify what data they want from the database, not
how to get the data. It is the task of the database management system (DBMS) to determine an
efficient strategy for evaluating a query. Such a strategy is called an execution plan. A substantial
part of the DBMS constitutes the query optimizer which is responsible for determining an optimal
execution plan. Query optimization is a difficult task since there usually exist a large number of
possible execution plans with highly varying evaluation costs.

The core of query optimization is algebraic query optimization. Queries are first translated into
expressions over some algebra. These algebraic expressions serve as starting point for algebraic
optimization. Algebraic optimization uses algebraic rewrite rules (or algebraic equivalences) to
improve a given expression with respect to all equivalent expressions (expressions that can be
obtained by successive applications of rewrite rules). Algebraic optimization can be heuristic or
cost-based. In heuristic optimization a rule improves the expression most of the time (but not
always). Cost-based optimization, however, uses a cost function to guide the optimization process.
Among all equivalent expressions an expression with minimum cost is computed. The cost function
constitutes a critical part of a query optimizer. It estimates the amount of resources needed to
evaluate a query. Typical resources are CPU time, the number of I/O operations, or the number
of pages used for temporary storage (buffer/disk pages).

Without optimization, some queries might have excessively hight processing costs. Query
optimization is extremely useful and often makes the computation of complex queries really
possible. If queries are stated interactively, they probably contain only a few joins [LCW93].
However, if queries are generated by an application, considerably more joins and selections can
be involved. Such queries are encountered in object-oriented database systems [KM94a] where
the I/O cost of evaluating path expressions can be reduced by transforming path expressions into
joins over object extents [KM94b, CD92], or in deductive database systems where complex rules
involving many predicates in the body lead to many joins [KBZ86, KZ88]. Another source for
complex queries are query generating database system front ends and complex nested views in
decision-support applications.

Despite the long tradition of query optimization in database research the prevailing method to
optimize queries is still dynamic programming as first described in the seminal paper [SAC+79].
In dynamic programming, all equivalent execution plans are enumerated by starting with trivial
plans and successively building new plans from smaller plans while pruning comparable suboptimal
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2 CHAPTER 1. INTRODUCTION

plans. Although this approach is very flexible, its time complexity is often inacceptable—especially
for large problems. It is not uncommon that the time to optimize a query by far exceeds the time to
process the query. Such high optimization times can only be tolerated if the query will be executed
many times such that the optimization cost pays for itself. Nevertheless, dynamic programming is
often the fastest algorithm known for query optimization problems. The question arises for which
query optimization problems can we find efficient dedicated polynomial time query optimization
algorithms and which problems can be proven NP-hard—thus leaving little hope for efficient
polynomial algorithms. At present few is known about the complexity of optimizing algebraic
expressions, and only one problem class is known for which a dedicated optimization algorithm
has been developed. It is the aim of this thesis to resolve the complexity status of problem classes
that have not yet been sufficiently investigated and to develop new optimization algorithms for
these problems that outperform the previously known algorithms.

1.2 Outline

In this thesis, we investigate the complexity of various subclasses of the problem of computing
optimal processing trees for conjunctive queries (queries involving only joins, cross products and
selections). The subproblems arise from restricting the following problem features in various ways:

• the operations that occur in the query

• the shape of the query graphs

• the shape of the processing trees

• the operators allowed in processing trees

More precisely, we distinguish between queries that contain joins and cross products only and
queries that additionally contain selections. Query graphs are classified as either chain-shaped,
star-shaped, acyclic or general. We consider the two standard types of processing trees, namely
left-deep trees and bushy trees. Processing trees may contain additional cross products or not.
Each of these features influences the complexity of the problem. We treat the problem classes from
two sides. One goal is to determine the complexity status (i.e. in P or NP-hard) of these problems,
and our other goal is to devise more efficient algorithms for these problems that outperform the
previously known algorithms.

Chapter 2 gives a brief overview of query processing in relational database systems. The problem
of optimizing conjunctive queries is introduced and the related work is discussed. Further-
more, a summary of complexity results in this area is provided.

Chapter 3 deals with the optimization of left-deep execution plans. Left-deep execution plans
are mainly used for reasons of simplicity and performance. First, the space of left-deep trees
is much smaller than the space of bushy trees, thus reducing optimization time. Second,
left-deep trees simplify both query optimizer and run time system. For example, only a
single join operator is needed that joins a base relation to an intermediate result, and there
is no need to materialize intermediate results (unlike bushy trees).1

One of the simplest join ordering problems with unknown complexity status is the problem
to compute optimal left-deep trees with cross products for chain queries. We derive two
efficient algorithms for this problem. The first algorithm produces the optimal plan but we
could not prove that it has polynomial run time. The second algorithm runs in polynomial

1provided there is enough buffer space available
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time but we could not prove that it produces the optimal result. A conjecture is stated,
which implies that both algorithms run in polynomial time and produce the optimal plan.
Another simple but important type of queries are acyclic queries with expensive selections.
Several researchers have proposed algorithms for computing optimal left-deep trees with joins
and selections—all these algorithms having exponential run time. By modeling selections
as joins we show that the algorithm of Ibaraki and Kameda [IK84] can be applied to the
problem. The resulting algorithm runs in polynomial time but has the following limitations.
First, expensive selections can only be placed on the path from the leftmost leaf node to the
root of the tree, and second, the cost function has to fulfill the ASI property from [IK84].

Chapter 4 addresses the optimization of bushy execution plans. The space of bushy plans is
larger than the space of left-deep plans but may contain considerably cheaper plans [OL90].
The question that immediately arises is whether we can expect polynomial algorithms for
this more general problem. We prove that the problem is NP-hard, independent of the query
graph. Thus, unless P=NP, there is no way to construct optimal bushy processing trees in
polynomial time.
Consequently, the rest of the chapter is dedicated to the general problem of computing
optimal bushy processing trees for general queries with expensive join and selection predicates.
Although several researchers have proposed algorithms for this problem, apart from [CS97]
all approaches later turned out to be wrong. We present three formally derived, correct
dynamic programming algorithms for this problem. Our algorithms can handle different
join algorithms, split conjunctive predicates, and exploit structural information from the join
graph to speed up the computation. The time and space complexities of the algorithms are
analyzed carefully and efficient implementations based on bitvector arithmetic are presented.

Chapter 5 summarizes the achievements and outlines areas of future research.
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Chapter 2

Background and Overview

2.1 Query Compilation and Execution

This section provides a brief overview of the basic architecture of a database management system
(DBMS) and the way queries are processed by the DBMS. We restrict ourselves to sequential1

DBMS. For an overview of query processing, see [Gra93, ME92].

Query processing describes the process a query (being submitted by either a user or an
application) is compiled and finally executed by the database management system. It typically
comprises the following stages (see Figure 2.1).2 First the query is submitted to the scanner
which transforms the query string into a stream of tokens. The parser reads the token stream
and validates it against the grammar of the query language SQL. The result of this step is
an abstract syntax tree representing the syntactical structure of the query. The second stage
comprises factorization, semantic analysis, access & integrity control, and translation into internal
representation. All these tasks can be performed together in a single pass over the abstract syntax
tree. Factorization introduces unique numbers (information units, IUs) to each intermediate result
(attribute) such that all operators take only IUs as arguments and produce a unique IU. That
is, if two operators are of the same type and have identical arguments they must have the same
IU. Factorization ensures that common subexpressions are represented only once. In the semantic
analysis the existence and validity of each object reference (table, attribute, view etc) is checked
against the database schema. Besides, the validation of object references, access rights and
integrity constraints are tested. In the translation step the abstract syntax tree is translated
into a more useful internal representation. There are many internal representations. Most of them
are calculus expressions, operator graphs over some algebra or tableaux representations. A very
powerful intermediate representation is the Query Graph Model [PHH92]. Another task which
is often performed in this stage is the transformation of boolean expressions into conjunctive
normal form. The resulting clauses are called “boolean factors”. Both conjunctive and disjunctive
normal form have the property that NOT operators are pushed inside boolean expressions which
is important for a correct handling of NULL values.3 Furthermore, often transitive join predicates
are added and constants are propagated across equality predicates (constant propagation).

The next stage is view resolution (view expansion, view merging) where each occurrence of a
view table is replaced by the respective view definition. View resolution is analogous to macro
expansion in programming languages. Note that view resolution produces nested queries which

1that is, there is one active processor and the system is not distributed over multiple machines
2In other systems some steps have other names, they may miss, be permuted or merged together.
3otherwise three-valued logic is necessary
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lexical and syntactical analysis

factorization, semantic analysis
access & integrity control

translation into internal representation

view resolution

rewrite 1

algebraic optimization

rewrite 2

code generation

plan execution

Figure 2.1: Query processing stages

requires unnesting. Although unnesting enlarges the search space by increasing the number of joins
which leads to higher optimization times the larger search space may contain considerably cheaper
plans. An alternative to view expansion is view materialization. However, view materialization
calls for a mechanism that invalidates a materialized view and triggers its re-computation if an
underlying base relation changes. The re-computation can either be from scratch or incrementally.
In the latter case only the changes are propagated through the view. Materialized views should
be fully incorporated into the query optimization process, i.e. the query optimizer should be able
to replace parts of a query by materialized views, if this lowers costs. The maintainance and
optimization of materialized views is still a topic of research.
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It is the task of the query optimizer to consider different alternatives of executing the query
and to pick the cheapest4 execution plan. The query optimizer can be very complex and may
require considerable computational resources. The result of the query optimization step is an
execution plan (evaluation plan). Execution plans are annotated trees whose nodes are operators
and whose edges indicate the data flow among the operators. Operators take as input one or more
data streams and produce an output data stream. We distinguish between logical and physical
operators. Logical operators are operators in the algebra of the internal representation. Examples
of logical operators are selection, join, cross-product, grouping, etc. Most physical operators are
implementations of logical operators, e.g. sequential-scan, index-scan, nested-loop-join, merge-
join, hash-join, hash-grouping etc. Examples of physical operators that have no logical counter
part are sort, index-scan, etc. Often algebraic optimization is performed in two phases. First, an
operator tree involving logical operators (logical plan) is computed which is then transformed into
an operator tree involving physical operators (physical plan). Figure 2.2 shows an example of an
execution plan.

index-nested-loop-join(A.x=C.x)

merge-join(A.x=B.x)

sort

table-scan(A)

sort

table-scan(B)

index-scan(C)

Figure 2.2: Execution plan

The rewrite 1 stage mainly performs unnesting. That is, if possible, nested queries are rewritten
into “flat” queries which allow more efficient evaluation and better algebraic optimization. If
unnesting is not possible (or not implemented), other techniques can be applied. For example,
semi-join based techniques like “magic rewriting” can be used to create a specialized view that can
be evaluated separately, but computes fewer irrelevant tuples. Magic rewriting can also be applied
to correlated queries (“magic decorrelation”). The “predicate move around” technique moves (or
duplicates) predicates between queries and subqueries in order to yield as many restrictions in
a block as possible. The next phase—algebraic optimization—is the core of the query optimizer.
Algebraic optimization has received a lot of attention. In the algebraic optimization phase for
each block of the query, an operator tree (plan) is generated whose nodes are physical algebraic
operators. The next phase—rewrite 2—is again a rewrite phase. Here, small cosmetic rewrites are
applied in order to prepare the plan for the subsequent code generation phase. The query execution
engine implements a set of physical operators. In order to be executed, the execution plan has
to be either translated into machine code to be executed directly or into intermediate code to be
interpreted by the query execution engine. This translation takes place in the code generation step.
Finally, the query is executed by the query execution engine (runtime system). Query code can be
either static or dynamic. Static code basically executes the same sequence of statements at every
execution whereas in dynamic code the sequence of instructions depends on run time parameters
like the true cardinalities of certain relations or intermediate results, the buffer space available,
etc. Dynamic optimization tries to react to inaccurate parameter estimations by evaluating these
parameters along the execution of the query and comparing them to the estimated parameters.
If estimated and computed parameters differ considerably, appropriate action can be taken, e.g.
switching to a different execution plan.

4the cheapest plan with respect to the class of considered execution plans (search space)
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This sequel is mainly concerned with the algebraic cost-based query optimization. For a
detailed overview of general query optimization techniques see [JK84, GLSW93, Cha98]. An
extensive survey of query evaluation techniques is [Gra93]. A good overview of heuristic and
stochastic query optimization algorithms is [SPMK93, SMK97].

2.2 Problem Description and Terminology

A central problem in query optimization is to determine an efficient strategy to evaluate queries
consisting of multiple joins and selections. Due to the commutativity and associativity of the join
operator and the interchangeability of joins and selections such queries can be evaluated in a huge
number of ways—with heavily varying costs.

We shall henceforth consider queries involving selections, joins and cross products selection-
join-queries (another name is conjunctive queries [Ull89]). Select-join-queries are fully described
by a set of base relations R and a set of query predicates P . Each predicate P ∈ P is either
a selection predicate referring to a single relation or a join predicate referring to two or more
relations. We distinguish between two types of predicates. Basic predicates are simple built-in
predicates or predicates defined via user-defined functions which may be expensive to compute.
Composite predicates are boolean expressions formed out of basic predicates. For example, the
predicate R.x = S.x∧S.y ≥ 0 is a composite predicate consisting of the basic predicates R.x = S.x
and S.y ≥ 0. The predicates of a query induce a join graph (or query graph) G = (R, E). E is the
set of edges e ⊆ R such that there exists a predicate P ∈ P relating the relations in e. We shall be
mainly concerned with binary join predicates, i.e. |e| = 2 for any edge e ∈ E. Join graphs can be
classified according to their topology. Common topologies are chains, stars, acyclic graphs, and
general graphs.

To describe an instance of a join ordering problem we need to specify the following statistical
parameters which are used to estimate the evaluation costs of plans. A prerequisite for estimating
the costs of a plan are estimations of the sizes of all occurring intermediate results. Reasonable
estimations for these sizes can be obtained by means of base relation cardinalities and predicate
selectivities. The selectivity of a predicate is the expected fraction of tuples that qualifies. The
cardinality of a relation R is denoted as |R|. If P is a selection predicate that refers to a relation
R its selectivity is defined as

fP =
|σP (R)|
|R| .

Similarly, if P is a join predicate referring to the relations R and S, its selectivity is given by

fP =
|R 1P S|
|R× S| .

If user-defined functions are involved the evaluation costs of a predicate can vary considerably. To
account for this, we introduce a cost factor cP associated with each predicate P . cP measures the
average cost of evaluating the predicate for one input tuple.

A processing tree (execution plan) is a labeled rooted tree whose leaves represent base relations
and whose internal nodes correspond to selection, join or cross product operators. We often speak
of trees and plans instead of processing trees and execution plans. Processing trees are classified
according to their shape. The main distinction is between left-deep trees and bushy trees. In a
left-deep tree the right subtree of an internal node is always a leaf. Bushy trees have no restriction
on their shape. Figure 2.3 gives an example of a left-deep and a bushy tree. We say that a plan
avoids cross products if there does not exist a second plan with fewer cross products that computes
the same query. If the join graph is connected, this means that there should not be any cross
products.
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1

1

1

1

R1 R2

R3

R4

R5

1

1

R1 1

R2 R3

1

R4 R5

Figure 2.3: A left-deep and a bushy tree

In order to estimate the cost to evaluate a processing tree we must supply a cost function.
Cost functions estimate the amount of resources needed to evaluate a query. Typical resources
are CPU time, the number of I/O operations, or the number of pages used for temporary storage
(buffer or disk pages). Usually a weighted average over several resources is used as costs. It is
not surprising that cost functions play a critical role in a query optimizer. If the cost function is
not accurate enough, even the best optimizer may come up with bad execution plans. Devising
accurate cost functions is a challenging problem which is beyond the scope of this thesis.

The cost functions we use are rather simple. They sum up the costs of all the operators in the
execution plan. The cost of an operator in the execution plan is defined in terms of the sizes of
its input streams. More on the cost function can be found in chapter 3.1.1, 3.2.1, and 4.1.

2.3 Related Work

Several researchers addressed the problem of ordering binary joins in an n-way join. The standard
and—even today—most prevailing method to solve this optimization problem is dynamic program-
ming [SAC+79]. A fast implementation of a dynamic programming algorithm for bushy trees and
cross products is described in [VM96]. In [OL90], Ono and Lohman discussed the complexity
of dynamic programming algorithms for the join ordering problem. They also gave the first real
world examples to show that abandoning cross products can lead to more expensive plans.
Besides dynamic programming, another approach, which is widely used in commercial optimizers,
is transformation-based query optimization. These algorithms exhaustively enumerate the search
space by successively transforming an initial execution plan. Unfortunately this approach has the
drawback of considering partial plans many times. In [Pel97, PGLK96, PGLK97b, PGLK97a]
an approach is described which avoids the duplicate generation of partial plans. Algorithms for
left-deep plans or bushy plans and for connected acyclic or connected complete query graphs are
presented. All these algorithms are ad-hoc designs and no generalization to arbitrary rule sets is
known.
An NP-hardness result for the join ordering problem for general query graphs was established
in 1984 [IK84]. Later on, a further result showed that even the problem of determining optimal
left-deep trees with cross products for star queries is NP-hard [CM95]. The first polynomial time
optimization algorithm was devised by Ibaraki and Kameda [IK84] in 1984. Their IK-algorithm
solved the join ordering problem for the case of left-deep processing trees without cross products,
acyclic join graphs and a nontrivial cost function counting disk accesses for a special block-wise
nested-loop algorithm. The IK-algorithm was subsequently improved by Krishnamurthy, Boral
and Zaniolo [KBZ86] to work in time O(n2). They assumed that the database is memory resident
and used a simpler and more common cost function. The IK- and KBZ-algorithms both apply an
algorithm for job sequencing [MS79]. In [CM95], the authors present an algorithm to find optimal
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left-deep processing trees with cross products for star queries in time O(2c + n logn) where c is
the number of cross products in a solution. Concerning the area of non-exact algorithms, there
are several approaches, too. The most simple ones are greedy type algorithms. These algorithms
assume that an optimal solution (or good solution if the algorithm is viewed as of heuristic type)
can always be extended to a larger likewise optimal (good) solution. An example is the heuristic
of always joining the next two unused partial plans such that the intermediate result size of the
resulting plan (or the join cost, the join selectivity or the costs of the resulting plan) is always
minimal [SPMK93, STY93, GLSW93, SPMK93, Feg97]. The first published nontrivial heuristic
for treating cyclic queries appeared in [KBZ86]. They applied the KBZ-algorithm to a minimal
spanning tree of the join graph. Other approaches are based on general deterministic search
methods probabilistic optimization methods [SL95, SL96, SS96]. A comparative overview of the
best-known approaches to the join ordering problem can be can be found in [KRHM95, SPMK93].

The above mentioned approaches order joins only. Whereas this optimization problem attracted
much attention in the database research community, much less investigations took place for
optimizing boolean expressions not containing any join predicate [KMPS94, KMS92].

Only few approaches exist to the problem of ordering joins and selections with expensive
predicates. In the LDL system [CGK89] and later on in the Papyrus project [CS93]
expensive selections are modeled as artificial relations which are then ordered by a traditional join
ordering algorithm producing left-deep trees. This approach suffers from two disadvantages. First,
the time complexity of the algorithm cannot compete with the complexity of approaches which do
not model selections and joins alike and, second, left-deep trees do not admit plans where more than
one cheap selection is “pushed down”. Another approach is based upon the “predicate migration
algorithm” [HS93, Hel94, Hel98] which solves the simpler problem of interleaving expensive selec-
tions in an existing join tree. The authors of [HS93, Hel94, Hel98] suggest to solve the general
problem by enumerating all join orders while placing the expensive selections with the predicate
migration algorithm—in combination with a system R style dynamic programming algorithm
endowed with pruning. The predicate migration approach has several severe shortcomings. It
may degenerate to exhaustive enumeration, it assumes a linear cost model and it does not always
yield optimal results [CS96]. Recently, Chaudhuri and Shim presented a dynamic programming
algorithm for ordering joins and expensive selections [CS96]. Although they claim that their
algorithm computes optimal plans for all cost functions, all query graphs, and even when the
algorithm is generalized to bushy processing trees and expensive join predicates, the alleged
correctness has not been proven at all. In fact, it is not difficult to find counterexamples disproving
the correctness for even the simplest cost functions and processing trees. This bug was later
discovered and the algorithm restricted to work on regular cost functions only [CS97]. Further,
it does not generate plans that contain cross products. The algorithm is not able to consider
different join implementations. Especially the sort-merge join is out of the scope of the algorithm
due to its restriction to regular cost functions. A further disadvantage is that the algorithm does
not perform predicate splitting.

2.4 Overview of Complexity Results

This section gives a brief overview of the complexity results known so far for join ordering problems.
Consider the following classification of join ordering problems. Each class is abbreviated by a four
letter string XYZW with X∈{J,S}, Y∈{N,C}, Z∈{L,B} and W∈{E,C,S,A,G}. The letters have
the following meaning.

1. X – query type:

J joins only
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S joins and selections

2. Y – cross products:

N not allowed

C allowed

3. Z – processing trees:

L left-deep trees

B bushy trees

4. W – join graph:

E empty (no edges)

C chain

S star

A acyclic

G general

For example, JCLA stands for the problem of computing an optimal left-deep processing tree with
cross products for queries with acyclic join graphs.
Table 2.1 summarize the complexity results5 for join ordering problems using the above classification
scheme.

Although the complexity of the class SNLA is still unknown, Chaudhuri and Shim have shown
that a special case of the problem can be solved in time polynomial in the number of selections and
exponential in the number of joins [CS97]. Their dynamic programming algorithm is restricted to
“regular cost functions” which are a subclass of ASI cost functions. All previous algorithms are
exponential both in the number of joins and the number of selections. Nevertheless, the complexity
bound derived in [CS97] are not as good as it first seems. Applying our algorithm in [SM96] to all
subsets of pushed selections has a lower exponent in the asymptotic complexity than the algorithm
of Chaudhuri and Shim, provided not all relations have a selection predicate.

Devising an NP-hardness proof for one of the problem classes SNLC, SNLS, and SNLA turns out
to very hard since there seems to be no “pivot operation” whose cost dominates the cost of all other
operators in the plan. If such a pivot operation existed—as in the proofs [CM95, SM97]—bounding
the cost of all possible plans would be easy. But without such an operation, an NP-hardness proof
seems out of sight.

5A comment on the relation between problem classes and their complexities. Although one would think that
if a class of join ordering problems is NP-hard for the space of left-deep processing trees it should be NP-hard for
bushy trees too, and if it is NP-hard for plans without cross products it should also be NP-hard for plans with cross
products, this need not be the case. In general, if a problem class is NP-hard we cannot necessarily deduce that
a more general class of problems is NP-hard too. When we compare two problem classes we have to distinguish
between the space of inputs and the space of outputs. More exactly, if a problem is NP-hard for a certain class
of input parameters P it is also NP-hard for any less restricted class of parameters P ′ (i.e. P ⊂ P ′). On the
other hand, if a problem is NP-hard for valid outputs O, the problem may be solvable in polynomial time for a
larger set O′ (i.e. O ⊆ O′). A prominent example is integer linear programming which is NP-hard, whereas linear
programming is in P (cf. [Pap94]).
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Table 2.1: Complexity of Join Ordering Problems
JNLC In P for ASI cost functions. (A consequence of the result for problem JNLA.)

JNLS In P for ASI cost functions. (A consequence of the result for problem JNLA.)

JNLA In P for ASI cost functions [IK84, KBZ86].

JNLG NP-complete for a (complex) cost function for a special nested-loop
join [IK84]. Later, the problem has been proven NP-hard even for the
simple cost function Cout [CM95].

JNBC Unknown complexity.

JNBS Unknown complexity.

JNBA Unknown complexity.

JNBG Unknown complexity.

JCLE In P—just sort the relations by their cardinalities.

JCLC Unknown complexity. (But conjectured to be in P [SM97].)

JCLS NP-hard for the cost function Cout [CM95].

JCLA NP-hard. (A consequence of the result for problem JCLS.)

JCLG NP-hard. (A consequence of the result for problem JCLS.)

JCBE NP-hard. ([SM97] and this thesis)

JCBC NP-hard. (A consequence of the result for problem JCBE.)

JCBS NP-hard. (A consequence of the result for problem JCBE.)

JCBA NP-hard. (A consequence of the result for problem JCBE.)

JCBG NP-hard. (A consequence of the result for problem JCBE.)

SNLC Unknown complexity.

SNLS Unknown complexity.

SNLA In P if the set of pushed selections can be “guessed” [SM96] and the cost
function has the ASI property.

SNLG Unknown complexity.



Chapter 3

Generation of Optimal Left-deep
Execution Plans

3.1 Chain Queries with Joins and Cross Products

One of the simplest problem classes in algebraic optimization is the computation of optimal left-
deep trees for chain queries. Chain queries are very common among relational and object-oriented
database systems, For example, in object-oriented database systems it is usually more efficient to
evaluate a path expression through a sequence of joins over the corresponding extents than by
pointer chasing [CD92].

If cross products are not allowed the problem can be solved in polynomial time for cost functions
with ASI property [IK84]. However, if cross products are allowed, the complexity status is still
unresolved. In this section we investigate the problem and derive two novel algorithms. The
first algorithm is correct but we could not prove that it has polynomial time complexity, whereas
the second algorithm has polynomial time complexity but we could not prove its correctness. In
practice both algorithms yield identical results.

3.1.1 Basic Definitions and Lemmata

An instance of the join-ordering problem for chain queries (or a chain query for short) is fully
described by the following parameters. First, n relations R1, . . . , Rn are given. The size of relation
Ri (1 ≤ i ≤ n) is denoted by |Ri| or nRi . Without loss of generality, we assume that no base
relation is empty1. Second, a query graph G is given. The relations R1, . . . , Rn form the nodes of
G and its edges are {{Ri, Ri+1} | 1 ≤ i < n}. That is, the query graph forms a chain:

R1—R2— . . . —Rn

Every edge {Ri, Ri+1} of the query graph is associated by an according selectivity factor fi,i+1 =
|Ri 1 Ri+1|/|Ri×Ri+1|. We define all other selectivities fi,j = 1 for |i− j| 6= 1. They correspond
to cross products. Also note that selectivities are “symmetric”, i.e. fi,j = fj,i.

In this section we consider only left-deep processing trees. Since producing left-deep trees is
equivalent to fixing a permutation, we will henceforth identify left-deep trees and permutations.
There is also a unique correspondence between consecutive parts of a permutation and segments

1otherwise optimization would be trivial

13
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of a left-deep tree. Furthermore, if a segment of a left-deep tree does not contain cross products,
it uniquely corresponds to a consecutive part of the chain in the query graph. In this case we also
speak of (sub)chains or connected (sub)sequences. We say two relations Ri and Rj are connected
if they are adjacent in G; more general, two sequences s and t are connected, if there exist relations
Ri in s and Rj in t such that Ri and Rj are connected. A sequence of relations s is connected if
the join graph induced by the relations in s is connected.

Given a chain query, we ask for a permutation s = r1 . . . rn of the n relations (i.e. there is a
permutation π with ri = Rπ(i) for 1 ≤ i ≤ n) such that for some cost function Cx for the binary
join operator the total cost defined as

C(s) :=

n∑
i=2

Cx(|r1 . . . ri−1|, ri) (3.1)

is minimized. By |r1 . . . ri|, we denote the intermediate result size (cardinality) of joining the
relations r1, . . . , ri. For a single relation ri, we also write nri or simply ni instead of |ri| in order
to denote its size. In this section, we use the size of the result of a join operator as its cost. That
is

cost(Ri 1 Rj) = fi,j ∗ |Ri| ∗ |Rj |

Based on this we can now define the general cost function Cout which computes the cost of a join
between two relations even if they are intermediate relations.

Cout(|S|, |T |) = fS,T ∗ |S| ∗ |T |

where fS,T denotes the product of all selectivities between relations in S and relations in T , i.e.

fS,T :=
∏

Ri∈S,Rj∈T
fRi,Rj

For Cx ≡ Cout, expression (3.1) reads

C(r1 . . . rn) =

n∑
i=2

i∏
j=1

nrj
∏
k<j

frk,rj

= ns1 · ns2fs1,s2(1 + ns3fs1,s3fs2,s3(1 + . . . (1 + nsn

n−1∏
j=1

fsj ,sn) . . . ))

The cost function used in this section is the function that sums up all the intermediate result
sizes. This cost function is reasonable if one assumes the intermediate results being written to
disk, since then the costs for accessing the disk clearly surpass the CPU costs for checking the join
predicate. For a further discussion of the relevance of this cost function see [CM95].

As noted in [OL90] the dynamic programming approach considers n2n−1−n(n+1)/2 alterna-
tives for left-deep processing trees with cross products—independently of the query graph and the
cost function. The question arises, whether it is possible to lower the complexity in case of simple
chain queries and the above type of cost function.

The well-known approach in [IK84, KBZ86] for computing optimal left-deep trees without
cross products for acyclic queries is based on the ASI 2 property of cost functions introduced in
[MS79]. Although the cost functions in [IK84] and [KBZ86] do not have the ASI property, the
authors decompose the problem into polynomially many subproblems which are subject to tree-
like precedence constraints. The precedence constraints ensure that the cost functions of the

2Adjacent Sequence Interchange
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subproblems now have the ASI property. The remaining problem is to optimize the constrained
subproblems under the simpler cost function. Unfortunately, this approach does not work in our
case, since no such decomposition seems to exist.

In order to extend the approach of [IK84, KBZ86] to our problem, we first generalize the rank
function to a relativized rank. We start by relativizing the cost function. The costs of a sequence
s relative to a sequence u are defined as follows.

Definition 3.1.1

Cu(s) =




0 if u = ε or s = ε
ni
∏

Rj∈u fj,i if u 6= ε and s = Ri

Cu(s1) + Tu(s1) ∗ Cus1 (s2) if s = s1s2 and s1 6= ε, s2 6= ε

where

Tu(s) =
∏
Ri∈s

(
∏

Rj<usRi

fj,i) ∗ ni

Here, Ri, Rj denote single relations and s1, s2, s, u denote sequences of relations. ε is the empty
sequence. Ri <s Rj denotes the predicate that is true if and only if Ri precedes Rj in the sequence
s. In the sum above, Rj <us Ri is a shorthand notation for Rj ∈ us, Rj <us Ri. As usual, empty
products evaluate to 1, consequently Tu(ε) = 1.

First, we show that Cε is well-defined:

Lemma 3.1.1 For all sequences s we have Cε(s) = Cout(s)

Proof We shall use induction on the length of s.
For s = ε, we have Cout(ε) = 0 = Cε(ε). For s = Ri, we have Cout(Ri) = 0 = CRi(Ri).
Let s = s′Ri with ||s′|| > 1, then

Cout(s
′Ri) = Cout(s

′) + |s′|(
∏

Rj<s′RiRi

fj,ini)

= Cε(s
′) + Tε(s

′)Cs′(Ri)

= Cε(s
′Ri)

2

A couple of things should be noted. First, Tε(Ri) = |Ri| and Tε(s) = |s|. That is, Tu generalizes
the size of a single relation or of a sequence of relations. Second, Cu(Ri) = Tu(Ri) for any single
relation Ri. Third, note that Cu(ε) = 0 for all u but Cε(s) = 0 only if s does not contain more
than one relation. The special case that Cε(R) = 0 for a single relation R causes some problems
in the homogeneity of definitions and proofs. Hence, we abandon this case from all definitions
and lemmata of this section. This will not be repeated in every definition and lemma but will
be implicitly assumed. Further, our two algorithms will be presented in two versions. The first
version is simpler and relies on a modified cost function C′ and only the second version will apply
to the original cost function C. As we will see, C′ differs from C exactly in the problematic case
in which it is defined as C ′u(Ri) := |Ri|. Now, C′ε(s) = 0 holds if and only if s = ε holds. Within
subsequent definitions and lemmata, C can also be replaced by C′ without changing their validity.
Last, we abbreviate Cε by C for convenience.
Next we state some useful properties of the functions C and T .

Lemma 3.1.2 Let u, v, s be sequences of relations. Then

Tuv(s) = fv,s ∗ Tu(s)
where fv,s is defined as fv,s :=

∏
Ri∈v,Rj∈s fi,j
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Proof

Tuv(s) =
∏
Ri∈s

(
∏

Rj<uvsRi

fj,i) ∗ ni
∏
Ri∈s

(
∏

Rj<usRi

fj,i)(
∏
Rj∈v

fj,i) ∗ ni

=
∏
Ri∈s

(
∏
Rj∈v

fj,i) ∗
∏
Ri∈s

(
∏

Rj<usRi

fj,i) ∗ ni

= fu,v ∗ Tu(s)
2

Lemma 3.1.3 Let r1, . . . , rn be single relations. Then

Tu(r1 . . . rn) =

n∏
i=1

Tur1...ri−1(ri)

Proof Induction on n. For n = 1 the assertion being trivial, let n > 1 and suppose the result is
true for smaller values of n. We have

Tu(r1 . . . rn) =

n∏
i=1

(
∏

rj<ur1...rnri

frj ,ri) ∗ |ri|

=

n−1∏
i=1

(
∏

rj<ur1...rnri

frj,ri) ∗ |ri| ∗ (
∏

rj<ur1...rnrn

frj ,rn) ∗ |rn|

=

n−1∏
i=1

Tur1...ri−1(ri) ∗ Tur1...rn−1(Rn) (induction hypothesis)

=

n∏
i=1

Tur1...ri−1(ri)

2

Corollary 3.1.1 Let u, r and s be sequences. Then

Tu(rs) = Tu(r) ∗ Tur(s)

Lemma 3.1.4 Let r1, . . . , rn be single relations. Then

Cu(r1 . . . rn) =

n∑
i=1

Tu(r1 . . . ri)

Proof We use induction on n. For n = 1 the claim is true as Cu(r1) = Tu(r1). Now let n > 1
and suppose the result is true for smaller values of n. According to Definition 3.1.1 we have

Cr(r1 . . . rn−1rn) = Cr(r1 . . . rn−1) + Tu(r1 . . . rn−1)Cur1...rn−1(rn)

= Cr(r1 . . . rn−1) + Tu(r1 . . . rn−1)Tur1...rn−1(rn)

= Cr(r1 . . . rn−1) + Tu(r1 . . . rn−1rn) (Lemma 3.1.1)

=

n−1∑
i=1

Tu(r1 . . . ri−1ri) + Tu(r1 . . . rn−1rn) (induction hypothesis)

=

n∑
i=1

Tu(r1 . . . ri−1ri)
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2

Lemma 3.1.5 Let u, v be sequences of relations. If u and v are permutations of each other, then

Tu(t) = Tv(t) and Cu(t) = Cv(t)

Proof (Sketch) We only prove the statement for two sequences differing exactly in two adjacent
relations. The claim follows then by induction on the number of pairs of relations with different
relative order in the two relations.

Tr1...rk−1rk+1rkrk+2...rn(t)

=
∏

1≤i≤k−1
(
∏
j<i

fj,i) ∗ ni ∗ (
∏

j<k−1
fj,k+1) ∗ fk−1,k+1 ∗ nk+1 ∗

(
∏

j<k−1
fj,k) ∗ fk−1,k ∗ fk+1,k ∗ nk ∗

∏
k+2≤i≤n

(
∏
j<i

fj,i) ∗ ni

=
∏

1≤i≤k−1
(
∏
j<i

fj,i) ∗ ni ∗ (
∏

j<k−1
fj,k) ∗ fk−1,k ∗ nk ∗

(
∏

j<k−1
fj,k+1) ∗ fk−1,k+1 ∗ fk,k+1 ∗ nk+1 ∗

∏
k+2≤i≤n

(
∏
j<i

fj,i) ∗ ni

=
∏

1≤i≤n
(
∏
j<i

fj,i) ∗ ni

= Tr1...rkrk+1...rn(t)

We can use this identity to prove an analogue identity for C.

