
Algorithms for Energy Efficiency in
Wireless Sensor Networks

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Dipl.-Wirtsch.-Inf. Marcel Busse
aus Gehrden

Mannheim, 2007

Dekan: Professor Dr. Matthias Krause, Universität Mannheim

Referent: Professor Dr. Wolfgang Effelsberg, Universität Mannheim

Korreferent: Professor Dr. Colin Atkinson, Universität Mannheim

Tag der mündlichen Prüfung: 21.01.2008

To Katharina.

Abstract

The recent advances in microsensor and semiconductor technology have opened a new field within
computer science: the networking of small-sized sensors which are capable of sensing, processing,
and communicating. Such wireless sensor networks offer new applications in the areas of habitat
and environment monitoring, disaster control and operation, military and intelligence control, object
tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely
that the deployed sensors will be battery-powered, which will limit the energy capacity significantly.
Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and
the design of energy-efficient algorithms is a major contribution of this thesis.

As the wireless communication in the network is one of the main energy consumers, we first consider
in detail the characteristics of wireless communication. By using the embedded sensor board (ESB)
platform recently developed by the Free University of Berlin, we analyze the means of forward error
correction and propose an appropriate resync mechanism, which improves the communication be-
tween two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through
the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forward-
ing (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize
the number of data bytes delivered per energy unit, LEF additionally takes into account the residual
energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy
savings due to data aggregation and in-network processing are exploited by EEAF.

Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also
study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless
medium by sending packets to several (potential) forwarding nodes. By actively selecting a forwarder
among all nodes that received a packet successfully, retransmissions can often be avoided. In the
majority of cases, multi-link forwarding is thus more efficient and able to save energy.

In the last part of this thesis, we present a topology and energy control algorithm (TECA) to turn
off the nodes’ radio transceivers completely in order to avoid idle listening. By means of TECA, a
connected backbone of active nodes is established, while all other nodes may sleep and save energy
by turning off their radios. All algorithms presented in this thesis have been fully analyzed, simulated,
and implemented on the ESB platform. They are suitable for several applications scenarios and can
easily be adapted even to other wireless sensor platforms.

Zusammenfassung

Die jüngsten Fortschritte in der Mikrosensorik und Halbleitertechnik haben einen neuen Forschungs-
bereich in der Informatik hervorgebracht: die Vernetzung kleinster Sensoren, die in der Lage sind,
Daten zu detektieren, zu verarbeiten und zu übertragen. Solche drahtlosen Sensornetze ermöglichen
neue Anwendungen sowohl für die Beobachtung von biologischen Lebensräumen, den Katastro-
phenschutz, für militärische Einsätze, der Objektverfolgung und Videoüberwachung, der Verkehrs-
steuerung, als auch der medizinischen Versorgung und Hausautomation. Dabei ist anzunehmen, dass
die eingesetzten Sensoren batteriebetrieben sein werden, wodurch die zur Verfügung stehende Energie
stark eingeschränkt sein wird. Energieeffizienz wird somit zu einer der wichtigsten Herausforderun-
gen, und ein wesentlicher Beitrag dieser Dissertation ist der Entwurf von energieeffizienten Algorith-
men.

Da die drahtlose Kommunikation in einem Sensornetz mit am meisten Energie verbraucht, betrachten
wir zunächst deren Eigenschaften. Unter Verwendung der Embedded Sensor Board (ESB) Plattform,
die vor kurzem an der Freien Universität Berlin entwickelt wurde, untersuchen wir die Verwendung
von Vorwärtsfehlerkorrektur und entwickeln einen geeigneten Resynchronisations-Mechanismus, der
die Kommunikation zwischen zwei ESB-Knoten wesentlich verbessert. Anschließend betrachten
wir die Weiterleitung von Datenpaketen in einem Sensornetz. Hierfür entwerfen wir die drei Al-
gorithmen Energy-Efficient Forwarding (EEF), Lifetime-Efficient Forwarding (LEF) und Energy-
Efficient Aggregation Forwarding (EEAF). Während der EEF-Algorithmus ausschließlich die An-
zahl an zugestellten Datenbytes pro verbrauchter Energieeinheit maximiert, berücksichtigt der LEF-
Algorithmus zusätzlich die verbleibende Restenergie weiterleitender Sensorknoten. Auf diese Weise
kann die Lebenszeit des Netzes weiter verlängert werden. Energieeinsparungen aufgrund von Daten-
aggregation und der Vorverarbeitung im Inneren des Netzes berücksichtigt das EEAF-Verfahren.

Neben dem so genannten Single-Link Forwarding, bei dem Datenpakete ausschließlich zu einen einzi-
gen weiterleitenden Knoten geschickt werden, untersuchen wir auch das so genannte Multi-Link For-
warding, das die Eigenschaften des drahtlosen und gemeinsam genutzten Funkmediums ausnutzt,
indem Pakete zu mehreren (potenziell) weiterleitenden Knoten geschickt werden. Durch aktives
Auswählen eines Knotens, der ein Paket erfolgreich empfangen konnte, können erneute Übertragun-
gen von Datenpaketen häufig vermieden werden. Multi-Link Forwarding erzielt somit meistens eine
verbesserte Energieeffizienz und verringert den Energieverbrauch.

Der letzte Teil der Dissertation beschreibt einen Topology and Energy Control Algorithm (TECA),
der es ermöglicht, die Funkeinheit eines Sensorknotens vollständig auszuschalten, wodurch das so

viii

genannte Idle Listening vermieden werden kann. TECA baut ein verbundenes Basisnetz bestehend
aus aktiven Knoten auf, während alle anderen Knoten in einen energiesparenden Schlafmodus wech-
seln können, indem die Funkeinheit ausgeschaltet wird. Alle hier vorgestellten Algorithmen wurden
vollständig untersucht, simuliert und auf der ESB-Plattform implementiert. Sie eignen sich für eine
Vielzahl von Anwendungszenarien und können leicht auch auf andere Sensor-Plattformen portiert
werden.

Acknowledgements

At this point, I would like to express my gratitude to all those who made this thesis possible. First
of all, I would like to thank my advisor Prof. Dr. Wolfgang Effelsberg, who gave me the opportunity
to join the “Lehrstuhl für Praktische Informatik IV” at the University of Mannheim and who guided
me through my thesis. He has always been of great help and supported me with everything I needed.
Working at his chair was a pleasure, since he gave me the freedom to find my own research interests
and advised me in every possible way. I would also like to thank Prof. Dr. Colin Atkinson, who
was so kind to co-examine this dissertation, and Betty Haire Weyerer, who spent so many hours on
proof-reading. I am deeply grateful for her generous support.

Many thanks also go to my colleagues Holger Füßler, Benjamin Guthier, Thomas Haenselmann,
Thomas King, Stephan Kopf, Fleming Lampi, Hendrik Lemelson, Sascha Schnaufer, Moritz Steiner,
Tonio Triebel, and Matthias Transier. They were often a source of new ideas and their discussions and
feedback helped me very much. Particularly, I would like to thank Thomas Haenselmann, who has
always been generous with his time and advised me in many ways. I very much enjoyed the collab-
oration with him, our research discussions on Reed-Solomon and fountain codes, on algorithms for
energy efficiency in common, and on the ideas for establishing connected topologies. His feedback
was always of great help, and it gave me new ideas to think about.

Besides my research colleagues, I would also like to thank our system administrator Walter Müller,
who helped me to overcome any kind of technical problems, and without him, I would have often been
alone in the early hours of the morning. Last, but not least, I would like to thank our secretary Ursula
Eckle, and Sabine Baumann, who handled all the University’s bureaucracy issues for me.

Special thanks also go to Jürgen Vogel, who inspired me in many ways. During my studies, I worked
with him as his student assistant, and he provided me with deep insights into the world of science.
After I joined our research group at the University of Mannheim, he was still one of my biggest
inspirations, and I very much enjoyed the time we worked together.

Above all, I am deeply grateful to my family. I would like to thank my sister Yvonne and in particular
my parents Gudrun and Peter. I am forever grateful and indebted to them for their love and care. From
the very beginning, they have provided me with support and guidance on my way that has now led
me to where I stand today. I would also like to express my gratitude to my parents-in-law, Maria and
Horst, who have always given me a second home.

x

Finally and most importantly, my deepest and most sincere thanks belong to my beloved wife Katha-
rina. I am, and will always be, grateful to you for your love, your encouragement, and for being the
joy of my life. Since we have met, you enrich my life, and you make me perfectly happy – I do not
want to live without you anymore. You have ever believed in me, and it is you who brings out the best
in me.

Contents

List of Figures xv

List of Tables xix

List of Abbreviations xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 4

2 The ScatterWeb Platform 7
2.1 Introduction . 7
2.2 The Embedded Sensor Board . 8

2.2.1 MSP430 Microcontroller . 9
2.2.2 TR1001 Radio Transceiver . 10
2.2.3 Sensors and Equipment . 11
2.2.4 Power Consumption . 12

2.3 The Embedded Gate/USB . 12
2.4 The Embedded Gate/WEB . 13
2.5 Conclusions . 14

3 The Impact of Resync and Forward Error Correction 15
3.1 Introduction . 15
3.2 The Resync Mechanism . 16

3.2.1 Communication Characteristics of ESB Nodes 17
3.2.2 Design of an Appropriate Resync . 21
3.2.3 Experimental Evaluation . 23
3.2.4 Conclusions . 27

3.3 Forward Error Correction . 28
3.3.1 Forward Error Correction Codes . 29
3.3.2 Analyses of FEC Codes . 33
3.3.3 Experimental Evaluation . 36
3.3.4 Conclusions . 40

3.4 Data Dissemination Using FEC Coding . 40

xii Contents

3.4.1 FEC Schemes for Bulk Data Dissemination 42
3.4.2 Data Dissemination Protocols . 46
3.4.3 Experimental Evaluation . 47
3.4.4 Conclusions . 53

4 Energy-Efficient Forwarding 55
4.1 Introduction . 55
4.2 Related Work . 56
4.3 Models, Assumptions, and Metrics . 60

4.3.1 Packet Reception Model . 60
4.3.2 Link Asymmetry . 61
4.3.3 Energy Model . 62
4.3.4 Assumptions . 62
4.3.5 Metrics . 63

4.4 Analysis of Hop- and PRR-Based Forwarding Strategies 63
4.4.1 Hop-Based Forwarding . 63
4.4.2 PRR-Based Forwarding . 65

4.5 Energy-Efficient Forwarding . 66
4.5.1 Single-Link Energy-Efficient Forwarding 66
4.5.2 Multi-Link Energy-Efficient Forwarding . 66
4.5.3 Analysis of the Infinite Retransmissions Case 67
4.5.4 Analysis of the Finite Retransmissions Case 70
4.5.5 Analysis of the Optimal Number of Forwarders for MEEF 72

4.6 Simulations . 75
4.6.1 Simulation Setup . 78
4.6.2 Influence of Node Density . 78
4.6.3 Influence of Contention . 82
4.6.4 Influence of Retransmissions . 83
4.6.5 Influence of Different Packet Sizes . 85
4.6.6 Influence of Receiving Energy Cost . 86

4.7 Experimental Evaluation . 87
4.7.1 ESB Implementation . 87
4.7.2 Experimental Setup . 88
4.7.3 Evaluation Results . 89

4.8 Conclusions . 92

5 Lifetime-Efficient Forwarding 95
5.1 Introduction . 95
5.2 Related Work . 96
5.3 The Maximum Lifetime Problem . 98

5.3.1 Finite Retransmissions . 98
5.3.2 Infinite Retransmissions . 99

5.4 Lifetime-Efficient Forwarding . 101
5.4.1 Analysis of the Finite Retransmissions Case 102

Contents xiii

5.5 Evaluating the Forwarding Strategies . 105
5.6 Simulations . 106

5.6.1 Performance Comparison of LEF and EEF 106
5.6.2 Network Performance over Time . 108
5.6.3 Influence of Node Density . 111
5.6.4 Influence of the Number of Source Nodes 113

5.7 Experimental Evaluation . 113
5.7.1 Experimental Setup . 114
5.7.2 Evaluation Results . 115

5.8 Conclusions . 117

6 Energy-Efficient Aggregation Forwarding 119
6.1 Introduction . 119
6.2 Related Work . 120
6.3 Energy-Efficient Aggregation Forwarding . 123

6.3.1 Construction of the Aggregation Tree . 123
6.3.2 The Problem of Forwarding Cycles . 124
6.3.3 An Algorithm to Prevent Forwarding Cycles 126
6.3.4 The EEAF Algorithm . 128
6.3.5 Further Discussions . 128

6.4 Other Aggregation Tree Constructions . 130
6.4.1 Greedy Increment Tree . 130
6.4.2 Minimum Spanning Tree . 131
6.4.3 Steiner Minimum Tree Approximation . 131

6.5 Simulations . 132
6.5.1 Influence of Node Density . 132
6.5.2 Influence of the Number of Source Nodes 135

6.6 Experimental Evaluation . 136
6.6.1 Experimental Setup . 136
6.6.2 Evaluation Results . 137

6.7 Conclusions . 139

7 A Topology and Energy Control Algorithm 141
7.1 Introduction . 141
7.2 Related Work . 142
7.3 The Topology and Energy Control Algorithm . 145

7.3.1 Basic Concept . 145
7.3.2 TECA in Detail . 146

7.4 Performance Evaluation of TECA . 159
7.4.1 Simulation Setup . 159
7.4.2 Performance Metrics . 160
7.4.3 Simulation Results . 160

7.5 Simulative Comparison to other Approaches . 162
7.5.1 Simulation Setup . 164

xiv Contents

7.5.2 Network Performance over Time . 165
7.5.3 Influence of Node Density . 172
7.5.4 Influence of the Initial Energy . 175
7.5.5 Influence of the Wake-Up Time . 176

7.6 Experimental Evaluation . 178
7.6.1 Experimental Setup . 178
7.6.2 Evaluation Results . 179

7.7 Conclusions . 183

8 Sensor Network Applications 185
8.1 Introduction . 185
8.2 Habitat Monitoring . 186

8.2.1 Great Duck Island . 186
8.2.2 ZebraNet . 187
8.2.3 WildCENSE . 188
8.2.4 Cane Toad Monitoring . 188
8.2.5 Electronic Shepherd . 189

8.3 Environment Observation and Forecast Systems . 190
8.3.1 ALERT . 190
8.3.2 FireWxNet . 191
8.3.3 Monitoring Volcanic Eruptions . 192
8.3.4 Redwood Ecophysiology . 193

8.4 Health Care . 194
8.4.1 Smart Home Care . 195
8.4.2 Implanted Biomedical Devices . 195

8.5 Home Automation and Smart Places . 195
8.5.1 The Intelligent Home . 196
8.5.2 MavHome . 197
8.5.3 Embedded Script-Driven Home Automation 198

8.6 Military Applications . 199
8.6.1 Sensor Information Technology . 199
8.6.2 EnviroTrack . 200
8.6.3 Counter-Sniper System . 201

8.7 Conclusions . 202

9 Conclusions and Future Work 203
9.1 Conclusions . 203
9.2 Future Work . 206

Bibliography 209

List of Figures

2.1 Embedded sensor board . 8
2.2 Memory map of the MSP430 . 9
2.3 Embedded gate/USB . 13
2.4 Embedded gate/WEB . 14

3.1 A byte stream framed by start (L) and stop (H) bits 18
3.2 Example of NRZ and Manchester encoding . 19
3.3 Encoding scheme used by the ESB firmware . 19
3.4 Entire packet structure consisting of a preamble, header, and data block 20
3.5 Part of an erroneously received packet . 20
3.6 An original data stream and a corresponding corrupted stream 21
3.7 An original data stream and a corresponding corrupted stream using resync 23
3.8 Part of an erroneously received packet using resync (n = 4) 23
3.9 Average packet reception without resync (n = 0) 24
3.10 Number of errors occurring at a specific byte position 25
3.11 Cumulative distribution of byte errors per packet and packet throughput 26
3.12 Example of two (8, 8)-interleavers and one (16, 8)-interleaver 32
3.13 Packet delivery ratio and cost for different FEC codes (k = 223, R = 10) 34
3.14 Utilization of different FEC codes (p = 5 · 10−4, R = 10) 36
3.15 Bit and byte errors for increasing interleaving depths 37
3.16 Cumulative distribution of bit errors per erroneous byte (n = 8) 38
3.17 Percentage of uncorrectable codewords . 39
3.18 Packet delivery ratio of different FEC codes (n = 8) 39
3.19 An RS-encoded data block . 42
3.20 RLF encoding is done by combining original chunks randomly 43
3.21 Illustration of the RLF encoding and decoding generation matrix 44
3.22 Probability distribution of RLF decoding failures 45
3.23 Evaluation results from the single-hop experiment (k = 32) 49
3.24 Wireless sensor network testbed . 51
3.25 Evaluation results from the multi-hop experiment (k = 64) 52
3.26 Influence of the data block size in the multi-hop experiment (txp = 0.2) 54

4.1 Samples of the PRR model (α = 3.5, β = 0.3, D1 = 10, D2 = 30) 61
4.2 Cumulative probability of link asymmetry . 61
4.3 Hop-based forwarding using different blacklisting thresholds (R = 3) 64

xvi List of Figures

4.4 PRR-based forwarding using different blacklisting thresholds (R = 3) 65
4.5 Probability tree for the energy consumption of SEEF 68
4.6 Probability tree for the energy consumption of MEEF 69
4.7 Energy efficiency for a different number of forwarders and packet reception ratios

(R = 3, k = 32) . 73
4.8 Energy efficiency for different packet reception ratios and packet sizes (R = 3) . . . 73
4.9 Optimal number of forwarders for different packet reception ratios and packet sizes . 74
4.10 Sample network showing different forwarding strategies 77
4.11 Packet delivery ratio and Energy consumption (k = 32, R = 3) 79
4.12 Energy efficiency and energy efficiency per node (k = 32, R = 3) 80
4.13 Minimum packet delivery ratio and forwarding path length (k = 32, R = 3) 81
4.14 Packet delivery ratio and energy efficiency (µ = 30, k = 32, R = 3) 83
4.15 Packet delivery ratio and energy efficiency (µ = 30, k = 32, ρ = 0.2) 84
4.16 Energy consumption and energy efficiency (µ = 30, R = 3, ρ = 0) 85
4.17 Energy consumption and energy efficiency (µ = 30, k = 32, R = 3, ρ = 0) 86
4.18 Software architecture of the ESB implementation 87
4.19 Packet structure of beacons . 88
4.20 Packet structure of forwarding packets . 88

5.1 Probability tree for the lifetime of SLEF . 102
5.2 Probability tree for the lifetime of MLEF . 103
5.3 Performance comparison of LEF and EEF (α = 0.2, R = 3) 107
5.4 Lifetime efficiency comparing LEF and EEF (α = 0.2, R = 3) 108
5.5 Forwarding performance over time (µ = 30, α = 0.2, R = 3) 109
5.6 Influence of node density (α = 0.2, R = 3) . 112
5.7 Influence of the number of source nodes (µ = 30, R = 3) 114

6.1 Illustration of a forwarding cycle . 125
6.2 Prevention of forwarding cycles . 127
6.3 Influence of node density (α = 0.2, R = 3) . 133
6.4 Influence of the number of source nodes (µ = 30, R = 3) 136

7.1 TECA’s state transitions . 146
7.2 TECA’s cluster formation . 148
7.3 Illustration of the number of hops between adjacent clusters 148
7.4 Virtual cluster links in TECA . 150
7.5 Built topology . 151
7.6 Priority function f with different α, β values . 154
7.7 Topology showing different link costs . 155
7.8 Sleeping timeout example . 157
7.9 Simulation results for different α, β, and PV values (µ = 20) 161
7.10 Backbone topologies of TECA, GAF, ASCENT, and RAND (µ = 20) 163
7.11 Fraction of different node types (µ = 20, γ = 0.5, T energy = 1, 000 s) 166
7.12 Fraction of residual energy (µ = 20, γ = 0.5, T energy = 1, 000 s) 168
7.13 Number of network partitions (µ = 20, γ = 0.5, T energy = 1, 000 s) 169

List of Figures xvii

7.14 End-to-end packet delivery ratio (µ = 20, γ = 0.5, T energy = 1, 000 s) 171
7.15 Comparison of end-to-end packet delivery ratios (µ = 20, γ = 0.5, T energy = 1, 000 s) 172
7.16 Fraction of active nodes and of residual energy (γ = 0.5, T energy = 1, 000 s) 173
7.17 Network lifetime factor (γ = 0.5, T energy = 1, 000 s) 174
7.18 Comparison of network lifetime factors (γ = 0.5, T energy = 1, 000 s, 80% dead) . . 174
7.19 End-to-end packet delivery ratio (γ = 0.5, T energy = 1, 000 s, 80% dead) 175
7.20 Network lifetime factor (µ = 20, γ = 0.5, 80% dead) 176
7.21 Influence of cluster timeout factors (µ = 20, T energy = 1, 000 s, 80% dead) 177
7.22 Overview of several evaluated performance parameters 180
7.23 Measured number of network partitions . 181
7.24 Evaluated end-to-end packet delivery ratio . 182

8.1 Sensor nodes used by the Great Duck Island project (from [2]) 187
8.2 Mounting a sensor collar to the neck of a zebra (from [206]) 188
8.3 The cane toad and its distribution in Australia (from [120]) 189
8.4 The electronic shepherd radio tag (from [237]) . 190
8.5 A solar-powered station and a weather station (from [110]) 192
8.6 Monitoring equipment used on the Reventator volcano (from [247]) 193
8.7 The placement of nodes in redwood trees (from [68]) 194
8.8 Location of the retina prosthesis chip within the eye (from [216]) 196
8.9 The intelligent home showroom (from [1]) . 197
8.10 Browser-based configuration of home automation rules 198
8.11 Overview of the SensIT scenario (from [173]) . 200
8.12 Graphical user interface of PinPtr (from [224]) . 201

List of Tables

3.1 Error characteristics for different resync frequencies 27

4.1 Results of the experimental evaluation (EEF) . 90

5.1 Results of the experimental evaluation (LEF) . 116

6.1 Results of the experimental evaluation (EEAF) . 138

7.1 Simulation settings . 165
7.2 Varied simulation parameters . 165
7.3 Evaluation settings . 178
7.4 Evaluated network lifetime factors and packet delivery ratios 183

List of Abbreviations

ARQ Automatic Repeat Request

ASCENT Adaptive Self-Configuring Sensor Networks Topologies

ASK Amplitude-Shift Keyed

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DARPA Defense Advanced Research Projects Agency

DEC Double Error Correction

DED Double Error Detection

DSDV Destination-Sequenced Distance-Vector Routing

DSN Distributed Sensor Network

DSR Dynamic Source Routing

EEPROM Electrically Erasable Programmable Read-Only Memory

EGATE Embedded Gate

ESB Embedded Sensor Board

FEC Forward Error Correction

GAF Geographic Adaptive Fidelity

GBR Gradient-Based Routing

GIST Group-Independent Spanning Tree

GRAB Gradient Broadcast

JTAG Joint Test Action Group

LAN Local Area Network

LP Linear Program

LPT Lifetime-Preserving Tree

LT Luby Transformation

MAC Medium Access Control

MEEAF Multi-Link Energy-Efficient Aggregation Forwarding

MEEF Multi-Link Energy-Efficient Forwarding

MEMS Micro-Electro-Mechanical System

MIP Mixed-Integer Program

xxii List of Abbreviations

MLEF Multi-Link Lifetime-Efficient Forwarding

MSB Modular Sensor Board

MST Minimum Spanning Tree

MT Minimum Transmissions

NRZ Non-Return to Zero

OOK On-Off Keyed

PRR Packet Reception Ratio

RAM Random Access Memory

RBP Robust Broadcast Propagation

RF Radio Frequency

RFM RF Monolithics

RLF Random Linear Fountain

ROM Read-Only Memory

RS Reed-Solomon

RT Raptor

SEC Single Error Correction

SEEAF Single-Link Energy-Efficient Aggregation Forwarding

SEEF Single-Link Energy-Efficient Forwarding

SLEF Single-Link Lifetime-Efficient Forwarding

SMT Steiner Minimum Tree

TECA Topology and Energy Control Algorithm

TED Triple Error Detection

TI Texas Instruments

UART Universal Asynchronous Receiver/Transmitter

WSN Wireless Sensor Network

CHAPTER1
Introduction

“We are what we repeatedly do. Excellence, then, is
not an act, but a habit.”

– Aristotle –

1.1 Motivation

Recent advances in the microsensor and semiconductor technology have opened a new field within
computer science. In 1999, Business Week proclaimed the networking of microsensors as one of the
key technologies for the 21st century [7]. According to Moore’s Law [178], the number of transis-
tors on a chip doubles at least every two years. At the same time, the processing power and storage
capabilities grow. While this trend will continue, the electronic miniaturization and the advances in
the semiconductor manufacturing process enable low-power and low-cost hardware. Small and smart
devices equipped with a processing unit, storage capacity, and small radios offering wireless commu-
nication provide new application opportunities. Augmented with different kinds of sensors for, e. g.,
temperature, pressure, and humidity measurements as well as noise and movement detection, physi-
cal phenomena can be observed by deploying such sensor devices in their vicinity. The inexpensive
production costs might allow for dense deployments in the physical space. For example, consider
a scenario where thousands of devices, so-called sensor nodes, are dropped from an aircraft into a
remote terrain [84]. At first, the sensor nodes must coordinate each other and establish a wireless
communication network. Then, sensed phenomena can be processed locally, communicated to other
nodes, and forwarded through the network. In general, the information will be forwarded to one or to
several information sinks, which are special nodes connected to other networks. The sink nodes work
as gateways and allow other applications to control the wireless sensor network (WSN).

Although the requirements of a WSN mainly depend on the application being used, we can charac-
terize it by the following definition: A WSN consists of a potentially large set of devices that are
capable of sensing, processing, and communicating physical phenomena in order to meet a common
application task by some kind of cooperation. Even if an individual node is limited in terms of pro-
cessing and storage capacity, complex phenomena can be observed and analyzed. The cooperation of

2 CHAPTER 1. INTRODUCTION

nodes is therefore important and one of the challenges a WSN must take into account. Since sensing
and processing is distributed inherently, we can view the whole sensor network as a distributed sys-
tem [58, 148]. By using only local information, each node contributes to the common application task
and cooperates with other nodes in its neighborhood. Several protocols are needed to achieve such a
cooperation [130]. Examples are protocols for the medium access control (MAC), routing protocols,
or synchronization and localization protocols. However, it is unlikely that any WSN will use the same
protocol stack as it is known from the Internet. It will rather depend on the application being used,
since the application tasks as well as the deployments may be very different. Thus, the application
scenario will determine the optimal choice of protocols.

The dense deployment of hundreds or even thousands of sensor nodes offers a wide range of new ap-
plications. Current and future application areas include habitat and environment monitoring, disaster
control and operation, military and intelligence application, object tracking, video surveillance, traffic
control, industrial surveillance and automation, as well as health care and home automation. Thus
in the future, environment sensing will become more and more ubiquitous and part of our life. For
example, modern vehicles already include several sensors connected to electronic systems in order to
improve comfort and safety. Although those sensors are normally wired within a vehicle, they can
also form a WSN if each vehicle is considered as a sensor on a larger scale.

Realizing such different kinds of WSNs is a great challenge, from an engineering as well as from
a research perspective. Since the WSN as a whole serves a common application task, an individual
node becomes less important. Thus, even if some nodes fail, the application task must still be feasible.
Because of a possibly unattended deployment, the network must therefore adapt to changes in the
environment and re-organize assigned sensor tasks. This behavior is referred to as self-organizing [46].
Self-organization is not only desirable when changes within the environment occur, but also as a means
to disseminate data through the network. For example, pre-configuring each node with static routing
tables would not be advisable since the reachability of nodes may change over time. It would also be
very impractical to configure a large number of nodes manually. Designing self-organizing algorithms
is not straightforward but must take the distributed nature of sensor networks into account.

Another key challenge a WSN has to deal with is energy efficiency because most sensor nodes may
be battery-powered. In most cases, it may not be possible to change or recharge batteries, either due
to the low-cost hardware being used or due to an inaccessible area the nodes are deployed in. To
prolong the overall network operational lifetime, the energy consumption of a sensor node should
thus be minimized as far as possible. Most of the nodes’ components will therefore be turned off
most of the time and will only be used if they are required. For example, the processing unit can be
put into a low-power sleep mode while it is idle. Also, turning off the wireless communication radio
conserves much energy since transmitting one bit consumes as much energy as about 1,000 processing
instructions [67]. Thus, communication in a WSN is one of the main energy consumers and deserves
particular consideration.

In order to fulfill these requirements, the protocols and algorithms used should be energy-efficient.
Otherwise, an early failure of nodes due to lack of energy might require a reconfiguration or even
cause significant malfunctioning within the network. Researchers are therefore currently focusing on
power-aware protocols for different network levels [11].

1.1. MOTIVATION 3

At the physical layer, information intended to be sent to other nodes must be modulated onto the
radio’s frequency. The influence of disruptions on the channel can be minimized if forward error
correction (FEC) codes are used. Bit errors within a received packet can then be corrected, preventing
a retransmission of the entire packet by the sender. However, concerning energy-efficiency, there is
a trade-off between FEC and automatic repeat request (ARQ), since error correction requires redun-
dancy, which must be added to a packet. If the content contains no error after the transmission, the
redundancy included will be useless, causing a needless energy consumption at the sending as well as
at the receiving side.

The data link layer is also responsible for energy-efficient communication between nodes within trans-
mission range. Due to the shared medium, packets from different senders may collide if they are
transmitted at the same time. The medium access control MAC layer tries to minimize such collisions
and schedules data transmission and sleeping periods. During the sleeping period, the communication
radio of a node is turned off completely, which saves a significant amount of energy.

The network layer takes care of routing data through the network1. Therefore, forwarding paths are
established. By exchanging the appropriate information, all nodes are able to discover other nodes
in their neighborhood and learn about forwarding paths already established by their neighbors. In
general, the communication will then take place along a tree rooted at a sink node. This will be the
most likely communication scenario, as either sensed data will be sent towards the sink or the sink
will query sensor nodes for information.

Finally, the transport layer takes care of the end-to-end data flow, taking into account the network
congestion, and providing a reliable transmission service for the application layer.

Hence, any protocol used in a WSN should be power-aware and designed for energy efficiency. In
contrast to traditional networks, the forwarding of data packet is not address-based but data-centric.
That is, sensor nodes are not addressed by a globally unique identifier but rather addressed based on
data attributes. For example, instead of requesting the temperature value of an individual node, an
application may be more interested in whether or not there are any nodes which detect a temperature
above a given threshold. Thus, this paradigm shift implies that a WSN will likely be tailored to sens-
ing and application tasks. Furthermore, it enables the exploitation of application information during
the forwarding process. Application-specific data forwarding may significantly reduce the amount of
information that needs to be transmitted. By means of in-network processing and data aggregation,
redundant and useless data can be filtered out along the forwarding path. For example, consider a
scenario where a sink node is interested in the average temperature each node measures over a certain
period of time. Rather than forwarding individual data readings, these can be aggregated by interme-
diate nodes along the path without loss by transmitting only the sum and the number of readings.

In conclusion, we can summarize the key requirements of a WSN as follows:

• Scalability: A WSN can consist of thousands of sensor nodes, densely deployed in a regional
area. Protocols must scale well with such a number of nodes. This is often achieved by using
distributed and localized algorithms, where sensor nodes must communicate with nodes in their

1We will refer to routing also as packet forwarding.

4 CHAPTER 1. INTRODUCTION

neighborhood only. Centralized approaches are often not applicable due to single points of
failure.

• Adaptiveness: All protocols must be able to adapt to changes in the environment, e. g., connec-
tivity changes or changes concerning the sensing of physical phenomena.

• Resistance to failures: Due to the low-cost hardware or outside influences, sensor nodes are
prone to failure. However, this need not affect the achievement of the common application task.
In case of node failures, the network must be able to re-organize itself and, if needed, change
assigned application tasks.

• Self-organization: Since a WSN is usually deployed in an unattended area, the network must
operate without any need of manual configuration. For example, communication paths through-
out the network should be established automatically. Also the cooperation between nodes must
be organized in an unattended manner.

• Energy efficiency: As most sensor nodes will have restricted energy capacities, all protocols
and algorithms must be energy-efficient and save as much energy as possible. Since wireless
communication consumes the most energy, the radio should be turned off most of the time. Also,
the actual transmission of data must be energy-efficient, minimizing the number of packets sent
and received.

• Simplicity: Finally, because sensor nodes are also limited as to their processing and storage ca-
pabilities, algorithms and protocols should be as simple as possible, reducing the computational
complexity and memory usage.

1.2 Outline

The main purpose of this thesis is the design and development of energy-efficient protocols and al-
gorithms for WSNs. As the radio communication consumes the most energy, we are looking for
algorithms which minimize the number of transmissions throughout the network. However, we must
always take into account the trade-off between the number of packet transmissions and the appropriate
delivery rate in order to fulfill assigned application tasks. Otherwise, using no radio communication
at all would be the most energy-efficient way.

The thesis is structured as follows: In the next chapter, we present the hardware platform we will use
to demonstrate and evaluate the performance of our proposed algorithms. The platform was developed
by the Free University of Berlin and mainly consists of embedded sensor boards (ESB). Based on an
embedded chip from Texas Instruments, the MSP430, the ESB nodes were particularly designed with
energy efficiency in mind. The boards are equipped with several sensors for temperature, light, move-
ment, infrared, and vibration measurements. For wireless communication, an RFM TR1001 radio
transceiver is used that allows for data rates of up to 115.2 kbps.

The radio transceiver of an ESB node is connected to a universal asynchronous receiver/transmitter
(UART), which in turn is connected to the MSP430 chip. While this design allows a node to send and

1.2. OUTLINE 5

receive complete byte streams (rather than single bits), it may also cause special transmission errors
which we describe in Chapter 3. We will devise a periodic resync scheme that enables a receiver
to catch up on the data stream sent by the sender and to re-synchronize itself with the sender’s state
machine in case bits are lost. Our resync scheme reduces the number of bit errors significantly, offering
an efficient use of forward error correction (FEC). While FEC can be used to correct errors within
a packet, it is also suitable for protecting an entire sequence of packets. For this purpose, we will
consider a special class of FEC codes called fountain codes, that were recently proposed by other
researchers, and compare their performance in a single-hop as well as in a multi-hop sensor network.

After considering the transmission between adjacent nodes, Chapter 4 focuses on the end-to-end
packet delivery process between a sensor node and a fixed sink in the network. Because usually
the network is large in size, each node is not able to communicate with the sink directly. Instead, data
packets are forwarded by intermediate nodes and sent hop-by-hop along a forwarding path, which
is based on the reverse tree established earlier by the sink. By using a realistic link loss model, we
will consider different forwarding strategies and will propose two new schemes named single-link
and multi-link energy-efficient forwarding (SEEF and MEEF). Both strategies optimize the forward-
ing paths in terms of their energy efficiency and trade off end-to-end delivery ratios and energy costs.
While the SEEF strategy sends a packet to only one neighbor for forwarding, MEEF exploits the
broadcast characteristics of the wireless medium by sending a packet to several nodes at once, from
among which a forwarding node is selected afterwards. Through mathematical analyses, simulations,
and an experimental evaluation, we contrast the performance of our approach against a comprehensive
framework of other forwarding strategies proposed in the literature.

Although the forwarding paths established by SEEF and MEEF are optimized with regard to their
energy efficiencies, the lifetime of the network is not maximized implicitly. Moreover, nodes located
on optimal forwarding paths are used more often than others and thus consume more energy, thereby
increasing the probability of network partitions if they run out of energy. In Chapter 5, we thus ex-
tend the SEEF and MEEF strategies by a lifetime component, which takes the residual energies of
nodes into account. By incorporating the end-to-end delivery ratio, the required energy costs, and
additionally the residual energy available on forwarding paths, we propose single-link and multi-link
lifetime-efficient forwarding (SLEF and MLEF). As for SEEF and MEEF, we will present mathemati-
cal analyses, simulations, and results obtained from real-world experiments.

Chapter 6 describes another extension that accounts for data aggregation. Usually, physical phenom-
ena sensed by multiple nearby sensor nodes are somehow correlated. For example, consider again
a sensor network designed to capture the temperature in a predefined region. It is likely that most
nodes in the immediate vicinity will sense the same temperature. Reporting all these values would be
highly redundant and energy consuming, even if energy-efficient paths are used. On the other hand,
the energy costs may be reduced considerably by in-network processing, which would increase the
energy efficiency of the entire network. However, such cost reductions are not taken into account by
SEEF and MEEF implicitly. The extension presented in Chapter 6, called single-link and multi-link
energy-efficient aggregation forwarding (SEEAF and MEEAF), considers energy savings due to ag-
gregation a priori and outperforms SEEF and MEEF, as well as other related forwarding strategies.
Again, performance is compared by means of simulations and experiments.

6 CHAPTER 1. INTRODUCTION

While the algorithms presented in Chapters 4 to 6 focus on an energy-efficient forwarding process,
they do not take real advantage of densely populated networks. Since commonly, many nodes are
likely to be redundant, this feature can be exploited in order to recover from node failures or to prolong
the overall lifetime of the network. Energy could be saved if redundant nodes switched to a low-power
mode with their communication radios turned off, scheduling wake-up times periodically, or shortly
before other nodes run out of energy. Establishing such a backbone topology of active nodes is part of
Chapter 7, which presents an appropriate topology and energy control algorithm called TECA. TECA
is designed particularly with regard to network connectivity, energy consumption, network lifetime,
and load balancing. It comprises two parts, a cluster head selection and a bridge selection process.
During the cluster head selection, the network is divided into adjacent clusters. Afterwards, the bridge
selection process connects the different cluster heads, forming a topology of only active nodes. Using
the concept of virtual links, passive nodes decide to join the backbone topology if necessary and
become active in a distributed fashion. Other nodes are considered redundant and go into a low-power
sleep mode. In contrast to three other considered approaches, TECA guarantees that the backbone
topology is always connected. Furthermore, it trades off energy consumption and packet delivery
ratios very well, achieving a high level of energy efficiency and a long network lifetime. All topology
algorithms have been fully implemented and evaluated both in simulations and experiments.

As the last chapter, Chapter 8 provides a survey of sensor network applications and describes research
projects that gained initial experiences with real-world networks. The chapter covers applications from
habitat and environmental monitoring, health care, home automation, and the military. Even though
the requirements of these applications differ, energy efficiency is always one of the most important
common issues. Hence, the algorithms considered in this thesis may be of great value for future
deployments.

Chapter 9 summarizes the thesis and presents final conclusions. It also emphasize our scientific con-
tributions and gives an outlook on further extensions, as well as on possibilities for future work.

CHAPTER2
The ScatterWeb Platform

“We shall do a much better programming job, pro-
vided we approach the task with a full appreciation
of its tremendous difficulty, provided that we respect
the intrinsic limitations of the human mind and ap-
proach the task as very humble programmers”

– A. Turing –

2.1 Introduction

ScatterWeb [5] is one of the earliest research projects in Germany that started to develop a platform for
self-organizing wireless sensor networks. Founded by the Free University of Berlin a few years ago,
ScatterWeb components were intended to be used for education and prototyping. Since early 2005, a
spin-off company sells all components and additionally provides solutions tailored to industry-ready
hard- and software. Today, several institutions in Europe are using the platform for research as well as
industrial applications.

Since the ScatterWeb platform was one of the leading products about three years ago when our re-
search lab was looking for appropriate hardware components, we decided to buy a comprehensive set
of 30 sensor nodes and four gateways. Any other platform on the market could also have been used,
e. g., the mica mote platform from the University of California at Berkeley [65]. But there were some
advantages the ScatterWeb platform provided, like an easy way to program (flashing) and debug, a
low implementation overhead concerning protocols and applications due to the standard C language,
and the fact that the platform already comprised several sensors on-board. Thus, in this thesis, we
will use the ScatterWeb platform as an example to describe and demonstrate our algorithms. Nonethe-
less, other platforms are expected to show similar characteristics as they certainly encounter similar
restrictions regarding processing, communication, and memory capabilities.

8 CHAPTER 2. THE SCATTERWEB PLATFORM

2.2 The Embedded Sensor Board

The actual sensor node of the ScatterWeb platform is the embedded sensor board (ESB), which is
equipped with processing, sensing, and radio transmitting components. Figure 2.1 shows an image of
an ESB node that has a size of 5 × 6 cm2. Most of the space is required for the sensor hardware and
the battery pack containing 3 AA Mignon batteries.

External power source

Red, yellow, green LED

On/off switch for
battery power

Light, temperature, and
movement sensor

Battery box for 3
Mignon AA batteries

RS-232 serial interface

Vibration sensor

User mode button

Infrared receiver

Infrared sender diode

5-Pin CON4 connector
(external extensions)

JTAG interface for
programming and

debugging

Reset button

Texas Instruments
MSP430 chip,

8 MHz RISC CPU,
64 kB memory

RFM TR1001
low-power 868 MHz

radio transceiver

Piezoelectric buzzer

Microphone

Antenna

Serial 64 kB
EEPROM

Figure 2.1: Embedded sensor board

The development of new applications and protocols is quite simple because the complete code is
written in standard C. No additional programming language is required, which significantly shortens
the time to set up a node. Over the joint test action group (JTAG) interface, which is depicted in the
upper left corner, the node can then be flashed and debugged in a very convenient way. Connected to
the parallel port of a PC or a notebook, the firmware as well as programmed applications are flashed
into the memory at once. After a hardware reset, the firmware reboots and starts the application. Real-
time debugging is also provided via the JTAG interface, offering common functions like breakpoints,
single-step debugging, and variable monitoring. Another way to flash the node’s memory is by over-
the-air programming that is quite beneficial if several nodes need to be flashed at once. However, in
order to work properly in such a case, the byte code of the firmware must not be changed.

Next to the JTAG interface, a standard RS-232 serial interface is provided that can be used to connect
the ESB node with a terminal program running on a PC for input and output. The data rate is between
300 bps and 115.2 kbps (default). In this way, state or debug information can be sent to the terminal
and commands can be transmitted to the node. Furthermore, the serial interface also allows the node
to connect with wide-area networks via a mobile phone using GSM/UMTS. For example, a special
command can be sent to the mobile phone in order to trigger the transmission of SMS messages. In

2.2. THE EMBEDDED SENSOR BOARD 9

addition to the RS-232 interface, there exists a 5-pin CON4 connector (not displayed) for external
extensions via synchronized serial communication in SPI mode.

2.2.1 MSP430 Microcontroller

The ESB node is equipped with the MSP430F149 [24], an embedded system on a chip from Texas
Instruments, running at 8 MHz. Due to its low energy consumption and an appropriate power down
mode, it is quite suitable for battery-driven applications. The currently used version of the MSP430
contains 64 kB memory that is almost completely implemented as flash memory (ROM). The RAM
available to the firmware and application is only 2 kB, limiting the implementation possibilities of
new protocols considerably. Despite the fact that it is feasible to write 128 byte chunks into the
flash memory during operation, dynamic data is difficult to maintain. While reading from either flash
or normal memory makes no difference, writing into the flash memory is both time- and energy-
consuming. The same applies to the external 64 kB EEPROM, an electrically erasable programmable
ROM. As almost the entire EEPROM is for free use, it is suitable for storing large data blocks like
routing tables or, e. g., images captured by a camera connected via the serial interface. In addition, the
EEPROM is used for storing the node’s configuration as it remains unaffected by flashing.

The internal memory of the MSP430 is organized according to a predefined memory map, as shown
in Figure 2.2. Thus, depending on the address, code and data are handled differently. For example,
after a block of 60 kB that is used for the firmware and application, there are two blocks of 128 bytes
allowing flashing from within the program. Furthermore, some memory is reserved for a boot-loader
which handles the actual re-programming. During flashing, the program counter is restricted to this
address region so as not to cause a conflict with other code being processed. Thus, as long as the
boot-loader is in operation it must not be overwritten.

Interrupt vector table 16 sub-routine addresses0xFFE0 – 0xFFFF

Flash-ROM for firmware,
programs, data, and tables

Ca. 60 kB flash memory,
written at once during

programming over
the JTAG interface

0x1100 – 0xFFDF

Information memory A and B 2 x 128 bytes memory block0x1000 – 0x10FF

Boot-loader ROM (fix) Programmed over JTAG0x0A00 – 0x0FFF

RAM for variables and stack 2 kB RAM0x0200 – 0x09FF

8-bit periphery Memory-mapped0x0100 – 0x01FF

16-bit periphery Memory-mapped0x0000 – 0x00FF

Addresses Memory block Description

Figure 2.2: Memory map of the MSP430

10 CHAPTER 2. THE SCATTERWEB PLATFORM

To connect different types of sensors, the MSP430 provides an internal 12-bit A/D converter, trans-
forming between analog and digital signals. The A/D convertor provides eight external and four inter-
nal inputs and has a conversion time of less than 10 µs. The conversion requires no interrupt handling,
using 16 8-bit registers to read and 16 12-bit registers to store the results. In this way, sampled values
from an external sensor can be read like data from memory. In addition, the memory is used to control
external sensors by writing into special addresses and registers. This technique is commonly known as
memory mapping, which links the outside world with the embedded system. For example, by writing
into so-called memory mapped ports, sensors can be configured and powered down. Moreover, mem-
ory mapping can be used to integrate external processors. Although the CPU of the MSP430 does
not provide an internal integer multiplier, multiplication of two integers can be performed by an exter-
nal unit: a hardware multiplier is connected with the CPU by mapping the multiplier’s registers into
the memory of the MSP430. Upon writing both operands into memory, the multiplication is started
automatically, returning a 32-bit value at a predefined address.

