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Abstract

The goal of this paper is to investigate segmentation methods that eombine fast
preproeessing algorithms using partial differential equations (PD Es) with a wa-
tershed transformation with region merging. VVeeonsider two well-founded PDE
methods: a nonlinear isotropie diffusion filter that permits edge enhaneement, and
a eonvex nonquadratie variational image restoration method whieh gives good de-
noising. For the diffusion filter, an effieient algorithm is applied using an additive
operator splitting (AOS) that leads to reeursive and separable filters. Für the
variational restoration method, a novel algorithm is developed that uses AOS
sehemes within a Gaussian pyramid deeomposition. Examples demonstrate that
preproeessing by these PDE teehniques signifieantly improves the watershed seg-
mentation, and that the resulting segmentation method gives better results than
some traditional teehniques. The algorithm has linear eomplexity and it ean be
used for arbitrary dimensional data sets. The typical CPU time for segmenting a
2562 image on a modern PC is far below one seeond.

Keywords: nonlinear diffusion, variational methods, image restoration, additive
operator splitting, Gaussian pyramid, watershed segmentation, region merging

CR Subject Classification: 1.4.6, 1.4.3, 1.4.4.

1 Introd uction
Segmentation is one of the bottlenecks of many image analysis and computer vision tasks
ranging from medical image processing to robot navigation. IdeaIly it should be efficient
to compute and correspond weIl with the physical objects depicted in the image. This
also requires that segmentation gives a complete partitioning of the image such that
object contours are closed and no dangling edges exist.

In the last decade much research on PDE-based regularization methods has been
carried out; see e.g. [1, 2, 3, 4] für recent overviews. Although the promising results
suggest that they might be attractive as a preprocessing step for many subsequent
image analysis methods, little research has actuaIly been carried out which combines
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PDE-based preprocessing methods with other echniques. One of the problems was
that PDE-based methods have been considered ls being too slow in order to become an

I

adequate partner for efficient other methods. 'TIhis shows the need to further develop
efficient algorithms for PDE-based techniques. I

The goal of the present paper is to address these topics in the following way:
I

• Image segmentation is achieved by means ~f a watershed algorithm. This popular
morphological method is more more than ~n edge detector: it gives a true image
partitioning without dangling edges. The Iwatershed segmentation is sufficiently
fast for most applications, but it suffers from the limitation that many irrelevant
minima cause an oversegmentation. I

• In order to reduce the oversegmentation problem we study the use of two PDE-
based techniques for preprocessing the image before segmentation: the nonlinear
diffusion technique by Catte et al. [5] which allows edge enhancement, and a
nonquadratic variational restoration technique of Schnörr [6] and Charbonnier et
al. [7] which is well-suited for edge-preser1ving image denoising. These methods
have been chosen as simple prototypes of PDEs that are mathematically well-
founded: they are well-posed in the sense of Hadamard in that they have a unique
solution which is stable with respect to perturbations of the original image .

• As an efficient algorithm for the nonlineL diffusion filter we apply a recently
developed method based on an additive o~erator splitting (AOS) [8]. It leads to
separable and recursive filters. For the nonruadratic variational image restoration
method, we develop a novel algorithm: minimization of the energy functional
is achieved by considering a steepest desdent method that leads to a diffusion-

I

reaction PDE. This PDE is then solved ~y a modified AOS algorithm that is
embedded in a Gaussian pyramid decompGlsition.

The resulting segmentation algorithms can Je generalized in a straightforward way
to arbitrary dimensional data sets. Their compl~xity is linear in the pixel number, and
they produce identical results when the image is Irotated by 90 degrees. An overall CPU
time of less than one second for segmenting a 2562 image on a typical PC or workstation
makes them attractive for many time-critical apblications.

