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Abstract

The goal of this paper is to investigate segmentation methods that combine fast
preprocessing algorithms using partial differential equations (PDEs) with a wa-
tershed transformation with region merging. We consider two well-founded PDE
methods: a nonlinear isotropic diffusion filter that permits edge enhancement, and
a convex nonquadratic variational image restoration method which gives good de-
noising. For the diffusion filter, an efficient algorithm is applied using an additive
operator splitting (AOS) that leads to recursive and separable filters. For the
variational restoration method, a novel algorithm is developed that uses AOS
schemes within a Gaussian pyramid decomposition. Examples demonstrate that
preprocessing by these PDE techniques significantly improves the watershed seg-
mentation, and that the resulting segmentation method gives better results than
some traditional techniques. The algorithm has linear complexity and it can be
used for arbitrary dimensional data sets. The typical CPU time for segmenting a
2562 image on a modern PC is far below one second.

Keywords: nonlinear diffusion, variational methods, image restoration, additive
operator splitting, Gaussian pyramid, watershed segmentation, region merging

CR Subject Classification: 1.4.6, 1.4.3, 1.4.4.

1 Introduction

Segmentation is one of the bottlenecks of many image analysis and computer vision tasks
ranging from medical image processing to robot navigation. Ideally it should be efficient
to compute and correspond well with the physical objects depicted in the image. This
also requires that segmentation gives a complete partitioning of the image such that
object contours are closed and no dangling edges exist.

In the last decade much research on PDE-based regularization methods has been
carried out; see e.g. [1, 2, 3, 4] for recent overviews. Although the promising results
suggest that they might be attractive as a preprocessing step for many subsequent
image analysis methods, little research has actually been carried out which combines
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PDE-based preprocessing methods with other techniques. Omne of the problems was
that PDE-based methods have been considered as being too slow in order to become an
adequate partner for efficient other methods. This shows the need to further develop
efficient algorithms for PDE-based techniques.

The goal of the present paper is to address these topics in the following way:

e Image segmentation is achieved by means of a watershed algorithm. This popular
morphological method is more more than an edge detector: it gives a true image
partitioning without dangling edges. The|watershed segmentation is sufficiently
fast for most applications, but it suffers from the limitation that many irrelevant
minima cause an oversegmentation. ‘

e In order to reduce the oversegmentation problem we study the use of two PDE-
based techniques for preprocessing the image before segmentation: the nonlinear
diffusion technique by Catté et al. [5] which allows edge enhancement, and a
nonquadratic variational restoration technique of Schnérr [6] and Charbonnier et
al. [7] which is well-suited for edge-preserving image denoising. These methods
have been chosen as simple prototypes of PDEs that are mathematically well-
founded: they are well-posed in the sense of Hadamard in that they have a unique
solution which is stable with respect to perturbations of the original image.

e As an efficient algorithm for the nonlinez‘jmr diffusion filter we apply a recently
developed method based on an additive operator splitting (AOS) [8]. It leads to
separable and recursive filters. For the nonquadratic variational image restoration

method, we develop a novel algorithm: Pinimization of the energy functional
is achieved by considering a steepest descent method that leads to a diffusion—
reaction PDE. This PDE is then solved ‘by a modified AOS algorithm that is

embedded in a Gaussian pyramid decomposition.

The resulting segmentation algorithms can be generalized in a straightforward way
to arbitrary dimensional data sets. Their compléxity is linear in the pixel number, and
they produce identical results when the image is ‘rotated by 90 degrees. An overall CPU
time of less than one second for segmenting a 2562 image on a typical PC or workstation

makes them attractive for many time-critical applications.

The paper is organized as follows. Section’ 2 sketches the basic structure of the
contrast-enhancing nonlinear diffusion filter and the convex nonquadratic restoration
method. In Section 3 we discuss efficient and {"eliable numerical techniques for these
methods. They are based on an additive oper!ator splitting. For approximating the
variational restoration method, these AOS tech!niques are extended to novel pyramid
AOS schemes. In Section 4 we describe the watershed algorithm with region merging,
and in Section 5 we illustrate the usefulness of the combined segmentation process by
applying it to several examples and comparing it with classic approaches. The paper is
concluded with a summary in Section 6.