In addition to a basic timer used by the CPU, the MSP430 offers two additional timers based on 16-bit
counters, which can be used freely, e. g., for serial or wireless communication. Both timers are able
to operate in three different modes and with different clock sources, depending on the precision the
timers are intended for. Another feature is provided by a watchdog that comprises a timer and a control
register. Starting at a predefined value, the timer decreases automatically, resetting the processer as
soon as the timer expires. Usually, the timer is reset periodically by the main loop of the operating
system. However, if the firmware or the program crashes or is locked somehow, the watchdog will
trigger a re-initialization of the system.

2.2.2 TR1001 Radio Transceiver

The radio communication of the ESB platform is based on the RF Monolithics TR1001 radio
transceiver [200], which has a very small footprint, as depicted in the lower left of Figure 2.1. Further-
more, it requires very little power, keeping the energy consumption of the whole system low. Other-
wise, the TR1001 is a very simple transmitter, providing both on-off keyed (OOK) and amplitude-shift
keyed (ASK) modulation. The radio range depends heavily on the environment. It can range from
several hundred meters outdoors to less than ten meters indoors. Using OOK modulation, data trans-
mission rates of up to 19.2 kbps are possible; ASK modulation even allows up to 115.2 kbps. However,
practical experiments have shown that the bit error ratio increases dramatically for data rates above
38.4 kbps.

The transceiver is able to monitor the receive power and to adjust its transmission power. The maxi-
mum transmission power is about 1 mW, while the amplitude of a signal is proportional to the current
at the input transmission pin. The current can be controlled by software, scaling the transmission
power to values between zero and one hundred percent. Besides basic functions like bit modulation
and sampling, the radio transceiver does not perform any other tasks. Thus, additional components as
well as higher-layer protocols are required in order to transmit a byte stream conveniently.

Sending a packet, as provided by the firmware of the ESB platform, is done as follows: By means of
a universal asynchronous receiver/transmitter (UART) that is connected with the radio transceiver, a

2.2. THE EMBEDDED SENSOR BOARD 11

byte stream is first serialized and then transmitted by the radio transceiver. Writing single bytes into
the UART buffer is done periodically, depending on the transmission rate used for the radio. Triggered
interrupts inform the firmware when the next byte needs to be written into the buffer and when the
transmission over the radio is completed. To send an entire packet, all bytes of the packet are first
queued into a ring buffer, which is afterwards used to feed the UART buffer. The interrupt handler is
then responsible for the actual transmission, including random backoff times to avoid collisions, CRC
checksums, and automatic retransmissions.

The receiving of a packet works in a similar way. Received bytes are de-serialized by the UART and
read from the UART buffer by means of another periodically triggered interrupt. Again, a ring buffer
is used to hold received packets in order to provide access to them for the application. Depending
on the type of a packet, i. e., whether or not it is a unicast packet, an acknowledgement is generated
and sent back to the sender automatically. Duplicate packets are recognized by means of sequence
numbers.

2.2.3 Sensors and Equipment

As illustrated in Figure 2.1, the ESB platform is also equipped with the following components:

Passive Infrared Sensor Hidden under the white fresnel lens, a passive infrared sensor is located,
allowing for monitoring the space around an ESB node. The detection range is approximately
eight meters. Thus, the sensor is useful for motion sensing or intrusion detection.

Vibration Sensor In order to reliably detect moving objects, a vibration sensor is also provided,
which is able to detect vibration ranging from nearby moving persons to earthquakes.

Light Sensor Besides the passive infrared sensor under the fresnel lens, a light sensor is installed that
allows for precise measurements of light intensities. Furthermore, the sensor can differentiate
between artificial and natural light.

Temperature Sensor Integrated into one chip, a digital thermometer and a real-time clock are pro-
vided. The accuracy of the thermometer is about ±2 C, using a resolution of 9 bits. The clock
provides time and data information. Thus, it is possible to trigger an alarm that can be used as an
input for the microcontroller. For example, the alarm output is activated if either the measured
temperature exceeds a programmed temperature limit or the current time reaches a programmed
alarm setting.

Infrared Receiver and Transmitter Infrared communication is provided via appropriate diodes for
sending and receiving infrared signals. In this way, the ESB node can be controlled by using
standard RC-5 codes such as those used by remote control devices of consumer electronics.
Furthermore, the node itself can send commands to any infrared-enabled device.

Microphone Using the microphone, noise detection can easily be implemented. As for all sensors,
the readings can be used to wake up the MSP430 controller, using a special interrupt. Thus, an
application does not have to check for appropriate conditions itself.

12 CHAPTER 2. THE SCATTERWEB PLATFORM

User Mode Button In addition to a reset button which resets the system, a user button is available
that is freely programmable. E. g., upon pressing the button, the application may be started and
stopped, or user-defined events may be triggered.

Piezoelectric Buzzer There is also a piezoelectric buzzer placed on the board in order to interact with
the physical world, e. g., to signal errors or emergency situations. As the buzzer is quite loud,
even long distances can be bridged.

Red, Green, and Yellow LEDs And last, the ESB platform has three LEDs (red, green, and yellow),
which are quite helpful to signal state information during operation. In particular, the LEDs are
useful for debug purposes.

2.2.4 Power Consumption

The power consumption of the ESB platform running with all sensors is around 12 mA. Transmitting
data causes an additional consumption of about 8 mA, depending on the transmission power being
used. In a low-power mode (deep sleep) where all sensors and the ratio transceiver are turned off,
the consumption is approximately 8 µA only, which is about 1,000 times less compared to its normal
operation mode. Equipped with the 3 AA battery holder, the lifetime of a node would be about
5 years, assuming a duty cycle of 1% and neglecting the self-discharge of the batteries1. The lifetime
can even be extended if the node is equipped with an external solar panel which allows for recharging.
Variations of the input voltage are stabilized by a special controller to 3 V. Hence, a higher voltage
will cause no damage. Furthermore, the voltage is permanently monitored, triggering an event if the
input voltage falls below a given threshold.

2.3 The Embedded Gate/USB

A more convenient way to access one or several ESB nodes is provided by the embedded gate/USB
(eGate/USB) pictured in Figure 2.3. The board basically consists of the same main components as
the ESB, but without any sensing hardware. Also, no RS-232 serial interface is provided. Instead,
the eGate/USB acts like a USB stick and is installed like common USB devices on a PC or even a
PDA. Technically, a special converting chip is used to perform the conversion between serial access
and USB. Thus, connected to a terminal program, the eGate/USB can be accessed like other ESB node
using the RS-232 interface. An external power supply is not necessary because the power provided by
the USB port can be used.

The MSP430 on the eGate/USB can be flashed via the parallel port of a PC, too. This requires that
a particular adapter connects the 5-pin JTAG connector (shown in the lower right of Figure 2.3) to a
common parallel cable.

1The duty cycle of a node specifies the fraction of time in which the device operates. A duty cycle of 1% thus means
that the node, e. g., runs for 1 second and then sleeps for 99 seconds.

2.4. THE EMBEDDED GATE/WEB 13

Ceramic antenna

Red, green LED

FTDI chip for converting
between serial and USB

5-Pin CON4 connector
(external extensions)

JTAG interface for
programming and

debugging

Texas Instruments
MSP430 chip,

8 MHz RISC CPU,
64 kB memory

RFM TR1001
low-power 868 Mhz

radio transceiver

USB connector

USB red/green LED

Serial 64 kB
EEPROM

Figure 2.3: Embedded gate/USB

To enable communication with other devices, the eGate/USB is equipped with a wide-band ceramic
antenna which has a footprint of only 2 cm2. The actual radio communication uses the same TR1001
transceiver as described above. Flashing several nodes over the air at once is then carried out as
follows: Via the USB connection an image containing the firmware and an application is transferred
to the eGate/USB and written into the EEPROM. Afterwards, the image can be sent over the RF
interface to one or to several nodes within transmission range. The image is divided into multiple
chunks. Again, upon receiving, the image is stored into the EEPROM for processing. Note that due
to the broadcast characteristics of the wireless medium, the image needs to be transmitted only once
in the majority of cases. Only if chunks get lost, they will be retransmitted on request. If an image
is received correctly and is additionally consistent with the boot-loader being used, the memory is
flashed with the new code. Finally, the control register of the watchdog is used to reset the embedded
system.

2.4 The Embedded Gate/WEB

Another way to gain access to a network of sensor nodes is offered by the embedded gate/WEB
(eGate/WEB) device. The eGate/WEB differs from the eGate/USB mainly in the connection of the
board. Instead of using a USB connector, the eGate/WEB uses the Digi Connect ME system, an em-
bedded module that provides for web-enabled network connectivity (located on the left in Figure 2.4).

Connected over Ethernet, the Digi Connect ME module can be accessed and set up using HTTP. Prop-
erly configured, it then allows a telnet client to access the eGate/WEB via TCP/IP, converting between
Ethernet and the serial interface of the MSP430. Compared to the possibilities of the eGate/USB, this
is particularly convenient if the controlling PC is far away. Furthermore, connected to a WLAN router,
the network can easily be augmented by PDAs, featuring a special kind of user interaction.

14 CHAPTER 2. THE SCATTERWEB PLATFORM

Antenna

Red, green LED

JTAG interface for
programming and

debugging

Texas Instruments
MSP430 chip,

8 MHz RISC CPU,
64 kB memory

RFM TR1001
low-power 868 MHz

radio transceiver

Digi Connect ME for
converting between serial

and Ethernet

Serial 64 kB EEPROM

Figure 2.4: Embedded gate/WEB

2.5 Conclusions

The ScatterWeb platform consisting of the ESB, eGate/USB, and eGate/WEB boards offers a flexible
and convenient way to develop and install a wireless sensor network. Although they are yet far from
being densely deployed as it was envisioned by the smart dust project [245], the ESB nodes perfectly
matches the requirements of this thesis.

In the following, we use the ScatterWeb platform to demonstrate all algorithms developed in this
thesis. Besides a gain in practical experiences, this provides us with a first proof of concept that each
algorithm can really be implemented on such resource-restricted hardware. However, using the radio
transceiver as an example, the next chapter also shows the shortcomings of such an embedded system.

CHAPTER3
The Impact of Resync and Forward

Error Correction

“Let us change our traditional attitude to the con-
struction of programs. Instead of imagining that our
main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings
what we want a computer to do.”

– D. Knuth –

3.1 Introduction

In this chapter, we describe a resync mechanism that allows two sensor nodes to re-synchronize their
communication after a transmission error has occurred. During experimental measurements we have
observed that bit errors are not evenly distributed over a received packet. Our resync mechanism can
significantly reduce the effect of such an uneven error distribution, which is due to special transmis-
sion errors. These errors are caused by some commonly used hardware components, particularly the
so-called universal asynchronous receiver/transmitter (UART) circuit (also used in serial communi-
cation) that interconnects the radio transceiver and the CPU. Because of the asynchronous communi-
cation between two nodes, the UART generates a start and stop bit in order to frame the actual data
bits. As long as the state machine at the sender is synchronized to that at the receiver, no resync is
necessary. However, once one or several bits are missed, the state machine at the receiver side will get
out of sync so that data bits are misinterpreted as start or stop bits and vice versa, rendering the re-
maining communication useless. But even in the case of skipped bits, the proposed resync mechanism
enables the receiver to catch up on a data stream, thus substantially reducing the number of errors in a
corrupted packet. Remaining errors can then be corrected by means of forward error correction (FEC)
codes.

In the second part of this chapter, we will consider such FEC codes, consisting of a single-bit error
correction code, a double-bit error correction code, and a Reed-Solomon code. We will also analyze

16 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

the impact of interleaving, which is a well-known technique to account for burst errors. As such burst
errors are likely in wireless communications, especially if the sender and receiver are out of sync,
interleaving may improve the efficiency of forward error correction under certain conditions.

In the last part, we will address the case of data dissemination in a multi-hop sensor network. Assum-
ing an application scenario where a large amount of data is to be disseminated to every node in the
network, we consider different approaches and analyze their performance by means of experimental
evaluations. Again, one possibility is the usage of FEC, but unlike before by spreading the code over
several packets. While Reed-Solomon codes are quite suitable for this purpose, we will also consider
another class of FEC codes, the so-called fountain codes. The advantage of fountain codes is their
independence regarding packet loss on the wireless radio channel. Particularly if data is broadcast to
multiple receivers in a lossy environment, fountain codes outperform Reed-Solomon codes as well as
non-coding significantly.

3.2 The Resync Mechanism

During first measurements concerning the transmission quality of the ESB nodes, we encountered poor
delivery ratios for low transmission powers and large inter-node distances. We also encountered a high
variation among the nodes and thus analyzed the error characteristics in more detail. Other researchers
reported similar transmission errors they obtained with other hardware platforms [257, 276, 278, 282].
In particular, the variation of the loss rate among nodes seems to be caused by the low-cost hardware
being used and by the low-priced manufacturing process.

Analyzing the occurrence and the number of bit errors contained in an erroneous packet shows that
the probability of a bit getting inverted is not distributed evenly, but rather is a rising function rising
monotonously with the length of the packet. The probability of a bit error thus seems to be dependent
on the probability of errors that occurred before. That is, the longer the packet, the higher the proba-
bility of an inverted bit. Since it is unlikely that this behavior is caused by the radio channel, it must
be related to the hardware itself. As we will describe in the next section, the high number of bit errors
at the end of a packet is due to the use of UARTs, which are well-known from serial connections on
PCs. The UART links the radio transceiver with the CPU and provides asynchronous communication.
However, in some situations the UART misses single bits such that the following bits are shifted to
the left with respect to the true bit stream being sent. Once the UART has lost a bit, it might start
to misinterpret the boundaries of bytes, receiving random information as a consequence. Recovering
these random bytes is then no longer possible. Intuitively, shifting them a few bits to the right would
align them with the true stream again. But getting the stream re-synchronized is quite a challenge
which we tackle in the following.

Although our resync mechanism is not able to prevent bit errors which may occur during the trans-
mission of data packets, it reduces the number of errors per packet significantly. It thus allows for
a reasonable employment of FEC codes. Without resync, FEC is clearly outperformed by automatic
repeat request (ARQ) as reported in [257] since usually there are too many errors that need to be

3.2. THE RESYNC MECHANISM 17

corrected. The redundancy added by a FEC code may thus be useless because it may not be sufficient
to correct all bit errors of a packet.

In the next section, we consider the communication characteristics of the ESB nodes and describe
how the UART is involved in the communication process. We then present the ideas for our resync
mechanism and evaluate it by using a comprehensive set of measurements.

3.2.1 Communication Characteristics of ESB Nodes

The ESB platform was mainly designed with regard to energy efficiency and the possibility to directly
interact with the radio transceiver. Due to the latter, no dedicated radio controller as used in Bluetooth
devices [4], cellular phones [172], or many IEEE 802.11 Wireless LAN cards [160] is employed. A
dedicated controller reduces the CPU load significantly since it handles the internal communication
with the radio transceiver itself, including channel encoding, bit synchronization, and the detecting of
the transmission start. It also provides a high-level interface to the CPU, refining the raw data stream
received from the radio. In spite of these advantages, the dedicated controller prevents a higher-layer
application from controlling the radio directly and hides useful information about the communication.
For example, a fine-grained control that is needed by many MAC protocols [81, 241, 271] is no longer
available. Also, access to time information about packet transmissions and arrivals, which is used in
time synchronization protocols [83, 89, 88] or by localization algorithms [99, 182, 230], is prevented
by a dedicated controller.

Thus, only a single controller is used on the ESB platform, facilitating arbitrary applications to di-
rectly control the radio and to gather all information needed for further processing. However, in order
to extract and drive the bits to and from the radio interface, a precise timing is necessary, which must
be provided by the CPU itself. Since a synchronous communication is quite expensive in terms of
energy, a UART is used to connect the CPU to the radio transceiver. Besides its asynchronous com-
munication possibilities, an additional advantage of the UART is that it accepts entire bytes, which are
then transmitted to the radio transceiver. Thus, by using periodically triggered interrupts for sending
and receiving, the CPU is allowed to enter a low-power sleep mode or to perform other work during
the serialization and de-serialization, respectively. However, as we will see, using a UART for wireless
communication in lossy environments is not advisable.

Universal Asynchronous Receiver/Transmitter

We now consider in more detail how the UART drives the bits to the radio transceiver. A universal
asynchronous receiver/transmitter (UART) is basically an 8-bit shift register used for serial commu-
nication [256], mapping data between serial and parallel interfaces. In embedded systems, UARTs
are commonly used with other communication standards such as RS-232 [24]. At the sender side, the
UART serializes a stream of bytes into a sequence of bits, which are reassigned to bytes at the receiver
side. In order to use the UART in conjunction with radio communication, the input pin of the radio
transceiver is fed with a sequence of bits from the output pin of the UART.

18 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

To support asynchronous communication, a byte is framed by a preceding start bit (logical 0) and a
succeeding stop bit (logical 1), as shown in Figure 3.1. The start bit is represented as a low signal level
(L), the stop bit as a high level (H). At the receiver, a low level is interpreted as a start bit whenever the
UART state machine is idle. Thus, the problem is that in the worst case the receiver might skip one or
more ones until it encounters a falling edge. The next zero bit is then misinterpreted as the start of a
new byte frame. In such a case, the receiver will be out of sync for the entire remaining bit stream.

L 1 0 1 1 0 0 1 0 H

Data stream

Figure 3.1: A byte stream framed by start (L) and stop (H) bits

To avoid an erroneous detection of start bits, three samples are taken around the middle of a bit. If a
start bit is detected successfully, the receiver samples the following eight bits and waits for a stop bit.
If no stop bit can be detected, a frame error occurs. Nevertheless, the received byte is transferred to
the UART buffer and reported to the CPU for processing. Afterwards, the UART becomes idle again
and waits for the next 1→ 0 transition.

The sender works in a complementary way. Whenever the UART is idle, the next byte waiting for
transmission is transferred from the UART buffer to a shift register. Before the byte is serialized, the
UART generates the start bit. The start bit, all data bits, and finally the stop bit are then transferred to
the radio transceiver.

Data Transmission Characteristics

As mentioned above, at the sending side a logical 0 is mapped to a low voltage level and a logical 1
to a high one. At the receiver side, the received baseband signal is converted to a voltage that is linear
to the strength of the signal. A voltage higher than a predefined threshold is interpreted by the radio
transceiver as a logical 1, a voltage lower than the threshold as a logical 0. According to the current
baseband voltages, the radio receiver will tune the threshold, i. e., the threshold might be increased
or decreased. For optimal reception, the threshold should thus be tuned to the middle of the highest
logical 1 and the lowest logical 0 level. Therefore, each byte must roughly contain the same amount
of ones and zeros, which is referred to as being DC-balanced [201].

DC balance is achieved by appropriate encoding schemes, either used at the physical layer or at the
link layer. Figure 3.2 depicts an example of a non-return to zero (NRZ) and a Manchester encoded data
stream. Unlike the NRZ code, the Manchester code is DC-balanced since each bit is either encoded as
a transition between low and high (logical 0) or between high and low (logical 1). However, note that
compared to the NRZ code, the baud rate is only half the bit rate.

Since the TR1001 radio transceiver on the ESB platform only supports NRZ encoding, DC balance
must be achieved by software. Therefore, a byte is encoded into two bytes as shown in Figure 3.3.

3.2. THE RESYNC MECHANISM 19

0 1 1 0 0 1 0 1

0 1 1 0 0 1 0 1

0 1 1 0 0 1 0 1

Manchester
encoding

NRZ
encoding

Data input

Figure 3.2: Example of NRZ and Manchester encoding

The first byte consists of the odd bits; the second byte contains the even bits. In order to fulfill the
DC balance property, each bit is followed by the appropriate inverted bit. Note that this encoding
scheme is not the same as the Manchester code, but can be implemented very efficiently. After a byte
is encoded, both encoded bytes are transmitted to the UART, which in turn sends a serial stream to the
radio transceiver.

0 1 1 0 0 1 0 1

0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0Encoded Bytes

Input Byte

0 1 1 0 0 1 0 1

0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0Encoded bytes

Input byte

Preamble Start Bytes Data CRC

0xAA 0xAA 0xAA 0xAA 0xAA 0x01 0x7F CRC1 CRC2 CRC3 CRC4

Figure 3.3: Encoding scheme used by the ESB firmware

To synchronize the receiver side to the beginning of a packet transmission, a preamble is sent first,
followed by a synchronization byte, two start bytes, and the actual data. The preamble consists of five
0xAA bytes (which is a sequence of alternating bits) in order to tune the receiver’s radio transceiver.
The following synchronization byte 0xFF (idle line) synchronizes the receiver’s UART to the start bit
of the next byte. In order to help the receiver to recognize the start of the packet and to distinguish it
from noise, two predefined start bytes (0x01 and 0x7F) are used1. The idle condition of the second
start byte allows the receiver to recognize the start bit of the data block more reliably.

The entire packet structure is illustrated in Figure 3.4. The data block consists of an 8-byte packet
header, followed by an arbitrary length of application data. The packet header is composed of the
destination and source node’s identifier, a packet type identifier, a sequence number, and the length
of the contained data. To ensure a reliable communication, a 16-bit CRC checksum is additionally
inserted at the end of the data stream.

Specific Error Characteristics

In several experiments with the ESB platform we have observed that the frequency of bytes being
corrupted almost monotonously increases with the number of transmitted bytes. Since radio distur-
bances should actually be independent of the byte’s position, we assumed that most of these errors are

1The start bytes must be distinguishable from other bytes. They therefore consist of two bytes containing a run of zeros
followed by a run of ones to keep the transceiver DC-balanced.

20 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

Preamble Start bytes Data stream

CRC-16

0xAA 0xAA 0xAA 0xAA 0xAA 0x01 0x7F

n-1 n

n Bytes

Destination Source Type Seq. Length Application data

1 2 3 4 5 6 7 8 9 n-2

Sync

0xFF

Figure 3.4: Entire packet structure consisting of a preamble, header, and data block

somehow caused by the hardware itself. We therefore captured some received packets and analyzed
the raw data stream in more detail.

Figure 3.5 shows an example of such a received byte stream, depicted by hexadecimal numbers that
illustrate the packet content. The data stream starts with the two start bytes 0x01 and 7F, followed by
a packet header and some test bytes. Note that due to the encoding scheme described in the previous
section, each byte is encoded into two2. For example, the first two bytes of the actual packet (0xAA
and 0x55) are decoded to 0xFF, indicating that the packet was sent per broadcast.

01 7F AA 55 AA 55 59 A6 55 AA 96 A6 A9 5A 55 AA 55 A9 AA 65
99 A6 6A 56 A9 59 95 A9 65 96 AA AA 59 6A 5A 5A 96 99 5A AA
A6 5A 56 69 66 6A 56 6A 96 95 AA A5 56 59 55 9A 99 A5 A6 66
A5 A9 9A A6 51 96 66 6A AA 69 A5 99 AA 66 69 59 56 6A 56 96
95 69 69 95 95 A9 AA 56 5A 55 A5 A9 99 56 96 95 95 5A 99 55
A9 96 69 55 9A 66 56 99 9A 69 95 AA 69 59 66 9A 5A 6A A9 AA
59 66 5A 99 AA A9 66 56 55 5A 56 AA 59 56 69 65 9A A5 56 95
A5 69 95 59 99 66 66 66 65 A5 AA A5 65 59 A9 56 56 9A 59 95
99 69 59 66 5A 55 96 69 6A 65 95 59 A9 59 9A 9A 56 A5 A5 56
96 66 A5 56 6A A9 6A A5 56 56 A9 95 A9 AA 66 59 9A 9A 55 AA
AA 59 4B 33 33 67 99 65 A9 99 99 59 9A 99 56 A9 56 96 64 9A

99 2B 2B 95 95 66 69 56 5A 69 65 AA 56 56 99 6A 9A A6 61 56

5A 66 66 5A A9 69 95 59 65 65 65 9A A6 45 69 69 65 4B 66 6A

59 99 AA A6 55 99 A5 99 AA 6A A5 A5 66 96 6A 6A 95 A6 96 69

56 59 A6 65 99 65 AA 4A 59 9A 69 A5 95 A5 69 69 A6 65 65 AA

99 66 65 5A 69 56 9A 99 A5 66 99 6A 16 59 95 6A AA A9 55 59

Figure 3.5: Part of an erroneously received packet

Erroneous bytes are labeled with a orange box, but there are two things that should be noted:

1. The byte 0x51 is wrong due to a single bit error since the correct byte was 0x59.

2. With the next erroneous byte 0xAA, all following bytes will either show bit errors (red text color)
or will be misinterpreted (green text color). Misinterpretation means that a byte is received
without an error but at the wrong time in the data stream.

2For the same reason, only the bit sequences 0101 (0x5), 0110 (0x6), 1001 (0x9), and 1010 (0xA) occur.

3.2. THE RESYNC MECHANISM 21

Due to the second observation, we assume that the receiver runs out of synchronization near the end
of the packet. If we take a look at the disturbed bytes, we can recover the original byte stream.
However, the byte stream (indicated by the green text color) is shifted to the left by a number of
bytes. Unfortunately, it is not possible to recover the number of bytes the stream has shifted, unless
the content of the packet is known a priori.

By considering the hardware involved in receiving data over the radio, we can explain these errors as
follows: Single bit errors are actually rare and are not limited to data bits only; it is also possible that
the start bit, which is used by the UART for the byte synchronization, will be disturbed. However, the
loss of a start bit has serious consequences for the following bytes. In the first place, the receiver gets
out of sync, and the following bits are shifted to the left. Secondly, some bits of the next byte might
be dropped until the UART has received the next start bit. Hence, it is possible that a single-bit radio
disturbance can corrupt an entire packet.

Figure 3.6 illustrates such a scenario, showing an original data stream framed by start (L) and stop (H)
bits, and a corresponding stream in which the first start bit is corrupted (E). Considering the corrupted
stream, the UART of the receiver skips all bits after the first stop bit until it detects the next logical 0,
which will be interpreted as the start bit of the next byte. However, in this case, the start bit is already
part of the detected data byte. Thus, the following eight bits are misinterpreted as data. At the end, the
stream is shifted about three bits compared to the original one.

H L 1 0 1 1 0 0 1 0 H L 1 1 0

Original stream

H E L 1 1 0 0 1 0 1 0 H L

Corrupted stream

Figure 3.6: An original data stream and a corresponding corrupted stream

3.2.2 Design of an Appropriate Resync

As we have seen, most of the errors occurring are due to an unsynchronized UART that has lost
one or more bits and thus misinterprets data bits as start or stop bits, or vice versa. This leads to
an unrecoverable misinterpretation of all following bytes. Thus, the disturbance of start bits is most
critical. Since the receiver does not know the transmitted data a priori, it will not be able to re-
synchronize to the original data stream by itself. Rather, the sending node must provide a mechanism
that allows for an automatic resync.

As discussed in the previous section, a UART performs byte synchronization by means of start and
stop bits. Since a start bit will be detected by a falling edge, the best way to carry out a resync is to
restart the transmission with an idle line, i. e., a consecutive run of ones.

22 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

Our solution becomes more intuitive if we regard both the sender and the receiver as state machines.
As long as both sides are synchronized, a start bit at the sender side will be interpreted as such on
the receiver side. The same is true for data and stop bits. But once the receiver has missed a bit
somewhere, its state machine will fall behind. Consequently, it will read the next start bit as a data
bit and, upon sampling eight bytes, the first falling edge in the original data section as a start bit. To
resolve this situation, the sender sends eight consecutive high values followed by a falling edge, so
that the state machine of the receiver will be in the state “waiting for a falling edge”, no matter how
many bits the receiver fell behind before. From that time on, both state machines will be in the state
“start bit detected”.

We can conclude that the UART’s state machine is not very adaptive. It usually changes from a
preceding state to a single succeeding state. Only when waiting for a start bit, does “no falling edge”
mean “stay in your current state”, while “falling edge” means “start reading bit one”. This is the only
opportunity at which we can make the receiver wait until both state machines are synchronous again.

In order to make the receiver’s state machine wait occasionally, we stuff resync bytes (0xFF) into the
data stream. 0xFF maps to a long run of high signal values on the channel, which can be interpreted
as an anchor if the receiving UART gets out of sync. This kind of anchor must occur in the data
stream periodically because the sender cannot know when the receiver might be out of sync. That
way, the receiver will be able to recognize the start of the following byte. No matter how many bits
were skipped coincidentally, the UART will detect a falling edge after the sequence of 1-bits (0xFF)
in any case.

To achieve a resync at the byte level, the following approach is used: Let n be the number of bytes
after a resync byte is stuffed into the stream and m be the number of yet received (encoded) data bytes
by the receiver. The stuffing starts with the first data byte (after the start bytes 0x01 and 0x7F). Thus,
the receiver always expects a resync byte after n bytes, i. e., if

m mod n = 0. (3.1)

For each byte received, the receiver then checks if it is a resync byte (0xFF). To be more robust against
radio disturbances, 1-bit errors within a resync byte are ignored3. For example, 0xFB is considered
as a resync byte, too. If a resync byte is detected, the receiver will verify if the byte stream is still
synchronous. Otherwise, Equation 3.1 is false and so is the receiver’s byte position. Since it is likely
that the receiver will be some bytes behind, it will increase its byte position m within the data stream
until Equation 3.1 is satisfied. If no resync byte could be recognized but m has become a multiple
of n, the receiver might have missed the resync byte. However, it is likely that the resync byte was
already considered as a data byte. Hence, the receiver will skip the current byte and wait for the next
resync.

According to Figure 3.6, Figure 3.7 shows how the resync mechanism may re-synchronize the UART
of a receiver. Even if it is not possible to correct the data byte, the mechanism will synchronize the
receiver to the start of the following byte.

3Due to the encoding scheme used, a resync byte containing a 1-bit error is still distinguishable from other bytes.

3.2. THE RESYNC MECHANISM 23

H L 1 0 1 1 0 0 1 0 H L 1 1 1 1 1 1 1 1 H L 1 1 0

Original stream

H E L 1 1 0 0 1 0 1 0 H L 1 1 0

Corrupted stream

Resync byte

Figure 3.7: An original data stream and a corresponding corrupted stream using resync

The impact of resync on the entire transmission of a packet is shown in Figure 3.8. Resync bytes are
used every n-th encoded byte (n = 4) and indicated with a ‘:’. Except once, all resync bytes have been
detected correctly. Compared to Figure 3.5, the total amount of byte errors is much lower since the
receiver could sooner or later be re-synchronized to the original data stream. For example, consider
the fifth row of Figure 3.8. The actual resync byte (in this case the corrupted byte 0x5F) is interpreted
as a data byte since (i) it contains more than one single-bit error and (ii) the receiver is one byte behind
the data stream. As the next original byte (0xA5, see Figure 3.5) is skipped due to Equation 3.1, the
three following bytes are shifted one byte to the left (0xA9, 0x99, 0x56). After byte 0x56, the next
resync byte is recognized (‘:’). The receiver thus increases its byte position by one (indicated with
0x00) and re-synchronizes itself to the original data stream.

01 7F AA 55 AA 55:59 A6 55 AA:96 A6 A9 5A:55 AA 55 A9:AA 65
99 A6:6A 56 A9 59:95 A9 65 96:AA AA 59 6A:5A 5A 96 99:5A AA
A6 5A:56 69 36 6A:56 6A 96 95:AA A5 56 59:55 9A 99 A5:A6 66
A5 A9:9A A6 59 96:66 6A AA 69:A5 99 AA 66:69 59 56 6A:56 96
95 69:69 95 95 A9:AA 56 59 5F A9 99 56:00 96 95 95 5A:99 55
A9 96:69 55 9A 66:56 99 9A 69:95 AA 69 59:66 9A 5A 6A:A9 AA
59 66:5A 99 AA A9:66 56 55 5A:56 AA 59 56:69 65 9A A5:56 95
A5 69:95 59 99 66:66 66 65 A5:AA A5 65 59:A9 56 56 9A:59 95
99 69:59 66 5A 55:96 69 6A 65:95 59 A9 59:9A 9A 56 A5:A5 56
96 66:A5 56 6A A9:6A A5 56 56:A9 95 A9 AA:66 59 9A 9A:55 AA
A6 69:96 65 9A AA:A9 A6 96 66:99 65 A1 8A:99 59 9A 99:56 A9
56 96:64 9A 99 65:65 AA 95 95:66 66 A5 59:99 A6 A5 A9:69 69
9A A6:61 56 5A 66:66 5A A9 69:95 59 65 65:65 9A A6 45:69 69
59 4B:96 6A:59 99:AA A6 55 99:A5 99 AA 6A:A5 A5 66 96:6A 6A
95 A6:96 69 56 59:A6 65 99 65:AA 4A 59 9A:69 A5 95 A5:69 69
A6 65:65 AA 99 66:65 5A 69 56:9A 99 A5 66:99 6A 96 69:95 6A

Figure 3.8: Part of an erroneously received packet using resync (n = 4)

3.2.3 Experimental Evaluation

To evaluate of our resync approach, we performed a comprehensive set of measurements. We placed
16 ESB nodes (including one source node) in line on our office floor, each at a distance of 1 m. A

24 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

power supply unit was used for the source node, while all other nodes used rechargeable batteries. In
doing so, we hope to get similar signal strengths for outgoing packets during each evaluation run.

In order to evaluate different transmission powers, the transmission power was increased from zero
up to one in increments of 0.04. For each transmission power, the source node broadcast 100 data
packets containing 256 bytes. Packet forwarding or routing was not employed. The data rate was set
to 2 packets/sec. Nodes receiving a data packet did not send an acknowledgment but quietly updated
their statistics. The content of each packet was predefined and known to all nodes a priori. In this way,
the receiving nodes could simply keep book on the number of erroneously received packets as well as
on the number of byte errors per packet.

At the end of each evaluation run, the source node collected all statistics stored at the receiving nodes.
A notebook connected to the source node served as a database in order to support a convenient eval-
uation. We developed several code modules that operated as firmware plug-ins, e. g., to generate data
packets, record packet statistics, perform statistical calculations and as a plug-in to collect the stored
statistics from all nodes. Altogether, we have performed evaluation runs for different resync frequen-
cies n, which was increased from zero (which means no resync was used at all) to a maximum value
of 32.

Evaluation Results

Before we investigate the evaluation results of our resync approach, Figure 3.9(a) shows the average
number of packets detected and received, as well as the number of correctly received packets for
different transmission powers. At this time, the resync mechanism was not yet applied. As expected,
the number of packets increases with a growing transmission power. However, if packets are sent
with a transmission power of less than 0.28, the average number of correctly received packets is close
to zero. While the difference between packets detected and received is very small, the difference
between received packets and faultless packets is quite significant. Although the reception ratio of
faultless packets increases with an increasing transmission power, the number of erroneous packets
remains high. This is mainly due to the placement of nodes at different distances.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
n
ta

g
e

o
f

p
ac

k
et

s

Transmission power

Preamble detected
Packets received
Faultless packets

(a) For different transmission powers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
er

ce
n
ta

g
e

o
f

p
ac

k
et

s

Node at distance d [m]

Preamble detected
Packets received
Faultless packets

(b) For different distances

Figure 3.9: Average packet reception without resync (n = 0)

3.2. THE RESYNC MECHANISM 25

The influence of a node’s distance from the source node on the packets received is depicted in Fig-
ure 3.9(b), averaged over all transmission powers. Although the number of packets tends to decrease
with increasing distance, there exists a high variation between adjacent nodes. This might be due to
several reasons like (i) signal interferences, dispersions, or multi-path fading due to our indoor place-
ment or (ii) transceiver calibration errors that are due to the low-cost, low-energy hardware. As other
authors have reported in [276, 278, 282], we believe that the latter is the most likely explanation since
we encountered such variations in the quality of nodes very often during preceding tests.

In the following, we now consider the improvements the resync mechanism is able to achieve. Fig-
ure 3.10 depicts the relative frequency with which an error occurred at a specific byte position within
a packet. Due to the fact that some bits get lost if the UART misses a start bit (as was discussed in
Section 3.2.1), it is likely that bytes near the end of a packet will be disturbed. This assumption is
proven by Figure 3.10, where the error frequency increases heavily with the number of transmitted
bytes per packet if no resync is used (n = 0).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

P
er

ce
n
ta

g
e

o
f

er
ro

rs
 o

cc
u
rr

ed

Data byte position within a packet

n = 0
n = 2
n = 4
n = 8

n = 16
n = 32

Figure 3.10: Number of errors occurring at a specific byte position

Interestingly, there are some peaks where the error frequency breaks down. For example, at byte
positions 81 and 83, the error frequency is significantly lower than at adjacent positions. But how can
the probability of an erroneous byte decrease in a stream of bytes? If caused by an implicit resync, the
following bytes would have experienced fewer errors, too.

We performed a similar evaluation run with 50 zero bytes added to the beginning of the data stream.
As a result, the peaks in Figure 3.10 move to the right by exactly these 50 bytes. Thus, the peaks must
be due to the packet content itself.

A deeper analysis shows the following circumstance: Beginning with byte number 81, the data stream
contains the following (non-encoded) bytes: 0xF4, 0xC6, 0xF4, 0x2B, 0x2F, 0x56 etc. As we
see, 0xF4 occurs twice in this stream. So if the stream shifts to the left by two bytes, byte number 81
would be coincidentally correct. For the second 0xF4 byte, we also find a similar bit pattern, the end
of byte 0x2F and the start of 0x56 (except for the last bit). Even if the receiver is out of sync (the
start and stop bits are considered as data bits), the pattern remains the same. Thus, depending on the
packet content, the peaks may move or even vanish completely.

26 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

As Figure 3.10 also illustrates, substantially better results are achievable using the resync mechanism
as proposed in the previous section. However, particularly in terms of efficiency, it is essential to
analyze how often resync bytes should be used to be optimal. The best results are achieved with
n = 16, followed by n = 32, n = 8, n = 4, and n = 2. Thus, we can see that resync improves the
error characteristics in any case. But the improvements are not monotonic with a decreasing frequency
n. In fact, the results with n = 64 are worse than those with n = 32. That is due to the following
trade-off: For n→∞, resync bytes are used sparsely, so they might have no effect. On the other hand,
for n → 1, resync bytes are used too often, leading to a byte stream that is no longer DC-balanced.
As discussed in Section 3.2.1, the threshold used by the UART to distinguish between a high and a
low signal is adapted to the ongoing transmission. That is, if too many bytes are transmitted due to
too many resync bytes, the threshold will increase, and succeeding signals might be misinterpreted as
zeros. Consequently, resync bytes might no longer be detectable and thus be ignored.

Figure 3.11(a) depicts the cumulative distribution of byte errors per received packet for different resync
frequencies n. As a first observation, we see that using the resync mechanism improves the reception
in all cases, independent of the resync frequency used.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

C
u
m

u
la

ti
v
e

p
er

ce
n
ta

g
e

o
f

p
ac

k
et

s

Number of byte errors per packet

n = 0
n = 2
n = 4
n = 8

n = 16
n = 32

(a) Cumulative distribution of byte errors per packet

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0.24

 0.28

 0.32

 0.36

 0.4

 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

P
ac

k
et

 t
h
ro

u
g
h
p
u
t

Number of byte errors per packet

n = 0
n = 2
n = 4
n = 8

n = 16
n = 32

(b) Packet throughout

Figure 3.11: Cumulative distribution of byte errors per packet and packet throughput

Concerning the number of errors per packet, most of the errors occur at the end of a packet for n = 0,
as we have already seen from Figure 3.10. Thus, almost the entire packet is corrupted. The same
applies to n = 2. However, for n > 2, we can observe how the error characteristics change. While
for n = 0 about 31% of all received packets have fewer than 16 errors, the percentage increases to
47% for n = 4. For n = 8, it is even better; 55% of all received packets have fewer than 16 errors.
However, for n > 8, the benefit of the resync decreases, as (i) a resync occurs less often, and (ii) the
average number of erroneous bytes will increase until the receiver is synchronous again. In addition,
the resync mechanism might skip some bytes due to Equation 3.1 if the UART at the receiver side has
fallen behind4. Thus, for n = 16 and n = 32, more errors occur, even though the resync is successful.

So far we did not take into account the communication efficiency or the packet throughput defined as
the ratio between bandwidth used and overhead cost. The bandwidth used relates to the number of
transmitted bytes, including data as well as resync bytes. The costs are influenced by the frequency

4In the worst case, there are dn−1
2
e skipped bytes.

3.2. THE RESYNC MECHANISM 27

with which a resync occurs. For example, for n = 2, the efficiency is 1/2 if one packet is considered5.
According to Figure 3.11(a), Figure 3.11(b) shows the cumulative throughput for an increasing number
of byte errors.

A resync frequency of n = 2 performs worst with respect to packet throughput since the number of
resync bytes is quite high. It even performs worse than the case of using no resync at all. If fewer than
85 byte errors occur per packet, n = 8 achieves the best results. It is then outperformed by n = 16
and n = 32 since the overhead of both schemes is less, which leads to a better efficiency.

The main results of the evaluation are summarized in Table 3.1. In addition to the percentage of
received packets and the appropriate throughput if up to e errors per packet are considered, the table
shows the average number as well as the maximum number of byte errors, averaged over all packets
and nodes. Based on these results, we can conclude that a resync frequency of n = 8 trades off the
bandwidth usage and required resync cost better than other frequencies. Up to a reasonable number
of errors, which might still be correctable by means of appropriate FEC codes [155, 192], it achieves
the best performance. It is thus recommended if forward error correction is intended to be used in
conjunction with the ESB platform. Otherwise, we do not need to make the effort of a period resync
because, as it should be noted, the resync mechanism only reduces the number of bit errors per packet
but is not able to avoid them completely.

Percentage of packets received and (throughput)
n per node with up to e errors

Errors per packet and node

e = 0 e ≤ 16 e ≤ 32 Average Maximum
0 0.29 (0.29) 0.31 (0.31) 0.32 (0.32) 31 96
2 0.30 (0.20) 0.34 (0.23) 0.35 (0.24) 28 83
4 0.30 (0.24) 0.47 (0.38) 0.49 (0.39) 20 64
8 0.30 (0.26) 0.55 (0.51) 0.60 (0.56) 12 32

16 0.30 (0.28) 0.43 (0.41) 0.52 (0.50) 24 70
32 0.29 (0.28) 0.35 (0.34) 0.43 (0.42) 28 79

Table 3.1: Error characteristics for different resync frequencies

3.2.4 Conclusions

In this first part, we have analyzed the wireless communication characteristics of the ESB platform in
more detail. Due to the hardware design, specific communication errors might occur if the sender and
the receiver get out of sync during a transmission. In this case, the following bits will be misinterpreted
at the receiver side. We hence proposed a periodic resync mechanism that is able to re-synchronize the
sender’s and receiver’s state machines and thus reduce the number of errors per packet significantly.

We have reported our results to the researchers at the FU Berlin and pointed out the design problems
of using this radio transceiver in conjunction with UARTs. Although our resync mechanism reduces
the impact of the UART on the reception performance, a more preferable solution would be to change
the hardware design, rather than trying to fix the synchronization problem in software. While UARTs
are well-suited for wired communications with loss rates that are orders of magnitude lower, they are

5In general, the efficiency is 1/n for a single packet.

28 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

unsuited for wireless devices. Meanwhile, many manufacturers rely on synchronized communication
components, such as the recently launched next generation of the ESB [210]. Due to a precise timing,
UARTs no longer need be employed, avoiding the framing of bytes by start and stop bits.

The next section investigates how FEC performs in conjunction with the proposed resync mechanism
and to what degree FEC is able to improve the packet delivery ratio of ESB nodes in practice.

3.3 Forward Error Correction

In traditional 802.x-based Wireless LANs, the strength of a radio signal will usually be sufficient
to reliably cover a relevant area [95]. If not, a larger number of base stations can easily be used.
Thus, many evaluations come to the conclusion that incorrect packets occur rarely; if they occur at
all, they are caused by burst errors due to disturbing signal sources [141]. Here, error recovery by
retransmission [242] is more efficient than adding redundant information to every packet in advance.

However, Zhou et. al [278] have shown that radio communication over large distances or with weak
radio signals (as it is expected in sensor networks) exhibit different error characteristics. Single bit
errors occur with a much lower variance, which means that they are more evenly distributed. For
example, consider a packet with a size of 256 bytes. If we assume that there is a 50% chance for
a single bit error within 500 bits, the likelihood of receiving an error-free packet of 256 bytes is as
low as 6%. Despite the small number of single bit errors, we would have to retransmit more than
16 packets on average in order to get one through. On the other hand, the small number of bit errors
could be compensated easily by FEC, which motivates the usage of proactive techniques rather than
using ARQ with reactive retransmissions.