The paper is organized as follows. Sectionl2 sketches the basic structure of the
contrast-enhancing nonlinear diffusion filter an<i:lthe convex nonquadratic restoration
method. In Section 3 we discuss efficient and teliable numerical techniques for these
methods. They are based on an additive oper~tor splitting. For approximating the
variational restoration method, these AOS tecHniques are extended to novel pyramid

I

AOS schemes. In Section 4 we describe the wa~ershed algorithm with region merging,
and in Section 5 we illustrate the usefulness of the combined segmentation process by
applying it to several examples and comparing it with c1assic approaches. The paper is
conc1uded with a summary in Section 6.

Related work. The work presented here has been influenced by several related
approaches. Closest in terms of efficient PDE-based regularization methods is the work
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of Acton [9] on multigrid versions for nonlinear diffusion filtering. They are, however
not based on AOS schemes and they do not use methods with areaction term. It is
common to supplement watershed segmentations with tools for reducing the overseg-
mentation problem. Analgorithm by Orphanoudakis et al. [10] also uses region merging
for this purpose, but it applies statistical instead of PDE-based smoothing strategies.
Promising results of combining watershed algorithms with nonlinear diffusion have been
described recently by De Vleeschauer et al. [11] and Sijbers et al. [12]. Investigations
of watershed algorithms within scale-space hierarchies have been carried out by Griffin
et al. [13]' Olsen [14]' Sramek and Wrbka [15]' and Olsen and Sporring [16] for the
linear diffusion scale-space, and by Jackway [17] for the dilation-erosion scale-space. A
nonmorphological segmentation algorithm based on nonlinear diffusion scale-spaces has
been studied by Niessen et al. [18, 19]. This discussion shows that the novelty of our
approach consist of developing pyramid AOS algorithms for efficient PDE-based regu-
larization, and combining fast AOS-based algorithms with an important morphological
segmentation tool, the watershed algorithm. This results in a fast segmentation method.
A preliminary version of the present manuscript has been presented at a conference [20].

2 PDE-Based Regularization
Below two prototypes for well-posed PDE-based regularization techniques are presented.
The first one allows contrast enhancement, while the second one can be expressed as an
energy minimization method. These two methods are only representatives of a much
larger dass of diffusion-based smoothing methods. For a more detailed treatment of this
topic the reader is referred to [4].

2.1 The Nonlinear Diffusion Filter of Catte et al.

In the m-dimensional case the filter of Catte, Lions, Morel and Coll [5] has the following
structure:

Let n := (0, al) x .... x (0, am) be our image domain and consider a (scalar) image
f(x) as a bounded mapping from n into the real numbers R Then a filtered image
u(x, t) of f(x) is calculated by solving the diffusion equation with the original image as
initial state, and reflecting boundary conditions:

OtU = div (g(lV'uaI2) V'u)
f(x),
0,

(1)

(2)
(3)

where n denotes the normal to the image boundary on.
The "time" t is a scale parameter: larger values lead to simpler image representations.

In order to reduce smoothing at edges, the diffusivity gis chosen as a decreasing function
of the edge detector lV'uaI2, where V'ua is the gradient of a Gaussian-smoothed version
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of u:

(4)

(5)

(6)
(S2 = 0)
(S2 > 0).g(s') = {

We use the diffusivity

1
1 (-3.315)- exp (s/;.,)8

I
For such rapidly decreasing diffusivities, smoothing on both sides of an edge is much

I
stronger than smoothing across it. This selectivesmoothing process prefers intraregional
smoothing to interregional blurring. The factor 3.315 ensures that the £lux <1>(s) :=
sg(S2) is increasing for Isl ~ A and decreasing forlsl > A. Thus, Ais a contrast parameter
separating low-contrast regions with (smoothing) forward diffusion from high-contrast
locations where backward diffusion may enhancJ edges [21]. After some time this filter
creates segmentation-like results which are piebewise almost constant. For t ----+ 00,

however, the image becomes completely £lat [4]1. Well-posedness results for this filter
can be found in [5, 4] and a scale-space interpretation in terms of an extremum principle
as well as decreasing variance, decreasing energ~, and increasing entropy is given in [4].

