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Abstract
Building on recent progress in modeling filter response statistics of natural

images we integrate a statistical model into a variational framework for image
segmentation. Incorporated in asound probabilistic distance measure the model
drives level sets toward meaningful segment at ions of complex textures and nat-
ural scenes. Despite its enhanced descriptive power our approach preserves the
efficiency of level set based segmentation since each connected region comprises
two model parameters only. We validate the statistical basis of our model on thou-
sands of natural images and demonstrate that our approach outperforms recent
variational segment at ion methods based on second-order statistics.

1 Introduction

1.1 Motivation
Statistical models play an increasingly decisive role in computer vision for shape mod-
eling, segmentation, tracking and appearance-based recognition [7]. In the context of
Bayesian inference, the nature of a statistical model defines the dass of the optimization
problem to be solved [16]. As a consequence, there is a trade-off between the descriptive
power of statistical models and the difficulty of the associated Bayesian (variational)
inference step from the optimization point of view.

Recently, the statistics of filter outputs turned out to provide powerful and general
models for image statistics and texture [33,34,21,20,31]. Unfortunately, incorporating
such a model into a variational approach to image segmentation results in a computation-
ally intractable optimization problem wh ich requires the application of time-consuming
stochastic sampling methods to compute a mini mizer [33, 34; 21].

•A short version of this paper was accepted for ICCV 03.
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From the viewpoint of optimization, on the other hand, a range of variational ap-
proaches to image segmentation exist [4, 10] which can be regarded as efficient and
computationally convenient approximations of the sophisticated Mumford-Shah func-
tional [17]. However, the class of problems to which these models have been applied
so far is limited to cartoon-like piecewise smooth images and second-order statistics of
multiple filter channel responses [32, 10].

This motivates the use of more sophisticated statistical models wh ich describe a
larger class of natural images without compromising the efficiency of level set based
segmentation.

1.2 Contribution and Related Work
In the present paper, we study for the first time the use of arecent model of natural image
statistics in an efficient level set based variation al framework for image segmentation.

The statistical model which we describe in Section 2, has been used for wavelet-
based image coding [14, 2] and was empirically verified for a large database of natural
images [23, 9]. We also refer to [29] for related work.

The variational approach we use for image segment at ion follows Zhu and Yuille
[32]' and Chan and Vese [4]. We considerably enhance the descriptive power of these
methods by incorporating the above-mentioned statistical model of natural images (Sec-
tion 2), thereby enlarging the range of applicability of variation al segmentation to a much
broader image class. In this sense, our work is similar to Paragios and Deriche [18] who
successfully enhance the geodesic active contour model [3, 12] with a Gaussian mixt ure
model of filter response statistics for supervised texture segmentation. However, our
statistical model is more compact and targeted toward natural scenes, which makes it
possible to treat natural images and unknown textures in a completely unsupervised way.
We give a rigorous derivation of the equations driving the motion of region boundaries
toward a segmentation in Section 3.

In Section 4 we evaluate our approach numerically using natural images and texture
images from publicly available databases. The performance is compared to the use of
second order statistics as in [32, 10] within the same variational framework, both in a
supervised and unsupervised setting. It turns out that, despite its enhanced descriptive
power, the statistical model we exploit is still simple enough to be estimated locally
such that, by measuring an appropriate distance to non-Iocally estimated models, forces
can be computed which drive level sets to meaningful segmentations. We conclude and
indicate further work in Section 5.

Finally, we wish to point out that our results should not solely be judged from the
specific viewpoint of text ure segmentation. This would amount to consider a wide range
of possible dissimilarity measures [22] many of which cannot be easily incorporated into
a levelset based segmentation framework and are not appropriate for less textured parts
of natural scenes. Rather, we focus in this paper on a compact parametric model related
to natural image statistics for super- and unsupervised levelset segmentation of scenes
where texture plays an important but not an eXclusive role.
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(a) Normalized image (b) Filter response. (c) Histogram and model.