Cr1...rk−1rk+1rkrk+2...rn(t) =
n∑
i=1

Tr1...rk−1rk+1rkrk+2...rn(t1 . . . ti)

=

n∑
i=1

Tr1...rkrk+1rn(t1 . . . ti)

= Cr1...rkrk+1...rn(t)

Based on the last two identities, the claim follows by induction on the number of pairs (ri, rj)
such that ri <u rj and rj <v ri. 2

Lemma 3.1.6 Let u, v be sequences of relations. If there is no connection between relations in s
and t then

Tus(t) = Tu(t)

Cus(t) = Cu(t)

Proof Lemma 3.1.2 tells us that Tus(t) = fs,t ∗ Tu(s). Since s is not connected to t we know
that fs,t = 1 and hence Tus(t) = Tu(t). Let t = t1 . . . tm, then

Cus(t) =

m∑
i=1

Tust1...ti−1(Ti)

=
m∑
i=1

Tut1...ti−1(Ti) (Lemma 3.1.5, Lemma 3.1.6)

= Cu(t)

2
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Example 1: Consider a chain query involving the relations R1, R2, R3. The parameters are
|R1| = 1, |R2| = 100, |R3| = 10 and f1,2 = f2,3 = 0.9. The expected size of the query result is
independent of the ordering of the relations. Hence we have

T (R1R2R3) = · · · = T (R3R2R1) = 100 ∗ 10 ∗ 1 ∗ .9 ∗ .9 = 810.

There are 6 possible orderings of the relations with the following costs

C(R1R2R3) = 1 ∗ 100 ∗ .9 + 1 ∗ 100 ∗ 10 ∗ .9 · .9 = 900
C(R1R3R2) = 1 ∗ 10 + 1 ∗ 10 ∗ 100 ∗ .9 ∗ .9 = 820
C(R2R3R1) = 100 ∗ 10 ∗ .9 + 100 ∗ 10 ∗ 1 ∗ .9 ∗ .9 = 1710
C(R2R1R3) = C(R1R2R3)
C(R3R1R2) = C(R1R3R2)
C(R3R2R1) = C(R2R3R1)

Note that the cost function is invariant with respect to the order of the first two relations. The
minimum over all costs is 820, and the corresponding optimal join ordering is R1R3R2.

2

Using the relativized cost function, we can define the relativized rank.

Definition 3.1.2 (rank) The rank of a sequence s relative to a nonempty sequence u is given by

ranku(s) :=
Tu(s)− 1

Cu(s)

In the special case that s consists of a single relation Ri, the intuition behind the rank function
becomes transparent. Let fi be the product of the selectivities between relations in u and Ri. Then

ranku(Ri) =
fi|Ri|−1
fi|Ri| . Hence, the rank becomes a function of the form f(x) = x−1

x . This function is

monotonously increasing in x for x > 0. The argument to the function f(x) is (for the computation
of the size of a single relation Ri) fi|Ri|. But this is the factor by which the next intermediate
result will increase (or decrease). Since we sum up intermediate results, this is an essential number.
Furthermore, from the monotonicity of f(x) it follows that ranku(Ri) ≤ ranku(Rj) if and only if
fi|Ri| ≤ fj|Rj | where fj is the product of all selectivities between Rj and relations in u.
Note that relations which are not connected to a sequence do not influence the rank of the sequence.

Lemma 3.1.7 Let u, v, s be sequences of relations where v is not connected to s. Then

rankuv(s) = ranku(s)

Proof The claim is a direct consequence of Lemma 3.1.6. 2

Example 1 (cont’d): Given the query in Example 1, the optimal sequence R1R3R2 gives rise
to the following ranks.

rankR1(R2) =
TR1 (R2)−1
CR1(R2)

= 100∗.9−1
100∗.9 ≈ 0.9888

rankR1(R3) =
TR1 (R3)−1
CR1(R3)

= 10∗1.0−1
10∗1.0 = 0.9

rankR1R3(R2) =
TR1R3 (R2)−1
CR1R3 (R2)

= 100∗.9∗.9−1
100∗.9∗.9 ≈ 0.9877

Hence, within the optimal sequence, the relation with the smallest rank (hereR3, since rankR1(R3)
< rankR1(R2)) is preferred. As the next lemma will show, this is no accident.

2

Using the rank function, one can prove the following lemma.
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Lemma 3.1.8 For sequences

S = r1 · · · rk−1rkrk+1rk+2 · · · rn
S′ = r1 · · · rk−1rk+1rkrk+2 · · · rn

the following holds:

C(S) ≤ C(S′)⇔ ranku(rk) ≤ ranku(rk+1)
Here, u = r1 · · · rk−1. Equality only holds if it holds on both sides.

Proof Let u = r1 . . . rk−1 and v = rk+2 . . . rn. According to Definition 3.1.1 and Lemma 3.1.4,

C(urkrk+1v) = C(u) + T (u)Cu(rkrk+1) + T (urkrk+1)Curkrk+1
(v)

= C(u) + T (u)[Tu(rk) + Tu(rkrk+1)] + T (urkrk+1)Curkrk+1
(v)

and

C(urk+1rkv) = C(u) + T (u)Cu(rk+1rk) + T (urk+1rk)Curk+1rk(v)

= C(u) + T (u)[Tu(rk+1) + Tu(rk+1rk)] + T (urk+1rk)Curk+1rk(v)

Using Lemma 3.1.5 we have

C(S) ≤ C(S′) ⇔ C(urkrk+1v) ≤ C(urk+1rkv)
⇔ Tu(rk) ≤ Tu(rk+1)
⇔ Tu(rk)− 1

Tu(rk)
≤ Tu(rk+1)− 1

Tu(rk+1)

⇔ Tu(rk)− 1

Cu(rk)
≤ Tu(rk+1)− 1

Cu(rk+1)

⇔ ranku(rk) ≤ ranku(rk+1)

2

Example 1 (cont’d): Since the ranks of the relations in Example 1 are ordered with ascending
ranks, Lemma 3.1.8 states that, whenever we exchange two adjacent relations, the costs cannot
decrease. In fact, we observe that C(R1R3R2) ≤ C(R1R2R3). 2

Lemma 3.1.9 Let u, x and y be subchains, x, y not empty. Then,

Cux(y) ≤ fx,yCu(y).

Proof We shall perform induction on the number of connections m between x and y.
If there are no connections between x and y, we have fx,y = 1. Hence, by Lemma 3.1.6 Cux(y) =
Cu(y) = fx,yCu(y).
Now, assume that there are exactly m connections between x and y and suppose the claim is true
for smaller values of m. Let y = vrw where r is a single relation and v and w are subchains. There
is one connection between r and x and there are m − 1 connections between x and w. x is not
connected to v. We have
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Cux(y) = Cux(vrw)

= Cux(v) + Tux(v)Cuxv(rw) (Def. 3.1.1)

= Cux(v) + Tux(v)Cuxv(r) + Tux(v)Tuxv(r)Cuxvr(w) (Def. 3.1.1)

= Cu(v) + Tu(v)Cuv(r)fx,r + Tu(v)Tuv(r)fx,rCuxvr(w) (Lemma 3.1.2)

≤ Cu(v) + fx,rTu(v)[Cuv(r) + Tuv(r)Cuvr(w)fx,w] (induction hypothesis)

≤ Cu(v) + fx,rfx,wTu(v)Cuv(rw) (Def. 3.1.1)

= Cu(v) + fx,yTu(v)Cuv(rw) (fx,v = 1)

≤ fx,y[Cu(v) + Tu(v)Cuv(rw)]

= fx,yCu(vrw) (Def. 3.1.1)

= fx,yCu(y)

This proves the claim. 2

The next lemma provides a condition to decide whether it is safe to interchange two adjacent
subchains.

Lemma 3.1.10 Let u, x and y be subchains, x, y not empty. Then we have

ranku(x) ≤ rankux(y)⇒ Cu(xy) ≤ Cu(yx).

Furthermore, if x and y are not interconnected, the reverse direction also holds, i.e.

ranku(x) ≤ ranku(y)⇔ Cu(xy) ≤ Cu(yx).

Proof We have

C(uxy) ≤ C(uyx) ⇔ Cu(xy) ≤ Cu(yx)

⇔ Cu(x) + Tu(x)Cux(y) ≤ Cu(y) + Tu(y)Cuy(x) (3.2)

and

ranku(x) ≤ rankux(y) ⇔ Tu(x)− 1

Cu(x)
≤ Tux(y)− 1

Cux(y)

⇔ Cu(x) + Tu(x)Cux(y) ≤ Cux(y) + Tux(y)Cu(x). (3.3)

First consider the case where x is not connected to y. Using Lemma 3.1.6, the inequalities (3.2)
and (3.3) simplify to

C(uxy) ≤ C(uyx) ⇔ Cu(x) + Tu(x)Cu(y) ≤ Cu(y) + Tu(y)Cu(x)

ranku(x) ≤ rankux(y) ⇔ Cu(x) + Tu(x)Cu(y) ≤ Cu(y) + Tu(y)Cu(x),

and the claim follows.
Now, let x be connected to y, and assume that ranku(x) ≤ rankux(y). By Lemma 3.1.9,

Cux(y) ≤ fx,yCu(y)

≤ Cu(y)

and

Cuy(x) ≤ fy,xCux.
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Hence

Tux(y)Cu(x) = fx,yTu(y)Cu(x)

= Tu(y)fy,xCu(x)

≤ Tu(y)Cuy(x).

So

Cu(x) + Tu(x)Cux(y) ≤ Cu(y) + Tu(y)Cuy(x)

holds, from which follows

Cu(xy) ≤ Cu(yx).

2

Next we define the notion of a contradictory chain which will be essential to our algorithms. The
subsequent lemmata will allow us to cut down the search space to be explored by any optimization
algorithm. For the lemmata, we need the essential definition of contradictory chains .

Definition 3.1.3 (contradictory pair of subchains) Let u, x, y be nonempty sequences. We call
(x, y) a contradictory pair of subchains if and only if

Cu(xy) ≤ Cu(yx) and ranku(x) > rankux(y)

A special case occurs when x and y are single relations. Then the above condition simplifies to

rankux(y) < ranku(x) ≤ ranku(y)
To explain the intuition behind the definition of contradictory subchains we need another example.

Example 2: Suppose a chain query involving R1, R2, R3 is given. The relation sizes are |R1| =
1, |R2| = |R3| = 10 and the selectivities are f1,2 = 0.5, f2,3 = 0.2. Consider the sequences R1R2R3

and R1R3R2 which differ in the order of the last two relations. We have

rankR1 (R2) = 0.8

rankR1R2(R3) = 0.5

rankR1 (R3) = 0.9

rankR1R3(R2) = 0

and

C(R1R2R3) = 15

C(R1R3R2) = 20

Hence,

rankR1(R2) > rankR1R2(R3)

rankR1(R3) > rankR1R3(R2)

C(R1R2R3) < C(R1R3R2)

and (R2, R3) is a contradictory pair within R1R2R3. 2

The next (obvious) lemma states that contradictory chains are necessarily connected.

Lemma 3.1.11 If there is no connection between two subchains x and y, then they cannot build
a contradictory pair (x, y).
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Proof Assume that (x, y) is a contradictory pair preceded by the relations u. According to
Definition 3.1.3, Cu(xy) ≤ Cu(yx) and ranku(x) > rankux(y). Since x is not connected to y,
we have rankux(y) = ranku(y) and therefore ranku(x) > ranku(y). Now, Lemma 3.1.10 yields,
C(uxy) = C(u) + T (u)Cu(xy) > C(uyx) = C(u) + T (u) ∗ Cu(yx), a contradiction. 2

Now we present the fact that between a contradictory pair of relations there cannot be any
other relation not connected to them between them without increasing cost.

Lemma 3.1.12 Let S = usvtw be a sequence. If there is no connection between relations in s
and v and relations in v and t, and ranku(s) ≥ rankus(t), then there exists a sequence S′ of not
higher cost, where s immediately precedes t.

Proof If ranku(v) ≤ ranku(s), we can safely exchange s and v (Lemma 3.1.10). If ranku(v) >
ranku(s), then

rankus(v) = ranku(v) > ranku(s) ≥ ranku(t) ≥ rankus(t)
Hence, we can exchange v and t without increasing the costs (Lemma 3.1.10) 2

Example 3: Consider five relations R1, . . . , R5. The relation sizes are |R1| = 1, |R2| = |R3| =
|R4| = 8, and |R5| = 2. The selectivities are f1,2 =

1
2 , f2,3 =

1
4 , f3,4 =

1
8 , and f4,5 =

1
2 . RelationR5

is not connected to relations R2 and R3. Further, within the sequence R1R2R5R3R4 relations R2

andR3 have contradictory ranks: rankR1(R2) =
4−1
4 = 3

4 and rankR1R2R5(R3) =
2−1
2 = 1

2 . Hence,
at least one of R1R5R2R3R4 and R1R2R3R5R4 must be of no greater cost than R1R2R5R3R4.
This is indeed the case:

C(R1R2R3R5R4) = 4 + 8 + 16 + 8 = 36
C(R1R2R5R3R4) = 4 + 8 + 16 + 8 = 36
C(R1R5R2R3R4) = 2 + 8 + 16 + 8 = 34

2

The next lemma shows that, if there exist two sequences of single rank-sorted relations, then
their costs as well as their ranks are necessarily equal.

Lemma 3.1.13 Let S = x1 · · ·xn and S′ = y1 · · · yn be two different rank-sorted chains containing
exactly the relations R1, . . . , Rn, i.e.

rankx1···xi−1(xi) ≤ rankx1···xi(xi+1) for all 1 ≤ i ≤ n,
ranky1···yi−1(yi) ≤ ranky1···yi(yi+1) for all 1 ≤ i ≤ n,

then S and S′ have equal costs and, furthermore

rankx1···xi−1(xi) = ranky1···yi−1(yi) for all 1 < i ≤ n

Proof We shall use induction on the length of the subsequence on which S and S′ differ.
If S and S′ do not differ the claim is trivially true. Otherwise, S and S′ can be represented as

S = xavbv′y

S′ = xbwaw′y

Here, x denotes a maximal common prefix of S and S′ and y denotes a maximal common suffix
of S and S′. a and b are two different single relations and the subsequence vv′ is a permutation
of the subsequence ww′. Due to the ascending local ranks, the following inequalities hold

rankx(a) ≤ · · · ≤ rankxav(b)
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rankx(b) ≤ · · · ≤ rankxbw(a)
and hence

fx,ana ≤ fxav,bnb
fx,bnb ≤ fxbw,ana.

Combining the two inequalities yields

fx,ana ≤ fx,bfav,bnb ≤ fav,bfxbw,ana,
from which we can deduce

fav,b = fa,bw = 1.

So av is not connected to b and bw is not connected to a. Furthermore, the latter inequalities
reduce to

fx,ana = fx,bnb

yielding
rankxbw(a) = rankx(a) = rankx(b) = rankxav(b).

Now, if neither v nor w is the empty sequence and v = v1 · · · vr, w = w1 · · ·ws, we have

rankx(a) = rankxa(v1) = rankxav1(v2) = · · · = rankxav(b),

rankx(b) = rankxb(w1) = rankxbw1(w2) = · · · = rankxbw(a),

and since the relations in av1 · · · vrb and bw1 · · ·wsa have identical local ranks, we can transform
them into abv and abw resp., by successively interchanging adjacent relations. Note, that b has no
connections to relations in v, a has no connections to relations in w and a and b are unconnected.
This transformation does neither change the costs of the two chains nor does it change any local
ranks! The new chains have the form

S1 = xabvv′y, and S′1 = xabww′y.

By the induction hypothesis we know that

C(xabvv′) = C(xabww′),

and that all local ranks of xabvv′ and xabww′ are pairwise identical. Since the costs and local
ranks of S and S1 and of S′ and S′1 do not differ, Cost(S) = Cost(S′) as claimed. 2

Consider the problem of merging two optimal unconnected chains. If we knew that the ranks
of relations in an optimal chain are always sorted in ascending order, we could use the classical
merge procedure to combine the two chains. The resulting chain would also be rank-sorted in
ascending order and according to Lemma 3.1.13 it would be optimal. Unfortunately, this does
not work, since there are optimal chains whose ranks are not sorted in ascending order: those
containing sequences with contradictory ranks.

Now, as shown in Lemma 3.1.12, between contradictory pairs of relations there cannot be any
other relation not connected to them. Hence, in the merging process, we have to take care that
we do not merge a contradictory pair of relations with a relation not connected to the pair. In
order to achieve this, we just tie the relations of a contradictory subchain together by building a
compound relation. Assume we tie together relations r1, . . . , rn to a new relation r1,... ,n. Then
we define the size of r1,... ,n as |r1,... ,n| = |r1 1 . . . 1 rn|. As we shall see later in this section,
compound relations correspond with connected subchains of the join graph. As a consequence, a
relation rn+1 can have at most one connection to the relations in a compound relation r1,...,n. We
define the selectivity factor fr1,... ,n,rk between rk and r1,... ,n as fr1,... ,n,rk = fi,k.

If we tie together contradictory pairs, the resulting chain of compound relations does still not
have to be rank-sorted with respect to the compound relations. To overcome this, we iterate the
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process of tying contradictory pairs of compound relations together until the sequence of compound
relations is rank-sorted, which will eventually be the case. This process is called normalization
in [KBZ86]. Actually, we need a generalized version of normalization which uses relativized costs
and ranks. A description of the normalization algorithm is given below.

1 proc normalize (p,s)
2 while there exist subsequences u, v (u 6= ε) and
3 compound relations x, y such that s = uxyv
4 and Cpu(xy) ≤ Cpu(yx)
5 and rankpu(x) > rankpux(y) do
6 replace xy in s by a compound relation (x, y);
7 od
8 resolve all but outermost tyings in s
9 return (p, s);
10 end

The compound relations in the result of the procedure normalize are called contradictory
chains. A maximal contradictory subchain is a contradictory subchain that cannot be made longer
by further tying steps. The cost, size and rank functions can now be extended to sequences
containing compound relations in a straightforward way. We define the cost of a sequence
containing compound relations to be identical with the cost of the corresponding sequence without
any tyings. The size and rank functions are defined analogously. Resolving all (or some) of the
tyings introduced in the procedure normalize is called de-normalization. Actually, we are not
interested in the particular recursive structure of a contradictory subchain but in the fact that the
subsequence is a contradictory subchain. This is why we get rid of all but the outermost tyings
(parenthesis) at the end of normalize.

Our next milestone will be to prove that the indeterministic procedure normalize is well-
defined (Theorem 3.1.1), but this will be a long way to go. We start with a simple example
application.

Example 4: Consider a chain S = R10R5R4R8R7R6R9R3R1R2. For the sake of simplicity,
let us assume that S cannot be improved by interchanging two adjacent connected subchains.
Furthermore, assume that the conditions

rank(R5) > rankR5(R4)

rank(R8) > rankR8(R7)

rankR8(R7) > rankR5,R7(R6)

rankR5(R8R7R6) > rankR8,R10(R9)

rank(R1) > rankR1,R3(R2)

rankR4(R3) > rankR3(R1R2)

rank(R5) < rankR5,R7(R6)

hold. A possible computation of normalize could look as follows:

(R10) (R5) (R4) (R8) (R7) (R6) (R9) (R3) (R1) (R2)

⇓
(R10) (R5R4) (R8) (R7) (R6) (R9) (R3) (R1) (R2)
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⇓
(R10) (R5R4) (R8R7) (R6) (R9) (R3) (R1) (R2)

⇓
(R10) (R5R4) ((R8R7)R6) (R9) (R3) (R1) (R2)

⇓
(R10) (R5R4) (((R8R7)R6)R9) (R3) (R1) (R2)

⇓
(R10) (R5R4) (((R8R7)R6)R9) (R3) (R1R2)

⇓
(R10) (R5R4) (((R8R7)R6)R9) (R3(R1R2))

Since rank(R5) < rankR5,R7(R6) no further tyings are possible. In the last step of normalize the
chain is de-normalized (flattened), yielding

(R10) (R5R4) (R8R7R6R9) (R3R1R2).

2

The next lemma states that contradictory subchains are always connected.

Lemma 3.1.14 Contradictory subchains correspond to connected subgraphs of the join graph.

Proof The proof is by induction on the size of the contradictory subchains. The claim is trivially
true if the contradictory subchain is a single relation.
Now, suppose that the claim holds for all contradictory subchains with at most n relations.
Consider a contradictory subchain s of size n + 1. Since s is a contradictory subchain, there
exist subchains x, y such that z = xy and (x, y) builds a contradictory pair. By the induction
assumption, both x and y correspond to connected subgraphs of the join graph. Since, according
to Lemma 3.1.11, x is connected to y, s corresponds to a connected subgraph of the join graph. 2

The Figure below shows the winding connections of the chain in the last example. Due to the
nested structure of contradictory subchains, no contradictory subchain s can have the property
that there exists an i ∈ {1, . . . , n− 4} such that

Ri+1 ≺s Ri+3 ≺s Ri ≺s Ri+2 or
Ri+2 ≺s Ri ≺s Ri+3 ≺s Ri+1.

Here, R ≺s R
′ means that relation R precedes relation R′ in s.

R10 R5 R4 R8 R7 R6 R9 R3 R1 R2

The following simple observation is central to our algorithms: every chain can be decomposed
into a sequence of adjacent maximal contradictory subchains. For convenience, we often speak
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of chains instead of subchains and of contradictory chains instead of maximal contradictory
subchains. The meaning should be clear from the context. Further, we note that the decomposition
into adjacent maximal contradictory subchains is not unique. For example, consider an optimal
subchain r1r2r3 and a sequence u of preceding relations. If

ranku(r1) > rankur1(r2) > rankur1r2(r3)

one can easily show that both (r1, (r2, r3)) and ((r1, r2), r3) are contradictory subchains. In the
following we are only interested in contradictory subchains which are optimal and in this case the
condition Cu(xy) ≤ Cu(yx) of Def. 3.1.3 (contradictory pair of subchains) is certainly true3 and
can therefore be neglected.

Example 5: Suppose we want to normalize the chain R1R2R3R4 with respect to the preceding
relation R0. Let the parameters of the chain query problem be R0 = 40, R1 = 90, R2 = 40, R3 =
90, R4 = 30 and f0,1 = 0.4, f1,2 = 0.7, f2,3 = 0.6, f3,4 = 0.5. Before entering the while-loop of
the normalizing procedure, each relation in the input sequence is replaced by a corresponding
compound relation, i.e. R1R2R3R4 becomes (R1)(R2)(R3)(R4). The ranks of the relations are

rankR0 (R1) ≈ 0.9722,

rankR1 (R2) ≈ 0.9643,

rankR2 (R3) ≈ 0.9815,

rankR3 (R4) ≈ 0.9333

Hence, rankR0(R1) > rankR1 (R2) < rankR2(R3) > rankR3(R4) and possible candidates for
contradictory pairs are (R1, R2) and (R3, R4). Since CR0(R1R2) = 1044.0 < 1048.0 = CR0(R2R1)
and CR2(R3R4) = 864.0 > 840.0 = CR2(R4R3), only (R1, R2) is an actual contradictory pair.
After the first pass of the while-loop the sequence is replaced by the new sequence ((R1)(R2))(R3)
(R4) with the new ranks being

rankR0(R1R2) ≈ 0.9646,

rankR2(R3) ≈ 0.9815,

rankR3(R4) ≈ 0.9333

There are no new candidates for contradictory pairs and the while-loop terminates. The next step
is de-normalization which removes all but the outermost brackets in compound relations. The
result of the normalization algorithm is (R1R2)(R3)(R4).

Now suppose we want to normalize the chain R1R2R4R3. As the reader may verify, the
sequence R1R2R4R3 has minimal cost among all sequences starting with R0 and involving the
relations {R1, R2, R3, R4}. Note that when using this sequence we need not check the cost
condition of contradictory pairs since any subsequence of an optimal sequence has to be optimal
too. The local ranks are

rankR0(R1) ≈ 0.9722,

rankR1(R2) ≈ 0.9643,

rank(R4) ≈ 0.9667,

rankR2R4(R3) ≈ 0.9630

Therefore, (R1, R2) and (R4, R3) are contradictory pairs and the result of the first pass of the loop
is ((R1)(R2))((R4)(R3)). The new ranks are

rankR0(R1R2) ≈ 0.9646,

rankR2(R4R3) ≈ 0.9631

3Otherwise uyx would be cheaper than uxy, a contradiction to the optimality of uxy.
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There is exactly one new contradictory pair and the result of the second pass is
(((R1)(R2))((R4)(R3))). After the second pass the loop terminates since there are no more
relations to group. After resolving all but the outermost tyings the result of the normalization
algorithm is (R1R2R4R3). 2

Next we will show that for the case of optimal subchains xy, where the cost condition Cu(xy) ≤
Cu(yx) is obviously satisfied, the indeterministically defined normalization process is well-defined,
that is, if S is optimal, normalize(P,S) will always terminate with a unique “flat” decomposition
of S into maximal contradictory subchains (flat means that we remove all but the outermost
parenthesis, e.g. (R1R2)(((R5R4)R3)R6) becomes (R1R2)(R5R4R3R6)). In order to show that
the normalization process is well-defined we first need some results concerning the ranks of
contradictory subchains.

Lemma 3.1.15
Let r, s and u be nonempty sequences of relations. Then, we have

min(ranku(r), rankur(s)) ≤ ranku(rs) ≤ max(ranku(r), rankur(s))

Proof Using Def. 3.1.1 and Def. 3.1.2 we have

ranku(rs) ≤ ranku(r)

⇔ Tu(r)Tur(s)− 1

Cu(r) + Tu(r)Cur(s)
≤ Tu(r) − 1

Cu(r)

⇔ Tu(r)Tur(s)Cu(r) − Cu(r) ≤ Tu(r)Cu(r) + T 2
u (r)Cur(s)− Cu(r) − Tu(r)Cur(s)

⇔ Tur(s)Cu(r) − Cu(r) ≤ Tu(r)Cur(s)− Cur(s)

⇔ Tur(s)− 1

Cur(s)
≤ Tu(r) − 1

Cu(r)

⇔ rankur(s) ≤ ranku(r)

Note that Cu(r) > 0 and Cur(s) > 0. On the other hand, we have

ranku(rs) ≥ ranku(r)

⇔ Tu(r)Tur(s)− 1

Cu(r) + Tu(r)Cur(s)
≥ Tur(s)− 1

Cur(s)

⇔ Tu(r)Tur(s)Cur(s)− Cur(s) ≥ Cu(r)Tur(s) + Tu(r)Tur(s)Cur(s)

−Cu(r) − Tu(r)Cur(s)

⇔ Tu(r)Cur(s)− Cur(s) ≥ Tur(s)Cu(r) − Cu(r)

⇔ Tu(r) − 1

Cu(r)
≥ Tur(s)− 1

Cur(s)

⇔ ranku(r) ≥ rankur(s)

This proves the claim. 2

Let us introduce the notion of a decomposition tree.

Definition 3.1.4 (decomposition tree) A decomposition tree T for a chain s and a prefix u is
inductively defined as follows. The nodes of T are labeled with pairs (x, y), where x is a prefix and
y is a subchain. The smallest decomposition tree consists of a single node labeled with (u, s). A
decomposition tree can be enlarged by selecting an arbitrary leaf node with label (u′, s′) such that
|s′| > 1 and adding a left successor node labeled with (u, s1) and a right successor node labeled with
(us1, s2), where s

′ = s1s2. If (u1, s1), . . . , (uk, sk) are the leaf labels of T in left-to-right order, we
call s = s1s2 . . . sk the decomposition of s (into adjacent subchains) defined by T .
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(R0, R1R5R2R4R3)

(R0, R1R5)

(R0, R1) (R0R1, R5)

(R0R1R5, R2R4R3)

(R0R1R5, R2R4)

(R0R1R5, R2) (R0R1R5R2, R4)

(R0R1R5R2R4, R3)

Figure 3.1: A decompostion tree of the chain R1R5R2R4R3 and the prefix R0.

The next lemma states that the rank of any chain s is bounded by the extreme values of the
ranks of the subchains in a decomposition of s into adjacent subchains.

Lemma 3.1.16 Let s be a chain and u be an associated prefix. If s1 . . . sk is an arbitrary
decomposition of s into adjacent subchains, we have

min
1≤i≤k

rankus1...si−1(si) ≤ ranku(s) ≤ max
1≤i≤k

rankus1...si−1(si)

Proof Let T be a decomposition tree for the decomposition s1 . . . sk. The proof is by induction
on the height of T . If T has height 0, T consists of one node labeled with (u, s), and the claim is
obviously true. Now assume that the claim is true for all decomposition trees of height less than
n, for some n > 0. Consider a tree T of height n. Let (u, s) be the label of the root of T and let
s1 . . . sk be the decomposition defined by T . Denote the left and right subtrees of T by Tl and Tr,
respectively. Let (ul, sl) and (ur, sr) be the root labels of Tl and Tr, respectively. Assume that
sl = s1 . . . sj and sr = sj+1 . . . sk are the decompositions of Tl and Tr for some 1 ≤ j < k. Since
both Tl and Tr have height strictly less than n, we can apply the induction hypothesis, obtaining

min
1≤i≤j

rankus1...si−1(si) ≤ rankul (sl) ≤ max
1≤i≤j

rankus1...si−1(si)

min
j<i≤k

rankus1...si−1(si) ≤ rankur (sr) ≤ max
j<i≤k

rankus1...si−1(si).

By Lemma 3.1.15, we have

min(rankul(sl), rankur (sr)) ≤ ranku(s) ≤ max(rankul (sl), rankur (sr))

and hence

min( min
1≤i≤j

rankus1...si−1(si), min
j<i≤k

rankus1...si−1(si)) ≤ ranku(s) ≤
max( max

1≤i≤j
rankus1...si−1(si), max

j<i≤k
rankus1...si−1(si))

or

min
1≤i≤k

rankus1...si−1(si) ≤ ranku(s) ≤ max
1≤i≤k

rankus1...si−1(si).

2

Corollary 3.1.2 Let u and s be subchains and let T be a decomposition tree for an arbitrary
decomposition of s with respect to the prefix u. Let s1 . . . sk be the decomposition of s defined by
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T . If (v, w) is the label of an arbitrary node of T and w = si . . . sj for some 1 ≤ i ≤ k, then we
have

min
i≤e≤j

rankus1...se−1(se) ≤ rankv(w) ≤ max
i≤e≤j

rankus1...se−1(se)

Lemma 3.1.17
Let u, r, x, y and s be sequences of relations. If (x, y) is a contradictory pair in an optimal sequence
urxys and both (r, x) and (y, s) are contradictory pairs, then (rx, ys) is a contradictory pair too.

Proof By Lemma 3.1.15 we have

ranku(rx) ≥ rankur(x) > rankurx(y) ≥ rankurx(ys).

Furthermore, since urxys is an optimal sequence, Cu(rx) ≤ Curx(ys) must hold, and the claim
follows. 2

Lemma 3.1.17 essentially says that the possibility to group a pair of contradictory subchains
does not vanish if we extend the left or right subchain.

In a sequence of relations r = r1 . . . rn, each possible grouping of two adjacent contradictory
subchains uniquely corresponds to a pair of adjacent relations riri+1 in r. The following definition
introduces a name to such a pairs of relations.

Definition 3.1.5 (connecting point, cp)
Let s = uxyw be a sequence of relations such that (x, y) is a contradictory pair of subchains in s.
Let r1 denote the last relation of x and r2 denote the first relation of y, respectively. Then we call
the pair (r1, r2) a connecting point in s. Two connecting points (r1, r2) and (r3, r4) overlap if and
only if r1 = r4 or r2 = r3.

The nondeterministic computation of the procedure normalize can be visualized in form of a
computation tree which we define next.

Definition 3.1.6 (computation tree)
A computation tree for a subchain s is a rooted tree whose edges are labeled with connection points.
The nodes of the tree uniquely correspond to intermediate results of the normalization process as
follows. The root of the computation tree corresponds to the original subchain s. For every node v
corresponding to a sequence of compound relations r1, . . . , rk there is an edge labeled α leaving v if
and only if (ri, ri+1) builds a contradictory pair for some 1 ≤ i < k, and α is the cp of (ri, ri+1).
By a path in the computation tree we mean a path starting at the root of the tree. If the path ends
in a leaf, we call it a maximal path.

Since there are at most n− 1 different cp’s and all the cp’s on a path are different, a node of
depth l has at most n− l successor nodes. Figure 3.2 shows an example of a computation tree.

Next we summarize some useful facts about sequences of cp’s and decompositions into contradic-
tory subchains. For this let φ1 and φ2 be paths consisting of m cp’s for a chain c of n relations
S. We denote a prefix of length k of φi (i = 1, 2) by prefk (φi) and the set of cp’s in prefk (φi) by
cp(prefk (φi)). Then, the following facts hold.

Fact 3.1.1 prefk (φ1) uniquely corresponds to a decomposition of c into n − k contradictory sub-
chains.
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R6R5R1R2R3R4

(R6, R5)

(R1, R2)
(R3, R4) (R2, R3) (R5, R1)

((R6R5)((R1R2)(R3R4)))

(R3, R4)

(R1, R2) (R2, R3) (R5, R1)
((R6R5)((R1R2)(R3R4)))

(R2, R3)

(R1, R2) (R5, R1)
((R6R5)(R1(R2(R3R4))))

(R1, R2)

(R6, R5)
(R3, R4) (R2, R3) (R5, R1)

((R6R5)((R1R2)(R3R4)))

(R3, R4)

(R6, R5)
(R2, R3) (R5, R1)

((R6R5)((R1R2)(R3R4)))

(R2, R3)

(R6, R5) (R5, R1)
((R6R5)((R1R2)(R3R4)))

(R5, R1)

(R6, R5)
(R6(R5((R1R2)(R3R4))))

(R3, R4)

(R6, R5)

(R1, R2) (R2, R3) (R5, R1)
((R6R5)((R1R2)(R3R4)))

(R2, R3)

(R1, R2) (R5, R1)
((R6R5)(R1(R2(R3R4))))

(R1, R2)

(R6, R5)
(R2, R3) (R5, R1)

((R6R5)((R1R2)(R3R4)))

(R2, R3)

(R6, R5) (R5, R1)
((R6R5)((R1R2)(R3R4)))

(R5, R1)

(R6, R5)
(R6(R5((R1R2)(R3R4))))

(R2, R3)

(R6, R5)
(R1, R2) (R5, R1)

((R6R5)(R1(R2(R3R4))))

(R1, R2)

(R6, R5) (R5, R1)
((R6R5)(R1(R2(R3R4))))

(R5, R1)

(R6, R5)
(R6(R5(R1(R2(R3R4)))))

Figure 3.2: A computation tree.

Fact 3.1.2 cp(prefk (φ1)) uniquely corresponds to a partition of S into n− k disjoint subsets.

Fact 3.1.3 If cp(prefk (φ1)) = cp(prefk (φ2)) then the subtrees rooted at the end of prefk (φ1) and
prefk (φ2) are copies of each other.

The last fact needs further explanation. Note that if cp(prefk (φ1)) = cp(prefk (φ2)) the partitions
induced by prefk (φ1) and by prefk (φ2) must be identical (Fact 3.1.2). Also note that in the
normalization process the possibility to group two compound relations x, y is not affected by the
structure of inner tyings of x and y. Consequently, the subtrees rooted at the end of prefk (φ1)
and prefk (φ2) must be copies of each other.

The next lemma says that whenever we have the choice between two different cp’s in the
normalization process, using one cp does not destroy the other cp.
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Lemma 3.1.18 Let T be a subtree of the computation tree of the procedure normalize for an
optimal sequence of relations s. If there is an edge e1 with label α and an edge e2 with label β
(β 6= α) leaving the root of T , then there exists an edge with label β following e1 and an edge with
label α following e2.