The effect of this diffusion filter is illustrated in Figure 1 (c),(d). We observe that
it creates piecewise almost constant regions that are separated by sharp edges. If the
images are very noisy, however, the filter perforrnance deteriorates near edges where it
tends to preserve these noisy structures by decrelsing the diffusivity. In the next scetion

I
we are concerned with a related method that is better suited for noise elimination than
isotropie nonlinear diffusion filtering.

2.2 Variational Image Restoratiol1
Many variational methods for image restoration (such as [6, 7, 22]) obtain a filtered
version of some degraded image f as the minimrzer of an energy functional of type

Ef(u):= J ((U-J)2 + ~W(I\7uI2)) dx, (7)

where tbe regularizer '" is an in:eaßing functiol. Tbe first. summand encourages sim-
ilarity between the restored image and the orikinal one, while the second summand
rewards smoothness. The smoothness weight a :t> 0 is called regularization parameter.

From variational ca1culus it follows that the niinimizer of E f (u) satisfies the so-called
Euler-Lagrange equation

o = div (w'(I\7uI2)\7u) + ~(J - u) (8)

This can be regarded as the steady-state (t ----+ J) of the diffusion-reaction process

8tu div (""(IV'ul,)Vl) + w - u) (9)

4



Figure 1: (a) Top Left: test image. (b) Top Right: Gaussian
noise with zero mean added. (c) Middle Left: nonlinear diffusion
filtering of (a). (d) Middle Right: nonlinear diffusion filtering of
(b) . (e) Bottom Left: variational restoration of (a). (f) Bottom
Right: variational restoration of (b).
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This shows the dose connection between variational image restoration and diffusion
filtering. Indeed, much more relations have been discovered recently; see [24] far more
details. In our case the convex potential [23]

(\ c > 0)

is used. The corresponding diffusivity in (9) is given by its derivative
I

1\]I'(I'V'uI2) = . + c.
\/1 + l~ul2 /,\2

I

Choosing a potential function \]I(S2) that is +nvex in s allows to guarantee well-
posedness and stable algorithms [6]. For nonconvex potentials as in [25, 26]' several
well-posedness questions are open. Mareover, th~ diffusion-reaction equation (2.2) con-
verges globally (i.e. for all initial values) to the sblution of the Euler-Lagrange equation

I
(8). It should be noted that the convex potential implies that the corresponding diffusive
fiux <p(s) = s\]l'(S2) is increasing in s. Thus, b~ckward diffusion does not appear and
edge enhancement is not possible. Nevertheles~, since the diffusivity \]I'(I'V'uI2) is de-
creasing in l'V'uI2, smoothing at edges is reduced !:mddiscontinuities are better preserved
than in linear smoothing methods. I

Figure l(e),(f) depicts the filter performance of this method. It has a remarkable
robustness under noise, but, in contrast to the rlonlinear diffusion filter of Catte et al.,
it cannot enhance edges. This situation can be Handled by more sophisticated diffusion
filters such as edge-enhancing anisotropie diffus!ion [27]. They, however, require more
complicated numerical algorithms that are beyohd the scope of the present paper.

3 Efficient AIgürithms für PDE-Based Regulariza-
tiün

3.1 Limitations of Conventional Sichemes
Let us first consider finite difference approximations to the rn-dimensional diffusion filter
of Catte et al.. I

A discrete rn-dimensional image can be regarded as a vector f E ]RN, whose com-
ponents fi, i E {1, ... ,N} display the grey values at the pixels. Pixel i represents the
location Xi. Let hz denote the grid size in the l: direction. We consider discrete times
tk := kT, where k E No and T is the time step 'size. By u~ and gf we denote approx-
imations to U(Xi, tk) and g(I'V'Ua(Xi, tk)12), respJctively, where the gradient is replaced
by central differences. I

The simplest discretization of the diffusion equation with refiecting boundary con-
ditions is given by I

T
(10)
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where Ni (i) consists of the two neighbors of pixel i along the l direction (boundary pixels
may have only one neighbor). In vector-matrix notation this becomes

(11)

Al describes the diffusive interaction in l direction. One can calculate uk+1 directly
(explicitly) from uk without any matrix inversion:

m

uk+l = (I + T L Al(Uk)) uk.