Of course, proactive and reactive techniques can be combined into a hybrid approach of FEC and
ARQ as in [243], where the first packet contains no redundant information, and retransmitted pack-
ets include information for forward error correction. Since the FEC code size depends heavily on
the error characteristics of the underlying wireless channel, adaptive FEC code schemes are also pro-
posed [9]. Adaptive codes determine the appropriate code size dynamically based on the number of
arrived acknowledgements, the bit error rate, or the signal-to-noise ratio.

Another hybrid-ARQ technique is described by Zhao and Valenti in [275], where retransmitted packets
do not need to come from the same source node. Instead, relay nodes that overheard the transmission
may transmit lost packets. The idea of hybrid ARQ is that corrupted packets are buffered at the receiver
and combined with retransmitted packets. However, rather than sending the original packet again, the
sender may transmit an encoded version that can then be combined with the corrupted packet sent
before. Dubois-Ferrière et al. [78] present such a packet combining scheme by using plain and parity
packets and evaluate the performance in a multi-hop sensor network. Exploiting the reception of
corrupted packets significantly improves the network performance and reduces the number of packet
transmissions along a multi-hop route. Especially for sensor networks, combining plain and parity
packets provides a simple form of adaptive coding which does not rely on any channel measurements.

3.3. FORWARD ERROR CORRECTION 29

Concerning the ESB platform, Willig and Mitschke [257] performed several measurements and ana-
lyzed the bit error rate over a long period of time. However, due to the synchronization problem we
described in the first part of this chapter, they encountered burst errors in the majority of cases. Since
most of these burst errors cannot be corrected by common FEC codes, they rather recommended the
use of ARQ. However, they were not aware of the synchronization problem caused by the UARTs.
Thus, this section discusses the usage of FEC if resync is applied.

3.3.1 Forward Error Correction Codes

Before we evaluate different FEC codes on the ESB platform in conjunction with resync, we first
present some theoretical aspects of FEC. We consider three types of codes that are able to correct
different kinds of errors: A code that can correct single bit errors, one that is able to correct double bit
errors, and a Reed-Solomon code that recovers so-called symbol errors, depending on the redundancy
of the code. We also describe the concept of interleaving, which can be used to spread burst errors
within a packet. A comprehensive overview of FEC codes, also in comparison with ARQ techniques,
can be found in [130, 155, 156, 192].

Linear Block Codes

Let B = {0, 1} and n ∈ N . Then a code C ⊆ Bn will be called a linear block code if the sum of two
codewords u and v is a codeword, too. Let k ∈ N be the dimension of C with {b1, . . . , bk} being a
basis of C. The k × n matrix

G = [b1 . . . bk]
T (3.2)

is called the generator matrix of the code C since C is constructed by G with

C = {xG | x ∈ Bk}. (3.3)

Thus, C is called an (n, k) code, where k refers to the number of data bits and n refers to the number
of bits the encoded codeword has. With Ik being the k × k identity matrix, G can be transformed to
[IkP], where P is a k × r binary matrix and r refers to the number of parity bits that are added to the
code C. Using the generator matrix G, the parity matrix H is constructed and is of the form [P T Ir].
Then, for all codewords x ∈ Bn, we get

x ∈ C ⇔ xHT = 0. (3.4)

xHT is called the syndrome s of x. If s 6= 0, an error occurred during the encoding process.

Hamming Codes

Hamming codes are linear (n, k) codes that are able to correct 1-bit errors [107]. The parity matrix H
can be constructed in a simple way by setting the j-th column vector to the binary form of number j.

30 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

For example, for the (7, 4) Hamming code, H would be

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 , (3.5)

with the generator matrix G being

G =


1 1 0 1 0 0 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
1 1 1 0 0 0 0

 . (3.6)

Note that H and G are not of the form [P T Ir], respectively [IkP], but could easily be transformed
into it by exchanging some column vectors.

If a 1-bit error occurs, the syndrome s gives the position of the erroneous bit. For example, let c ∈ Bn
be a valid codeword that is received as x = c+ e with a 1-bit error vector e ∈ Bn. Then, we get

s = xHT = (c+ e)HT = eHT . (3.7)

Since eHT corresponds to the e-th column in H , s gives the position of the error.

As the Hamming code is able to correct 1-bit errors and detect up to 2-bit errors, it is referred to as a
single error correction and double error detecting (SEC-DED) code. Other SEC-DED codes are for
example the one presented in [215] or the odd-weight-column codes [117], where each column of H
has an odd weight, i. e., the number of ones is odd. By using minimum odd-weight-column codes,
the number of ones contained in the H matrix is further minimized. In corresponding circuitry, this
requires less hardware area. Ghosh et al. [96] have shown that the power consumption can be reduced
by exploiting the degree of freedom in selecting the parity matrix. Thus, odd-weight-column codes
are most relevant when error correction is implemented in hardware.

Double Error Correction Codes

A double error correction and triple error detection (DEC-TED) (16, 8) code was proposed by Gul-
liver and Bhargava [102]. With P defined as

P =



0 1 1 0 1 0 1 0
0 0 1 1 0 1 0 1
1 0 0 1 1 0 1 0
0 1 0 0 1 1 0 1
1 0 1 0 0 1 1 0
0 1 0 1 0 0 1 1
1 0 1 0 1 0 0 1
1 1 0 1 0 1 0 0


, (3.8)

3.3. FORWARD ERROR CORRECTION 31

the generator matrix G is given in its standard form [I8P] and the parity matrix H as [P T I8]. If a
1-bit or 2-bit error occurs, the syndrome s is either equal to a single column of H or to an additive
(exclusive-or) combination of two columns. The index of the involved columns then represents the
position of the bit error(s).

Interleaving

In order to combat the effects of burst errors, interleaving can be used. In this way, two or more
codewords are interleaved before they are transmitted. The number of interleaved codewords k refers
to the depth of an interleaver. The interleaver first stores the k codewords of size m in a k ×m buffer
row-by-row. We thus call such an interleaver a (k,m)-interleaver. It then outputs the interleaved
codewords column by column. Thus, in the output stream there are always k − 1 other bits between
two successive codeword bits. At the other end, a deinterleaver works in the reverse way.

If the interleaving depth is sufficiently large, the correlation between two successive codeword bits
will be minimized. The deinterleaver might thus have enough capability to decode the codeword
successfully. As shown in [280], interleaving is effective if tk exceeds the average burst length, where
t denotes the number of correctable errors. For example, consider a stream of 16 bytes where the first
two bytes are completely disturbed, after the interleaving was performed. Using an (8, 8)-deinterleaver
would reconstruct an output stream with 16 bytes where 8 bytes contain a 2-bit error. On the other
hand, a (16, 8)-deinterleaver would produce an output stream with 16 bytes where all bytes contain a
1-bit error only.

Figure 3.12 illustrates this example. Bit errors are indicated in red. The first eight output bytes are
represented by solid arrows, while the second eight bytes are shown by dashed arrows. Even if both
times the first and the second bytes in the output stream are completely destroyed, only the (16, 8)-
deinterleaver is able to spread the bit errors over all 16 bytes. The (8, 8)-deinterleaver assigns the first
two bytes to the same decoded byte block due to its lower interleaving depth and thus produces eight
bytes containing 2-bit errors and eight bytes containing no bit error.

Reed-Solomon Codes

Today, Reed-Solomon (RS) codes [199] are widely used, e. g., in digital television, wireless and satel-
lite communication, broadband modems, CD’s and DVD’s, etc. Like the before-mentioned FEC codes,
they work by adding some redundancy to the original data, which is later used to correct a certain
number of errors. However, RS codes do not correct multiple single bit errors but complete symbols,
which contain a fixed number of bits. As before, the number of correctable errors mainly depends on
the amount of information added.

RS codes belong to the class of systematic linear block codes. Systematic means that the encoded
data consist of the original data and some redundant symbols added to the end (called the code block).
Each block is divided into multiple m-bit symbols with a symbol size of typically 3 to 8 bits. Finally,
the linearity property of the code ensures that every possible m-bit word is valid for encoding.

32 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

8

8

8

8

16

Figure 3.12: Example of two (8, 8)-interleavers and one (16, 8)-interleaver

An RS(n, k) code then specifies a code with n encoded m-bit symbols per code block. The number
of original symbols is specified by k, thus n − k refers to the amount of redundancy used. Given the
symbol size m, the maximum length of the RS code, which is denoted by n, is 2m − 1.

With 2t = n− k, an RS decoder is able to correct up to t symbol errors. That means that either only
t bits (single bit errors) or up to tm bits (all symbol bits are erroneous) may be corrupted, depending
on how many symbols are affected. Therefore, RS codes are able to correct burst errors of up to t
unknown symbols. If the position of a symbol error is known, such an error is called an erasure.
Erasures are easier to correct since their positions need not be identified. Thus, a codeword containing
r unknown symbol errors and s erasures can still be recovered if 2r + s ≤ 2t.

A widely used RS code is the RS(255, 223) code with 8-bit symbols. Each codeword has a length of
255 bytes, of which 223 bytes are data and 32 bytes are parity bytes. If not all data bytes are required,
the code may be shortened by regarding missing data bytes as zero symbols. Zero symbols need not be
transmitted and are re-inserted at the receiving side prior to decoding. For example, an RS(255, 223)
code can be shortened to an RS(193, 161) code by adding 62 zero bytes to the data. Then, the data
are encoded into an RS(255, 223) codeword, of which only 193 original data bytes and the 32 parity
bytes are transmitted.

The encoding and decoding processes of RS codes are based on a mathematical construct known as
finite fields or Galois fields. A mathematical field is finite if the result of an arithmetic operation (like
+,−, ·, /) on a field element is an element of the field itself. The encoder of an RS code then generates
a codeword based on these operations by using a special generator polynomial. Each codeword has
the property that it is exactly divisible by the polynomial. The 2t parity symbols are finally given by
the last 2t bits of the codeword.

3.3. FORWARD ERROR CORRECTION 33

At the receiving side, the codeword can be considered to be a polynomial, too. The decoder carries
out several steps in order to recover the possibly corrupted data. At first, the 2t syndromes of the
codeword are calculated. The roots of the generator polynomial are substituted into the polynomial
of the received codeword. Then, the location of the symbol errors need to be found, which requires
solving simultaneous equations with t unknowns. An error locator polynomial is then created by using
the Berlekamp-Massey algorithm [22, 169]. The roots of the locator polynomial indicate the locations
of symbol errors, which can be calculated by the Chien search algorithm [57]. After the locations
are known, symbol errors can be corrected by the Forney algorithm [85]. This again involves solving
simultaneous equations with t unknowns. Further information concerning encoding and decoding of
RS codes can be found in [155] or [192].

3.3.2 Analyses of FEC Codes

We can now analyze the performance of the presented FEC codes concerning the packet delivery ratio,
the packet delivery cost, and the utilization defined as the fraction of carried information per delivered
bit. Let p be the bit error rate on the wireless channel, k be the number of data bytes, and n be
the number of bytes the encoded packet finally contains. Furthermore, let X be a random variable
denoting the number of bit errors per codeword. X follows the binomial distribution with parameters
n̂ and p, i. e., X ∼ B(n̂, p). The probability mass function for getting exactly k̂ successes is then
given as

f(k̂, n̂, p) =
(
n̂

k̂

)
pk̂(1− p)n̂−k̂, (3.9)

and the cumulative distribution function is expressed as

F (x, n̂, p) =
bxc∑
j=0

f(j, n̂, p). (3.10)

Packet Delivery Ratio

The probability r of delivering a packet successfully if no FEC coding is used is

r(p, k) = (1− p)8k. (3.11)

If in addition ARQ with R retransmissions is employed, the probability changes to

r(p, k,R) = 1− (1− r(p, k))R+1. (3.12)

Concerning a SEC-DED(12, 8), a DEC-TED(16, 8), and an RS(225, 233) code, the packet delivery
ratio can be calculated by

rSEC(p, k,R) = 1− (1− F (1, 12, p)k)R+1, (3.13)

34 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

rDEC(p, k,R) = 1− (1− F (2, 16, p)k)R+1, (3.14)

rRS(p, k,R) = 1− (1− F (16, k + 32, 1− (1− p)8))R+1. (3.15)

Figure 3.13(a) shows the packet delivery ratio for different bit error rates, using up to 10 retrans-
missions. If no FEC coding is used, the delivery ratio heavily decreases with an increasing bit error
rate. By using an RS(255, 223) code, the delivery ratio improves significantly. However, it tends to
decrease for a bit error rate above 10−3, which already causes more than 20 bit errors per packet.
Further improvements are possible by using an SEC-DED(12, 8) and DEC-TED(16, 8) code, where
the DEC-TED code outperforms all other schemes. Up to a bit error rate of 2 · 10−3, which is equal
to 71 bit errors per packet, the packet delivery ratio remains nearly 100%. In contrast, the delivery
ratio of the RS(255, 223) code is already equal to zero. However, note that bit errors were distributed
uniformly. Thus, as soon as burst errors occur, the performance of the DEC-TED(16, 8) code might
be worse.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

P
ac

k
et

 d
el

iv
er

y
 r

at
io

Bit error rate

No FEC
SEC−DED(12,8)
DEC−TED(16,8)

RS(255,223)

(a) Packet delivery ratio

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

P
ac

k
et

 d
el

iv
er

y
 c

o
st

 [
b
y
te

s]

Bit error rate

No FEC
SEC−DED(12,8)
DEC−TED(16,8)

RS(255,223)

(b) Packet delivery cost

Figure 3.13: Packet delivery ratio and cost for different FEC codes (k = 223, R = 10)

Packet Delivery Cost

Although the DEC-TED(16, 8) code shows a significantly better packet delivery ratio, the cost of
achieving this result should not be neglected. Here, the cost represents the number of bytes that must
be transmitted over the wireless channel in order to deliver a packet successfully. For example, a
packet containing k data bytes causes a cost of k bytes if no FEC coding is used, but 2k if the DEC-
TED(16, 8) code is employed. Moreover, if erroneous packets are retransmitted, the cost might be
even higher.

With q being the probability of an erroneous packet, we can calculate the expected number of trans-
missions t as follows:

t(q,R) = q + 2q(1− q) + . . .+ (R+ 1)qR(1− q) + (R+ 1)qR+1

3.3. FORWARD ERROR CORRECTION 35

= (1− q)
R∑
i=0

(i+ 1)qi + (R+ 1)qR+1 (3.16)

=
q
(
1− (R+ 1)qR +RqR+1

)
1− q

+ 1− qR+1 + (R+ 1)qR+1.

The costs for non-coding and the three FEC codes are then given as

c(p, k,R) = t(r(p, k,R), R) · k, (3.17)

cSEC(p, k,R) = t(rSEC(p, k,R), R) · 3/2k, (3.18)

cDEC(p, k,R) = t(rDEC(p, k,R), R) · 2k, (3.19)

cRS(p, k,R) = t(rRS(p, k,R), R) · (k + 32). (3.20)

Figure 3.13(b) illustrates the packet delivery cost if up to 10 retransmissions are used. If the bit error
probability is zero, the DEC-TED(16, 8) code causes the highest cost since for each data byte one
(in this case unnecessary) parity byte is generated. For this case, using no FEC at all performs best,
as redundant bytes are not required but only cause overhead. However, as soon as the bit error rate
increases, the delivery cost climbs due to employed retransmissions. Since the number of retransmis-
sions is limited to 10, at most 11 · 223 bytes are transmitted. The lowest costs are achieved by the
RS(255, 223) code for a bit error rate below 8 · 10−4. Beyond that value, the costs increase since the
likelihood of packets being retransmitted grows. From this point on, the DEC-TED(16, 8) code shows
the best performance, as retransmission of the complete packet can often be avoided. However, if the
bit error rate is greater than about 2.7·10−3, FEC becomes more expensive than non-coding. The SEC-
DED(12, 8) always shows the worst performance, as it is either outperformed by the RS(255, 223) or
the DEC-TED(16, 8) code.

Utilization

As it has been shown, there is a trade-off between the packet delivery ratio and its corresponding cost.
This trade-off is taken into account by the utilization, which is defined by the fraction of delivery ratio
and delivery cost. Thus, they can be calculated as

u(p, k,R) = r(p, k,R)/c(p, k,R), (3.21)

uSEC(p, k,R) = rSEC(p, k,R)/cSEC(p, k,R), (3.22)

uDEC(p, k,R) = rDEC(p, k,R)/cDEC(p, k,R), (3.23)

uRS(p, k,R) = rRS(p, k,R)/cRS(p, k,R). (3.24)

According to Figure 3.13, Figure 3.14(a) shows the utilization function of the different FEC codes.
As long as the bit error rate is smaller than 10−5, employing FEC coding is useless, since its slightly
better delivery ratio does not compensate for its redundancy. However, if the bit error rate is greater
than 10−5, FEC is able to achieve a better utilization. While the RS(255, 223) code performs best for
a bit error rate of up to 8 ·10−4, it is outperformed by the DEC-TED(16, 8) code due to higher delivery

36 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

ratios. As Figure 3.13(b) has shown, the SEC-DED(12, 8) code has no practical relevance for large k
since either the RS(255, 223) or the DEC-TED(16, 8) code performs better.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

U
ti

li
za

ti
o
n
 [

d
el

iv
er

y
 r

at
io

 /
 d

el
iv

er
y
 c

o
st

]

Bit error rate

No FEC
SEC−DED(12,8)
DEC−TED(16,8)

RS(255,223)

(a) Different bit error rates

 0.003

 0.03

 0.3

 0.001

 0.01

 0.1

 1

 1 223 16 32 48 64 80 96 112 128 144 160 176 192 208

U
ti

li
za

ti
o
n
 [

d
el

iv
er

y
 r

at
io

 /
 d

el
iv

er
y
 c

o
st

]

Number of data bytes

No FEC
SEC−DED(12,8)
DEC−TED(16,8)

RS(255,223)

(b) Different data sizes

Figure 3.14: Utilization of different FEC codes (p = 5 · 10−4, R = 10)

For a bit error rate of 5 · 10−4, the impact of the number of data bytes k on the utilization is illustrated
in Figure 3.14(b)6. Due to a fixed redundancy of 32 bytes, the RS(255, 223) code shows the lowest
utilization if only few data bytes are encoded. In this case, using no FEC performs best. For a data
size between 10 and 51 bytes, the SEC-DED(12, 8) performs better for the first time. However, above
those sizes, the RS(255, 223) code compensates for its fixed amount of redundancy and outperforms
all other schemes.

3.3.3 Experimental Evaluation

Motivated by the theoretical results obtained in the previous sections, we now evaluate the presented
FEC codes by means of real experiments. The evaluation setup is similar to the one used in Sec-
tion 3.2.3. Again we placed 16 ESB nodes (including the source node) in line on our office floor, each
at a distance of one meter, and increased the transmission power from zero to one in increments of
0.04. Each time, the source node broadcast 100 data packets of 255 bytes each. In order to capture
errors in the data, a random but fixed content was used during all evaluation runs. The data rate was
set to 2 packets/sec.

Upon broadcasting a data packet, the source node polled each node to get information about packet
reception ratios. The polling was performed with the maximum transmission power and repeated until
all information was received correctly. Nodes that were polled by the source node answered with the
data currently contained in the receiving buffer. Due to the node’s limited memory space, the source
node transmitted the polled information to a notebook over a serial connection, which logged all data
in a database for later processing.

We have performed several evaluation runs with different resync frequencies, which likely influence
the reception characteristics remarkably. In addition, we analyzed the impact of interleaving by using

6Note the logarithmic scale on the y-axis.

3.3. FORWARD ERROR CORRECTION 37

different interleaving depths as described in Section 3.3.1. For each generated log file, the reception
performance of one specific FEC code was evaluated. By using the same log file for all FEC codes
together, the results thus relied on the same error characteristics and offered better comparability.

Evaluation Results

At first, we will analyze the number of bit errors per erroneous byte, which is shown in Figure 3.15(a)
for different resync frequencies n and an increasing interleaving depth k. We see that resync has only
a small impact if no interleaving is used. The number of bit errors is close to the average of four bit
errors per byte, which is equal to the mathematical expectation. If the interleaving depth increases, bit
as well as burst errors occur and are spread over the packet more effectively. Although more bytes may
get corrupted, the average number of bit errors per erroneous byte decreases. Because the number of
byte errors per packet is minimal for n = 8 and increases for n→ 1 and n→∞ (see Section 3.2.3),
Figure 3.15(a) shows a similar effect concerning the number of bit errors. For n = 8 and k ≥ 64,
the number of bit errors decreases to 1.2 bit errors on average. This is an improvement of about 60%
compared to n = 0, where 2.8 bit errors occur per erroneous byte.

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

 1 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

N
u
m

b
er

 o
f

b
it

 e
rr

o
rs

 p
er

 e
rr

o
n
eo

u
s

b
y
te

Interlaving depth

n = 0
n = 2
n = 4
n = 8

n = 16
n = 32

(a) Bit errors per erroneous byte

 0

 20

 40

 60

 80

 100

 120

 140

 1 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

N
u
m

b
er

 o
f

b
y
te

 e
rr

o
rs

 p
er

 p
ac

k
et

 r
ec

ei
v
ed

Interlaving depth

n = 0
n = 2
n = 4
n = 8

n = 16
n = 32

(b) Byte errors per packet received

Figure 3.15: Bit and byte errors for increasing interleaving depths

How much the number of byte errors increases if interleaving is used is shown in Figure 3.15(b). On
average, a packet contains about 80 bytes with one or more bit errors if no resync and interleaving are
employed. While for n = 8 and k = 0, the number of errors per packet can be reduced to about 18,
n 6= 8 leads to a worse performance, as synchronizations are performed either too often or too rarely.
However, increasing the interleaving depth k affects the number of byte errors per packet positively.
Since interleaving is not able to reduce the total number of bit errors per packet but only spreads burst
errors, the number of bytes containing at least one bit error grows for k → 256.

At this point we could already assume that interleaving may be advantageous for both the SEC-
DED(12, 8) and the DEC-TED(16, 8) code since the number of bit errors per erroneous byte is re-
duced significantly. However, we should note that Figure 3.15(a) only shows the number of bit errors
per erroneous byte and not per erroneous codeword, which may consist of either 12 or 16 bits. In
addition, in order to correct all errors per packet, an average of 1.2 bit errors per byte may already be

38 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

too high for the SEC-DED(12, 8) code, which can only recover codewords containing no more than
one bit error.

While interleaving might improve the recovery ratio of the SEC-DED(12, 8) and DEC-TED(16, 8)
codes, it certainly affects the RS(255, 223) code adversely because interleaving increases the total
number of erroneous bytes per packet. However, the RS(255, 223) code is only able to correct up to
16 unknown symbols, independent of how many bit errors occurred per symbol. Thus, in this case
spreading burst errors by interleaving is neither useful nor necessary.

According to Figure 3.15(a) and 3.15(b), Figure 3.16 illustrates how the number of bit errors per
erroneous byte are distributed for the special case of n = 8. Without interleaving, about 90% of
erroneous bytes contain at least a 1-bit error, respectively 80% contain at least a 2-bit error that would
be uncorrectable if SEC-DED(12, 8) coding were used. For k → 256, the percentage of erroneous
bytes containing at least a 2-bit error is reduced to about 47%. However, as noted above, SEC-
DED(12, 8) coding allows only a 1-bit error among 12 bits, respectively a 2-bit error among 16 bits
for DEC-TED(16, 8) coding. Moreover, each codeword within a packet must be correctable in order
to decode the complete packet successfully. If only one codeword contains more errors, the complete
packet cannot be decoded at all.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

C
u
m

u
la

ti
v
e

p
er

ce
n
ta

g
e

Number of bit errors per erroneous byte

k = 1
k = 2
k = 4
k = 8

k = 16
k = 32
k = 64

k = 128
k = 256

Figure 3.16: Cumulative distribution of bit errors per erroneous byte (n = 8)

The percentage of 12-bit codewords that contain more than one bit error is depicted in Figure 3.17(a);
Figure 3.17(b) shows the percentage of uncorrectable DEC-TED(16, 8) codewords. Again, the best
results are achieved for a resync frequency of n = 8. If the interleaving depth k is greater than 64,
about 55% of erroneous SEC-DED(12, 8) codewords will be uncorrectable. Compared to Figure 3.16,
that is an increase of about 8%. Concerning DEC-TED(16, 8) coding, only 39% of erroneous code-
words cannot be recovered, which is an improvement of about 16% compared to the SEC-DED(12, 8)
code.

Finally, Figure 3.18 depicts the packet delivery ratio of FEC coding using the best-evaluated resync
frequency of n = 8. For comparison, also the packet delivery ratio of non-coding is shown. The best
result is achieved by the RS(255, 223) code. Note that the packet delivery ratio is averaged over all
nodes and all evaluated transmission powers. Thus, the overall performance includes long-distance as
well as low-power transmissions. The delivery ratio of RS(255, 223) coding could be further improved

3.3. FORWARD ERROR CORRECTION 39

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

P
er

ce
n
ta

g
e

o
f

1
2
−

b
it

 e
rr

o
n
eo

u
s

co
d
ew

o
rd

s
w

it
h
 m

o
re

 t
h
an

 1
 b

it
 e

rr
o
r

Interlaving depth

n = 0
n = 2
n = 4
n = 8

n = 16
n = 32

(a) SEC-DED(12, 8) code

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

P
er

ce
n
ta

g
e

o
f

1
6
−

b
it

 e
rr

o
n
eo

u
s

co
d
ew

o
rd

s
w

it
h
 m

o
re

 t
h
an

 2
 b

it
 e

rr
o
rs

Interlaving depth

n = 0
n = 2
n = 4
n = 8

n = 16
n = 32

(b) DEC-TED(16, 8) code

Figure 3.17: Percentage of uncorrectable codewords

if resync information regarding erasure positions are used7. In this way, even more than 16 symbols
could be corrected.

Since interleaving is not able to reduce the number of bit errors on its own, it has no effect on the
packet delivery ratio if FEC is not employed. As interleaving increases the number of erroneous
bytes, it worsens the performance of RS(255, 223) coding. On the other hand, the DEC-TED(16, 8)
code benefits from interleaving significantly, resulting almost in the same packet delivery ratio as the
RS(255, 223) code. However, the impact of interleaving on the SEC-DED(12, 8) code is marginal,
although the percentage of correctable codewords increases. But even if a codeword contains fewer
than two bit errors on average, it is possible that no packet will be recovered, because any 2-bit error
contained in one codeword already prevents the entire packet from being corrected.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

P
ac

k
et

 d
el

iv
er

y
 r

at
io

Interlaving depth

No FEC
SEC−DED(12,8)
DEC−TED(16,8)

RS(255,223)

Figure 3.18: Packet delivery ratio of different FEC codes (n = 8)

While the delivery ratio of non-coding is improved in any case, note that the overheads of the consid-
ered FEC codes are quite different. While RS(255, 223) coding requires 32 additional bytes, indepen-
dent of the number of data bytes, the SEC-DED(12, 8) and DEC-TED(16, 8) codes need a redundancy

7In case a byte position within a packet is skipped due to the synchronization problem, the skipped byte can be consid-
ered as an erasure.

40 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

of 50% and 100%, respectively. That is, for a data size of 223 bytes as used in our evaluation setup,
112, respectively 223 bytes are redundant and cannot be used to carry any application data.

3.3.4 Conclusions

In conclusion, we have seen that significant improvements in the packet delivery ratio are possible if
FEC codes are used in conjunction with a periodic resync mechanism. As long as bit errors are uni-
formly distributed, DEC-TED(16, 8) coding outperforms RS(255, 223) codes for high bit error rates.
However, in the presence of burst errors and larger packets, RS(255, 223) coding is more efficient and
uses less redundancy. On the other hand, SEC-DED(12, 8) coding actually cannot be recommended.
Even with interleaving, the probability that a codeword will contain more than one bit error is too high
to correct an erroneous packet completely.

In the experimental evaluation, the DEC-TED(16, 8) code achieved nearly the same packet delivery
ratio as RS(255, 223) coding if bit interleaving was applied. While RS codes are quite complex and
required much memory and processing time, DEC-TED(16, 8) codes are easier to implement but
needed twice as many data bytes for redundancy.

Thus, whether or not FEC should generally be used heavily depends on the environment a sensor
network is deployed in, and on its application. For reliable data communication as well as in lossy
environments it is surely suitable, due to a better channel utilization than with ARQ. However, the
fixed amount of redundancy added to a transmitted packet is actually dissatisfying. While low error
rates require less redundancy, more redundancy is needed if the error rate starts to increase. None of
the FEC codes presented so far are able to adapt to such changes.

One solution to this problem is fountain codes, which we consider in the next section. They are also
particularly interesting if bulk data need to be disseminated to multiple receivers, further improving
the performance of non-coding as well as that of RS codes.

3.4 Data Dissemination Using FEC Coding

Commonly, a large amount of data is split into small-sized chunks before it is disseminated through a
network. If the data is additionally encoded by an FEC code, missed chunks can easily be recovered
at the receiving side. Fountain codes are a special kind of FEC code which have the property that the
sender provides the data in a virtually endless stream by combining original chunks at random. No
matter which chunks get lost, each receiver only needs any k chunks from the stream, with k being the
number of chunks the data block consists of. Particularly in broadcast scenarios, fountains have the
advantage that only little redundancy is required, even if several receivers missed different chunks.

For example, consider a network of wireless sensor nodes that are capable of sensing, processing,
and communicating [11, 67]. In general, the detection of an event or a particular stimulus is first
processed by a node and then forwarded to one or several sink nodes in the network. Besides this n-
to-1 communication, also a 1-to-n communication is required where the sink sends queries or control

3.4. DATA DISSEMINATION USING FEC CODING 41

packets to a fraction of, or to all sensor nodes. Since it is likely that the nodes will be scattered over a
wide area and therefore unable to communicate with each other directly, intermediate nodes forward
messages in a multi-hop fashion.

In particular, we consider the case of bulk data transmission, as it is necessary for large queries that,
e. g., carry image information for video sensor nodes [132, 137, 195], code updates [149], or new
firmware releases [121, 138]. Sending small-sized chunks over the network has the advantage that
in case of loss only lost or erroneous chunks must be resent. However, if the data is broadcast to
multiple receivers, it is likely that most of the retransmitted chunks will be redundant to many nodes.
Minimizing the number of redundant packets would reduce the energy costs of the sensor network
significantly and thus extend its operational lifetime.

One possibility to achieve a reduction in the number of packet transmissions is to use specific coding
schemes. At first, all original chunks are encoded by the sender before they are broadcast to one or
more receivers. If chunks get lost during the transmission, additional chunks are sent such that all
receivers are able to recover missed parts and finally decode the data. The advantage of encoding is
that additional chunks may be useful to more than one receiver at the same time, even if the receivers
have missed different chunks. Note that in this case forward error correction is not intended to correct
bit errors in single chunks but to recover completely missing ones. As mentioned before, such losses
are termed erasures.

A classic erasure correction code is the RS(n, k) code we have considered in the previous section.
A receiver of such a block code would be able to decode the original k symbols if any k of the
transmitted n symbols are received without errors8. Thus, even if two receivers might have missed
different symbols, an additional one might already be sufficient for both to decode the original ones
successfully. However, a disadvantage of Reed-Solomon codes is, besides their high computational
complexity, their fixed redundancy n− k, which limits the number of symbols that may get lost.

Fountain codes [45, 158, 163] overcome this disadvantage by providing an endless data fountain.
Similar to RS codes, they have the property that the original data can be decoded from any k̂ chunks,
with k̂ being only slightly larger than k. Especially for large k, there exist fountain codes with small
encoding and decoding complexities [221].

In the next section, we consider how packets can be encoded into data chunks by using (i) an RS code,
(ii) a random linear fountain code (RLF), and (iii) a Raptor code. The data dissemination can then be
performed in several ways. Section 3.4.2 describes two simple protocols that perform the distribution
of bulk data throughout a network. Data chunks can be sent either by means of acknowledgements and
retransmissions or by employing a request-based approach, where a receiver requests missed chunks.
Both protocols may take advantage of FEC to reduce the number of data transmissions. Real-world
evaluation results are presented in Section 3.4.3.

8Therefore, the erasure positions must be known. Otherwise, k + n−k
2

symbols must be received.

42 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

3.4.1 FEC Schemes for Bulk Data Dissemination

Reed-Solomon Codes

As described in Section 3.3.1, an RS(n, k) code encodes k data symbols into n symbols of sizemwith
redundancy n− k per codeword. If only erasures occur, an RS decoder is able to decode a codeword
if it receives k arbitrary symbols from the codeword. In contrast to Section 3.3, where RS codes are
applied to individual packets in order to account for bit errors [171], it is also possible to spread the
code over several data chunks.

Nonnenmacher et al. [184] proposed the use of RS codes for reliable multicast transmissions, but the
idea can also be applied to data dissemination in general. For example, consider the data block of size
lk depicted in Figure 3.19 that is divided into k chunks c1 . . . ck consisting of l symbols each. The
symbol size m is assumed to be 8 bits. Data chunks are encoded by using l parallel RS(n, k) encoders
that generate parity chunks p1 . . . pn−k carrying redundant information. Therefore, k symbols at the
same position i within a chunk are considered in order to generate the appropriate parity symbols.
Interleaving all parity symbols finally leads to n−k parity chunks of the same size. It should be noted
that even if the data block consists of only lk̃ bytes with k̃ < k, the same RS(n, k) encoders can be
applied by using k − k̃ padding chunks. If the encoding as well as the decoding side are aware of k̃,
these padding chunks need not be transmitted as the content is known a priori9.

...

c
1
c
2
c
3

c
k

l

k

...

p
1
p
2

p
n-k

n-k

i

Figure 3.19: An RS-encoded data block

After the encoding process, a sender that would like to transmit the data block to one or several
receivers initially sends the original data chunks c1 . . . ck only. If then a receiver misses, e. g., d chunks
during the transmission, parity chunks will be transmitted in addition. As long as d is smaller than
(or equal to) the number of parity chunks, sending only parity chunks should be sufficient. Otherwise,
it will also be necessary to resend data chunks, in order to allow the receiver to decode the complete
data block. It is an important question which of the original chunks should be resent, without sending
too much redundancy. One solution would be to restart the data stream with the first encoded chunk.
However, it is likely that those chunks will be redundant for other nodes that have received them
before. Especially in a multi-hop network where data is forwarded by several nodes, always starting
with the first chunk may thus be very inefficient. In contrast, sending parity chunks has the advantage
that it is not the same packet that is resent.

9Padding chunks just consist of a long run of zeros.

3.4. DATA DISSEMINATION USING FEC CODING 43

Hence, another solution would be to generate a random sequence of n chunks, which are broadcast on
request. In addition, requesting nodes could specify which chunks they have already received, using
unique chunk identifiers. As it is expected that this strategy will achieve a better performance, we will
use it in the evaluations presented in Section 3.4.3. In the following we consider how the problem can
be tackled by fountain codes.

Random Linear Fountain Codes

Fountain codes were first mentioned by Byers et al. in [45], but without an explicit construction. The
idea is to produce an endless stream of output symbols of equal size for a set of k input symbols. Since
the symbol size does not influence the code itself, a symbol can also be a complete chunk packet. To
decode and recover the k original symbols, it is then sufficient (with high probability) to receive any
set of n output symbols10. Good fountain codes require n to be only slightly larger than k and are able
to achieve a decoding complexity that is linear in k. The first instance of such a code was invented by
Luby [158, 159] and called LT code. However, as LT codes perform worse for small k, they need to
be extended by an additional outer code. The combination is called a Raptor code, which we describe
later.

Despite a higher complexity, the simplest form of fountain codes are random linear fountain (RLF)
codes, which have nearly optimal properties concerning the Shannon limit11 [219]. Given a set of
k chunks c1 . . . ck, an RLF encoder randomly combines k̂ chunks with k̂ ≤ k to one output chunk
ĉi that is sent to one or several receivers afterwards. Combining two or more chunks is done by an
exclusive-or operation as shown in Figure 3.20.

...c
1
c
2
c
3

c
k

...

ĉ
1
ĉ
2
ĉ
3

ĉ
n'

+ + + +

Figure 3.20: RLF encoding is done by combining original chunks randomly

Which chunks are to be combined is determined by the generation matrix G. The encoder generates
a bit vector of k random bits for each output chunk ĉi stored at row i in G. The transmitted output
chunk is then generated as

ĉi =
k∑
j=1

cjG
T
ij . (3.25)

10In the following, we rather refer to chunks instead of symbols.
11Shannon’s theorem gives an upper bound on the maximum amount of error-free digital data that can be transmitted

over a communication link with a specified bandwidth in the presence of the noise interference [255].

44 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

Figure 3.21 illustrates an example of such a binary generation matrix G with k columns and n′ ever-
growing rows. By transmitting the bit vectors or by using a pseudo-random generator where the
key seed is known to the sender as well as to the receivers, the same generation matrix Ĝ can be
constructed, as shown on the right-hand side of Figure 3.21 from the receiver’s point of view. Note
that some chunks are assumed to get lost during the transmission, indicated by red rows. Thus, Ĝ may
be of a different size than G.

n'

k

1 1 1 1 111 11 11
111 1 1 1 11 1 1 1

1 11 11 1 1 111
11 1 1 1 11 11 1

1 1 1 11 11 11 11
1 1 1 1 1 1 11
11 1 1 11 1 1 1
11 1 1 1 111 11

...

+
+
+
+
+
+
+
+

x
x

x

1 1 1 1 111 11 11
111 1 1 1 11 1 1 1
1 11 11 1 1 111
1 1 1 11 11 11 11
11 1 1 1 111 11

k

n

G Ĝ

...

Figure 3.21: Illustration of the RLF encoding and decoding generation matrix

Decoding the received chunks ĉ1 . . . ĉn is only possible for n ≥ k. Otherwise, the receiver has not
received enough chunks. If n = k and Ĝ is invertible (modulo 2), Ĝ−1 can be computed by, e. g.,
Gaussian elimination12. In this case, the original chunks c1 . . . ck can be computed from

ci =
k∑
j=1

ĉjĜ
−1
ij . (3.26)

Ĝ is invertible if and only if it contains k linearly independent rows or columns, respectively. Linearly
dependent vectors identify chunks that are redundant. Thus, at the receiving side, the decoder skips all
chunks that show a linear dependency on already received bit vectors until n = k. Then, the generation
matrix Ĝ can be inverted, and the decoder will be able to recover the original chunks c1 . . . ck.

Unlike RS(n, k) codes, fountain codes are independent of the bit error rate on the wireless channel.
Since the encoder generates an endless output stream, the receiver is eventually able to decode all
received chunks. It may just take more time if the error rate increases. However, in order to stop the
fountain, a receiver must somehow indicate that the decoding was successful.

It might be interesting to know how many excess (redundant) chunks n − k a decoder will receive
on average even if no packet loss occurs. That is, what is the probability to receive e excess chunks?
MacKay shows in [163] that the probability p(e) that a receiver will not be able to start decoding after
e excess chunks have been received is bounded by

p(e) ≤ 2−e (3.27)

12In practice, often an LU decomposition algorithm is used.

3.4. DATA DISSEMINATION USING FEC CODING 45

for any k. Thus, the probability that a receiver will need more than six excess chunks is less than one
percent. On the other hand, the probability that a receiver will be able to start decoding after k chunks
(e = 0) is only 0.289, even if an optimal RLF code is used13. Figure 3.22 depicts the upper bound
function 2−e and the real probability function p(e) obtained by means of simulations and real-world
evaluations. For e > 1, the upper bound 2−e is quite tight as p(e) is very close to it. Furthermore,
we can see that the RLF implementation on the ESB nodes performs very well and leads to the same
results we obtained by simulations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y

Number of excess chunks (e)

Upper bound: 2
−e

RLF (analysis)
RLF (evalutaion)

Figure 3.22: Probability distribution of RLF decoding failures

Raptor Codes

Although random linear fountain codes can get arbitrarily close to the Shannon limit, they have the
disadvantage that their decoding costs are cubic, due to the calculation of Ĝ−1. As long as k is
small, this might not be an important issue. However, for large k a more suitable solution would be
preferable.

In [158], Luby presents an LT code which has an almost linear decoding complexity. The idea is to
minimize the density (the number of ones) in the generation matrixG. Low-density codes have the ad-
vantage that decoding can easily be performed by using an algorithm called belief propagation [187],
which is also known as the sum-product algorithm. Luby proposes a special probability distribution
from which the density of outgoing bit vectors is chosen. The design of this distribution is critical
since it heavily affects the quality of the code. The density for most chunks must be low in order
to start the decoder. But occasionally, the density must be high enough to ensure that every original
chunk will be covered by outgoing chunks. Otherwise, it will not be possible to decode the complete
data block, as uncovered chunks cannot be reconstructed.

Raptor (RT) codes [221] extend LT codes by an additional outer code, aiming to minimize the proba-
bility that uncovered chunks will occur. The inner code is an arbitrary LT code with an average density
of about three. This ensures that the decoder will not be blocked and can start. However, due to the low
density, it is unlikely that all original chunks will be covered by the inner code, keeping receivers from
decoding the chunk block. Thus, the idea is to use the outer code to recover such uncovered chunks

13Optimal means that the generation matrix is created by an optimal random number generator.

46 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

by FEC. Good outer codes are, for example, irregular low-density parity-check codes [202, 203]. But
any other code can be used, too.

3.4.2 Data Dissemination Protocols

In order to evaluate the presented FEC coding schemes in a WSN, we need an appropriate data dis-
semination protocol. Since in a real WSN most of the nodes will not be in the vicinity of the sink
node, the protocol must account for multi-hop dissemination. In this section, we propose two simple
and distributed protocols for which we evaluate the above-mentioned FEC codes. The first protocol
is based on reliable unicast communication. Packets are acknowledged and if necessary retransmitted
by the sender automatically. In contrast, the second protocol avoids the need of acknowledgements
by using a request-based approach. Available data is first announced to neighbors and then requested
by interested nodes only. Should some data packets get lost during the transmissions, retransmissions
will be triggered by requesting lost packets.

Acknowledgement-Based Data Dissemination

The acknowledgement-based data dissemination protocol is similar to traditional unicast communica-
tion. Data is addressed and sent to one receiver, which acknowledges each chunk received correctly.
In so doing, a receiver should get the complete set of data chunks since chunks which have not been
acknowledged are resent. In such a case, it will depend on the encoding scheme whether the same
chunk or a different one is retransmitted.

Although the communication is unicast concerning its addressing, note that the physical transmission
is broadcast due to the wireless medium. Thus, other receivers within transmission range are able to
receive chunks in promiscuous mode. Hence, after the actual receiver has obtained all data chunks, it
is likely that adjacent receivers will have received most of the chunks by overhearing, too.

The complete acknowledgement-based protocol works as follows: First, a sending node announces
data by broadcasting an arbitrary number of data chunks. Each chunk contains an identifier that is
generated by the original data source. In addition, it includes both a sequence number and the total
number of chunks required to reconstruct the original data. Nodes interested in the data answer with
an acknowledgement, indicating the next chunk they need. In order to avoid collisions, acknowledge-
ments are sent after expiry of a random backoff time. Once an acknowledgement has been received,
the source node will start sending data chunks to the appropriate node until all chunks have been ac-
knowledged. Other nodes interested in the same data will try to overhear the chunks and keep track of
missed and erroneous ones. After the source node has stopped sending and the channel becomes free,
nodes needing further chunks to complete will again set a random backoff timer. As soon as the timer
expires, an additional acknowledgement will be sent that indicates the loss of chunks.

If all receivers are within the source’s transmission range, no further overhead is required. However,
in order to account for multi-hop networks, it is necessary that additional nodes act as data sources
to cover distant nodes, too. Thus, as soon as a node has recovered the data block completely and the

3.4. DATA DISSEMINATION USING FEC CODING 47

medium becomes free, it will broadcast some chunks itself. Again, random backoff timers are used
to avoid collisions. However, since we cannot assume that the network topology is known, each node
will try to find uncovered neighbors, even if this causes much redundancy.

Request-Based Data Dissemination

An advantage of the acknowledgement-based protocol is that data chunks will be resent automatically
if they could not be received successfully. No additional communication overhead is required in this
case. However, the overhead due to acknowledgements is quite high, especially if only a few packets
get lost.

Thus another idea is to use a request-based protocol. Like before, the data source will start by broad-
casting some chunks in order to find interested nodes. But instead of sending acknowledgments, a
request will be sent back that contains a list of chunk IDs needed by the appropriate node14. In addi-
tion, each node that has discovered a new data stream will set a request timer for the case that requests
get lost. Once the source node has received a request, it will start broadcasting the requested chunks
without any further communication overhead. Afterwards, it will wait for additional requests that may
restart the data stream. Since each node will hold a pending request timer until it has received all
chunks correctly, missed chunks will either be requested by the same node or, possibly later on, by
others.