Proof We denote the node at the end of edge e1 with r1 and the
node at the end of edge e2 with r2, respectively. Let the root of
T correspond to a sequence of compound relations c1 . . . ck. Let
α correspond to the contradictory pair (ci, ci+1) (1 ≤ i < k) and
β correspond to the contradictory pair (cj , cj+1) (1 ≤ j < k).
Without loss of generality assume that i < j. We distinguish two
cases.

r1

· · ·α

β

r2

β

α

In the first case we have i + 1 < j, i.e. the contradictory pairs do not overlap. Obviously, tying
ci and ci+1 together does not destroy the contradictory pair (cj , cj+1). Since (cj , cj+1) still exists,
there must be an edge leaving r1 labeled with β.
In the second case we have i + 1 = j, i.e. the contradictory pairs overlap. According to Lemma
3.1.17, (cici+1, ci+2) is a contradictory pair too. Note that (cici+1, ci+2) corresponds to the cp
β. Hence, after the grouping of ci and ci+1 the cp β still exists. Consequently, there must be an
edge leaving r1 labeled with β. The claim that there is an edge labeled α leaving r2 follows by
symmetry. 2

The next lemma says that once an edge with label β leaves a node r, then β occurs on every path
starting at r.

Lemma 3.1.19 Let T be a subtree of the computation tree of the procedure normalize for an
optimal sequence of relations s. Then, if an edge leaving the root of T is labeled with β, β occurs
on any path from the root of T to a leaf.

Proof We perform induction on the height of the subtree T . If
T has height 0 the claim is obviously true.
Now assume that the claim is true for all subtrees T with
height(T ) ≤ n for some n ≥ 0. Consider a tree T of height n+ 1.
Let φ be an arbitrary path in T . If the first label of φ is β the
claim is obviously true. Hence, assume that the first label of φ is
different from β. Let us denote the second node in φ with r′ and
the subtree rooted at r′ with T ′. According to Lemma 3.1.18 there
must be an edge leaving r′ labeled with β. By an application of
the induction hypothesis to the subtree T ′ we know that β occurs
on every path in T ′. Therefore β also occurs on φ. This proves
the claim. 2

r′
· · ·α

· · ·

φ

β

β

Corollary 3.1.3 Let T be a subtree of the computation tree for the procedure normalize applied
to an optimal sequence of relations s. Let r be the root node of T and Γ be the set of all cp’s of
edges to successor nodes of r. Then, for each path φ from r to a leaf of T , Γ is a subset of all the
cp’s in φ.

Lemma 3.1.20 Let T be a subtree of the computation tree for the procedure normalize applied to
an optimal sequence of relations s. Then any two paths in T from the root to a leave are labeled
with the same set of connecting points.
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Proof The proof is by induction on the height of the tree T . If height(T ) = 0 the claim is
trivially satisfied. We assume that the claim is true for all subtrees T with height(T ) ≤ n for some
n ≥ 0.
Consider a subtree of height n + 1. If the root of T has only one successor the claim follows
immediately from the induction assumption. Hence, let us assume that T has at least two successor
nodes.

Consequently, there exist at least two paths from
the root of T to leaves of T . We consider two such
paths and denote them by φ1 and φ2, respectively.
Furthermore, let α be the first cp of φ1 and β the
first cp of φ2, respectively. Let r1 be the node that
is reached from r via α and r2 be the node that is
reached from r via β (see figure on the right). The
corresponding subtrees are denoted by T1 and T2,
respectively. Let r correspond to the sequence
of contradictory chains c1, . . . , ck. Further, let α
correspond to the contradictory pair (ci, ci+1) and
β correspond to the contradictory pair (cj , cj+1).
Without loss of generality we assume that 1 ≤
i < j < n.

r

r1

α

· · · β

M

r2

β

α

M

· · ·

Due to Lemma 3.1.18 we know that there exists an edge labeled β leaving r1 and an edge labeled
α leaving r2. Now, tying ci and ci+1 together leaves the contradictory pair (cici+1, cj+1) whereas
tying cj and cj+1 together leaves the contradictory pair (ci, cjcj+1), i.e. αβ and βα lead to the
same sequence of contradictory subchains and the corresponding subtrees are copies of each other
(Fact 3.1.3). Let us denote these two subtrees by T ′1 and T

′
2, respectively. Applying the induction

hypothesis to T ′1 and T ′2 we know that the set of cp’s on all paths in T ′1 or T ′2 is the same, say M .
Consequently, the set of cp’s of φ1 and φ2 are both equal to M ∪{α, β} which proves the claim. 2

The next lemma is an immediate consequence of Lemma 3.1.20.

Lemma 3.1.21 Let T be a subtree of the computation tree for the procedure normalize applied to
an optimal sequence of relations s. Then all paths in T from the root to a leave are labeled with
the same set of connecting points.

Proof Assume that the claim is wrong, i.e. there exist two paths whose sets of connecting points
differ. However, this is a contradiction to Lemma 3.1.20. 2

Theorem 3.1.1
The indeterministic normalization process is well-defined for chains consisting of optimal contradic-
tory subchains, i.e. for every computation of the procedure normalize, the partition of the set of all
n relations into maximal contradictory subchains is unique as long as all contradictory subchains
in the decomposition are optimal.

Proof Assume the contrary is true, i.e. there exist two computations for an optimal sequence of
relations that yield different partitions into contradictory subchains. Since these two computations
correspond to paths in the computation tree with different sets of cp’s we have a contradiction to
Lemma 3.1.20. 2

In [MS79], Monma and Sidney describe an elegant recursive algorithm to determine the optimal
sequencing of n jobs with series-parallel precedence constraints. Ibaraki and Kameda [IK84]
adapted this algorithm to tree queries without cross products; however, this is not possible here,
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since we have an unconstrained problem where there is no precedence relation along which we
could merge. However, the next two lemmata and the conjecture show a possible way to overcome
this problem. The next lemma is a direct consequence of the normalization procedure.

Lemma 3.1.22 Let S = s1 . . . sm be an optimal chain consisting of the maximal contradictory
subchains s1, . . . , sm (as determined by the function normalize). Then

rank(s1) ≤ ranks1(s2) ≤ ranks1s2(s3) ≤ · · · ≤ ranks1...sm−1(sm),

in other words, the (maximal) contradictory subchains in an optimal chain are always sorted by
non-decreasing ranks.

Proof Assume that there exist two adjacent contradictory subchains si and si+1 with
ranks1...si−1(si) > ranks1...si(si+1). If the subchains are not connected we can interchange them,
and according to Lemma 3.1.10 the resulting chain would have fewer costs, a contradiction! On
the other hand, if they were connected they would have been tied together in the normalization
process, again a contradiction. Hence, we conclude that such a pair of adjacent contradictory
subchains with contradicting local ranks cannot exist. 2

The next result shows how to build an optimal sequence from two unique rank-sorted non-
interconnected sequences.

Lemma 3.1.23 Let x and y be two unique rank-sorted sequences of maximal contradictory sub-
chains for the disjoint and unconnected sets of relations Rx and Ry, respectively. Then the sequence
obtained by merging the contradictory subchains in x and y (as obtained by normalize) according
to their non-decreasing ranks is optimal.

Proof Assume that the claim is wrong. Then there exists a sequence c1 . . . ck of rank-sorted
optimal contradictory subchains for the set of relations Rx ∪ Ry. Since contradictory subchains
are connected, each ci refers either to relations in Rx or to relations in Ry. By eliminating the
contradictory subchains in c1 . . . ck that refer to Ry we would obtain a sequence of rank-sorted
contradictory subchains for Rx, a contradiction to the assumed uniqueness of x. 2

Merging two sequences in the way described in Lemma 3.1.23 is a fundamental process. We
henceforth refer to it by simply saying that we merge by the ranks.

We strongly conjecture that the following generalization of the first part of Lemma 3.1.13 is
true, although we could not yet prove it. It uses the notion of optimal recursively decomposable
subchains defined in the next subsection.

Conjecture 3.1.1 Consider two sequences S and T containing exactly the same relations R1,
. . . ,Rn. Let S = s1 . . . sk and T = t1 . . . tl be decompositions of S and T into maximal contradictory
subchains such that the subchains si (i = 1, . . . , k) and si (i = 1, . . . , l) are all optimal recursively
decomposable with respect to the respective prefixes s1 . . . si−1 and t1 . . . tj−1, respectively. Then S
and T have equal costs.

3.1.2 The First Algorithm

We first use a slightly modified cost function C′ which additionally respects the size of the first
relation in the sequence, i.e. C and C′ relate via

C ′u(s) =
{
C(s) + |nR|, if u = ε and s = Rs′

Cu(s), otherwise
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This cost function can be treated in a more elegant way than C. The new rank function is now
defined as

ranku(s) :=
Tu(s)− 1

C′u(s)
.

Note that the rank function is now defined even if u = ε and s is a single relation. The size
function remains unchanged. At the end of this subsection, we describe how our results can be
adapted to the original cost function C.

The rank of a contradictory chain depends on the relative position of the relations that are
directly connected to it. For example the rank of the contradictory subchain (R5R3R4R2) depends
on the position of the neighboring relations R1 and R6 relative to (R5R3R4R2), that is whether
they appear before or after the sequence (R5R3R4R2). We therefore introduce the following
fundamental definitions:

Definition 3.1.7 (neighborhood) We call the set of relations that are directly connected to a
subchain (with respect to the query graph G) the complete neighborhood of that subchain. A
neighborhood is a subset of the complete neighborhood. The complement of a neighborhood u of a
subchain s is defined as v − u, where v denotes the complete neighborhood of s.

Note that the neighborhood of a subchain s within a larger chain us is uniquely determined by
the subsequence u of relations preceding it. We henceforth denote a pair consisting of a connected
sequence s and a neighborhood u by [s]u.

Definition 3.1.8 (contradictory subchain, extent) A contradictory subchain [s]u is inductively
defined as follows.

1. For a single relation s, [s]u is a contradictory subchain.

2. There is a decomposition s = vw such that (v, w) is a contradictory pair with respect to the
preceding subsequence u and both [v]u and [w]uv are themselves contradictory subchains.

The extent of a contradictory chain [s]u is defined to be the pair consisting of the neighborhood
u and the set of relations occurring in s. Since contradictory subchains are connected, the set of
occurring relations has always the form {Ri, Ri+1, . . . , Ri+l} for some 1 ≤ i ≤ n, 0 ≤ l ≤ n − i.
An optimal contradictory subchain to a given extent is a contradictory subchain with lowest cost
among all contradictory subchains of the same extent.

Note that optimal contradictory subchains are only optimal with respect to the underlying recursive
building scheme and hence they are not necessarily optimal when viewed as a sequence of relations.

Lemma 3.1.24 The number of different extents of a chain of n relations is

2n2 − 2n+ 1 = O(n2).

Proof The set of possible extents of a chain R1 . . . Rn can be written as

{(∅, {R1, . . . , Rn})} ]
{(u, {R1, . . . , Ri}) | 1 ≤ i < n, u ∈ {∅, {i+ 1}}} ]
{(u, {Ri, . . . , Rn}) | 1 < i ≤ n, u ∈ {∅, {i− 1}}} ]

{(u, {Ri, . . . , Rj}) | 1 < i < j < n, u ∈ {∅, {i− 1}, {j + 1}, {i− 1, j + 1}}}.
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Hence, the number of extents is

1 + 2 ∗ (n− 1) + 2 ∗ (n− 1) + 4 ∗
n−2∑
k=1

(n− k − 1) = 2n2 − 2n+ 1.

2

Each contradictory chain can be completely recursively decomposed into adjacent pairs of
connected subchains. Subchains with this property are defined next (similar types of decomposi-
tions occur in [HC93, SS91]).

Definition 3.1.9 ((optimal) recursively decomposable subchain) A recursively decomposable sub-
chain [s]u is inductively defined as follows.

1. If s is a single relation then [s]u is recursively decomposable.

2. There is a decomposition s = vw such that v is connected to w and both [v]u and [w]uv are
recursively decomposable subchains.

A recursively decomposable subchain [s]u with extent (U, S) is called optimal recursively decompo-
sable if there is no other recursively decomposable chain [t]v with the same extent (U, S) and
Cv(t) < Cu(s).

The extent of a recursively decomposable chain is defined in the same way as for contradictory
chains. Note that every contradictory subchain is recursively decomposable. Consequently, the
set of all contradictory subchains for a certain extent is a subset of all recursively decomposable
subchains of the same extent.

Example 6: Consider the sequence of relations

s = R2R4R3R6R5R1.

Using parenthesis to indicate the recursive decompositions we have the following two possibilities

(((R2(R4R3))(R6R5))R1)

((R2((R4R3)(R6R5)))R1)

The extent of the recursively decomposable subchain R4R3R6R5 of s is ({R2}, {R3, R4, R5,
R6}). R3R1R4R2 is an example of a chain which is not recursively decomposable. 2

The number of different recursively decomposable chains involving the relations R1, . . . , Rn is the

n-th Schröder number rn [SS91]. It can be shown that rn ∼ C(3+
√
8)n

n3/2
with C = 1

2

√
3
√
2−4
π . By

Stirling’s Formula, n! ∼ √2πn(ne )n and therefore limn→∞ rn
n! = 0, i.e. the probability of a random

permutation being recursively decomposable strives to zero for large n.

There is an obvious dynamic programming algorithm to compute optimal recursively decompo-
sable subchains. It is not hard to see that Bellman’s optimality principle [Min86, CLR90] holds
and every optimal recursively decomposable subchain can be decomposed into smaller optimal
recursively decomposable subchains.
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Example 7: In order to compute an optimal recursively decomposable subchain for the extent

({R2, R7}, {R3, R4, R5, R6})
the algorithm makes use of optimal recursively decomposable subchains for the extents

({R2}, {R3}) ({R7, R3}, {R4, R5, R6})
({R2}, {R3, R4}) ({R7, R4}, {R5, R6})

({R2}, {R3, R4, R5}) ({R5, R7}, {R6})
({R7}, {R4, R5, R6}) ({R2, R4}, {R3})

({R7}, {R5, R6) ({R2, R5}, {R3, R4})
({R7}, {R6}) ({R2, R6}, {R3, R4, R5})

which have been computed in earlier steps. A similar dynamic programming algorithm can be
used to determine optimal contradictory subchains. 2

Let E be the set of all possible extents. We define the following partial order P = (E,≺) on E.
For all extents e1, e2 ∈ E, we have e1 ≺ e2 if and only if e1 can be obtained by splitting the extent
e2. For example, ({R7}, {R5, R6}) ≺ ({R2, R7}, {R3, R4, R5, R6}). The set of maximal extents M
then corresponds to a set of incomparable elements (antichain) in P such that for all extents e
enumerated so far, there is an extent e′ ∈M with e ≺ e′.

Now, since every optimal join sequence has a representation as a sequence of contradictory
subchains, we only have to determine this representation. Consider a contradictory subchain c
in an optimal join sequence s. What can we say about c? Obviously, c has to be optimal with
respect to the neighborhood defined by the relations preceding c in s. Unfortunately, identifying
contradictory subchains that are optimal sequences seems to be as hard as the whole problem
of optimizing chain queries. Therefore we content ourselves with the following weaker condition
which may lead to multiple representations. Nevertheless it seems to be the strongest condition for
which all subchains satisfying the condition can be computed in polynomial time. The condition
says that s should be optimal both with respect to all contradictory chains of the same extent
as s and with respect to all recursively decomposable subchains of the same extent. So far it is
not clear whether these conditions lead to multiple representations, therefore we have no choice
but to enumerate all possible representations and select the one with minimal costs. If conjecture
3.1.1 holds, we know that multiple representations have identical costs, and we do not have to
enumerate them all. Next we describe our first algorithm.

Algorithm I’:

1 Use dynamic programming to determine all contradictory subchains. That is,
for each possible extent keep track of the cheapest contradictory subchain if one
exists. Also keep track of the set M of all maximal extents with respect to the
partial order induced by splitting extents.

2 Use dynamic programming to determine all optimal recursively decomposable
subchains for all extents included in some maximal extent in M .

3 Compare the results from steps 1 and 2 and retain only matching subchains.
4 Sort the contradictory subchains according to their ranks.
5 Eliminate contradictory subchains that cannot be part of a solution.
6 Use backtracking to enumerate all sequences of rank-ordered optimal

contradictory subchains and keep track of the sequence with lowest cost.

In step 5 of the algorithm we eliminate contradictory subchains that do not contribute to a
solution. Note that the contradictory subchains in an optimal sequence are characterized by the
following two conditions.
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1. The neighborhood of the first contradictory subchain in the sequence is minimal (empty set)
whereas the neighborhood of the last contradictory subchain is maximal.

2. The extents of all contradictory subchains in the representation build a partition of the set
of all relations.

3. The neighborhoods of all contradictory subchains are consistent with the relations occurring
at earlier and later positions in the sequence.

Note that any contradictory subchain occurring in the optimal sequence (except at the first and
last positions) necessarily has matching contradictory subchains preceding and succeeding it in
the list. In fact, every contradictory subchain X with neighborhood P occurring in the optimal
join sequence must meet the following two conditions.

1. For every relation R in the neighborhood of X , there exists a contradictory subchain Y with
neighborhood P ′ at an earlier position in the list (i.e. with smaller rank) which itself fulfills
condition 1, such that R occurs in Y , and Y can be followed by X (i.e. X ∩ Y = ∅ and
X ∩ P ′ = ∅).

2. For every relation R in the complementary neighborhood of X , there exists a contradictory
subchain Y at a later position in the list (i.e. with larger rank) which itself fulfills condition
2, such that R occurs in the neighborhood of Y , and X can be followed by Y (i.e. X∩Y = ∅
and Y ∩ P = ∅).

Using these two conditions, we can eliminate “useless” contradictory chains from the rank-ordered
list by performing a reachability4 algorithm for each of the DAGs defined by the conditions 1
and 2. In the last step of our algorithm backtracking is used to enumerate all representations.
Example 8 shows the subchains examined by Algorithm I’ at various intermediate stages.

Lemma 3.1.25 The first algorithm is correct.

Correctness: First, note that the algorithm systematically enumerates all contradictory sub-
chains. Contradictory subchains that turn out to be suboptimal are eliminated. From the
resulting set of contradictory subchains, all sequences of rank-ordered contradictory subchains
are constructed and the cheapest one is selected. Since an optimal chain can be proved to be a
rank-ordered sequence of (optimal) contradictory subchains (Lemma 3.1.22) the optimal chain has
to be among the enumerated rank-ordered sequences of contradictory subchains.

Complexity: Let us analyze the worst case time complexity of the algorithm. The two dynamic
programming steps both iterate over O(n2) different extents (Lemma 3.1.24) and each extent gives
rise to O(n) splittings. Moreover, for each extent one normalization is necessary, which requires
linear time (cost, size and rank can be computed in constant time using recurrences). Therefore
the complexity of the two dynamic programming steps is O(n4). Sorting O(n2) contradictory
chains can be done in time O(n2 logn). The step where all “useless” contradictory subchains
are eliminated consists of two stages of a reachability algorithm which has complexity O(n4). If
conjecture 3.1.1 is true, the backtracking step requires linear time and the total complexity of the
algorithm is O(n4). Otherwise, if conjecture 3.1.1 is false, the algorithm might exhibit exponential
worst case time complexity as the following example indeed shows.

4Basically, we compute the transitive closure of a relation → and its inverse relation ←. Only those nodes that
are reachable from a starting node and from which we can reach a final node are retained. A similar algorithm is
used to identify all “useful” symbols in a context-free grammar [HU79].
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Consider the following hypothetical5 set of contradictory subchains:

Xn =

n⋃
i=1

Bi, where

Bi =

i−1⋃
j=0

Cj,i

C0,i = {∅, {R0, R1, . . . , Ri}
Cj,i = {{Rj−1}, {Rj, Rj+1, . . . , Ri}} 0 < j ≤ i

Assume that the rank ordering is as follows

rank(Ci,j) ≤ rank(Ck,l) ⇐⇒ i < k or (i = k and j < l) (3.4)

The next table shows the set Xn for the case of n = 6 in form of a matrix. Rows represent the
relations R0, . . . , R5 and columns represent the contradictory subchains of Xn in rank-sorted order
(ranks increase from left to right). A cross denotes the presence of a relation in a contradictory
subchain and a dot denotes relations in the neighborhood.

R0 × × · × · × · × · × ·
R1 × × × × · × × · × × · × × ·
R2 × × × × × × · × × × · × × × ·
R3 × × × × × × × × · × × × × ·
R4 × × × × × × × × × × ·
R5 × × × × × ×

Any possible solution corresponds to a sub-matrix with some columns canceled out such that
the following conditions hold. In every row there is exactly one cross. There is a dot at each
position P directly above or directly below a block of adjacent crosses in a column if and only if
there is a cross to the left of P in the same row.
Now let us compute the number of possible solutions an that arise from Xn. By the i-th block
of the matrix we mean the sub-matrix which corresponds to the set Bi. First, note that Rn−1
can only be covered by a contradictory subchain from the last block of the matrix. Second, any
solution includes at most one subchain from every block. Third, if the last subchain in a solution
is the chain that corresponds to the i-th column (1 ≤ i ≤ n) in block n (the last block), there are
ai−1 ways to cover the remaining relations R0, R1, . . . , Ri−1. Hence, an satisfies the recurrence

an =

{
1, n = 0∑n−1

i=0 ai, n > 0

Subtracting an+1 from an we obtain the simpler recurrence an = 2an−1 for n > 1 and a1 = 1.
Obviously, the solution is an = 2n−1, n ≥ 1.

The following pseudocode is a more detailed description of Algorithm I’. Besides basic types
like booleans, integers and floats we make use of arrays, sets and lists. Note that lists are denoted
as in Lisp with ordinary brackets (no square brackets). The standard list operations head(),
tail(), cons( ), append() and reverse() have the usual semantics. Sometimes we treat lists
as sets and apply set operators like ⊆. The base relations R0, . . . , Rn−1 are represented by the
integers 0, . . . , n− 1.

5This is only a simple combinatorial argument which ignores properties of the cost function. It is far from
obvious that such a set of contradictory subchains can really exist.
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1 procedure all-contradictory-subchains(F,N, n);
2 � input: n: number of relations in the chain,
3 N [i]: size of relation Ri,
4 F [i, j]: selectivity between relations Ri and Rj

5 � output: a list of all possible optimal recursively decomposable contr. subchains
6 (each element of the list is a pair (p, c), consisting of a neighborhood p
7 and a subchain c)

8 // tables used:
9 // A[i, j, k]: optimal subchain for extent (k, {i, . . . i+ j − 1})
10 // T [i, j, k]: size of subchain A[i, j, k]
11 // C[i, j, k]: cost of subchain A[i, j, k]
12 // k codes a neighborhood of {i, . . . i+ j − 1} as follows:
13 // (k&1) = 1⇔ neighborhood contains {i− 1}
14 // (k&2) = 1⇔ neighborhood contains {i+ j}
15 for 0 ≤ i < n, 0 ≤ k ≤ 4 do
16 nb ← ∅; // decode neighborhood
17 if (k&1) and (i > 0) then nb ← nb ∪ {i− 1};
18 if (k&2) and (i+ j < n− 1) then nb ← nb ∪ {i+ j};
19 A[i, i, k]← (i);
20 T [i, i, k]← N [i] ∗∏j∈nb F [j, i];
21 C[i, i, k]← T [i, i, k]
22 A1 [i, i, k]← A[i, i, k];
23 C1 [i, i, k]← C[i, i, k];
24 T1 [i, i, k]← T [i, i, k];
25 od;
26 peaks ← nil ;
27 for 2 ≤ j ≤ n, 0 ≤ i ≤ n− j, 0 ≤ l < 4 do
28 if i > 0 then w1 ← 1
29 else w1 ← 0;
30 if i+ j < n− 1 then w2 ← 1
31 else w2 ← 0;
32 for k1 ← 0 to w1 do
33 for k2 ← 0 to w2 do
34 l← k1 + 2 ∗ k2 ; // coded neighborhood
35 left0 ← i;
36 right1 ← i+ j − 1;
37 for k ← 1 to l− j do
38 left1 ← i+ k − 1;
39 right0 ← i+ k;
40 l1 ← l & 1;
41 l2 ← (l & 2) | 1;
42 if A[left0 , left1 , l1 ] 6= nil and A[right0 , right1 , l2 ] 6= nil then
43 subchain ← append(A[left0 , left1 , l1 ], A[right0 , right1 , l2 ]);
44 if subchain is a contr. subchain then
45 size ← T [left0 , left1 , l1 ] ∗ T [right0 , right1 , l2 ];
46 cost ← C[left0 , left1 , l1 ] + T [left0 , left1 , l1 ] ∗ C[right0 , right1 , l2 ];
47 if cost < C[left0 , right1 , l] or A[left0 , right1 , l] = nil then
48 A[left0 , right1 , l]← subchain ;
49 C[left0 , right1 , l]← cost ;
50 T [left0 , right1 , l]← size;
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51 fi;
52 fi;
53 l1 ← l & 2;
54 l2 ← (l & 1) | 2;
55 subchain ← append(A[right0 , right1 , l1 ], A[left0 , left1 , l2 ]);
56 if subchain is a contr. subchain then
57 size ← T [right0 , right1 , l1 ] ∗ T [left0 , left1 , l2 ];
58 cost ← C[right0 , right1 , l1 ] + T [right0 , right1 , l1 ] ∗ C[left0 , left1 , l2 ];
59 if cost < C[left0 , right1 , l] then
60 A[left0 , right1 , l]← subchain ;
61 C[left0 , right1 , l]← cost ;
62 T [left0 , right1 , l]← size;
63 fi;
64 fi;
65 fi;
66 fi;
67 od;
68 remove all tuples (l, r) with left0 ≤ l and r ≤ right1 from the list peaks ;
69 peaks ← cons((left0 , right1 ), peaks);
70 od;
71 ccl ← nil ;
72 for (l, r) in peaks do
73 for 2 ≤ j ≤ r − l+ 1, l ≤ i ≤ r − j + 1 and
74 l a coding of a neighborhood of the block {i, . . . , i+ j − 1} do
75 left0 ← i;
76 right1 ← i+ j − 1;
77 let pref be the neighborhood coded by l;
78 if A1 [left0 , right1 , l] 6= nil then
79 for k ← 1 to l − j do
80 left1 ← i+ k − 1;
81 right0 ← i+ k;
82 l1 ← l & 1;
83 l2 ← (l & 2) | 1;
84 subchain ← append(A1 [left0 , left1 , l1 ],A1 [right0 , right1 , l2 ]);
85 size← T1 [left0 , left1 , l1 ] ∗ T1 [right0 , right1 , l2 ];
86 cost← C1 [left0 , left1 , l1 ] + T1 [left0 , left1 , l1 ] ∗ C1 [right0 , right1 , l2 ];
87 if cost < C1 [left0 , right1 , l] or A1 [left0 , right1 , l] = nil then
88 A1 [left0 , right1 , l]← subchain ;
89 T1 [left0 , right1 , l]← size;
90 C1 [left0 , right1 , l]← cost ;
91 fi;
92 l1 ← l & 2;
93 l2 ← (l & 1) | 2;
94 subchain ← append(A1 [right0 , right1 , l1],A1 [left0 , left1 , l2]);
95 size← T1 [right0 , right1 , l1 ] ∗ T1 [left0 , left1 , l2 ];
96 cost← C1 [right0 , right1 , l1 ] + T1 [right0 , right1 , l1 ] ∗ C1 [left0 , left1 , l2 ];
97 if cost < C1 [left0 , right1 , l] then
98 A1 [left0 , right1 , l]← subchain ;
99 T1 [left0 , right1 , l]← size;
100 C1 [left0 , right1 , l]← cost ;
101 fi;
102 od;
103 if A[left0 , right1 , l] 6= A1 [left0 , right1 , l] then
104 A[left0 , right1 , l]← nil ;



3.1. CHAIN QUERIES WITH JOINS AND CROSS PRODUCTS 41

105 else
106 if A[left0 , right1 , l] is contr. subchain then
107 ccl ← cons(A[left0 , right1 , l], ccl);
108 fi;
109 fi;
110 od;
111 od;
112 od;
113 return ccl ;
114 end

1 procedure sort-by-rank(chains);
2 � input: a list of subchains; subchains are represented by tuples (p, c)
3 where c is a subsequence and p a suitable neighborhood to c
4 � output: input list chains sorted by non-descending local ranks
5 (the local rank of a subchain (p, c) is rankp(c))
6 . . .
7 end

1 procedure group-by-equal-ranks(chains);
2 � input: a list of rank-ordered subchains
3 � output: input list parenthesized (grouped) by chains with equal local ranks
4 . . .
5 end

1 procedure toposort-groups(gcc);
2 � input: grouped list of rank-ordered subchains
3 � output: input list with each of its groups topologically sorted
4 with respect to precedences implied by the neighborhoods and carrier
5 sets of the subchains
6 result ← nil ;
7 for each grp in gcc do
8 res ← nil ;
9 subchains left ← grp;
10 while subchains left 6= nil do
11 grp ← subchains left ;
12 subchains left ← nil ;
13 for (p, c) in grp do
14 let right be the part of the list grp to the right of
15 the element (p, c);
16 if there is a chain (p′, c′) in one of the lists subchains left or right
17 such that either p and c′ intersect or p′ and c intersect
18 then add (p, c) to the end of list subchains left ;
19 else add (p, c) to the end of list res ;
20 fi;
21 od;
22 od;
23 add res to the end of list result ;
24 od;
25 return result ;
26 end
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1 procedure reduce(chains);
2 � input: rank-ordered list of subchains
3 � output: input list with irrelevant subchains eliminated
3
4 // remove contradictory subchains from the start (end) of the list
5 // which cannot be the first (last) contr. suchains in any solution
6 delete all elements (p, c) with p = nil from the beginning of the list chains
6 (start at the head of the list and stop at the first element (p, c) with p 6= nil);
7 delete all elements (p, c) with
8 (carrier (c) = {i, i+ 1, . . . , j − 1, j} and 0 < i ≤ j < n and length(p) < 2) or
9 (carrier (c) = {i, i+ 1, . . . , j − 1, j} and i ≤ j and (i = 0 or j = n− 1) and p = nil)
10 from the end of the list chains (start at the end of the
10 list and stop when the condition is false the first time);
11 // remove contr. subchains that cannot be preceded by any subchain
12 new list ← nil ;
13 for each (p, c) in chains do
14 if new list 6= nil then
15 ok ← true;
16 for each k in p do
17 if (k occurs in c′ and neither c′ nor p′ overlaps with c)
18 for some element (p′, c′) in new list
19 then ok ← false;
20 fi;
21 od;
22 fi;
23 if ok then add (p, c) to the end of new list ;
24 od;
25 // remove contr. subchains that cannot be followed by any subchain
26 new list ← nil ;
27 for each (p, c) in reverse(chains) do
28 if new list 6= nil then
29 ok ← true;
30 let p1 be the complementary neighborhood of p (w.r.t. the
31 maximal possible neighborhood);
32 for each k in p1 do
33 if (k occurs in c′ and c does not overlap with c′ wheras
34 p′ overlaps with c for some element (p′, c′) in new list)
35 then ok ← false;
36 fi;
37 od;
38 fi;
39 if ok then add (p, c) to the end of new list ;
40 od;
41 return chains ;
42 end

1 procedure reachable(prefix , chains);
2 � input: a rank-ordered list of subchains and a prefix
3 � output: a bit vector of length n indicating which relations can be covered
4 by subsequent contr. subchains from the list chains and which
5 relations can certainly not be covered
6 reach ← nil ;
7 for each (p, c) in chains do
8 compl ← nil ;



3.1. CHAIN QUERIES WITH JOINS AND CROSS PRODUCTS 43

9 let {left , . . . , right} be the carrier set of the subchain c;
10 if (left 6= 0) and (left − 1 6∈ p) then
11 compl ← cons(left − 1, compl);
12 fi;
13 if (right 6= n− 1) and (right + 1 6∈ p) then
14 compl ← cons(right + 1, compl);
15 fi;
16 if (prefix ∩ c = ∅) and (prefix ∩ compl = ∅) and (p ⊆ prefix)
16 and (c is not contained in reach) then
18 reach ← cons(c, reach);
20 fi;
21 od;
22 return reach;
23 end

1 procedure find-next-contr-subchain(prefix , chains);
2 � input: a rank-ordered list of subchains and a prefix
3 � output: the first contr. subchain from the list chains that is compatible with the
4 prefix and where all non-covered relations are reachable
7 rest ← (0, . . . , n− 1)− pf ;
8 ok ← false ;
9 while (chains 6= nil) and ¬ok do
10 (p, c)← head(chains);
11 chains ← tail(chains);
13 let {left , . . . , right} be the carrier set of c;
14 rest1 ← (rest − c) ∪ (c− rest);
15 ok ← ok and (p ⊆ pf ) and (pf ∩ c = ∅) and
16 ((left = 0) or (left − 1 ∈ p) or (left − 1 6∈ pref )) and
17 ((right = n− 1) or (right + 1 ∈ p) or (right + 1 6∈ pref )) and
18 (rest1 ⊆ reachable(prefix , chains));
19 od;
20 if ok then return (p, c);
21 else return nil fi;
22 end

1 procedure find-first-solution(prefix , chains);
2 � input: a rank-ordered list of subchains and a prefix
3 � output: the first possible sequence of contr. subchains from the list chains that
4 is compatible with the given prefix and which covers all missing relations.
5 if length(prefix ) = n then return prefix ;
6 else
7 (p, c)← find-next-contr-subchain(prefix , chains);
8 return find-first-solution(append(prefix , c), tail(chains));
9 fi;
10 end

1 procedure optimize(F,N, n);
2 � input: n: number of relations in the chain,
3 N [i]: size of relation Ri (0 ≤ i < n)
4 F [i, j]: selectivity between relations Ri and Rj (0 ≤ i, j < n)
5 � output: a permutation of (0, 1, . . . , n− 1) representing the order of relations
6 in an optimal left-deep processing tree for the join query R0 ./ · · · ./ Rn−1
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7 where cross products are allowed.
8 return reduce(sort-by-local-ranks(all-contradictory-subchains(F,N, n)));
9 end

We now describe how to reduce the problem for our original cost function C to the problem for
the modified cost function C′. One difficulty with the original cost function is that the ranks are
defined only for subsequences of at least two relations. Hence, for determining the first relation
in our solution we do not have sufficient information. An obvious solution to this problem is to
try every relation as starting relation, process each of the two resulting chain queries separately
and choose the chain with minimum costs. The new complexity will increase by about a factor
of n. This first approach is not very efficient, since the dynamic programming computations
overlap considerably, e.g. if we perform dynamic programming on the two overlapping chains
R1R2R3R4R5R6 and R2R3R4R5R6R7, for the intersecting chain R2R3R4R5R6 everything is
computed twice. The cue is that we can perform the dynamic programming calculations before
we consider a particular starting relation. Hence, the final algorithm can be sketched as follows:

Algorithm I:

1 Compute all contradictory chains by dynamic programming (corresponds to the
steps 1-4 of Algorithm I’)

2 For each starting relation Ri do the following steps:

2.1 Let L1 be the result of applying steps 5 and 6 of Algorithm I’ to
all contradictory subchains whose extent (N,M) satisfies Ri ∈ N and
M ⊆ {R1, . . . , Ri}.

2.2 Let L2 be the result of applying steps 5 and 6 of Algorithm I’ to
all contradictory subchains whose extent (N,M) satisfies Ri ∈ N and
M ⊆ {Ri, . . . , Rn}.

2.3 For all (l1, l2) ∈ L1 × L2 do the following steps:

2.3.1 Let L be the result of merging l1 and l2 according to their ranks.

2.3.2 Use RiL to update the current-best join ordering.

Complexity: Suppose conjecture 3.1.1 is true and we can replace the backtracking part by a
search for the first solution. Then the complexity of the step 1 is O(n4) whereas the complexity
of step 2 amounts to

∑n
i=1(O(i

2)+O(n− i)2+O(n)) = O(n3). Hence the total complexity would
be O(n4) in the worst case. Of course, if our conjecture is false, the necessary backtracking step
might lead to an exponential worst case complexity.

The following pseudocode is a more detailed description of Algorithm I.