Figure 1: Overview. An image (a) is filtered by a linear filter. The marginal histogram
(dotted line) of the resulting filter response image (b) is computed and a generalized
Laplacian (solid line) is fitted to the histogram (c). The parameters (a, s) of the gener-
alized Laplacian serve as image descriptors.

2 Natural Image Statistics
We capture the statistics of natural images using generalized Laplacians fitted to marginal
histograms of linear filter responses. The KuHback-Leibler (KL) distance between the
Laplacians then serves as a distance measure on the images (cf. Fig. 1). The foHowing
section describes the statistical model in detail.

2.1 Feature Extraction
The basis of our approach is the statistical model

(1)

for the filter response Z of a linear filter applied to natural images. It was pointed out in
the literat ure that for a large dass of images the generalized Laplacian (1) describes the
response statistics of various linear filters surprisingly weH. This model was empiricaHy
verified for samples of natural images [23, 9] and has been applied to compact1y code
wavelet coefficients of images [14, 11, 2, 13] and to Bayesian image restoration [26]. In
the present paper we apply this model both locally and globally within a variational
framework to the segmentation of natural images.

Various linear transformations of images have been used in conjunction with the
model: The discrete cosine transform [23]' steerable pyramids [6, 27, 26]' and various
orthogonal wavelets [14, 9]. In this work we examine steerable pyramid filters and
quadrature mirror filters as weH as the weH-known Haar wavelet and Daubechies wavelet
of order 3. In the foHowing these filters are abbreviated by

- spn,

- qmfn,

- haar, and
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(a) Filter response parameters. (b) Density parameters.

Figure 2: The role of nonlinear parameter mapping. Standard deviation (J and
kurtosis /'i, of the filter responses are mapped nonlinearly according to (2) to density
parameters a and s. Note that the left part of (a), where most points are located,
is spread after mapping. Conversely, the area on the right of (a), where relatively few
points are situated, is compressed. The points depicted are 4167 measurements collected
from the van Hateren database using a linear derivative filter. The labeled grid visualizes
the nonlinearity of the transformation.

- daub3,

where n is an integer encoding the number of orientations examined. Experimental
results to be discussed below reveal that both the choice of the filter bank and the
metric affect the performance of the statistical model.

2.2 Density Estimation
The generalized Laplacian model (1) has two parameters, sand a, wh ich are related to
variance (J2 and kurtosis /'i, of the filter response by

2 s2r(3/a)
(J = r(l/a)

r(1/a)r(5/a)
K, = P(3/a) . (2)

Figure 2 illustrates the nonlinear mapping of the statistical parameters {(J, /'i,} to the
model parameters {s, a} in (1). When /'i, > 9/5 we can solve the right equation numer-
ically for a and determine s via the left equation. Mathematically, we cannot model
distributions with /'i, ~ 9/5 as for a ---+ 00 the generalized Laplacian approaches the
uniform distribution centered at 0, the kurtosis of which equals 9/5. This is not a severe
restrietion, however: In the experimental section (Sec. 4 and Fig. 3) we give strong
evidence that such statistics are very rare in natural images.

2.3 MDL-Criterion for Segmentation
Our goal is to partition the image domain st into two, maybe multiply-connected, regions
stin and stout separated by a contour C such that the local image statistics are "dose"
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to the global statisties within nin or nout, respeetively. More precisely, if pd/x denotes
the statisties of a small window Wx eentered at image loeation x, and if pd/in and pd/out
denote the statistics of the interior and exterior regions nin and nout, respeetively, then
we want to minimize

Emdl(nin, nout) =1ds + Li~(Pd/xIIPd/in)dX + Lo:;(Pd/xllpd/out)dX (3)

where D(pllq) = - Jp(z) log(p(z)jq(z))dz is the Kullbaek-Leibler (KL) distanee between
densities p and q.

In order to interpret eriterion (3), let us assume for a moment that pd/in, pd/out, and
pd/x model the true densities of their domains perfeetly. Minimizing (3) then amounts to
minimizing the deseription length of an image eode: A minimal eode for Wx has average
length H(pd/x), H denoting Shannon entropy [5]. Eneoding Wx using the model for one
of the regions nin or nout requires a eode of average length H(pd/x) + D(pd/xllpd/in/out).
In order to minimize (3), we should assign x to the region with minimal KL-distanee to
pd/x. The first integral in (3) measures the length of the separating eontour C ensuring
that the membership relation, that is whether a speeifie point x belongs to nin or to
nout, will be inexpensive to eneode.