Concerning multi-hop networks, the protocol works like the acknowledgement-based one. Thus, each
node that has received the complete data block will act as an additional data source. Upon initially
broadcasting some data chunks, uncovered nodes should then be able to request missing chunks. But
in contrast to the acknowledgement-based protocol, requests are not sent by unicast but broadcast,
which allows any data source in the neighborhood to answer.

3.4.3 Experimental Evaluation

We have evaluated the acknowledgement-based data dissemination protocol (using up to ten retrans-
missions), as well as the request-based protocol in a real sensor network with raw transmissions (non-
coding), an RLF code, an RS(255, 223) code, and a Raptor code. As the request-based protocol is
expected to cause a smaller overhead, it is used in combination with FEC. The differences between the
acknowledgement-based protocol and request-based protocol are illustrated by means of non-coding
only, as they were analogous for the FEC codes.

Single-Hop Evaluation

At first, we consider a single-hop environment where six ESB nodes are placed within the communica-
tion range of one source node. The source node periodically generates data chunks that are broadcast

14Depending on the coding scheme, it may not be necessary to include a complete list but only the number of requested
chunks.

48 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

to all other nodes. The complete data block consists of 32 chunks (k) which have a size of 64 bytes.
To obtain stable results for different performance metrics, we repeated each experiment 250 times.

As we are interested in single-hop effects, the source node sends data chunks only. In the next section,
we also analyze the effects if packets are forwarded in a multi-hop fashion through a larger network.
Furthermore, in order to maintain the single-hop environment, all nodes use their maximum trans-
mission power. Packet loss is produced artificially according to a uniformly distributed loss rate by
dropping chunks randomly after reception. In order to analyze the influence of packet losses, the loss
rate is varied between 0 and 0.9 during the experiment.

The evaluation results obtained are presented in Figure 3.23. Figure 3.23(a) shows the number of
chunks that must be sent by the source node until all nodes have received the complete data block.
Thus, it can be used as an indicator of the channel utilization and the energy consumption. If packets
get lost, the best results will be achieved by the RS and RLF codes, which both require up to 40% fewer
chunks to be sent than does non-coding. Hence, encoding performs very well because redundantly
received chunks can be used to recover missed ones (instead of requesting them again). However,
the RT code performs worse since its decoding algorithm requires more chunks in order to start and
complete than does the RLF code. Only for packet loss rates larger than 0.25, does it also outperform
non-coding.

Also illustrated in Figure 3.23(a), using acknowledgements or requests makes no difference concern-
ing the number of sent chunks. Because the number of missed chunks is in both cases nearly the same,
the only difference is the manner in which chunks are resent. This can be done either by actively
requesting them or by automatic retransmissions.

The average number of sent control packets (acknowledgements and requests) is shown in Fig-
ure 3.23(b). We see that using acknowledgements generally causes more overhead, except for very
high loss rates. That is due to the fact that each chunk needs to be acknowledged. If the loss rate is low,
it is therefore more efficient to request missing chunks at once. However, if the loss rate increases,
chunks that are still missed will cause many requests until they have been resent. In contrast, the
acknowledgement-based protocol resends chunks automatically if no acknowledgement is received.
Thus, the increase in the number of sent requests is significantly higher for non-coding. If FEC is
employed, fewer control packets will be required because missed chunks can often be recovered by
other chunks.

Figure 3.23(c) depicts the total number of received and overheard packets15, including chunks and
control packets. As fewer chunks will need to be sent if FEC is used, the number of received packets
is significantly lower than for non-coding. The difference in the acknowledgement- and request-based
protocols is due solely to the number of control packets used. Up to a loss rate of about 0.8, using
acknowledgements causes more overhead. However, for higher loss rates the number of requests
dominates, preferring automatic retransmissions as used by the acknowledgement-based protocol.

The average number of chunks that have to be received chunks before the data block is complete is
depicted in Figure 3.23(d). In addition, Figure 3.23(e) shows the the number of excess chunks, i. e.,

15Packets that are received either by unicast, broadcast, or in promiscuous mode.

3.4. DATA DISSEMINATION USING FEC CODING 49

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

ch
u
n
k
s

se
n
t

Packet loss rate

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(a) Chunks sent

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

co
n
tr

o
l

p
ac

k
et

s
se

n
t

Packet loss rate

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(b) Control packets sent

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

p
ac

k
et

s
re

ce
iv

ed

Packet loss rate

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(c) Packets received

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

ch
u
n
k
s

re
ce

iv
ed

 c
o
rr

ec
tl

y
 u

n
ti

l
co

m
p
le

te

Packet loss rate

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(d) Chunks received

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

ex
ce

ss
 c

h
u
n
k
s

Packet loss rate

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(e) Required excess chunks

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

re
d
u
n
d
an

t
ch

u
n
k
s

Packet loss rate

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(f) Redundant chunks

Figure 3.23: Evaluation results from the single-hop experiment (k = 32)

the number of chunks necessary before the decoding can start. In the case of non-coding, it shows the
number of chunks until the last missing chunk has been received. Thus, both figures illustrate how fast
an application can process the data block and how long a node must listen to ongoing transmissions
on the wireless channel.

While the number of excess chunks is almost constant for RLF and RT coding, the RS code requires
more chunks in order to start its decoding process if the number of lost packets grows. Its sudden

50 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

increase of excess chunks can be explained as follows: As the RS encoded data block consists of
64 different chunks (32 original data chunks plus 32 redundant chunks)16, multiple nodes may benefit
from transmissions as long as not all chunks are sent. However, retransmissions will be required if
the packet loss rate is larger than 50% because then the expected number of correctly received chunks
will be less than 32. But since resending the same chunks may be beneficial to only a few nodes, it
will cause a higher redundancy for other nodes. The threshold of 50% can be calculated with 1−k/n,
where k denotes the number of original chunks and n− k the number of redundant chunks. Hence, if
the data block consists of more than 32 data chunks, the threshold will even decrease, favoring the use
of RLF codes as shown in Figure 3.23(d) and 3.23(e).

Although using either acknowledgements or requests makes no difference concerning the number
of transmitted chunks, the average number of excess chunks can be reduced if automatic retrans-
missions are employed. The acknowledgement-based protocol benefits from sending chunks to the
same node until this node has received all chunks completely. This minimizes the average number
of excess chunks significantly, as such nodes need no further packets for decoding. However, this
advantage vanishes if the maximum number of retransmissions is not sufficient. In this case, the
acknowledgement-based protocol behaves similarly to the request-based one. Thus, both protocols
show almost the same performance for very high packet loss rates if FEC is not applied.

In addition to the number of excess chunks, Figure 3.23(f) shows the average number of chunks
received redundantly, i. e., chunks which have already been received or which contain no new infor-
mation for the decoding process. As long as no packet losses occur, neither non-coding nor RS coding
will cause either excess or redundant chunks. In contrast, the RLF and the RT codes will always lead
to some redundancy due to their encoding features of combining data chunks randomly. Again, the
RS code shows the best performance as long as chunks need not be retransmitted. Thus, for the loss
rates greater than 0.5, it is outperformed by RLF coding. The redundancy of non-coding is signifi-
cantly higher as a consequence of more chunk packets being sent. But since the acknowledgement-
and request-based non-coding protocols eventually send almost the same number of chucks, the re-
dundancy of both protocols does not differ much.

In conclusion, employing FEC codes reduces the channel utilization and the number of redundantly
transmitted packets in sensor networks significantly. The best performance is achieved by the RS
code if the packet loss rate is moderate and the data block consists of only a few chunks. Higher
loss rates favor the use of RLF coding. Although the RT code still outperforms non-coding, it causes
high overhead. Many chunks need to be created until its decoding process starts. Thus, it is not very
suitable for disseminating data as long as the data block is not considerably larger.

Multi-Hop Evaluation

Whether or not the previous results can be verified also in a multi-hop network is an issue addressed
in this section. We installed a testbed consisting of 25 ESB nodes in our lab. As shown in Figure 3.24,
nodes are placed in a 4 × 6 grid structure, using an additional source node at the bottom of the grid.

16Note that an RS(255, 223) code is used.

3.4. DATA DISSEMINATION USING FEC CODING 51

The distance between two nodes is 60 cm. In order to provide long-time evaluations, each node is
connected to an external power supply. Furthermore, an eGate/WEB device is used to access the
network over the Internet, allowing the flashing of arbitrary applications and protocols, as well as the
control and monitoring of the network. The source/sink node is connected to a notebook that stores
log information in a database for later processing.

Figure 3.24: Wireless sensor network testbed

In this experimental evaluation, the source node disseminates a data block consisting of 64 chunks by
employing the acknowledgement- and request-based protocols for non-coding as well as for RS, RLF,
and RT coding. The chunk size is 64 bytes. In order to evaluate the effect multi-hop forwarding has
on network performance, the nodes’ transmission powers are varied from 0.1 to 1 successively. Lower
transmission powers were not considered because they often caused partitioned networks.

The evaluation results are depicted in Figure 3.25. Figure 3.25(a) shows the number of sent chunks
averaged over all nodes in the network. While the transmission power is high, few packet losses occur,
and most chunks are received directly from the source. In this case, encoding data shows no benefit
over non-coding. It even performs worse since the computational overhead is not negligible. However,
for low transmission powers, the loss rate in the network increases, and data chunks will need to be
forwarded more often. For a data block consisting of 64 chunks, RLF coding performs best. The RS
code sends more chunks because its code redundancy is fixed a priori and not randomly generated
like in the fountain codes. Thus, as we have discussed before, it suffers from higher loss rates as soon
as all parity chunks are sent, and data chunks must be retransmitted.

Concerning the difference between using requests or acknowledgements, the acknowledgement-based
protocol shows a better performance for low transmission powers. This can be explained by the non-
negligible number of asymmetric links, which will be even higher if the transmission power decreases.
Compared to Section 3.4.3, where only chunks were artificially dropped, we now must also deal with
lost control packets. For example, consider an asymmetric link between two nodes where the forward
link is highly lossy. If a node receives a request over this link, the request-based protocol will start

52 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

ch
u
n
k
s

se
n
t

Transmission power

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(a) Chunks sent

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

co
n
tr

o
l

p
ac

k
et

s
se

n
t

Transmission power

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(b) Control packets sent

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

ch
u
n
k
s

re
ce

iv
ed

Transmission power

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(c) Chunks received

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

p
ac

k
et

s
re

ce
iv

ed

Transmission power

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(d) Packets received

 0

 20

 40

 60

 80

 100

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

ex
ce

ss
 c

h
u
n
k
s

Transmission power

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(e) Required excess chunks

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

re
d
u
n
d
an

t
ch

u
n
k
s

Transmission power

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(f) Redundant chunks

Figure 3.25: Evaluation results from the multi-hop experiment (k = 64)

sending the requested chunks (in this case, 64 chunks). However, it is likely that almost all chunks
will get lost, making the entire transmission useless. In contrast, the acknowledgement-based protocol
stops after ten retransmissions. Thus, if the number of requested chunks is significantly higher than
the maximum number of retransmissions, the acknowledgement-based protocol is preferable.

The average number of sent control packets (request and acknowledgements) is shown in Fig-
ure 3.25(b). While all FEC codes lead to a similar overhead for control packets, non-coding generates

3.4. DATA DISSEMINATION USING FEC CODING 53

up to five times more request packets. The high number of acknowledgements increases the overhead
even more. In Figure 3.25(c), the average number of received, respectively overheard chunks, is de-
picted. If control packets are also considered, Figure 3.25(d) illustrates the total number of received
packets. RLF coding again shows the best performance, followed by RS, and RT coding. Regarding
the number of received chunks that contain no error and can thus be processed by an FEC code, Fig-
ure 3.25(e) shows the average number of excess chunks. Except for non-coding, the results are quite
similar to the ones shown in Figure 3.23(e). However, due to asymmetric links, the acknowledgement-
based protocol causes more excess chunks because of automatic retransmissions. Nearby nodes may
thus receive chunks more than once until they have received the entire data block. For a transmis-
sion power of 10%, these effects vanish because the packet reception rate substantially deteriorates,
decreasing the fraction of nodes affected by retransmissions.

Finally, Figure 3.25(f) considers the average number of chunks which has been received correctly but
redundantly. As the acknowledgement-based protocol sends fewer chunks for low transmission pow-
ers, the number of redundantly received chunks will also be lower. Thus, in this case, it outperforms
the request-based protocol. If the majority of links do not experience a perfect reception, employing
FEC codes is particularly recommended. However, it is still an open question whether to use RLF or
RS coding, since the performance heavily depends on the loss rate and the number of chunks in the
data block.

We have thus analyzed the influence of the data block size in more detail, using a transmission power
of 20%. Figure 3.26 shows the results for the average number of chunks sent, the number of packets
received (including control packets), and the number of excess and redundant chunks. We can clearly
see that the larger the data block size, the worse the performance of RS coding. Although the RS
code is still better than non-coding, it is significantly outperformed by RLF coding. As before, the
overhead of the RT code is considerable. Even if the data block consists of 128 chunks, RS and RLF
coding perform better. Regarding the difference between the request- and acknowledgement-based
protocols, Figure 3.26(a) indicates that the acknowledgement-based protocol will cause fewer chunk
transmissions if the data block size is larger than 64 bytes17. However, the overhead for acknowledging
each chunk received becomes substantial if the block size increases as illustrated in Figure 3.26(b). It
thus seems that a hybrid protocol may be the best solution. By limiting the number of chunks which
can be requested at once, the trade-off between the overhead due to control packets and useless chunk
transmissions due to asymmetric links could be taken into account. In this way, the advantages of
both protocols could be combined, improving the performance of the request-based protocols in the
presence of asymmetric links.

3.4.4 Conclusions

Using FEC codes for the dissemination of bulk data helps to reduce the number of redundant packets
significantly, especially in lossy environments. Among the evaluated FEC codes, RLF and RS coding
show the best performance. For low packet loss rates, the RS code needs less redundancy and thus
performs slightly better. However, if the loss rate increases, it will suffer from retransmitting identical

17Note that if more than ten retransmissions are used, the threshold would be higher.

54 CHAPTER 3. THE IMPACT OF RESYNC AND FORWARD ERROR CORRECTION

 0

 5

 10

 15

 20

 25

 30

 16 32 48 64 80 96 112 128

N
u
m

b
er

 o
f

ch
u
n
k
s

se
n
t

Number of original chunks

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(a) Chunks sent

 0

 200

 400

 600

 800

 1000

 1200

 16 32 48 64 80 96 112 128

N
u
m

b
er

 o
f

p
ac

k
et

s
re

ce
iv

ed

Number of original chunks

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(b) Packets received

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 16 32 48 64 80 96 112 128

N
u
m

b
er

 o
f

ex
ce

ss
 c

h
u
n
k
s

Number of original chunks

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(c) Required excess chunks

 0

 50

 100

 150

 200

 250

 300

 350

 16 32 48 64 80 96 112 128

N
u
m

b
er

 o
f

re
d
u
n
d
an

t
ch

u
n
k
s

Number of original chunks

Non−coding (acks)
Non−coding (requests)

RS
RLF

RT

(d) Redundant chunks

Figure 3.26: Influence of the data block size in the multi-hop experiment (txp = 0.2)

chunks as soon as the predefined code redundancy has been exhausted. This disadvantage is tackled
by the RLF and RT codes. Both codes generate output chunks by randomly combining original data
chunks. Thus, it becomes unlikely that identical chunks will be sent. However, although the RT code
has a better decoding complexity, it is clearly outperformed by RLF coding, which is mainly due to
the relatively small number of data chunks we considered.

Hence, it may be advisable to use an optimal RLF code in conjunction with a request-based dissemi-
nation protocol if the number of requested chunks is bounded, e. g., to ten packets. As long as the size
of the data block is not too large, its decoding complexity can even be handled by low-power hardware
with limited processing capacities. RS codes are better suited to the correction of bit errors within a
packet, as was investigated in Section 3.3. Combined with the resync mechanism presented in the first
part of this chapter, we now have a comprehensive framework for the efficient dissemination of data
to multiple receivers in a wireless sensor network.

The next three chapters will deal with the problem of how the nodes themselves can transmit sensed
data or any other kind of requested information to a predefined sink. Due to the energy constraints of
the network, this requires approaches that mainly take energy efficiency into account. Although we
will not explicitly consider the impact of resync and FEC, both techniques can easily be integrated as
they are complementary to the protocols presented in following chapters.

CHAPTER4
Energy-Efficient Forwarding

“Genius is 1 percent inspiration and 99 percent per-
spiration. As a result, genius is often a talented per-
son who has simply done all of his homework.”

– T. Edison –

4.1 Introduction

Many recent experimental studies have shown that, especially in the field of sensor networks where
low-power radio transmission is employed, wireless communication is far from being perfect [48, 72,
265, 276]. Thus, widely used communication models corresponding to binary links with either full
connectivity or none at all are not realistic. Instead of modeling only a connected and a disconnected
region as in the unit disk graph model, more realistic loss models consider a transitional region with
a widely varying degree of packet loss [51, 258, 282]. Although for a sender-receiver pair the packet
reception tends to decrease with growing distance, there might be some cases where more distant nodes
have smaller loss rates than do nearby ones. Thus, exploiting nodes located in the transitional region
might improve the efficiency of a forwarding strategy significantly [64, 217]. In terms of energy, it
might be more efficient to establish longer paths that experience few packet losses instead of shorter
ones that cause many transmissions until packets have reached their destinations.

In this chapter, we will explore the efficiency of different forwarding strategies, which can be used
by sensor nodes to report data to a predefined network sink. For such many-to-one communication,
many routing algorithms rely on distance-based forwarding, where the number of hops serves as a dis-
tance metric [124, 126, 190, 212, 266]. However, since the energy consumption and the connectivity
between nodes depends on the link quality, it is not obvious which neighbor should forward packets
in order to be energy-efficient. If each node simply selects the node with the lowest hop counter, it is
likely that the end-to-end path will exhibit high packet losses, leading to a poor efficiency due to many
retransmissions.

56 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

Several experimental studies have explored this problem with different routing schemes [64, 217, 258,
265]. While most of the existing work focuses either on minimizing the expected number of transmis-
sions or tries to maximize end-to-end delivery, we concentrate on energy efficiency in order to trade off
packet delivery ratios and energy consumption. By means of mathematical analyses, simulations, and
an implementation, we investigate a broad framework of distance-vector-based forwarding strategies
for static wireless sensor networks. Furthermore, we propose two new forwarding schemes, namely
single-link energy-efficient forwarding and multi-link energy-efficient forwarding.

In the next section, we first outline related work. Section 4.3 then describes our packet reception and
energy model that is motivated by experimental studies; it is later used in the simulations. This section
also gives information about assumptions made and the performance metrics we focus on. Section 4.4
provides an analysis of two simple forwarding schemes which are based on the path length counted in
hops and on the packet reception ratio on a link. By blacklisting bad nodes, we explore to what degree
such strategies can be improved. In Section 4.5, we present the single-link and multi-link energy-
efficient forwarding strategies. Considering the case of infinite and finite retransmissions, we present
a mathematical analysis of both strategies. By means of simulations, we compare the performance
of all forwarding strategies in Section 4.6. Results from real-world experiments are presented in
Section 4.7. Section 4.8 concludes the chapter.

4.2 Related Work

Several routing protocols for sensor networks concentrate on energy-related issues, which surely are
important and challenging aspects [11, 67]. For many-to-one communication with multiple data-
reporting nodes and one sink node, protocols like directed diffusion [124] use distance-vector-based
routing. In the directed diffusion approach, the sink node first propagates an interest or advertisement
throughout the network. By assigning a hop counter to each interested node, reverse paths are estab-
lished by setting up gradients pointing to the neighbor with the lowest hop counter. The reverse paths
then form a routing tree which is rooted at the sink and can be used for forwarding data reports. In
addition to hop counters, other forwarding metrics, which can be defined by means of gradients, are
also possible.

The initialization phase of establishing reverse paths is also used in many other protocols [108, 126,
190, 266]. In order to avoid burning out the nodes’ energy along the shortest path, many approaches
attempt to improve energy balancing among forwarding nodes [87, 212, 218]. Gradient-based routing
(GBR) [212] improves directed diffusion by uniformly balancing traffic throughout the network, using
data aggregation and traffic spreading to do so. Shah et al. [218] propose an energy-aware routing
scheme that employs a probability function based on the energy consumption of different routing
paths. Other energy-aware routing schemes are analyzed by Gan et al. in [87].

However, experimental studies have shown that packet loss is not uniformly distributed over
distance; losses also occur for nearby nodes, and a significant number of links are asymmet-
ric [48, 258, 276, 278, 282]. Due to this, simulation results of many routing protocols could not
be verified in reality. In this chapter, we analyze the initialization phase of establishing reverse paths

4.2. RELATED WORK 57

for many-to-one communication in consideration of the packet delivery ratio and the energy efficiency
for such lossy environments. Techniques for energy balancing throughout the network are orthogonal
and considered in Chapter 5.

There are many attempts to improve the fault tolerance through robustness by multi-path rout-
ing [90, 227, 266]. Ganesan et al. [90] propose partially disjointed multi-path routing schemes,
which they call braided multi-path routing. Compared to completely disjointed multi-path routing,
they study the trade-off between energy consumption and robustness. In terms of energy efficiency,
braided multi-path routing seems to be a viable alternative for recovering from node failures. Srini-
vasan et al. [227] address the problem of optimal rate allocation for energy-efficient multi-path routing.
They propose a flow control algorithm which can be easily implemented and which provides the op-
timal source rates in a distributed manner. In [266], Ye et al. present gradient broadcast (GRAB),
where packets travel towards the sink by descending a cost path. Costs are defined as the minimum
energy overhead required to forward packets to the sink along a previously established path. Nodes
close to the sink will have lower costs than will far-away ones. All nodes receiving a packet with
a lower cost will participate in packet forwarding. Since multiple paths with decreasing costs exist,
GRAB is quite robust and reliable with respect to the delivery of data. However, multi-path forwarding
comes at the expense of a high energy consumption. In contrast, we tackle robustness by multi-link
forwarding. Unlike addressing a specific node that is used to forward a packet, packets are broadcast
to many potential forwarders1, which we call a forwarder set. As it is more likely that one of these
nodes will receive the packet correctly and thus be able to forward it, unnecessary retransmissions
can be avoided. However, in order to conserve energy, multi-link forwarding tries to avoid multi-path
forwarding and thus actively selects one node among all potential forwards only. Section 4.5 gives a
detailed description of this multi-link forwarding.

In contrast to multi-path routing, Stann et al. [228] address the unreliability at the broadcast-level
in low-power wireless networks of non-uniform density and propose robust broadcast propagation
(RBP). RBP improves the reliability of flooding in a energy-efficient manner and trades off reliability
and energy consumption very well. As flooding is often one of the building blocks for routing, reliable
broadcast may be beneficial for many upper-layer protocols. In high-density neighborhoods, near-
perfect flooding reliability will be achieved by moderate broadcast reliability. On the other hand,
areas of sparse connectivity will be identified by important links that require guaranteed reliability.
Through both experiments and simulations, Stann et al. demonstrate the advantages of their hybrid
approach and compare the efficiency of RPB and with plain flooding.

Yarvis et al. [265] have also performed real-world experiments for large-scale sensor networks and
evaluated the performance of destination-sequenced distance-vector routing (DSDV) in reality. They
propose quality-based routing, a forwarding scheme that attempts to maximize the end-to-end deliv-
ery ratio by measuring reception ratios on each link. As a result, links experiencing poor reception
qualities are avoided; thus the overall packet loss decreases. However, since maximizing the end-
to-end delivery ratio tends to prefer shorter but high-quality links, the path length in hops increases
significantly. Thus, more packet transmissions are needed, leading to a higher energy consumption.

1Note that due to the wireless medium, unicast and broadcast communication differ in their addressing only.

58 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

In [72], De Couto et al. analyze the throughput of minimum hop count distance-vector-based rout-
ing protocols and observe significant losses in the overall end-to-end packet delivery. Minimizing
hop counters likely maximizes the geographically traveled distance per hop, which may degrade
the packet delivery ratio per link. Thus, traditional routing protocols like dynamic source routing
(DSR) and destination-sequenced distance-vector routing (DSDV) perform poorly. In [64], the au-
thors extend their previous work and propose a minimum transmission metric that is approximated
by 1

forward link quality ×
1

backward link quality , which now incorporates both packet reception ratios and
link asymmetries.

Like De Couto et al., Woo et al. focus on a minimum transmission (MT) metric [258]. They present
experimental studies for forwarding schemes like shortest path forwarding, MT forwarding and tech-
niques used in DSR and DSDV. However, minimizing the expected number of transmissions may
not always result in the most energy-efficient forwarding path. For this reason, we rather focus on
maximizing the energy efficiency, which can be defined as the delivery ratio per energy cost.

Similar to our energy efficiency metric, Cao et al. [47] optimize the energy per bit in the presence of
unreliable radio links. The authors propose a joint-optimization process that regards both the recovery
of lost packets on the link layer and the path selection on the routing layer. Also, Saukh et al. [209]
focus on the end-to-end energy efficiency of routing paths. While their model accounts for differ-
ent transmission powers, the existence of asymmetric links is not taken into account. In [61], Ci-
ciriello et al. study the problem of efficient routing from multiple sources to multiple sinks. Based on
periodic adaptation of routing paths, the routes that minimize the number of network links exploited
are created. The work in [80] by Egorova-Förster and Murphy addresses the problem of multiple sinks
in the context of single sources. Data is sent along path sharing trees in order to minimize the number
of transmissions. During a learning phase, feedback from adjacent neighbors regarding the best routes
found is gathered to explore alternative routes. Afterwards, discovered paths are used for routing.

An integration of MAC and routing features is presented in [205] by Ruzzelli et al. The work is tailored
to minimize the high latency of packets that may occur if energy-efficient MAC protocols are used in
combination with routing protocols. Packet forwarding is provided according to a multicast up- and
downstream approach. The network is divided into timezones which are used to forward packet to the
closest gateway in the network. By means of an appropriate scheduling policy, the latency of packets
can be reduced significantly while still maintaining low duty cycles.

In [217], Seada et al. propose energy-efficient forwarding strategies for geographic routing by studying
the effects of lossy environments. They focus on greedy forwarding, where each node tries to forward
packets to nodes that are closest to the sink with respect to geographic distance. Such maximum-
distance greedy forwarding techniques work well under ideal conditions but poorly in realistic envi-
ronments. It turns out that many packets are transmitted on lossy links, leading to bad end-to-end
delivery rates with high energy costs. Seada et al. therefore suggest a metric that is based on the prod-
uct of the packet reception rate and distance. Their simulations have shown that this metric achieves
optimal results by balancing longer, lossy links and shorter, high-quality links. Independent of this
work, Zorzi and Armaroli have proposed the same link metric [279]. A more general framework is
presented in [146], which uses a link metric called normalized advance for geographic routing. Simi-
lar to the work in [217, 279], packet forwarding is performed by neighbors which trade off optimally

4.2. RELATED WORK 59

between proximity and link cost. But in contrast, various types of link cost can used, e. g., packet error
ratio, delay, or power consumption.

Apilo et al. [13] compare the performance of four local forwarding strategies for geographic rout-
ing. The forwarding methods differ in the selection of the next hop, which may be either greedy,
random, weighted random, or opportunistic. While in greedy forwarding the traffic is concentrated on
deterministic paths, random forwarding spreads the traffic more efficiently. However, the best perfor-
mance has been achieved by opportunistic forwarding, in which the best available neighbor is chosen.
While all these works rely on location-awareness, our work studies energy-efficient forwarding for
non-geographic routing.

The concept of opportunistic routing [25, 26, 59, 277, 281] is closely related to our multi-link for-
warding strategy. While traditional routing schemes try to find the best path and forward packets to
a predefined, corresponding next hop, opportunistic routing takes advantage of the broadcast nature
of wireless transmissions. Rather than best-path routing, the next hop is selected dynamically on a
per-packet basis, depending on which nodes have received the packet successfully. ExOR is such an
opportunistic scheme that was initially proposed by Biswas et al. in [25] and later extended in [26].
The general idea described in [25] is to forward packets to a predetermined candidate set; from among
them the next hop is selected by means of priorities. The highest priority refers to the node that
minimizes the distance to the destination most, while the distance may be defined by any routing
metric desired. For example, ExOR estimates the closeness of nodes based on the expected number
of required transmissions until a packet will reach its destination [72]. The selection of forwarding
candidates and the priority scheme are the key challenges that need to be taken into account. In partic-
ular, duplicate transmissions must be avoided as they harm the performance gains of any opportunistic
routing scheme. While the protocol proposed in [25] may suffer from such effects, the work in [26]
describes a mechanism that eliminates duplicates successfully by means of robust acknowledgements.
Packets are transferred in batches, while acknowledgements of higher priority candidates will be re-
layed by any other forwarding candidate. In so doing, retransmissions as well as duplicates are avoided
in the majority of cases. However, due to the batch mechanism, ExOR is tailored only to single-flow
bulk traffic. In addition, ExOR’s routing metric does not take into account that packets are forwarded
by candidates under opportunistic forwarding as well. Zhong and Nelakuditi [277] thus proposed an
improved metric, which estimates the expected number of any-path transmissions under opportunistic
routing. They also provide a comparison with deterministic routing, which was outperformed in terms
of throughput. A comparison regarding a mobile wireless network is provided in [131].

In contrast to these works on opportunistic routing, we will rather focus on energy efficiency, taking
into account the delivery ratio and the energy consumption of packet forwarding. While ExOR de-
termines a comprehensive set of forwarding candidates, which may cause a high overhead as many
nodes may be involved in forwarding, our multi-link concept will limit the number of forwarders to
only three nodes. In so doing, only a small number of nodes need to receive a packet completely.
Furthermore, our forwarding metric exploits multi-link forwarding a priori and provides an accurate
estimate for the path’s energy efficiency. While previous works did not account for the loss of ac-
knowledgements [142, 281], we will take such effects into account explicitly. Packet duplicates are
considered as well, and reduced by actively selecting the next forwarding node after the transmission
of a packet. Even though this mechanism will cause a higher overhead and packet duplicates are still

60 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

possible, multi-link forwarding is often beneficial because the additional energy consumption will be
considered in advance.

4.3 Models, Assumptions, and Metrics

4.3.1 Packet Reception Model

Many experimental studies have shown that the communication between a sender-receiver pair in a
wireless sensor network (WSN) can be characterized as either a connected, transitional, or discon-
nected state [48, 51, 258, 276, 282]. Furthermore, it turned out that even if the distance between
two sender-receiver pairs is the same, the reception characteristics are quite different. It was ob-
served that the radio quality is affected by reflection, diffusion, multi-path effects, and ground atten-
uation [111, 133, 231]. Thus, especially in the transitional region, the reception of data might highly
vary.

Motivated by these results, we model the packet reception ratio (PRR) on a wireless link according to
an extended log-normal shadowing model [198]. Considering two arbitrary nodes a distance d apart
from each other, this model can be intuitively described as follows: Below a distance D1, nodes are
almost fully connected, i. e., the packet reception ratio is mostly equal to one. In contrast, there is
high probability that two nodes will be disconnected if they are more than a distance D2 away from
each other. In the transitional region between D1 and D2, the expected reception ratio decreases with
growing distance but is influenced by some variation. The log-normal behavior within the transitional
region can be modeled as

p̂rr(d) =


1− 1

2

(
d
δ

)2α
d < δ,

1
2

(
2− d

δ

)2α
δ ≤ d < 2δ,

0 d ≥ 2δ,

(4.1)

for any arbitrary wireless link, with α being the attenuation exponent and δ being the average node’s
transmission range. In order to model different reception ratios within the transitional region, we
introduce some variation that can be modeled by a Gaussian variable X ∼ N(0, σ(d)), with σ(d)
being a distance-dependent standard deviation defined as

σ(d) = β

(
1.0−

∣∣∣∣∣d− 1
2(D1 +D2)
D1

∣∣∣∣∣
)
, (4.2)

where β specifies the loss variation factor. Then, the packet reception ratio prr is calculated as

prr(d) =

[p̂rr(d) +X]10 D1 ≤ d ≤ D2,

p̂rr(d) otherwise
, (4.3)

with [·]ba being defined by max{a,min{b, ·}}.

4.3. MODELS, ASSUMPTIONS, AND METRICS 61

Setting α to 3.5 and β to 0.3, Figure 4.1 shows some samples of our packet reception ratio model, for
parameters δ = 20, D1 = 10 and D2 = 30 (we will use the same setting for our simulations). The
connected, transitional, and disconnected regions can easily be distinguished by D1 and D2, while
the transitional region shows some variation, as intended. Although those parameters were chosen
arbitrarily, they seem quite reasonable with respect to the simulation area that we will consider later.
But even other parameters have led to similar simulation results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

P
ac

k
et

 r
ec

ep
ti

o
n
 r

at
io

Distance [m]

Connected Transitional Disconnected

Log-normal
prr(d)

Figure 4.1: Samples of the PRR model (α = 3.5, β = 0.3, D1 = 10, D2 = 30)

4.3.2 Link Asymmetry

Link asymmetry is modeled by evaluating prr(d) twice: separately for each direction. Thus, the
packet reception ratio on a link between a node i and a node j is a 2-tuple [prri,j(d), prrj,i(d)],
assuming both nodes are d meters apart from each other. Note that due to the Gaussian variable
both values may be different if d is within the transitional region. For the parameter set used above,
the average difference in the packet reception ratio is about 0.13 if only the transitional region is
considered. The probability that the difference per link will be lower than a given threshold is shown
in Figure 4.2. For example, at about 25%, the difference between the packet reception ratios on an
asymmetric link is more than 0.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y

Difference in the packet reception ratio

Link Asymmetry

Figure 4.2: Cumulative probability of link asymmetry

62 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

4.3.3 Energy Model

To ascertain the amount of energy consumed by a radio transceiver, we apply the following energy
model. For each packet transmitted by a sending node to one or more receivers in its neighborhood,
the energy is calculated as

e = etx + n · erx + (N − n) · ehrx, (4.4)

where etx and erx denote the amount of energy required to send and receive, n the number of addressed
nodes which should receive the packet, andN the total number of neighbors in the transmission range.
ehrx quantifies the amount of energy required to decode only the packet header. By using appropriate
MAC protocols like S-MAC [270] or WiseMAC [81], nodes whose addresses are not contained in
the packet header are able to turn their radio units off during the ongoing transmission of the packet.
However, it is still necessary to receive the complete header in order to get information about addressed
nodes and the packet length. If such a MAC protocol is not used, ehrx would be equal to erx. In this
case, the energy consumption of idle listening must also be considered.

According to the first order model described in [114], etx and erx are defined as

etx(d, k) = (eelec + eamp · dγ) · 8k (4.5)

erx(k) = eelec · 8k (4.6)

for a distance d and a k-byte message. γ denotes the path loss exponent that we set to 2. We also set
eelec = 50 nJ/bit as the energy needed to run the radio transceiver’s circuity, and eamp = 100 pJ/bit/m2

as that consumed by the transmit amplifier. Since it is assumed that the transmission power of all
sensor nodes is fixed, d is set to the maximum transmission range of 30 m. For example, a packet
with 32 bytes would require a reception energy of erx = 12.8 µJ and a transmitting energy of
etx = 35.84 µJ. Assuming a header size of 8 bytes, ehrx would be 1.6 µJ.

4.3.4 Assumptions

In the following analyses and simulations we consider a stationary WSN of size 200 × 200 m2 with
a maximum transmission range of 30 m. Nodes are scattered according to a uniform distribution. It
is assumed that each node in the network will generate a data report that will then be forwarded to
one predefined sink node. The message length is assumed to be 32 bytes, including an 8-byte packet
header, which we consider to be a proper size for data packets in a WSN.

The energy used to receive and transmit data is modeled according to the energy model presented
above. Other sources of energy consumption like sensing, processing, and idle listening are neglected
as they are quite similar for each node in the network and nearly independent of the forwarding strat-
egy. Thus, nodes not participating in any communication are assumed to turn their radios off. Other
MAC-layer behavior such as contention, duty cycles, or packet buffering are not addressed as we be-
lieve they are orthogonal problems. This seems to be very reasonable for most WSNs, which show
relatively light traffic and contention.

4.4. ANALYSIS OF HOP- AND PRR-BASED FORWARDING STRATEGIES 63

Furthermore, we assume that a node knows about the packet reception ratios on wireless links to
its neighbors, e.,g., through packet reception measurements performed earlier. Link estimators, as
analyzed in [244, 258], could be used to provide this information. For example, Woo and Culler
propose a window-based link estimator that computes the packet success rate over a predefined time
period by using an exponentially-weighted moving average.

It is also assumed that each node periodically broadcasts beacon messages in order to inform neigh-
bors that it is still alive. Besides the node’s id and a sequence number, beacons contain information
concerning the packet reception ratios the node has measured in order to identify asymmetric links.
In addition, information about forwarding paths and corresponding forwarding metrics are included,
too. In so doing, the periodic beacon process is used to establish a forwarding tree in the network. As
the costs required to periodically send beacons are the same for each forwarding strategy, they will be
ignored in the following.

4.3.5 Metrics

We evaluate all forwarding strategies with two metrics, namely the end-to-end delivery ratio and the
energy efficiency. Assuming that the radio transmission range of each node is r, we denote the number
of nodes per πr2 area by the node density µ. The delivery ratio denoted by Eri quantifies the fraction
of packets originating at an arbitrary node i that are properly received at the sink. The corresponding
energy consumed by receiving and transmitting packets along the forwarding path is denoted by Eei .

The ratio between the number of delivered bits and the consumed energy on the forwarding path then
defines the energy efficiency Eeffi , which is calculated as

Eeffi =
Eri · 8k
Eei

(4.7)

for a single-packet transmission with a packet length of k bytes.

4.4 Analysis of Hop- and PRR-Based Forwarding Strategies

In the following, we start by analyzing two very simple forwarding strategies which are based on the
path length, defined as the number of forwarding nodes (hops), and on the packet reception ratio to the
first forwarding node. By blacklisting bad neighbors, we investigate about how much the end-to-end
delivery ratio and the energy efficiency can be improved.

4.4.1 Hop-Based Forwarding

In order to find a path from several source nodes to a fixed destination, a widely used method is
to establish the reverse path by using hop counters: The destination node floods the network with
a special routing message containing the number of hops the node is away. Each node receiving a

64 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

message with a lower hop counter updates its routing table and stores the new forwarding node and
hop counter. Then, the node broadcasts its updated information to its neighborhood. Once no further
changes occur, the forwarding path is defined by following the path with decreasing hop counters.

However, especially in the field of sensor networks where low-power radios are used, nodes might have
many neighbors with lossy links. Traditional hop-based forwarding algorithms neglect link qualities
and simply select the node with the minimum hop counter as the forwarder. But as it is likely that
such nodes will be far away, many retransmissions may later be necessary, causing a high energy
consumption.

One possibility to overcome this problem is to blacklist bad nodes, thereby preventing them from
becoming forwarders [161, 258]. From among all neighbors of a node, i. e., nodes with a packet
reception ratio greater or equal to the blacklisting threshold, the node with the minimum hop counter
will be selected as the forwarder. In case two or more neighbors have the same hop counter, the one
with the higher reception ratio is selected. However, finding the best blacklisting threshold may be
difficult. Several environmental conditions like the node density and link qualities may influence the
performance.

Figure 4.3 illustrates the impact of the node density for different blacklisting thresholds on the delivery
ratio and energy efficiency, averaged over all nodes randomly placed in a 200 × 200 m2 area. We
performed 500 simulation runs using the packet reception model described in Section 4.3.1. The
number of retransmissions in case of packet loss, which we denote by R, was set to three.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

k
et

 d
el

iv
er

y
 r

at
io

Blacklisting threshold

Density 10
Density 20
Density 30
Density 40
Density 50

(a) Packet delivery ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Blacklisting threshold

Density 10
Density 20
Density 30
Density 40
Density 50

(b) Energy efficiency

Figure 4.3: Hop-based forwarding using different blacklisting thresholds (R = 3)

In Figure 4.3(a), the end-to-end packet delivery ratio averaged over all nodes in the network is shown,
together with the 0.95 quantile. Without blacklisting nodes, the delivery ratio is quite low, as many
nodes use forwarders which have poor links but a small hop counter. By blacklisting such nodes,
the delivery ratio increases up to the point when blacklisting is no longer favorable because of oc-
curring disconnections. Especially for low node densities where each node only has a few neighbors,
blacklisting causes rapid disconnection, decreasing the delivery ratio substantially.

In the same way, the energy efficiency is influenced as shown in Figure 4.3(b). However, a black-
listing threshold that maximizes the packet delivery ratio need not implicitly yield the highest energy

4.4. ANALYSIS OF HOP- AND PRR-BASED FORWARDING STRATEGIES 65

efficiency. A low blacklisting threshold leads to low packet reception ratios and thus causes a high
energy consumption due to packet retransmissions. Thus, the energy efficiency defined by the ratio of
both is low, too. By increasing the threshold, forwarding paths become longer, but at the same time
the quality of the forwarding links improves. Although in this case the energy consumption initially
increases because more forwarding links are used, the costs of additional nodes on a forwarding path
are compensated eventually due to fewer retransmissions.

As both figures show, blacklisting in conjunction with hop-based forwarding clearly improves the
end-to-end packet delivery ratio as well as the energy efficiency and is thus very useful. However, the
optimal blacklisting threshold depends on the node density, which makes it quite difficult to specify it
beforehand.

4.4.2 PRR-Based Forwarding

In PRR-based forwarding, a node i selects a forwarder j according to its distance (the hop counter),
and in addition, the packet reception ratio to the forwarding node. By minimizing hops

prri,jprrj,i
, the

best forwarding node is selected. The idea behind this metric is to downgrade neighbors with low
hop counters or poor links, which should minimize the influence of blacklisting on the forwarding
performance. An advantage is that nodes having poor links will still be considered and not blocked
completely. Thus, disconnections caused by blacklisting too many nodes may be prevented. Never-
theless, blacklisting could still help to improve the delivery ratio and energy efficiency since very bad
links might be avoided, independent of assigned hop counters.

The effects of neighbor blacklisting on the end-to-end packet delivery ratio and the resulting energy
efficiency are shown in Figure 4.4. For low node densities, blacklisting does not improve the packet
delivery ratio at all but only causes disconnections. For higher densities, the delivery ratio is improved
slightly, but the improvement is marginal and can actually be neglected. Thus, the resulting energy
efficiency rather decreases if blacklisting is performed, either due to disconnections or to longer for-
warding paths.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

k
et

 d
el

iv
er

y
 r

at
io

Blacklisting threshold

Density 10
Density 20
Density 30
Density 40
Density 50

(a) Packet delivery ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Blacklisting threshold

Density 10
Density 20
Density 30
Density 40
Density 50

(b) Energy efficiency

Figure 4.4: PRR-based forwarding using different blacklisting thresholds (R = 3)

66 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

A comparison of hop-based forwarding and PRR-based forwarding shows that both strategies nearly
achieve the same optima for high node densities, with PRR-based forwarding performing slightly
better. However, the fact that it is basically independent from blacklisting turns it into a very practical
alternative since it is not necessary to know the right blacklisting threshold a priori. Furthermore,
since it does not strictly block bad nodes, disconnections are not caused accidentally.

4.5 Energy-Efficient Forwarding

Energy-efficient forwarding aims to find the most energy-efficient path in the network that trades off
the end-to-end delivery ratio and the energy cost. By examining each of a node i’s neighbors j,
the node that maximizes Eeffi is selected as the forwarder. In contrast to the previously proposed
forwarding strategies, we now take the end-to-end reception rate and energy consumption into account
simultaneously.

4.5.1 Single-Link Energy-Efficient Forwarding

As in the hop-based and PRR-based forwarding strategies, the network sink first initializes the estab-
lishment of reverse paths by broadcasting a special routing message, which is “flooded” throughout
the network by using the nodes’ beacons sent periodically. This implies that each beacon will contain
information regarding the current end-to-end delivery ratio and the forwarding cost of the node send-
ing the beacon. By using this information received form adjacent neighbors, a node i is thus able to
calculate Eri , Eei , and Eeffi for the best forwarding path a neighbor j provides. The neighbor j that
maximizes Eeffi is then stored in the routing table of node i as the forwarder, together with informa-
tion about Eri and Eei . If the energy efficiency could be improved or Eri and Eei have changed with
respect to the current forwarder, this will be announced to the node’s neighbors with the next beacon.

In contrast to the forwarding strategy we consider in the next section, we call this strategy single-link
energy-efficient forwarding (SEEF). Single-link refers to the case in which a message is forwarded over
a single link to one forwarding node. On the other hand, the following multi-link forwarding strategy
will exploit the broadcast characteristics of the wireless medium by using multiple forwarding links.

4.5.2 Multi-Link Energy-Efficient Forwarding

In the multi-link energy-efficient forwarding (MEEF) strategy, packets may be sent to more than one
forwarding node. The idea there is to exploit the broadcast characteristics the wireless communication
channel provides. In general, nodes that are not addressed in the header of a packet as the destination
temporarily turn their radios off to save energy. However, it might be more efficient if some nodes
were to stay awake and overhear the packet transmission completely.