1 proc optimize();
2 initialize minchain to an arbitrary chain;
3 acc ← all-contradictory-subchains(F,N, n);
4 for i from 0 to n− 1 do
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8 lcc ← select-all-ccs(0, i− 1, acc);
9 rcc ← select-all-ccs(i+ 1, n− 1, acc);

10 x← find-first-chain(reduce(r , sort-by-local-ranks(r , lcc)));
11 y ← find-first-chain(reduce(r , sort-by-local-ranks(r , rcc)));
12 z ← cons(r , convert(merge-by-local-ranks(r , x , y)));
13 use z to update minchain ;
14 od
15 return minchain ;
16 end

1 proc select-all-ccs(l, r, chains);
2 result ← nil ;
3 if l ≤ r then
4 for (p, c) in chains do
5 if (p ∪ c) ⊆ {l, l+ 1, . . . , r − 1, r} then result ← cons((p, c), result);
6 od
7 fi
8 return result ;
9 end

The functions all-contradictory-subchains(), sort-by-local-ranks(), reduce(),
find-first-chain() and convert() have already been described before. The additional parameter
R accounts for the starting relation.

Example 8: Consider a chain query with the following parameters:

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11
820 930 870 160 600 880 760 530 800 990 200 980

f0,1 f1,2 f2,3 f3,4 f4,5 f5,6 f6,7 f7,8 f8,9 f9,10 f10,11
0.20 0.37 0.18 0.32 0.42 0.10 0.61 0.87 0.43 0.44 0.44

The list of all optimal contradictory subchains is shown below. The ranks are ascending with the
topmost subchain having the lowest rank. Each line consists of a neighborhood and a corresponding
subchain, e.g. in the first line {2, 4} (3) represents the subchain R3 with neighborhood {R2, R4}.

{2,4} (3)

{2} (3)

{4,6} (5)

{9,11} (10)

{5,7} (6)

{4,7} (5,6)

{4} (3)

{1,3} (2)

{1} (3,2)

{0,2} (1)

{0,3} (2,1)

{0} (3,2,1)

{5} (6)
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{4} (5,6)

{3,5} (4)

{3,6} (5,4)

{3,7} (6,5,4)

{3} (6,5,4)

{5} (3,4)

{6} (5,3,4)

{7} (6,5,3,4)

{} (6,5,3,4)

{6} (5)

{9} (10)

{11} (10)

{7} (6,5)

{} (6,5)

{3} (2)

{} (3,2)

{} (3)

{1} (0)

{2} (1,0)

{0} (1)

{} (0,1)

{8,10} (9)

{8} (10,9)

{3} (4)

{} (10)

{5} (4)

{6,8} (7)

{7,9} (8)

{6,9} (7,8)

{7,10} (9,8)

{6,10} (7,9,8)

{1} (2)

{6} (7)

{9} (8)

{2} (1)

{10} (9,8)

{} (2,1)

{4} (5)

{} (4,5)

{8} (9)

{7} (8,9)

{} (8,9)

{10} (11)

{10} (9)

{8} (7)

{7} (6)

{} (7,6)

{} (7)

{} (4)

{7} (8)

{} (6)

{} (8)

{} (0)

{} (2)
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{} (5)

{} (1)

{} (11)

{} (9)

These 71 subchains are the input for the procedure reduce which eliminates subchains that can
not be part of any solution. In the first part of the reduction process (lines 2-10 of reduce) all
subchains from the beginning (end) of the list whose neighborhoods are not minimal (maximal)
are removed. In our example this halves the number of subchains, leaving 35 subchains:

{} (6,5,3,4)

{6} (5)

{9} (10)

{11} (10)

{7} (6,5)

{} (6,5)

{3} (2)

{} (3,2)

{} (3)

{1} (0)

{2} (1,0)

{0} (1)

{} (0,1)

{8,10} (9)

{8} (10,9)

{3} (4)

{} (10)

{5} (4)

{6,8} (7)

{7,9} (8)

{6,9} (7,8)

{7,10} (9,8)

{6,10} (7,9,8)

{1} (2)

{6} (7)

{9} (8)

{2} (1)

{10} (9,8)

{} (2,1)

{4} (5)

{} (4,5)

{8} (9)

{7} (8,9)

{} (8,9)

{10} (11)

After the second part of the reduction process only 6 subchains are left.

{} (6,5,3,4)

{3} (2)

{2} (1,0)

{} (10)

{6,10} (7,9,8)

{10} (11)



48 CHAPTER 3. OPTIMAL LEFT-DEEP EXECUTION PLANS

Hence we have the following sequence of rank-sorted optimal contradictory subchains:

(6 5 3 4) (2) (1 0) (10) (7 9 8) (11)

The corresponding left-deep plan is:

1

1

1

1

1

1

1

1

1

1

1

R6 R5

R3

R4

R2

R1

R0

R10

R7

R9

R8

R11

Figure 3.3 shows the previous three tables in graphical form. The representation has been
chosen to illustrate the search process for a solution. Each subchain in a list is represented by a
row in the table. Crosses represent relations in a subchain whereas dots represent relations in a
neighborhood of a subchain, i.e. a dot means that there should be a cross in the same column
above. Any solution may be build by successively picking subchains from the table proceeding
from top to bottom while avoiding duplicate relations and neighborhoods that do not match with
previously picked relations.

3.1.3 The Second Algorithm

The second algorithm is much simpler than the first one but proves to be less efficient in practice.
Since the new algorithm is very similar to parts of the old one, we just point out the differences
between both algorithms. The new version of the algorithm works as follows.

Algorithm II’:

1 Use dynamic programming to compute an optimal recursively decomposable
chain for the whole set of relations {R1, . . . , Rn}.

2 Normalize the resulting chain.

3 Reorder the contradictory subchains according to their ranks.

4 De-normalize the sequence.

Step 1 is identical to step 2 of our first algorithm. Note that Lemma 3.1.22 cannot be applied
to the sequence in step 2 since an optimal recursively decomposable chain is not necessarily an
optimal chain. Therefore the question arises whether step 3 really makes sense. One can show
that the partial order defined by the precedence relation among the contradictory subchains has
the property that all elements along paths in the partial order are sorted by rank. By computing a
greedy topological ordering (greedy with respect to the ranks) we obtain a sequence as requested
in step 3.
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Figure 3.3: Subchains at various stages of Algorithm I
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The pseudocode for Algorithm II’ reads as follows:

1 procedure optimal-rec-decomp-chains(F,N, n);
2 � input: n: number of relations in the chain,
3 N [i]: size of relation Ri,
4 F [i, j]: selectivity between relations Ri and Rj

5 � output: an optimal recursively decomposable subchain

6 // tables used:
6 // A[i, j, k]: optimal subchain for extent (k, {i, . . . i+ j − 1})
6 // T [i, j, k]: size of subchain A[i, j, k]
6 // C[i, j, k]: cost of subchain A[i, j, k]
6 // k codes a neighborhood of {i, . . . i+ j − 1} as follows:
6 // (k&1) = 1⇔ neighborhood contains {i− 1}
6 // (k&2) = 1⇔ neighborhood contains {i+ j}
6 for 1 ≤ i < n− 1, 0 ≤ k < 4 do
6 nb = ∅; // decode neighborhood
6 if (k&1) and (i > 0) then nb ← nb ∪ {i− 1};
6 if (k&2) and (i + j < n− 1) then nb ← nb ∪ {i+ j};
8 A[i, i, k]← (i);
9 T [i, i, k]← N [i] ∗∏j∈nb F [j, i];
10 C[i, i, k]← T [i, i, k];
11 od;
12 for 2 ≤ j ≤ n, 0 ≤ i ≤ n− j do
12 if i > 0 then w1 ← 1
12 else w1 ← 0;
12 if i+ j < n− 1 then w2 ← 1
12 else w2 ← 0;
12 for k1 ← 0 to w1 do
12 for k2 ← 0 to w2 do
12 l ← k1 + 2 ∗ k2 ; // coded neighborhood
14 left0 ← i;
15 right1 ← i+ j − 1;
15 T [left0 , r ight1, l]← nil ;
17 for k ← 1 to l − j do
18 left1 ← i+ k − 1;
19 right0 ← i+ k;
20 l1 ← l & 1;
21 l2 ← (l & 2) | 1;
22 l3 ← l & 2;
23 l4 ← (l & 1) | 2;
24 newchain1 ← append(A[left0 , left1 , l1 ], A[r ight0, right1 , l2 ]);
25 newchain2 ← append(A[right0 , right1 , l3], A[left0 , left1 , l4]);
26 if T [left0 , r ight1, l] = nil then
27 T [left0 , right1 , l]← T [left0 , left1 , l1 ] ∗ T [right0 , r ight1, l2 ];
28 fi;
29 cost1 ← C[left0 , left1, l1 ] + T [left0 , left1 , l1] ∗ C[right0 , right1 , l2 ];
30 cost2 ← C[right0 , right1 , l3 ] + T [right0 , right1 , l3] ∗ C[left0 , left1 , l4 ];
31 if cost1 < C[left0 , r ight1, l] then
32 A[left0 , right1 , l]← newchain1;



3.1. CHAIN QUERIES WITH JOINS AND CROSS PRODUCTS 51

33 C[left0 , right1 , l]← cost1;
34 fi;
35 if cost2 < C[left0 , r ight1, l] then
36 A[left0 , right1 , l]← newchain2;
37 C[left0 , right1 , l]← cost2;
39 od;
39 od;
40 od;
41 return A[0, n− 1, 0];
42 end

1 procedure contr-subchains(ch);
2 � input: a subchain ch
3 � output: a list of contradictory subchains (with neighborhood)
4 corresponding to the normalization of ch
5 . . .
6 end

1 procedure join(cc − list);
2 � input: a list of disjoint contradictory subchains (with neighborhood)
3 � output: the corresponding subchain (a flat list)
4 . . .
5 end

1 procedure sort-by-rank(chains);
2 � input: a list of subchains; subchains are represented by tuples (p, c)
3 where c is a subsequence and p a suitable neighborhood to c
4 � output: the input list chains sorted by non-descending local ranks
5 (the local rank of a subchain (p, c) is rankp(c))
6 . . .
7 end

1 procedure optimize(F,N, n);
2 � input: n: number of relations in the chain,
3 N [i]: size of relation Ri, 0 ≤ i < n
4 F [i, j]: selectivity between relations Ri and Rj ,0 ≤ i, j < n
5 � output: a permutation of 0, 1, . . . , n− 1 representing the order of relations
6 in an optimal left-deep processing tree for the join query R0 ./ · · · ./ Rn−1
7 in the case where cross products are allowed.
8 return join(sort-by-local-ranks(contr-subchains(optimal-rec-decomp-chains(F,N, n))));
9 end

Complexity: Let us briefly analyze the worst case time complexity of the second algorithm.
The first step requires time O(n4) whereas the second step requires time O(n2). The third step
has complexity O(n log n). Hence the total complexity is O(n4).

Algorithm II’ is based on the cost function C′. We can now modify the algorithm for the original
cost function C as follows.
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Algorithm II:

1 Compute all optimal recursively decomposable chains by dynamic programming
(corresponds to step 1 of Algorithm II’)

2 For each starting relation Ri do the following steps:

2.1 Let L1 be the result of applying the steps 2 and 3 of Algorithm II’ to all
optimal recursively decomposable subchains whose extent (N,M) satisfies
Ri ∈ N and M ⊆ {R1, . . . , Ri}.

2.2 Let L2 be the result of applying the steps 2 and 3 of Algorithm II’ to all
optimal recursively decomposable subchains whose extent (N,M) satisfies
Ri N and M ⊆ {Ri, . . . , Rn}.

2.3 Let L be the result of merging L1 and L2 according to their ranks

2.4 De-normalize L

2.5 Use RiL to update the current-best join ordering

Complexity: The complexity of step 1 is O(n4) whereas the complexity of step 2 amounts to∑n
i=1(O(i

2) +O(n− i)2 +O(n)) = O(n3). Hence, the time complexity of Algorithm II is O(n4).

Algorithm II is identical to Algorithm I except that it calls the function optimize() from
Algorithm II’.

3.1.4 A Connection Between the Two Algorithms

In this section we investigate how the two algorithms are related. So far we know that the first
algorithm is correct but may have exponential time complexity in the worst case. On the other side
we know that the second algorithm has polynomial worst case complexity but we can not prove its
correctness. Although the two algorithms have similarities it is not clear whether they yield the
same results. In the following we prove that if the first algorithm does without backtracking (or
if backtracking is not necessary since an optimal solution is unique) the second algorithm is correct.

First we introduce two operations which are useful in the transformation of decomposition
trees. We call these operations plucking and grafting. Plucking removes a subtree from a tree
while grafting inserts a new subtree.

Definition 3.1.10 (plucking/grafting) Let T ′ be subtree of a decomposition tree T and Tl and
Tr be the left and right subtrees of T ′, respectively. Then, plucking Tr is the transformation
which replaces T ′ by Tl . The transformation which replaces Tl by a new node with Tl as its left
descendant and T ′l as its right descendant is called grafting T ′l above Tl from the right. Similarly,
replacing Tl by a new node with T ′l as its left descendant and Tl as its right descendant is called
grafting T ′l above Tl from the left.

We shall use these two operations as a single operation transforming one decomposition tree into
another decomposition tree: A subtree T1 is plucked and grafted above another subtree T2. Note
that this transformation maintains recursive decomposability if there is a connection between T1
and T2 (see Figure 3.4).

The next lemma states that the sequences of maximal contradictory subchains in an optimal
recursive decomposition of a chain are rank-sorted with respect to the decomposition into left and
right subchains.
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Figure 3.4: Plucking subtree T1 and grafting it above subtree T2 from the
left maintains recursive decomposability. Dashed lines indicate connections
between subchains.

Lemma 3.1.26 Let s be an optimal recursively decomposable chain with respect to a given prefix
u. Let c1 . . . ck be a decomposition of s into maximal contradictory subchains (as produced by
normalize), and let T be a decomposition tree of s whose left-to-right sequence of leaf labels is
c1, . . . , ck. Let (u, s) be the label of an arbitrary node v in T , and let (ul, sl), (ur, sr) be the labels
of the left and right sons of v, respectively. Then

rankul(sl) ≤ ranku(s) ≤ rankur (sr).

Proof Assume that the contrary is true and there exists a subtree T ′ of the decomposition tree
T such that the following holds. Without loss of generality, we assume that T = T ′. Let (u, s)
be the label in the root of T ′ and let (ul, sl), (ur, sr) be the label in the root of the left and right
subtrees of T , respectively. Let sl = c1 . . . cj and sr = cj+1 . . . ck for some i, j (1 ≤ i ≤ k). Finally,
assume that rankul(sl) > rankur (sr) holds.

Due to Lemma 3.1.16 we have

min
1≤i≤j

rankulc1...ci−1(ci) > max
j<i≤k

rankurcj+1...ci−1(ci). (3.5)

Let ce1 be connected to cf2 for some e1, f2 with 1 ≤ e1 ≤ j, j + 1 ≤ f2 ≤ k. Apart from the
connection between ce1 and cf2 , ce1 may have a second connection to the right and cf2 may have a
second connection to the left. Let us consider maximal “chains of connections” in either direction.
Let T1 be the smallest subtree of T that contains ce1 and a maximal chain of connections to
the right. Similarly, let T2 be the smallest subtree of T that contains cf2 and a maximal length
chain of connections to the left. Let x := ce1 . . . ce2 (e1 ≤ e2) be the subchain corresponding
to T1 and y := cf1 . . . cf2 (f1 ≤ f2) the subchain corresponding to T2. Using the abbreviations
xl = c1 . . . ce1−1, xr = ce2+1 . . . cj , yl = cj+1 . . . cf1−1 and yr = cf2+1 . . . ck, we have

s = xlxxrylyyr.

We distinguish two cases.
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1. Case xryl 6= ε. Without loss of generality, assume that xr 6= ε (the case yl 6= ε is analogous).
Due to Lemma 3.1.16 and inequality (3.5), we have

rankulyly(xr) > rankur (ylyyr).

Note that xr is not connected to ylyyr. By Lemma 3.1.10 we can interchange the two
subchains yielding the cheaper chain

s′ = ulxlxylyyrxr

s′ can also be obtained by the following transformations of the decomposition tree. First,
the subtree T2 is plucked, and then T2 is grafted above Tx from the right, where Tx denotes
the subtree corresponding to the subchain x. Since x and ylyyr are connected, the chain
obtained by this transformation is decomposable too. This is a contradiction to the fact that
s is optimal among all recursively decomposable chains.

2. Case xryl = ε. We distinguish three subcases.

(a) Case e1 = e2 and f1 = f2, i.e. cj is connected to cj+1. By inequality (3.5),

rankc1...cj−1(cj) > rankc1...cj (cj+1).

Furthermore, since s is optimal recursively decomposable, we know that

Cc1...cj−1(cjcj+1) ≤ Cc1...cj−1(cj+1cj),

hence (cj , cj+1) would build a contradictory pair of subchains, a contradiction to the
maximality of cj and cj+1.

(b) Case e1 < e2, i.e. ce1 is connected to y. Denote ce1 with x′ and ce1+1 . . . ce2 with x′′,
i.e. x = x′x′′. By Lemma 3.1.16 and inequality (3.5),

rankulc1...ce1 (x
′′) ≥ min

e1<i≤e2
rankulc1...ci−1(ci)

≥ min
1≤i≤j

rankulc1...ci−1(ci)

> max
j<i≤k

rankurcj+1...ci−1(ci)

≥ rankur (sr).

By Lemma 3.1.10 we can obtain a chain with lower costs by interchanging x′′ and sr
(note that x′′ is not connected to sr). An equivalent transformation of the decomposition
tree is to pluck Tr , and then graft Tr above the subtree corresponding to x

′ from the
right. Since x′ is connected to sr the resulting sequence of relations is recursively
decomposable too. This is a contradiction to the optimal recursive decomposability of
s.

(c) Case f1 < f2. This case is symmetric to case 2b and can be treated in a similar way
(interchange y′ with x, where y′ := ce1 . . . cf2−1).

All cases lead to a contradiction. Consequently, our assumption was wrong and rankul(sl) ≤
rankur (sr). The claim now follows by Lemma 3.1.15. 2

The following two lemmata show why contradictory subchains in an optimal recursively decom-
posable chain can be sorted by rank without violating the precedences imposed by the neighbor-
hoods. The next lemma essentially states that the ordering of two contradictory subchains that
are connected agrees with their relative order in the chain.

Lemma 3.1.27 Let s be an optimal recursively decomposable chain and u an accompanying prefix.
Suppose the normalization of s yields the contradictory subchains c1 . . . ck. Then, for all 1 ≤ i <
j ≤ k:

ci is connected to cj ⇒ rankc1...ci−1(ci) ≤ rankc1...cj−1(cj)
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Proof Let T be a decomposition tree for s. Consider an arbitrary pair ci, cj (1 ≤ i < j ≤ k)
of interconnected maximal contradictory subchains in s. Apart from the connection to cj , ci may
have a second connection to contradictory subchains to the right of ci. Let us consider a maximal
length sequence of such connections to the right until there is the first connection to the left. Let
T1 be the smallest subtree of T that contains ci and a maximal length sequence of connections
to the right. Similarly, cj may have a sequence of connections to the left. Let T2 be the smallest
subtree of T that contains cj and a maximal sequence of connections to the left. Let x = cix

′ and
y = y′cj be the subchains corresponding to the subtrees T1 and T2, respectively. Note that there
is a connection between T1 and T2 in T . Denote the subchains left and right of x with xl and xr,
respectively. The subchains left and right of y are denoted with yl and yr, respectively. Hence,
we have

s = xlxxrylyyr

Since there is an optimal recursive decomposition that splits x into the left subchain ci and the
right subchain x′, Lemma 3.1.15 yields

rankulxl(ci) ≤ rankulxl(x) (3.6)

By an analogous argumentation

rankulxlxxryl(y) ≤ rankulxlxxryly′(cj). (3.7)

Now, we distinguish two cases.

1. Case xryl = ε. Let T3 be a new decomposition tree with T1 as its left subtree and T2 as its
right subtree. Then T3 represents an optimal recursive decomposition of the subchain xy
(otherwise s would not be optimal recursively decomposable). Hence, by Lemma 3.1.15,

rankulxl(x) ≤ rankulx(y)

and due to inequalities (3.6) and (3.7),

rankulxl(ci) ≤ rankulxl(x)

≤ rankulx(y)

≤ rankulxx′(cj)

2. Now, consider the case xryl 6= ε. We assume that

rankulxl(ci) > rankulxlxxryly′(cj) (3.8)

and derive a contradiction. We distinguish two subcases.

(a) Case rankulxl(x) > rankulxlx(xryl). Since x is not connected to xryl we can apply
Lemma 3.1.10 and interchange the subchains in order to lower the costs. The resulting
chain

xlxrylxyyr

is recursively decomposable too, since it corresponds to the following transformations
of the decomposition tree. T2 is plucked and grafted above T1 from the left. Note the
connection between T1 and T2.

(b) Case

rankulxl(x) ≤ rankulxlx(xryl) (3.9)
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By the inequalities (3.6), (3.7) and (3.8),

rankulxlci(x
′) ≥ rankulxl(x)

≥ rankulxl(ci)

> rankulxlxxryly′(cj)

≥ rankulxlxxryl(y)

and due to inequality (3.9),

rankulxlx(xryl) ≥ rankulxl(x)

> rankulxlxxryl(y)

Note that xryl is not connected to y. By Lemma 3.1.10 we can interchange the two
subchains yielding the cheaper chain

s′ = xlxyxrylyr,

a contradiction to the optimal recursive decomposability of s. Hence our assumption
(3.8) was wrong and

rankulxl(ci) ≤ rankulxlxxryly′(cj).

Note that s′ is recursively decomposable, since there exists a corresponding transforma-
tion of the decomposition tree that maintains the recursive decomposability. The
transformation is to pluck T1, and graft T1 above T2 from the right.

In both cases we derived a chain s′ which is recursively decomposable and cheaper than s.
This is a contradiction to the optimal recursive decomposability of s. Hence our assumption
(3.8) was wrong.

2

Lemma 3.1.28 The maximal contradictory subchains in an optimal recursively decomposable
chain s can be sorted according to their ranks without changing the relative order of two connected
contradictory subchains. Moreover, the resulting chain s′ cannot have larger costs than s.

Proof The proof is by induction on the number of pairs of contradictory subchains [c1]u1 , [c2]u2
such that c1 is not connected to c2, c1 precedes c2, and ranku1(c1) > ranku2(c2). We shall call
such pairs inversions.
In the base case, there are no inversions and for every pair of adjacent contradictory subchains the
following holds. If the two subchains are connected, then by Lemma 3.1.27 they are rank-sorted.
If the two subchains are not connected, they must be rank-sorted (otherwise they would represent
an inversion).
Now, assume that the claim is true for all optimal recursively decomposable chains with n − 1
inversions, for some n > 0. Consider an arbitrary recursively decomposable chain s with n
inversions. Since s is not rank-sorted, there exist two adjacent maximal contradictory subchains
c1c2 that are not rank-sorted. Note that c1 cannot be connected to c2, hence c1, c2 represents an
inversion in s. Interchanging c1 with c2 decreases the number of inversions by one and does not
increase the costs (Lemma 3.1.10). We can now apply the induction hypothesis to the resulting
chain and the claim follows. 2

The following theorem shows a connection between the number of solutions produced by the
first algorithm and the correctness of the second algorithm.

Theorem 3.1.2 The second Algorithm is correct if the first Algorithm always yields exactly one
decomposition into contradictory subchains.



3.1. CHAIN QUERIES WITH JOINS AND CROSS PRODUCTS 57

Proof Suppose that the first algorithm computes only one decomposition X . Since the first
algorithm is correct, X must be the unique optimum. Now we have to show that the second
algorithm computes X too. Let Y be the decomposition computed by the second algorithm and
assume that Y is different from X . According to Lemma 3.1.28 we know that Y consists of
a sequence of rank-sorted, optimal recursively decomposable maximal contradictory subchains.
This is a contradiction, since Y would also have been enumerated by the first algorithm. Hence
our assumption was wrong and X = Y . 2

We conjecture that the other direction of Theorem 3.1.2 holds too: 6

Conjecture 3.1.2 Assuming that there is a unique optimal plan, the first Algorithm yields exactly
one decomposition into contradictory subchains if the second Algorithm is correct.

If conjecture 3.1.2 is true, both algorithms produce optimal left-deep processing trees in
polynomial time. Nevertheless, since we could not prove our conjecture, we have to consider both
the first algorithm (without backtracking) and the second algorithm merely as good heuristic
algorithms.

Due to the lack of hard facts, we ran about 700,000 experiments with random queries of sizes
up to 30 relations and fewer experiments for random queries with up to 300 relations to compare
the results of our algorithms. For n ≤ 15 we additionally compared the results with a standard
dynamic programming algorithm [SAC+79]. The results of all our experiments can be summarized
as follows.

• All algorithms yielded identical results.

• Backtracking always led to exactly one sequence of contradictory chains.

• In the overwhelming majority of cases the first algorithm proved to be faster than the second
algorithm.

Whereas the run time of the second algorithm is mainly determined by the number of relations
in the query, the run time of the first algorithm also heavily depends on the number of existing
optimal contradictory subchains. In the worst case, the first algorithm is slightly inferior to the
second algorithm.

6In [SM97] this conjecture was formulated as a theorem. Shortly after publication we discovered an error in the
proof of the theorem.
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3.2 Acyclic Queries with Joins and Selections

The section is dedicated to the optimization of selection-join-queries with expensive predicates.
The generally accepted optimization heuristics of pushing selections down does not yield optimal
plans in the presence of expensive predicates. Therefore, several researchers have proposed
algorithms to compute optimal processing trees with expensive predicates. All these algorithms
have exponential run time. For a special case, we propose a polynomial algorithm which—in one
integrated step—computes the optimal join order and places expensive predicates optimally within
the processing tree. The special case is characterized by the following statements. Only left-deep
trees without cross products are considered. Expensive selections can only be placed on the path
from the leftmost leaf to the root of the tree. Cheap selections are pushed before-hand, and the
cost function has to exhibit the ASI property [IK84].

3.2.1 Preliminaries

A query is represented by a set of query predicates P , where each p ∈ P is either a selection
predicate pi referring to a single relation Ri or a join predicate pi,j connecting relations Ri and
Rj .

Let R1, . . . , Rn be the relations involved in the query. Associated with each relation is its size
ni = |Ri|. The predicates in the query induce a join graph G whose edges consist of all pairs
{Ri, Rj} for which there exists a predicate pi,j relating Ri and Rj . We assume that the join graph
is acyclic. The selectivity of a join predicate pi,j ∈ P is denoted with fi,j, and the selectivity of
a selection predicate pi ∈ P is denoted with fi. The evaluation of a join or selection predicate
can be of different costs. We denote by ci,j the costs of evaluating predicate pi,j for one tuple of
Ri ×Rj . Similarly, ci denotes the per-tuple-costs associated with the selection predicate pi.

In the following we consider only left-deep processing trees. Every left-deep processing tree
can be represented by an algebraic expression of the form

(. . . ((R1 ψ1)ψ2) . . . ψm),

where the unary operators ψi (i = 1 . . . n) are either selections σpi or joins 1pi,j Rj . R1 is called
the starting relation.

There are different implementations of the join operator, each leading to different cost functions
for the join and hence to different cost functions for the whole processing tree. Common implemen-
tations of a binary join operator are (cf. [Gra93, ME92, Ull89])

• nested loop join

• hash loop join

• sort merge join

The corresponding cost functions [KBZ86] are

Cnl(R 1 S) = |R| · |S|+ |R| · |S| · fRS
Chl(R 1 S) = 1.2 · |R|+ |R| · |S| · fRS
Csm(R 1 S) = (|R| · log |R|+ |S| · log |S|) + |R| · |S| · fRS

Here we made the important assumption that our database is memory resident, i.e. there is no
paging to disk during execution of a query. The first summand in the cost functions accounts for
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the costs of iterating over the relations and for checking the join predicate. The second sum which
is identical for all cost functions, accounts for the costs to construct the intermediate results. The
factor 1.2 stands for the average length of the collision list of the hash table.
In order to approximate the costs of n-way joins, we associate with each of the cost functions
Cnl, Chl, Csm operating on join-expressions a corresponding binary cost function g working on
input sizes:

gnl(r, s) = r · s+ r · s · fRS
ghl(r, s) = 1.2 · r + r · s · fRS
gsm(r, s) = (r · log r + s · log s) + r · s · fRS

Since the sizes of the intermediate results play an important role in all cost functions, it is
a central problem to determine these sizes. Under the usual assumptions of independent and
uniformly distributed attribute values, the following standard approximation holds [Ull89]:

|R1 1 . . . 1 Rk| ≈
k∏
i=1

|Ri|
∏
j<i

fij

Hence we can write

C(Rπ(1) 1 . . . 1 Rπ(n)) =

n∑
k=2

gk(|Rπ(2) 1 . . . 1 Rπ(k)|, |Rπ(k)|)

=

n∑
k=2

gk(

k∏
i=1

|Rπ(i)|
∏
j<i

fπ(i)π(j), |Rπ(k)|)

where gk is one of the functions Cnl, Chl depending on the join algorithm used. Since Cnl and Chl

are both linear in the first argument, we can ”extract” the linear factor and define the unary cost
function g as

gnl(s) = s+ s · fRS
ghl(s) = 1.2 + s · fRS

Henceforth we will use the unary function g. Now, we have

C(Rπ(1) 1 . . . 1 Rπ(n)) =

n∑
k=2

|Rπ(2) 1 . . . 1 Rπ(k)| gk(|Rπ(k)|)

Please note that C covers almost all cost functions for joins as pointed out in [KBZ86] and it even
covers the nontrivial cost function given in [IK84]. However, it does not account for expensive join
predicates. These will be taken care of in the next section.

Next, we repeat some fundamental results concerning the optimization of cost functions with
ASI-property and the IK-algorithm of Ibaraki and Kameda [IK84]. Ibaraki and Kameda were
the first to recognize and successfully exploit a connection between a certain class of sequencing
problems with ASI cost functions [MS79] and the traditional join ordering problem for left-deep
trees without cross products.

As mentioned earlier, every left-deep tree corresponds to a permutation indicating the order
in which the base relations are joined with the intermediate result relation. We will henceforth
speak of permutations or sequences instead of left-deep processing trees.
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We have just seen that all cost functions in the standard cost model for left-deep trees have
the form

Cost(s) =

n∑
i=2

|s1 . . . si−1| ∗ gi(|si|)

=

n∑
i=2

(

i−1∏
j=1

fj ∗ |sj |) ∗ gi(|si|) (3.10)

where the function gi accounts for the join algorithm used in the respective step. As can easily be
verified, there is a recursive definition of these cost functions:

C(ε) = 0

C(Rj) = 0 if Rj is the starting relation

C(Rj) = gj(|Rj |) else

C(s1s2) = C(s1) + T (s1) ∗ C(s2)

with

T (ε) = 1

T (s) =
n∏
i=1

fisi

Here, s1, s2 and s denote sequences of relations.

We now define the ASI property7 [MS79] of a cost function.

Definition 3.2.1 (ASI property)
A cost function C has the ASI property, if there exists a rank function r(s) for sequences s, such
that for all sequences a and b and all non-empty sequences u and v the following holds:

C(auvb) ≤ C(avub)⇔ r(u) ≤ r(v)

For a cost function of the above form, we have the following lemma:

Lemma 3.2.1 Let C be a cost function which can be written in the above form.
Then C has the ASI property for the rank function

r(s) =
T (s)− 1

C(s)

for non-empty sequences s.

Let us consider sequences with a fixed starting relation, say R1. Since we do not allow any
cross products in a processing tree, the second relation in a feasible join sequence is restricted
to relations which are adjacent to R in the join graph. Similar restrictions hold for all following
relations. These restrictions define a precedence relation on the set of all base relations. The graph
of the precedence relation is a directed version of the join tree with R1 being the root and all other
relations directed away from the root. This shows that we actually have a sequencing problem
with tree-like precedence constraints where the cost function satisfies the ASI-property.

7adjacent sequence interchange property



3.2. ACYCLIC QUERIES WITH JOINS AND SELECTIONS 61

For the unconstrained sequencing problem—that is, if we had no precedence constraints—sort-
ing the relations according to their rank leads to an optimal sequence!8 But if precedence con-
straints are present, they often make it impossible to sort the relations according to their ranks.
The next result provides a means to resolve the conflict of ordering according to the precedence
constraints and ordering according to the rank. A composite relation is defined as an ordered
pair (r, s) where r and s are either single or composite relations and the condition r(r) > r(s)
holds. Rank, cost and size of the composite relation are defined to be the respective values of the
sequence rs. The precedence relation generalizes to sequences of relations in a straightforward
way. In [MS79] it is shown that if for two composite sequences r and s, where r precedes s in the
precedence tree and r(r) > r(s), there is an optimal sequence with r immediately preceding s.
By iterating the process of tying pairs of composite relations together whose rank and precedence
stay in conflict, we eventually arrive at a sequence of composite relations which is sorted by rank.
This process of iterated tying is called normalization.

The reader can probably already anticipate the outlines of a recursive algorithm for solving the
join ordering problem with a given starting relation: one starts at the bottom of the directed join
tree and works upwards. To obtain the optimal sequence for a subtree of relations where all children
are chains one simply normalizes each of the chains and merges them according to the ranks. The
resulting sequence is again rank ordered and we replace the subtree by the corresponding chain
of composite relations. By considering every base relation as starting relation, computing the
optimal sequence for this starting relation and then choosing the cheapest of these sequences, we
can determine an optimal sequence for the join ordering problem.
This is basically the IK-algorithm described in [IK84]. In [Law78], Lawler gives an efficient
implementation of this algorithm that runs in time O(n logn), using a set representation instead
of the straightforward sequence representation. The following description of the IK-algorithm is
taken from [IK84].

8This is not true for the join ordering problem, where the analog problem would consider cross products.
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Algorithm NORMALIZE(S):

input: a chain of nodes S
output: chain of nodes

1 while there is a pair of adjacent nodes, S1 followed
by S2, in S such that r(S1) > r(S2) do

2 Find the first such pair (starting from the beginning of S) and
replace S1 and S2 by a new composite node (S1, S2).

Algorithm TREE-OPT(Q):

input: tree query Q with specified root R, the relations referenced in Q,
their sizes, and the predicates of Q together with their selectivity factors

output: optimal join ordering for Q with starting relation R

1 Construct the directed tree TR with root R.
2 If TR is a single chain, then stop. (The desired join ordering is given by the chain.)
3 Find a subtree whose left and right subtrees are both chains.
4 Apply NORMALIZE to each of the two chains.
5 Merge the two chains into one by ordering the nodes by increasing ranks,
and go to step 2.

Algorithm IK(Q):

input: tree query Q with specified root R, the relations referenced in Q,
their sizes, and the predicates of Q together with their selectivity factors

output: optimal join ordering for Q

1 Let S be some fixed initial ordering and C the costs of S
Let R1, . . . , Rn be the relations involved in the query.

2 for i← 1 to N do
3 Apply TREE-OPT to the directed join tree with root Ri

4 If the optimal join ordering starting with Ri has better costs than C, then
update C and S

5 return S

A slightly more efficient version of this algorithm is the KBZ-algorithm of Krishnamurthy, Boral
and Zaniolo [KBZ86]. Their algorithm has a worst-case time complexity of O(n2). The idea is to
reuse the computed optimal sequence for a starting relation R to compute an optimal sequence for
a starting relation R′ being adjacent to R in the join graph. This leads to a considerable reduction
of work. For details we refer to [KBZ86].