Note that the KL-distanee of two generalized Laplaeians p and q with parameters
{sp, ap} and {Sq, aq} ean be eomputed by evaluating (2) for sampie estimates on the left
hand sides, and by inserting the resulting values for the parameters {sp, ap, Sq, aq} into
the following expression:

(2)Oqr(~) (r(l + 1))D( 11 ) = Bq Op I Sq a; _ ~
p q r( ..l..) + og S r(l + ..l..) a .

Op p Op P

2.4 Combining Filter Responses

(4)

Given the statistics for a set of filter responses the quest ion arises how to eombine
information gathered at different seales and orientations. In this work, we strive for a
generic measure not optimized for any partieular set of textures or filters.

We propose, as a first approximation, to treat the statistics of individual filter re-
sponses as statistically independent. Under this assumption the individual KL-distanees
simply add up so that we ean minimize the average distanee eolleeted over all linear fil-
ters i:

Here pd/in/out,i denotes the prob ability density function modeling the response of filter
i in region nin/out and pd/x,i is the eorresponding density for a window Wx eentered at
loeation x in the image plane.

It is known that in rea;lity the independenee assumption does not hold. For orthog-
onal wavelet bases normalization sehemes have been proposed to remove dependencies
between filter responses at different seale [25]. For the time being, however, we did not
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incorporate any normalization schemes into the first implementation of our approach.
While this clearly is sub optimal in theory, empirical evidence (Section 4) suggests that
our model is sufficiently accurate for a range of real-world scenes.

3 Levelset Formulation
In this section we incorporate our statistical distance measure on images into a levelset
formulation. The update equations determining the dynamics of the segmentation are
rigorously derived by taking into account all region-dependend terms and by computing
the first variation of the corresponding area integrals.

3.1 Energy Functional
Motivated by the region-based segmentation model of Chan and Vese [4] we general-
ize (3) and consider energy functionals of the form

E(1)) = Lkb(x) IV1>18(1))dx + Al Lkout(x, 1>)H(1))dx + A2 L kin(x, 1»(1 - H(1)))dx

(6)

Here 1> : JR2 -t JR denotes the embedding level set function, the zero-level of which
represents segmentation boundaries. H: JR-t {a, I} is the step function, and 8 stands
for Dirac's delta function. In the following we drop the function arguments 1> and x for
brevity.

Chan and Vese's model [4] fits into this framework as a special case

=1

= lUD - Cinl
2

= lUD - Coutl2 ,

(7)

whereas our approach involves the considerably more general statistical model from (5)

=1

= L:i D(pdfx,illpdfin,i)
= L:i D(pdfx,illpdfout,i).

(8)

3.2 First Variation and Boundary Update
The variational update ~ = -(E'(1>), 'ljJ), V'ljJ, of the level set function readsl:

lTo save horizontal space we abbreviate (E'(</»,'lj;) by oE/o</>.
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The third term, wh ich is omitted in [4), origins from applying the product rule to the
area integrals and thus takes into account that kin and kout also depend on the levelset
function cP. After some tedious calculations (Appendix A) and with the shorthands
n = I~:Iand c = div(n) we arrive at

(10)

We point out that this formula was recently derived in a different way in [10] based on
the calculus of shape optimal design [28] which, in turn, relies on previous mathematical
work like, e.g., [24].

3.3 Computation of the Area Term
Let us examine more closely the area integral in (10). As mentioned above (Section 2.4)
we model the local coding cost W.r.t. the interior region as

(11)

(13)

Recall that the probability density functions is given as generalized Laplacians with
two parameters s = s(a, a2) and a = a(K) which depend themselves on kurtosis K and
variance a2 measured both locally in Wx and globally in Oin' Therefore, we may write
more precisely

kin =Ln(p( a(Kx,i), s(a(Kx,i), a;,i)) IIp(a(Kin,i), s(a(Kin,i), a;n,i)))' (12)
i

Here Kin,i and afn,i depend on the area Oin and thus vary with the levelset function cP. Let
us drop the index i in the following discussion, thus focusing on a single filter response
only.