In case some nodes are not able to receive the packet correctly, retransmitting the entire packet from
the source will not be necessary if there is another node on the way that has received it successfully.
In order to prevent the packet’s being forwarded by multiple nodes, we use a simple polling approach

4.5. ENERGY-EFFICIENT FORWARDING 67

that is employed by the source. At first, all potential forwarders are ordered according to their energy
efficiency. If the first forwarding node does not acknowledge the packet, we assume the packet got lost.
By polling the next node on the list, the source informs the second forwarder that it should forward
the packet instead, and so on. Only if none of the nodes answers, will the packet be retransmitted by
the source.

Although this approach usually prevents multi-path forwarding, it is still possible that a packet will
be forwarded by two or even more nodes at the same time: Due to link asymmetries, it may happen
that a packet will have been correctly received by the first forwarder but the sender did not get an
acknowledgement. It thus will poll the second forwarding node, which in turn will start forwarding
the packet.

Even though such an “unintentional” multi-path forwarding might be robust against different kinds of
network failures, it might still be inefficient concerning its energy consumption [79, 90, 166]. How-
ever, the described polling approach reduces the impact of multi-path forwarding substantially, as
packets are forwarded by more than one node only if acknowledgments get lost. Nevertheless, the
additional energy costs for this case, as well as the energy cost for polling nodes need to be taken into
account. Otherwise, a node will be unable to decide reliably whether or not the energy efficiency of
its forwarding path can be improved by using additional forwarders.

Concerning the addressing used by multi-link forwarding, the appropriate node creates an ordered set
of potential forwarders, the forwarder list, which is added to the packet header. The details of how
to determine the ordered set will be described later. Nodes contained in the forwarder list stay awake
during the complete transmission and try to receive the entire packet. All other nodes are assumed
to temporally turn their communication radios off, like in SEEF. As each additional forwarding node
must receive the packet in order to work in a so-called backup mode, more energy is consumed. But at
the same time, additional nodes may improve the delivery ratio and also the overall energy efficiency.
Thus, whether more than one forwarder should be selected mainly depends on the packet reception
ratios on the forwarding links, as well as on the end-to-end delivery ratios and energy costs of the
selected forwarders.

In the following, we present the mathematical details of single-link and multi-link forwarding and
analyze how the end-to-end delivery ratio, the energy cost, and the energy efficiency can be calculated.
We consider the case of infinite as well as of finite retransmissions.

4.5.3 Analysis of the Infinite Retransmissions Case

We start by analyzing the case of infinite retransmissions, i. e., a node i will repeatedly send a data
packet to its forwarding node (or to the forwarder set in case of MEEF) until an acknowledgement is
received. The acknowledgement can either be sent explicitly or implicitly by piggy-backing it with the
next forwarder’s data packet [191]. However, in the following, we consider only the case of explicit
acknowledgements.

As the number of retransmissions is infinite, each packet will finally reach its destination, leading to a
delivery ratio of one. Thus, maximizing Eeffi is equal to minimizing the energy consumption Eei .

68 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

Single-Link Energy-Efficient Forwarding

In the case of single-link forwarding, the calculation of the energy consumption is based on the prob-
ability tree shown in Figure 4.5. F and F denote the events of “forwarded packet received correctly,
respectively not correctly”. The events of “acknowledgement received correctly, respectively not cor-
rectly” are denoted by A and A. In addition, let Eej be the energy required by node j to forward a
packet, and prri,j and prrj,i be the packet reception ratios on the link between node i and j, and vice
versa.

11

: : :: : :

FF

FF

AA

AA

FF

FF

FF

FF

""

""
prri;jprri;j

1¡ prri;j1¡ prri;j prri;jprri;j

prri;jprri;j

1¡ prri;j1¡ prri;j

1¡ prri;j1¡ prri;j

1¡ prrj;i1¡ prrj;i

prrj;iprrj;i
Eej + "

ackEej + "
ack AA

AA

AA

AA1¡ prrj;i1¡ prrj;i

prrj;iprrj;i

22 : : :: : :

""

Eej + "
ackEej + "
ack

Eej + "
ackEej + "
ack

1¡ prrj;i1¡ prrj;i

prrj;iprrj;i

Figure 4.5: Probability tree for the energy consumption of SEEF

According to the energy model presented in Section 4.3.3, the energy consumed by transmitting single
data packets and acknowledgements is expressed as

ε = etx(d, k) + erx(k) + (N − 1)erx(8) and

εack = etx(d, 8) + erx(8),

for a data packet size of k bytes and a maximum transmission range of d, which is set to 30 m, as
defined by the packet reception model from Section 4.3.1. The length of acknowledgements, as well
as that of a packet header, is assumed to be 8 bytes. To simplify matters, we assume that each packet
received by a node will always be forwarded, even if it was retransmitted and maybe forwarded before.
Thus, we do not model any packet history buffers in which the last packets are stored.

According to Figure 4.5, the energy efficiency can be calculated as follows: While the end-to-end
delivery ratio is one (due to infinite retransmissions), the energy required for single-link forwarding is

Eei = ε+ prri,j

(
Eej + εack + (1− prrj,i)Eei

)
+ (1− prri,j)Eei

= ε+ prri,j(Eej + εack) + (1− prri,jprrj,i)Eei

=
ε+ prri,j(Eej + εack)

prri,jprrj,i
. (4.8)

Thus, the energy efficiency defined by Equation 4.7 is 8k/Eei .

4.5. ENERGY-EFFICIENT FORWARDING 69

Multi-Link Energy-Efficient Forwarding

Extending the calculation to the case of multi-link forwarding, where an ordered set Ωi of n potential
forwarders is used, leads to a corresponding probability tree illustrated in Figure 4.6. α(j) denotes the
position of node j in Ωi and α̂(k) denotes the forwarder at position k.

11

: : :: : :

AA

AA

AA

AA

AA

AA

22 : : :: : :

""

F1F1

FnFn

F1F1

"poll"poll

prri;®̂(1)prri;®̂(1)

prri;®̂(n)prri;®̂(n)

1¡ prri;®̂(n)1¡ prri;®̂(n)

1¡ prri;®̂(1)1¡ prri;®̂(1)

Ee®̂(1) + "
ackEe®̂(1) + "
ack

FnFn

FnFn

FnFn

1 ¡ prr®̂(1);i1 ¡ prr®̂(1);i

prr®̂(n);iprr®̂(n);i
Ee®̂(n) + "

ackEe®̂(n) + "
ack

Ee®̂(n) + "
ackEe®̂(n) + "
ack

"poll"poll

""

""

""

""

1¡ prri;®̂(n)1¡ prri;®̂(n)

prri;®̂(n)prri;®̂(n)

prr®̂(1);iprr®̂(1);i
1¡ prr®̂(n);i1¡ prr®̂(n);i

prr®̂(n);iprr®̂(n);i

1¡ prr®̂(n);i1¡ prr®̂(n);i

F1F1

F1F1

F1F1

F1F1
F1F1

F1F1

F1F1

F1F1
prri;®̂(1)prri;®̂(1)

prri;®̂(1)prri;®̂(1)

1¡ prri;®̂(1)1¡ prri;®̂(1)

prri;®̂(1)prri;®̂(1)

1¡ prri;®̂(1)1¡ prri;®̂(1)

1¡ prri;®̂(1)1¡ prri;®̂(1)

prri;®̂(1)prri;®̂(1)

1¡ prri;®̂(1)1¡ prri;®̂(1)

Figure 4.6: Probability tree for the energy consumption of MEEF

Similarly, the energy consumed by transmitting data packets, acknowledgements, and polling mes-
sages is defined as

ε = etx(d, k) + nerx(k) + (N − n)erx(8),

εack = etx(d, 8) + nerx(8), and

εpoll = etx(d, 8) + nerx(8).

We assume that acknowledgements and polling messages are received only by active nodes, i. e., nodes
that did not turn their communication radio off during the forwarding of data packets. In addition,
we assume for the sake of simplicity that on average, the number of nodes that will be affected by
acknowledgements will be equal to the size of the forwarder set of node i2.

The energy consumption for an arbitrary forwarding set Ωi is then calculated as

Eei = ε+
∑
∀j∈Ωi

ρi,α(j)−1

(
|α(j) > 1|εpoll + prri,j(Eej + εack)

)
+ ρi,nE

e
i

2Note that the actual cost for receiving acknowledgements is determined by the number of active neighbors the sender
of an acknowledgement has.

70 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

=
ε+

∑
∀j∈Ωi

ρi,α(j)−1

(
|α(j) > 1|εpoll + prri,j(Eej + εack)

)
1− ρi,n

, (4.9)

where ρi,k is defined as

ρi,k =

0 k = 0,∏
∀j∈Ωi,α(j)≤k (1− prri,jprrj,i) k > 0,

and |x| denotes a Boolean operator returning one if x is true, and zero otherwise. As in the single-link
case, the energy efficiency is calculated from 8k/Eei .

4.5.4 Analysis of the Finite Retransmissions Case

In the case of finite retransmissions, each node only triesR+1 times to send a packet to its forwarding
nodes, withR being the number of retransmissions. If the packet cannot be delivered by then, it will be
discarded. Compared to the previous section, this case seems to be more realistic, as in practice a node
would not be able to send a packet an infinite number of times. For example, if the communication
between a node and its forwarder is disturbed for a longer period, a node will consume all its energy
by trying to forward a packet, which does not make sense. Thus, the assumption of a 100% delivery
ratio is not really realistic. Moreover, if all nodes never stop retransmitting undelivered packets, the
influence of network congestion can no longer be ignored.

Single-Link Energy-Efficient Forwarding

In the single-link case, the end-to-end delivery ratio of node i can be calculated as follows: Let Êkr
be the delivery ratio if up to k transmissions are used. According to Figure 4.5, we can express Ê1

r to
ÊR+1
r iteratively as

ÊR+1
r = prri,jE

r
j + (1− prri,j)ÊRr (4.10)

ÊRr = prri,jE
r
j + (1− prri,j)ÊR−1

r (4.11)
... (4.12)

Ê1
r = prri,jE

r
j . (4.13)

Note that in terms of the delivery ratio, the reverse link used for acknowledgements is not important.
Because even if an acknowledgement does get lost and a packet is successfully forwarded twice, the
second packet will be redundant and will not improve the delivery ratio. Compared to the calculation
in Equation 4.8, we can therefore neglect prrj,i.

With Eri = ÊR+1
r , the end-to-end delivery ratio is then

Eri = prri,jE
r
j

R∑
k=0

(1− prri,j)k

4.5. ENERGY-EFFICIENT FORWARDING 71

= Erj
(
1− (1− prri,j)R+1

)
. (4.14)

Similar to Section 4.5.3, the energy consumption is calculated. Êke denotes the energy required by
node i to forward a packet towards the sink if up to k transmissions are used. Then, ÊR+1

e is iteratively
computed as

ÊR+1
e = ε+ prri,j(Eej + εack) + (1− prri,jprrj,i)ÊRe
ÊRe = ε+ prri,j(Eej + εack) + (1− prri,jprrj,i)ÊR−1

e

... (4.15)

Ê1
e = ε+ prri,j(Eej + εack).

Thus, the end-to-end energy consumption is

Eei =
(
ε+ prri,j(Eej + εack)

) R∑
k=0

(1− prri,jprrj,i)k

=

(
ε+ prri,j(Eej + εack)

)(
1− (1− prri,jprrj,i)R+1

)
prri,jprrj,i

. (4.16)

According to Equation 4.7, the energy efficiency defined as 8k · Eri /Eei is

Eeffi =
8k · Erj

(
1− (1− prri,j)R+1

)
prri,jprrj,i(

ε+ prri,j(Eej + εack)
)(

1− (1− prri,jprrj,i)R+1
) . (4.17)

Multi-Link Energy-Efficient Forwarding

Analogous to the analyses done so far, we can extend the calculations to the multi-link case using R
retransmissions. According to Figure 4.6, the end-to-end delivery ratio is computed as

ÊR+1
r =

∑
∀j∈Ωi

ρi,α(j)−1prri,jE
r
j + ρi,nÊ

R
r

ÊRr =
∑
∀j∈Ωi

ρi,α(j)−1prri,jE
r
j + ρi,nÊ

R−1
r

... (4.18)

Ê1
r =

∑
∀j∈Ωi

ρi,α(j)−1prri,jE
r
j ,

with

ρi,k =

0 k = 0,∏
∀j∈Ωi,α(j)≤k (1− prri,j) k > 0.

72 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

Simplifying these Equations leads to

Eri =

 ∑
∀j∈Ωi

ρi,α(j)−1prri,jE
r
j

 R∑
k=0

(1− ρi,n)k

=

(∑
∀j∈Ωi

ρi,α(j)−1prri,jE
r
j

)(
1− ρR+1

i,n

)
1− ρi,n

. (4.19)

In the same way, the energy consumption for the multi-link case is calculated as

ÊR+1
e = ε+

∑
∀j∈Ωi

ρi,α(j)−1

(
|α(j) > 1|εpoll + prri,j(Eej + εack)

)
+ ρi,nÊ

R
e

ÊRe = ε+
∑
∀j∈Ωi

ρi,α(j)−1

(
|α(j) > 1|εpoll + prri,j(Eej + εack)

)
+ ρi,nÊ

R−1
e

... (4.20)

Ê1
e = ε+

∑
∀j∈Ωi

ρi,α(j)−1

(
|α(j) > 1|εpoll + prri,j(Eej + εack)

)
that leads to

Eei =

(
ε+

∑
∀j∈Ωi

ρi,α(j)−1

(
|α(j) > 1|εpoll + prri,j(Eej + εack)

))(
1− ρR+1

i,n

)
1− ρi,n

. (4.21)

Finally, the energy efficiency is expressed as

Eeffi =
8k ·

(∑
∀j∈Ωi

ρi,α(j)−1prri,jE
r
j

)(
1− ρR+1

i,n

)(
1− ρi,n

)
/
(

1− ρi,n
)

(
ε+

∑
∀j∈Ωi

ρi,α(j)−1

(
|α(j) > 1|εpoll + prri,j(Eej + εack)

))(
1− ρR+1

i,n

) . (4.22)

4.5.5 Analysis of the Optimal Number of Forwarders for MEEF

Taking Equations 4.17 and 4.22 into account, we can now analyze how the link quality influences the
number of selected forwarders and when it would be most efficient to select more than one forwarding
node. Let us consider a simple example consisting of a 1-hop neighborhood with N nodes, where N
is set to 20. We assume that all nodes will have the same packet reception ratio p and require the same
amount of energy to forward packets, i. e., without loss of generality, we set Eej = 0. Furthermore, all
links are symmetric.

The energy efficiency in Equation 4.22 then changes to

Eeffi =
8k ·

(
1− (1− p)n(R+1)

) (
1− (1− p2)n

)(
ε+ εack

(
1−(1−p2)n

p

)
+ εpoll

(
1−(1−p2)n

p2
− 1
)) (

1− (1− p2)n(R+1)
) , (4.23)

which is plotted in Figure 4.7 for a different number of forwarding nodes and packet reception ratios,
using three retransmissions and a packet size of k = 32 bytes.

4.5. ENERGY-EFFICIENT FORWARDING 73

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

E
n

er
g

y
 e

ff
ic

ie
n

cy
 [

b
it

s/
µJ

]

Packet
reception ratio

Number of
forwarding nodes

Figure 4.7: Energy efficiency for a different number of forwarders and packet reception ratios (R = 3, k = 32)

As Figure 4.7 illustrates, with decreasing reception ratios the energy efficiency tends to decrease,
too. In this case, the packet delivery ratio worsens, while at the same time more energy is spent on
retransmissions. The same is true for the number of forwarding nodes, as more forwarders will require
more energy in order to receive data packets. However, there is a trade-off since using more forwarding
nodes will increase the delivery ratio, even if more energy is needed. Thus, in the following we would
like to find the optimal number of forwarders needed to maximize the energy efficiency.

Figure 4.8 provides another view of Figure 4.7 for different packet reception ratios. Since for a perfect
packet reception ratio of p = 1 additional forwarding nodes only require more energy, the energy
efficiency decreases monotonically for n ≥ 1, as shown in Figure 4.8(a). However, for p ≤ 0.8,
using more than one forwarder is more efficient. Even if other packet sizes are considered, the energy
efficiency can be improved by multi-link forwarding. As illustrated in Figure 4.8(b), larger packets
also increase the energy efficiency as the ratio between the entire packet size and the packet header
grows, i. e., the overhead caused by the packet header slightly decreases, which in turn increases the
energy efficiency.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ne

rg
y

ef
fi

ci
en

cy
 [

bi
ts

/µ
J]

Number of forwarding nodes

p = 1.0
p = 0.8
p = 0.6
p = 0.4
p = 0.2

(a) k = 32

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
ne

rg
y

ef
fi

ci
en

cy
 [

bi
ts

/µ
J]

Number of forwarding nodes

k = 8
k = 16
k = 32
k = 64

k = 128
k = 256

(b) p = 0.6

Figure 4.8: Energy efficiency for different packet reception ratios and packet sizes (R = 3)

74 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

Calculating the optimal number of forwarding nodes, which is denoted by n∗, can be done by solving
∂Eeff

i
∂n = 0. Figure 4.9 shows how n∗ is influenced by the packet reception ratio and the number of

retransmissions. If retransmissions are not used (see Figure 4.9(a)), the optimal number of forwarders
will monotonically increase for decreasing packet reception ratios, while using more than one for-
warder will become beneficial if p ≤ 0.5. If the number of retransmissions is increased (Figure 4.9(b)
to Figure 4.9(d)), we can observe an interesting effect. At first, n∗ drops if the packet reception ratio
increases, as higher delivery ratios require fewer forwarding nodes in order to maximize the energy
efficiency. However, at some point (which depends on the number of allowed retransmissions) the
maximum efficiency is achieved again for higher n∗. In this range, using retransmissions and more
forwarders will increase the delivery ratio more than it will cause additional energy costs. Thus, the
energy efficiency reaches its maximum for higher n∗. If, however, the packet reception ratio increases
further, neither retransmissions nor additional forwarders will compensate the energy cost any longer.
Hence, the optimal number of forwarders n∗ will again decrease until it reaches 1 for p = 1.

Figure 4.9 also shows the impact of different packet sizes on n∗. For high packet reception ratios, using
additional forwarding nodes fails to improve the delivery ratio as it does for low reception ratios. Small
packet sizes, which cause less energy consumption, thus allow for higher n, improving the delivery
ratio as much as the additional energy costs are compensated. However, the additional cost caused by
larger packets can only be compensated if fewer forwarding nodes are used.

 0

 2

 4

 6

 8

 10

 12

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
pt

im
al

 n
um

be
r

of
 f

or
w

ar
di

ng
 n

od
es

Packet reception ratio

k = 8
k = 16
k = 32
k = 64

k = 128
k = 256

(a) R = 0

 0

 2

 4

 6

 8

 10

 12

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
pt

im
al

 n
um

be
r

of
 f

or
w

ar
di

ng
 n

od
es

Packet reception ratio

k = 8
k = 16
k = 32
k = 64

k = 128
k = 256

(b) R = 1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
pt

im
al

 n
um

be
r

of
 f

or
w

ar
di

ng
 n

od
es

Packet reception ratio

k = 8
k = 16
k = 32
k = 64

k = 128
k = 256

(c) R = 3

 0

 2

 4

 6

 8

 10

 12

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
pt

im
al

 n
um

be
r

of
 f

or
w

ar
di

ng
 n

od
es

Packet reception ratio

k = 8
k = 16
k = 32
k = 64

k = 128
k = 256

(d) R =∞

Figure 4.9: Optimal number of forwarders for different packet reception ratios and packet sizes

4.6. SIMULATIONS 75

In contrast, in the case of low packet reception ratios, a higher energy consumption can be compen-
sated if n increases, as the delivery ratio grows more than for high reception ratios. Furthermore,
the overhead caused by acknowledgements and polling messages will decrease in relation to the data
packet size if larger packets are used3. As the impact of these control packets will grow if lower packet
reception ratios are considered (which is mainly determined by the energy required for polling), more
forwarding nodes can be used if the size of data packets is larger. In this case, the relative amount of
energy spent on control packets with respect to data packets is lower. The relative improvement in the
delivery ratio thus compensates a larger energy increase, as it does for smaller data packets.

In conclusion, using additional forwarders in MEEF may indeed increase the energy efficiency if
the packet reception ratios on forwarding links are not perfect. Additional energy costs for multi-
path forwarding and polling may be compensated by an increase in the end-to-end delivery ratio.
Moreover, if the maximum number of retransmissions is limited to three (R = 3), using more than
three forwarding nodes will not further improve the energy efficiency. This is quite useful for practical
implementations, as only forwarder sets with up to three nodes need to be analyzed.

4.6 Simulations

With the mathematical analyses on hand, we now investigate by means of simulations how well the
different forwarding schemes work. We have implemented the following strategies:

• MEEF As described in Section 4.5, MEEF attempts to maximize the end-to-end energy effi-
ciency Eeffi for a node i according to Equations 4.9 and 4.22, respectively. Each node gathers
appropriate data from its neighborhood. It then evaluates Eeffi for different forwarder sets of
size n and selects the nodes that lead to a maximum value. Note that the forwarder set defines
an order among the nodes, according to which a packet is forwarded. If the first node of the for-
warding set does not acknowledge the packet, the next node will be polled until no forwarding
node remains, and the packet is retransmitted4.

• SEEF Except for the fact that just one forwarding node and not a set of potential forwarders is
considered, SEEF works similar to MEEF. Thus, no energy is consumed by multi-path forward-
ing or polling.

• MT Forwarding attempts to minimize the overall packet transmissions along a source-to-sink
path. As proposed in [64] and [258], MT forwarding evaluates 1

prri,jprrj,i
for each neighbor

j of a node i and selects as its forwarder the neighbor that minimizes this expression. As the
metric assumes infinite retransmissions, we extend the calculation by considering the actual
number of transmissions, which leads to 1−(1−prri,jprrj,i)

R+1

prri,jprrj,i
. We call this extended strategy

MT2 Forwarding.

3Note that both acknowledgements and polling messages have a fixed size of 8 bytes.
4Note that the polling mechanism is only required if the first node does not receive the packet correctly.

76 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

• PRR-based Forwarding tries to minimize hops
prri,jprrj,i

, as a trade-off between link quality and
distance. Since blacklisting has actually no improving impact on the end-to-end delivery ratio
and the energy efficiency, it is not applied.

• Er-based Forwarding focuses on the end-to-end delivery ratio only [97] and attempts to max-
imize Eri as it is calculated in Equation 4.14. Er-based forwarding is thus expected to achieve
the best delivery ratios among all single-link forwarding strategies. However, the energy con-
sumption might be high if only short-distance links are used.

• Hop-based Forwarding is the simplest manner of forwarding, which considers the hop coun-
ters of adjacent neighbors, indicating how far away the sink is. The neighbor with the lowest hop
counter then becomes the forwarder of a node i. If the hop counters of two neighbors are equal,
the node with the better packet reception ratio will be selected. Concerning the forwarding path
length, hop-based forwarding should thus achieve the best results.

• Hop*-based Forwarding works like hop-based forwarding but additionally performs a black-
listing of bad neighbors. The blacklisting threshold is optimized according to the simulation
results obtained from Section 4.4 such that the end-to-end energy efficiency is optimized. Thus,
it gives an upper bound for hop-based forwarding without blacklisting.

Figure 4.10 illustrates these forwarding strategies in a 100 × 100 m2 sample network for a density of
30 nodes and one sink node, which is indicated by a red circle. All established forwarding links are
depicted as arrows and give a first impression of how the different forwarding paths may look.

In Figure 4.10(a), the forwarding graph of MEEF is shown. It can be seen that several nodes establish
paths by exploiting multi-link forwarding, particularly in dense neighborhoods. However, consistent
with the results from the last section, all nodes use at most two forwarders. Compared to the SEEF
tree that is depicted in Figure 4.10(b), we can see that most of the SEEF paths are congruent with
MEEF. That is mainly due to the fact that the energy efficiency of SEEF is always a lower bound for
MEEF, which uses additional forwarders only if they improve the efficiency of a forwarding path. The
trees of MT and PRR-based forwarding are illustrated in Figure 4.10(c) and Figure 4.10(d). In some
areas they are quite different, while other areas are similar to the forwarding paths used in SEEF and
MEEF. Especially where the node density is sparse, the same forwarding nodes are selected because
finding sufficient alternatives to well-connected neighbors is unlikely for low densities. Concerning
the path length, PRR-based forwarding seems to prefer longer paths, although its forwarding metric
incorporates the hop counter of a forwarding node. However, as it considers the packet reception ratio
only on the first link to a forwarder and not the end-to-end delivery ratio, selecting well-connected
nodes becomes preferable, even if this increases the hop counter. On the other hand, hop-based for-
warding looks quite different (see Figure 4.10(e)). We can clearly see that its forwarding paths are
shorter. Even far-away nodes reach the sink in at most three hops because several links are long-
distance ones. At last, Figure 4.10(f) shows the forwarding tree of Er-based forwarding. Since this
strategy only considers the end-to-end delivery ratio of a forwarding path independently of the path
length, short-distance links are used in the majority of cases. While such links are likely to show bet-
ter packet reception ratios, the total number of packet transmissions may be very high, even if fewer
retransmissions per link may be necessary.

4.6. SIMULATIONS 77

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(a) MEEF

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(b) SEEF

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(c) MT

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(d) PRR

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(e) HOP

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(f) Er

Figure 4.10: Sample network showing different forwarding strategies

78 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

4.6.1 Simulation Setup

The simulations are based on a stationary WSN of size 200× 200 m2. All sensor nodes are uniformly
distributed in this area, while one node is chosen at random as the sink. We simulated several rounds
until all forwarding paths of the appropriate strategy were established and stable, applying the packet
reception ratio and energy model presented in Section 4.3. As described in Section 4.3.4, we assume
that all nodes will have already performed some kind of link measurements and know about the packet
reception ratios on the wireless links to their neighbors. After establishing the forwarding paths, each
node will generate data packets that will then be forwarded towards the sink, evaluating the end-to-end
delivery ratio as well as the energy consumption.

We have performed simulations in order to investigate the influence of single parameters, which in-
cluded the node density, contention on forwarding links, the maximum number of retransmissions, the
packet size of forwarding messages, and the energy cost of receiving messages. To obtain stable re-
sults, we performed 500 runs per simulation set. All graphs presented in the following depict average
values over these runs and the corresponding 0.95 quantiles.

4.6.2 Influence of Node Density

At first, we investigate the influence of the node density µ for different performance aspects. The
density is varied between 10 and 50 nodes per transmission range. The maximum number of retrans-
missions R is set to three; the size of data packets issued by source nodes, which is denoted by k, is
set to 32 bytes.

Using this parameter set, Figure 4.11(a) depicts the end-to-end delivery ratio averaged over all nodes
in the network. Among all single-link forwarding strategies, Er-based forwarding performs best and
gives an upper bound for the achievable delivery ratio. On the other hand, simple hop-based for-
warding shows the worst results. Because blacklisting is not applied, most forwarding links are lossy,
which of course leads to bad delivery ratios. As we have seen in Section 4.4.1, improving hop-based
forwarding by blacklisting achieves significantly better results. It then even performs better than MT2
forwarding, which tries to minimize the expected number of transmissions on a forwarding path.
However, PRR-based forwarding shows a better trade-off between the link quality and the length of
the forwarding path. Although it does not consider the end-to-end delivery ratio explicitly, it performs
quite well and almost reaches the packet delivery ratio ofEr-based forwarding. A similar performance
is achieved by MT forwarding, where link qualities are implicitly considered. As MT forwarding as-
sumes infinite retransmissions to calculate the expected number of required transmissions, links having
poor reception ratios are downgraded more than in MT2 forwarding, which considers the real number
of transmissions. For this reason, its delivery ratio is higher, higher even than for SEEF and MEEF.
However, SEEF and MEEF try to find a trade-off between the delivery ratio and the corresponding
energy consumption. As MEEF broadcasts data packets to a forwarding set rather than to a single
node, it is able to improve the delivery ratio of SEEF without spending too much additional energy.

As shown in Figure 4.11(b), MEEF spends even less energy than almost any other strategy on a
forwarding path for node densities larger than 25 (except for hop-based forwarding that suffers from

4.6. SIMULATIONS 79

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50

P
ac

k
et

 d
el

iv
er

y
 r

at
io

Node density

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(a) Packet delivery ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 10 15 20 25 30 35 40 45 50

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

m
J]

Node density

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(b) Energy consumption

Figure 4.11: Packet delivery ratio and Energy consumption (k = 32, R = 3)

low delivery ratios and thus consumes less energy on end-to-end paths due to early packet drops).
Although multi-link forwarding requires more nodes to receive a packet and in some cases requires
polling messages, these additional energy costs can be compensated due to a better delivery ratio
and thus fewer retransmissions. However, even if multi-link forwarding is not applied, the energy
consumption of SEEF is significantly lower than that of the other forwarding strategies achieving a
similar delivery ratio.

Most energy is consumed by Er-based forwarding although it achieves the best delivery ratio, and
retransmissions seldom occur. Thus, many nodes are involved in the forwarding process, which in-
creases the total energy consumption, even if the energy cost per link might be low. On the other hand,
hop-based forwarding “benefits” from its bad end-to-end delivery ratios because many packets do not
reach the sink and so do not cause any further energy consumption. However, if the density increases,
more nodes will originate data packets, with a greater likelihood of finding better paths with low
hop counters. But since packet drops remain a dominant factor, the overall energy consumption will
be comparably low. In contrast, hop*-based forwarding consumes more energy since more packets
reach the sink. While for a density of 10 nodes, the energy consumption is lower due to discon-
nections caused by blacklisting, blacklisting in the case of higher densities leads to better connected
forwarding paths. Since hop*-based forwarding reduces the number of packet drops significantly,
more packets are finally delivered such that even more energy is needed. Moreover, because many
retransmissions are still required, it also performs worse than any other strategy, except for Er-based
forwarding. Concerning the energy consumption of MT and PRR-based forwarding, an interesting
effect can be observed: Up to a density of 25 nodes, the energy consumption decreases, although all
other strategies consume more energy. We can explain this behavior as follows: If the node density is
low, the number of well-connected neighbors is low, too. Achieving high delivery ratios thus requires
much energy. Furthermore, finding short forwarding paths is unlikely. But if the density increases,
the likelihood of finding well-connected forwarding nodes with low hop counters grows, decreasing
the number of retransmissions and involved forwarders on a path. However, for higher densities, the
energy consumption starts to grow again. Because more available neighbors increase the end-to-end
delivery ratio, even on longer paths, packet drops are avoided in many cases. Thus, more energy is

80 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

consumed by forwarding. Additionally, if more nodes are deployed in the network, more nodes will
be affected by packet transmissions and consume energy, at least to detect packet headers.

The energy efficiency of the different forwarding strategies is shown in Figure 4.12. While Fig-
ure 4.12(a) depicts the efficiency of the entire network, Figure 4.12(b) shows the energy efficiency per
node. The difference is as follows. While the energy efficiency of the entire network is calculated
from 8k

∑
iE

r
i /
∑

iE
e
i , the efficiency per node is 8k

N

∑
i (Eri /E

e
i), where k denotes the data packet

size and N the number of nodes in the network. For example, disconnected nodes have an efficiency
of zero and thus are not considered in terms of the network efficiency but in terms of the energy effi-
ciency per node. Furthermore, high variances in the nodes’ energy efficiency have a deeper impact on
the average per-node value. Due to this reason, the performance regarding the network efficiency and
the efficiency per node might be different, especially for low node densities where network partitions
are not unlikely. As hop*-based forwarding might cause further disconnections due to blacklisting, its
network efficiency is even better than that of SEEF and MEEF for a low node density. However, as
illustrated in Figure 4.12(b), the energy efficiency per node is clearly lower, as many nodes have zero
efficiency.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10 15 20 25 30 35 40 45 50

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Node density

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(a) Energy efficiency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 10 15 20 25 30 35 40 45 50

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Node density

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(b) Energy efficiency per node

Figure 4.12: Energy efficiency and energy efficiency per node (k = 32, R = 3)

Thus, SEEF, as well as MEEF, improves the end-to-end energy efficiency substantially in almost all
cases. Even if neither strategy achieves the highest delivery rates, they nonetheless trade off the ratio
between delivered information and energy cost better than all other forwarding strategies. Once again
we see that the performance of SEEF can be improved by multi-link forwarding, which achieves a
better packet delivery ratio while at the same time conserving energy through fewer retransmissions.
Among the other strategies, MT, MT2 and PRR-based forwarding perform quite similarly, particu-
lary for moderate and high node densities. Even if none of these considers the end-to-end delivery
ratio explicitly, the packet reception ratios on forwarding links are taken into account. Hence, hop*-
based forwarding performs significantly better than simple hop-based forwarding without blacklisting.
However, its efficiency is even worse than that of Er-based forwarding, which heavily suffers from its
high energy cost and thus performs badly concerning energy efficiency, although it achieves the best
end-to-end delivery ratio.

4.6. SIMULATIONS 81

Finally, Figure 4.13 illustrates the influence of the node density on the end-to-end delivery ratio with
respect to the worst-connected node in the network, as well as to the average forwarding path length.
As expected, Er-based forwarding achieves the highest minimum delivery ratio, while hop-based for-
warding performs worst. Like in Figure 4.11(a), PRR-based forwarding performs better than both MT
strategies, hop*-based forwarding, and MEEF and SEEF. A comparison of MT and MT2 forwarding
shows that MT benefits from its assumption of infinite retransmissions since bad links are downgraded
more than in MT2 forwarding. Even the minimum delivery ratio of hop*-based forwarding is signif-
icantly better than that of MT2 because forwarding links with a packet reception ratio lower than the
blacklisting threshold are not used. Although the performance of MEEF and SEEF is only moderate,
it is sufficient, considering its higher efficiency.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50

M
in

im
u
m

 p
ac

k
et

 d
el

iv
er

y
 r

at
io

Node density

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(a) Minimum packet delivery ratio

 0

 4

 8

 12

 16

 20

 24

 28

 32

 10 15 20 25 30 35 40 45 50

F
o
rw

ar
d
in

g
 p

at
h
 l

en
g
th

Node density

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(b) Forwarding path length

Figure 4.13: Minimum packet delivery ratio and forwarding path length (k = 32, R = 3)

Concerning the forwarding path length depicted in Figure 4.13(b), hop-based forwarding performs
best, as it establishes the shortest path tree in the network. In contrast, the average path length of
Er-based forwarding seems to give an upper bound for all other strategies as it relies mainly on short-
distance links. If hop-based forwarding is combined with blacklisting, the forwarding paths get longer.
We also see that the forwarding paths of the MT2 strategy are shorter than those of MT. As mentioned
above, this is due to the fact that MT2 forwarding sometimes prefers links that perform worse, because
they are long-distance links. Like hop-based forwarding, the path lengths in PRR-based forwarding
tend to decrease for higher node densities since it is more likely that short paths over well-connected
neighbors will be used. The small increase at the beginning is again caused by the high number of
disconnected nodes that vanish if more nodes are deployed. Considering the average path length of
MEEF and SEEF, we see that multi-link forwarding slightly reduces the number of hops until packets
have reached the sink. Thus, the forwarding set used by MEEF often contains nodes with a lower hop
counter. Although such nodes are likely to have a worse packet reception ratio, the better delivery
ratio of the entire forwarding set compensates this effect, as shown in Figure 4.11(a). Furthermore,
due to the lower path lengths of MEEF, the number of packet transmissions can be reduced, too. This
again explains its lower energy consumption compared to SEEF.

In conclusion, increasing the node density provides better links and improves the end-to-end delivery
ratio. However, at the same time, more energy is consumed, as more nodes are affected by packet
transmissions. Thus, the energy efficiency decreases if more nodes are deployed within the network.

82 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

Although SEEF already achieves substantial performance gains, the multi-link concept of MEEF fur-
ther improves its energy efficiency due to a better packet delivery ratio and lower energy cost. Even
if Er-based, PRR-based, and MT forwarding perform better concerning the end-to-end delivery ratio,
their energy consumption is significantly higher, which results in a worse energy efficiency.

In the following sections, we now analyze the influences of several other conditions like contention,
retransmissions, different packet sizes, and receiving energy cost.

4.6.3 Influence of Contention

As contention on forwarding links has so far not been considered, this section investigates the impact
if several nodes try to access the wireless channel concurrently. As such interference is not covered
by the packet reception model presented in Section 4.3.1, we extend the model as follows: Although
contention usually relies on the number of nodes that intend to send a packet at the same time and thus
may vary within the network, we will assume that it is the same for all nodes in the network. Given
the contention probability ρ, the probability that a packet will be received correctly over a link (i, j)
is then prri,j(1 − ρ). Furthermore, the probability that a sender i will receive an acknowledgement
successfully is prri,j(1− ρ)prrj,i, as acknowledgements are commonly sent directly after the end of
the packet transmission. Like before, we assume that link measurements are available which evaluate
the link qualities over time. Because each transmission affects the estimates, the amount of contention
is implicitly captured. Thus, we must assume that nodes only have knowledge about packet reception
ratios that are influenced by contention effects.

In order to investigate the influence of contention on the forwarding performance, the contention
probability is increased from zero to one, and a density of 30 nodes is considered. Again, all nodes
generate data packets that are forwarded towards the sink once a forwarding tree has been established.
As before, the packet size of all forwarding messages is assumed to be 32 bytes. To compensate for
higher contention probabilities, up to three retransmissions are used.

In Figure 4.14(a), the impact on the end-to-end packet delivery ratio is shown. For ρ = 0, the results
are identical to the ones depicted in Figure 4.11(a). As contention is not taken into account at this
point, all strategies (except for hop-based forwarding) achieve quite high delivery ratios. Like before,
Er-based forwarding achieves the best results. However, for ρ > 0, the benefit of exploiting multi-
link forwarding increases. Because the presence of additional forwarders improves the probability of
forwarding packets successfully, using MEEF is more advantageous. If the contention probability is
higher than 0.25, it even outperforms Er-based forwarding, which considers only single-link forward-
ing. Especially if the packet reception ratio on forwarding links is low, it will be more efficient to send
packets to more than one forwarder and to compensate for the additional energy required by multi-
link forwarding. The difference in the performances of SEEF and MEEF thus grows significantly for
ρ > 0. While the delivery ratio of MEEF is just about 3% better than that of SEEF for ρ = 0, the
improvement is about 60% for a contention probability of up to 0.7. However, for ρ → 1, the gain of
multi-link forwarding vanishes, as the packet delivery ratio drops to zero.

4.6. SIMULATIONS 83

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ac

k
et

 d
el

iv
er

y
 r

at
io

Contention probability

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(a) Packet delivery ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Contention probability

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(b) Energy efficiency

Figure 4.14: Packet delivery ratio and energy efficiency (µ = 30, k = 32, R = 3)

The corresponding network energy efficiency is depicted in Figure 4.14(b). Again, MEEF shows sub-
stantial improvements over SEEF, especially for moderate contention probabilities. The main reason
is that it benefits from its higher packet delivery ratio and thus increases the number of delivered bits
per energy unit. Moreover, due to its multi-link concept, it requires less energy per bit in order to for-
ward packets towards the sink if the contention on forwarding links increases. But even if multi-link
forwarding is not applied, the energy efficiency of SEEF is still significantly better than the efficiency
of all other strategies.

While the relative performance by almost all strategies remains the same for different contention
probabilities, MT2 andEr-based forwarding show a different behavior: With an increasing contention
probability, MT2 performs similar to hop-based forwarding since the majority of links have costs equal
to the maximum number of retransmissions. On the other hand, Er-based forwarding first benefits
from contention because it reduces the number of hops on forwarding paths established. The number
of transmissions and thus the overall energy consumption then decreases, which leads to a better
energy efficiency. However, if the contention becomes too high, retransmissions will consume too
much energy, again degrading the efficiency of Er-based forwarding.

4.6.4 Influence of Retransmissions

With an increasing number of retransmissions, the end-to-end delivery ratio is expected to increase,
too. However, as also more energy will be consumed, it is interesting how the energy efficiency is
affected. For R → ∞, we get Eri → 1 from Equation 4.14 and Equation 4.19, respectively. That is,
in this case, the energy efficiency is solely based on energy costs.

Figure 4.15(a) illustrates the packet delivery ratio if the maximum number of retransmissions is varied.
For a density of 30 nodes and a packet size of 32 bytes, we simulated a retransmission range from zero
to ten, and in addition the∞-retransmission case. Furthermore, we set the contention probability to
0.2 in order to easier distinguish between different retransmission values.

84 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10 ∞

P
ac

k
et

 d
el

iv
er

y
 r

at
io

Maximum number of retransmissions

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(a) Packet delivery ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

1 2 3 4 5 6 7 8 9 10 ∞

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Maximum number of retransmissions

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(b) Energy efficiency

Figure 4.15: Packet delivery ratio and energy efficiency (µ = 30, k = 32, ρ = 0.2)

As expected, increasing the maximum number of retransmissions considerably improves the delivery
ratio. Except for hop-based forwarding, all strategies achieve a packet delivery ratio above 0.9 if more
than three retransmissions are used. For R > 5, the delivery ratio is almost perfect and shows no
significant difference to the∞-retransmission case. In contrast, hop-based forwarding heavily suffers
from ignoring link qualities and achieves only a delivery ratio of 0.32, even if up to ten retransmissions
are used.

The changes in the energy efficiency are shown in Figure 4.15(b). If the maximum number of re-
transmissions is increased, the energy efficiency starts to decrease. Since fewer packet drops then
occur along forwarding paths, the total amount of consumed energy increases because more packets
are finally delivered, slightly reducing the energy efficiency. For R→∞, the efficiency of hop-based
forwarding drops to zero, as the energy cost grows more than the delivery ratio improves. Since the
expected number of transmissions on a link is (prri,j(1− ρ)prrj,i)

−1 if the number of retransmis-
sions is unlimited, note that even one bad link may lead to an efficiency of almost zero. Although
not obvious, Er-based forwarding suffers from the same effect. Due to its forwarding metric, using
either good or bad links makes no difference because the end-to-end delivery ratio approaches one in
any case. Thus, it is not unlikely that an incredible amount of energy will be spent on bad forwarding
links.

Another interesting effect can be observed for MT2 forwarding if no retransmissions are used at all.
As MT2 forwarding tries to minimize the expected number of transmissions that is calculated by
1−(1−prri,jprrj,i)

R+1

prri,jprrj,i
, R → 0 leads to hop-based forwarding, while R → ∞ leads to the MT strategy.

This change is clearly illustrated by the energy efficiency shown in Figure 4.15(b). Thus, for R > 1,
the efficiency increases until it has reached the efficiency of MT.

The energy efficiency increase from R = 0 to R = 1 for MT, hop*-based and PRR-based forwarding
can be explained by the high increase in the packet delivery ratio, which grows more than the energy
consumption does. However, as the energy efficiency is not taken into account explicitly, low packet
delivery ratios result in a worse efficiency. In contrast, if we consider the efficiency of MEEF and
SEEF, we see that the performance gain of both strategies is significant and independent of the maxi-

4.6. SIMULATIONS 85

mum number of retransmissions used. Thus, both strategies again find the best trade-off between high
delivery ratios and low energy costs.

4.6.5 Influence of Different Packet Sizes

In this section, we consider the influence of the packet size, which we have so far assumed to be 32
bytes. As before, we use a density of 30 nodes and set the maximum number of retransmissions to
three. To be independent of the impact of contention, ρ is set to zero.

As the packet reception model presented in Section 4.3.1 does not take different packet sizes into
account, the end-to-end packet delivery ratio is not affected in this simulation and is thus identical
to the one shown in Figure 4.11(a). Extension of the model could be part of future work. Thus, we
concentrate on the energy consumption and how it changes the energy efficiency.

Figure 4.16(a) depicts the average energy consumption if the size of the packets being forwarded is
increased up to 256 bytes. Of course, the consumption will grow for larger packets, as transmitting
and receiving consume more energy. However, the increase is proportional, since the expected number
of transmissions will not change as long as larger packets do not influence the packet reception ratio.
Thus, the relative improvement of MEEF and SEEF concerning the energy consumption remains
unaffected, which is about 40% less than for Er-based forwarding.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 32 64 96 128 160 192 224 256

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

m
J]

Packet size [bytes]

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(a) Energy consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 32 64 96 128 160 192 224 256

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Packet size [bytes]

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(b) Energy efficiency

Figure 4.16: Energy consumption and energy efficiency (µ = 30, R = 3, ρ = 0)

Because larger packets carry more data, the overhead per information unit is reduced, which is deter-
mined by acknowledgements, polling messages, and packet headers. For example, while the energy
consumption of a packet with 64 bytes is less than twice as much compared to a size of 32 bytes, the
number of delivered bytes doubles. Furthermore, since the delivery ratio remains constant, the energy
efficiency is fully determined by the changes in the energy consumption. Thus, increasing the packet
size leads to an asymptotical efficiency increase as shown in Figure 4.16(b).