3.2.2 Ordering Expensive Selections and Joins

Let us extend the notion of a precedence tree to capture select-join queries. Suppose we are to
use a distinguished relation – say R1 – as the starting relation in the processing tree (the leftmost
leaf). Then, since no cross products are allowed, the join tree becomes a rooted tree with R1 as
the root. We can extend the directed tree to incorporate all the selection operators as follows. For
every selection operator ψi = σpi relating to a single relation Ri, we add a new successor node to
R and label it with ψi. The resulting tree defines a precedence relation among the operators ψi
and we call it the precedence tree of the query with respect to the starting relation R1. For an
example see the end of this section.
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For each operator ψi we define the cost factor di as

di =

{
ci if ψi ≡ σpi
g(|Ri|) ∗ cj,i if ψi ≡ 1pj,i Ri

for i > 1 and d1 = 0, where ci and cj,i denote the cost of evaluating pi and pj,i for one tuple,
respectively. j is the index of the unique predecessor of Ri in the precedence tree. The size factors
hi are defined as

hi =

{
fi if ψi ≡ σpi
|Ri| ∗ fj,i if ψi ≡ 1pj,i Ri

di accounts for the costs incurred by applying operator ψi to an intermediate result R whose
generation was in accordance with the precedence tree. Whenever ψi is applied to such an
intermediate result R, we expect R to grow by a factor of hi. We call a sequence feasible, if it
satisfies all ordering constraints implied by the present attributes in the predicates of the operators,
as expressed in the precedence tree. In the following we identify permutations and sequences.

For a sequence s we define the costs9

Cost(s) = |R1|
n∑
i=2

F s
i−1ds(i) = |R1|

n∑
i=2

i−1∏
j=2

hs(j)ds(i),

where s(i) is the i-th element of the operator sequence s and the intermediate result size F is
given by

F s
i =

i∏
j=2

hs(j)

Then, we have to solve the following optimization problem

minimizes [Cost(s)],

where the minimization is taken over all feasible sequences s.
Since R1 just contributes a constant factor, it can easily be dropped from Cost(s) without changing
the optimization problem.

Our goal is to apply the IK and KBZ algorithms. Hence, we have to find a rank function for
which the cost function satisfies the ASI property. We do so by first recasting the cost function
into a more appropriate form. For

F (s) =
∏
k∈s

hk

we define the binary function C as

C(j, ε) = C(ε, j) = cj for j ∈ {1, . . . , n}

and

C(s, t) = C(s′, s′′) + F (s)C(t′, t′′) for sequences s, t

where s = s′s′′ and t = t′t′′ with |s| > 1⇒ |s′| ≥ 1 ∧ |s′′| ≥ 1, and |t| > 1⇒ |t′| ≥ 1∧ |t′′| ≥ 1.

9Empty sums equal 0, empty products 1.
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A simple induction shows that C is consistent, that is, s1s2 = s′1s′2 implies C(s1, s2) = C(s′1, s′2).
With the binary C being consistent, the unary C defined as

C(j) = cj for j ∈ {1, . . . , n}
C(st) = C(s, t) for sequences s, t with |s| ≥ 1 ∧ |t| ≥ 1

is well-defined. Another simple proof by induction shows that the functions Cost and the unary
C are equal for all feasible s. Summarizing, the following three lemmata hold.

Lemma 3.2.2 The binary cost function C is consistent.

Lemma 3.2.3 The unary cost function C is well-defined.

Lemma 3.2.4 The unary cost function C and the cost function Cost are the same.

Now, we come to the central lemma, which will allow us to apply the IK- and the KBZ-
algorithms to our problem of optimally ordering expensive selections and joins with expensive
predicates simultaneously.

Lemma 3.2.5 C satisfies the ASI property [MS79] with

r(s) =
F (s)− 1

C(s)

being the rank of a sequence s.

Proof: We have to proof that

C(ustv) ≤ C(utsv)⇔ r(s) ≤ r(t)

for all sequences u and v. Since

C(ustv) = C(us) + F (us)C(tv)

= C(u) + F (u)C(s) + F (us)[C(t) + F (t)C(v)]

= C(u) + F (u)C(s) + F (us)C(t) + F (us)F (t)C(v)

the following holds

C(ustv)− C(utsv) = F (u)[C(t)(F (s) − 1)− C(s)(F (t) − 1)]

= F (u)C(t)C(s)[r(s) − r(t)]

With this equation the ASI property follows for C. 2

Using the results summarized in section 3.2.1, we can apply the IK- or KBZ-algorithm. Both
guarantee to find an optimal solution in time O(n2 log(n)) and O(n2), respectively. Since we do
only consider strict left-deep trees, non-expensive selections will be placed after the corresponding
join in any case! To avoid this drawback, we push cheap selections down the query tree prior
to the invocation of the algorithm. Note that this preprocessing step changes the sizes of some
relations which must be respected.

Next, we illustrate how the IK-algorithm in case of our new rank definition works.
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Example: Consider the following select-join-query involving six relations:

σp2(σp3 (σp5(R1 1p1,2 R2 1p1,3 R3 1p2,4 R4 1p3,5 R5 1p5,6 R6)))

The are eight operators. Three of them are (expensive) selections and five are joins. The associated
selectivities, relation sizes and cost factors are specified in the three tables below.

n1 n2 n3 n4 n5 n6
50 60 30 10 40 20

f1,2 f1,3 f2,4 f3,5 f5,6 f2 f3 f6
0.6 0.7 0.05 0.3 0.2 0.5 0.6 0.4

c1,2 c1,3 c2,4 c3,5 c5,6 c2 c3 c6
6 5 2 7 4 10 4 3

The join graph is shown in Figure 1(a) and Figure 1(b) shows the directed join graph rooted
at the starting relation R1, i.e., the precedence graph.

(a) R4

R2

R1

R3

R5

R6

(b) 1

n = 50

n = 60 2

f = 0.6, c = 6

4

n = 10

f = 0.05, c = 2

7

f = 0.5, c = 10

3 n = 30

f = 0.7, c = 5

8

f = 0.6, c = 4

5 n = 40

f = 0.3, c = 7

9

f = 0.4, c = 3

6 n = 20

f = 0.2, c = 4

Figure 1: (a) join graph in the example query, (b) the associated precedence tree;
selectivities, relation sizes and cost factors are shown. Dashed arrows pointing to square
boxes indicate selections and solid arrows pointing to circular boxes correspond to joins.

Instead of considering every relation as a starting relation as the IK-algorithm does, we restrict
ourselves to the single starting relation R1. Since the nodes in the rooted tree uniquely correspond
to the operators in the query, we henceforth use them interchangeably. For this we use the following
coding scheme. Suppose the query has m selections and involves n base relations. Then, operator
ψi (1 < i ≤ n) corresponds to the join operation 1pj,i Ri where j is the unique predecessor node
in the precedence tree. For n < i ≤ n+m, operator ψi corresponds to the selection operator σpj
where j is the unique predecessor node of i in the precedence tree. Operator ψ1 represents an
exception, it corresponds to the starting relation R1. Nodes in the precedence tree are labeled with
the number of the corresponding operator, i.e. node i (1 ≤ i ≤ n +m) corresponds to operator
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ψi. E.g., in our example, node 5 corresponds to operator ψ5, which is the join 1p3,5 R5 whereas
node 7 corresponds to operator ψ7, which is the selection σp2 .

In this example, we assume that all joins are hash-loop joins. The IK-algorithm works bottom-
up. Let us first process the subtree with root 5. The sons of node 5 are the leaves 6 and 9 which
are trivially ordered by rank. Node 6 is a join operator and its rank is

r(ψ6) =
F (ψ6)− 1

C(ψ6)

=
f5,6n6 − 1

1.2 · c5,6
=

0.2 ∗ 20− 1

1.2 ∗ 4 = 0.625

Node 9 is a selection operator with rank

r(ψ9) =
F (ψ9)− 1

C(ψ9)

=
f5 − 1

c5

=
0.4− 1

3
= −0.20

Now we can merge the two nodes. Since r(ψ9) < r(ψ6), node 9 has to precede node 6 and we can
replace the subtree rooted at 5 with the chain 5-9-6. Next, we examine whether this chain is still
sorted by rank. The rank of node 5 is

r(ψ5) =
0.3 ∗ 40− 1

1.2 ∗ 7 = 1.31

This shows that the ranks of the nodes 5 and 9 contradict their precedence and we have to tie
these two nodes together as a composite node (5,9). The rank of the new node (5,9) is

r(ψ5 ψ9) =
F (ψ5 ψ9)− 1

C(ψ5 ψ9)

=
n5f3,5f5 − 1

1.2c3,5 + n5f3,5c5

=
40 ∗ 0.3 ∗ 0.4− 1

1.2 ∗ 7 + 40 ∗ 0.3 ∗ 3 = 0.086

For the rank of the selection node 8 we have

r(ψ8) =
0.6− 1

4
= 0.1

and the new rooted join tree is

1

2

4 7

3

8

r = 0.10

5 r = 0.086

9

6 r = 0.625

In the next step we merge node 8 and the chain consisting of the composite node (5,9) succeeded
by node 6. The corresponding join tree is
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1

2

4 7

3

5 r = 0.086

9

8 r = 0.1

6 r = 0.625

The rank of the join node 3 is

r(ψ3) =
30 ∗ 0.7− 1

1.2 ∗ 5 = 3.333

Since the nodes 3 and (5,9) have contradictory ranks, we build the new composite relation (3,5,9)
with rank

r(ψ3 ψ5 ψ9) =
n3f1,3n5f3,5f5 − 1

1.2 · c1,3 + n3f1,3 · 1.2 · c3,5 + n3f1,3n5f3,5c5

=
30 ∗ 0.7 ∗ 40 ∗ 0.3 ∗ 0.4− 1

1.2 ∗ 5 + 30 ∗ 0.7 ∗ 1.2 ∗ 7 + 30 ∗ 0.7 ∗ 40 ∗ 0.3 ∗ 3 = 0.106

The nodes (3,5,9) and 8 still have contradictory ranks and must be tied together again. The new
rank is

r(ψ3 ψ5 ψ9 ψ8) = 0.050

and the new join tree has the form

1

r = 4.86 2

r = −0.208 4 7

r = −0.05

3

5 r = 0.050

9

8

6 r = 0.625

After having linearized the right subtree of R1, we proceed with the left subtree. The ranks of
nodes 2,4 and 7 are

r(ψ2) = 4.86, r(ψ4) = −0.208, r(ψ7) = −0.05

We merge the subtree rooted at 2 and then normalize the resulting chain 2-4-7. The pair 2 and 4
has contradictory ranks, hence we build the composite node (2,4). Since the rank of (2,4) is 0.182,
which is still greater then the rank of the succeeding node 7, we add 7 to the end of (2,4). The
rank of the composite node (2,4,7) evaluates to 0.029 and the new precedence tree is
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1

2

r = 0.029 4

7

3

5 r = 0.050

9

8

6 r = 0.625

Finally, the left and right chains of R1 are merged, yielding

1

2

4 r = 0.029

7

3

5 r = 0.050

9

8

6 r = 0.625

As result, we have that the final sequence of operators

ψ1 ψ2 ψ4 ψ7 ψ3 ψ5 ψ9 ψ8 ψ6

which correspond to the following optimal left-deep precessing tree for the starting relation R1

1p5,6

σp3

σp5

1p3,5

1p1,3

σp2

1p2,4

1p1,2

R1 R2

R4

R3

R5

R6

Analogous computations are made for the precedence trees rooted at the relations R2, R3, R4, R5

and R6. The cheapest of all the n operator sequences is the result of the IK-algorithm.



Chapter 4

Generation of Optimal Bushy
Execution Plans

Since their introduction in [SAC+79], processing trees have traditionally been restricted to be left-
deep. Lately, the much larger search space of bushy trees was considered. The vast majority of
query optimization papers considers connected query graphs. For connected query graphs there is
no need to introduce cross products into the processing trees. Since cross products are considered
to be very expensive, for a given query only the processing trees not containing cross products
were considered. This heuristic was also introduced in [SAC+79] in order to restrict the search
space. Lately, it was shown that including bushy trees and cross products into the search space
yields non-neglectable performance gains over the restricted search space [OL90].

An interesting question that arises with bushy trees is the following. Is there a (sub-) problem
for which a polynomial algorithm generating optimal bushy trees exists? The result presented
is quite discouraging. In section 4.1, we prove that constructing optimal bushy trees for a set
of relations whose cross product has to be computed is NP-hard. This contrasts the left-deep
case where the optimal left-deep tree can easily be computed by sorting the relations on their
sizes. Moreover, since taking the cross product is a very special case in which all join selectivities
are set to one, constructing optimal bushy trees for any join problem—independent of the join
graph—is NP-hard. Thus, any hope of constructing optimal bushy trees in polynomial time has
to be abandoned for whatever join problem at hand.

Consequently, section 4.2 focuses on the development of new, particularly efficient dynamic
programming algorithms for the general problem of computing optimal bushy trees with cross
products for queries containing joins, cross products, and expensive selections.

4.1 The Complexity of Computing Optimal Bushy Process-

ing Trees

We assume that the cross product of n non-empty relations R1, . . . , Rn has to be computed. This
is done by applying a binary cross product operator× to the relations and intermediate results. An
expression that contains all relations exactly once can be depicted as a regular binary tree, where
the intermediate nodes correspond to applications of the cross product operator. For example,
consider four relations R1, . . . , R4. Then, the expression (R1 × R2) × (R3 × R4) corresponds to
the tree

69
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HH��
�@
R1 R2

�@
R3 R4

For each relation Ri, we denote its size by |Ri| = ni. As the cost function we count the number
of tuples within the intermediate results. Assuming the relations’ sizes n1 = 10, n2 = 20, n3 = 5
and n4 = 30, the cost of the above bushy tree would be 10 ∗ 20+5 ∗ 30+ (10 ∗ 20 ∗ 5 ∗ 30) = 30350.
Since the final result is always the same for all bushy trees—the product of all relation sizes—we
often neglect it.

First, we need the following lemma.

Lemma 4.1.1 Let R1, . . . , Rn be relations with their according sizes. If |Rn| >
∏

i=1,n−1 |Ri|,
then the optimal bushy tree is of the form X × Rn or Rn ×X where X is an optimal bushy tree
containing relations R1, . . . , Rn−1.

Proof The proof is by induction on n. The claim is trivially true for n = 2. Now, assume that
the claim holds for any number of relations smaller than n, for some n > 2.
Consider the tree T1 = X × Rn, where X denotes an optimal tree for the set of relations
R1, . . . , Rn−1. We assume that there exists an optimal tree T2 for R1, . . . , Rn, which is not of
the form X × Rn or Rn ×X , and derive a contradiction. Let T2 = Y × Z with optimal subtrees
Y and Z. Without loss of generality, assume that Rn occurs in Z. According to the induction
hypothesis, Z = W × Rn or Z = Rn ×W , where W denotes an optimal subtree for the relations
in Z without Rn. Assume that Z = W × Rn (the other case is analogous). Since X and Y ×W
contain the same relations and X is optimal, we have

cost(Y ×W ) = cost(Y ) + cost(W ) + |Y ||W |
≥ cost(X). (4.1)

Using |T1| = |T2|, |Rn| > |Y ||W | = |X |, |W | ≥ 1, |Rn| ≥ 1, and (4.1), we have

cost(T2) = cost(Y × (W ×Rn))

= cost(Y ) + cost(W ) + |Rn|+ |W ||Rn|+ |T2|
≥ cost(X)− |Y ||W |+ |Rn|+ |W ||Rn|+ |T1|
> cost(X) + |W ||Rn|+ |T1|
= cost(T1) + (|W | − 1)|Rn|
≥ cost(T1).

This contradicts the assumed optimality of T2, and the claim follows. 2

Definition 4.1.1 (cross product optimization, XR)
The problem of constructing minimal cost bushy trees for taking the cross product of n relations is
denoted by XR.

In order to prove that XR is NP-hard, we need another problem known to be NP-complete for
which we can give a polynomial time Turing reduction to XR. We have chosen to take the exact
cover with 3-sets (X3C ) as the problem of choice. The next definition recalls this problem which
is known to be NP-complete [GJ79].

Definition 4.1.2 (exact covering with 3-sets, X3C)
Let S be a set with |S| = 3q elements. Further let C be a collection of subsets of S containing
three elements each. The following decision problem is called X3C: Does there exist a subset C′ of
C such that every s ∈ S occurs exactly once in C ′?
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We are now prepared to prove our claim.

Theorem 4.1.1 The problem XR is NP-hard.

In order to understand the proof, it might be necessary to state the underlying idea explicitly.
An optimal bushy tree for a set of relations is as balanced as possible. That is, a bushy tree
(T1×T2)× (T3×T4) with subtrees Ti is optimal, if abs(|T1×T2|− |T3×T4|) is minimal and cannot
be reduced by exchanging relations from the left to the right subtree. This is not always true, since
a left-deep tree can be cheaper even if this criterion is not fulfilled. In order to see this, consider
the following counterexample. Let R1, . . . , R4 be four relations with sizes n1 = 2, n2 = 3, n3 = 4,
and n4 = 10. The optimal “real” bushy tree is (R1×R4)× (R2×R3) with cost 2 ∗ 10+3 ∗ 4 = 32.
Its top-level difference is 20− 12 = 8. But the left-deep tree ((R1 ×R2)×R3)×R4 has lower cost
2 ∗ 3 + 2 ∗ 3 ∗ 4 = 30 although it has a higher top-level difference 24 − 10 = 14. Considering our
lemma, it becomes clear that it is a good idea to add some big relations at the top to fix the shape
of an optimal tree. Further, these additional relations (named T and D in the following proof)
are needed to guarantee the existence of a fully balanced and optimal tree.

Proof We prove the claim by reducing X3C to XR. Let (S,C) with |S| = 3q be an instance of
X3C . Without loss of generality, we assume that |C| > q. Obviously, if |C| < q there exists no
solution. If |C| = q, the problem can be decided in polynomial time.

We start by coding X3C. First, we map every element of S to an odd prime. Let S =
{s1, . . . , s3q}, then si is mapped to the i-th odd prime. Note that we can apply a sieve method
to compute these primes in polynomial time. Subsequently, we identify si and pi.

Every element c = {si1 , si2 , si3} ∈ C is mapped to the product si1 ∗si2 ∗si3 . Again, we identify
c with its product.

Note that this coding allows to identify uniquely the si and c. Each c will now become a
relation R of size c. In addition, we need two further relations T and D. We denote their sizes by
T and D as well. This overloading can always be resolved by the context. The sizes T and D are
defined via some more numbers:

S :=
∏
s∈S

s

C :=
∏
c∈C

∏
c′∈c

c′

H := lcm (S, (C/S))

K := 2C2

T := (H/S)K

D := ((HS)/C)K

where lcm(x, y) denotes the least common multiple of the numbers x and y.

Without loss of generality, we assume that

C ≡ 0 (mod S).

If this is not the case, obviously no solution for X3C exists.

We will now show that
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Figure 4.1: The first case

there exists a solution for X3C if and only if the optimal solution has the form (A ×
T )× (B ×D) where A and B are subtrees and T and D are the special relations from
above. Further, |A| = S and |B| = (C/S) must hold.

Of course, the above must be seen with respect to possible interchanges of sibling subtrees which
does not result in any cost changes.

Clearly, if there is no solution for the X3C problem, no bushy tree with these properties exists.
Hence, it remains to prove that, if X3C has a solution, then the above bushy tree is optimal.

Within the following trees, we use the sizes of the intermediate nodes or relation sizes to denote
the corresponding subtrees and relations. To proof the remaining claim, we distinguish three cases.
Within the first case, we compare our (to be shown) optimal tree with two left-deep trees. Then,
we consider the case where both T and D occur in either the left or the right part of a bushy tree.
Last, we assume one part contains T and the other part contains D.

For the first case, the top tree of the figure 4.1 must be cheaper than the bottom left-deep tree.

As mentioned, the tree shows only the sizes of the missing subtrees. If some C′ ⊆ C is a
solution for X3C, then it must have a total size C ′ = S.

Note that we need not to consider any other left-deep trees except where T and D are
exchanged. This is due to the fact that the sizes of these relations exceed the C by far. (Compare
with the above lemma.)

The following is a sequence of inequalities which hold also if T and D are exchanged in the
bottom tree of figure 4.1. We have to proof that

ST + (C/S)D + cost(C′) + cost(C \ C′)
< Cmin(D,T ) + cost(C)

Obviously,

cost(C) ≥ C
and

cost(C ′) ≤ (C/2), cost(C \ C′) ≤ (C/2)
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Figure 4.2: The last case

Hence,

cost(C′) + cost(C \ C′) < cost(C)

Further,
2HK < C(H/S)K

⇐=
2 < (C/S)

and
2HK < C((HS)/C)K

⇐=
2 < S

also hold. This completes the first case.

In order to follow the inequalities, note that the cost of computing a bushy tree never exceeds
twice the size of its outcome if the relation sizes are greater than two, which is the case here.

If we assume T andD to be contained in either the right or the left subtree, we get the following
cost estimations:

ST + (C/S)D + cost(C ′) + cost(C \ C′) < TD
⇐=

2HK + C < ((HK)/C)HK
⇐=

2 + (C/HK) < (1/C)HK
⇐=

1 + (1/(HC)) < HC

Again, the last inequality is obvious. This completes the second case.

Now consider the last case, where T andD occur in different subtrees. It is shown in Figure 4.2.
It has to be proven that the upper processing tree is cheaper than the lower one.

Denote the size of the result of B by B and the size of the result of B′ by B′. Further, note
that B and B′ arise from S and (C/S) by exchanging relations within the latter two. This gives
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us

2HK + cost(C′) + cost(C \ C′)
< BT +B′D + cost(B) + cost(B′)

⇐=
2HK + cost(C ′) + cost(C \ C′)

< BT +B′D
⇐=

2HK + C

< bST + (1/b)D(C/S)

⇐=
2HK + C

< (b + (1/b))HK

where b is (B/S).

Since all relation sizes are odd primes, and we assume that the right tree is different from our
optimal tree, S and B must differ by at least 2. Hence, either b ≥ (S+2/S) or 0 < b ≤ (S/S+2).
Since the function f(x) = x + (1/x) has exactly one minimum at x = 1, and is monotonously
decreasing to the left of x = 1 and monotonously increasing to the right of x = 1, we have:

C < (((S + 2)/2) + (S/(S + 2))− 2)HK
⇐=

4C < (((S + 2)2 + S2 − 2S(S + 2))/(S(S + 2)))HK
⇐=

4C < ((S2 + 4S + 4 + S2 − 2S2 − 4S)/(S(S + 2)))HK
⇐=

4C < (4/(S(S + 2)))HK
⇐=

C < (2/(S(S + 2)))HC2

⇐=
1 < (2/(S(S + 2)))HC

The last inequality holds since H ≥ S and C ≥ S + 2. This completes the proof.

2

The next corollary follows immediately from the theorem.

Corollary 4.1.1 Constructing optimal bushy trees for a given join graph is —independent of its
form—NP-hard.

Whereas taking the cross product of vast amounts of relations is not the most serious practical
problem, joining a high number of relations is a problem in many applications. This corollary
unfortunately indicates that there is no hope of finding a polynomial algorithm to solve this
problem. A similar discouraging result exists for the problem of generating optimal left-deep trees
that possibly contain cross products for acyclic queries. Even if the height of the query graph (now
a tree) is restricted to 1, the problem is NP-hard. The only remaining niche where we might find
polynomial algorithms is when query graphs are restricted to chains. These have been considered
in the section 3.1.
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4.2 General Queries with Joins, Cross Products and Selec-
tions

In this section we focus on the development of new, particularly efficient dynamic programming
algorithms for the general problem of computing optimal bushy trees with cross products for
queries containing joins, cross products, and expensive selections. In section 4.2.1 we present
a dynamic programming algorithm for the basic execution space. Section 4.2.2 discusses some
problems to be solved in an efficient implementation of the algorithm. We discuss possibilities
for fast enumeration of subproblems, fast computation of cost functions, and for saving space.
In section 4.2.3 a dynamic programming algorithm for an enlarged execution space is presented.
The algorithm accounts for the possibility to split conjunctive predicates. Section 4.2.4 presents
a second dynamic programming algorithm for the enlarged execution space that makes use of
structural information form the join graph in order to speed up the computation. In section 4.2.5
we analyze the time and space complexities of the algorithm. Section 4.2.6 describes how our
algorithms can be enhanced to handle several join algorithms including sort merge join with a
correct handling of interesting orders, affine join cost functions and query hypergraphs. Section
4.2.7 shows the results of timing measurements. Variants of the dynamic programming scheme
are discussed in section 4.2.8.

4.2.1 A Dynamic Programming Algorithm for the Basic Execution Space

Let us denote the set of relations occurring in a bushy plan P by Rel(P ) and the set of relations
to which selections in P refer by Sel(P ). Let R denote a set of relations. We denote by Sel(R)
the set of all selections referring to some relation in R. Each subset V ⊆ R defines an induced
subquery which contains all the joins and selections that refer to relations in V only. A subplan P ′

of a plan P corresponds to a subtree of the expression tree associated with P . A (bi)partition of a
set S is a pair of non-empty disjoint subsets of S whose union is exactly S. For a partition S1, S2
of S we write S = S1 ] S2. S1 and S2 are the blocks of the partition. A partition is non-trivial if
neither S1 nor S2 is empty. By a k-set we simply mean a set with exactly k elements.

P (R,S) =

1 |×

P1(R1, S1) P2(R2, S2)

or

σ

P1(R1, S1)

Figure 4.3: Structure of an optimal plan

Consider an optimal plan P for an induced subquery involving the non-empty set of relations
Rel(P ) and the set of selections Sel(P ). Obviously, P has either the form P ≡ (P1 1 P2) for
subplans P1 and P2 of P , or the form P ≡ σi(P

′) for a subplan P ′ of P and a selection σi ∈
Sel(P ). The important fact is now that the subplans P1, P2 are necessarily optimal plans for the
relations Rel(P1), Rel(P2) and the selections Sel(P1), Sel(P2), where Rel(P1)]Rel(P2) = Rel(P ),
Sel(P1) = Sel(P ) ∩ Sel(R1), Sel(P2) = Sel(P ) ∩ Sel(R2). Similarly, P

′ is an optimal bushy
plan for the relations Rel(P ′) and the selections Sel(P ), where Rel(P ′) = Rel(P ), Sel(P ′) =
Sel(P ) − {σi}. Otherwise we could obtain a cheaper plan by replacing the suboptimal part by
an optimal one which would be a contradiction to the assumed optimality of P (note that our
cost function is decomposable and monotone). The property that optimal solutions of a problem
can be decomposed into a number of “smaller”, likewise optimal solutions of the same problem, is
known as Bellman’s optimality principle. This leads immediately to the following recurrence for
computing an optimal bushy plan1 for a set of relations R and a set of selections S.

1min() is the operation which yields a plan with minimal costs among the addressed set of plans. Convention:
min∅(. . . ) := λ where λ denotes some artificial plan with cost ∞.
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opt(R,S) =




min(min∅⊂R′⊂R(opt(R′, S ∩ Sel(R′)) 1 if ∅ ⊆ S ⊆ R,
opt(R \R′, S ∩ Sel(R \R′)))

minσi∈S(σi(opt(R,S \ {σi}))))
Ri if R = {Ri},

S = ∅

(4.2)

The join symbol 1 denotes a join with the conjunction of all join predicates that relate relations
in R′ to relations in R \ R′. Considering the join graph, the conjuncts of the join predicate
correspond to the predicates associated with the edges in the cut (R′, R \R′). If the cut is empty
the join is actually a cross product.
In our first algorithm we will treat such joins and selections with conjunctive predicates as single
operations with according accumulated costs. The option to split such predicates will be discussed
in section 4.2.3 where we present a second algorithm.

Now let us estimate the costs cp of evaluating such a conjunctive join or selection predicate
p = p1 ∧p2 ∧· · · ∧ pk, where p1, . . . , pk are basic predicates relating to the same relations. A naive
approach would be to test each of the predicates in some fixed order. This would raise the costs
cp = cp1 + · · ·+ cpk—independent of the testing order. But we can do better if we make use of the
predicate selectivities. If we test in the order given by a permutation π, the expected costs are

cp(π) =

k∑
i=1

i−1∏
j=1

spπ(j)cpπ(i) (4.3)

The problem of minimizing this cost function is equivalent to the least cost fault detection problem
[MS79]. Since cp(π) exhibits the so-called adjacent pairwise interchange (API) property [Smi56,
MS79], an optimal permutation is characterized by the condition

r(π(1)) ≤ r(π(2)) ≤ · · · ≤ r(π(k)) (4.4)

with the rank function r(i) := cpi/(1− spi).
The costs cp of evaluating the conjunctive predicate p are now defined by equation (4.3), where
the permutation π is determined by condition (4.4).

Based on recurrence (4.2), there is an obvious recursive algorithm to solve our problem but
this solution would be very inefficient since many subproblems are solved more than once. A
much more efficient way to solve this recurrence is by means of a table and is known under the
name of dynamic programming2 [Min86, CLR90]. Instead of solving subproblems recursively, we
solve them one after the other in some appropriate order and store their solutions in a table. The
overall time complexity then becomes (typically) a function of the number of distinct subproblems
rather than of the larger number of recursive calls. Obviously, the subproblems have to be solved
in the right order so that whenever the solution to a subproblem is needed it is already available
in the table. A straightforward solution is the following. We enumerate all subsets of relations
by increasing size, and for each subset R we then enumerate all subsets S of the set of selections
occurring in R by increasing size. For each such pair (R,S) we evaluate the recurrence (4.2) and
store the solution associated with (R,S).

For the algorithm in Figure 4.4 we assume a given select-join-query involving n relations
R = {R1, . . . , Rn} and m ≤ n selections S = {σ1, . . . , σm}. In the following, we identify selections
and relations to which they refer. Let P be the set of all join predicates pi,j relating two relations
Ri and Rj . By RS we denote the set {Ri ∈ R | ∃σj ∈ S : σj refers to Ri} which consists of all
relations in R to which some selection in S relates. For all U ⊆ R and V ⊆ U ∩ RS , at the end
of the algorithm T [U, V ] stores an optimal bushy plan for the subquery (U, V ).

2the name derives from the fact that the method has its origins in the optimization of dynamic systems (systems
that evolve over time) [Min86]
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Algorithm Optimal-Bushy-Tree(R,P )

1 for k = 1 to n do
2 for all k-subsets Mk of R do
3 for l = 0 to min(k,m) do
4 for all l-subsets Pl of Mk ∩RS do
5 best cost so far =∞;
6 for all subsets L of Mk with 0 < |L| < k do
7 L′ =Mk \ L, V = Pl ∩ L, V ′ = Pl ∩ L′;
8 p =

∧{pi,j | pi,j ∈ P, Ri ∈ V, Rj ∈ V ′}; // p=true might hold
9 T = (T [L, V ] 1p T [L

′, V ′]);
10 if Cost(T) < best cost so far then
11 best cost so far = Cost(T);
12 T [Mk, Pl] = T ;
13 fi;
14 od;
15 for all R ∈ Pl do
16 T = σR(T [Mk, Pl \ {R}]);
17 if Cost(T) < best cost so far then
18 best cost so far = Cost(T);
19 T [Mk, Pl] = T ;
20 fi;
21 od;
22 od;
23 od;
24 od;
25 od;
26 return T [R,S];

Figure 4.4: Algorithm Optimal-Bushy-Tree(R,P)

Complexity of the algorithm: As the complexity yardstick we take the number of considered
partial plans which equals the number of times the innermost loops are executed. To count the
number of times the loops are executed we first have to determine the number of l-subsets Pl of
Mk∩RS . Recall thatMk has exactly k elements and RS has exactly m elements. Hence, from the(
n
k

)
subsets Mk of R, there are

(
m
l

)(
n−m
k−l

)
subsets Pl with |Pl ∩RS | = l (we can choose l relations

from RS and the remaining k− l relations from R \RS). Hence, the number of considered partial
plans is

n∑
k=1︸︷︷︸
line 1

min(k,m)∑
l=0

(
m

l

)(
n−m
k − l

)
︸ ︷︷ ︸

line 2,3

[ l∑
i=0

(
l

i

)]
︸ ︷︷ ︸

line 4

(2k − 2︸ ︷︷ ︸
line 6

+ l︸︷︷︸
line 15

)

= 1 +

n∑
k=0

min(k,m)∑
l=0

(
m

l

)(
n−m
k − l

)
2l[2k − 2 + l] due to (4.5)

= 1 +

m∑
l=0

n∑
k=l

(
m

l

)(
n−m
k − l

)
2l[2k − 2 + l] (4.8)
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= 1 +

m∑
l=0

(
m

l

)
2l

n−l∑
k=0

(
n−m
k

)
2k+l − 2

m∑
l=0

(
m

l

)
2l

n−l∑
k=0

(
n−m
k

)

+

m∑
l=0

(
m

l

)
l2l

n−l∑
k=0

(
n−m
k

)
(4.6)

= 1 +
m∑
l=0

(
m

l

)
4l

n−m∑
k=0

(
n−m
k

)
2k − 2

m∑
l=0

(
m

l

)
2l

n−m∑
k=0

(
n−m
k

)

+2m

m−1∑
l=0

(
m− 1

l

)
2l

n−m∑
k=0

(
n−m
k

)
(4.7), (4.9)

= 1 +

m∑
l=0

(
m

l

)
4l3n−m − 2

m∑
l=0

(
m

l

)
2l2n−m + 2m

m−1∑
l=0

(
m− 1

l

)
2l2n−m (4.5)

= 5m3n−m − 2 3m2n−m + 2m 3m−12n−m + 1

= 3n
(
5

3

)m

+ (2m/3− 2) · 2n
(
3

2

)m

+ 1

where we used the identities∑
k

(
n

k

)
xk = (x+ 1)n (binomial theorem—special case) (4.5)

n∑
k=l

ak =

n−l∑
k=0

ak+l (4.6)

l

(
m

l

)
= m

(
m− 1

l − 1

)
(4.7)

n∑
k=0

min(k,m)∑
l=0

ak,l =

m∑
l=0

n∑
k=l

ak,l (4.8)

and basic facts about finite sums (cf. [GKP89]). Furthermore, note that(
n

k

)
= 0 for k > n ≥ 0 (4.9)

Since the complexity derivations in the following sections are quite similar we will present them
with fewer intermediate steps and comments.

Let c := m/n be the ratio of selections to the total number of involved relations. Then, we can
express the number of partial plans as[

3

(
5

3

)c]n
+ (2cn/3− 2)

[
2

(
3

2

)c]n
+ 1

Assuming an asymptotic optimal implementation of the enumeration part of the algorithm (see
section 4.2.2), the amount of work per considered plan is constant and the asymptotic time
complexity of our algorithm is

O([3 (5/3)c]n + n[2 (3/2)c]n)

For the special casesm = 0 andm = n, this evaluates to O(3n+n2n) and O(5n+n3n), respectively.
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Next we determine the space complexity of our algorithm. The number of table entries used
by the algorithm to store the solutions of subproblems is exactly

n∑
k=1

min(k,m)∑
l=0

(
m

l

)(
n−m
k − l

)[ l∑
i=0

(
l

i

)]

= 1 +

m∑
l=0

n∑
k=l

(
m

l

)(
n−m
k − l

)
2l

= 1 +

m∑
l=0

(
m

l

)
2l

n−l∑
k=0

(
n−m
k

)

= 1 +

m∑
l=0

(
m

l

)
2l

n−m∑
k=0

(
n−m
k

)

= 1 +
m∑
l=0

(
m

l

)
2l2n−m

= 1 + 3m2n−m = 1 + 2n(3/2)m

For c = m/n we have

1 + [2(3/2)c]n

Note that this evaluates to 1+ 2n and 1+ 3n for the special cases m = 0 and m = n, respectively.

Unfortunately, coding a pair of subsets (R,P ), P ⊆ R ⊆ M by two separate bit vectors
r and p both ranging from 0 to 2|M| − 1 is not compact since it obviously uses space 2n · 2n.
Hence, the space complexity of the above algorithm would be O(4n) instead of O(2n−m3m). An
obvious improvement is to renumber the relations such that all relations to which a selection is
applied precede all relations to which no selections are applied. Hence, we can represent subsets of
selections by bit vectors i, 0 ≤ i < 2m. This reduces the space complexity to O(2n+m) which still
wastes considerable space. In section 4.2.2 we describe how to store the tables in a more compact
way.

4.2.2 An Efficient Implementation Using Bit Vectors

Fast Enumeration of Subproblems

The frame of our dynamic programming algorithm is the systematic enumeration of subproblems
consisting of three nested loops iterating over subsets of relations and predicates, respectively.