The derivative then reads

8kin 8n 8Kin 8n 8a~-- = ----+--2 --,
8cP 8Kin 8cP 8ain 8cP

where the computation ofthe partial derivatives 8nj8Kin and 8nj8a~ is long but never-
theless elementary when starting from the analytical formulation of the KL-distance (4)
and inserting the relations (2) solved for a and s.

The statistics depending on the area form a hierarchy of region-dependent terms:

(14)
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(15)

In the levelset formulation (6) we replace the integrals over nin by integrals over n
weighted by the step function H. Now, taking the derivative W.r.t. cjJ yields (cf. Ap-
pendix B)

80"fn = _ r (x - Jli;) 2H dx r 6'l/J dx + r (x - Jlin)2 6'l/J dx
8cjJ in Ininl in in Ininl

and

(16)

With (13) these terms form the area derivatives in (10).

4 Experiments and Discussion
In this we describe extensive computational studies of the performance of our model. We
validate the use of generalized Laplacian densities for filter response statistics of natural
images, perform experiments in texture retrieval and -synthesis to understand what
image features are captured by our model, and show sampie segmentations on natural
and artificial images. We compare our model with a standard second-order variational
model for image segmentation and demonstrate that it performs weIl.

4.1 Model Validation
Before focusing on segmentation (Section 4.3) we conducted experiments to select a
suitable filter bank and to verify that the mathematical restrietion on the kurtosis of
the filter response to be greater than 9/5 is met in practice (cf. Section 2.2). Fol-
lowing [9] we used the van Hateren database of natural images [30] for evaluation and
removed multiplicative constants from the images by first log-transforming them and
then subtracting their log-means.

Table 1 summarizes our results: We display the median and the two quartiles of the
KL-distance between the filter response histograms and a generalized Laplacian with
identical variance and kurtosis. For comparison, we also report the histograms' average
entropy. The' results show that on average almost alt information in the histograms is
captured by the parametric model.

The following experiments were conducted using the steerable pyramid filter bank
sp3 with four oriented sub-band filters and three scales. In Fig. 3 we show the log-
histograms of the kurtosis ,.,;for each individual filter determined for all 4167 images of
the database. Two things are remarkable: First, the distribution of /'l, follows closely a
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Figure 3: Check für pathülügical statistics. Log-histogram of kurtosis I'i, measured
over 4167 images from the van Hateren database [30] for a steerable pyramid filter bank
with three seales (rows) and four orient at ions (eolumns). The minimal and median
values for I'i, are listed in the individual image eaptions. Note that the histograms are
very regular, and that for eaeh filter I'i, is weH above 9/5, thus no pathological cases are
present in the database.
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spO sp1 sp3 sp5 qmf9 qmf12 qmf16 haar daub3

KL-dist median 0.053 0.056 0.058 0.051 0.126 0.126 0.124 0.103 0.111

KL-dist q-25 0.033 0.037 0.040 0.036 0.074 0.074 0.075 0.064 0.068

KL-dist q-75 0.088 0.091 0.090 0.076 0.264 0.263 0.251 0.191 0.213

entropy median 4.498 4.286 4.220 4.223 3.829 3.824 3.832 3.868 3.857

entropy q-25 4.095 3.873 3.828 3.820 3.458 3.447 3.461 3.473 3.489

entropy q-75 4.801 4.608 4.521 4.527 4.138 4.135 4.142 4.200 4.165

KL-dist / entropy 0.011 0.013 0.013 0.012 0.033 0.033 0.032 0.026 0.028

Table 1: Model validation. Median and quartiles of KL-distances between his-
tograms and parametric model (1) measured over 4167 pictures from the van Hateren
database [30] for different sets of filters. For comparison, entropies of the filter responses
are also reported. The steerable pyramid filter responses (columns 1 to 4) fit particularly
well: Only a small fraction of the information present in the histograms is ignored (last
row).

shifted exponential distribution. Second, the minimal values of K, encountered are well
above the critical value of 9/5. Thus, distributions which cannot be described by our
model do not occur in natural images.