86 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

4.6.6 Influence of Receiving Energy Cost

Finally, we consider the energy cost for receiving packets. As these costs are determined by the hard-
ware used, it may be interesting to see how much the different forwarding strategies are influenced. So
far, we have assumed an energy consumption of 35.84 µJ for transmitting and 12.9 µJ for receiving a
32-byte message, modeling the energy consumption of an ESB sensor node. However, using another
radio transceiver might entail other energy costs. Thus, let us consider the impact of the receiving
energy cost fraction erx/etx in more detail. We again consider a density of 30 nodes, a packet size of
32 bytes, and up to three retransmissions with no contention.

As in the previous section, the end-to-end packet delivery ratio is not affected by different cost frac-
tions and thus does not change for this simulation. Figure 4.17(a) depicts the average energy con-
sumption on a forwarding path by considering increasing energy cost fractions, i. e., by increasing erx
from zero to etx. The corresponding energy efficiency is shown in Figure 4.17(b).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

m
J]

Receiving energy cost fraction erx / etx

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(a) Energy consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Receiving energy cost fraction erx / etx

MEEF
SEEF

MT
MT2
PRR

HOP*
HOP

Er

(b) Energy efficiency

Figure 4.17: Energy consumption and energy efficiency (µ = 30, k = 32, R = 3, ρ = 0)

If erx/etx → 1, the total amount of energy grows, as each transmission causes additional energy costs
in terms of receiving. As in the last section, the relative performance over all forwarding strategies
does not change, leading to results similar to those in Figure 4.16(a). However, since the number of
delivered information units is unaffected, the increase of the energy consumption leads to a decreasing
energy efficiency, as shown in Figure 4.17(b).

Except for MEEF and SEEF, changing the fraction erx/etx does not influence the forwarding metrics
of the considered strategies. As a consequence, differences in the energy costs have no influence on
their forwarding paths. However, if multi-link forwarding is considered, lower energy costs for receiv-
ing packets favor larger forwarding sets and thus increase the packet delivery ratio without spending
much additional energy. Due to this reason, the relative performance improvement of MEEF over
SEEF is higher if erx, rather than etx, is close to zero. Thus, the smaller the energy fraction erx/etx,
the better the energy efficiency and the higher the gain of multi-link forwarding.

4.7. EXPERIMENTAL EVALUATION 87

4.7 Experimental Evaluation

In addition to the performance results obtained by simulations, we have evaluated the considered
forwarding strategies in our WSN testbed. Although the network is small in size and the number of
nodes is considerably smaller than for the simulations, the results yield important indications about
the performance in a real network. They also give a first proof-of-concept that all algorithms work on
real sensor nodes.

4.7.1 ESB Implementation

We implemented all algorithms in ANSI C by means of the ScatterWeb firmware v2.3, which can be
found under [5]. Software developed for the ESB platform mainly consists of two parts: the ESB
firmware, which is, among other things, responsible for accessing the sensors of the platform and for
the wireless communication, and an application, which contains the application logic of the sensor
network. As shown in Figure 4.18, the EEF software is implemented as a separate module that lays
between firmware and application. The main parts of the EEF module are the beacon module, the
neighbor management, and the EEF handler. The beacon module triggers the periodic transmission of
beacons in order to exchange forwarding and neighborhood information. By means of those beacons,
the neighbor management updates the state information of each neighbor discovered, like the packet
reception ratio, energy consumption, and packet delivery ratio. Using this information, the EEF han-
dler calculates the best energy-efficient forwarding path towards the network sink and determines to
which nodes packets need to be forwarded later on.

Beaconing

EEF handler

Neighbor
management

NetworkingTimersSensorsConfiguration

Application

Firmware

EEF

...

Figure 4.18: Software architecture of the ESB implementation

Because the content of beacons depends on the forwarding strategy considered, the structure of bea-
cons is slightly different if different strategies are evaluated. As an example, Figure 4.19 illustrates
the packet structure of SEEF and MEEF beacons. Besides the standard header, beacons contain the
sink identifier and a node’s forwarding metrics, i. e., the end-to-end delivery ratio Eri and the energy
consumption Eei . The energy efficiency can later be calculated accordingly. In addition, the packet re-
ception rates on the backward links between the node and its neighbors are included. If more than one

88 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

sink is deployed in the network, either forwarding paths to the best reachable sink or to all sinks may
be maintained. In the latter case, the packet structure needs to be extended such that both forwarding
metrics (Eri and Eei) are added per sink.

CRC-16

Destination Source Type Seq. Length

1 2 3 4 5 6 7 8

Er

11 12

Ee

13 14 15 16

id1

17 18

prr1 idn prrn

Sink

9 10

11+4n 12+4n 13+4n 14+4n 15+4n 16+4n

...

...

Figure 4.19: Packet structure of beacons

According to the information contained in a beacon, the neighbor management stores for each adjacent
node its id, bothEri andEei values, and the packet reception ratio regarding each link direction. Thus, a
neighbor entry needs 10 bytes, which leads to a static neighbor table of 240 bytes for our experimental
setup. In addition, the EEF module needs about 300 bytes to store statistics and to temporarily hold
variables in order to calculate the node’s energy efficient. Therefore, the EEF handler analyzes every
neighbor and calculates the node’e end-to-end packet delivery ratio and energy consumption according
to Equations 4.19 and 4.21. To speed up the computation, the size of a forwarding set is bounded to
three, according to the results of Section 4.5.5.

Besides the packet structure of beacons, Figure 4.20 shows the structure of forwarding messages.
In addition to the standard header, the sink and the identifier of the issuing node are included. In
case multi-link forwarding is employed, a second and possibly even a third forwarding node may be
specified. Next, the payload of the actual data follows, ending with the standard CRC checksum.

CRC-16

Destination Source Type Seq. Length

1 2 3 4 5 6 7 8 11 12 13 14 15 16

17

Sink

9 10

17+n 18+n

Node Fwd 2 Fwd 3

Data

16+n...

Figure 4.20: Packet structure of forwarding packets

4.7.2 Experimental Setup

The experimental evaluations are based on the testbed we used earlier in Chapter 3, which consists of
24 ESB nodes placed on a 4 × 6 grid and one additional node placed outside that acts as the sink. The
nodes’ transmission power is set to 15% in order to limit the range of communication, which results
in a multi-hop network that relies on perfect as well as on lossy links while it is still fully connected.

According to the strategy being evaluated, the sink triggers the establishment of the forwarding tree.
Once all paths are stable, each node issues 200 data packets over 100 minutes at a rate of one packet

4.7. EXPERIMENTAL EVALUATION 89

per 30 seconds. The size of the node’s reception buffer is set to 300 bytes. The data length is set to
32 bytes. Packet losses are taken into account by means of retransmissions; the maximum number is
set to three. During the entire experiments, statistical information is captured at each sensor node and
stored in the EEPROM for later processing.

In order to get first estimates about link losses, we run a “pinging process” initially: A node broadcasts
100 ping packets to its neighborhood, while all other nodes listen to the channel and log the number
of properly received packets. Using that information, each node builds up a neighbor table containing
the packet reception rates on forward and backward links, respectively. By including the forward link
packet reception ratios into beacons, adjacent nodes learn about the appropriate backward reception
ratios and can use them according to their forwarding metric.

After pinging, we start the actual evaluation of a specific forwarding strategy. Once no more data
packets are issued, the sink will gather all relevant information by polling each node in a round-robin
fashion and transmitting the results received over a serial link to a connected computer, which performs
the statistical evaluation.

While evaluation metrics like the end-to-end delivery ratio or the number of hops a forwarding packet
travels over can easily be calculated, measuring the exact power consumption of a node is non-trivial.
Determining the consumption according to the decrease in the voltage of the node’s batteries is often
imprecise since good batteries commonly provide a high voltage over a long period of time before
the voltage drops abruptly at the end of the battery lifetime. Exact results can be obtained only by
measuring the amperage over time with an amperemeter. While this may be possible for a single
sensor node, the overhead in a larger network would enormous and impractical for our WSN testbed.

We thus estimate the energy consumption by counting the number of packet transmissions and re-
ceptions, distinguishing between data and control packets. The energy consumption is then estimated
according to the energy model presented in Section 4.3.3. Although this is a rough estimate, it should
provide some indication about the magnitude of the real power consumption.

4.7.3 Evaluation Results

The experimental results are presented in Table 4.1. In each experiment, we evaluated a different for-
warding strategy and logged information concerning the number of packets received and transmitted,
the number of packets delivered to the sink, the energy consumption and efficiency, as well as the av-
erage number of traveled hops and required retransmissions. In order to slightly minimize variations
in the measurements, we repeated each experiment ten times and computed average values together
with the appropriate 0.95 t-quantiles.

The first four rows of Table 4.1 show the number of transmitted (tx) and received (rx) data, respectively
control packets averaged over all nodes in the network. Comparing MEEF and SEEF indicates that
MEEF sends slightly fewer data packets but more control packets than SEEF. Multi-link forwarding is
thus really applied and keeps the number of retransmitted data packets to a minimum, at the expense
of a higher control overhead due to polling. Since the multi-link concept may require more than one
node to receive a data packet completely, the average number of received data packets is larger than for

90 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

Strategy MEEF SEEF PRR

Tx data 1043.56 [980.51, 1106.61] 1071.93 [999.59, 1144.26] 1538.34 [1383.27, 1693.42]
Tx control 419.67 [329.80, 509.55] 386.45 [303.42, 469.47] 702.08 [591.57, 812.59]
Rx data 465.64 [390.42, 540.86] 462.67 [379.78, 545.55] 739.60 [634.94, 844.25]
Rx control 650.23 [561.85, 738.60] 553.14 [468.64, 637.65] 934.14 [815.09, 1053.19]
Packets delivered 3408.90 [3025.57, 3792.23] 3281.40 [2885.78, 3677.02] 3742.40 [3470.37, 4014.43]
Packets delivered per node 142.04 [126.07, 158.01] 136.72 [120.24, 153.21] 155.93 [144.60, 167.27]
Min. packets delivered 70.10 [59.04, 81.16] 67.20 [56.91, 77.49] 74.90 [61.55, 88.25]
Energy consumption [mJ] 3253.02 [3046.70, 3459.34] 3305.29 [3075.66, 3534.92] 4784.44 [4303.43, 5265.44]
Energy consumption per node [mJ] 135.54 [126.95, 144.14] 137.72 [128.15, 147.29] 199.35 [179.31, 219.39]
Max. energy consumption [mJ] 250.83 [219.08, 282.57] 264.18 [225.27, 303.09] 738.90 [536.72, 941.09]
Energy efficiency [bits/µJ] 0.2717 [0.2290, 0.3144] 0.2576 [0.2152, 0.3000] 0.2045 [0.1755, 0.2336]
Energy efficiency per node [bits/µJ] 0.3046 [0.2677, 0.3414] 0.2890 [0.2528, 0.3253] 0.2689 [0.2374, 0.3004]
Hop counter 2.76 [2.41, 3.11] 2.86 [2.45, 3.28] 3.38 [3.05, 3.72]
Retransmissions 0.82 [0.65, 0.98] 0.86 [0.70, 1.03] 0.73 [0.58, 0.88]

Strategy Er HOP HOP*

Tx data 2009.25 [1902.81, 2115.69] 1083.77 [978.74, 1188.80] 1192.59 [1117.01, 1268.16]
Tx control 907.12 [748.70, 1065.54] 172.79 [147.87, 197.71] 279.86 [248.38, 311.34]
Rx data 1001.66 [885.01, 1118.31] 269.23 [207.47, 330.99] 404.77 [350.32, 459.22]
Rx control 1228.60 [1067.96, 1389.24] 308.65 [259.52, 357.79] 444.92 [379.19, 510.64]
Packets delivered 3897.60 [3608.22, 4186.98] 2278.00 [1704.46, 2851.54] 2744.80 [2261.35, 3228.25]
Packets delivered per node 162.40 [150.34, 174.46] 94.92 [71.02, 118.81] 114.37 [94.22, 134.51]
Min. packets delivered 74.00 [62.24, 85.76] 6.20 [2.68, 9.72] 6.00 [0.13, 11.87]
Energy consumption [mJ] 6251.51 [5913.60, 6589.41] 3268.69 [2957.19, 3580.20] 3617.63 [3386.19, 3849.07]
Energy consumption per node [mJ] 260.48 [246.40, 274.56] 136.20 [123.22, 149.17] 150.73 [141.09, 160.38]
Max. energy consumption [mJ] 753.54 [656.34, 850.73] 384.23 [299.03, 469.42] 471.06 [294.17, 647.95]
Energy efficiency [bits/µJ] 0.1606 [0.1444, 0.1768] 0.1839 [0.1280, 0.2397] 0.1959 [0.1576, 0.2342]
Energy efficiency per node [bits/µJ] 0.2281 [0.2066, 0.2496] 0.2277 [0.1837, 0.2716] 0.2395 [0.1999, 0.2791]
Hop counter 3.50 [3.29, 3.72] 1.69 [1.63, 1.74] 2.10 [2.00, 2.20]
Retransmissions 0.87 [0.65, 1.08] 1.90 [1.79, 2.01] 1.49 [1.40, 1.58]

Strategy MT MT2

Tx data 1522.13 [1391.22, 1653.04] 1009.62 [927.89, 1091.35]
Tx control 693.39 [643.54, 743.24] 221.16 [186.21, 256.11]
Rx data 745.88 [690.15, 801.61] 276.20 [237.22, 315.18]
Rx control 918.09 [881.35, 954.83] 366.74 [318.99, 414.49]
Packets delivered 3715.90 [3456.43, 3975.37] 2598.20 [2111.85, 3084.55]
Packets delivered per node 154.83 [144.02, 165.64] 108.26 [87.99, 128.52]
Min. packets delivered 69.50 [56.49, 82.51] 11.50 [5.57, 17.43]
Energy consumption [mJ] 4732.21 [4341.23, 5123.18] 3068.17 [2821.38, 3314.95]
Energy consumption per node [mJ] 197.18 [180.88, 213.47] 127.84 [117.56, 138.12]
Max. energy consumption [mJ] 692.15 [552.22, 832.09] 316.84 [231.18, 402.49]
Energy efficiency [bits/µJ] 0.2054 [0.1737, 0.2371] 0.2212 [0.1683, 0.2741]
Energy efficiency per node [bits/µJ] 0.2672 [0.2350, 0.2994] 0.2520 [0.2109, 0.2931]
Hop counter 3.32 [3.08, 3.57] 1.99 [1.83, 2.15]
Retransmissions 0.70 [0.60, 0.81] 1.40 [1.30, 1.51]

Table 4.1: Results of the experimental evaluation (EEF)

4.7. EXPERIMENTAL EVALUATION 91

SEEF. The same applies to the number of received control packets. However, the additional overhead
is compensated by fewer retransmissions. As long as data packets consume more energy than do
control packets, multi-link forwarding is more efficient. An additional advantage is that the number
of delivered packets increases compared to SEEF5. As Table 4.1 illustrates, the delivery ratio of the
worst connected node in the network is also slightly higher than the one achieved by SEEF. Thus,
due to more delivered packets and a lower total energy consumption, MEEF performs better in terms
of the network energy efficiency and the energy efficiency per node. The efficiency of SEEF is still
significantly better than that achieved by other single-link strategies. Finally, the fact that multi-link
forwarding is able to send packets faster towards the sink is shown in the last two rows of Table 4.1.
As “backup” nodes are normally closer to the sink than the first node in a forwarder set, the average
number of hops a packet has to take is slightly smaller. At the same time, additional forwarding nodes
reduce the number of retransmissions, which in turn saves energy.

The performance of PRR-based forwarding is quite similar to that of MT and MT2. This confirms
what we saw already in Section 4.6. However, MT2 performs slightly worse because its forwarding
metric limits the maximum link cost per node to R+ 1, according to the upper number of retransmis-
sions. Bad links are thus penalized less than in MT forwarding, which is shown by the low number of
delivered data packets, smaller hop counters, and more packet retransmissions. Er-based forwarding
again achieves the best packet delivery ratio, but at the expense of long forwarding paths and numer-
ous packet transmissions. The energy consumption is thus very high in practice, almost twice the
consumption of MEEF, which downgrades its efficiency considerably.

Interestingly, hop-based forwarding performs better than expected and simulated. This might be due
to the fact that an initial pinging was not performed in the simulations; instead, it was assumed that all
nodes knew about the exact packet reception ratio to adjacent nodes a priori. However, if the reception
ratio is estimated according to the number of received ping packets, deviations are likely. It may
therefore happen that sometimes not a single ping packet is received, particularly over bad links. In
hop-based forwarding, this is even beneficial, as such neighbors are implicitly “blocked”. In addition,
the low node density and the small network size may reduce the number of available links and thus
the number of forwarding alternatives. Nevertheless, the experimental results clearly show that hop-
based forwarding performs worst in terms of the number of delivered packets. Due to its shortest
path tree, it has the smallest hop counter per delivered packet, but causes the most retransmissions.
That confirms our simulation results, as well as the fact that long-distance links often suffer from
heavy packet losses. Hop*-based forwarding (with a blacklisting threshold of 0.1) slightly reduces
this effect, which is shown by a larger hop counter and fewer retransmissions. As a consequence, the
number of delivered packets and also the energy efficiency increase.

In conclusion, the experimental evaluation shows results quite similar to those we obtained in our sim-
ulations, although our testbed consisted of only 25 nodes. The results give us a first proof-of-concept
that our energy-efficient forwarding is a promising approach to finding a good trade-off between the
number of delivered packets and the required energy. Furthermore, the experiments confirm that using
the concept of multi-link forwarding in conjunction with polling is a practical and at the same time
efficient solution that could also be applied in other contexts.

5Note that each node has issued 200 data packet, i. e., the sink might receive up to 4,000 packets.

92 CHAPTER 4. ENERGY-EFFICIENT FORWARDING

4.8 Conclusions

In this chapter, we have described different forwarding strategies for many-to-one communication in
sensor networks where several sensor nodes report data to one predefined sink. Such data can either
be periodically queried by the sink or generated according to a sensed stimulus in a node’s vicinity. In
both cases, data packets need to be routed through the network, as direct communication with the sink
is often not possible. However, as our results have shown, there is a trade-off between maximizing the
end-to-end delivery ratio and the energy consumption.

We have proposed two forwarding strategies called SEEF and MEEF that seek to maximize the energy
efficiency of forwarding paths, which we defined by the ratio of delivered data per energy unit. While
the performance of SEEF always gives us a lower bound, MEEF achieves further improvements by
multi-link forwarding. Instead of considering just a single forwarder, it exploits the broadcast charac-
teristics of the wireless channel more efficiently and may use several links in order to forward a packet.
Despite a higher overhead caused by additional control packets, retransmissions of data packets can
often be avoided, which in turn reduces the overall energy consumption.

We have evaluated the energy efficiency of SEEF and MEEF, both by simulation and by implemen-
tation and testing; both strategies show the best performance among a variety of forwarding schemes
proposed in the literature. Furthermore, as the simulation as well as the experimental results have
shown, in the majority of cases MEEF also improves the end-to-end delivery ratio, increasing the
energy efficiency along a forwarding path.

Extending SEEF and MEEF to the multi-sink case can easily be achieved by calculating and propa-
gating the energy efficiency of a node for each sink separatively. In case data packets may later be
forwarded to an arbitrary sink in the network, the best one in terms of energy efficiency is selected.
Otherwise, data packets are sent to the sink that requested them. Thus, the number of sinks does only
influence the computation time and the memory usage of the EEF algorithm.

The main contributions of this chapter can be summarized as follows:

• the analysis to what degree hop-based and PRR-based forwarding can be improved by black-
listing badly connected neighbors,

• the proposal of two new forwarding strategies that aim at maximizing energy efficiency called
multi-link and single-link energy-efficient forwarding,

• the general concept of multi-link forwarding that achieves a better energy efficiency than single-
link schemes,

• mathematical derivations for calculating the average end-to-end packet delivery ratio and energy
consumption of forwarding; both are used to compute the energy efficiency concerning the case
of infinite as well as finite retransmissions;

• simulations that present the influence of different network characteristics on the forwarding
performance, like the node density, network contention, and the number of retransmissions,

4.8. CONCLUSIONS 93

• real-world experiments using a WSN testbed consisting of 25 ESB nodes that provide a proof-
of-concept and indicate how forwarding schemes work in practice.

So far, the residual energy of forwarding nodes has not been taken into account. A problem that
arises from using MEEF or SEEF is that forwarding paths will not change as long as the end-to-end
packet delivery ratio as well as the energy consumption are not affected. Thus, nodes along the most
energy-efficient paths are used permanently until they run out of energy. This could be problematic if
such nodes are required for special application tasks. In the worst case, network partitions might even
occur.

In the following, we thus extend MEEF and SEEF by a network lifetime component that takes into
account the residual energy along a forwarding path. The energy consumption throughout the network
should then be better balanced, increasing the lifetime of frequently used nodes. However, energy
efficiency must not be neglected since solely maximizing the lifetime of the entire network might lead
to worse performance results, as illustrated in the following chapter.

CHAPTER5
Lifetime-Efficient Forwarding

“Being abstract is something profoundly different
from being vague. The purpose of abstraction is not
to be vague, but to create a new semantic level in
which one can be absolutely precise.”

– E. Dijkstra –

5.1 Introduction

Commonly, routing algorithms that aim at minimizing energy costs to extend the lifetime of a network
employ shortest path algorithms, with the energy required for the transmission between two adjacent
nodes used as the edge cost. However, as the results of the last chapter have shown, minimizing
the energy costs might negatively affect the data delivery ratio. Thus, forward algorithms that cause
low energy costs but high loss rates are often not efficient. In contrast, focusing on energy efficiency
turned out to be a very promising forwarding scheme. It trades off the end-to-end delivery ratio of
nodes reporting data to a sink node and the energy consumption in the network very well. In this way,
it considerably outperforms strategies based solely on either the energy consumption or on delivery
ratios.

However, even if energy-efficient forwarding is employed, the overall lifetime of the network need not
be maximized. Once forwarding paths have been determined, they will remain stable as long as their
costs do not change. Thus, nodes along optimal paths are used quite often and consume more energy
than others if the traffic load is not balanced within the network. As such nodes quickly run out of
energy, the likelihood of broken paths or network partitions increases. This problem is addressed by
maximum lifetime algorithms designed to prevent the early “burn out” of such paths, focusing either
on the lifetime of single nodes or of the entire network.

As the definition of lifetime is not always the same, it is quite difficult to compare different approaches.
Lifetime is often defined as the time until the first node in the network runs out of energy [23, 28],
the time until the entire network energy has been consumed, or as the time at which the first network

96 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

partition occurs. Definitions referring to the time until at least a fraction of α nodes are alive or at least
an α coverage is maintained [273] can also be found. However, most work uses the time until the first
node “dies”, as this definition can easily be implemented by linear programs tackling the maximum
lifetime problem.

Compared to existing work focusing on the maximum lifetime problem, we emphasize the existence
of packet losses and propose forwarding strategies that avoid lossy links, which might cause a high
energy consumption due to retransmissions. Most of the work in the literature assumes that two
nodes will always be able to communicate with each other as long as their distance is lower than the
maximum radio range. However, real-world measurements have shown that this is not always true
because many regions within the communication area show high variations. Asymmetric links often
occur, which might have a deep impact on the delivery of acknowledgements and thus on the network
lifetime if much energy is consumed along lossy forwarding paths.

Furthermore, relying on maximizing the lifetime need not lead to good delivery ratios or a low energy
consumption if neither metric is not taken explicitly into account. For example, in terms of the total
energy consumption within the network, it may sometimes even be better to use forwarding paths with
high loss rates. In this case, packets sent along a forwarding path may be dropped early such that no
further energy will be consumed. Forwarding data over such paths might thus be “good” if only the
energy consumption or the network lifetime is considered. But concerning the packet delivery ratio it
is contradictory and senseless. Thus, we must keep this trade-off in mind.

The remainder of this chapter is organized as follows: In the next section, we will outline related
work and present existing energy-aware algorithms. Section 5.3 then describes the maximum lifetime
problem based on a linear programming formulation and provides an option for solving the prob-
lem heuristically. Based on the energy-efficient forwarding strategies we considered in Chapter 4,
Section 5.4 presents an extension of MEEF and SEEF that takes into account the residual energy
(and thus the node’s lifetime), which we will call lifetime-efficient forwarding. By means of simula-
tions, Section 5.6 analyzes the performance of lifetime-efficient forwarding with regard to different
metrics and compares it to other approaches. Results from real-world experiments are presented in
Section 5.7. Finally, Section 5.8 concludes the chapter and summarizes its main contributions.

5.2 Related Work

Addressing energy consumption in wireless sensor networks has been an active research field [176,
196]. There exists much work on power control algorithms, whose goal is to find an optimal trans-
mission power for each node without the loss of connectivity [82, 118, 157, 197, 204, 246]. While
maintaining connectivity, the resulting topology may aim at, e. g., improving the network through-
put [82, 118], bounding the number of 1-hop neighbors [197], or minimizing the overall power con-
sumption required for routing [157, 204, 246]. Lloyd et al. [157] study the algorithmic aspects of
minimizing the total energy consumption, [204] and [246] present topology control algorithms that
focus on the distributed nature of sensor networks. Further approaches are described by Li in [154],
which also provides a fundamental survey on topology control.

5.2. RELATED WORK 97

On the other hand, several approaches exist that are not designed for topology control but for power-
aware or energy-aware routing, aiming at either minimum energy routing or maximum network life-
time routing. The former approach tries to minimize the total energy required in order for a packet
to reach its destination. However, nodes along the optimal path are used very frequently and soon
run out of energy, likely causing network partitions although many nodes might still have enough en-
ergy [218]. Furthermore, minimum energy routing causes an imbalance of power consumption. This
issue is addressed by algorithms that are designed to maximize the network lifetime.

While classic routing protocols are based on minimum hop routing [124, 126, 179, 185, 190], power-
aware algorithms are rather based on power-based metrics that are used in combination with a shortest
path algorithm [225, 229, 238, 153]. Singh et al. propose several metrics for power-aware routing
in [225], including cost per packet and node, time until the network gets partitioned, consumed energy
per packet, and variance in residual energy. In [229], a localized algorithm is proposed by Stojme-
novic and Lin. Based on a node’s lifetime and distance-based power metrics, the algorithm aims to
extend its worst-case lifetime. In [238], Tho presents a conditional max-min battery capacity routing
algorithm that combines minimum total energy routing and max-min residual energy routing: if the
minimum residual energy along a path is higher than a given threshold, minimum total energy routing
will be performed. Otherwise, the forwarding path is selected such that the minimum residual energy
of a node on the path is maximized. In [153], the authors study the problem of the maximum net-
work lifetime, assuming an unknown message flow. They propose an approximation algorithm called
max−min zPmin that tries to trade off between minimum transmission energy and max-min residual
energy routing. First, the algorithm determines the path with the lowest transmission costs, with Pmin
being its required transmission energy and r being the node’s minimum residual energy on this path.
Then, all edges whose residual energy is less than or equal to r are removed from the graph. This
procedure is repeated until the total transmission energy of the minimum transmission energy path
exceeds z times Pmin, where z ≥ 1. Li et al. have shown that their approximation performs well and
is close to the optimal solution they obtained by linear programming. Other power-aware algorithms
can be found, e. g., in [76, 100, 175, 177, 194]

The works in [52, 129, 208, 263] also formulate the problem of the maximum network lifetime by us-
ing linear programming. Chang and Tassiulas [52] present a heuristic algorithm to solve the linear pro-
gram approximately. They consider two different models for the information-generating process: The
first assumes constant rates and the second assumes an arbitrary generating process. An approxima-
tion to the problem based on the Garg-Konemann [94] algorithm achieves a (1−3ε)-approximation to
the optimal network lifetime for any ε > 0 [53]. While the heuristic algorithm of Kalpakis et al. [129]
improves this approximation to (1 − ε), their algorithm does not scale very well with the network
size. Achieving the same approximation, Xue et al. [263] present an algorithm with a better runtime:
they consider the possibility of data aggregation, and in doing so, improve the runtime of the fastest
existing algorithm by a factor of K. K denotes the number of commodities which represents the data
generated by a sensor node and delivered to a destination. Sankar and Liu [208] finally formulate the
problem as a maximum flow problem and adapt distributed flow algorithms [17, 18].

In contrast to existing work, which mainly optimizes the network’s lifetime only, we rather emphasize
on energy efficiency and lifetime at the same time. Our goal is to maximize both metrics simultane-
ously, i. e., each node selects a forwarding path that maximizes the product of the expected end-to-end

98 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

energy efficiency and the expected minimum residual energy on that path. In so doing, it is possi-
ble to find a good trade-off between energy consumption, packet delivery performance, and network
lifetime.

5.3 The Maximum Lifetime Problem

In order to compare the network lifetime of different forwarding strategies with the maximum possible
network lifetime, we consider two linear programs (LP). While the first one tackles the maximum
lifetime problem if the number of packet retransmissions is finite, the second one assumes an infinite
number of retransmissions. We use the following definitions: Let G(N,A) be a directed graph, with
N being the set of nodes andA being the set of edges. If there exists a directed link between two nodes
i and j, then (i, j) ∈ A, with prrij denoting the packet reception ratio on that link. Regarding this
graph, let Ni be the set of neighbors of i and s be the sink node. Concerning the energy consumption,
erx, ehrx, and earx specify the amount of energy units required to receive an entire packet, only the
packet header, or an acknowledgement. The energy consumption for transmitting a data packet or
an acknowledgement is specified as etx and eatx, respectively. Furthermore, let Ei denote the initial
energy of a node i. Then, T refers to the maximum lifetime of the entire network, defined as the time
until the first node runs out of energy.

5.3.1 Finite Retransmissions

If we assume that all nodes are connected and that each node sends a data packet to the sink every
lifetime unit (round), we can formulate the maximum lifetime problem as a linear program, with tij
being the number of packets sent by node i to node j over its entire lifetime. Solving the LP will then
yield optimal values t∗ij that maximize T .

Due to a finite number of retransmissions, it is possible that not all packets will reach the network
sink because packet losses might occur during transmissions. If we denote the maximum number
of retransmissions as R and assume that each data packet will be resent until an acknowledgement
is received, we can calculate delivery probabilities ρij by 1 − (1 − prrij)R+1 and ρaij by 1 − (1 −
prrijprrji)R+1. While ρij refers to the probability that a packet sent over a link (i, j) by node iwill be
correctly received by node j, ρaij denotes the probability that the packet will, in addition, be correctly
acknowledged. Then, the expected number of transmissions is

τij =

R prrij = 0 ∨ prrji = 0,
ρa

ij

prrijprrji
otherwise.

(5.1)

The corresponding number of expected acknowledgements sent by node j is τaij = prrijτij .

5.3. THE MAXIMUM LIFETIME PROBLEM 99

Using these definitions, the LP is of the following form:

LP 1: T → max (5.2)

s. t.∑
j∈Ni

tji(τjierx + τajie
a
tx) +

∑
j∈Ni

∑
k∈Nj ,k 6=i

tjkτjke
h
rx

+
∑
j∈Ni

tij(τijetx + τaije
a
rx) ≤ Ei, ∀i ∈ N\{s} (5.3)

∑
j∈Ni

tij =
∑
j∈Ni

tjiρji + T, ∀i ∈ N\{s} (5.4)

ui − uj ≥ 1 + (xij − 1)|N |, ∀i ∈ N, j ∈ Ni (5.5)

tij ≤Mxij ∀i ∈ N, j ∈ Ni (5.6)

with xij being a binary variable, uij an integer variable, and M a sufficiently big number.

Equation 5.3 covers the energy constraint and takes into account the energy consumption of the trans-
mission and reception of data packets, respectively acknowledgements. The sink node is assumed to
have infinite energy. Equation 5.4 refers to the forwarding constraint, which specifies that for each
node the number of outgoing packets is equal to the number of incoming packets plus the number of
originated packets at this node.

In order to ensure that all packets are sent towards the sink, routing cycles need to be prohibited,
which is considered by Equation 5.5 and 5.6 as follows: Each node i on an arbitrary forwarding path
is assigned a number ui such that for each link i→ j the constraint

ui − uj ≥ 1 (5.7)

is satisfied. Nodes that are not connected by a forwarding link, i. e., a link with tij > 0, are not
restricted. Since there are at most N nodes in the graph, it is sufficient to allow

ui − uj ≥ 1−N (5.8)

for such links. Both constraints are combined in Equation 5.5, where xij is defined as

xij =

1 tij > 0,

0 otherwise.
(5.9)

By using a sufficiently large number M , this definition can be mapped to the linear constraint shown
in Equation 5.6.

5.3.2 Infinite Retransmissions

If the number of retransmissions is infinite, the problem of routing cycles can be taken into account
more easily by exploiting the fact that as long as prrij is greater than zero, any packet sent by node i
will eventually reach node j, even if it may take a long time. Thus, it is sufficient to require that each

100 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

data packet issued in the network be received by the sink. The constraints in Equations 5.5 and 5.6
are no longer needed and can be simplified as follows:

LP 2: T → max (5.10)

s. t.∑
j∈Ni

tji(τjierx + τajie
a
tx) +

∑
j∈Ni

∑
k∈Nj ,k 6=i

tjkτjke
h
rx

+
∑
j∈Ni

tij(τijetx + τaije
a
rx) ≤ Ei, ∀i ∈ N\{s} (5.11)

∑
j∈Ni

tij =
∑
j∈Ni

tji + T, ∀i ∈ N\{s} (5.12)

ts,s = T (|N | − 1), (5.13)

with

τij =

∞ prrij = 0 ∨ prrji = 0,
1

prrijprrji
otherwise,

(5.14)

and τaij = prrijτij .

Comparing LP 1 with LP 2 reveals that both differ significantly in their complexity. While LP 1
requires binary variables in Equations 5.5 and 5.6 to prohibit routing cycles, LP 2 needs only Equa-
tion 5.13 instead. But as long as tij is defined as an integer variable, both LPs will still have a high
computational complexity because special algorithms are required to solve the integer constraints.
Neglecting these constraints would lead to a heuristic solution. While LP 1 would then become a
mixed-integer program (MIP) due to still required binary variables, LP 2 could be solved by standard
linear programming using a common LP solver. Its complexity is orders of magnitude lower such that
even larger networks can be solved in an acceptable time.

In order to find an approximation of LP 1, even for high node densities, LP 2 can be used as a starting
point. Finding the optimal lifetime T ∗ of the network can then be performed by means of simulations.
t∗ij specifies for each link (i, j) the maximum number of packets which may be sent over that link. As
the number of packets pertains to the entire lifetime, we use the following heuristic to determine when
and how often a node i will forward packets over a link (i, j):

At first, we compute the fraction t′ij , with which a neighbor j is used as a forwarder by a node i.
According to the LP solution, t′ij can be calculated as

t′ij =
t∗ij∑

k∈Ni
t∗ik
. (5.15)

Then, all neighbors j are ordered in a list with αi(j) being the index of j in the list and α̂i(k) being
the node at index k. Since

∑
j∈Ni

t′ij = 1, the forwarding decision can be made randomly for each

5.4. LIFETIME-EFFICIENT FORWARDING 101

packet that needs to be forwarded by node i. The decision is based on evaluating

αi(j)−1∑
k=1

t′i,α̂i(k) < X ≤
αi(j)∑
k=1

t′i,α̂i(k), (5.16)

where X is a uniformly distributed random variable. The neighbor that fulfills constraint 5.16 is then
selected as the forwarder. Over the lifetime of the network, the average load on each link (i, j) should
thus be equal to t∗ij

1. In so doing, the solution obtained from the LP solver can be used to create the
forwarding graph of the network2.

Note that LP 1, as well as LP 2, requires global knowledge in order to maximize the network life-
time. Although distributed algorithms can be found, they are quite complex and require a significant
overhead in order to exchange the required information among nodes. As we are more interested in
the results obtained by linear programming, we have not implemented such distributed solutions and
compute the maximum network lifetime in a centralized fashion. This may provide an interesting
comparison with the performance of other approaches we consider in the following.

5.4 Lifetime-Efficient Forwarding

As stated at the end of Chapter 4, the energy-efficient forwarding strategies proposed may have the
disadvantage that some paths are used more frequently than others; i. e., the majority of nodes along
these paths will consume more energy, which will decrease their lifetime significantly. Thus, max-
imizing the network lifetime may be an orthogonal problem that needs to be taken into account in
addition to the energy efficiency of the network. However, the optimal solution will depend on the
definition of lifetime and on the performance aims which are supposed to be optimized. For exam-
ple, if the network lifetime is defined as the time that must elapse before all nodes in the network are
“dead”, the lifetime is maximized by a minimum energy consumption strategy, without considering
the end-to-end packet delivery ratio or the energy efficiency of forwarding paths. On the other hand,
if the lifetime is defined as that of the first node to run out of energy, a forwarding strategy aiming to
maximize the minimum residual energy on a path would be optimal. But as stated above, limiting the
focus to the network lifetime may lead to worse packet delivery ratios.

Hence, the idea is to combine energy-efficient forwarding with maximum lifetime forwarding in order
to find a good trade-off between both performance aims. With Eeffi being the best energy efficiency
of the forwarding path of a node i, each node tries to optimize

Eeffi · Eli → max . (5.17)

Eli denotes the expected lifetime of the entire forwarding path towards the sink, which is influenced
by the minimum residual energy along that path. Using the expected lifetime rather than the minimum

1Note that concerning the lifetime as well as the nodes’ energy consumption it makes no difference when a packet is
sent over a link, as long as not more than t∗ij packets are sent and the packet reception ratios do not change over time.

2As the forwarding paths change over time due to the random process, a forwarding graph is established rather than a
forwarding tree

102 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

lifetime accounts for the lifetime of forwarding paths much better. As the worst node (regarding its
residual energy) along the path consumes energy for forwarding only if packets do not get lost enroute
to it, the expected lifetime is more opportunistic and better estimates the real path cost. According to
SEEF and MEEF as presented in Chapter 4, we call these strategies single-link and multi-link lifetime-
efficient forwarding (SLEF and MLEF), respectively.

5.4.1 Analysis of the Finite Retransmissions Case

In order to calculate the expected lifetime of a forwarding path, we consider the case of finite retrans-
missions, for single-link as well as for multi-link lifetime-efficient forwarding3. The mathematical
derivations are quite similar to the ones presented in Section 4.5 of Chapter 4 and rely on the same
probability trees.

Single-Link Lifetime-Efficient Forwarding

Starting with the less complex case of single-link forwarding, Figure 5.1 shows the forwarding prob-
ability tree of a node i concerning the calculation of its expected path lifetime. As long as a packet is
not successfully received by a considered forwarder j (F̄), the path lifetime will be determined by the
lifetimes of node i and j only, denoted as L = min{li, lj}. The node lifetimes li and lj are defined as
the residual energy of node i and j, respectively. Note that even if the transmission is not successful,
it can be assumed that the receiver will spend energy trying to decode the packet. Thus, its residual
energy must be taken into account. On the other hand, if the packet has been received by j correctly
(F), the path lifetime will change to min{L,Elj}, as j will try to forward the packet in any case. Its
expected lifetime Elj thus influences the lifetime of node i, regardless of whether acknowledgements
get lost and packets need to be retransmitted.

11

: : :: : :

FF

FF

AA

AA

FF

FF

FF

FF

prri;jprri;j

1¡ prri;j1¡ prri;j prri;jprri;j

prri;jprri;j

1¡ prri;j1¡ prri;j

1¡ prri;j1¡ prri;j

1¡ prrj;i1¡ prrj;i

prrj;iprrj;i

AA

AA

AA

AA1¡ prrj;i1¡ prrj;i

prrj;iprrj;i

22 : : :: : :

1¡ prrj;i1¡ prrj;i

prrj;iprrj;i
EljE
l
j EljE

l
j

EljE
l
j

LL

Figure 5.1: Probability tree for the lifetime of SLEF

3The infinite retransmissions case can afterwards be obtained from R→∞.

5.4. LIFETIME-EFFICIENT FORWARDING 103

Thus, Eli is calculated as follows: Let Êkl be a measure of the expected minimum residual node’s
energy on a forwarding path towards the sink if up to k − 1 retransmissions are used. Then, ÊR+1

l is
defined iteratively as

ÊR+1
l = prrij min{L,Elj}+ (1− prrij)ÊRl
ÊRl = prrij min{L,Elj}+ (1− prrij)ÊR−1

l

... (5.18)

Ê1 = prrij min{L,Elj}+ (1− prrij)L.

With Eli being equal to ÊR+1
l , the expected lifetime of node i is then

Eli =
(
1− (1− prrij)R+1

)
min{L,Elj}+ (1− prrij)R+1L (5.19)

for the single-link case. In other words, Eli refers to the expectation of the minimum residual energy
of nodes that are affected if i tries to forward a packet to a neighbor j, which in turn may forward it
towards the sink.

Multi-Link Lifetime-Efficient Forwarding

The calculation for the multi-link case is a little bit more complicated because we must take into
account that packets may be forwarded by more than one node at the same time. Figure 5.2 illustrates
the probability tree of MLEF.

11

: : :: : :

AA

AA

AA

AA

AA

AA

22 : : :: : :

F1F1

FnFn

F1F1

prri;®̂(1)prri;®̂(1)

prri;®̂(n)prri;®̂(n)

1¡ prri;®̂(n)1¡ prri;®̂(n)

1¡ prri;®̂(1)1¡ prri;®̂(1)

FnFn

FnFn

FnFn

1 ¡ prr®̂(1);i1 ¡ prr®̂(1);i

prr®̂(n);iprr®̂(n);i

1¡ prri;®̂(n)1¡ prri;®̂(n)

prri;®̂(n)prri;®̂(n)

prr®̂(1);iprr®̂(1);i
1¡ prr®̂(n);i1¡ prr®̂(n);i

prr®̂(n);iprr®̂(n);i

1¡ prr®̂(n);i1¡ prr®̂(n);i

F1F1

F1F1

F1F1

F1F1
F1F1

F1F1

F1F1

F1F1
prri;®̂(1)prri;®̂(1)

prri;®̂(1)prri;®̂(1)

1¡ prri;®̂(1)1¡ prri;®̂(1)

prri;®̂(1)prri;®̂(1)

1¡ prri;®̂(1)1¡ prri;®̂(1)

1¡ prri;®̂(1)1¡ prri;®̂(1)

prri;®̂(1)prri;®̂(1)

1¡ prri;®̂(1)1¡ prri;®̂(1)

El®̂(1)El®̂(1)

El®̂(n)El®̂(n)

El®̂(n)El®̂(n)

LL

Figure 5.2: Probability tree for the lifetime of MLEF

104 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

If a packet cannot be forwarded successfully (F1 ∧ . . . ∧ Fn), the expected lifetime is equal to
min{li, lα̂(1) . . . lα̂(n)}. However, once one or more nodes start forwarding the packet, their appro-
priate path lifetimes Elj must be considered4. Hence, for L = minj∈Ωi{li, lj}, the expected lifetime
Eli is defined iteratively as ÊR+1

l as follows:

ÊR+1
l = prri,α̂(1)

[
prrα̂(1),i min{L,Elα̂(1)}

+(1− prrα̂(1),i)
[
prri,α̂(2)

[
prrα̂(2),i min{L,Elα̂(1), Ê

l
α̂(2)}

+(1− prrα̂(2),i) [. . .]
]

+(1− prri,α̂(2)) [. . .]
]]

+(1− prri,α̂(1))
[
prri,α̂(2)

[
prrα̂(2),i min{L,Elα̂(2)}

+(1− prrα̂(2),i)
[
. . .+ (1− prri,α̂(n)) min{L,Elα̂(2), Ê

R
l }
]]

+(1− prri,α̂(2))
[
. . .+ (1− prri,α̂(n)) min{L, ÊRl }

]]
... (5.20)

Ê1
l = prri,α̂(1)

[
prrα̂(1),i min{L,Elα̂(1)}

+(1− prrα̂(1),i)
[
prri,α̂(2)

[
prrα̂(2),i min{L,Elα̂(1), Ê

l
α̂(2)}

+(1− prrα̂(2),i) [. . .]
]

+(1− prri,α̂(2)) [. . .]
]]

+(1− prri,α̂(1))
[
prri,α̂(2)

[
prrα̂(2),i min{L,Elα̂(2)}

+(1− prrα̂(2),i)
[
. . .+ (1− prri,α̂(n)) min{L,Elα̂(2)}

]]
+(1− prri,α̂(2))

[
. . .+ (1− prri,α̂(n))L

]]
.

Unfortunately, ÊR+1
l cannot be expressed in a closed form for n > 1 due to the min-operation. Thus,

an exact computation can only be achieved by applying the iterative calculation directly.

Otherwise, the following approximations could be used: A pessimistic approximation would be to
assume that packets will be forwarded by all nodes contained in Ωi. In this case, Eli can be calculated
from min{L,Elα̂(1) . . . E

l
α̂(n)}. On the other hand, assuming prrj,i = 1,∀j ∈ Ωi would lead to an

optimistic approximation. The equations in 5.20 can then be simplified to

ÊR+1
l =

∑
j∈Ωi

ai,α(j)−1prri,j min{L,Elj}+ ai,nÊ
R
l

... (5.21)

Ê1 =
∑
j∈Ωi

ai,α(j)−1prri,j min{L,Elj}+ ai,nL,

4Note that in case of lost acknowledgements, multiple forwarders may be polled although a packet has already been
forwarded.