The first loop enumerates all non-empty subsets of the set of all relations in the query. It turns
out that enumerating all subsets strictly by increasing size seems not to be the most efficient way.
The whole point is that the order of enumeration only has to guarantee that for every enumerated
set S, all subsets of S have already been enumerated. One of such orderings, which is probably the
most suitable, is the following. We use the standard representation of n-sets, namely bit vectors
of length n. A subset of a set S is then characterized by a bit vector which is component-wise
smaller than the bit vector of S. This leads to the obvious ordering in which the bit vectors are
arranged according to their value as binary numbers. This simple and very effective enumeration
scheme (binary counting method) is successfully used in [VM96]. The major advantage is that we
can pass over to the next subset by merely incrementing an integer, which is an extremely fast
hardwired operation.
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Example
Enumeration of the subsets of {R0,
R1, R2, R3, R4} in subset order (binary
counting method).

11111 {R0, R1, R2, R3, R4}
00000 {}
00001 {R0}
00010 {R1}
00011 {R0, R1}
00100 {R2}
00101 {R0, R2}

...

11111 {R0, R1, R2, R3, R4}
2

The next problem is to enumerate subsets S of a fixed subset M of a set Q. If Q has n elements
then we can representM by a bit vectorm of length n. SinceM is a subset of Q some bit positions
of m may be zero. Vance and Maier propose in [VM96] a very efficient and elegant way to solve
this problem. In fact, they show that the following loop enumerates all bit vectors S being a
subset of M , where M ⊆ Q.

S ← 0; // S,M,Q bit vectors
repeat

. . .
S ←M & (S −M);

until S = 0

We assume two’s-complement arithmetic. Bit operations are denoted as in the language C. As an
important special case, we mention that

M & −M
yields the bit with the smallest index inM . Similarly, one can count downward using the operation
S ←M & (S − 1) instead of S ←M & (S −M).

Example
Enumeration of the subsets of {R1, R3}
⊆ {R0, R1, R2, R3, R4}.

01010 {R1, R3}
00000 {}
00010 {R1}
01000 {R3}
01010 {R1, R3}

2

Example
Iteration through the elements of the
set {R1, R3, R4}.

11010 {R1, R3, R4}
00010 {R1}
01000 {R3}
10000 {R4}

2

Combining the operations above, one can show that S =M & ((S | (M & (S−1)))−M) (initial
value S =M & −M) iterates through each bit in the bit vector M in order of increasing indices.
Nevertheless, the following method is both simpler and faster. R holds the bits that are still to
be enumerated. While R is not zero L is set to the lowest order non-zero bit in R. After L has
been used the lowest order bit is deleted from R and the loop starts again.

R← S;
while R 6= 0 do

L← R& −R;
. . .
R← R ∧ L;

od
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Efficient Computation of the Cost Function

Now, we discuss the efficient evaluation of the cost function within the nested loops. Obviously,
for a given plan we can compute the costs and the size in (typically) linear time but there is a even
more efficient way using the recurrences for these functions. If R′, R′′ and S′, S′′ are the partitions
of R and S, respectively, for which the recurrence (4.2) assumes a minimum, we have

Size(R,S) = Size(R′, S′) ∗ Size(R′′, S′′) ∗ Sel(R′, R′′),
where

Sel(R′, R′′) :=
∏

Ri∈R′,Rj∈R′′
fi,j

is the product of all selectivities between relations in R′ and R′′. Note that the last equation holds
for every partition R′, R′′ of R independent of the root operator in an optimal plan. Hence we
may choose a certain partition in order to simplify the computations. Now if R′ = U1 ] U2 and
R′′ = V1 ] V2, we have the following recurrence for Sel(R′, R′′)

Sel(U1 ] U2, V1 ] V2) = Sel(U1, V1) ∗ Sel(U1, V2) ∗ Sel(U2, V1) ∗ Sel(U2, V2)

Choosing U1 = α(R), U2 := ∅, V1 = α(R \ U1), and V2 := R \ U1 \ V2, where the function α is
given by α(A) := {Rk}, k = min{i |Ri ∈ A}
leads to

Sel(α(R), R \ α(R)) =
Sel(α(R), α(R \ α(R))) ∗ Sel(α(R), (R \ α(R)) \ α(R \ α(R))) =
Sel(α(R), α(R \ α(R))) ∗ Sel(α(R), (R \ α(R \ α(R))) \ α(R))

Defining the fan-selectivity Fan Sel(R) as Sel(α(R), R \ α(R)), gives the simpler recurrence
Fan Sel(R) = Sel(α(R), α(R \ α(R))) ∗ Fan Sel(R \ α(R))

= fi,j ∗ Fan Sel(R \ α(R \ α(R))) (4.10)

where we assumed α(R) = {Ri} and α(R \ α(R)) = {Rj}.

.
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.
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R_i1

R_i2

R_i3
f_i1,i2
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.

.
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R_ik

f_i2,i3

f_i1,i2

R_i1

R_i2

i1 < i2 < ... < iki1 < i2 < ... < ik

(B)(A)

Figure 4.5: Recurrences for computing fan-selectivity (A) and size (B)

As a consequence, we can compute Size(R,S) with the following recurrence

Size(R,S) = Size(α(R), S ∩ α(R)) ∗ Size(R \ α(R), (R \ α(R)) ∩ S) (4.11)

∗ Fan Sel(R)
We remind that the single relation in α(R) can be computed very efficiently via the operation
a& − a on the bit vector of R. Recurrences (4.10) and (4.11) are illustrated in Figure 4.5. The
encircled sets of relations denote the nested partitions along which the sizes and selectivities are
computed. Next we state a pseudocode version of our first algorithm.
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Program DP-OPT-A

1 Dynamically allocate array table with dimensions 2n by 2m

table[i][j] is a record with the following attributes:
cost: cost of an optimal plan with relations i and selections j
size: size of a plan with relations i and selections j
type: type of the root operator in an optimal plan (1,× or σ)
best: bit vector of relations in the left subplan (if type ∈ {’1,’×’})

or bit vector of a selection (if type =’σ’)

2 sels← (1� m)− 1;
3 for i← 0 to n− 1 do // initialize tables
4 a← 1� i;
5 table[a, 0].cost← 0.0;
6 table[a, 0].size← ni;
7 table[a, 0].fan sels← 1.0;
8 if (a& sels = a) then
9 table[a, a].fan sels← fi;

10 table[a, a].size← fi ∗ ni;
11 fi;
12 for j ← i+ 1 to n− 1 do
13 b← 1� j; c← a | b;
14 table[c, 0].fan sels← fi,j ;
15 if (a& sels = a) then
16 table[c, a].fan sels← fi,j ∗ fi;
17 fi;
18 if (b& sels = b) then
19 table[c, b].fan sels← fi,j ∗ fj ;
20 fi;
21 if (c& sels = c) then
22 table[c, c].fan sels← fi,j ∗ fi ∗ fj ;
23 fi;
24 od;
25 od;
26 for m← 1 to (1� n)− 1 do // enumerate subsets of relations
27 m1 ← m& sels;
28 s← 0;
29 repeat // enumerate subsets of selections
30 a1 ← m& −m; // relation with smallest index in m
31 b1 ← m ∧ a1; // all relations in m except relation with smallest index
32 c← b1& − b1; // relation with second smallest index in m
33 c1 ← a1 | c; // relations with two smallest indices in m
34 d← b1 ∧ c; // all relations in m except rel. with two smallest indices
35 d1 ← a1 | d; // all relations in m except rel. with second smallest index
36 d2 ← d1& s; // corresponding selections
37 // compute sizes
38 if b1 6= 0 then // is there more than one relation in m?
39 if d 6= 0 then // are there more than two relations in m?
40 table[m, s].fan sels← table[c1, c2].fan sels ∗ table[d1, d2].fan sels;
41 fi;
42 else
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43 table[m, s].size← table[a1, 0].size ∗ table[b1, 0].size ∗ table[m, s].fan sels;
44 fi;
45 // consider possible joins
46 l ← m& −m; // initial left block of partition
47 best cost so far ←∞;
48 while l < m do // enumerate partitions of relations
49 l′ ← m ∧ l; // the right block of partition
50 u← l& s; // selections in the left block
51 v ← l′& s; // selections in the right block
52 cost′ ← table[l, u].cost+ table[l′, v].cost; // cost of subtree
53 cost← cost′ + gjn(table[l, u].size, table[l

′, v].size, table[m, s].size); // join costs
54 if cost < best cost so far then // new plan cheaper?
55 best cost so far ← cost; // update best plan
56 table[m, s].best← l;
57 table[m, s].type← ’1’;
58 fi;
59 l← m& (l −m); // next subset
60 od;
61 u← s;
62 // consider possible selections
63 while u 6= 0 do // iterate through applicable selections
64 r ← u& − u;
65 v ← s ∧ r; // the remaining selections in s
66 cost← table[m, v].cost+ gs(table[m, v].size, table[m, s].size); // selection costs
67 if cost < best cost so far then // new plan cheaper?
68 best cost so far ← cost; // update best plan
69 table[m, s].best← r;
70 table[m, s].type← ’σ’;
71 fi;
72 u← u ∧ r; // next selection
73 od;
74 table[m, s].cost← best cost so far ; // store best plan
75 s← m1& (s−m1); // next subset of selections
76 until s = 0;
77 od // next subset of relations

Space Saving Measures

A problem is how to store the tables without wasting space. For example, suppose n = 10, m = 10
and let r and s denote the bit vectors corresponding to the sets R and S, respectively. If we use
r and s directly as indices of a two-dimensional array cost[ ][ ], about 90% of the entries in the
table will not be accessed by the algorithm. To avoid this immense waste of space we have to use
a contracted version of the second bit vector s.

Definition 4.2.1 (bit vector contraction)
Let r and s be two bit vectors consisting of the bits r0r1 . . . rn and s0s1 . . . sn, respectively. We
define the contraction of s with respect to r as follows:

contrr(s) =




ε if s = ε
contrr1...rn(s1 . . . sn) if s 6= ε and r0 = 0
s0 contrr1...rn(s1 . . . sn) if s 6= ε and r0 = 1
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Example
Let us contract the bit vector s = 0100010100
with respect to the bit vector r = 1110110100.
For each bit si of s, we examine the correspon-
ding bit ri in r. If ri = 0 we “delete” si in
s, otherwise we retain it. The result is the
contracted bit vector 010011.

s : 0100010100

r : 1110110100

010 01 1 −→ 010011

2

The following figure shows the structure of the two-dimensional ragged arrays. The first
dimension is of fixed size 2n, whereas the second dimension is of size 2k where k is the number of
common non-zero bits in the value of the first index i and the bit vector of all selections sels. The
number of entries in such a ragged array is

∑m
k=0

(
m
k

)
2k2n−m = [2(32 )

c]n. Note that this number
equals 2n for m = 0 and 3n for m = n. A simple array would require 4n entries. Figure 4.6 shows
the worst case where the number of selections equals the number of relations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rel:

sel:

0
1
2
3
4
5
6
7
8
9

10
11
12
13

15
14

Figure 4.6: Using ragged arrays to reduce storage space

The simplest way would be to contract the second index on the fly for each access of the array.
This would slow down the algorithm by a factor ofm. It would be much better if we could contract
all relevant values in the course of the other computations—therefore not changing the asymptotic
time complexity. Note that within our algorithm the first and second indices are enumerated
by increasing values which makes a contraction easy. We simply use pairs of indices i, ic, one
uncontracted index i and its contracted version ic and count up their values independently.

As mentioned before, in the two outermost loops bit vector contraction is easy due to the order
of enumeration of the bit vectors. Unfortunately, this does not work in the innermost loop where
we have to contract the result of a conjunction of two contracted bit vectors again. Such a “double
contraction” cannot be achieved by simple binary counting or a constant number of arithmetic
and bit operations. Hence, there are two possibilities: either we compute the contractions on the
fly or we tabulate the contraction function. The following code fragment computes a table for the
contraction function.

sels = (1� m)− 1;
for i← 0 to sels do

ci← sels ∧ i; // complement
j ← 0;
jc← 0; // contracted version of j
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repeat // j iterates through subsets of i
k ← 0;
repeat // k iterates through subsets of the complement of i

contr[s, j | k]← jc; // store contraction of j | k with respect to s
k ← ci& (k − ci); // next subset k

until k = 0;
j ← i& (j − i); // next subset j
jc← jc+ 1; // increment contracted bit vector

until j = 0;
od

Since the nested loops enumerate all subsets of selections i together with all the subsets of i,
tabulation requires O(

∑m
i=0

(
m
i

)
2i) = O(3m) additional time and O(2m ∗ 2m) = O(4m) additional

space. Now consider the option of contracting bit vectors on the fly. The following code computes
the contraction function.

Function contract(x, y) // contract bit vector x with respect to bit vector y
z ← 1;
res← 0;
while y 6= 0 do

if (y&1) 6= 0 then
if (x&1) 6= 0 then

res← res | z
fi;
z ← z � 1;

fi;
x← x� 1;
y ← y � 1;

od;
return res;

end

Contraction on the fly increases the time complexity by a factor of m and does not increase the
asymptotic space complexity. In the following we assume that bit vector contractions are computed
on the fly by a call to the function contract above.

The pseudocode of our first algorithm using bit vector contraction is shown below.

Program DP-OPT-B
1 Dynamically allocate ragged array table with dimensions

0 ≤ i < 2n by 0 ≤ j < 2ones(i& sels) where ones(k) denotes the number
of non-zero bits in the binary representation of k.
table[i][j] is a record with the following attributes:
cost: cost of optimal plan with relations i and selections j
size: size of a plan with relations i and selections j
type: type of the root operator in an optimal plan (1,× or σ)
best: bit vector of relations in the left subplan (if type ∈ {’1,’×’})

or bit vector of a selection (if type =’σ’)
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2 nn← (1� n)− 1;
3 sels← (1� m)− 1; // assumption: selections refer to the first m relations
4 // initialize tables:
5 for i← 1 to n− 1 do
6 // initialize tables for single relations
7 a← 1� i;
8 table[a, 0].cost← 0.0;
9 table[a, 0].size← ni;

10 table[a, 0].fan sels← 1.0;
11 if (a& sels = a) then
12 table[a, 1].fan sels← fi;
13 table[a, 1].size← fi ∗ ni;
14 fi;
15 for j ← i+ 1 to n− 1 do
16 // initialize tables for pairs of relations
17 b← 1� j;
18 c← a | b;
19 table[c, 0].fan sels← fi,j ;
20 if (a& sels = a) then
21 table[c, 1].fan sels← fi,j ∗ fi;
22 fi;
23 if (b& sels = b) then
24 table[c, 2].fan sels← fi,j ∗ fj;
25 fi;
26 if (c& sels = c) then
27 table[c, 3].fan sels← fi,j ∗ fi ∗ fj;
28 fi;
29 od;
30 od;
31 // enumerate subproblems:
32 for m← 1 to nn do // enumerate subsets of relations
33 m1 ← m& sels; // applicable selections
34 s← 0;
35 sc← 0; // contracted version of s
36 repeat // enumerate subsets of applicable selections
37 a1 ← m& −m; // relation with smallest index in m
38 b1 ← m ∧ a1; // all relations in m except relation with smallest index
39 c← b1& − b1; // relation with second smallest index in m
40 c1 ← a1 | c; // relations with two smallest indices in m
41 cc2 ← sc&3; // contraction of bit vector c1& s
42 d← b1 ∧ c; // all rel. in m except rel. with two smallest indices
43 d1 ← a1 | d; // all rel. in m except rel. with second smallest index
44 dc2 ← ((sc� 2)� 1) | (sc&1); // contraction of bit vector d1& s
45 if b1 6= 0 then // is there more than one relation in m?
46 if d 6= 0 then // are there more than two relations in m?
47 table[m, sc].fan sels← table[c1, cc2].fan sels ∗ table[d1, dc2].fan sels;
48 fi;
49 table[m, sc].size← table[a1, 0].size ∗ table[b1, 0].size ∗ table[m, sc].fan sels;
50 fi;
51 // consider possible joins:
52 l ← a1; // initial left block of the partition

53 ll← contr(s, s); // note: contr(s, s) = 2ones(s) − 1
54 best cost so far ←∞;
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55 while l < m do // enumerate partitions of relations
56 l′ ← m ∧ l; // right block of the partition
57 uc← contract(l& sels, l& s); // contract bit vectors u and v
58 vc← ll ∧ uc;
59 cost′ ← table[l, uc].cost+ table[l′, vc].cost; // cost of subtree
60 cost← cost′ + gjn(table[l, uc].size, table[l

′, vc].size, table[m, sc].size); // join costs
61 if cost < best cost so far then // new plan cheaper?
62 best cost so far ← cost; // update best plan
63 table[m, sc].best← l;
64 table[m, sc].type← ’1’;
65 fi;
66 l← m& (l −m); // proceed to next subset
67 od;
68 // consider possible selections:
69 u← s;
70 uc← sc;
71 while u 6= 0 do // iterate through applicable selections
72 r ← u& − u; // current selection
73 rc← uc& − uc; //contracted bit vector
74 v ← s ∧ r; // the remaining selections in s
75 vc← sc ∧ rc; //contracted bit vector
76 cost← table[m, vc].cost+ gs(table[m, vc].size, table[m, sc].size); // sel. costs
77 if cost < best cost so far then // new plan cheaper?
78 best cost so far ← cost; // update best plan
79 table[m, sc].best← r;
80 table[m, sc].type← ’σ’;
81 fi;
82 u← u ∧ r; // next selection
83 uc← uc ∧ rc; // next selection in the contracted bit vector
84 od;
85 table[m, sc].cost← best cost so far ; // store best plan
86 s← m1& (s−m1); // next subset of relations
87 sc← sc+ 1; // contracted bit vector is sc+ 1
88 until s = 0;
89 od

The functions gsl, gcp, gjn describe the operator costs for selections, cross products and joins,
respectively (cf. section 3.2.1). If there exist different implementations of an operator that do not
influence the costs of subsequent operators we can just enumerate all these operators in a loop,
compute the respective costs and update the best plan.

Computation of Cost functions

Suppose the cost function of a join is symmetric, i.e. Cost(A 1 B) = Cost(B 1 A). This
induces a symmetry over plans. Let us call two bushy trees that can be transfered into each
other by interchanging the order of the subtrees of internal nodes order-isomorphic. Since order-
isomorphic plans obviously have equal costs we can restrict ourselves to the search space of non-
order-isomorphic plans if the join cost functions are symmetric. To achieve this3, we change line

3although the enumeration orders are slightly different, both modifications have the effect of skipping order-
isomorphics trees
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6 of the algorithm in Figure 4.4 to:

6 for all subsets L of Mk with 0 < |l| ≤ bk/2c do
In Algorithm A we insert the new line

50′ l ← m& (l−m);

after line 50. This modification cuts down the number of considered joins by a factor of 2.

Although realistic join cost functions are typically asymmetric it is nevertheless sufficient to
consider the space of non-isomorphic plans since any asymmetric operator op and operator cost
function cop can be replaced by a pair of operators opl, opr (“twin operators”) and operator cost
functions cl, cr. For a join operator there usually exist several physical join operators corresponding
to different join implementations. We replace each of the logical or physical operators with
asymmetric cost function by a corresponding pair of twin operators. This approach is particularly
useful if a direct comparison of twin cost functions can be done more efficient than two evaluations
of the original cost functions. For example, suppose the cost function for a hash join 1hash is

ch(r, s) = c1 ∗ r + c2 ∗ r ∗ s ∗ f
with constants ci and join selectivity f . This corresponds to the twin operators 1hash−left and
1hash−right with the respective cost functions

costhl(r, s) = c1 ∗ r + c2 ∗ r ∗ s ∗ f
costhr(r, s) = c3 ∗ s+ c2 ∗ r ∗ s ∗ f.

Note that chl(r, s) < chr(r, s) if and only if r < s. Hence, if r < s the plan corresponding to chr is
suboptimal and hence we need only to compute the costs chl(r, s).

Usually cost functions can be decomposed into a system of recurrences involving auxiliary
functions like (e.g.) the size of intermediate results. Whereas the cost function always depends on
the concrete subplans this is often not the case for the auxiliary functions. We call an auxiliary
function plan-invariant if the function does not depend on the concrete plan but only on the set
of predicates and relations involved. For example, the size function that computes the number of
tuples (number of blocks on disk) resulting from the execution of plan has this property. We can
compute the value of plan-invariant cost functions after the loop enumerating the subproblems,
i.e. in line 37 of Algorithm A.

Tuning Options

In this section we briefly sketch some possible modifications to “tune” our algorithms (see also
[VM96]). General guidelines to improve the performance of programs are described in [Ben82,
Ben00]. Note that the following tuning measures are heuristic rules which should improve the
performance in most (but not all) cases.

• It is common practice to group related variables in form of records. Nevertheless it may be
better to split tables of records and use different tables for each record element. The author
of [Van95] mentions that this appears to improve cache performance.

• Often there is a choice between on-the-fly computation and tabulation. Which method is
faster is usually machine dependent and should be tested. Tabulation is favored by large
available physical memory whereas on-the-fly computation is favored by fast processors.
Hence, if main memory falls short the choice is shifted from tabulation to on-the-fly computa-
tion, since array accesses may now cause page faults leading to expensive I/O operations. It
might be beneficial to implement both strategies and decide on which strategy to apply at
run-time.
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• Nested if-statements with simple conditions can often be more efficient than a single if-
statement with an intricate condition4. In particular it is beneficial to let an if-statement
with a complex condition C be preceded by an if-statement with a weaker and simpler
condition C ′ (i.e. C′ is implied by C). As for Algorithm A, consider the if-statement in
line 45 of the second algorithm. One can make the execution of the lines 43-49 dependent
of the condition that neither table[l, u].cost nor table[l′, v].cost surpasses best cost so far.5

A similar modification can be applied to the if-statement in line 57. Alternatively we could
make the execution of lines 44-49 dependent of the weaker condition that cost′ does not
surpass best cost so far.

• Due to the overhead in the implementation of loops it is sometimes slightly more efficient
to unwind a loop partially. In doing so, the author of [Van95] observes that successive
applications of the next-subset-operatorM & (S−M) causes cyclic patterns. By precomput-
ing the pattern, one cuts the number of next-subset computations by a factor of 4.

• Most of the time in the algorithm is spent for performing arithmetic computations. Hence,
it is certainly of advantage if we can drop these costs. One way to achieve this, is to sacrifice
accuracy in favor of performance by using fixed precision floating point arithmetic instead
of arbitrary precision rational arithmetic. The less the precision the better the performance
and the lower the constant in the space complexity. Note that if we use fixed precision
instead of arbitrary precision, our otherwise exact DP-algorithm is no longer guaranteed to
yield an optimal plan.
Although sufficient precision is important for reliable results it hardly makes sense to consider
extremely high costs. In [VM96], Vance and Maier introduced a fixed cost limit to avoid the
computation of plans with senseless high costs.

4.2.3 A First DP Algorithm for the Enlarged Execution Space

So far our algorithm does consider joins and selections over conjunctive predicates which may
occur in the course of the algorithm as indivisible operators of the plan. For example, consider
a query on three relations with three join predicates relating all the relations. Then, every join
operator in the root of a processing tree has a join predicate which is the conjunction of two
basic join predicates. In the presence of expensive predicates this may lead to suboptimal6 plans,
since there may be a cheaper plan which splits a conjunctive join predicate into a join with high
selectivity and low costs and a number of secondary selections with lower selectivities and higher
costs. Consequently, we do henceforth consider the larger search space of all queries formed by
joins and selections with basic predicates which are equivalent to our original query. The approach
is similar to our first approach but this time we have to take into account the basic predicates
involved in a partial solution. First, we replace all conjunctive selection and join predicates in
the original query by all its conjuncts. Note that this makes our query graph a multigraph. Let
p1, . . . , pm be the resulting set of basic predicates. We shall henceforth use bit vectors of length
m to represent sets of basic predicates. Let us now consider an optimal plan P which involves the
relations in R and the predicates in P . We denote the costs of such an optimal plan by C(R,P ).
Obviously, the root operator in P is either a cross product, a join with a basic predicate h1 or a
selection with a basic predicate h2. Hence, exactly one of the following four cases holds:

cross product: P ≡ P1 × P2, Rel(P ) = Rel(P1) ] Rel(P2), P red(P ) = Pred(P1) ] Pred(P2).
The join graphs induced by P1 and P2 are not connected with respect to the join graph
induced by P . Besides, the subplans P1 and P2 are optimal with respect to Rel(P1), P red(P1)
and Rel(P2), P red(P2), respectively.

4cf. section 4.2.1, evaluation order of conjunctive predicates
5we could also compare table[l, u].cost and table[l′, v].cost with min(best cost so far , cost bound) where

cost bound is an upper bound on the cost of an optimal plan determined with a fast greedy heuristic
6with respect to the larger search space defined next
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R1 R2

R3 R4

1p1,2∧p2,3∧p3,4
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σp1,2
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Figure 4.7: Splitting conjunctive predicates

join: P ≡ P1 1h1 P2, Rel(P ) = Rel(P1) ] Rel(P2), P red(P ) = Pred(P1) ] Pred(P2) ] {h1}.
The join graphs induced by P1 and P2 are connected by a bridge h1 in the join graph induced
by P . Furthermore, P1, P2 are optimal with respect to Rel(Pi) and Pred(Pi).

primary selection: P ≡ σh2(P1), Rel(P ) = Rel(P1), P red(P ) = Pred(P1) ] {h2} and P1 is
optimal with respect to the Rel(P1) and Pred(P1).

secondary selection: P ≡ σh1(P1), Rel(P ) = Rel(P1), P red(P ) = Pred(P1) ] {h1} and P1 is
optimal with respect to Rel(P1) and Pred(P1).

Again, it is not difficult to see that the optimality principle holds and one can give a recurrence
which determines an optimal plan Opt(R,P ) for the problem (R,P ) by iterating over all partitions
of R applying the corresponding cost function according to one of the above cases.

This leads to the following recurrence

Opt(R,P ) = min-cost-planR1,R2,P1,P2,h

0
BBBB@

{Opt(R1, P1)×Opt(R2, P2) | φ1 },
{Opt(R1, P1) 1h Opt(R2, P2)) | φ2 },
{σh(Opt(R,P \ {h})) | φ2 },
{σh(Opt(R,P \ {h})) | φ3 },
{σh(Opt(R,P \ {h})) | φ4 }

1
CCCCA

(4.12)

with the conditions

φ1: R = R1 ]R2 ∧ P1 = R1 ∩ P ∧ P2 = R2 ∩ P and the join graphs induced by
P1and P2 are not interconnected in the join graph induced by P .

φ2: R = R1 ]R2 ∧ P1 = R1 ∩ P ∧ P2 = R2 ∩ P and the induced join graphs of
P1 and P2 are interconnected by a bridge h in the induced join graph of P .

φ3: there exist subsets R1, R2, P1, P2 such that R = R1]R2∧P1 = R1∩P∧ P2 =
R2 ∩ P and in the induced join graph of P the join graphs induced by P1
and P2 are interconnected by at least two join predicates, one of them being
h.

φ4: h ∈ P is a primary selection.
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Since only atomic join and selection predicates are involved in the above recurrence the correspond-
ing recurrence for computing the costs of an optimal bushy tree is straightforward and we omit
it here. More interesting is the problem of how to enumerate the subsets R and P . In principle,
there are two “dual” approaches. We first enumerate all subsets of relations and for each subset
all possible subsets of predicates. Or we first enumerate all subsets of predicates and for each
subset all possible subsets of relations. We choose the following order. First we enumerate all
subsets of relations in increasing order with respect to their values as bit vectors. For each subset
of relations R, we enumerate all subsets of predicates P ′ of the maximal set of predicates of the
subgraph induced by R in increasing order. In the innermost loop we then enumerate all partitions
of R and update the current best optimal plan. One problem which still occurs is to efficiently
determine (i.e. by means of a few bit operations) the bit vector of all predicates in the subgraph
induced by a certain set of relations7. Now, we can inductively compute the bit vectors e1(r), e2(r)
of all predicates incident to at least one relation in r and the bit vector of all predicates incident
and odd number of times to relations in r by using the ’or’ and ’xor’ operations on bit vectors,
respectively. This is illustrated in Figure 4.8 and 4.9. First consider Figure 4.8. The two graphs
on the left side are subgraphs of the graph on the right side, i.e. the nodes of the right graph are
the union of the nodes in the two subgraphs on the left. “Thick” edges are edges incident to at
least one node of the (sub)graph. Let us denote the bit vector of the nodes of the subgraphs on
the left side with r1 and r2, respectively, consequently r = r1 | r2 is the bit vector of nodes in the
right graph. Denoting the bit vectors corresponding to sets of thick edges by e1(r), e1(r1), e1(r2),
respectively, we have the recurrence e1(r1 | r2) = e1(r1) | e1(r2).

Figure 4.9 is similar to 4.8 except that thick edges are now edges that are incident exactly an
odd number of times with a node from the graph. Now, e2(r), e2(r1), e2(r2) denote the bit vectors
corresponding to the set of thick edges and we have the recurrence e2(r1 | r2) = e2(r1) ∧ e2(r2).

From this we can directly compute the bit vectors of all predicates in the induced subgraph
which is the set of predicates incident an even and positive number of times to the relations in r,
i.e. e1(r) ∧ e2(r). Figure 4.10 shows the result of the above example graph. A detailed pseudocode
formulation of the algorithm is given below.

1 Program DP-OPT-C
2

3 ; n: number of relations
4 ; m: number of basic predicates
5 ; c: global array for optimal costs
6 ; c[r, p] contains opt. costs of the query involving
7 ; relations r and predicates p
8 ; s: global array for output sizes
9 ; s[r, p] contains size of query with relations r and predicates p
10 ; d: global array for predicates in the root of an optimal processing tree
11 ; d[r, p] finally contains opt. root predicate for the query with
12 ; relations r and predicates p
13 ; e: global array for optimal splittings
14 ; e[r, p] contains an optimal partition of r resulting from a join
15 ; with predicate d[r, p]
16 ; p: local array for storing information about induced join graphs

7In the dual approach we have to compute the set of relations rel[p] involved in a set of predicates p. which can
be computed in a similar way. The outermost loop then enumerates all subsets of predicates p and for each p the
second loop enumerates all supersets of rel[p].
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OR

Figure 4.8: Recursive computation of all edges incident to at least one node from a set of nodes

XOR

Figure 4.9: Recursive computation of all edges incident an odd number of times to nodes from a
set of nodes

Figure 4.10: Edges in a subgraph induced by a set of nodes
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17 ; p[r] contains the bit vector of all predicates in the join graph
18 ; induced by the relations r
19 ; p0, p1: local arrays; used to compute elements of p
20 ; sel(h): selectivity of basic predicate h
21 ; ch: cost-factor of basic predicate h
22 ; sels: bit vector for the set of all basic selection predicates
23

24 // initialization
25 for r ← 0 to n− 1 do
26 s← 1� r;
27 p0[s]← 0;
28 p1[s]← 0;
29 s[s, 0]← nr;
30 c[s, 0]← 0.0;
31 e[s, 0]← nil;
32 od;
33 for k ← 0 to m− 1 do
34 let r1, r2 be the relations to which
35 the basic predicate k refers to;
36 l ← 1� k;
37 r3 ← 1� r1;
38 r4 ← 1� r2;
39 p0[r3]← p0[r3] ∧ l;
40 p0[r4]← p0[r4] ∧ l;
41 p1[r3]← p1[r3] | l;
42 p1[r4]← p1[r4] | l;
43 od;
44 p0[0]← 0; p1[0]← 0;
45 // enumerate subproblems
46 for r ← 1 to 2n − 1 do // enumerate subsets of relations
47 r1 ← r& − r; // relation with smallest index
48 r2 ← r ∧ r1; // all rel. except for rel. with smallest index
49 p0[r]← p0[r1] ∧ p0[r2]; // recurrences to compute p0[r] and p1[r]
50 p1[r]← p1[r1] | p1[r2];
51 p[r]← p1[r] ∧ p0[r]; // all predicates in the subgraph induced by r
52 best cost so far←∞; // initialize current best plan
53 best pred so far← nil;
54 best split so far← nil;
55 k ← r1;
56 if k 6= r then
57 s[r, 0]← s[k, 0] ∗ s[r ∧ k, 0];
58 fi;
59 while k 6= 0 and k 6= r do // enumerate partitions of r
60 cost← c[k, 0] + c[r ∧ k, 0] + gcp(s[k, 0], s[r ∧ k, 0]); // cross product
61 if cost < best cost so far then // new plan is cheaper?
62 best cost so far← cost; // yes, update!
63 best pred so far←′ ×′;
64 best split so far← (k, 0, 0);
65 fi;
66 k ← r& (k − r); // next partition
67 od;
68 if (r& − r) 6= r then // r contains more than one relation?
69 c[r, 0]← best cost so far;
70 d[r, 0]← best pred so far;
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71 e[r, 0]← best split so far;
72 fi;
73 l ← p[r] & − p[r];
74 while l 6= 0 do // enumerate subsets of predicates
75 k ← l& − l; // predicate with smallest index in l
76 best cost so far←∞; // initialize current best plan
77 best pred so far← nil;
78 best split so far← nil;
79 s[r, l]← s[r, l ∧ k] ∗ sel[k];
80 k ← r& − r; // relation with smallest index in r
81 pd1 ← p[k] & l; // corresponding selection
82 pd2 ← p[r ∧ k] & l; // selections in r ∧ l
83 while k 6= 0 and k 6= r do // enumerate partitions of r
84 cut← l& (p[r] ∧ (p[k] | p[r ∧ k])); // cut w.r.t. partition (r, r ∧ k)
85 h← cut& − cut; //predicate with smallest index in cut
86 if h = 0 then // cut empty?
87 cost← c[k, pd1] + c[r ∧ k, pd2] + gcp(s[k, pd1], s[r ∧ k, pd2]); // cross prod.
88 if cost < best cost so far then
89 best cost so far← cost;
90 best pred so far← ’×’;
91 best split so far← (k, pd1, pd2)
92 fi;
93 else if h = cut then // a bridge?
94 cost← c[k, pd1] + c[r ∧ k, pd2] + gjn(s[k, pd1], s[r ∧ k, pd2], ccut);
95 if cost < best cost so far then
96 best cost so far← cost;
97 best pred so far← cut;
98 best split so far← (k, pd1, pd2)
99 fi;

100 cost← c[r, l ∧ h] + gsl(s[r, l ∧ h], ch);
101 if cost < best cost so far then
102 best cost so far← cost;
103 best pred so far← h;
104 best split so far← nil
105 fi;
106 else // cut contains at least two edges
107 while h 6= 0 do // consider each edge in turn
108 cost← c[r, l ∧ h] + gsl(s[r, l ∧ h], ch); // costs of second. join
109 if cost < best cost so far then // new plan cheaper?
110 best cost so far← cost; // update!
111 best pred so far← h;
112 best split so far← (k, pd1, pd2)
113 fi;
114 cut← cut ∧ h; // next predicate in cut
115 h← cut& − cut
116 od;
117 fi;
118 k ← r& (k − r); // next partition
119 pd1 ← p[k] & l; // update pd1, pd2
120 pd2 ← p[r ∧ k] & l;
121 od;
122 u← l& sels;
123 h← u& − u;
124 while h 6= 0 do // enumerate selections predicates
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125 cost← c[r, l ∧ h] + gsl(s[r, l ∧ h], cl); // selection cost
126 if cost < best cost so far then // new plan cheaper?
127 best cost so far← cost; // update!
128 best pred so far← h;
129 best split so far← nil;
130 fi;
131 u← u ∧ h; // next selection predicate
132 h← u& − u
133 od;
134 if (r& − r) 6= r and l 6= 0 then
135 c[r, l]← best cost so far; // store optimal plan in table
136 d[r, l]← best pred so far;
137 e[r, l]← best split so far;
138 fi;
139 l ← p[r] & (l − p[r]) // next subset of predicates
140 od // next subset of relations

The functions gsl, gcp, gjn describe the operator costs for selections, cross products and joins,
respectively (cf. section 3.2.1). The algorithm can easily be modified to account for different
implementations of operators (cf. end of section 4.2.2).