1=1

(12)

For this reason it is called explicit scheme. Each explicit iteration step can be performed
very fast, but the step size has to be very small: one can show [8] that in order to
guarantee stability, the step size must satisfy

1
T ~ m 2'

Ll=l h2
I

(13)

For most practical applications, this restriction requires to use a very high number of
iterations, such that the explicit scheme is rather slow.

Thus, we consider a slightly more complicated discretization next, namely

(14)

This scheme does not give the solution Uk+1 directly (explicitly): It requires to solve a
linear system first. It is called a linear-implicit (semi-implicit) scheme. The solution
Uk+1 is given by

m 1

uk+1 = (I - TL Al(Uk)) - Uk.

1=1

(15)

This scheme is absolutely stable [4].
In the 1-D case the system matrix is tridiagonal and diagonally dominant. For such

a system a Gaussian algorithm for tridiagonal systems (also called Thomas algorithm)
solves the problem in linear complexity [8].

For dimensions m 2: 2, however, it is not possible to order the pixels in such a
way that in the i-th row all nonvanishing elements of the system matrix can be found
within the positions [i, i - m] to [i, i + m]: Usually, the matrix reveals a much larger
bandwidth. Applying direct algorithms such as Gaussian elimination would destroy the
zeros within the band and would lead to an immense storage and computation effort.
Typical iterative algorithms become slow for large T, since this increases the condition
number of the system matrix. Thus, in spite of its absolute stability, the semi-implicit
scheme is often not much faster than the explicit one.
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3.2 AOS Schemes
In order to address the preceding problem we consider a modification of (15), namely
the additive operator splitting (A OS) scheme [8]

1 m : -1

uH1 = m L (I - mr AI(Uk)) uk. (16)

The operators B, (Uk) := I - mT Al (uk ;:~scri be Je-dimensional diffusion processes along
the Xl axes. Under a consecutive pixel numberink along the direction l they come down
to strictly diagonally dominant tridiagonal matdces which can be efficiently inverted by
the Thomas algorithm. I

Moreover, (16) has the same first-order Taylorl expansion in T as the explicit and semi-
impli~it scheme: all methods are O( T + hi + ...-++1 h;,J approximations to the continuous
equatlOn.

Since it is an additive splitting, all coordina~e axes are treated in exactly the same
mann er. This is in contrast to conventional sJlitting techniques from the literature,
which are multiplicative [28]. They may produce different results if the image is rotated
by 90 degrees.

Recently a general framework for discrete nonlinear diffusion scale-spaces has been
discovered, which guarantees that the discretizalion reveals the same scale-space prop-
erties as its continuous counterpart [4]. One canlverify [8] that the AOS scheme creates
such a discrete nonlinear diffusion scale-space ~or every (!) step size T. As a conse-
quence, it preserves the average grey level p" satisfies a causality property in terms of a
maximum-minimum principle, and converges to ia constant steady state. Moreover, the
process is a simplifying, information-reducing tqmsform with respect to many aspects:
The p-norms

and all even central moments

N

Ilukllp := (L lu~IP)l/P
i=l

(17)

(18)
N

M2n[Uk] := ~ L(uJ - p,)2n
j=l '

I
I

are decreasing in k, and the entropy I

N I

S[uk] := - L uj In uj, (19)

f . d....c j=l. I .. ., k ('f f' 't'.ca measure 0 uncertamty an m1ssmg mlormatlOil, lS mcreasmg m 1 j IS poslIve lor
all j). I