5.5. EVALUATING THE FORWARDING STRATEGIES 105

with ai,k =
∏
j∈Ωi,α(j)≤k(1− prri,j). Eli is then expressed as

Eli =

(∑
j∈Ωi

ai,α(j)−1prrij min{L,Elj}
)(

1− aR+1
i,n

)
1− ai,n

+ aR+1
i,n L. (5.22)

However, for the simulations, as well as for the experimental evaluation, we use the exact calculations
shown in 5.20. To limit the computational complexity, we set the maximum number of potential
forwarders, i. e., the size of the forwarder set Ω, and the maximum number of retransmissions to three.

5.5 Evaluating the Forwarding Strategies

First, we will compare SLEF and MLEF with the non-lifetime-efficient forwarding strategies pre-
sented in Chapter 4 such as SEEF and MEEF, MT and MT2 forwarding, PRR-based forwarding,
Er-based forwarding, and hop-based forwarding. Afterwards, we will investigate the impact of a
lifetime component which incorporates the residual energy levels of forwarding nodes. While SLEF
and MLEF represent the lifetime extensions of SEEF and MEEF, the other strategies are extended as
follows. Let L = min(j,∗)∈φ{lj} be the minimum residual energy on a forwarding path φ consisting
of the set of forwarding links towards the sink.

• MT-L Forwarding: In contrast to MT forwarding, which minimizes the number of expected
transmissions on a forwarding path, MT-L forwarding additionally downgrades paths with low-
energy nodes by using the extended forwarding metric 1

L

∑
(i,j)∈φ

1
prri,jprrj,i

→ min.

• PRR-L-based Forwarding: Similarly, PRR-based forwarding is extended such that each node i
selects the neighbor j that maximizes |φ|

prri,jprrj,i
· L as its forwarder.

• Hop-L-based Forwarding: Based on a neighbors’ hop counter denoted as |φ|, the node which
minimizes |φ|+1

L becomes the forwarder. As in hop-based forwarding, the node with the best
reception rate will be selected in the case of equal values.

• Er-L-based Forwarding: WithEri =
∏

(j,k)∈φ 1−(1−prrj,k)R+1 being the end-to-end packet
delivery ratio of a node i, the neighbor that maximizes Eri · L becomes the forwarder of i. In
case of equal values, the node with the smallest hop counter will be selected.

• LP Relaxation: In addition, we compare all forwarding strategies with the optimal lifetime
solution obtained by linear programming. Due to the computational complexity, we only use
an LP relaxation: The exact linear program for the finite retransmissions case is approximated
by LP 2 as described in Section 5.3.2. That is, although nodes use a finite number of retrans-
missions during the data forwarding process, the forwarding paths are computed based on the
assumption of an infinite number of retransmissions5; the LP 2 solution can be considered to be
a relaxation of the optimal LP 1 solution.

5Note that even if infinite retransmissions are allowed, the expected number of retransmissions is finite and much lower.

106 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

5.6 Simulations

Similar to the simulations carried out in Chapter 4, let us consider a stationary network without any
mobility where nodes are uniformly distributed over a 200 × 200 m2 field. The nodes’ maximum
communication range is set to 30 m according to the packet reception model presented in Section 4.3
of Chapter 4, which is used to determine the probability of packet loss between two adjacent nodes
in the network. The number of retransmissions is set to three. Again, we assume that the loss rate
does not change with time and that each node will know the estimated link qualities by overhearing
the wireless channel and counting packet losses, e. g., by using an exponential weighting function.

In order to calculate the overall network lifetime, the time is subdivided into rounds. The network
lifetime is then defined as the number of rounds that have expired when the first node runs out of
energy. Energy is consumed according to the first order model, which was also used by the EEF
simulations carried out in Chapter 4. However, this time, each node has only an initial energy of 0.1 J,
determining its lifetime.

During each round, a certain number of nodes issues a data packet of 32 bytes that is then transferred
along established forwarding paths towards a predefined network sink. The propagation time on a
link and the processing time of the nodes are again neglected. With each round, the forwarding paths
in the network may change due to decreasing energy levels, depending on the forwarding strategy
being simulated. Thus, all nodes need to exchange their forwarding information periodically and to
recompute forwarding paths and metrics if necessary.

All forwarding strategies described above are simulated for different node densities and fractions of
source nodes issuing data packets. Simulations are carried out until the first node has consumed its
entire energy. They are repeated 200 times; thus, the data points in the following graphs are averaged
over 200 simulation runs and shown with their 0.95 quantiles.

5.6.1 Performance Comparison of LEF and EEF

While LEF aims to maximize lifetime efficiency, i. e., to prolong the network lifetime as well as to
maximize the energy efficiency, it is surely interesting to note how it performs against plain energy-
efficient forwarding, as considered in the previous chapter. Besides EEF, we also show the perfor-
mance of MT, PRR, HOP, and Er-based forwarding, which like EEF do not consider the residual
energy on forwarding paths. In contrast to Chapter 4, the simulation is carried out over the entire
network lifetime, using a source fraction α of 0.2. The results are illustrated in Figure 5.3 for different
node densities, showing the network lifetime in rounds, the number of packets delivered and energy
consumed per source node, and the energy efficiency at the end of the network’s lifetime.

As shown in Figure 5.3(a), LEF achieves a significantly higher network lifetime than does EEF, while
multi-link forwarding performs better in both cases. Thus, the extended forwarding metric of LEF
does indeed prolong the lifetime of the network. Without considering LEF, hop-based forwarding and
EEF outperform MT, PRR, and Er-based forwarding, which can be attributed to their lower energy
consumption per round, as we have already discussed in Chapter 4. However, in contrast to EEF, hop-

5.6. SIMULATIONS 107

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 15 20 25 30 35 40 45 50

N
et

w
o
rk

 l
if

et
im

e
[r

o
u
n
d
s]

Node density

MLEF
SLEF

MEEF
SEEF

MT
PRR
HOP

Er

(a) Network lifetime

 0

 50

 100

 150

 200

 250

 300

 350

 10 15 20 25 30 35 40 45 50

N
u
m

b
er

 o
f

p
ac

k
et

s
d
el

iv
er

ed

Node density

MLEF
SLEF

MEEF
SEEF

MT
PRR
HOP

Er

(b) Number of packets delivered

 0

 50

 100

 150

 200

 250

 300

 350

 10 15 20 25 30 35 40 45 50

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

m
J]

Node density

MLEF
SLEF

MEEF
SEEF

MT
PRR
HOP

Er

(c) Energy consumption

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10 15 20 25 30 35 40 45 50

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Node density

MLEF
SLEF

MEEF
SEEF

MT
PRR
HOP

Er

(d) Energy efficiency

Figure 5.3: Performance comparison of LEF and EEF (α = 0.2, R = 3)

based forwarding suffers heavily from low delivery ratios per round and from poor energy efficiency.
Despite its long network lifetime, the number of delivered data packets averaged over all source nodes
is lower than for every other strategy, as illustrated in Figure 5.3(b). On the other hand, both MEEF
and SEEF perform much better, even if their network lifetime is slightly shorter. Since MLEF, as
well as SLEF, further extends the lifetime, more packets can be delivered until the first node runs out
of energy. But due to a longer lifetime, LEF also consumes the most energy, followed by Er-based
forwarding, SEEF, and MEEF, as shown in Figure 5.3(c). Er-based forwarding causes the highest
energy consumption per round due to long forwarding paths in terms of hops. Comparing LEF and
EEF concerning the energy consumed per round shows that LEF is outperformed by EEF substantially.
Thus, avoiding low-energy nodes along forwarding paths, as done in LEF, causes a higher overall
energy consumption but at the same time spreads the consumption among nodes better. This clearly
identifies the trade-off between energy efficiency and network lifetime. While LEF improves the
lifetime of EEF, it needs more energy in order to protect low-energy nodes, at the expense of poorer
energy efficiency as shown in Figure 5.3(d).

Hence, only EEF achieves the sole maximization of energy efficiency. However, if issues pertaining to
lifetime need to be taken into account by an application, LEF trades off energy efficiency and network
lifetime much better. We account for this trade-off by the term lifetime-efficient, indicating the aim
of maximizing lifetime as well as energy efficiency simultaneously. Figure 5.4 depicts the lifetime

108 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

efficiency defined as the product of network lifetime and energy efficiency for LEF and EEF, and in
addition for MT, hop-based, PRR-based and Er-based forwarding.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10 15 20 25 30 35 40 45 50

L
if

et
im

e
ef

fi
ci

en
cy

 [
b
it

s*
ro

u
n
d
s/

µJ
]

Node density

MLEF
SLEF

MEEF
SEEF

MT
PRR
HOP

Er

Figure 5.4: Lifetime efficiency comparing LEF and EEF (α = 0.2, R = 3)

Both LEF strategies clearly outperform EEF due to a longer network lifetime and sufficient energy
efficiency. As multi-link forwarding usually achieves a better energy efficiency, it improves the life-
time efficiency of single-link forwarding, too. However, without considering the residual energy of
nodes, the performance of EEF is still superior to that of the remaining forwarding strategies. Thus,
in conclusion, it may heavily depend on the application scenario whether or not lifetime-efficient or
energy-efficient forwarding is preferable, favoring either LEF or EEF.

5.6.2 Network Performance over Time

In the following, we will investigate LEF regarding different performance issues in more detail, start-
ing with its performance over time. We carried out simulations by using a density of 30 nodes, with
20% of all nodes acting as source nodes that generate one data packet per round. The simulations ran
until the first node had consumed its energy completely.

Figure 5.5 shows the simulation results for several performance metrics plotted over time. Addition-
ally, it indicates the maximum network lifetime of each forwarding strategy obtained over all simu-
lation runs6. We now consider the performance of each forwarding strategy separately, rather than
describing each graph on its own.

Starting with hop-L-based forwarding, Figure 5.5(a) shows the average number of data packets de-
livered to the sink over time. Since blacklisting was not applied, many packets were sent over lossy
links, causing significant packet losses. As the number of retransmissions is often insufficient in order
to send packets over established long-distance forwarding links, packet drops occur quite often. For
this reason, the number of delivered packets, as well as the packet delivery ratio, which is depicted in
Figure 5.5(b), were worst compared to all other strategies. However, despite the fact that much energy
was spent on retransmissions, energy might also be “saved” along a forwarding path once packets
have been dropped, because forwarding then no longer takes place. This is illustrated in Figure 5.5(c),

6Note that not the average but the maximum network lifetime is shown.

5.6. SIMULATIONS 109

 0

 30

 60

 90

 120

 150

 180

 210

 240

1 50 100 150 200 250 300 350 400 450 500 550

N
u
m

b
er

 o
f

p
ac

k
et

s
d
el

iv
er

ed

Time [rounds]

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(a) Number of delivered packets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 50 100 150 200 250 300 350 400 450 500 550

P
ac

k
et

 d
el

iv
er

y
 r

at
io

Time [rounds]

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(b) Packet delivery ratio

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 50 100 150 200 250 300 350 400 450 500 550

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

m
J]

Time [rounds]

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(c) Energy consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 50 100 150 200 250 300 350 400 450 500 550

R
es

id
u
al

 e
n
er

g
y
 r

at
io

Time [rounds]

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(d) Residual energy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 50 100 150 200 250 300 350 400 450 500 550

M
in

im
u
m

 r
es

id
u
al

 e
n
er

g
y
 r

at
io

Time [rounds]

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(e) Minimum residual energy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1 50 100 150 200 250 300 350 400 450 500 550

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Time [rounds]

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(f) Energy efficiency

Figure 5.5: Forwarding performance over time (µ = 30, α = 0.2, R = 3)

which shows the overall energy consumption within the network over time. Since hop-L-based for-
warding consumed the least amount of energy per round, the node’s average as well as its minimum
residual energy ratios were substantially higher, as shown in Figure 5.5(d) and 5.5(d). Thus, it was able
to achieve quite a long network lifetime. However, at the same time, the network energy efficiency of
hop-L-based forwarding was the worst, as a result of too many packet losses (see Figure 5.5(f)).

110 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

In contrast to hop-L-based forwarding, the LP solution does not “benefit” from packets that are
dropped early on a forwarding path. Because an infinite number of retransmissions is assumed, bad
forwarding links are often avoided since they cause a high energy consumption, which may shorten
the network’s lifetime. As a result, the number of delivered packets, and thus the packet delivery
ratio at the end of the network’s lifetime, are higher than for hop-L-based forwarding, as shown in
Figure 5.5(a) and 5.5(b). However, compared to LEF, MT-L, PRR-L, and Er-L-based forwarding, the
difference is significant; only half the number of packets arrives at the sink. Because of this, less en-
ergy is consumed, which affects the node’s average, as well as its the minimum, residual energy ratios
“positively”. But like for hop-L-based forwarding, Figure 5.5(f) depicts that the energy efficiency of
the LP solution is quite poor and less than half that of LEF. Thus, the simulation results clearly show
that maximum lifetime strategies might perform badly if packet delivery ratios are not taken into ac-
count. Especially if packet drops are exploited to extend the network’s lifetime, will data forwarding
become useless, since the most trivial solution of suppressing any packet transmission would then
perform best.

On the other hand, considering solely the end-to-end delivery ratios as done inEr-L-based forwarding
does not lead to a long network lifetime and high energy efficiency either. Although at the beginning
of the simulation Er-L-based forwarding achieves the best delivery ratio, it starts suffering from a
high energy consumption (see Figure 5.5(c) and 5.5(d)). Because forwarding paths are usually com-
paratively long in order to exploit short-distance links, many nodes are affected by forwarding, thus
consuming much energy. Due to the rapidly decreasing amount of residual energy shown in Fig-
ure 5.5(d), other forwarding paths need to be selected. As a consequence, the packet delivery ratio
drops, as depicted in Figure 5.5(b). Furthermore, the high energy consumption causes a fast decrease
in residual energy, finally leading to the shortest network lifetime. Concerning the energy efficiency
of Er-L-based forwarding, the performance is thus only slightly better than that of hop-L-based for-
warding. Hence, despite a higher delivery ratio, the extremely high energy consumption cannot be
compensated.

MT-L and PRR-L-based forwarding perform quite similarly, although their forwarding metrics are
completely different. However, both strategies take into account packet reception ratios as well as the
forwarding path length. Concerning the number of delivered packets, respectively the delivery ratio
per round (Figure 5.5(a) and 5.5(b)), PRR-L-based forwarding performs slightly better and outper-
forms all other strategies, but at the expense of a shorter lifetime. As Figure 5.5(c) shows, the energy
consumption of both strategies is basically the same, as are the residual and the minimum residual en-
ergy ratios over time. Hence, due to a better delivery performance, PRR-L-based forwarding achieves
an energy efficiency that slightly surpasses the efficiency of MT-L, but is still worse than that of SLEF
and MLEF.

Although both SLEF and MLEF are outperformed by PRR-L-based forwarding with respect to their
delivery ratios, as shown in Figure 5.5(b), both strategies benefit from longer network lifetimes. They
are thus able to deliver more packets to the network sink (see Figure 5.5(a)). However, the delivery
ratios decrease significantly over time. This is due to the fact that if the residual energy along forward-
ing paths decreases, it becomes difficult to maintain high quality paths. In such a case, the lifetime
component of LEF starts to avoid low-energy nodes by establishing “bypass paths” instead, worsening
the forwarding quality of such paths. Figure 5.5(f) shows this trade-off as the energy efficiency that

5.6. SIMULATIONS 111

decreases with time. In this way, LEF differs from EEF. At the beginning of the simulation, LEF and
EEF have the same energy efficiency. However, as soon as the residual energy of nodes decreases,
the energy efficiency of LEF is affected adversely. While the efficiency of EEF does not degrade, the
efficiency of LEF drops by about 15% until the end of its lifetime. But compared to all forwarding
strategies considered in Figure 5.5, both SLEF and MLEF still demonstrate a superior performance.
Again, multi-link forwarding is able to improve the efficiency and delivery ratio of SLEF. Moreover,
as MLEF consumes less energy, it also improves the network lifetime.

In conclusion, maximizing lifetime efficiency as done by both strategies trades off the contradictory
aims of high delivery ratios, low energy consumption, and long network lifetimes very well. For
example, although both the hop-L-based forwarding and the LP solutions achieve longer lifetimes due
to less consumed energy, they suffer from bad delivery ratios and a low energy efficiency. In contrast,
LEF spends more energy on packet forwarding, improving the delivery ratio and energy efficiency as
well. Consequently, its network lifetime decreases. However, spending even more energy to further
improve the delivery ratio, as done by Er-based forwarding, is avoided for efficiency reasons.

5.6.3 Influence of Node Density

How the network performance is influenced by different node densities is discussed in this section.
We use the same simulation setup as before, but additionally vary the node density between 10 and 50
nodes per maximum transmission range. Again, the fraction of source nodes is set to 0.2. Thus, at an
increasing node density, the number of source nodes issuing data packets increases as well.

Figure 5.6 summarizes the performance characteristics of all forwarding strategies. In contrast to the
maximum network lifetime that can be derived from Figure 5.5, Figure 5.6(a) depicts the average
network lifetime, which might be quite different. For example, although the LP solution is optimized
in terms of the lifetime of the network, it is outperformed by hop-L-based forwarding significantly.
The reason is as follows: As discussed in the previous section, hop-L-based forwarding saves energy
by sending packets over long-distance links, thus involving fewer nodes in the packet forwarding.
As such links are commonly lossy, many packets will be dropped once the maximum number of
retransmissions has been reached. Therefore, the resulting energy consumption per round will be
significantly lower, which increases the network’s lifetime. In contrast, the LP solution does not
exploit this advantage because packet drops were not modeled by the LP relaxation. Since the network
lifetime is optimized under the assumption of infinite retransmissions, the performance of the LP
solution is worse than that of hop-L-based forwarding if the maximum number of retransmissions is
limited to three, as in this simulation scenario.

In comparison, the lifetimes of MLEF and SLEF are shorter, but nevertheless longer than those of
MT-L, PRR-L, and Er-L-based forwarding. However, despite a shorter lifetime, both strategies are
able to deliver more data packets to the sink, as shown in Figure 5.6(b). Since the lifetime of MLEF
is a little bit longer and its energy consumption per round is smaller, it further improves the delivery
ratio of SLEF, and outperforms all other strategies. Like in Figure 5.5, we see that although hop-L-
based forwarding performs best regarding its lifetime, the total number of packets delivered over the
entire lifetime is worst. The same applies for the LP solution. The initial increase can be explained as

112 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 10 15 20 25 30 35 40 45 50

N
et

w
o
rk

 l
if

et
im

e
[r

o
u
n
d
s]

Node density

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(a) Network lifetime

 0

 30

 60

 90

 120

 150

 180

 210

 240

 10 15 20 25 30 35 40 45 50

N
u
m

b
er

 o
f

p
ac

k
et

s
d
el

iv
er

ed

Node density

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(b) Number of packets delivered

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 15 20 25 30 35 40 45 50

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

m
J]

Node density

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(c) Energy consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 15 20 25 30 35 40 45 50

R
es

id
u
al

 e
n
er

g
y
 r

at
io

Node density

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(d) Residual energy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10 15 20 25 30 35 40 45 50

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Node density

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(e) Energy efficiency

 0

 20

 40

 60

 80

 100

 120

 10 15 20 25 30 35 40 45 50

L
if

et
im

e
ef

fi
ci

en
cy

 [
b
it

s*
ro

u
n
d
s/

µJ
]

Node density

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(f) Lifetime efficiency

Figure 5.6: Influence of node density (α = 0.2, R = 3)

follows: For a low node density, only a limited number of forwarding paths exists, which can be used
to deliver packet successfully over a long time. If the node density increases, more path alternatives
will become available and more nodes will issue data packets, which improves the number of packets
delivered considerably. However, at the same time, the network’s lifetime starts to decrease, as shown
in Figure 5.6(a). Thus, for a very high node density, the delivery performance worsens again.

5.7. EXPERIMENTAL EVALUATION 113

The total energy consumption over the entire lifetime is shown in Figure 5.6(c). In spite of shorter
lifetimes, the energy consumption increased with an increasing node density, which is caused by the
fact that number of source nodes increases, too. While almost all strategies are influenced similarly
if more nodes are deployed, the energy consumption of Er-L-based forwarding grows significantly.
Because the energy consumption was not taken into account, the number of nodes affected by forward-
ing packets increases heavily in order to maximize the end-to-end delivery ratio. In addition, avoiding
nodes which have little residual energy causes a even higher energy consumption. As a consequence,
at a density of 50 nodes, the residual energy ratio at the end of the network lifetime was about 65%
less than the residual energy of LEF (see Figure 5.6(d)).

As depicted in Figure 5.6(e), the energy efficiency of the network tended to decrease if the number
of deployed nodes started to increase. This is due to a higher energy consumption, a shorter network
lifetime, and a lower number of delivered packets. Similar to Figure 5.5(f), MLEF and SLEF outper-
formed all other strategies clearly, independent of the density. Furthermore, both strategies achieved
the best lifetime efficiency, as shown in Figure 5.6(f).

5.6.4 Influence of the Number of Source Nodes

Finally, we consider the influence of the number of source nodes on the network performance for a
fixed density of 30 nodes per maximum transmission range. We increase the fraction of source nodes
from 10% to 100%. The simulation results are shown in Figure 5.7. As illustrated in Figure 5.7(a), the
network lifetime of all strategies drops about 80% to 90% if the source node fraction tends to one. As
a result, the number of delivered packets, as well as the energy consumption over the entire lifetime,
decreases (see Figure 5.7(b) and 5.7(c)). However, the relative performance among all strategies
remains the same, independent of how many nodes issue data packets within the network. The fraction
of source nodes influences the number of delivered packets, as well as the energy consumption, in the
same way. The energy efficiency depicted in Figure 5.7(d) shows a constant behavior. This result is
quite interesting because one might expect that the energy efficiency would be much better for a lower
source fraction since less energy is consumed per round and the strategy’s lifetime mechanism is less
affected. However, as long as network congestion issues are not taken into account, the performance
of all strategies remains stable. LEF again showed a superior performance in terms of energy as well
as lifetime efficiency, even if the source node fraction changes.

5.7 Experimental Evaluation

In addition to the simulations, we also evaluated LEF and almost all other considered strategies by
means of real-world experiments, using our WSN testbed consisting of 25 ESB nodes. Only the LP
solution was not implemented because it is based on global knowledge and must be computed in a
centralized way. Again, the evaluation results should be considered with respect to the small-sized
network and the small number of ten evaluation runs. However, the obtained performance indications
are quite sufficient for a first proof-of-concept.

114 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
e
tw

o
rk

 l
if

e
ti

m
e
 [

ro
u
n
d
s]

Fraction of source nodes

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L

LP

(a) Network lifetime

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f

p
ac

k
et

s
d
el

iv
er

ed

Fraction of source nodes

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(b) Number of delivered packets

 0

 100

 200

 300

 400

 500

 600

 700

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

m
J]

Fraction of source nodes

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er
LP

(c) Energy consumption

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Fraction of source nodes

MLEF
SLEF

MT−L
PRR−L
HOP−L

Er−L
LP

(d) Energy efficiency

Figure 5.7: Influence of the number of source nodes (µ = 30, R = 3)

5.7.1 Experimental Setup

The experimental setup is basically the same as described in Section 4.7.2 of Chapter 4. All nodes used
a transmission power of 15% and retransmitted data packets up to three times if acknowledgements
got lost. Data packets had a size of 32 bytes and were sent at a rate of five packets per minute, starting
randomly in time. In order to avoid network congestion, only five source nodes were used that were
randomly picked by the network sink. This represents a source fraction of 20%.

As before, we ran a pinging period before the experiment started in order to get estimates about packet
reception ratios between pairs of network nodes; each node broadcast 100 ping packets in a round-
robin fashion which were used to construct neighbor tables stored on each node individually. After
that, the network sink triggered the establishment of forwarding tables by means of beacon packets
that contained the appropriate forwarding metrics, as well as information about the estimated packet
reception ratios to adjacent neighbors. In addition to the beacon content discussed in Section 4.7.2 of
Chapter 4, each node also included its own or the minimum residual energy on its forwarding path,
depending on the applied forwarding strategy. E. g., a node running LEF included the calculated Eli
value, as well as its own energy level li.

5.7. EXPERIMENTAL EVALUATION 115

In order to evaluate the network’s lifetime and the lifetime efficiency of each forwarding strategy, each
node used an initial energy of 100 mJ, which decreased with every received and transmitted packet
according to the energy model presented in Section 4.3.3 of Chapter 4. The experimental evaluation
stopped after the first node had consumed all its energy, determining the lifetime of the network and
the end of the experiment. During the experiment, each node logged statistical information that was
stored in the EEPROM of a ESB node and afterwards transmitted to the network sink.

As forwarding paths may change due to decreasing energy levels, all nodes continued broadcasting
beacons at a rate of one beacon per minute. However, in case a forwarding path had changed, beacons
were sent immediately after a short backoff time to inform adjacent neighbors. In doing so, frequently
used nodes are prevented from running out of energy, as they propagated their decreasing energy levels
to their neighborhood, forcing nearby nodes to search for alternative routes.

5.7.2 Evaluation Results

Each experiment was repeated ten times in order to minimize the influence of variations. Table 5.1
summarizes the main results, showing the average, as well as the 0.95 t-quantiles for different per-
formance metrics. Additionally to LEF, MT-L, PRR-L, hop-L, and Er-L-based forwarding, we also
evaluated the performance of EEF to provide a comparison of network lifetime, energy efficiency,
and lifetime efficiency. The structure of Table 5.1 is quite similar to that of Table 4.1 discussed in
Chapter 4, except that now all values have been calculated with respect to the entire network lifetime.

The first row of Table 5.1 contains the network lifetime in minutes of each forwarding strategy. Ac-
cording to the simulation results, the experiments showed similar characteristics. LEF achieved a
significantly longer lifetime than did EEF, which in contrast outperformed LEF in terms of energy
efficiency. Furthermore, hop-L-based forwarding achieved the longest, and Er-L-based forwarding
the shortest lifetime. The performance of MT-L and PRR-L-based forwarding was almost the same
and similar to EEF concerning the network’s lifetime. Again, hop-L-based forwarding “benefited”
from bad link qualities, long-distance links and a small network size, which is indicated by a lower
number of transmitted acknowledgements (tx control), a low hop counter, and the high number of
retransmissions. Mainly due to the small network delimiter, hop-L-based forwarding thus achieved
a high lifetime efficiency, which was exceeded only by LEF. However, it was clearly outperformed
concerning its energy efficiency. Only the efficiency of Er-L-based forwarding was worse (it caused
the highest energy consumption). Although the lifetime of Er-L-based forwarding was less than half
the lifetime of hop-L-based forwarding, it consumed about 15% more energy. As the simulations have
already indicated, many nodes were involved in the forwarding process of Er-L-based forwarding,
which is shown by the number of packets received and transmitted, as well as by longer forwarding
paths. Consequently, maximizing solely the end-to-end delivery ratio achieved the worst performance
concerning the network’s lifetime, lifetime efficiency, and energy efficiency.

Regarding the number of packets delivered over the entire lifetime, MLEF, as well as SLEF, showed
the best results. If, in contrast, the number of packets delivered per minute is considered, MEEF and
SEEF performed better. Moreover, as neither strategy caused any energy cost due to avoiding low-
energy nodes, their network energy efficiency, as well as their energy efficiency per node, is about

116 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

Strategy MLEF SLEF MEEF

Lifetime [min] 61.90 [52.82, 70.98] 59.40 [47.06, 71.74] 38.30 [33.99, 42.61]
Lifetime efficiency [bits·min/µJ] 30.58 [26.05, 35.10] 28.76 [24.03, 33.49] 19.68 [17.27, 22.09]
Energy efficiency [bits/µJ] 0.4940 [0.4182, 0.5697] 0.4842 [0.4263, 0.5431] 0.5241 [0.4542, 0.5942]
Energy efficiency per node [bits/µJ] 0.2782 [0.2498, 0.3067] 0.2728 [0.2511, 0.2946] 0.2994 [0.2693, 0.3300]
Tx data 328.50 [294.89, 362.10] 340.85 [305.18, 376.52] 215.15 [201.10, 229.21]
Tx control 104.54 [90.65, 118.43] 93.77 [79.43, 108.11] 90.48 [77.27, 103.70]
Rx data 149.93 [124.92, 174.93] 141.45 [121.82, 161.08] 96.82 [80.95, 112.69]
Rx control 172.78 [147.57, 198.00] 148.29 [121.98, 174.60] 139.85 [111.97, 167.72]
Packets delivered 2114.39 [1717.73, 2511.04] 1993.80 [1529.44, 2458.16] 1387.40 [1290.59, 1484.21]
Packets delivered per min. 34.15 [29.00, 39.30] 33.56 [27.14, 39.98] 36.22 [33.25, 39.19]
Energy consumption [mJ] 1081.84 [972.58, 1191.09] 1042.96 [951.51, 1134.42] 680.70 [620.00, 741.40]
Energy consumption per min. [mJ] 17.48 [15.61, 19.35] 17.56 [15.32, 19.80] 17.77 [16.22, 19.32]
Hop counter 2.51 [2.27, 2.76] 2.47 [2.23, 2.72] 2.84 [2.41, 3.27]
Retransmissions 1.13 [1.03, 1.23] 1.16 [1.02, 1.29] 0.85 [0.69, 1.00]

Strategy SEEF MT-L PRR-L

Lifetime [min] 37.20 [34.55, 39.85] 40.60 [30.64, 50.56] 38.90 [31.06, 46.74]
Lifetime efficiency [bits·min/µJ] 19.13 [17.36, 20.90] 15.92 [12.77, 19.07] 15.67 [13.10, 18.24]
Energy efficiency [bits/µJ] 0.5144 [0.4539, 0.5749] 0.3923 [0.3213, 0.4633] 0.4027 [0.3485, 0.4569]
Energy efficiency per node [bits/µJ] 0.2919 [0.2652, 0.3185] 0.2429 [0.2082, 0.2776] 0.2476 [0.2228, 0.2725]
Tx data 222.82 [203.51, 242.14] 302.50 [251.82, 353.17] 285.73 [230.40, 341.05]
Tx control 74.18 [60.70, 87.65] 116.78 [88.89, 144.68] 118.96 [90.24, 147.68]
Rx data 84.28 [65.88, 102.68] 140.02 [116.81, 163.23] 138.40 [114.16, 162.63]
Rx control 110.38 [94.48, 126.28] 161.09 [119.08, 203.10] 161.00 [118.93, 203.07]
Packets delivered 1329.80 [1158.72, 1500.88] 1475.40 [996.52, 1954.28] 1414.00 [1025.68, 1802.32]
Packets delivered per min. 35.75 [32.63, 38.87] 36.34 [26.99, 45.69] 36.35 [28.82, 43.88]
Energy consumption [mJ] 663.24 [620.63, 705.86] 934.21 [774.04, 1094.37] 884.99 [711.09, 1058.90]
Energy consumption per min. [mJ] 17.83 [16.82, 18.84] 23.01 [18.77, 27.25] 22.75 [18.82, 26.68]
Hop counter 2.72 [2.31, 3.13] 2.93 [2.71, 3.15] 3.20 [2.94, 3.47]
Retransmissions 0.92 [0.73, 1.11] 0.94 [0.77, 1.10] 0.81 [0.66, 0.96]

Strategy HOP-L Er-L

Lifetime 72.30 [62.70, 81.90] 35.10 [30.88, 39.32]
Lifetime efficiency [bits·min/µJ] 25.46 [19.72, 31.19] 9.26 [8.05, 10.47]
Energy efficiency [bits/µJ] 0.3521 [0.2406, 0.4636] 0.2637 [0.2252, 0.3021]
Energy efficiency per node [bits/µJ] 0.2035 [0.1592, 0.2477] 0.1799 [0.1624, 0.1975]
Tx data 380.74 [346.02, 415.46] 426.43 [399.62, 453.24]
Tx control 53.84 [49.08, 58.60] 182.30 [147.47, 217.13]
Rx data 123.85 [74.58, 173.13] 213.88 [183.20, 244.57]
Rx control 96.95 [82.11, 111.78] 242.47 [200.03, 284.91]
Packets delivered 1519.80 [1129.17, 1910.43] 1347.60 [1186.51, 1508.69]
Packets delivered per min. 21.02 [16.55, 25.49] 38.39 [34.15, 42.63]
Energy consumption [mJ] 1144.97 [1046.10, 1243.84] 1321.45 [1233.43, 1409.47]
Energy consumption per min. [mJ] 15.84 [14.74, 16.94] 37.65 [35.65, 39.65]
Hop counter 1.69 [1.52, 1.86] 3.53 [3.08, 3.98]
Retransmissions 1.92 [1.76, 2.09] 0.98 [0.81, 1.15]

Table 5.1: Results of the experimental evaluation (LEF)

5.8. CONCLUSIONS 117

6%-7% higher. However, due to a shorter network lifetime, the lifetime efficiency is about 33%-
35% worse. Comparing the hop counters and the average number of retransmissions used in LEF
and in EEF indicates that forwarding paths used by LEF become slightly shorter and lossier over
time. Thus, the number of long-distance and direct links will increase in order to prevent intermediate
nodes from running out of energy. For efficiency reasons, low-energy nodes will be by-passed by
forwarding packets more directly towards the sink. Although this will cause more retransmissions,
the energy consumption of forwarding nodes can be reduced. However, at the same time, the average
energy consumption per link will grow, which will decrease the energy efficiency on the end-to-end
forwarding path. But as nodes with low residual energy will be less affected, the network’s lifetime
will be extended, maximizing the lifetime efficiency of the network.

Comparing the multi-link and the single-link concepts used by MLEF and SLEF, respectively MEEF
and SEEF, shows that multi-link forwarding was indeed applied within the network, improving the
network lifetime as well as the energy and lifetime efficiency. Furthermore, using more than one re-
ceiver at the same time also reduced the number of data retransmissions. While single-link forwarding
retransmitted data packets once the receiving node had not sent an acknowledgement back, multi-link
forwarding exploited other nodes, which had received the packet successfully, more efficiently. As
a result, the number of transmissions could be reduced significantly, which is shown by tx data in
Table 5.1. However, multi-link forwarding caused more control packets (tx control) and more nodes
to receive data packets (rx data). But as discussed above, these costs were compensated due to a better
energy efficiency.

In conclusion, the experimental results confirm our simulations, highlighting LEF as the best strategy,
maximizing both network lifetime and energy efficiency. Both evaluations clearly indicate that extend-
ing the network’s lifetime comes at the expense of less efficiency. Thus, it is actually not possible to
provide the optimal solution for general use. Rather, the application must define whether the primary
objective is energy efficiency or lifetime efficiency.

5.8 Conclusions

In this chapter, we have provided an extension for energy-efficient forwarding that aims to maximize
the lifetime efficiency of the entire network rather than the energy efficiency. By adding a lifetime
component which takes the residual energy on forwarding paths into account, LEF is able to tackle the
trade-off between long network lifetimes and an efficient usage of energy very well. Similar to EEF,
we have proposed two versions, called SLEF and MLEF, to also account for multi-link forwarding.
Both strategies have been theoretically analyzed, evaluated by means of simulations, and tested with
real-world experiments. The obtained results have shown significant performance gains over EEF and
other forwarding strategies.

In particular, we pointed out that solely maximizing the network lifetime might have bad performance
characteristics in terms of the number of delivered packets, the energy consumption, and the energy
efficiency. We presented a linear program which can be used by a common LP solver to solve the
maximization problem. However, taking routing cycles into account requires a great computational

118 CHAPTER 5. LIFETIME-EFFICIENT FORWARDING

effort if packet drops are modeled. We thus relaxed the actual problem by the assumption of an infinite
number of retransmissions. This relaxation is actually quite reasonable because otherwise packet
drops might be heavily exploited due to energy savings. Nevertheless, the LP solution performed
substantially worse, as the number of actually delivered packets was not taken into account.

Because LEF aims to maximize lifetime efficiency, it is outperformed by EEF concerning energy effi-
ciency. Avoiding low-energy nodes thus comes at the expense of efficiency, likely increasing the over-
all energy consumption of the network. In future work, the efficiency of LEF might thus be improved
by not giving all nodes equal consideration. For example, assume a two-tiered network consisting of
few, but more important, sensing nodes and several redundant, and less important, forwarding nodes.
Due to a higher number of forwarding nodes, an application task should not be affected if some of
these nodes died. Thus, as long as a node finds enough neighbors in its vicinity, its residual energy
level will be less important and need not be taken into account. That is, a forwarding node i propagates
a modified energy value l̂i that is calculated as

l̂i =

li li < ξ or Ni < η,

1 otherwise,

with ξ being a predefined energy threshold, Ni being the current number of active neighbors of node i,
and η being a density threshold. Because nodes capable of sensing are considered to be more impor-
tant, they will always propagate their real residual energy level, i. e., in this case l̂i is equal to li. In this
way, the advantages of LEF and EEF can be exploited much better. Only sensors and forwarding nodes
having few neighbors are protected from being used too frequently by forwarding packets. Thus, the
energy efficiency of the majority of forwarding paths could be optimized without much degrading the
lifetime of the network.

Another idea for saving energy and thus extending the network’s lifetime relies on exploiting the
data content itself. Often data is issued by sensing nodes due to a physical phenomenon, which is
likely to be sensed also by other nodes located in the vicinity. The correlation between these data
readings might be exploited during the forwarding process by in-network processing. For example,
if several data values arrive at an intermediate node along the forwarding path, aggregating the data
might considerably reduce the number of packets to be forwarded. Forwarding data would thus require
less energy, thereby increasing the network’s lifetime, as well as the energy efficiency of the entire
network. Furthermore, there might even be several cases where an application is only interested in
aggregated information, e. g., in the average temperature or humidity in a habitat over a certain period
of time.

How the possibility of data aggregation affects EEF and how the energy efficiency can be improved in
such a scenario is considered in the following chapter.

CHAPTER6
Energy-Efficient Aggregation

Forwarding

“It’s hard enough to find an error in your code when
you’re looking for it; it’s even harder when you’ve
assumed your code is error-free.”

– S. McConnell –

6.1 Introduction

The last two chapters have considered the energy efficiency and the lifetime efficiency of wireless sen-
sor networks and focused on the network’s delivery performance, as well as its energy consumption.
As the radio transceiver is one of the major energy consumers, and it is expected that most of the sen-
sor nodes will carry only a limited and irreplaceable power supply, such energy-efficient algorithms
will be essential to provide a reliable infrastructure for any kind of application.

We have seen that the network’s lifetime can be extended in many ways, and several protocols have
been proposed in the last few years, affecting different layers in the protocol stack. Taking advantage
of data aggregation is part of this chapter. While energy savings due to topology management are
analyzed in the next chapter, we focus here on data aggregation in the context of energy-efficient
forwarding, i. e., in which data received from adjacent neighbors is first combined, or aggregated,
before it is sent over an energy-efficient forwarding path. Exploiting that kind of aggregation may
reduce the communication overhead significantly, especially if it has already been taken into account
during the establishment of forwarding paths. Since less energy will be consumed if packets are sent
over nodes that exploit aggregation, the energy efficiency of the network will increase. However, as
we will see, the cost reduction due to aggregation can be considerably higher if the forwarding strategy
is aware of it.

The potential of data aggregation can be motivated as follows: In typical applications like habitat and
environmental monitoring, disaster detection, or military surveillance applications, the detection of an

120 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

event or a particular stimulus will be in general first processed by a node and then forwarded to one or
several sink nodes through the network. As it is likely that several nodes will report the same event,
information received from different nodes may be combined, such that only one packet will need to
be forwarded towards the sink. Particularly if the source nodes are close together, the correlation of
data readings will probably be very high. Thus, aggregating these readings would reduce the packet
redundancy significantly. In addition to such event-based aggregation, data queries issued by the sink
are another example in which data aggregation might be useful if the sink is not interested in each
reading individually. Examples of such query-based aggregation are, e. g., temperature or humidity
queries.

By means of in-network processing, data gathering is done as follows: Based on the aggregation tree,
which can be considered as a reverse multicast tree rooted at the sink, inner nodes will aggregate
the readings from their child nodes before forwarding the data to their parent nodes upwards the
tree. Aggregation functions are, for example, SUM, COUNT, AVG and MIN/MAX [164]. While these
functions require little memory and low processing capabilities, they are limited to relatively simple
types of queries; more advanced queries like approximations for the median, the most frequent data
values, or data distribution histograms are also possible but require a higher overhead [222].

In contrast to classic address-centric routing, where packets are routed based on unique destination
addresses and data are not changed, routing along aggregation trees is termed data-centric routing
since inner nodes may perform any kind of in-network processing [112, 124, 135]. Although the idea
of data-centric routing in conjunction with data aggregation was already proposed several years ago, it
is still an open problem as to how aggregation trees should be constructed to be optimal [29, 74, 125,
145]. Regarding this issue, our contribution is an energy-efficient aggregation forwarding scheme that
tries to find the best energy-efficient spanning tree that is optimized in terms of both the packet delivery
ratio and energy cost under the capability of data aggregation.

The remainder of this chapter is structured as follows. In the next section, we first outline related
work. Based on single-link and multi-link energy-efficient forwarding (see Chapter 4), which did
not consider in-network processing explicitly, Section 6.3 presents an extension to SEEF and MEEF
that accounts for the ability to aggregate. In addition to these energy-efficient aggregation forwarding
strategies, Section 6.4 discusses two other possible approaches, which take advantage of global knowl-
edge, but which are useful for comparison. Simulation results are presented in Section 6.5. Results
obtained from real-world measurements are described in Section 6.6. Finally, Section 6.7 provides
some concluding remarks.

6.2 Related Work

A first proposal for data-centric routing was directed diffusion [123, 124], which introduced a new
communication paradigm that was so far unknown to address-centric routing: Initially, an interest is
flooded throughout the network that is used to create reverse paths towards the node that is interested
in the data. Then, data travel back along several paths established in the first phase. After receiving
the first data packets, the sink reinforces the preferred paths in the network by sending reinforcement

6.2. RELATED WORK 121

packets to the source nodes. Those paths are used at a higher data rate, while the additional paths are
maintained with lower data rates as backup paths. In [122], Intanagonwiwat et al. extended directed
diffusion to facilitate data aggregation by means of greedy increment trees [234]. However, it per-
formed poorly in large-scale sensor networks due to the global flooding. If geographic information is
available, the performance can be improved, since then flooding can be restricted to particular regions.
This is also proposed by TTDD [162, 267], which uses local flooding on a two-tier grid structure in
order to facilitate large-scale data dissemination.

Similar to the directed diffusion approach, multi-path routing was proposed in several other ap-
proaches to improve reliability and account for packet losses. For example, instead of using span-
ning trees, directed acyclic graphs could be used. However, multi-path routing may cause message
duplicates, which may lead to an overcounting of multiple readings and thus distort the aggregation
results. Nath et al. have proposed a solution to this problem by means of synopsis diffusion [180],
which provides a general framework to combine multi-path routing schemes with techniques to avoid
double-counting. Yang et al. [264] have dealt with the problem of compromised nodes that may in-
fluence the trustworthiness of aggregation results, and proposed a secure aggregation protocol that
minimizes the impact of compromised nodes on the aggregation accuracy by taking multiple aggre-
gation functions into account. Westhoff et al. [251] studied the problem of end-to-end encryption in
the presence of in-network processing, which is quite challenging if sensed data should be concealed
end-to-end but also efficiently aggregated on the way to the the final destination. Therefore, a partic-
ular class of encryption transformations is required in order to aggregate values without the need for
intermediate nodes to decrypt them.

Similar to the approach used by TTDD [162, 267], which divides the network into grids to perform data
aggregation, Younis and Fahmy [272] propose HEED, a hybrid, energy-efficient, distributed clustering
approach. Each cluster is assigned to a cluster head that aggregates all readings from nodes belonging
to the cluster. The cluster heads are selected based on a combination of node degree and residual
energy. In order to connect adjacent clusters, different transmission powers will be used.

Boukerche et al. [29] proposed an aggregation tree construction, in which leaf nodes will go into a
low-power sleep mode in order to save energy. Non-leaves will stay awake and participate in data
dissemination. The tree is constructed based on the node’s residual energy and is optimized regarding
the number of leaf nodes that will stay active. However, finding the optimum tree is NP-complete be-
cause the problem is equivalent to the minimum connected dominating set problem described in [93].
Boukerche et al. thus proposed an approximation that tries to optimize the spanning tree. However,
the resultant overhead is quite significant.

A simpler algorithm is presented in [74], which uses the following idea: Upon receiving a message
from a neighbor, a node will start a timer that is inversely proportional to its residual energy. While
the timer is running and another message is received, the timer will be refreshed. If the timer expires,
the node will become active. Thus, in the best case, the constructed spanning tree will be equal to the
minimum spanning tree (MST), in which the costs of links are defined as the residual energy of the
parent node.