Complexity Issues

Let m be the number of different basic predicates (joins and selections) and n the number of base
relations. In order to analyze the asymptotic time and space complexities we reduce the algorithm
to its nested loops:

loop 1 for r ← 1 to 2n − 1 do
loop 2 for all l which are bitwise less or equal to p[r] do
loop 3 for all k which are bitwise less or equal to r do
loop 4 for all edges h in the cut induced by the partition (k, r − k) do

. . .
od

od
loop 5 for all non-zero bits h in l ∧ sels do

. . .
od

od
od

Recall that sels denotes the bit vector of all selection predicates.

Time Complexity
First we derive a crude upper bound on the number of considered partial plans. Surely, every
subgraph of the join (multi)graph G induced by k relations has no more than m edges and every
cut of G has no more than m edges. Hence we have the following upper bound on the number of
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which is O(m2m3n) for m > 0.

Note that this is a rather pessimistic upper bound which does not account for the structure
of the query graph G. Unfortunately, even for simple chain queries the complexity bounds are so
complex that we were not able to derive closed forms.

Space Complexity
We have the following coarse upper bound on the number of table entries used by the algorithm

n∑
k=1

(
n

k

) m∑
j=0

(
m

j

)
=

n∑
k=1

(
n

k

)
2m = 2m(2n − 1)

Space utilization It turns out that the new algorithm wastes space too. E.g. for the case of 4
relations and 8 predicates of which 2 are selection predicates, only about 10% of all table entries
are used to compute the optimal solution. Since induced subgraphs have fewer edges, one should
also use fewer bits to code their edge sets. More exactly, for every bit vector r representing a
subset of the set of nodes one should compress the bit vector l representing a subset of edges
in the corresponding induced subgraph with respect to p[r], the bit vector representing all edges
induced by the nodes in r. Furthermore, rows of the tables c[ ][ ], d[ ][ ] and e[ ][ ] are dynamically
allocated as soon as new values of p[r] are known. The dimension of the respective rows is 2β(r),
where β(r) denotes the number of non-zero bits in the bit vector r. Now, the same techniques can
be applied than for the non-splitting algorithm, although we shall not discuss them here, since
the amount of wasted space is far less than for the non-splitting algorithm and may be tolerated
in practice.
The tuning measures and short-cuts discussed in section 4.2.2 apply to the second algorithm too.
Hence, we will not discuss these issues again.

4.2.4 A Second DP Algorithm for the Enlarged Execution Space

So far we concentrated on fast enumeration without analyzing structural information about the
problem instance at hand. To give an example, suppose that the query graph is 2-connected. Then
every cut contains at least two edges; therefore, for the subproblem consisting of all relations and
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all predicates, the topmost operator in a processing tree can neither be a join nor a cross product.
Hence, the second algorithm iterates in vain over all 2n partitions of n relations.

We will now describe the approach in our third algorithm which uses information about the
structure of the join graph to avoid the enumeration of unnecessary subproblems. Suppose that
a query refers to the set of relations R and the set of predicates P . Let n = |R|, m = |P |, and
assume that s out of m predicates are selections. Now, consider an optimal processing tree T for a
subquery induced by the relations R′ and the predicates P ′ where R′ ⊆ R and P ′ ⊆ P . G(R′, P ′)
denotes the join graph induced by R and P . Obviously, the root operator in T is either

• a cross product or

• a join or

• a primary selection or

• a secondary selection.

Depending on the operation in the root of the processing tree, we can classify the join graph
G(R′, P ′) as follows. If the root operation is a cross product, then G(R′, P ′) decomposes into two
or more connected components. Otherwise, if it is a join with (basic) predicate h then G(R′, P ′)
contains a bridge h. If it is a secondary selection with (basic) predicate h then G(R′, P ′) contains
an edge h connecting two different relations. And, if it is a primary selection with predicate h
then G(R′, P ′) contains a loop h. Table 4.1 summarizes the different cases.

root operator: query graph:
a cross product a partition of the connected components
a join a bridge + a partition of the connected components
a primary selection a loop
a secondary selection an edge (no loops)

Table 4.1: Correspondence between operator types and graph structure

Example Consider the query graph on the right. The
connected components {R1}, {R2, R3, R5, R6, R7} and
{R4, R8} give raise to 23 − 2 = 6 cross products. p1 is
a loop that corresponds to a selection and the bridges
p2, p7 and p8 correspond to joins. Note that each
bridge leads to 6 joins—one for each combination of the
connected components. The other edges p3, p4, p5, p6
correspond to secondary selections. 2

R1 R2 R3 R4

R5 R6 R7 R8

p2

p3

p1

p4

p5

p6 p7 p8

To enumerate all possible cross products we build all non-trivial partitions of the set of
connected components of G′. All possible joins can be enumerated as follows. We iterate through
all bridges of G. For each bridge (join predicate) h we determine the connected component C′

containing h together with the two subcomponents of C′ connected by h. Then we enumerate
all partitions of C − C ′ and add the first subcomponent to the first block of the partition and
the second subcomponent to the second block of the partition (interchanging the role of the
two subcomponents gives raise to another join). All secondary selections can be enumerated
by iterating through all edges (skipping loops). By stepping through all loops in G(R′, P ′), we
enumerate all primary selections. In a sense we tackle subproblems in the reverse direction than
we did before. Instead of enumerating all partitions and analyzing the type of operation it admits
we consider possible types of operations and enumerate the respective subproblems.
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The pseudocode of our algorithm is:

1 Program DP-OPT-D
2 // n: number of relations
3 // p: number of predicate s
4 initialize tables cost[ ][ ] and plan[ ][ ];
5 for r ← 1 to 2n − 1 do
6 use a recurrence to compute p[r], the bit vector of all relations
7 in the subgraph of G(R,P ) induced by the relations in r.
8 for all l bitwise smaller or equal to p[r] do
9 best cost so far←∞;

10 best plan so far← nil;
11 perform a depth-first search to determine the following parameters:
13 k: number of components in G(r, l);
14 u: number of bridges in G(r, l);
15 b: bit vector of all bridges in G(r, l);
16 cp[i]: bit vector of all relations in i-th connected component of G(r, l);
17 lc[i]: bit vector of all relations in one of the components resulting from
18 the removal of the i-th bridge in G(r, l);
19 cn[i2]: number of the conn. component two which relation i belongs (i2 = 2i)
20 for each partition (r1, r2) of r with each of the k connected
21 components being completely in r1 or r2 do
22 let T1 be an optimal plan for G(r1, p[r1]);
23 let T2 be an optimal plan for G(r2, p[r2]);
24 consider the plan T ← T1 × T2;
25 update best cost so far, best plan so far;
26 od;
27 for i← 1 to u do
28 let h be the i-th bridge w.r.t the ordering in b;
29 let j be the index of the connected comp in G(r, l) to which h belongs
30 let T1 be an optimal plan for G(w[i], p[w[i]]);
31 let T2 be an optimal plan for G(c[h]− w[h], p[c[h]− w[h]]);
32 consider the plan T ← T1 1h T2;
33 update best cost so far, best plan so far;
34 od;
35 for each predicate h in l do
36 let T1 be an optimal plan for G(r, l − h);
37 consider the plan T ← σh(T1);
38 (including primary as well as secondary selections)
39 update best cost so far, best plan so far;
40 od;
41 cost[r, l]← best cost so far;
42 plan[r, l]← best plan so far;
43 od;
44 od
45 od;
46 return plan
47 end
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There is still the problem of identifying bridges along with their subcomponents. We shall
describe three possible solutions to this problem. In the first solution we perform a depth-first
search to determine each of the connected components of a subgraph. It turns out that it is
not necessary to compute all the components of a subgraph if we tabulate one specially chosen
component—the component that contains the relation with the smallest index. In the following we
call the relation with the smallest index the distinguished relation and the component that contains
the distinguished relation the distinguished (connected) component. It is possible to compute the
distinguished component without depth-first search by only making use of the previously computed
tables. Let G be the query graph induced by the relations R and predicates P and let us denote the
relations with the smallest and second smallest indices with R1 and R2, respectively. Furthermore,
let us denote the query graph induced by R′ = R − {R1} and R′′ = R − {R2} with G′ and G′′,
and the distinguished connected components of R′ and R′′ with C1 and C2, respectively. Now, if
there is an edge between R1 and R2 in G or if C1 and C2 overlap then C1 is connected to C2 in
G and C = C1 ∪ C2. Otherwise, C1 and C2 are disjoint and C = C1. The remaining components
can be looked up using the table of the previously computed components.
After we have computed the connected components of the subgraph we enumerate all partitions
of the connected components to build all possible cross products. Next we consider possible joins
and selections. We iterate through all predicates. If the predicate p is a primary selection we
compute the corresponding plan and update the current best plan. Otherwise, we start a depth-
first search on one of the relations incident with p to find out whether the predicate is a bridge. If
it is a bridge, we use the two subcomponents connected by the bridge to construct two plans. The
first two plans are joins 1p—with the two subplans interchanged in the second plan. Finally we
consider the case where p is a secondary selection σp. Note that bit vectors can be used to speed
up depth-first search.
In the second version we identify all the bridges in the induced subgraph directly. The problem of
identifying bridges is very similar to the problem of identifying articulation points—nodes whose
removal increases the number of connected components.8 Articulation points and bridges can be
computed by the following augmented version of depth-first search. We assume that the reader
is familiar with the depth-first search algorithm (as discussed in e.g. [CLR90]) and the related
notions of dfs-numbers, forward and back edges. In the course of depth-first search we maintain
two numbers for each visited node v: the dfs-number and the minimum dfs-number in a node
reachable from v in a sequence of forward edges followed by one back edge. Bridges (u, v) are
now identified by the condition dfs[u] < low[v]. Along with the bridge we also need to store one
of the two subcomponents connected by the bridge. Note that such a subcomponent is just the
set of visited nodes when we depth-first search encounters a bridge. Instead of computing all the
components and bridges with depth-first search we can alternatively compute the distinguished
connected component and look up the remaining components in the tables of previously computed
subproblems.
The third solution manages without depth-first search. The idea is to iterate through the edges
while modifying the graph such that the edge under consideration is always in the distinguished
connected component. This can be done by iterating through the edges component by component
in the order of increasing indices of distinguished relations while successively removing the connect-
ed components that have already been examined.
As the first step we compute the distinguished connected component by using a recurrence and look
up the remaining connected components. Then we iterate through the edges of the subgraph. We
do this by first iterating through the connected components in the order that has been determined
in the previous step and for each component C we iterate through all the edges in C. Then, for
each such edge e, we enumerate all partitions of relations such that the relations of no component
are split across the partition. This can be done efficiently by enumerating the subsets of the set
of connected components in gray code order. The transition from one partition to the next is just
an xor-operation with the bit vector of the connected component addressed by the change-bit in

8Articulation points occur in connection with biconnected components. A biconnected component is a maximal
set of nodes such that each pair of nodes lies on a simple circle [CLR90].
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the gray code. Within the innermost loop we first consider the case of a cross product between
the relations in the partition (only if neither of the blocks of the partition is empty) and update
the cost of the best plan so far. Then we consider the case of a join with predicate e. In order
to determine whether e is a bridge we look up the distinguished component C′ in the subgraph
with the edge e removed. If C is a true subset of the distinguished component in G, then we
know that e is a bridge and hence corresponds to a join predicate. In this case, C is one of the
subcomponents connected by the bridge e. We compute the cost of the join and update the cost
of the best plan so far. Otherwise, if C ′ equals C, e lies on a circle and therefore corresponds to
a secondary selection predicate. We compute the cost of the new plan and update the best plan
so far.
An implementation in C is given below9.

Algorithm DP-OPT-D:

// initialization

p0[0] = p1[0] = 0;

for (r = 0, r2 = 1; r < n, r++, r2 <<= 1) {

p0[r2] = p1[r2] = bit vector of edges incident to node r;

optPlan[r2][0].size = relation[r].size; // cardinality of relation r

optPlan[r2][0].cost = scanCost(size[r]);

optPlan[r2][0].pred = 0;

optPlan[r2][0].leftRel = 0;

optPlan[r2][0].leftPred = 0;

optPlan[r2][0].rightPred = 0;

}

for (r = 1; r < 1<<n; r++){ // enumerate all subsets of relations

r1 = r&-r; // relation with smallest index

r2 = r^r1;

p0[r] = p0[r1]^p0[r2]; // edges incident with an even number of relations in r

p1[r] = p1[r1]|p1[r2]; // edges incident with some relations in r

p2[r] = p0[r]^p1[r]; // edges induced by the relations r

l = p2[r]&-p2[r];

while (l) { // enumerate all subsets of edges

// use recurrence to compute optPlan[r][l].size

if (l) // any predicates in l?

optPlan[r][l].size = optPlan[r][l^(l-1)].size * predicate[l&-l].selectivity;

else if (r2) // two or more relations and no predicates?

optPlan[r][l].size = optPlan[r1][0].size * optPlan[r2][0].size;

// use recurrence to compute the distinguished connected component

if (r2) { // is there more than one relation in r?

r3 = r2&-r2; // relation with 2nd smallest index

r4 = r^r3;

comp1 = component[r4][l&p2[r4]]; // conn. components in subgraph without r3

comp2 = component[r2][l&p2[r2]]; // conn. components in subgraph without r1

if ((l&p2[r1|r3]&~sels) // is r1 connected to r2 or

|| (comp1&comp2)) { // do comp1 and comp2 overlap?

component[r][l] = comp1|comp2; // result is union of comp1 and comp2

} else // r1 is not connected to r2

component[r][l] = comp1; // result is comp1

} else

component[r][l] = r; // special case of one relation

newRel = r;

newPred = l;

9we use C++-style comments
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nc = 1;

// look up remaining connected components

// (components are ordered by increasing smallest indices)

while (newRel) { // still more connected components?

block[nc] = component[newRel][newPred];

newRel ^= block[nc]; // remove distinguished component

newPred &= p2[newRel]; // update new predicates

nc <<= 1;

}

// enumerate all partitions of connected components (using a gray code)

for(index = 0,

last = 0,

gray = 0, // gray code

delta = 0, // bit that changed

thePartition = 0; // relations in the left block of the partition

index < nc;

index++,

last = gray,

gray = index^(index>>1), // next gray code

delta = last^gray) {

thePartition |= block[delta];

leftRelations = thePartition;

rightRelations = r^leftRelations;

leftPredicates = l&p2[leftRelations];

rightPredicates = l&p2[rightPredicates];

// consider cross products

if (leftRelations && rightRelations) { // skip trivial partitions

dcost = cost[leftRelations][leftPredicates] +

cost[rightRelations][rightPredicates]; // cost of subtrees

cost = dcost1 + cpCost(size[leftRelations][leftPredicates],

size[rightRelations][rightPredicates]);

if (cost<bestPlan.cost) {

bestPlan.cost = cost; // update best plan

bestPlan.pred = 0;

bestPlan.leftRel = leftRelations;

bestPlan.leftPred = leftPredicates;

bestPlan.rightPred = rightPredicates;

}

}

// iterate through the connected components

for (i = 1,

newRel = r;

i < nc;

newRel = r^block[i], // delete relations of previous components

i <<= 1) {

blockPred = l&p2[block[i]]; // predicates in connected component i

currPred = blockPred&-blockPred;

while (currPred) { // iterate through predicates in blockPred

newPred = (l&p2[newRel])^currPred;

// compute distinguished component in subgraph (newRel,newPred)

if (i&gray) // is currPred in the left block of the partition?

subComp = component[newRel][newPred];

else

subComp = block[i]^component[newRel][newPred];

if (subComp&&(block[i]^subComp)) { // is currPred a join predicate?

leftRelations = thePartition|subComp;

leftPredicates = l&p2[leftRelations];

rightRelations = r^leftRelations;
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rightPredicates = l&p2[rightRelations];

dcost = cost[leftRelations][leftPredicates] // cost of subtrees

+ cost[rightRelations][rightPredicates];

cost = dcost + joinCost(size[leftRelations][leftPredicates],

size[rightRelations][rightPredicates],

size[r][l],pred[currPred].costfactor);

if (cost<bestPlan.cost) {

bestPlan.cost = cost; // update best plan

bestPlan.pred = currPred; // join predicate

bestPlan.leftRel = leftRelations;

bestPlan.leftPred = leftPredicates;

bestPlan.rightPred = rightPredicates;

}

}

else { // currPred is a selection

dcost = cost[r][l^currPred]; // cost of subtree

cost = dcost + selCost(size[r][l^currPred],

size[r][l],pred[currPred].costfactor);

if (cost<bestPlan.cost) {

bestPlan.cost = cost; // update best plan

bestPlan.pred = currPred; // selection predicate

bestPlan.leftRel = 0;

bestPlan.leftPred = 0;

bestPlan.rightPred = 0;

}

}

}

blockPred ^= currPred;

currPred = blockPred&-blockPred; // next predicate

}

}

optPlan[r][l].cost = bestPlan.cost; // store optimal plan

optPlan[r][l].pred = bestPlan.pred;

optPlan[r][l].leftRel = bestPlan.leftRel;

optPlan[r][l].leftPred = bestPlan.leftPred;

optPlan[r][l].rightPred = bestPlan.rightPred;

l = p2[r]&(l-p2[r]); // next subset of predicates

}

}

return optPlan;

An implementation of the second version (with ordinary depth-first search instead of augmented
dfs) can be found in the appendix A.

4.2.5 Analysis of Complexity

Let us now analyze the asymptotic time and space complexities of the new dynamic programming
algorithm. Our yardstick will be the number of considered partial plans and the number of table
entries to store optimal plans, respectively. Obviously, the number of connected components of
a subgraph induced by k relations and j edges is bounded by k and the number of bridges is



4.2. GENERAL QUERIES WITH JOINS, CROSS PRODUCTS AND SELECTIONS 103

bounded by k − 1. Hence, the number of considered partial plans is at most
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As to the asymptotic worst case time complexity, we additionally have to account for the depth-first
search in the innermost loop which can be done in time O(k + j). This leads to the complexity
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The number of table entries used by the algorithm is
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The above time and space complexities are generous upper bounds which do not account for the
structure of a query graph. We will next study the complexity of our algorithm for the important
special case of acyclic queries.

Acyclic join graphs without multiple edges

Consider an acyclic join graph G with n nodes, m = n − 1 edges (no loops and multiple edges)
and s loops (possibly some multiple loops) and let G′ be an induced join graph with k nodes and
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l edges and t loops. Since G′ obviously has m− l+ 1 = n− l connected components, the number
of induced subgraphs with k nodes, l edges and t loops is(
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Each of these subgraphs has

• n− l components and hence 2n−l−1 possibilities for cross products

• l bridges and hence l2n−l+1 possibilities for joins

• l+ s edges (including loops) and hence l + s possibilities for selections

This leads to the following upper bound on the number of considered partial plans
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And for the asymptotic time complexity we have
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4.2.6 Generalizations

Different Join Algorithms

In addition to the problem of optimal ordering expensive selections and joins the optimizer
eventually has to select a join algorithm for each of the join operators in the processing tree.
Let us call annotated processing trees those where a join method from a certain pool of join
implementations is assigned to each join operator. We now describe how our dynamic programming
algorithm can be generalized to determine optimal annotated bushy processing trees in one
integrated step.

The central point is that the application of a certain join method can change the physical
representation of an intermediate relation such that the join costs in subsequent steps may change.
For example, the application of a sort-merge join leaves a result which is sorted with respect to the
join attribute. Nested loop joins are order preserving, that is if the outer relation is sorted with
respect to an attribute A then the join result is also sorted with respect to A. A join or selection
may take advantage of the sorted attribute. In the following discussion we restrict ourselves to the
case where only nested-loop joins and sort-merge joins are available. Furthermore, we assume that
all join predicates in the query are equi-joins so that both join methods can be applied for every
join that occurs. This is not a restriction of the algorithm but makes the following discussion less
complex.

Consider an optimal bushy plan P for the relations in Rel(P ) and the selections in Sel(P ).
Again we can distinguish between a join operator representing the root of the plan tree and a
selection operator representing the root. In case of a join operator we further distinguish between
the join algorithms nested-loop (nl) and sort-merge (sm). Let Ca(R,S) be the costs of an optimal
subplan for the relations in R and selections in S, where the result is sorted with respect to the
attribute a (of some relation r ∈ R). C(R,S) is similarly defined, but the result is not necessarily
sorted with respect to any attribute. Now, the optimality principle holds and the cost function
satisfies the following recurrence:

C(R,S) = min

8<
:

min∅⊂R1⊂R (C(R1, S) + C(R \ R1, S) + gnl(S(R1, S),
S(R \ R1, S), S(R,S), cp))

minσ(Ri)∈S (C(R,S \ Ri) + gsl(S(R,S \ Ri), S(R,S), cp))
(4.13)

Ca|b(R,S) = min

8>>>><
>>>>:

min∅⊂R1⊂R(C(R1, S) + C(R \ R1, S) + gsm(S(R1, S), S(R \ R1, S), S(R,S), cp))

min∅⊂R1⊂R(Ca(R1, S) + C(R \ R1, S) + g1sm(S(R1, S), S(R \ R1, S), S(R,S), cp))

min∅⊂R1⊂R(C(R1, S) + Cb(R \ R1, S) + g2sm(S(R1, S), S(R \ R1, S), S(R,S), cp))

min∅⊂R1⊂R(Ca(R1, S) + Cb(R \ R1, S) + g1,2sm(S(R1, S), S(R \ R1, S), S(R,S), cp))

minσRi∈S(C(R,S \ Ri) + g1sl(S(R,S \ Ri), S(R, S), cp))

(4.14)

where the join cost functions are defined as

gnl(n1, n2, n3, cp) = n1 ∗ n2 ∗ cp + n3 ∗ cm
gsm(n1, n2, n3, cp) = (n1 logn1 + n2 logn2) ∗ cp + n3 ∗ cm
g1sm(n1, n2, n3, cp) = n2 logn2 ∗ cp + n3 ∗ cm
g2sm(n1, n2, n3, cp) = n1 logn1 ∗ cp + n3 ∗ cm
g1,2sm(n1, n2, n3, cp) = n3 ∗ cm

cp denotes the per-tuple cost factor of evaluating the predicate in a selection or join and cm is a
constant accounting for writing the results back to disk. An upper index i indicates that the ith
input relation is already sorted with respect to the join attribute. a and b range over all attributes
of the relations R1 and R \ R1,respectively, such that attribute a is a join attribute with respect
to R1 and attribute b is a join attribute with respect to R \ R1. c denotes a join attribute in the
result.
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Time Complexity Every basic join predicate contributes at most two relevant attributes, hence
for every specific pair of values R,S, the number of attributes a for which we have to compute
the table entry Ca(R,S) is bounded from above by twice the number of all basic join predicates
r. Under the assumptions of our first algorithm we have r = O(n2), which leads to the following
asymptotic upper bound on the number of considered partial plans:

O(n2[3(5/3)c]n + (2cn3/3)[2(3/2)c]n)

Space Complexity By an analogous argumentation, the space complexity also grows by at
most a factor of 2r. Hence, the asymptotic number of table entries in our new algorithm is

O(n2[2(3/2)c]n)

Affine join cost functions

Linear join cost functions usually greatly simplify the problem of ordering joins and selections
[HS93, Hel94, Hel98, CS97, IK84, KBZ86]. For example, the authors of [IK84] first used a complex
cost function counting disc accesses in a special block-wise nested loop join. With this cost function
they proved that the problem of finding optimal left-deep trees is NP-hard. The authors of [IK84]
also showed that the problem is solvable in polynomial time using a simpler join cost function that
is linear in the first argument (the size of the subtree). A generalization to linear cost functions
are affine10 cost functions of the form C(R,S) = a+b∗R+c∗S+d∗R∗S with constants a, b, c, d.
Suppose the join cost function is affine. As a consequence of the results in [SM96, YKY+91], in an
optimal bushy processing tree all selection and join predicates that are applicable to a certain inner
node v of the tree occur in rank-sorted order on the path from v to the root of the tree! Although
this was first observed in [CS96], the authors claimed that it holds for all cost functions but failed
to give a proof. In fact, it is not difficult to find counter examples which show their claim to be
wrong for non-ASI cost functions.11 Later they fixed this by constraining their results to affine join
cost functions [CS97]. Now, how can our algorithms benefit from affine join cost functions? There
are two places where we need to iterate over sets of primary and secondary selection predicates,
respectively. Let us first consider the case of selection predicates. Since two selection predicates
referring to different relations induce different paths to the root of tree these predicates need not
be rank-sorted. The case is different for relations referring to the same relation. All the induced
paths from the relation to the root coincide and the predicates have to be rank-sorted. Therefore
modify the algorithm as follows. First, at the start of the optimization algorithm we re-number
the selections by increasing ranks. Note that we have to undo this re-ordering in the result of the
algorithm. Second we replace line 191 in the algorithm by the following two lines

l_compl = (p2[r] ^ (l & sels)) & sels;

root_predicates = l & sels & ((l_compl & -l_compl) - 1);

In the first line we compute in l compl all selections in the join graph induced by r which do not
occur in l. The second line computes all selections in l whose local rank is smaller than the rank
of all selections in l compl.
How can the enumeration of joins benefit from affine cost functions? It turns out that join
predicates can be used in a similar way but cause considerable more work. The problem is that
sorting the join predicates at the beginning of the algorithm does not help much since the ranks of
join predicates depend on the relations in the subtree. Hence we suggest the following compromise.
With a statement similar to the one above we compute the bit vector root predicates of all
predicates applicable to the relations r and predicates l:

10In [CS97] these functions are called regular cost functions.
11For example, take the standard cost function for sort-merge joins from [KBZ86].
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l_compl = (p2[r] ^ (l & ~sels)) & ~sels;

root_predicates = l & ~sels & ((l_compl & -l_compl) - 1);

If the number of non-zero bits in root predicates is small (does not exceed, say 4) we spare the
effort of finding a predicate with minimum rank and proceed as in the unmodified algorithm.
Otherwise, we iterate through the bits of root predicates, compute the local rank of the
corresponding join predicate, and proceed with the predicate with the smallest rank.

Query Hypergraphs

Sometimes predicates refer to more than two relations, e.g. R.x + S.y < T.z. In principle, a
predicate may refer to an arbitrary number of relations although predicates with more than tree
relations are rare. Queries of this type can be represented by hypergraphs—a generalization of
(ordinary) graphs. A hypergraph G = (V,E) consists of a set of nodes V and a set of (hyper)edges
E ⊆ 2V . Note that ordinary graphs are special hypergraphs where each edge has cardinality two.

Hypergraphs are an ideal framework to represent queries. For a given query the query hyper-
graph is defined as follows. The nodes of the query hypergraph are the base relations involved
in the query and for each predicate in the query there is an edge containing the relations the
predicate refers to. Note that edges of cardinality one correspond to primary selections whereas
edges of cardinality greater than one correspond to joins. In the following we briefly sketch how
our algorithms can be modified to work with query hypergraphs.

The generalization is straightforward. We use a similar representation for graphs and hyper-
graphs. Nodes are numbered 0 to n − 1 and edges are numbered 0 to p − 1. Sets of nodes as
well as sets of edges are represented by bit vectors. The edges in E are stored as a table nodes

such that nodes[i] is the bit vector of all nodes in the i-th edge. The auxiliary arrays p0, p1,
p2, incidence list, and parallel edges can be used as in DP-OPT-C, except for some minor
changes in the initialization of the arrays. Consequently, there is no change in the auxiliary arrays
component and component id and the procedure dfs. What changes is the following. Since an
edge can refer to more than two relations the removal of a bridge may increase the number of
connected components by more than one. Hence, for each considered join predicate (bridge in
the hypergraph) we additionally have to enumerate the partitions of the connected components
in the hypergraph with the join predicate removed. Suppose C1, . . . , Ck are the bit vectors of
the nodes in each of the k connected components and Ci is the connected component to which
the bridge h belongs. We can use depth-first-search to determine the connected components
C ′1, . . . , C

′
l of C2 resulting from the removal of the bridge h. Then we enumerate all non-trivial

partitions of {C′1, . . . , C′l} in graycode order. The blocks of the partition are combined with the
blocks of the partitions of {C1, . . . , Ci−1, Ci, . . . , Ck}. For example, consider the bridge h in the
query hypergraph in Figure 4.11 12. We first enumerate all sets of nodes that correspond to the
partitions of the connected components C1, C3. For each such set we then enumerate the sets of
nodes that correspond to the non-trivial partitions of C′1, C

′
2, C

′
3.

Complexity The time complexity increases at most by a factor of 2t where t denotes the
maximal number of relations to which a predicate in the query refers to. The space complexity
does not change.

4.2.7 Performance Measurements

In this section we investigate how our dynamic programming algorithms perform in practice. Note
that we give no results of the quality of the generated plans, since they are optimal. The only

12encircled sets of relations denote edges
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Figure 4.11: Upon removal of edge h the connected component C2 decomposes into the connected
components C ′1, C

′
2 and C

′
3

remaining question is whether the algorithm can be applied in practice since the time bounds seem
quite high. We begin with algorithm Optimal-Bushy-Tree(R,P ) without enhancements. The table
below shows the timings for random queries with n = 10 relations and query graphs with 50% of
all possible edges having selectivity factors less than 1. Join predicates are cheap (cp = 1) whereas
selection predicates are expensive (cp > 1). All timings in this section were measured on a lightly
loaded workstation with Alpha 21164 Processor (533MHz) and 256 MB of main memory. Run
times are averages over a few hundred runs with randomly generated queries.

n = 10 sel : 0 1 2 3 4 5 6 7 8 9 10
time [s]: 0.01 0.01 0.02 0.03 0.06 0.10 0.18 0.30 0.57 1.21 2.31

The next table shows the timings for queries with join predicates only. Note that the number of
join predicates does not influence the runtimes since joins and cross products are treated alike.

n : 1− 4 5 6 7 8 9 10 11 12 13
time [s]: < 0.0001 0.0001 0.0003 0.0007 0.0015 0.0037 0.0110 0.0329 0.1014 0.3466

n : 14 15 16 17 18
1.329 4.203 13.96 52.45 162.1

Let us now consider algorithm Optimal-Bushy-Tree(R,P ) enhanced by splitting join predicates.

The next table shows running times for random queries on n = 5 relations. We varied the
number of predicates from 0 to 16, the fraction of selections was held constant at 50%. For this
example we used a modified “near-uniform” random generation of queries in order to produce
connected join graphs whenever possible, i.e. we did only produce queries where the number of
components equals max(n− p+ s, 1).

n = 5 p: 0− 6 7 8 9 10 11 12 13 14 15 16
time [s]: < 0.001 0.001 0.003 0.006 0.011 0.022 0.041 0.080 0.160 0.310 0.692

Finally, we considered queries with 10 predicates, out of which 5 are selections. By varying the
number of relations from 1 to 10, we obtained the following timings.

p = 10, s = 5 n : 1 2 3 4 5 6 7 8 9 10
time [s]: - 0.001 0.002 0.005 0.011 0.029 0.075 0.262 0.828 2.764

The following timings concern the third algorithm which uses structural information from the
query graph. The next table shows running times for random “near-uniform” queries on n = 5
relations. The number of predicates varies from 0 to 13, the fraction of selections was held constant
at 50%. Note the break-even point with respect to the second algorithm. For smaller number of
predicates (here p ≤ 9) the second algorithm is faster than the third and for larger values (here
p > 9) the third algorithm beats the second algorithm. This is not surprising since the few
predicates lead to many disconnected subgraphs and hence to many cross products. In this case
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analyzing the connected components is too much overhead. On the other hand, many predicates
lead to more connected subgraphs from which the third algorithm benefits.

n = 5 p : 0− 4 5 6 7 8 9 10
time [s]: < 0.001 0.001 0.002 0.002 0.005 0.008 0.014

p : 11 12 13 14 15 16
time [s]: 0.025 0.054 0.087 0.174 0.295 0.636

4.2.8 Dynamic Programming: Variants and Applicability

Dynamic Programming is a general mathematical optimization principle applicable to many
discrete optimization problems. All these optimization problems have one thing in common—their
cost functions are decomposable [Min86]. Basically, the notion of decomposability comprises the
following two properties. First, the cost function (say f) can be formulated as a recurrence13

involving one or more calls to f with simpler arguments (“separability”). Second, in such a
recurrence the function that combines the different recursive function applications is monotonically
non-decreasing with respect to the arguments where f is called recursively (“monotonicity”). For
example, the function

f(x1, . . . , xn) = h(f(x1, . . . , xn−1), xn)

is decomposable, provided that h is monotonically non-decreasing with respect to the first argument.
The basis of Dynamic Programming is the Principle of Optimality which stipulates14 that every
optimal solution can only be formed by partially optimal solutions. The validity of the Principle
of Optimality ensures that we can state a recurrence that computes the cost of an optimal solution
(together with the optimal solution itself).

The relation “is a subproblem of” defines a partial order P among all subproblems. The valid
enumeration orders of the subproblems are exactly the linear extensions of P . Since we cannot a
priori decide which of these enumeration orders is the best, it seems reasonable to chose one that
can be generated efficiently—as we did in our approach. On the other hand, there are well-known
methods that use cost information to direct the enumeration of subproblems. Two examples are
the A∗ and IDA∗ 15 algorithms from the area of heuristic search [Pea84]. These algorithms can
be used to compute an optimal path in a directed graph. Unlike bushy trees, computing optimal
left-deep trees can be stated as a problem of computing an optimal path in a graph. As far as we
know, there is no generalization of A∗ search to non-path problems.

Although A∗ is optimal (and IDA∗ is asymptotically optimal) among all informed search
methods [Pea84], these algorithms have some drawbacks. First, compared to dynamic program-
ming, A∗ has the additional overhead of keeping track of (potentially very large) priority queues
and hash tables and of computing non-trivial lower bounds to future costs. Second, the efficiency
of A∗ crucially depends on the quality of the used lower bound. Although IDA∗ does without
priority queues and hash tables, it considers slightly more nodes than A∗. Nevertheless, for larger
problems IDA∗ usually outperforms A∗. We made a few experiments that indicated that even if
we use the excellent lower bound c ∈ (0, 1) × “the true future cost”, A∗ essentially considers as
many subproblems as with the trivial lower bound 0 (corresponding to best-first search).16 The
number of considered subproblems decreases only if c is close to 1. At least for join ordering
problems such lower bounds seem unattainable. However this experiment strongly indicates that
cost-based pruning (e.g. as proposed by Graefe in his top-down dynamic programming algorithm

13or a system of recurrences
14Actually, the following weaker formulation would be sufficient unless we are to enumerate all optimal solutions:

“There exists an optimal solution that is only formed by partially optimal solutions”.
15Iterative Deepening A∗
16These results are not new. In [Poh70] it is shown that for constant relative errors the running times of A∗ and

IDA∗ are exponential in the depth of the graph.
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or as sugested by Vance and Maier [VM96]) does not seem to reduce the number of considered
subproblems substantially.

Dynamic programming algorithms are usually classified as bottom-up or top-down approaches
17. However, the names “bottom-up” and “top-down” are somewhat misleading. They refer to
the order in which the subproblems are generated and not in which they are solved. In both
approaches the subproblems are solved bottom-up. One advantage of the top-down approach
is that new subproblems can be generated and optimized dynamically during the optimization
process and multiple, overlapping problems can be optimized together. For example, similar as
in the volcano optimizer generator [GM93], we could mix top-down dynamic programming with
a transformation-based approach. In each step of the recursive optimization algorithm, first all
applicable transformations are applied in turn (with provisions to avoid reverse transformations
and duplicate subproblems) and then all possible decompositions into subproblems are enumerated
and the subproblems optimized recursively. Another advantage of the top-down approach is that
useless subproblems are automatically avoided in the computation. For example, suppose a query
gives raise to N different subproblems and for each subproblem we have to account for k different
physical properties p1, . . . , pk, where each property pi can assume ki different values, we have
to enumerate N ∗ ∏k

i=i ki combinations of subproblems and physical properties. Often, not all
these combinations really make sense. While the top-down approach seems to be more flexible
in dealing with subproblems it is also less efficient in the enumeration of subproblems [Van98].
Although cost bounds can be used in both the top-down as well as the bottom-up version of
dynamic programming they seem to have only little effect. Note that in the top-down approach it
is possible to use upper bounds on the costs to “prune” whole subproblems (which is not directly
possible in the bottom-up approach), this rarely is effective too because all the subproblems are
highly interdependent. It is much more beneficial to use upper bounds for saving some cost
computations.