Table 1 summarizes the features of the discussed schemes. Full algorithmic details
of AOS schemes can be found in [8]' and a padllel implementation for processing 3-D
images is described in [29].
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Table 1: Schemes which create discrete nonlinear diffusion scale-spaces.

scheme formula

explicit Uk+1 = (I +7 ~ Al (uk) ) uk

semi-implicit Uk+1 = (I-7I:Al(uk))- uk
l=1

AOS uk+1 = - I: (I-m7Al(uk))- uk
m l=1

stability

7< 00

7< 00

costs/iter.

very low

high

low

efficiency

low

fair

high

Many nonlinear diffusion problems require only the elimination of noise and some
small-scale details. Often this can be accomplished with no more than 5 iterations in
sufficient precision. We shall see that this takes ab out half a second for a 2562 image on
current pes or workstations.

3.3 Pyramid AOS
Let us now investigate a novel extension of the AOS framework to the variation al image
restoration method. In matrix-vector notation a semi-implicit discretization of (9) is
given by

7

Solving for uk+1 yields

mL Al(Uk) Uk+1 + a (J - uk+l).
l=1

(20)

(

m ) -1 k T

uk+1 = I __ 7_ '" A (Uk) U + cJ.
1+2:-6 l 1+2:-

Cl< l=1 Cl<

(21)

In analogy to the previous section we may approximate this scheme by its AOS variant

(22)

which again comes down to recursive filtering.
In contrast to the pure diffusion filter, however, we are now interested in approximat-

ing the steady-state solution for t ---+ 00. Even with large time step sizes, the diffusion
process will mainly act within a fairly sm all vicinity around each pixel. Thus, many
iterations are required if the image size is large. In order to speed up the process, we
may embed the AOS scheme into a pyramid framework. The idea is as follows:

• create a Gaussian pyramid decomposition [30] with the smoothing mask (1, ~, ~)
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• adapt the filter parameters to the downsalpled image. The scaling behaviour of
diffusion-reaction processes requires that al must be divided by 4 if one reduces the
image size by a factor 2. Since the smootHing mask (~, ~, ~) reduces the contrast
of an ideal step edge by 25 %, it follows tl~at the contrast parameter A has to be
multiplied by 0.75. I

• start with the coarsest level (a 2 x 2 image), and apply a specified number of AOS
iterations .

• expand this solution to the next finer level by linear interpolation, and use it as
initial value for AOS iterations at this levJl.

• proceed in the same way until convergenc1 at the finest level is reached.

Figure 2 illustrates the effect of pyramid AOS. lIypically, five iterations are sufficient in
order to obtain good convergence at each level.lSince the Gaussian pyramid decompo-
sition can be performed with linear complexity, ~he overall complexity remains linear as
weIl. We shall see that regularizing a 2562 imag:e on a current PC or workstation with
this pyramid AOS scheme requires only around 0.5 CPU seconds.

It should be noted that the pyramid embed~ing converges to the same regularized
image than pure AOS iterations would do, sir~ce the convex variational approach is
globally convergent. However, pyramid AOS conterges faster because of its better initial
data that are provided by the previous pyramid level.

4 Watershed Segmentation rith Region Merging
The preceding PDE-based regularization techniques lead to simplified images where
noise and unimportant fine-scale details have be:en removed.

In order to create a true segmentation, we haiVle to postprocess the regularized image
by a technique which gives an edge map without dangling edges. This edge map should
lead to a partitioning of the entire image into a fihite number of regions, it should handle
the semantically important corners and junctiods gracefully, and - last but not least -
it should be fast. Classical gradient-based edgei detectors such as aSobeloperator or
Kirsch masks are not sufficient for this task, as Ithey do not give closed contours. This
also holds for more sophisticated variants such as the Canny edge detector [31].