Unfortunately, during segmentation we work with small parts of images for which
small values for kurtosis are observed. Especially very homogeneous image regions like
sky or plain street oceasionally lead to untypieal filter response histograms. In the
segmentation experiments reported below we treated these histograms as outliers -
without any notieeable deterioration of segmentation quality.

To assess the quality of our probabilistie distanee measure we ran an experiment in
texture retrieval on images from the Brodatz database: We extraeted 16 image patehes
of size 100 x 100 pixels non-overlappingly from 32 Brodatz images. Then we took eaeh of
the 32.16 = 512 image patehes as a query and seleeted from the remaining patehes the
one most similar to the query w.r.t. a number of norms: We examined LI and Loo norms
for veetors of filter response statisties eolleeted over different seales and Qrientations and
for different sets of linear filters. Also, we examined KL-distance. The distanees for
the individual seal es and orientations were eombined using the max, mean, and median
operator. A retrieval was eonsidered eorreet if the pateh most similar to the query
originated from the same Brodatz image. Otherwise it was eonsidered wrong.

Table 2 summarizes the results which show that the LI norm of the KL-distanee
performs best for most filters. This indicates that (12) is a useful distance measure on
images with texture.
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Loo LI med Loo LI med Loo LI med

(O",~) (O",~) (O",~) (a, s) (a, s) (a, s) (KL) (KL) (KL)

spO 112 93 120 136 137 303 75 71 103

spl 64 32 60 66 51 111 33 26 34

sp3 62 30 40 66 48 47 29 18 24

sp5 77 32 33 65 32 45 38 30 24
qmf9 64 19 32 66 38 82 16 12 17

qmf12 79 19 35 78 39 89 20 16 23

qmf16 84 21 34 84 41 83 20 17 22

haar 78 28 39 89 43 122 34 21 35

daub3 82 23 44 80 46 90 29 17 22

Table 2: Assessment of KL-distance. Number of false retrievals on 512 randomly
sampled text ure image patches from the Brodatz database [1]. Different filters, features,
and strategies to combine individual filter responses are compared. The minimal error
rate for each filter is marked in boldface. KL-distance with LI metric performs best in
most cases.

4.2 Texture Synthesis Experiment
To understand wh ich image features are captured we synthesized text ure images using
our model. For computational efficiency we did not resort to the Gibbs sampier but
modified the fast pyramid-based algorithm of Heeger and Bergen [8] instead. This
greedy algorithm enforces filter histogram similarity between a target image and a source
image initialized to random noise over different scale and orientation bands of a steerable
pyramid. In contrast to Heeger and Bergen we did not fit the complete filter histograms
but only their generalized Laplacians. A similar approach was taken in [29] where
Bessel K forms and the Gibbs sam pier were used to synthesize texture images from a
larger number of linear filter responses.
Figure 4 shows some results: While our - from the viewpoint of image synthesis:

simple - method does not produce realistically looking textures it appears that essential
information for image segmentation such as scale, granularity and predominant orienta-
tion are retained.

4.3 Segmentation Experiments
Next we composed randomly selected textures from the Brodatz database and arranged
them in a texture collage with a cross-shaped inlay of one texture in another (Fig. 5).
We segmented 100 text ure collages using (9) without area derivatives and with fixed
default parameters Al = A2 = 1, window size IWI = 80 x 80 pixels. For comparison, we
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Figure 4: Texture synthesis. Textures from the VisTex database (first and fourth
column) are reproduced using the algorithm of Heeger and Bergen [8] (second and fifth
column) and a simplified version which uses only image features captured by our model
(third and sixth column). All images were synthesized using identical filters and the
same number of iterations. We see that our model reproduces scale, granularity and
predominant orientation of the image.

implemented an energy term based on second order statistics (cf. [32, eqn. (20)]):

(17)

This model should work well for images where the mean is the most important region
descriptor (Fig. 8(h)). Our Brodatz-collages are of such type: The individual texture
images usually are quite homogeneous so filter response differences are likely to origin
from texture boundaries.