Related work. The work presented here has been influenced by several related
approaches. Closest in terms of efficient PDE-based regularization methods is the work




of Acton [9] on multigrid versions for nonlinear diffusion filtering. They are, however
not based on AOS schemes and they do not use methods with a reaction term. It is
common to supplement watershed segmentations with tools for reducing the overseg-
mentation problem. An algorithm by Orphanoudakis et al. [10] also uses region merging
for this purpose, but it applies statistical instead of PDE-based smoothing strategies.
Promising results of combining watershed algorithms with nonlinear diffusion have been
described recently by De Vleeschauer et al. [11] and Sijbers et al. [12]. Investigations
of watershed algorithms within scale-space hierarchies have been carried out by Griffin
et al. [13], Olsen [14], Sramek and Wrbka [15], and Olsen and Sporring [16] for the
linear diffusion scale-space, and by Jackway [17] for the dilation—erosion scale-space. A
nonmorphological segmentation algorithm based on nonlinear diffusion scale-spaces has
been studied by Niessen et al. [18, 19]. This discussion shows that the novelty of our
approach consist of developing pyramid AOS algorithms for efficient PDE-based regu-
larization, and combining fast AOS-based algorithms with an important morphological
segmentation tool, the watershed algorithm. This results in a fast segmentation method.
A preliminary version of the present manuscript has been presented at a conference [20).

2 PDE-Based Regularization

Below two prototypes for well-posed PDE-based regularization techniques are presented.
The first one allows contrast enhancement, while the second one can be expressed as an
energy minimization method. These two methods are only representatives of a much
larger class of diffusion-based smoothing methods. For a more detailed treatment of this
topic the reader is referred to [4].

2.1 The Nonlinear Diffusion Filter of Catté et al.

In the m-dimensional case the filter of Catté, Lions, Morel and Coll [5] has the following
structure:

Let Q2 := (0,a;) X .... x (0, a,,) be our image domain and consider a (scalar) image
f(z) as a bounded mapping from  into the real numbers R. Then a filtered image
u(z,t) of f(x) is calculated by solving the diffusion equation with the original image as
initial state, and reflecting boundary conditions:

Bu = div (g(|Vug|2) Vu) (1)
u(z,0) = f(z), (2)
Ontilan = 0, (3)

where n denotes the normal to the image boundary 0f2.

The “time” ¢ is a scale parameter: larger values lead to simpler image representations.
In order to reduce smoothing at edges, the diffusivity g is chosen as a decreasing function
of the edge detector |Vu,|?, where Vu, is the gradient of a Gaussian-smoothed version



Vu, = V(K,*u), (4)

We use the diffusivity 1

e 0) )
9(s7) = 1_exp(;j§i;§) (s > 0). (6)

For such rapidly decreasing diffusivities, smootping on both sides of an edge is much
stronger than smoothing across it. This selective smoothing process prefers intraregional
smoothing to interregional blurring. The factor 3.315 ensures that the flux &(s) :=
sg(s?) is increasing for |s| < A and decreasing for |s| > A. Thus, X is a contrast parameter
separating low-contrast regions with (smoothiné) forward diffusion from high-contrast
locations where backward diffusion may enhance edges [21]. After some time this filter
creates segmentation-like results which are piecewise almost constant. For ¢ — oo,
however, the image becomes completely flat [4]. Well-posedness results for this filter
can be found in [5, 4] and a scale-space interpretation in terms of an extremum principle
as well as decreasing variance, decreasing energy, and increasing entropy is given in [4].

The effect of this diffusion filter is illustrated in Figure 1 (c),(d). We observe that
it creates piecewise almost constant regions that are separated by sharp edges. If the
images are very noisy, however, the filter performance deteriorates near edges where it
tends to preserve these noisy structures by decrez%sing the diffusivity. In the next scetion
we are concerned with a related method that is better suited for noise elimination than

isotropic nonlinear diffusion filtering.