We found a watershed technique [32, 33] baJed on the squared gradient magnitude
very useful for these purposes. Such a technique Iregards an image as alandscape where
the intensity values correspond to the elevation. Areas where a rain drop would drain to
the same minimum are denoted as catchment b~sins, and the lines separating adjacent
catchment basins are called watersheds. Watebheds are a morphological technique,
since they are invariant under monotone grey s'cale-transformations. They lead to an
image segmentation into regions, and they can ~escribe edge junctions [35]. This is in
contrast to edge detectors based on zero-crossings of differential operators such as the
Laplacian-of-Gaussian [34]: they do not allow to detect T-junctions [36].
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Figure 2: (a) Top: Gaussian pyramid of a noisy test image. (b)
Bottom: regularized by pyramid AOS.
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We use Fairfield's watershed algorithm [37]. Our code is based on an implemen-
tation of Oltmans [38], where the Pascal code fuas been transferred into C and minor
modifications have been included in order to optimize its performance.
The basic idea of this algorithm is sliding ddwnhill on the gradient squared surface

until one arrives at a local minimum. Then one r~places all pixels along this path by the
image intensity at its corresponding extremum. ! This algorithm has linear complexity.
The squared image gradient is calculated by Sotiel operators.
Watershed algorithms often create too many ~egments. Although this oversegmenta-

tion is less dominant in the PDE-regularized image than in the original one, it may still
lead to problems. Numerous ways have been proposed in order to deal with the overseg-
mentation problem, for instance by using markers [33, 39]' region merging [40, 41, 10]' or
scale-space techniques [13, 17, 14]. In our case we shall see that a simple region merging
strategy is adequate.
In such a step, adjacent regions are mergedj if their contrast difference is below a

specified threshold. This contrast parameter can be related to the contrast parameter
..\ of the PDE-based regularization, thus it does ~ot constitute an additional parameter.

I
Finding a connected region where neighboring pixels do not differ by more than a spec-
ified contrast value can be performed in linear c~mplexity and the result is independent
of the order in which the algorithm runs throu0h the pixels. Thus, the entire segmen-
tation algorithm is invariant under image rotatidns by 90 degrees and it reveals a linear
total complexity.
A watershed segmentation of a 2562 image with subsequent region merging takes

about 0.2 CPD seconds on a PC or workstation. Thus, the overall segmentation time
including the PDE-based regularization is far leJs than 1 second.

5 Experiments
Figure 3 illustrates how preprocessing by nonlilear diffusion filtering greatly reduces
the number of segments in a medical MR image: We also observe that under nonlinear
diffusion the segment boundaries remain well located and need not be traced back in
order to improve their localization. As can be seen for instance at the cerebellum, the
segments correspond well with the depicted physical objects. Moreover, segmentation of

,

elongated objects does not create any problem. For comparison purposes with a classic
approach, Figure 3(e) shows the result of an edge detector based on Sobel operators.
Here the gradient magnitude has to be postprocessed in order to give useful information.
But even with sophisticated postprocessing str~tegies such as hysteresis thresholding
and nonmaximum suppression, there remains o~e significant difference to a watershed
segmentation: the contours are not closed. HJnce such an operator does not give a
partitioning of the image domain into segment~. The latter one can be achieved by
considering level sets of a differential operator su~h as the zero crossings of the Laplacian
in Figure 3(f). In this case fairly large GausJians are required in order to prevent
oversegmentation. As a result, image structur~s become much more dislocated that
in the watershed approach with nonlinear diffJsion as preprocessing. This is clearly
visible when comparing the contours of the cerJbellum in Figs. 3(d) and (f). Another

I
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Table 2: CPU times for the different steps of the segmentation algorithm when 2562

images are processed.

method Sun Ultra 60 PC (Pentium II MMX, 440 Mhz)
nonlinear diffusion 0.494 s 0.591 s
(5 iterations)
variational restoration 0.407 s 0.516 s
(5 iterations per level)
watershed transformation 0.162 s 0.199 s
with region merging

difference between these two approaches consists of the behavior at junctions: as already
mentioned and as is visible in Figure 3(f), zero crossings cannot meet at T-junctions,
whereas watersheds do.