We ran both models for 100 iteration steps, i.e., well after we expected convergence,
on each text ure collage. For increased speed we computed the image statistics on a
subsampled image and interpolated the result on the whole image. This makes the
region boundaries look slightly smoother than one would expect. As both models are
affected in exactly the same way this should not affect the model comparison. We
finally determined the percentage of correctly segmented pixels. We found (Tab. 3) that
the average performance (median) as well as the performance on difficult images (25%
quartile) of our model was significantly better than the performance of model (17).

We then evaluated the importance of the area derivatives, which are often omitted
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Figure 5: Sampie segmentation. Brodatz texture collages segmented with KL-
distance (solid line) and second order statistics (dotted line) with default parameters
set. The KL-distance captures the cross-shaped inlay better than second order statis-
tics. Here, we show two examples out of a large number of segment at ion experiments,
the statistics of which is given in table 3.

reference model proposed model improvement

median 0.65 0.81 25%

q-25 0.47 0.69 47%

q-75 0.81 0.84 4%

Table 3: Comparison of segmentation quality. The percentage of correctly seg-
mented pixels on a set of 100 randomly generated Brodatz texture collages is reported
for our model and for a reference model based on second order statistics. The median
and both quartiles are shown. Our model clearly outperforms the reference model on
average and shows much better performance on difficult images.

in variation al segmentation implementations. We took the first 100 images from the
van Hateren database and computed the area derivative term from (9)

(18)

for an initial segmentation consisting of equally spaced squares distributed over the
whole image (Fig. 8(a)). For comparison, we computed the KL-term

(19)

and measured the influence over the whole image.
The results (Tab. 4) indicate clearly that for our choice of distance measure the area

derivatives can safely be ign 0red. This validates common practice. Note, however, that
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q-lO
KL-term -4.0366

Area-term -3.61. 10-5

q-90

2.6027

2.11 . 10-5

Table 4: Importance of the area term. The 10% and the 90% quantiles of equa-
tions (18) and (19) evaluated on 100 images from the van Hateren database are reported.
The contributions of the area term are five orders of magnitude smaller than the con-
tribut ions of the KL-term, indicating that the area derivatives can safely be ignored.

(a) t=O (b) t=lO (c) t=20 (cl) t=50

Figure 6: Unsupervised segmentation. Zebras are separated from the background.
Contours were initialized to boxes, stopping was determined automatically according to
E(c/J)'.

recently Jehan-Besson et al. [10] have come to different conclusions for a different choice
of distance measure.

Fig. 6 to 8 show some examples for supervised and unsupervised segmentation of
natural images. In Fig. 6 we examine an image from the Berkeley database [15]. The
contour was initialized to equally spaced boxes. As stopping criterion we computed
the improvement of the energy functional (6) for every time step and stopped as soon
as it dropped below a previously determined threshold. The same threshold was used
for all experiments. The zebra pattern is captured weIl by our model: The contour
immediately locks onto the zebra pattern and energy (6) (not shown) drops sharply as
the zebra is more and more covered.

Fig. 7 shows a more difficult case: A tree standing in front of a house, casting a sharp
shadow on the house. With this image, unsupervised segment at ion merely separates
the irregular regions from the homogeneous sky and parts of the streets (Fig. 7(e) -
Fig. 7(h)). In contrast, if the contour is initialized in a supervised way (Fig. 7(a))
the model captures the visually dominant tree. However, in the final segmentation
(Fig. 7(d)) relatively large parts of the shadowed house are captured as weIl.