2.2 Variational Image Restoration

Many variational methods for image restoration (such as [6, 7, 22]) obtain a filtered
version of some degraded image f as the minimizer of an energy functional of type

5= [ (w17 + @ (V) ds 7

where the regularizer ¥ is an increasing function. The first summand encourages sim-
ilarity between the restored image and the oriéinal one, while the second summand
rewards smoothness. The smoothness weight « > 0 is called regularization parameter.
From variational calculus it follows that the minimizer of E;(u) satisfies the so-called
Euler-Lagrange equation
0 = div (V(|Vuf)Vu) + 3(f —u) (8)

(s

This can be regarded as the steady-state (¢ — co) of the diffusion-reaction process

Bu = div (\1/'(|vu|2)w) +1(f-w) 9)

4
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This shows the close connection between variational image restoration and diffusion
filtering. Indeed, much more relations have been discovered recently; see [24] for more
details. In our case the convex potential [23]

U(|Vul?) = A1+ [Vul2 /X2 +e|Vul* (A e >0)

is used. The corresponding diffusivity in (9) is given by its derivative
/ 2 1"
V(|Vul*) = \ te
V1+|[Vul?/A2
|
Choosing a potential function ¥(s?) that is c:onvex in s allows to guarantee well-
posedness and stable algorithms [6]. For nonconvex potentials as in [25, 26], several

well-posedness questions are open. Moreover, tht‘e diffusion-reaction equation (2.2) con-

verges globally (i.e. for all initial values) to the solution of the Euler-Lagrange equation-
(8). It should be noted that the convex potential implies that the corresponding diffusive
flux ®(s) = s¥'(s?) is increasing in s. Thus, backward diffusion does not appear and
edge enhancement is not possible. Nevertheless, since the diffusivity ¥'(|Vu|?) is de-
creasing in |Vu|?, smoothing at edges is reduced and discontinuities are better preserved
than in linear smoothing methods.

Figure 1(e),(f) depicts the filter performance of this method. It has a remarkable
robustness under noise, but, in contrast to the nonlinear diffusion filter of Catté et al.,

it cannot enhance edges. This situation can be h:andled by more sophisticated diffusion
filters such as edge-enhancing anisotropic diffusion [27]. They, however, require more

complicated numerical algorithms that are beyor‘lld the scope of the present paper.

3 Efficient Algorithms for PDE Based Regulariza-
tion

3.1 Limitations of Conventional Schemes

Let us first consider finite difference approximations to the m-dimensional diffusion filter
of Catté et al..

A discrete m-dimensional image can be regarded as a vector f € R, whose com-
ponents f;, ¢ € {1,..., N} display the grey values at the pixels. Pixel ¢ represents the
location z;. Let h; denote the grid size in the | direction. We consider discrete times
tr := k7, where k € Ny and 7 is the time step 'size. By uf and g* we denote approx-
imations to u(z;, ) and g(|Vus(z;, t)|?), respéctively, where the gradient is replaced
by central differences. ‘

The simplest discretization of the diffusion equation with reflecting boundary con-

ditions is given by !

DIP A= AUE (10

I=1 jeN(3)

k+1



where N, (%) consists of the two neighbors of pixel 7 along the [ direction (boundary pixels
may have only one neighbor). In vector-matrix notation this becomes

LR = S Ak (11)

A, describes the diffusive interaction in ! direction. One can calculate u*+!

(explicitly) from u* without any matrix inversion:

directly

uF = (I+T§:Al(uk)) b, (12)

For this reason it is called explicit scheme. Each explicit iteration step can be performed
very fast, but the step size has to be very small: one can show [8] that in order to
guarantee stability, the step size must satisfy

1

TS S
l:lh?

" For most practical applications, this restriction requires to use a very high number of
iterations, such that the explicit scheme is rather slow.
Thus, we consider a slightly more complicated discretization next, namely

(13)

uk+1

—— =) Ak (14)
-
=1

This scheme does not give the solution uf*! directly (explicitly): It requires to solve a

linear system first. It is called a linear-implicit (semi-implicit) scheme. The solution
uF*1 is given by

uktt = (I—TiAl(uk))_luk. (15)

This scheme is absolutely stable [4].

In the 1-D case the system matrix is tridiagonal and diagonally dominant. For such
a system a Gaussian algorithm for tridiagonal systems (also called Thomas algorithm)
solves the problem in linear complexity [8].

For dimensions m > 2, however, it is not possible to order the pixels in such a
way that in the i-th row all nonvanishing elements of the system matrix can be found
within the positions [i,7 — m] to [z,i + m]: Usually, the matrix reveals a much larger
bandwidth. Applying direct algorithms such as Gaussian elimination would destroy the
zeros within the band and would lead to an immense storage and computation effort.
Typical iterative algorithms become slow for large 7, since this increases the condition
number of the system matrix. Thus, in spite of its absolute stability, the semi-implicit
scheme is often not much faster than the explicit one.