Allmost all references in the literatur refer to this “traditional” version of the dynamic program-
ming [SAC+79, GD87, OL90, GM93, STY93, VM96, CYW96]. However, it is sometimes necessary
to use a slightly more general version of dynamic programming named partial order dynamic
programming in [GHK92].
Let us first describe a straightforward generalization of the traditional dynamic programming
scheme. In the traditional scheme, costs are numeric values that define a total ordering among all
plans for a subproblem. Now suppose that we cannot always decide whether one plan is better
than another plan, i.e. all we have is a plan comparison relation which defines a partial order
among plans. Obviously, when the Priciple of Optimality holds it is save to discard all suboptimal
plans for subproblems (since an optimal plan can cannot contain suboptimal subplans). In other
words, instead of computing one optimal plan for each subproblem we compute all plans that do
not prove to be suboptimal. As to the implementation, all that changes is that we now have to
deal with lists of plans instead of single plans.
The idea behind partial order dynamic programming is the following. Suppose our comparison
relation ≺1 does not fulfill the Principle of Optimality. Now, if we can find a weaker comparison
relation ≺2

18 that does fulfill the Priciple of Optimality, we can use the above described generaliza-
tion with ≺2 to compute a set of potentially optimal plans from which we determine the true
optimal plan using ≺.

With traditional dynamic programming the cost function computes a scalar, numeric cost value
and keeps track of the best plan. So does partial order dynamic programming, but now the cost
function may be non-scalar. A typical representation of costs are resource vectors (or resource
descriptors). A resource vector is a tuple where the components quantify the usage of a certain
resource. For example the components of a resource vector used in parallel query processing might
be the time to complete a query (elapsed time), the time when the first tuple is produced, the

17though different orders are conceivable
18i.e. suboptimality with respect to ≺2 implies suboptimality with respect to ≺1
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sum of processing times for each processor (total work), the total amount of buffer space used,
disk access times, network communication costs, etc. Sometimes additional parameters, which
do not reflect physical resources, are incorporated into resource vectors such that the resource
vector of a plan can now be computed in terms of the resource vectors of its suplans (depending
on the properties of the subproblem). Obviously, if one plan uses less resources than another plan
the plan using less resources is superior. This defines a natural (partial) order amoung resource
vectors that we can use to eliminate all sub-optimal plans for a subproblem: plan p1 is superior
to plan p2 if the resource vector of p1 is “component-wise” smaller than the resource vector of p1.
More on partial order dynamic programming can be found in [GHK92].



112 CHAPTER 4. OPTIMAL BUSHY EXECUTION PLANS



Chapter 5

Summary and Outlook

5.1 Summary

This thesis investigated several subclasses of the problem of computing optimal processing trees
for conjunctive queries. The subproblems arise from restricting certain problem features, like the
shape of the processing trees, the operators allowed in processing trees and the shape of the join
graph. This gives rise to a number of interesting problem classes with different complexities. We
were able to settle the complexity status and/or develop new efficient optimization algorithms
that outperform the previously known algorithms.

For the problem of computing optimal left-deep trees with cross products for chain queries
two algorithms were devised. The first algorithm produces the optimal plan, but we could not
prove that it has polynomial time. The second algorithm runs in polynomial time, but we could
not prove that it produces the optimal result. A conjecture is stated, which implies that both
algorithms run in polynomial time and produce an optimal plan.

Another important type of queries are acyclic queries with expensive predicates. By modeling
selections as joins, we showed that the algorithm of Ibaraki and Kameda [IK84] can be applied to
the problem. The resulting algorithm runs in polynomial time but has the following limitations.
Expensive selections can only be placed on the path from the left-most leaf to the root of the tree,
and the cost function has to fulfill the ASI property.

Although the space of bushy trees is larger than the space of left-deep trees it may contain
considerably cheaper plans [OL90]. The question that immediately arises, is whether we can expect
polynomial algorithms for this more general problem. We proved that the problem is NP-hard
independent of the query graph. Hence, unless P=NP, there is no hope of computing optimal
bushy trees in polynomial time. Consequently, we focused on the general problem of computing
optimal bushy trees for general queries with expensive joins and selections. Although several
researchers have proposed algorithms for this problem, apart from [CS97] all approaches turned
out to be wrong. We presented three formally derived correct algorithms for the problem. Our
algorithms can handle different join algorithms, split conjunctive predicates, and exploit structural
information from the join graph to speed up the computation. The time and space complexities
are analyzed carefully, and efficient implementations based on bitvector arithmetic are presented.

113



114 CHAPTER 5. SUMMARY AND OUTLOOK

5.2 Future Research

In object-oriented and object-relational database systems, the map operator (χ-operator) is used
for dereferenciation. The highest optimization potential is with path expressions. Each dot in a
path expression is translated to a map operator. Converting map operators into joins may lower or
rise the cost. Hence, this decision should be cost-based within a dynamic programming algorithm.
Map operators can also be used to factorize calls of expensive user-defined functions.

Another starting point of future work is to incorporate the factorization of common subexpres-
sions into our dynamic programming algorithms. So far, factorization can only be performed after
the plan has been generated. Since factorization changes the costs, the new, factorized plans may
no longer be optimal.

A major weakness of traditional optimization techniques is that they assume cost functions
to be accurate. Unfortunately, this is not the case. Cost functions only approximate the true
costs and they rely on statistical parameters which are often inaccurate. Parameters are either
estimated through database statistics or they are just “guessed” if not sufficient information is
available. For example, parameters that refer to run-time resources cannot be estimated and have
to be given “typical” values. Errors in the estimations are due to approximations or outdated
statistics. In [IC91] it has been shown that errors grow exponentially with the number of joins in
a query. It is not clear how this amplification of errors influences the results of query optimization.
Hence, extending our dynamic programming approaches to deal with these types of errors would
be a possible direction of future research. Current approaches can be classified into three classes.
Dynamic optimization [CG94, GW89] tries to react to inaccurate parameter estimations by evaluat-
ing these parameters along the execution of the query and comparing them to the estimated
parameters. If estimated and computed parameters differ considerably, appropriate action can
be taken. Either the query is (partially) re-optimized or—if alternative plans are available—the
execution switches to a different execution plan.
Another approach to dynamic optimization is the competition model of Antoshenkov [Ant93,
Ant96]. Here, different plans are executed concurrently. If a plan shows better that the others,
the execution of the sub-optimal plans is stopped.
Parametric optimization [Gan98, INSS92, CG94, GK94] attempts to identify several execution
plans; each one is optimal for a certain region of the parameter space. Parametric optimization
is usually combined with dynamic optimization. Unfortunately, parametric optimization seems to
work only for one or two parameters and affine (or special non-linear) cost functions [Gan98].
Least expected cost (LEC) optimization [CHS99] is a technique to optimize a cost function involving
stochastic parameters (i.e. random variables). Some parameters—like the buffer space available
in a concurrent environment—cannot be estimated at compile time. However,the parameter may
follow a certain distribution if averaged over many executions. Provided that such a distribution
exists and can be determined by the statistics module, dynamic programming can be modified
to compute an execution plan with minimum expected1 cost among all execution plans. A LEC
plan will be cheaper than any “specific cost” plan if costs are averaged over many executions.
Furthermore, if the cost function is concave, it will always be cheaper. Although least expected
cost optimization is an interesting approach, it suffers from the yet unsatisfactory solved problem
of efficiently handling and transforming probability distributions with sufficient accuracy.

1expectation taken with respect to distribution of the statistical parameter



Chapter 6

Zusammenfassung

In dieser Dissertation werden bestimmte Probleme der algebraischen Anfrageoptimierung unter-
sucht. Für die betrachteten Problemklassen werden neue, effiziente Algorithmen entwickelt und
deren Komplexitätsstatus bestimmt (polynomial/NP-hart). Die Teilprobleme werden dabei im
Wesentlichen durch die Operatoren der Anfrage, die Form des Anfragegraphen, die Form der Aus-
wertungsbäume, die in den Auswertungsbäumen erlaubten Operatoren und die Kostenfunktion
bestimmt.

In der Anfrageoptimierung werden oft linkstiefe Auswertungsbäume verwendet, da diese ver-
schiedene Vorteile bieten. Zum einen ist der Suchraum bei linkstiefen Bäumen erheblich kleiner
als bei verzweigten Bäumen und zum anderen führen linkstiefe Bäume zu gewissen Vereinfachun-
gen im Anfrageoptimierer und im Laufzeitsystem. Eine weitere Reduktion des Suchraum erzielt
man durch die Vermeidung von Kreuzprodukten, was allerdings zu höheren Auswertungskosten
führen kann. Ferner spielt die Struktur des Joingraphen eine wichtige Rolle. Das Standardver-
fahren zur Berechnung optimaler Auswertungsbäume basiert auf Dynamischem Programmieren.
Leider berücksichtigt dieses Verfahren weder Eigenschaften der Kostenfunktion noch die Struktur
des Joingraphen. Algorithmen, die spezielle Eigenschaften des Problems nutzen, sind weitgehend
unbekannt. Lediglich für den Fall azyklischer Anfragegraphen, linkstiefer Auswertungsbäume ohne
Kreuzprodukte und ASI-Kostenfunktionen ist ein dedizierter polynomialer Algorithmus bekannt,
der auf einem Job-Sequencing Algorithmus basiert.

Kapitel 3 widmet sich zunächst der Berechnung optimaler linkstiefer Auswertungsbäume. Eine
der einfachsten Problemklassen stellen die kettenförmigen Anfragen dar, wie sie z.B. bei der Um-
setzung von Pfadausdrücken in objekt-orientierten und objekt-relationalen Datenbanksystemen
auftreten. Kapitel 3.1 widmet sich dem Problem der Berechnung optimaler linkstiefer Auswer-
tungsbäume mit Kreuzprodukten für kettenförmige Anfragegraphen und ASI-Kostenfunktionen.
Es werden zwei neue Algorithmen entwickelt, wobei der erste Algorithmus polynomiale Zeit-
komplexität hat, während der zweite Algorithmus korrekt ist (d.h. niemals suboptimale Aus-
wertungsbäume liefert). Obwohl beide Algorithmen in der Praxis polynomiale Laufzeit aufweisen
und identische Ergebnisse liefern, konnte die Äquivalenz beider Algorithmen bisher nicht gezeigt
werden.

In modernen Datenbanksystemen kann der Benutzer eigene Funktionen und Prädikate definie-
ren, welche bei Anfragen verwendet werden können. Da benutzerdefinierte Prädikate hohe Kosten
verursachen können, spricht man auch von teuren Prädikaten. Die vielfach verwendete Heuri-
stik, Selektionen so früh wie möglich zu berechnen, hat im Fall teurer Selektionsprädikate keine
Gültigkeit mehr. Joins und teure Selektionen müssen gemeinsam optimiert werden.

In Kapitel 3.2 wird für das Problem azyklischer Anfragegraphen, linkstiefer Auswertungsbäume,
teurer Selektions- und Joinprädikate und ASI-Kostenfunktionen ein effizienter Algorithmus ent-
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wickelt, der auf dem schon erwähnten Job-Sequencing Algorithmus basiert. Unter der Vorausset-
zung, dass man die Menge der direkt auf die Basisrelationen anzuwendenden, teuren Selektionen
erraten kann, besitzt der Algorithmus polynomiale Zeitkomplexität.

Obwohl die Menge der verzweigten Auswertungsbäume erheblich größer ist als die Menge aller
linkstiefen Bäume, ist es dennoch vorteilhaft, diesen größeren Suchraum zu betrachten, da ver-
zweigte Bäume aufgrund ihrer besseren Balancierungseigenschaften die Kosten deutlich reduzieren
können. Ähnlich verhält es sich bei den Kreuzprodukten. Zusätzliche Kreuzprodukte vergrößern
zwar den Suchraum, können aber ebenfalls zu billigeren Auswertungsbäumen führen. Aus die-
sem Grund widmet sich Kapitel 4 der Berechnung optimaler verzweigter Auswertungsbäume mit
möglichen Kreuzprodukten. Es stellt sich die Frage, ob es für den Fall verzweigter Bäume und
Kreuzprodukte spezielle Teilprobleme gibt, die in polynomialer Zeit lösbar sind. In Kapitel 4.1
wird gezeigt, dass dies nicht der Fall ist. Das Problem ist NP-hart, unabhängig von der Form des
Anfragegraphen.

Kapitel 4.2 widmet sich dem allgemeinen Problem der Berechnung verzweigter Auswertungsbäu-
me für beliebige Anfragegraphen und teurer Selektions- und Joinprädikate. Für dieses Problem
werden mehrere auf dynamischem Programmieren basierende Algorithmen entwickelt. Die Kom-
plexität der Algorithmen wird analysiert und effiziente Implementierungen werden beschrieben.
Die Algorithmen sind in der Lage, verschiedene Joinalgorithmen zu berücksichtigen, konjunktive
Prädikate zu trennen und die Struktur des Joingraphen auszunutzen.



Appendix A

An Implementation

In this section we present an implementation of the algorithm from section 4.2.4. The implementa-
tion reflects the first version of the algorithm, i.e. we perform a depth-first search for each edge
of the induced subgraph to determine whether the edge is a bridge or is part of a cycle. In case
the edge is a bridge we also determine the components the bridge connects. The C code for the
algorithm is listed below1.

1 struct dfsFrame {
2 bitvector startNode; // starting node
3 bitvector lastNode; // node last visited
4 int mark; // label<mark <=> node not marked
5 nodeType& adj; // adjacency list
6 };
7
8
9 ....

10
11
12 int optimize(int n,int p,int sl, double* f_i, float* c_i, int* rel1, int* rel2){
13
14 struct nodeType {
15 int lb; // label
16 bitvector nb; // neighbor nodes
17 };
18
19 struct splitting {
20 bitvector rel_left; // relations in the left subgraph
21 bitvector pred_left; // predicates in the left subgraph
22 bitvector pred_right; // predicates in the right subgraph
23 };
24
25
26 bool flag;
27 int i,j,noc,label;
28 bitvector i2,j2,k,cut,h,k,l,ll,i2,nn,pp,pd1,pd2,r,r1,r2,u,iv,sels,rest,best_pred_so_far,
29 delta,left_block,right_block,left_relations,right_relations,left_predicates,
30 right_predicates,the_component,new_predicates,current_pred,root_predicates,
31 relations,predicates;
32 float best_cost_so_far,cost1,dcost1;
33
34 splitting best_split_so_far; // partition in left and right subproblems
35 nodeType* adjList[nn]; // adjacency list
36 dfsFrame (*st)[n]; // stack for dfs
37
38 // allocate tables
39 predicate* pred = new predicate[pp];
40 float** size = new (float*)[nn];
41 float** cost = new (float*)[nn];

1with C++-style comments
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42 splitting** split = new (splitting*)[nn];
43 bitvector** root = new (bitvector*)[nn];
44 bitvector** component = new (bitvector*)[nn];
45 char ** no_components = new (char*)[nn];
46
47 for(i=0; i<nn; i++){
48 size[i] = new costType[pp];
49 cost[i] = new costType[pp];
50 split[i] = new splitting[pp];
51 root[i] = new bitvector[pp];
52 component[i] = new bitvector[pp];
53 no_components[i] = new char[pp];
54 }
55 float* sz = new float[n];
56 bitvector* p0 = new bitvector[nn];
57 bitvector* p1 = new bitvector[nn];
58 bitvector* p2 = new bitvector[nn];
59
60 bitvector* parallel_edges = new bitvector[pp];
61 nodetype* adjList = new nodetype[nn];
62 char* component_id = new char[nn];
63 bitvector* block = new bitvector[nn<<1];
64 bitvector* graycode = new bitvector[nn];
65
66 // initialize everything
67 sp = 0; // stack pointer for st
68 label = 1; // initial label for dfs
69 nn = 1<<n;
70 pp = 1<<p;
71 sels = (1<<sl)-1;
72 for (i=0; i<p; i++) { // initialize pred[]
73 j2 = 1<<i;
74 pred[j2].sel = f_i[i];
75 pred[j2].cost = c_i[i];
76 pred[j2].rel1 = rel1[i];
77 pred[j2].rel2 = rel2[i];
78 }
79 for (i=0, i2=1; i<p; i++, i2<<=1)
80 parallel_edges[i2] = 0; // initialize parallel_edges[]
81 for (i=0, i2=1; i<p; i++, i2<<=1)
82 for (j=i+1, j2=1<<(i+1); j<p; j++, j2<<=1)
83 if (pred[i2].rel1==pred[j2].rel1 &&
84 pred[i2].rel2==pred[j2].rel2) {
85 parallel_edges[i2] |= j2;
86 parallel_edges[j2] |= i2;
87 }
88
89 component[0][0] = 0;
90
91 for (i=0, i2=1; i<n; i++, i2 <<= 1 ){
92 p0[i2] = p1[i2] = 0;
93 size[i2][0] = n_i[i];
94 cost[i2][0] = scanCosts(n_i[i]);
95 root[i2][0] = 0;
96 split[i2][0].rel_left = 0;
97 split[i2][0].pred_left = 0;
98 split[i2][0].pred_right = 0;
99 }

100 for (i=0, i2=1; i<p; i++, i2 <<= 1) {
101 r1 = 1<<pred[i2].rel1;
102 r2 = 1<<pred[i2].rel2;
103 p0[r1] = p0[r1]^i2;
104 p0[r2] = p0[r2]^i2;
105 p1[r1] = p1[r1]|i2;
106 p1[r2] = p1[r2]|i2;
107 }
108 p0[0] = p1[0] = p2[0] = 0;
109
110 // enumeration of subproblems
111
112 for (r=1; r<nn; r++){ // enumerate subsets of relations
113 r1 = r&-r;
114 r2 = r^r1;
115 p0[r] = p0[r1]^p0[r2]; // initialize p0[],p1[],p2[]
116 p1[r] = p1[r1]|p1[r2];
117 p2[r] = p1[r]^p0[r];
118 flag = true;
119 l = 0;
120 while (flag || l){ // enumerate subsets of predicates
121 flag = false;



119

122 k = l&-l; // predicate with smallest index
123 best_cost_so_far = INFINITY; // initialize best plan so far
124 best_pred_so_far = 3;
125 best_split_so_far.rel_left = 0;
126 best_split_so_far.pred_left = 0;
127 best_split_so_far.pred_right = 0;
128 r1 = r&-r; // relation with smallest index
129 r2 = r^r1; // relation with second smallest index
130 if (l) // are there any predicates?
131 size[r][l] = size[r][l^k] * pred[k].sel; // yes, use recurrence over predicates
132 else // no predicates!
133 if (r2) // are there at least two relations in r?
134 size[r][l] = size[r1][0]*size[r2][0]; // yes, use recurrence over relations
135 for(i=0, i2=1; i<n; i++, i2<<=1){
136 adjList[i2].nb = 0; // initialize incidence list for dfs
137 adjList[i2].lb = 0;
138 }
139 ll = l;
140 k = ll&-ll;
141 while (ll){ // iterate through predicates in l
142 r1 = 1<<pred[k].rel1;
143 r2 = 1<<pred[k].rel2;
144 if (r1 != r2) {
145 adjList[r1].nb |= r2; // update incidence list
146 adjList[r2].nb |= r1;
147 }
148 ll ^= k;
149 k = ll&-ll;
150 }
151 // perform dfs to compute the connected component containing relation r&-r
152 component[r][l] = dfs(r&-r, 3, label, adjList);
153 label++; // update label
154 relations = r;
155 predicates = l;
156 i = 0;
157 i2 = 1;
158 // determine remaining connected components by table look-up...
159 while (block[i2] = component[relations][predicates]){ // more components?
160 rest = block[i2];
161 iv = rest & -rest;
162 while (rest){ // iterate through rest
163 component_id[iv] = i; // iv is in connected component number i
164 rest ^= iv;
165 iv = rest & -rest;
166 }
167 relations ^= block[i2]; // update relations
168 predicates = l & p2[relations]; // update predicates
169 i++;
170 i2 <<= 1;
171 }
172 noc = i; // number of connected components
173 if (noc>1){ // is the graph disconnected?
174 // yes, use graycode to enumerate all subsets of connected components
175 gray = 0;
176 bitvector left_block = 0; // left block of partition
177 bitvector right_block; // right block of partition
178 for(i=1, i< 1<<noc; i++){ // enumerate graycode
179 last = gray; // last graycode
180 gray = i ^ (i>>1); // new graycode
181 delta = last ^ gray; // bit that has changed
182 left_block ^= block[delta]; // new left block of partition
183 right_block = r ^ left_block; // new right block
184 left_predicates = l & p2[left_block]; // update left predicates
185 right_predicates = l & p2[right_block]; // update right predicates
186 if (left_block != r) // neither left block nor right block should be empty
187 dcost1 = cost[left_block][left_predicates] +
188 cost[right_block][right_predicates]; // cost of subtrees
189 // cost of the cross product between left and right block
190 cost1 = dcost1 + cpCosts(size[left_block][left_predicates],
191 size[right_block][right_predicates]);
192 if (cost1<best_cost_so_far) { // cheaper than best_cost_so_far?
193 best_cost_so_far = cost1; // yes, update!
194 best_pred_so_far = 0;
195 best_split_so_far.rel_left = left_block;
196 best_split_so_far.pred_left = left_predicates;
197 best_split_so_far.pred_right = right_predicates;
198 }
199 }
200 }
201 }
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202 root_predicates = l & sels; // possible selection predicates
203 current_pred = root_predicates & -root_predicates;
204 while (root_predicates){ // iterate through all possible selection predicates
205 new_predicates = l ^ current_pred;
206 dcost1 = cost[r][new_predicates]; // cost of subtree below the selection
207 // cost of the selection operator
208 cost1 = dcost1 + selCosts(size[r][new_predicates],
209 size[r][l],pred[current_pred].cost);
210 if (cost1<best_cost_so_far) { // is plan cheaper?
211 best_cost_so_far = cost1; // yes, update!
212 best_pred_so_far = current_pred;
213 best_split_so_far.rel_left = 0;
214 best_split_so_far.pred_left = 0;
215 best_split_so_far.pred_right = 0;
216 }
217 root_predicates ^= current_pred;
218 current_pred = root_predicates & -root_predicates;
219 }
220 root_predicates = l & ~sels; // possible join predicates
221 current_pred = root_predicates & -root_predicates;
222 while (root_predicates){ // iterate through possible join predicates
223 if (!(parallel_edges[current_pred] & l)) { // is it a primary join predicate?
224 r1 = 1<<pred[current_pred].rel1;
225 r2 = 1<<pred[current_pred].rel2;
226 // temporarily remove current_pred from adjList
227 adjList[r1].nb ^= r2;
228 adjList[r2].nb ^= r1;
229 // determine connected component that contains current_pred
230 relations = dfs(1<<pred[current_pred].rel1, 3, label, adjList);
231 label++;
232 // undo removal of current_pred
233 adjList[r1].nb |= r2;
234 adjList[r2].nb |= r1;
235 } else { // no, a secondary join predicate
236 // removal of current_edge does not change adjList!
237 // determine connected component that contains current_pred
238 relations = dfs(1<<pred[current_pred].rel1, 3, label, adjList);
239 label++;
240 }
241
242 if (relations == block[1<<component_id[1<<pred[current_pred].rel1]]){
243 // it is a secondary join!
244 new_predicates = l ^ current_pred;
245 dcost1 = cost[r][new_predicates]; // cost of subtree below selection operator
246 cost1 = dcost1+selCosts(size[r][new_predicates], // selection costs
247 size[r][l],pred[current_pred].cost);
248 if (cost1<best_cost_so_far) { // new plan cheaper?
249 best_cost_so_far = cost1; // update!
250 best_pred_so_far = current_pred;
251 best_split_so_far.rel_left = 0;
252 best_split_so_far.pred_left = 0;
253 best_split_so_far.pred_right = 0;
254 }
255 }
256 else
257 { // can be a primary or a seconary join...
258 if (noc==1){ // special case: graph connected
259 left_relations = relations; // relations on the left side
260 right_relations = r ^ left_relations; // relations on the right side
261 left_predicates = p2[left_relations] & l; // left predicates
262 right_predicates = p2[right_relations] & l; // right predicates
263 dcost1 = cost[left_relations][left_predicates] // subtree costs
264 + cost[right_relations][right_predicates];
265 cost1 = dcost1 + jCosts(size[left_relations][left_predicates], // join costs
266 size[right_relations][right_predicates],
267 size[r][l],pred[current_pred].cost);
268 if (cost1<best_cost_so_far) { // new plan cheaper?
269 best_cost_so_far = cost1; // update!
270 best_pred_so_far = current_pred;
271 best_split_so_far.rel_left = left_relations;
272 best_split_so_far.pred_left = left_predicates;
273 best_split_so_far.pred_right = right_predicates;
274 }
275 // now interchange role of left and right side
276 cost1 = dcost1 + jCosts(size[right_relations][right_predicates], // join costs
277 size[left_relations][left_predicates],
278 size[r][l],pred[current_pred].cost);
279 if (cost1<best_cost_so_far) { // cheaper?
280 best_cost_so_far = cost1; // update!
281 best_pred_so_far = current_pred;
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282 best_split_so_far.rel_left = right_relations;
283 best_split_so_far.pred_left = right_predicates;
284 best_split_so_far.pred_right = left_predicates;
285 }
286 }
287 else // more than one connected component
288 { // compute connected component containing current_pred
289 the_component = 1<<component_id[1<<pred[current_pred].rel1];
290 // swap with last connected component
291 swap(block[the_component],block[1<<(noc-1)]);
292 noc--; // pretend as if last component does not exist
293 gray = 0; // initialize graycode
294 left_block = 0; // initialize left block of partition
295 for(i=0; i< 1<<noc; i++){ // enumerate all subsets of connected components
296 last = gray; // last graycode
297 gray = i ^ i>>1; // new graycode
298 delta = last ^ gray; // bit that has changed
299 left_block ^= block[delta]; // new left block of partition
300 right_block = r ^ block[1<<noc] ^ left_block; // new right block
301 left_relations = left_block | relations; // update left
302 right_relations = r ^ left_relations;
303 left_predicates = p2[left_relations] & l;
304 right_predicates = p2[right_relations] & l;
305 dcost1 = cost[left_relations][left_predicates] // subtree cost
306 + cost[right_relations][right_predicates];
307 cost1 = dcost1 + jCosts(size[left_relations][left_predicates], // join cost
308 size[right_relations][right_predicates],
309 size[r][l],pred[current_pred].cost);
310 if (cost1<best_cost_so_far) { // new plan cheaper?
311 best_cost_so_far = cost1; // update!
312 best_pred_so_far = current_pred;
313 best_split_so_far.rel_left = left_relations;
314 best_split_so_far.pred_left = left_predicates;
315 best_split_so_far.pred_right = right_predicates;
316 }
317 // interchange role of left and right side
318 cost1 = dcost1 + jCosts(size[right_relations][right_predicates], // join cost
319 size[left_relations][left_predicates],
320 size[r][l],pred[current_pred].cost);
321 if (cost1<best_cost_so_far) { // new plan cheaper?
322 best_cost_so_far = cost1; // update!
323 best_pred_so_far = current_pred;
324 best_split_so_far.rel_left = right_relations;
325 best_split_so_far.pred_left = right_predicates;
326 best_split_so_far.pred_right = left_predicates;
327 }
328 }
329 swap(block[the_component],block[1<<noc]); // undo swap of connected components
330 noc++; // restore previous number of components
331 }
332 new_predicates = l ^ current_pred; // consider possibility of a secondary join
333 dcost1 = cost[r][new_predicates]; // subtree cost
334 cost1 = dcost1 + selCosts(size[r][new_predicates], // selection cost
335 size[r][l],pred[current_pred].cost);
336 if (cost1<best_cost_so_far) { // new plan cheaper?
337 best_cost_so_far = cost1; // update!
338 best_pred_so_far = current_pred;
339 best_split_so_far.rel_left = 0;
340 best_split_so_far.pred_left = 0;
341 best_split_so_far.pred_right = 0;
342 }
343 }
344 root_predicates ^= current_pred; // proceed to next predicate
345 current_pred = root_predicates & -root_predicates;
346 }
347 if (l || r&(r-1)) {
348 cnt++;
349 cost[r][l] = best_cost_so_far; // store best solution in table
350 root[r][l] = best_pred_so_far;
351 split[r][l] = best_split_so_far;
352 }
353 l = p2[r]&(l-p2[r]); // switch to the next subset of predicates
354 }
355 }
356
357 printPlan(split,root,nn-1,pp-1,theJoinProblem){ // print optimal plan
358
359 // free arrays
360 delete block;
361 delete component_id;
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362 delete adjList;
363 delete graycode;
364
365 for (k=1; k<nn; k++){
366 delete[] size[k];
367 delete[] cost[k];
368 delete[] split[k];
369 delete[] root[k];
370 delete[] component[k];
371 delete[] no_components[k];
372 }
373 delete[] size;
374 delete[] cost;
375 delete[] split;
376 delete[] root;
377 delete[] component;
378 delete[] no_components;
379 delete[] p0;
380 delete[] p1;
381 delete[] p2;
382 delete[] sz;
383 delete[] pred;
384 delete[] parallel_edges;
385
386 }
387
388 ....
389
390
391 // display optimal plan
392 void print_plan(splitting** split, bitvector** root, bitvector r, bitvector s){
393 if !(s || r&(r-1)) // a base relation?
394 printf("r%d",log2(r));
395 else
396 if (split[r][s].rel_left==0){ // a selection?
397 printf("sigma[p%d])",log2(root[r][s]));
398 print_solution(split,root,r,s^root[r][s],pi);
499 printf(")");
400 } else
401 {
402 if (root[r][s] == 0) // a cross product?
403 {
404 printf("cross-product(");
405 print_solution(split,root,split[r][s].rel_left,
406 split[r][s].pred_left,pi);
407 printf(",");
408 print_solution(split,root,r^split[r][s].rel_left,
409 split[r][s].pred_right,pi);
410 printf(")");
411 }
412 else // a join!
413 {
414 printf("join[p%d](",log2(root[r][s]));
415 print_solution(split,root,split[r][s].rel_left,
416 split[r][s].pred_left,pi);
417 printf(",");
418 print_solution(split,root,r^split[r][s].rel_left,
419 split[r][s].pred_right,pi);
420 printf(")");
421 }
422 }
423 }
424
425
426 bitvector dfs(bitvector current_node, bitvector last_node, // depth-first search
427 int& currentMark, nodetype *adjList, dfsFrame* st){
428
429 dfsFrame frame,newframe;
430
431 bitvector neighbors,nextNode;
432 bitvector block = 0; // the connected component
433
434 frame.currNode = start; // current node
435 frame.lastNode = 3; // node last visited
436 frame.mark = currentMark; // a label smaller than frame.mark means
437 // that the node has not been visited
438 sp=0;
439 st[sp++] = frame; // push to stack
440
441 while (sp) {
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442 frame = st[--sp]; // pop from stack
443 if (adjList[frame.currNode].lb < frame.mark) { // node not visited?
444 adjList[frame.currNode].lb = frame.mark; // ok, mark as visited
445 block |= frame.currNode; // update connected component
446 neighbors = adjList[frame.currNode].nb;
447 nextNode = neighbors & -neighbors; // first neighbor
448 neighbors ^= nextNode;
449 while (nextNode){ // consider all neighbors
450 if (nextNode != frame.lastNode ||
451 frame.currNode == frame.lastNode){ // update current node
452 block |= next;
453 newFrame.currNode = next;
454 newFrame.lastNode = frame.currNode;
455 newFrame.mark = frame.mark;
456 st[sp++] = newFrame; // push to stack
457 } // switch to next neighbor
458 nextNode = neighbors & -neighbors; // next neighbor
459 neighbors ^= nextNode;
460 }
461 }
462 }
463 return block;
464 }

We assume that predicates are ordered such that the indices 0 to sl − 1 are corresponding to
selections and predicates with indices sl to p− 1 are corresponding to joins. The table below lists
the variables and functions used in the algorithm. Throughout the table rel denotes a bitvector
of relations and pred a bitvector of predicates.
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variables and functions

int n number of relations

int p number of predicates (joins and selections)

int sl number of selections among the p predicates

float n i[j] cardinality of the j-th base relation

float f i[j] selectivity of predicate j

float c i[j] cost factor of predicate j

int a i[j],b i[j] indices of the two relations to which the j-th predicate
refers (a i[j]≤b i[j])

bitvector sels bitvector of all selections (sels = 2sl − 1)

float pred[1<<j].sel equal to f i[j]

float pred[1<<j].cost equal to c i[j]

int pred[1<<j].rel1 equal to rel1[j]

int pred[1<<j].rel2 equal to rel2[j]

float size[rel][pred] cardinality of plans with relations (rel and predicates
pred)

float cost[rel][pred] cost of an optimal plan for (rel, pred)

bitvector root[rel][pred] root operator of an optimal plan for (rel, pred)

bitvector split[rel][pred].rel left relations in the left sub-plan if the root operator is a
join—otherwise 0

bitvector split[rel][pred].pred left predicates in the left sub-plan if the root operator is
a join—otherwise 0

bitvector split[rel][pred].pred right predicates in the right sub-plan if the root operator
is a join—otherwise 0

bitvector component[rel][pred] connected component in the join graph induced by
(rel, pred) that contains the relation with smallest
index

bitvector p0[rel] predicates incident with an even number of relations
in rel

bitvector p1[rel] predicates incident with at least one relation in rel

bitvector p2[rel] predicates induced by the relations in rel

bitvector parallel edes[1�i] edges parallel to the edge i

bitvector adjList[r].nb neighbors of node r

int adjList[r].lb label of node r (dfs)

bitvector block[1�i] relations in the i-th connected component of the
subgraph induced by r,l

int component id[r] connected component that contains relation r

int log2(k) discrete logarithm to base 2

float scanCosts(size in) scan operator costs

float cpCosts(size in1,size in2) cross product operator costs

float jCosts(size in1,size in2,size out) join operator costs

float selCosts(size in,size out) selection operators costs

Comments The call to dfs in line 152 can be avoided since we can compute directly the relations
in the connected component that contains the relation with the smallest index if we make use of
the previously computed connected components and induced subgraphs. Suppose we consider a
subproblem with relations R and predicates P . Let G be the query graph induced by R and P .
Let us denote the relations with smallest and second smallest indices with R1 and R2, respectively.
The query graph induced by R′ = R− {R1} and the query graph induced by R′′ = R− {R2} are
denoted by G′ and G′′, respectively. Let us denote the connected components of R′ and R′′ with
C1 and C2, respectively. Now, if there is an edge between R1 and R2 in G or if C1 and C2 overlap
then C1 is connected to C2 in G and C = C1∪C2. Otherwise, C1 and C2 are disjoint and C = C1.
The code fragment below replaces lines 152-153 of the above algorithm.
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r1 = r&-r; // relation with smallest index

rel1 = r^bit1; // remaining relations in r

if (rel1) { // more than one relations in r?

r2 = rel1&-rel1; // relation with second smallest index

rel2 = r^r2; // remaining relations in r2

pred2 = l&p2[rel2]; // predicates induced by rel2

comp1 = component[rel2][pred2]; // conn. component in subgraph (rel2,pred2)

comp2 = component[rel1][pred1]; // conn. component in subgraph (rel1,pred1)

if ((l&p2[r1|r2]&~sels)|| // is r1 connected to r2 or

(comp1&comp2)) { // do comp1 and comp2 overlap?

pred1 = l&p2[rel1]; // predicates induced by rel1

component[r][l] = comp1|comp2; // take the union of comp1 and comp2

} else // r1 not connected to r2!

component[r][l] = comp1; // result is comp1

} else

component[r][l] = r; // special case: r contains one relation
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