In Fig. 8 we compare our model to second order statistics (18) on an image from
the MIT VisTex database [19]. The MDL criterion (3) separates the trees from the
image fore- and background. This is sensible: The trees form an image region which is
relatively expensive to encode while sky and grassland are comparatively homogeneous.
Using one prob ability model for the trees and one for the rest of the image thus minimizes

16



(a) t=O (b) t=lO (c) t=25 (d) t=56

(e) t=O (f) t=5 (g) t=10 (h) t=22

Figure 7: Supervised and unsupervised segmentation. With supervised segmen-
tation the tree is separated from house and car. Unsupervised segmentation fails in
this case: Initialization of the filter response model is to unspecific, yielding a rat her
uninteresting segmentation into homogeneous (sky, street) and inhomogeneous regions
(car, tree, house). Note the low image contrast in the lower left part of the tree.

the expected coding length of the image. Second order statistics simply separates the
bright sky from the rest of the image, yielding a less appealing segmentation.

5 Conclusions and Further Work
In this paper we proposed a segmentation approach based on natural image statistics
and the gradient-less level set segmentation method introduced by Chan and Vese [4].
Exploiting the fact that a simple parametric model accurately describes the statistics of
a wide dass of filter responses on natural images we constructed an energy functional
justified by a minimum description length argument.

We ran evaluations on thousands of images checking that pathological cases not
captured by our model do not occur in real world images (Fig. 3), that the empiri-
cally observed histograms are accurately represented (Tab. 1), and that the minimum
description length formulation does contribute to the descriptive power of our model
(Tab. 2).

We conducted experiments to evaluate the performance of our segmentation method
in comparison to a second order model which has been used successfully for image
segmentation before [32]. The results indicate that for segmentation tasks where image
structure is more important than brightness contrasts our model compares favorably
(Fig. 7, 8, 5; Tab. 3).
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(a) t=O (h) t=lO (e) t=20 (d) t=35

(e) t=O (f) t=4 (g) t=8 (h) t=12

Figure 8: Unsupervised segmentation. Unsupervised segmentation of a natural
scene from the VisTex database [19]. Contours were initialized to boxes, stopping was
determined automatically according to E(qy)'. The contour evolution at different time
steps is displayed for our model (Fig. (a )-( d)) and for second order statistics (Fig. (e)-
(h) ). The trees in the center of the image are the visually most dominant element which
is reflected by the segmentation with our model. Second order statistics separates the
bright sky from the darker rest of the image, failing to capture the visually dominant
trees.

Finally, we examined the importance of an area derivative term emerging during the
derivation of the first variation of our energy functional. We found (Tab. 4) that for
our functional the area derivative's contribution is not significant, thus validating the
common practice of omitting it. Omitting the area derivatives also greatly simplifies
the implementation of our method and lifts the requirement that the area descriptors
kin and kout must be differentiable.

An interesting line of research for the future is to examine how image features can
be captured with even more involved image probability densities without compromising
model simplicity too much: Our energy functional can in principle be applied on ar-
bitrary probability densities. However, model validation issues as well as performance
arguments make image models desirable which are easy to train even on small image
patches.
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,---------------------_ .._-------

A First Variation of the Energy Functional
The exposition follows [4]' suitably generalized and adapted to OUf approach. Starting
from (9)

~: = :4J [Lkb IV'4J18dx] + L 8(>'lkout - >'2kin)~ dx

1( akout akin )
+ n >'1~H + >'2 a4J (1 - H) ~ dx

we take a closer look at the first term which equals

(20)

by product rule. With Green's first theorem the second part becomes

(21)

which in connection with V'81~:1 = 8'1V'4J1 and (20) yields

Note that we can replace each area integral containing the Dirac impulse into an integral
over the region boundary C = {x : 4J(x) = O}:

Lf(x, 4J)8(4J)dx = 1f(x, O)ds.

Hence we can write

(23)

Assuming C n an = 0, this leads to (10).
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B Derivation of the Area Terms
We start from relations (14) and replace the integrals over Oin by integrals over 0
weighted by the step function H. Taking the derivative W.r.t. cf>yields

and

(26)

and finally
ß IOinl = r ßHd = r 5:.1. d
ßcf> 1n ßcf> x 1nU'f' x.

Collecting these terms and using fn(J.Lin - x)H dx = 0 yields (15).
The derivation of ßKj ßcf> proceeds in the very same manner:

(27)

where

and

(29)

Inserting the various terms into each other, this yields (16).
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