3.2 AOS Schemes

In order to address the preceding problem we consider a modification of (15), namely

the additive operator splitting (AOS) scheme (8]

1

m

uk+1

i (I — m%Al(uk)) B uk,

(16)

The operators By(u*) := I—m7A;(u*) describe one-dimensional diffusion processes along
the z; axes. Under a consecutive pixel numbering along the direction / they come down

to strictly diagonally dominant tridiagonal matri
the Thomas algorithm.

Moreover, (16) has the same first-order Taylor
implicit scheme: all methods are O(7 + h?+ ... +
equation.

Since it is an additive splitting, all coordinat
manner. This is in contrast to conventional sp
which are multiplicative [28]. They may produce
by 90 degrees.

ces which can be efficiently inverted by

expansion in 7 as the explicit and semi-
h?) approximations to the continuous

e axes are treated in exactly the same
litting techniques from the literature,
different results if the image is rotated

Recently a general framework for discrete nonlinear diffusion scale-spaces has been

discovered, which guarantees that the discretizat
erties as its continuous counterpart [4]. One can
such a discrete nonlinear diffusion scale-space f

tion reveals the same scale-space prop-
verify [8] that the AOS scheme creates
or every (!) step size 7. As a conse-

quence, it preserves the average grey level u, satisfies a causality property in terms of a
maximum-minimum principle, and converges to'a constant steady state. Moreover, the
process is a simplifying, information-reducing transform with respect to many aspects:

The p-norms

N
¥l == O uf ) (17)
i=1
and all even central moments
1 &
M) = = (= )™ (18)
=1
are decreasing in k, and the entropy
. N
S[u*] == — Zuf In uf, (19)
i=1

a measure of uncertainty and missing informatio
all 7).

Table 1 summarizes the features of the disct
of AOS schemes can be found in [8], and a para
images is described in [29].

n, is increasing in & (if f; is positive for

1ssed schemes. Full algorithmic details
llel implementation for processing 3-D




Table 1: Schemes which create discrete nonlinear diffusion scale-spaces.

scheme formula stability | costs/iter. | efficiency
explicit uFtl = (I+T 3 Al(uk)> uk T < very low low
= 5
™ -1
semi-implicit | uF*1 = <I—7‘ dSTA (uk)) u® T < 00 high fair
=1 ‘
T = 2
AOS uttl = — % (I—mTAl (u’“)) uF | T <00 low high
m =1

Many nonlinear diffusion problems require only the elimination of noise and some
small-scale details. Often this can be accomplished with no more than 5 iterations in
sufficient precision. We shall see that this takes about half a second for a 2562 image on
current PCs or workstations.

3.3 Pyramid AOS

Let us now investigate a novel extension of the AOS framework to the variational image
restoration method. In matrix-vector notation a semi-implicit discretization of (9) is
given by

uF ok

7 — in:Al(uk) uk—i—l + a(f _ uk—i—l)- (20)
=1

Solving for u**! yields

-1
T e uF+Zf
’U,k+1 = <I — 1+ 7 ZA[(Uk)> 1—}——‘; (21)

@ =]

In analogy to the previous section we may approximate this scheme by its AOS variant

1 < mrT k4 zf

k+1 k @

U Z—E I — A — 22
ml:1< 1+Z l(u)> 1+Z (22)

which again comes down to recursive filtering.

In contrast to the pure diffusion filter, however, we are now interested in approximat-
ing the steady-state solution for ¢ — oo. Even with large time step sizes, the diffusion
process will mainly act within a fairly small vicinity around each pixel. Thus, many
iterations are required if the image size is large. In order to speed up the process, we
may embed the AOS scheme into a pyramid framework. The idea is as follows:

e create a Gaussian pyramid decomposition [30] with the smoothing mask (1,1, 1)



multiplied by 0.75.

1terations.

initial value for AOS iterations at this lev

Figure 2 illustrates the effect of pyramid AOS. T

order to obtain good convergence at each level.

sition can be performed with linear complexity, t

well. We shall see that regularizing a 256% imag
this pyramid AOS scheme requires only around
It should be noted that the pyramid embed

image than pure AOS iterations would do, sin
globally convergent. However, pyramid AOS com

data that are provided by the previous pyramid

4 Watershed Segmentation

The preceding PDE-based regularization techn
noise and unimportant fine-scale details have be

In order to create a true segmentation, we hay

by a technique which gives an edge map without
lead to a partitioning of the entire image into a fi
the semantically important corners and junction
it should be fast. Classical gradient-based edge
Kirsch masks are not sufficient for this task, as
also holds for more sophisticated variants such a