In Figure 4 it is shown that the merging step can be essential for avoiding the
oversegmentation problems in the watershed algarithm. Nonlinear diffusion may create
almost piecewise constant areas, but small fiuctuations within such an area introduce
many semantically irrelevant catchment basins. Such fiuctuations can also be caused by
quantization errors, e.g. by storing grey values in a bytewise manner. Merging adjacent
regions with similar grey values constitutes a simple remedy for these problems.

Finally, Figure 5 gives a comparison between the two PDE-based regularization
techniques. The results are in complete accordance with those from Figure 1. The
contrast-enhancing nonlinear diffusion method gives more realistic results for images
with less noise, as can be seen from the segmentation of the arms and legs in Figure 5(c).
However, in a mare noisy situation, the quality of this method degrades significantly.
The variational method that does not allow contrast enhancement, on the other hand,
does not reach the qualities of nonlinear diffusion preprocessing (Fig. 5(e)), but is very
stable under noise (Fig. 5(f)). It is thus the better preprocessing method for noisy
images. Again it should be emphasized that there exist more sophisticated nonlinear
diffusion methods that combine the advantages of both approaches studied here [27].
Their efficient algorithmic realization, however, is more complicated and requires further
research.

Table 2 presents precise CPU times for our segmentation algarithm both for a work-
station (Sun Ultra 60) and a PC (Pentium II MMX, 440 Mhz), when 2562 images are
processed and a GNU C compiler is used. On both architectures, preprocessing by means
of nonlinear diffusion or variational restoration can be achieved in about 0.5 seconds,
while the watershed transformation with region merging takes 0.2 seconds. This shows
that the complete algorithm allows to segment 2562 images in much less than a second.
With a PC with 700 MHz it is even possible to segment two such images in less than one
second. Moreover, it should be taken into account that the AOS algorithm, which is the
most time consuming subroutine of the entire method, is very well-suited far parallel
computing [29]. Therefore, further speed up can be achieved in a straightforward way.
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Figure 3: (a) Top Left: MR image.1 (b) Top Right: nonlinear
diffusion filtering of (a). (c) Middle Left: segmentation of (a).
(d) Middle Right: segmentation of (b). (e) Bottom Left: Sobel
operator applied to (a). (f) Bottom Right: Zero crossings of the
Laplacian-of-Gaussian of (a).
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Figure 4: (a) Top Left: test image. (b) Top Right: nonlinear
diffusion filtering of (a). (c) Bottom Left: segmentation of (b)
without merging. (cl) Bottom Right: segmentation of (b) with
merging.
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Figure 5: (a) Top Left: hallway scent (h) Top Right: Gaussian
noise added. (e) Middle Left: segmJntation of (a) with nonlinear
diffusion as preprocessing. (d) Middl~ Right: segmentation of (b)
with non linear diffusion as preprocessi:ng. (e) Bottom Left: seg-
mentation of (a) with variational restci)l~ationas preprocessing. (f)
Bottom Right: segment at ion of (b) Jith variational

I
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6 Summary
We have presented efficient algorithms for two prototypes of PDE-based regularization
techniques. These regularizations simplify subsequent segmentation tasks significantly,
such that already a simple watershed algorithm with region merging gives good results.
These segmentation techniques are very fast thanks to the use of AOS schemes and a
novel pyramid AOS algorithm. This makes them attractive for many time-critical appli-
cations. All axes are treated equally, since the result is independent of the pixel ordering.
The entire algorithm can be extended in a straightforward way to m-dimensional data,
and the linear complexity in the pixel number remains valid in any dimension.
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VIRGO. The author thanks OIe Fogh Olsen and Mads Nielsen for the hallway image,
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