We found a watershed technique [32, 33| bas
very useful for these purposes. Such a technique
the intensity values correspond to the elevation.

adapt the filter parameters to the downsar
diffusion-reaction processes requires that o
image size by a factor 2. Since the smooth
of an ideal step edge by 25 %, it follows tk

expand this solution to the next finer leve
e

npled image. The scaling behaviour of
must be divided by 4 if one reduces the
ing mask (3, 3, 1) reduces the contrast
1at the contrast parameter A has to be

start with the coarsest level (a 2 x 2 image), and apply a specified number of AOS

1 by linear interpolation, and use it as

1.

proceed in the same way until convergence at the finest level is reached.

ypically, five iterations are sufficient in
Since the Gaussian pyramid decompo-
he overall complexity remains linear as

eon a current PC or workstation with

0.5 CPU seconds.

ling converges to the same regularized
ce the convex variational approach is
verges faster because of its better initial
level.

with Region Merging

iques lead to simplified images where
'en removed.

| e to postprocess the regularized image
; dangling edges. This edge map should
nite number of regions, it should handle
s gracefully, and — last but not least —
detectors such as a Sobel operator or
they do not give closed contours. This
s the Canny edge detector [31].

ed on the squared gradient magnitude
regards an image as a landscape where

Areas where a rain drop would drain to

the same minimum are denoted as catchment basins, and the lines separating adjacent

catchment basins are called watersheds. Wate
since they are invariant under monotone grey s

|
L

sheds are a morphological technique,

:cale-transformations. They lead to an

image segmentation into regions, and they can describe edge junctions [35]. This is in
contrast to edge detectors based on zero-crossings of differential operators such as the
Laplacian-of-Gaussian [34]: they do not allow to detect T-junctions [36].
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We use Fairfield’s watershed algorithm [37]. Our code is based on an implemen-
tation of Oltmans [38], where the Pascal code has been transferred into C and minor
modifications have been included in order to optimize its performance.

The basic idea of this algorithm is sliding downhill on the gradient squared surface
until one arrives at a local minimum. Then one replaces all pixels along this path by the
image intensity at its corresponding extremum.| This algorithm has linear complexity.
The squared image gradient is calculated by Sobel operators.

Watershed algorithms often create too many éegments. Although this oversegmenta-
tion is less dominant in the PDE-regularized image than in the original one, it may still
lead to problems. Numerous ways have been proposed in order to deal with the overseg-
mentation problem, for instance by using markers [33, 39], region merging [40, 41, 10], or
scale-space techniques [13, 17, 14]. In our case we shall see that a simple region merging
strategy is adequate. j

In such a step, adjacent regions are merged| if their contrast difference is below a
specified threshold. This contrast parameter car|1 be related to the contrast parameter

)\ of the PDE-based regularization, thus it does not constitute an additional parameter.

Finding a connected region where neighboring pi|xels do not differ by more than a spec-

ified contrast value can be performed in linear cqmplexity and the result is independent
of the order in which the algorithm runs through the pixels. Thus, the entire segmen-
tation algorithm is invariant under image rotations by 90 degrees and it reveals a linear
total complexity.

A watershed segmentation of a 2562 image with subsequent region merging takes
about 0.2 CPU seconds on a PC or workstation. Thus, the overall segmentation time

including the PDE-based regularization is far less than 1 second.

5 Experiments

Figure 3 illustrates how preprocessing by nonlinear diffusion filtering greatly reduces
the number of segments in a medical MR image: We also observe that under nonlinear
diffusion the segment boundaries remain well located and need not be traced back in
order to improve their localization. As can be seen for instance at the cerebellum, the
segments correspond well with the depicted physical objects. Moreover, segmentation of
elongated objects does not create any problem. For comparison purposes with a classic
approach, Figure 3(e) shows the result of an edge detector based on Sobel operators.
Here the gradient magnitude has to be postprocessed in order to give useful information.
But even with sophisticated postprocessing strategies such as hysteresis thresholding
and nonmaximum suppression, there remains one significant difference to a watershed
segmentation: the contours are not closed. Hence such an operator does not give a
partitioning of the image domain into segments. The latter one can be achieved by

considering level sets of a differential operator suéh as the zero crossings of the Laplacian

in Figure 3(f). In this case fairly large Gauss:ians are required in order to prevent
oversegmentation. As a result, image structur‘es become much more dislocated that
in the watershed approach with nonlinear diffusion as preprocessing. This is clearly

visible when comparing the contours of the cerebellum in Figs. 3(d) and (f). Another
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Table 2: CPU times for the different steps of the segmentation algorithm when 2562
images are processed.

method Sun Ultra 60 | PC (Pentium II MMX, 440 Mhz)
nonlinear diffusion 0.494 s 0.591 s

(5 iterations)

variational restoration 0.407 s 0.516 s

(5 iterations per level)

watershed transformation | 0.162 s 0.199 s

with region merging

difference between these two approaches consists of the behavior at junctions: as already
mentioned and as is visible in Figure 3(f), zero crossings cannot meet at T-junctions,
whereas watersheds do.

In Figure 4 it is shown that the merging step can be essential for avoiding the
oversegmentation problems in the watershed algorithm. Nonlinear diffusion may create
almost piecewise constant areas, but small fluctuations within such an area introduce
many semantically irrelevant catchment basins. Such fluctuations can also be caused by
quantization errors, e.g. by storing grey values in a bytewise manner. Merging adjacent
regions with similar grey values constitutes a simple remedy for these problems.

Finally, Figure 5 gives a comparison between the two PDE-based regularization
techniques. The results are in complete accordance with those from Figure 1. The
contrast-enhancing nonlinear diffusion method gives more realistic results for images
with less noise, as can be seen from the segmentation of the arms and legs in Figure 5(c).
However, in a more noisy situation, the quality of this method degrades significantly.
The variational method that does not allow contrast enhancement, on the other hand,
does not reach the qualities of nonlinear diffusion preprocessing (Fig. 5(e)), but is very
stable under noise (Fig. 5(f)). It is thus the better preprocessing method for noisy
images. Again it should be emphasized that there exist more sophisticated nonlinear
diffusion methods that combine the advantages of both approaches studied here [27].
Their efficient algorithmic realization, however, is more complicated and requires further
research.

Table 2 presents precise CPU times for our segmentation algorithm both for a work-
station (Sun Ultra 60) and a PC (Pentium II MMX, 440 Mhz), when 2562 images are
processed and a GNU C compiler is used. On both architectures, preprocessing by means
of nonlinear diffusion or variational restoration can be achieved in about 0.5 seconds,
while the watershed transformation with region merging takes 0.2 seconds. This shows
that the complete algorithm allows to segment 256 images in much less than a second.
With a PC with 700 MHz it is even possible to segment two such images in less than one
second. Moreover, it should be taken into account that the AOS algorithm, which is the
most time consuming subroutine of the entire method, is very well-suited for parallel
computing [29]. Therefore, further speed up can be achieved in a straightforward way.
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Figure 3: (a) Top Left: MR ima,ge.! (b) Top Right: nonlinear
diffusion filtering of (a). (c) Middle Left: segmentation of (a).
(d) Middle Right: segmentation of (b). (e) Bottom Left: Sobel
operator applied to (a). (f) Bottom Right: Zero crossings of the
Laplacian-of-Gaussian of (a).
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Figure 4: (a) Top Left: test image. (b) Top Right: nonlinear
diffusion filtering of (a). (c) Bottom Left: segmentation of (b)
without merging. (d) Bottom Right: segmentation of (b) with
merging.
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Figure 5: (a) Top Left: hallway sceni:. (b) Top Right: Gaussian
noise added. (c¢) Middle Left: segmentation of (a) with nonlinear

diffusion as preprocessing. (d) Middlejz Right: segmentation of (b)
with nonlinear diffusion as preprocessing. (e) Bottom Left: seg-

mentation of (a) with variational rest

Bottom Right: segmentation of (b) with variational

16

ration as preprocessing. (f)




6 Summary

We have presented efficient algorithms for two prototypes of PDE-based regularization
techniques. These regularizations simplify subsequent segmentation tasks significantly,
such that already a simple watershed algorithm with region merging gives good results.
These segmentation techniques are very fast thanks to the use of AOS schemes and a
novel pyramid AOS algorithm. This makes them attractive for many time-critical appli-
cations. All axes are treated equally, since the result is independent of the pixel ordering.
The entire algorithm can be extended in a straightforward way to m-dimensional data,
and the linear complexity in the pixel number remains valid in any dimension.
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