122 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

In [143], Lee and Wong present E-Span, an energy-aware spanning tree algorithm that is rooted at
the source node with the highest residual energy. Similar to [29] and [74], aggregation is performed
by inner nodes of the tree, which are selected according to their residual energy and distance from the
root (the selected source node) in terms of hops. After the aggregation tree has been established, the
root will gather all data issued by other sources in the network and forward them to the actual network
sink, again over the shortest hop path.

A similar approach that constructs a lifetime-preserving tree (LPT) is considered in [144]. In contrast
to [143], the tree is rooted at the source node with the highest tree energy, which is defined as the
minimum residual energy of all non-leaf nodes. Parent nodes will be selected such that the minimum
residual energy on the path towards the root will be maximized. In so doing, LPT is able to achieve
a better network lifetime than does E-Span [145]. However, the LPT algorithm is more complex and
requires that each node propagate its forwarding path to its neighbors.

In [240], an approach for minimum energy convergecast is proposed that uses a heuristic solution in
order to construct an aggregation tree with minimum energy costs, low latencies, and high reliability.
It also proposes an algorithm for channel allocation by assigning nodes different transmission and
reception codes if several communication channels are available. However, the tree construction works
in a centralized way and requires global knowledge about connectivity.

Jia et al. [125] have proposed an interesting idea with GIST, a group-independent spanning tree that
considers the case of unknown sources, which they called group-independent. Their aim is to find one
single optimum spanning tree that can be used for all subsets of source nodes. The idea is to build
the tree only once and then use it for any group of sources that issue data packets addressed to a sink.
Such a group-independent spanning tree can be constructed by a hierarchical approach. By dividing
the network into grids of equal size, GIST first establishes a so-called quad-tree. For each tree level,
four adjacent grid cells are combined into a new cell, in which one leader is selected. The leader of
the entire network will be the sink node, which will represent the root of the quad-tree. Using this tree
structure, data will always be sent to the leader of the upper level, where it will likely be aggregated
with data issued by other sources nodes. Since nodes at different levels are likely not within each
others communication range, GIST is based on an underlying routing layer. The authors have shown
that the cost of the induced aggregation subtree is within a logarithmic factor of the optimal solution
for any kind of group. In the worst case, the performance of GIST will be better than that of MST or
SPT, if both are constructed only once and then used for any combination of source nodes. However,
a drawback of GIST is surely that each node must be aware of its location, which may not be possible
at all times, even though several location systems already exist [32, 60, 119, 182]

Another idea that does not rely on forwarding trees is to use gossip algorithms [15, 30, 56], in which
a message is forwarded to a random neighbor. By means of such gossiping schemes, the averaging
problem can easily be solved, i. e., all nodes in the network are able to compute the average of all
other nodes’ measurements. In gossiping, each node randomly picks one of his one-hop neighbors,
and both nodes exchange their current values. Afterwards, the average will become the new value
for both nodes. By repeating this pairwise averaging, all nodes will finally converge to the global
average. However, a common problem of gossiping is that information will diffuse throughout the
network slowly if the randomization is restricted to the nodes’ one-hop neighborhood. Dimakis et

6.3. ENERGY-EFFICIENT AGGREGATION FORWARDING 123

al. [73] thus proposed geographic gossip, which reduces the energy consumption of standard gossip
algorithms substantially. Rather than picking a random one-hop neighbor, each node picks a random
location to which the node’s current value will be forwarded, by means of geographic routing [170].
The nearest node to this location will then randomly decide whether or not the message is accepted.
If so, the node will compute the average value and send its own value back to the original sender.
Otherwise, a new random location will be picked. Although such gossip algorithms are quite robust,
the energy efficiency is much worse than that of algorithms which explicitly establish aggregation
trees, as proposed in this chapter.

In contrast to our work, most of the work proposed in the literature relies on opportunistic aggregation,
i. e., the reduction of energy cost due to aggregation is not taken into account during the construction of
a forwarding tree. Furthermore, packet losses due to poor link qualities are often neglected. However,
taking advantage also of lossy links may improve the overall network performance. In the follow-
ing, we thus present an energy-efficient algorithm which does take these issues into consideration.
The aggregation tree functions in a distributed manner and improves the network’s energy efficiency
considerably, by exploiting aggregation gains a priori.

6.3 Energy-Efficient Aggregation Forwarding

Both of the energy-efficient forwarding strategies SEEF and MEEF described in Chapter 4 assume
that data packets will be issued independently of each other. Furthermore, the information contained
in different packets is assumed to be uncorrelated, which would prevent it from being aggregated.
However, there are many cases in which the user of a sensor network will not be interested in each
data reading of a node individually but rather in an aggregation value. For example, in a habitat
environment, a user could be interested in the average, or the minimum and maximum, temperature
values. In this case, several data readings may be aggregated into a single one along the forwarding
path.

In terms of energy efficiency, data aggregation has a high impact, as the energy consumed to forward
packets decreases. At the same time, the average packet delivery ratio, or to be more precise, the
information delivery ratio, will not change, regardless of whether or not aggregation is performed
within the forwarding tree1, which increases the energy efficiency of the network.

6.3.1 Construction of the Aggregation Tree

Unfortunately, the problem of constructing an aggregation tree is equal to the Steiner tree problem,
which is NP-hard [93]. Thus, in order to find the optimum aggregation tree, the problem of the Steiner
minimum tree (SMT) must be solved. An SMT is a tree within a graph of N nodes, connecting n
source nodes with minimum path costs. Generally, n is smaller than N since otherwise, the SMT will
be equal to the MST that has polynomial costs. For n < N , it is very challenging to find the optimal
aggregation nodes within the graph.

1Assuming that packets will get lost independently of each other.

124 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

We thus simplify the problem to the case in which only source nodes are assumed to aggregate data
packets. All other nodes are assumed to purely forward data without any kind of aggregation. It should
be noted that this simplification is just required to establish the aggregation tree. Afterwards, data may
be aggregated at each node that has received data packets from more than one source.

The simplification allows us to construct an MST approximation on the overlay graph, which connects
all source nodes with minimum costs. The path costs between two sources are defined according to
the end-to-end energy efficiency metric, as used by SEEF and MEEF. While the end-to-end delivery
ratio Eri of a node i will not change in comparison to that of EEF, the expected energy costs Eei will
decrease if the information issued by node i can be aggregated along its forwarding path. In other
words, if i is a source node, it will set Eei to zero, because neighbors forwarding packets over node i
will not cause any energy costs due to the aggregation at node i.

That is, in order to construct an energy-efficient aggregation tree, each node i will propagate Eri , as in
SEEF and MEEF, and modified energy cost Ēei , which is equal to

Ēei =

0 if i is a source node,

Eei otherwise,
(6.1)

to its adjacent neighbors. In so doing, the calculation of Eei given in Equation 4.21 of Chapter 4 will
change to

Eei =

(
ε+

∑
j∈Ωi

ρi,α(j)−1

(
|α(j) > 1|εpoll + prri,j(Ēej + εack)

))(
1− ρR+1

i,n

)
1− ρi,n

. (6.2)

Due to these changes, we name these extended forwarding strategies single-link and multi-link energy-
efficient aggregation forwarding (SEEAF and MEEAF), respectively.

6.3.2 The Problem of Forwarding Cycles

A problem that arises from the capability of aggregation is that now a node may have better energy
efficiency than does one of its forwarding nodes. Thus, the energy efficiency will no longer monotoni-
cally decrease along a forwarding path. However, that was a mandatory requirement in EEF, to prevent
the occurrence of forwarding cycles. Without such a monotonically decreasing function, establishing
the aggregation tree will be really challenging if cycles must be avoided2.

We will use the following heuristic: Rather than relying on the energy efficiency metric, each node will
only consider those neighbors having a higher end-to-end packet delivery ratio than the node itself. As
this metric will decrease with every intermediate forwarding node, it can be used to prevent forwarding
cycles in the first place. However, in the case the delivery ratio is equal to that of a neighbor, the path
length in terms of hops is used additionally to break ties.

2Due to the same reason, building an MST in a distributed way is not as simple as building an SPT.

6.3. ENERGY-EFFICIENT AGGREGATION FORWARDING 125

Hence, Eeffi will be calculated by taking only neighbors j into account that satisfy

(Eri < Erj) ∨ ((Eri = Erj) ∧ (Ehi > Ehj)). (6.3)

Ehi is the average path length of the forwarding, which is calculated similarly to Equation 4.21 of
Chapter 4 as

Ehi =

∑
j∈Ωi

ρi,α(j)−1prri,j(Ehj + 1)∑
j∈Ωi

ρi,α(j)−1prri,j
. (6.4)

However, forwarding cycles may still occur if outdated information is used, i. e., a node uses Erj , and
Eej , although they might have been changed. Since all nodes act simultaneously, and it can take some
time until changes are propagated throughout the network, a node may be using information about
forwarding paths that is no longer up-to-date.

For example, consider the case depicted in Figure 6.1, in which a node will run into a forwarding cycle,
although each node has fulfilled requirement 6.3. The figure depicts a sample network at different
times, or rounds, t. Each round, all nodes will propagate their forwarding variables to their neighbors,
and we will assume that no packet losses occur.

Er = 0.976
Ee = 0.362j

i

Er = 0.968
Ee = 0.481

Er = 0.96
Ee = 0.599

Er = 0.9
Ee = 0.718

k

l

(a) t

j

i

Er = 0.968
Ee = 0.481

Er = 0.96
Ee = 0.599

Er = 0.9
Ee = 0.718

k

l Er = 0.3
Ee = 0.754

(b) t+ 1

j

i

Er = 0.298
Ee = 0.87

Er = 0.96
Ee = 0.599

Er = 0.9
Ee = 0.718

k

l Er = 0.3
Ee = 0.754

(c) t+ 2

j

i

Er = 0.89
Ee = 0.897

Er = 0.296
Ee = 0.985

Er = 0.9
Ee = 0.718

k

l Er = 0.3
Ee = 0.754

(d) t+ 3

Figure 6.1: Illustration of a forwarding cycle

Figure 6.1(a) shows a part of the forwarding tree at time t, indicating the current end-to-end delivery
ratios and energy costs for four nodes i . . . l. In Figure 6.1(b), the end-to-end delivery ratio, as well as
the energy cost, of the forwarding node l has worsened, which is propagated to node i at time t + 1.
The changes about the forwarding path have been processed by node i at time t + 2, as shown in
Figure 6.1(c), and will be further propagated to k. However, node j will not know about these changes

126 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

until t+ 4. Thus, at t+ 3, j will satisfy requirement 6.3 of node i due to a better end-to-end delivery
ratio, and will be selected as the new forwarder of i. As shown in Figure 6.1(d), nodes i, j, and k will
then form a forwarding cycle, which has been caused due to the usage of outdated information.

This problem can be solved by means of sequence numbers that indicate how up-to-date the informa-
tion about forwarding paths is. The general idea is that the sink of the network periodically generates
an increasing sequence number that is propagated throughout the network, together with the forward-
ing information contained in a beacon. Nodes receiving a beacon will update their own sequence
numbers accordingly. However, with respect to the forwarding tree rooted at the sink, the sequence
number will only be updated if a higher one is received from the current forwarding node.

If the forwarding path of a node has changed, the node will set a “timestamp”, which is equal to its
current sequence number. Thus, the next time the node recalculates its energy efficiency, it will only
consider neighbors that satisfy requirement 6.3 and in addition have a higher sequence number than
that set at the time the node’s efficiency last changed. In this way, we can guarantee that each node
which is used as a forwarder by a node i will not be a child of i in the forwarding tree.

However, we still must ensure that the sequence numbers will decrease along a forwarding path, i. e.,
that the sequence number used by a node will always be smaller than that of its forwarders. Hence, we
must account for the case in which a node j will become the forwarder of a node i that has previously
received a larger sequence number over another path. To overcome this problem, the “timestamp” is
set by using the highest sequence number a node has ever received, rather than by using the sequence
number currently in use.

6.3.3 An Algorithm to Prevent Forwarding Cycles

The algorithm to prevent forwarding cycles then works as follows: For each node i, we need three
sequence numbers, which are denoted by si, s changei, and s maxi. The sequence number si is
propagated by i to all children in the forwarding tree by means of beacons. Each time a node receives
such a sequence number from a parent node j, it will update its own sequence number by setting
si = sj . However, since in MEEAF each node might have several parents (forwarders), the node will
set its sequence number to

si = min
∀parents j

{sj} (6.5)

in this case. In addition, it will update its maximum sequence number s maxi to

s maxi = max
∀parents j

{s maxi, sj}. (6.6)

By using s maxi, the third sequence number will be set to

s changei = s maxi, (6.7)

each time the forwarding path of node i or its energy efficiency has changed.

6.3. ENERGY-EFFICIENT AGGREGATION FORWARDING 127

With these different sequence numbers on hand, we can formulate the second requirement that each
forwarding node j must satisfy by requiring

sj ≥ s changei. (6.8)

In so doing, we can guarantee that each node i will only consider neighbors whose forwarding infor-
mation is up-to-date, which will prevent nodes from running into cycles during the establishment of a
forwarding path.

Figure 6.2 illustrates how the forwarding cycle from Figure 6.1 will then be prevented if sequence
numbers are used. In each round, all nodes i will increase their current sequence number si by one
and set s changei to s maxi as soon as any changes have occurred. However, at t + 3, node i will
ignore the forwarding values of neighbor j due to requirement 6.8. Its forwarding link to node l will
thus persist. Finally, at t+ 4, j will also notice the change in its energy efficiency and set its sequence
number s change to 7, as all other nodes have done before.

Er = 0.976
Ee = 0.362j

i

Er = 0.968
Ee = 0.481

Er = 0.96
Ee = 0.599

k

l

s = 6
s
change

= 6
s
max

= 6

s = 4
s
change

= 4
s
max

= 4

s = 5
s
change

= 5
s
max

= 5s = 3
s
change

= 3
s
max

= 3

Er = 0.9
Ee = 0.718

(a) t

Er = 0.3
Ee = 0.754

Er = 0.968
Ee = 0.481

Er = 0.96
Ee = 0.599

s = 7
s
change

= 7
s
max

= 7

s = 5
s
change

= 4
s
max

= 5

s = 6
s
change

= 5
s
max

= 6s = 4
s
change

= 3
s
max

= 4

j

i

k

l

Er = 0.9
Ee = 0.718

(b) t+ 1

Er = 0.3
Ee = 0.754

Er = 0.298
Ee = 0.87

Er = 0.96
Ee = 0.599

s = 8
s
change

= 7
s
max

= 8

s = 6
s
change

= 4
s
max

= 6

s = 7
s
change

= 7
s
max

= 7s = 5
s
change

= 3
s
max

= 5

j

i

k

l

Er = 0.9
Ee = 0.718

(c) t+ 2

Er = 0.3
Ee = 0.754

Er = 0.298
Ee = 0.87

Er = 0.296
Ee = 0.985

s = 9
s
change

= 7
s
max

= 9

s = 7
s
change

= 7
s
max

= 7

s = 8
s
change

= 7
s
max

= 8s = 6
s
change

= 3
s
max

= 6

j

i

k

l

Er = 0.9
Ee = 0.718

(d) t+ 3

Figure 6.2: Prevention of forwarding cycles

128 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

6.3.4 The EEAF Algorithm

The complete EEAF algorithm is shown as Algorithm 6.1 for an arbitrary node i that has received
a beacon from a neighbor j. The beacon will contain information regarding the current sequence
number sj of node j, its expected packet delivery ratio Erj , its energy cost Eej , and its expected path
length Ehj .

The energy efficiency of node i is then calculated for a single forwarder (SEEAF) or for a set of
forwarding nodes (MEEAF) as follows: If j is a direct parent of node i, i first updates its sequence
numbers si and s maxi (lines 1-4). It then checks whether j is a new neighbor or whether the for-
warding variables of j have been changed since the last beacon. If so, the information regarding the
forwarding path of j will be updated (line 6). Additionally, i will recalculate its energy efficiency
(lines 7-27) by considering all potential forwarding sets3. However, due to the conditions in lines 11
and 15, only non-child nodes are taken into account. After all forwarder sets have been considered,
the one that maximizes the node’s energy efficiency will be stored for later use, together with the for-
warding parameters Eri , Eei , and Ehi . Finally, i will update its sequence number s changei in order
to exclude out-of-date neighbors if its parent(s), its end-to-end delivery ratio, or its energy cost of its
forwarding path have changed (lines 28-30).

It should be noted that in dense networks it might be quite expensive to examine all forwarding sets.
As in EEF and LEF, we have thus again limited the number of forwarding nodes, which can be se-
lected at once, to three (line 9). While this has improved the computational complexity substantially,
the performance of multi-link forwarding was actually not affected, as the numerical simulations in
Section 4.5.5 of Chapter 4 had already indicated.

6.3.5 Further Discussions

Finally, we discuss how nodes may learn about the fact that they should act as source nodes. The
easiest way to determine source nodes is to use the query disseminated by the network sink to get the
desired information. Each node fulfilling the requirements to answer a query is then considered as an
information source. For example, consider a temperature query used to obtain the average temperature
in a network. Each node with a temperature sensor then serves as a source for answering it. If all
nodes are equipped with such a sensor but only a fraction of α nodes should be used, sources can be
distributed throughout the network randomly. Thus, a node will only issue data packets if p ≤ α, with
p being a uniformly distributed random variable.

The issue becomes more complicated if the decision cannot be made beforehand, e. g., because a
query depends on environmental events or stimuli. In such a case, a node can only use a prediction
value denoted as β, which forecasts specific events based on information obtained from the past. As
a heuristic, the expected energy cost Eei determined in line 26 of Algorithm 6.1 is then calculated
according to

Eei = (1− β)Êe∗i . (6.9)

3Note that for single-link forwarding, the forwarder set will only consist of one neighbor.

6.3. ENERGY-EFFICIENT AGGREGATION FORWARDING 129

Algorithm 6.1 Receive EEAF message(j, sj , Erj , Eej , Ehj)

1: if j ∈ parentsi then
2: si ← sj
3: s maxi ← max{s maxi, sj}
4: end if
5: if change in j’s forwarding variables then
6: store j’s new forwarding variables
7: Êr∗i ← 0
8: Êe∗i ←∞
9: Êh∗i ← 0

10: for all forwarding sets Ωi: |Ωi| = 3 do
11: if ∀ĵ ∈ Ωi : (sĵ ≥ s changei) ∧ ((Eri < Er

ĵ
) ∨ ((Eri = Er

ĵ
) ∧ (Ehi > Eh

ĵ
))) then

12: calculate Êri according to Equation 4.19 from Chapter 4
13: calculate Êei according to Equation 6.2
14: calculate Êhi according to Equation 6.4
15: if ∀ĵ ∈ Ωi : (Êri < Er

ĵ
) ∨ ((Êri = Er

ĵ
) ∧ (Êhi > Eh

ĵ
)) then

16: if Êri /Êei > Êr∗i /Ê
e∗
i then

17: Êr∗i ← Êri
18: Êe∗i ← Êei
19: Êh∗i ← Êhi
20: set forwarders according to Ωi, i. e., parentsi ← Ωi

21: end if
22: end if
23: end if
24: end for
25: Eri ← Êr∗i

26: Eei ←

{
0 if i is a source node
Êe∗i otherwise

27: Ehi ← Êh∗i
28: if forwarders or forwarding variables have changed then
29: s changei ← s maxi
30: end if
31: end if

Another issue that should be considered regards the forwarding process itself. Saving energy in the
network is only possible, if in-network processing really takes place. That means that a node should
first gather all information from its children before forwarding the aggregate upwards the tree to-
wards the sink. Otherwise, full aggregation is not possible. Thus, the forwarding process needs to be
synchronized somehow. Therefore, each node could include information regarding its direct parents
within the forwarding tree into its beacon messages. In so doing, all nodes would learn about their di-
rect children. Nodes having no children could then issue and forward data packets immediately. Other
nodes would have to wait a predefined time for packets to be received from their children. Once the
timer has expired or all children have sent their information, an aggregation packet is created and in
turn sent upwards the tree. Thus, the length of the waiting time defines the trade-off between the delay
until queried information will reach the sink and the fraction of aggregation that will be achieved.

130 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

For the simulations and experimental experiments, which we will present in Sections 6.5 and 6.6,
we have assumed that the sink has queried periodic information from a predefined fraction of source
nodes. The waiting time was set to 30 seconds, which limited the maximum delay accordingly and
offered full aggregation, because in the majority of cases forwarding packets arrived in time.

6.4 Other Aggregation Tree Constructions

In addition to SEEAF and MEEAF, we have also considered two other aggregation tree constructions.
The first one is based on a greedy increment tree; the second one on a classic minimum spanning
tree. Both approaches are only used for comparison because they do not scale well with the number
of source nodes and thus are not recommendable for practical implementations. For completeness, we
also considered an approximation of the Steiner minimum tree that was proposed by Kou et al. [134].
However, since the performance gains of their algorithm were marginal in our simulation setting, we
have not included the results in Sections 6.5 and 6.6.

6.4.1 Greedy Increment Tree

An easy way to tackle the Steiner tree problem is to use a greedy approach. At first, no node in the
network is aware of any kind of aggregation. The algorithm starts by carrying out a shortest path
algorithm, with the link cost being equal to the energy efficiency according to Equation 4.22 from
Chapter 4. The aggregation tree is then constructed by adding the best source node, in terms of
efficiency, to the still empty tree (together with all nodes belonging to the appropriate path). In the
next step, each node will again calculate its shortest path to the sink. However, this time, nodes already
belonging to the aggregation tree will cause no energy costs. Thus, in this case, the energy efficiency
is computed by using Equation 6.2 with

Ēei =

0 if i belongs to the aggregation tree,

Eei otherwise.
(6.10)

After each node has determined its new energy efficiency, the next source node not yet covered by the
tree will be added. This procedure is repeated until all source nodes belong to the aggregation tree.
Due to the greedy property of the algorithm, the tree is called greedy increment tree (GIT) [234].

In order to easily construct the GIT in a sensor network, the construction is handled by the network
sink in a centralized fashion. At the beginning, the sink triggers each node, to determine its energy
efficiency like in SEEF and MEEF. After that, it will gather the energy efficiency values from all source
nodes in order to identify the most energy-efficient node. By sending an appropriate add packet to this
node, all nodes along the path will be informed that from that point on they belong to the aggregation
tree. Accordingly to Equation 6.10, these node will then update their energy cost metrics. In the
next round, the sink again will trigger the remaining nodes to calculate their shortest paths until no
uncovered source node remains.

6.4. OTHER AGGREGATION TREE CONSTRUCTIONS 131

Although this approach may be applicable for small sensor networks, it is not suitable for larger
networks as it does not scale with the number of sources. Moreover, changes in the network are not
easy to handle since the aggregation tree must actually be completely rebuilt. However, after it is
constructed, we expect that the GIT will achieve a high energy efficiency: that is why it will be quite
useful for comparison.

6.4.2 Minimum Spanning Tree

The minimum spanning tree may also be a good approximation of the optimal aggregation tree. It is
defined as the tree that covers all nodes in the network with minimum link costs, which can be com-
puted in a centralized manner by the well-known algorithms by Kruskal [136] or Prim [193]. However,
constructing the MST in a distributed fashion is very expensive in terms of packet transmissions and
time, although several approaches exist that have tried to solve this problem [16, 86, 91, 188],

As we are only interested in a performance comparison, we have used the following, centralized
approach: First, we calculated the best paths between all pairs of nodes in terms of energy efficiency.
The efficiency of these paths then served as edge costs for an overlay graph that consists of the sink
as well as of all source nodes. Two nodes in this graph were thus connected by an edge if a path
between them existed in the underlying network. For this overlay graph, the minimum spanning tree
was constructed. In a final step, the edges in the spanning tree were then mapped to corresponding
network paths.

It should be noted that the MST does not consider the energy efficiency on a path towards the network
sink, but rather the energy efficiency between each pair of nodes. Nevertheless, its overall energy
efficiency is expected to provide an almost optimal upper bound.

6.4.3 Steiner Minimum Tree Approximation

Another approximation of the SMT was proposed by Kou et al. [134], which is based on the complete
overlay graph that consists of all source nodes and the sink. The algorithm works in five steps, which
can be shortly described as follows:

1. Based on the shortest paths between all source nodes (including the sink), compute a complete
overlay distance graph G1.

2. Compute a minimum spanning tree on G1 → G2.

3. Replace each edge in G2 by one from G1 with equal cost→ G3.

4. Compute a minimum spanning tree on G3 → G4.

5. Remove all leaves from G4 that are neither the sink nor source nodes.

It has been shown that Kou’s approximation has a cost of at most 2(1 − 1/n)Copt, with n being the
number of source nodes and Copt being the optimal cost of the SMT. However, in our simulation

132 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

setting, the performance achieved by GIT and MST in terms of the end-to-end energy efficiency has
only been improved marginally. Due to its huge computational overhead, we thus excluded it from the
simulations results, which we present in the following section.

6.5 Simulations

Based on the simulation setup used in Chapters 4 and 5, we have simulated the following forwarding
strategies: MEEAF and SEEAF, MEEF and SEEF, MST, GIT, LPT [144], and GIST [125]. While LPT
was implemented as described in [144] and thus relied on a hop-based forwarding strategy, GIST’s
quad-tree construction was slightly improved to take energy efficiency into account: Like in EEF
and EEAF, packets were forwarded to a destination according to the best energy-efficient path found,
which was used to establish the quad-tree. Thus, packets were not forwarded to the sink directly, but
to intermediate nodes that acted as aggregation points. Upon aggregating all packets received from
nearby nodes, these nodes then forwarded the aggregated information further to their own parents
upwards the tree, until the actual network’s sink was reached.

We simulated all forwarding strategies for different network densities and numbers of source nodes.
For each setting, the simulations were repeated 500 times such that each data point in the following
graphs indicates the average value over 500 runs. We assumed that all nodes were aware of their
neighbors’ packet reception ratios and knew whether or not they should act as a source node.

Like in Chapter 5, source nodes then periodically issued data packets, which were forwarded to one
fixed sink node throughout the network. In order to investigate the influence of aggregation, we
assumed that data packets were fully correlated and could be aggregated to one packet without the
need of any extra space. As before, the propagation time on a link as well as the node’s processing
time were neglected. Also, network congestion was not considered. The number of retransmissions
after data packets were discarded was set to three.

6.5.1 Influence of Node Density

The influence of the node density on different performance metrics is shown in Figure 6.3 for a source
fraction α of 20%. Except for the LPT strategy that did not account for any packet reception ratios but
only for the nodes’ residual energy, all strategies achieved quite a high ratio of delivered information.
Since data packets issued by source nodes will probably be aggregated along their forwarding paths,
only one aggregation value might eventually reach the network sink. Thus, rather than depicting
the delivery ratio of issued packets, Figures 6.3(a) and 6.3(b)4 show the average so-called information
delivery ratio, which is defined as the fraction of nodes used to calculate an aggregated value contained
in a packet that finally arrives at the sink. Thus, the information delivery ratio gives an indication on
the accuracy of the aggregation.

4Figure 6.3(b) shows a magnified version of Figure 6.3(a) in order to easier distinguish between the delivery ratios
achieved by the different strategies.

6.5. SIMULATIONS 133

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50

In
fo

rm
at

io
n
 d

el
iv

er
y
 r

at
io

Node density

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(a) Information delivery ratio

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 15 20 25 30 35 40 45 50

In
fo

rm
at

io
n
 d

el
iv

er
y
 r

at
io

Node density

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(b) Information delivery ratio (magnified)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50

M
in

im
u
m

 i
n
fo

rm
at

io
n
 d

el
iv

er
y
 r

at
io

Node density

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(c) Minimum information delivery ratio

 0

 5

 10

 15

 20

 25

 10 15 20 25 30 35 40 45 50

F
o
rw

ar
d
in

g
 p

at
h
 l

en
g
th

Node density

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(d) Forwarding path length

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 15 20 25 30 35 40 45 50

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

m
J]

Node density

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(e) Energy consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 15 20 25 30 35 40 45 50

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Node density

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(f) Energy efficiency

Figure 6.3: Influence of node density (α = 0.2, R = 3)

Except for LPT, which achieved an information delivery ratio of only 25%, the delivery ratios of
all strategies differed by less than 5%. Among these strategies, GIST performed worst because data
packets needed to be sent to intermediate nodes according to the established quad-tree, and could not
be sent to the sink directly. MEEF and SEEF thus performed somewhat better. Unlike GIST, neither
took energy savings due to aggregation into account5. Thus, intermediate aggregation nodes like in

5At least not during the construction of the forwarding tree

134 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

GIST were not required, which led to forwarding paths that were slightly shorter (see Figure 6.3(d)).
As a consequence, the end-to-end delivery ratio of EEF was higher than that of GIST.

However, taking advantage of aggregation a priori improved the ratio of delivered information even
more, as shown in Figure 6.3(b) for EEAF, MST, and GIT. Although those strategies established
the longest forwarding paths (Figure 6.3(d)), they performed best in terms of delivered information.
Though this seems to be odd at a first glance, it turned out that the reception ratios on their forwarding
links were significantly better. Hence, EEAF, MST, and GIT were able to establish mainly short-
distance links, which increased the forwarding path length but at the same time improved the end-to-
end information delivery ratio.

In contrast, EEF explicitly avoided establishing too many short-distance links, for efficiency reasons.
As aggregation is not taken into account by EEF a priori, it was not aware of any energy savings
that could be exploited if packets were sent along aggregation paths. Thus, its calculated energy
consumption would have been substantially higher if forwarding paths had been composed of mainly
short-distance links. On the other hand, EEAF took advantage of that fact. Because source nodes
informed adjacent nodes that they had zero energy costs, they even “attracted” forwarding paths from
their neighborhood. In so doing, longer paths did not worsen the energy efficiency of nearby nodes
but even improved it due to better delivery ratios. This behavior is also shown in Figure 6.3(c), which
depicts the information delivery ratio of the worst-connected source node in the network.

As we have already seen in Chapters 4 and 5, multi-link forwarding is able to further improve the
delivery performance. As shown in Figures 6.3(b) and 6.3(c), this is also true in the case of aggrega-
tion. Both MEEAF and MEEF strategies clearly outperformed SEEAF and SEEF, respectively. At the
same time, multi-link forwarding slightly shortened the average forwarding path length, as shown in
Figure 6.3(d), and caused fewer retransmissions than did single-link forwarding.

Figure 6.3(e) shows the network’s energy consumption for all strategies, averaged over the number
of source nodes. As expected, MST and GIT performed best and consumed the least energy, which
is mainly due to the fact that they relied on the minimum spanning tree, respectively on the greedy
increment tree. The energy consumption of EEAF was only slightly higher, considering the fact that
it operated in a fully distributed way without using global knowledge. On the other hand, LPT per-
formed worst. Much energy was consumed to retransmit data packets, although significantly fewer
nodes were involved in the forwarding of packets. The performance of EEF and GIST was (unex-
pectedly) quite similar. Thus, in this simulation setting, GIST could not benefit from its quad-tree as
expected. Only at high node densities did it consume less energy than did MEEF. However, this might
be different in larger networks, in which the hierarchical approach of GIST could be better exploited.
But nevertheless, as long as the source nodes are known a priori, the group-independent aggregation
tree of GIST is still expected to be outperformed by MEEAF, as well as by SEEAF.

The energy efficiency of each forwarding strategy is depicted in Figure 6.3(f), which illustrates the
trade-off between the information delivery ratio and the energy consumption. As expected, the best
efficiency was achieved by GIT, followed by MST. However, it should be noted that neither strat-
egy can be recommended for use in large sensor networks, which may consist of hundreds or even
thousands of nodes. The overhead spent to establish both aggregation trees will simply be too high.

6.5. SIMULATIONS 135

Nevertheless, they are very suitable for comparison, as they provide an upper bound for other algo-
rithms.

As Figure 6.3(f) shows, among all distributed algorithms considered, MEEAF, as well as SEEAF,
performed best and almost reached the energy efficiency level found in GIT forwarding. Even though
SEEAF was clearly outperformed by MEEAF due to a better delivery ratio and, additionally, lower en-
ergy cost, it showed considerable improvements over EEF and GIST. Because GIST consumed much
energy (caused by its group-independence), it was not able to achieve a significantly better energy ef-
ficiency than did MEEF. However, the worst performance was achieved by LPT, as it suffered heavily
from poor forwarding links that caused both a low delivery ratio and a high energy consumption.

6.5.2 Influence of the Number of Source Nodes

In addition to different node densities, we have also varied the number of nodes that issued data
packets. We considered a network with a density of 30 nodes per maximum transmission range, and
increased the source node fraction α from 0.1 and 1. The simulation results are depicted in Figure 6.4.

The impact on the average information delivery ratio is shown in Figure 6.4(a), respectively in Fig-
ure 6.4(b). The ratio of information delivered by EEF, LPT, and GIST did not change very much, even
though the source fraction varied. This is due to the fact that the tree construction of these strategies
did not depend on the number of source nodes and thus did not change. In contrast, EEAF, MST,
and GIT were able to improve their performance for higher source fractions. More source nodes led
to more aggregation points within the network, which was beneficial for each of them. Thus, if the
number of source nodes increased, sending packets towards a nearby aggregation path that had a better
end-to-end delivery ratio became more efficient, as due to aggregation it consumed less energy. Since
EEF, as well as LPT and GIST, neglected such aggregation gains during the construction of their for-
warding paths, they were not able to take advantage of them. Consequently, they could not benefit
from longer, but better connected forwarding paths.

Although the total energy consumption within the network grew for a higher source fraction (due to
more packets issued), Figure 6.4(c) illustrates that the average energy consumption on a forwarding
path decreased. That is, the larger the number of sources, the larger the aggregation gain per source
node was. The reasons are as before; more sources will increase the fraction of packets that can be
aggregated, thus decreasing the average energy consumption.

A comparison of the energy consumption by all strategies shows a result similar to that in Figure 6.3(e):
GIT, MST, and EEAF performed best, followed by EEF, and GIST. LPT again consumed the greatest
amount of energy. However, for α → 1, we see that EEF almost achieved the same energy consump-
tion as did EEAF. That is due to the fact that if every node acts as a source, data aggregation will also
take place at every node. Thus, the benefit of explicitly forwarding data to a distant aggregation node
almost vanished. As Figure 6.3(e) shows, forwarding data to the sink directly, as done by EEF, then
did not perform much worse.

However, EEAF still performed considerably better in terms of energy efficiency, as is shown in Fig-
ure 6.4(d). Independent of the number of data sources within the network, EEF, GIST, and LPT were

136 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
fo

rm
at

io
n
 d

el
iv

er
y
 r

at
io

Fraction of source nodes

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(a) Information delivery ratio

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
fo

rm
at

io
n
 d

el
iv

er
y
 r

at
io

Fraction of source nodes

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(b) Information delivery ratio (magnified)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

m
J]

Fraction of source nodes

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(c) Energy consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
er

g
y
 e

ff
ic

ie
n
cy

 [
b
it

s/
µJ

]

Fraction of source nodes

MEEAF
SEEAF
MEEF
SEEF
MST
GIT
LPT

GIST

(d) Energy efficiency

Figure 6.4: Influence of the number of source nodes (µ = 30, R = 3)

outperformed. For α→ 1, EEAF almost reached even the upper bound of GIT and MST, which again
achieved the best efficiency.

In conclusion, the simulation results indicate that the forwarding metrics used by EEAF are quite rea-
sonable, showing the desired network performance if the source nodes are known a priori. However,
in the case where source nodes cannot determined beforehand, using GIST or EEF may be a good
alternative, as both performed considerably better than did LPT.

6.6 Experimental Evaluation

Like in Chapters 4 and 5, we also carried out real-world experiments and evaluated the performance
of aggregation in our WSN testbed.

6.6.1 Experimental Setup

The experimental setup was as before. All nodes used a transmission power of 15% and established
forwarding paths according to the strategy being evaluated. Then, five nodes were randomly picked as

6.6. EXPERIMENTAL EVALUATION 137

source nodes, which issued 32-byte data packets at a rate of one packet per round (30 seconds), starting
randomly in time. The maximum number of retransmissions was again set to three. The evaluation
lasted for 100 minutes such that each source sent a total of 200 packets towards the sink.

Upon choosing the source nodes, the network’s sink started to send periodic beacons and thereby
triggered the construction of the aggregation tree (see Section 4.7 of Chapter 4). Again, link measure-
ments had been carried out beforehand in order to get an estimate of the links’ packet reception ratios.
Once all forwarding paths had been established, the actual evaluation started. Data packets were is-
sued by source nodes and sent to the first forwarding node. However, unlike in Chapters 4 and 5, they
were not forwarded immediately but buffered for one round (30 seconds). In so doing, data packets
could first be aggregated and then forwarded to the next hop. Thus, it took some time until the first
aggregation packet had reached the sink.

6.6.2 Evaluation Results

Except for the MST strategy, which was not evaluated due to its high overhead to operate in a dis-
tributed manner, all other strategies were implemented, tested, and evaluated. The results of the ex-
periments, which were repeated ten times, are shown in Table 6.1, by means of average values as well
as appropriate 0.95 t-quantiles.

The first row of Table 6.1 shows the energy efficiency of each strategy, which basically confirms our
simulation results from the previous section. Again, the greedy increment aggregation tree (GIT)
achieved the highest energy efficiency and thus provided an upper bound for all other strategies. The
energy efficiency of MEEAF was only 6% worse than that of GIT, and thus better than those of the
remaining strategies. Also, SEEAF performed better than did MEEF, SEEF, LPT, and GIST. However,
the improvement in EEF’s performance in terms of energy efficiency was only about 6% to 7%. This
is quite different from the simulation results, which showed an improvement of up to 60%. However,
due to the smaller network size, the testbed offered significantly fewer forwarding alternatives than
did the simulation setup. Thus, the benefit of EEAF decreased substantially, as several forwarding
paths were equal to those of EEF.

Similar to the results we obtained by means of simulations, the LPT strategy performed worst and
achieved a poor efficiency. It consumed more than twice the energy spent by EEAF and EEF because
significantly more packet transmissions (tx data) occurred. As in the simulation, LPT suffered from
long-distance but poor forwarding links, which is shown in the last two lines of Table 6.1 by the hop
counter and by the number of retransmissions required. While the forwarding path length of LPT was
around 40% shorter than those of other strategies, the number of retransmissions per link was more
than five times higher. As a consequence, LPT achieved a delivery ratio of only 55%.

The total number of transmitted data packets, averaged over all nodes within the network, is shown in
the second row of Table 6.1. Again, multi-link forwarding caused fewer transmission than did single-
link forwarding, although more control packets needed to be sent to poll backup nodes (tx control).
Thus, backup nodes were indeed useful and were exploited by MEEAF, as well as by MEEF, which
is shown by the average number of received data and control packets (rx data and control). Although

138 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

Strategy MEEAF SEEAF MEEF

Energy efficiency [bits/µJ] 0.8420 [0.6928, 0.9912] 0.8331 [0.6791, 0.9871] 0.7961 [0.6044, 0.9876]
Tx data 98.33 [80.06, 116.60] 101.44 [82.63, 120.26] 112.86 [83.25, 142.47]
Tx control 84.19 [61.29, 107.08] 75.03 [56.25, 93.80] 100.90 [69.20, 132.60]
Rx data 86.29 [60.01, 112.57] 83.86 [60.16, 107.56] 105.06 [67.95, 142.16]
Rx control 110.78 [77.85, 143.71] 87.56 [70.94, 104.17] 130.88 [85.61, 176.16]
Information units delivered 993.10 [980.36, 1005.84] 990.40 [975.86, 1004.94] 989.40 [972.91, 1005.89]
Information units delivered per source 198.62 [196.07, 201.17] 198.08 [195.17, 200.99] 197.88 [194.58, 201.18]
Min. information units delivered 193.30 [180.53, 206.07] 190.60 [176.01, 205.19] 189.40 [172.91, 205.89]
Energy consumption [mJ] 320.08 [260.56, 379.61] 323.07 [264.09, 382.05] 356.64 [263.11, 450.17]
Energy consumption per source [mJ] 64.02 [52.11, 75.92] 64.61 [52.82, 76.41] 71.32 [52.62, 90.04]
Max. energy consumption [mJ] 126.34 [93.39, 159.29] 120.05 [90.16, 149.93] 136.00 [95.88, 176.13]
Hop counter 2.87 [2.47, 3.28] 2.96 [2.48, 3.43] 2.66 [2.37, 2.94]
Retransmissions 0.21 [0.09, 0.33] 0.22 [0.11, 0.33] 0.29 [0.15, 0.43]

Strategy SEEF GIT LPT

Energy efficiency [bits/µJ] 0.7804 [0.5956, 0.9651] 0.8940 [0.7159, 1.0721] 0.1826 [0.0996, 0.2656]
Tx data 113.93 [82.42, 145.43] 95.92 [74.81, 117.04] 297.14 [238.54, 355.74]
Tx control 90.19 [64.78, 115.60] 74.40 [57.48, 91.31] 65.14 [41.51, 88.76]
Rx data 100.12 [65.38, 134.85] 84.40 [61.12, 107.67] 164.14 [107.85, 220.42]
Rx control 101.08 [77.63, 124.53] 84.47 [69.00, 99.94] 85.46 [61.37, 109.55]
Information units delivered 989.60 [973.83, 1005.37] 989.80 [974.40, 1005.20] 553.30 [422.55, 684.05]
Information units delivered per source 197.92 [194.77, 201.07] 197.96 [194.88, 201.04] 110.66 [84.51, 136.81]
Min. information units delivered 189.60 [173.83, 205.37] 189.80 [174.40, 205.20] 10.30 [4.54, 16.06]
Energy consumption [mJ] 363.63 [264.94, 462.32] 305.99 [240.57, 371.41] 896.43 [722.52, 1070.35]
Energy consumption per source [mJ] 72.73 [52.99, 92.46] 61.20 [48.11, 74.28] 179.29 [144.50, 214.07]
Max. energy consumption [mJ] 140.30 [98.75, 181.84] 123.87 [80.97, 166.78] 336.55 [279.69, 393.42]
Hop counter 2.70 [2.41, 2.99] 3.30 [2.75, 3.85] 1.71 [1.52, 1.90]
Retransmissions 0.31 [0.10, 0.51] 0.21 [0.06, 0.35] 1.63 [1.37, 1.88]

Strategy GIST

Energy efficiency [bits/µJ] 0.7806 [0.6308, 0.9304]
Tx data 109.56 [87.41, 131.72]
Tx control 76.68 [54.51, 98.85]
Rx data 85.64 [59.62, 111.65]
Rx control 92.56 [73.25, 111.87]
Information units delivered 991.40 [978.14, 1004.66]
Information units delivered per source 198.28 [195.63, 200.93]
Min. information units delivered 191.40 [178.14, 204.66]
Energy consumption [mJ] 348.35 [279.03, 417.67]
Energy consumption per source [mJ] 69.67 [55.81, 83.53]
Max. energy consumption [mJ] 138.41 [92.88, 183.93]
Hop counter 2.63 [2.30, 2.97]
Retransmissions 0.26 [0.16, 0.36]

Table 6.1: Results of the experimental evaluation (EEAF)

6.7. CONCLUSIONS 139

fewer data packets were sent, more packets were received by forwarding nodes. Furthermore, as
indicated by the hop counter, backup nodes were often closer to the sink. Polling those nodes thus
increased the likelihood of forwarding data successfully. At the same, the number of retransmissions
was reduced.

The remaining rows of Table 6.1 show the amount of delivered information units and the appropriate
energy consumption in the network, as well as the energy consumption caused per source node. Except
for LPT, all strategies performed very well and achieved high delivery ratios. Thereby, the total energy
consumption per source was between 60 and 70 mJ on average; for LPT about 180 mJ. As a result, all
strategies (except for LPT) achieved an energy efficiency of more than 0.78 bits/µJ.

Comparing the results with those presented in Table 4.1 of Chapter 4 illustrates that data aggregation
leads to significant improvements, in terms of the amount of delivered information, consumed energy,
and energy efficiency. For example, the energy efficiency improved more than twofold. However, we
must take into account that the experiments performed in Chapter 4 used a source node fraction of
100%, while Table 4.1 shows the result for only 20% of data sources. Thus, in this experiment, far
fewer packets got lost due to network congestion. Nevertheless, we can conclude that aggregation will
reduce the energy spent on transmissions significantly, which will affect both the packet delivery ratio
and the network congestion beneficially.

6.7 Conclusions

In this chapter, we have analyzed the impact of data aggregation during the forwarding process in a
wireless sensor network. Based on energy-efficient forwarding presented in Chapter 4, we proposed
an extension that takes energy savings due to aggregation into account. In this way, other forwarding
path get selected, improving the information delivery process, the energy consumption, and the energy
efficiency.

The extension of EEF is easy to implement, as only the manner in which energy costs are propagated
needs to be changed. However, care must be taken in order to avoid forwarding cycles. We thus pro-
posed a simple set of sequence numbers which is used to identify outdated information from adjacent
neighbors. In particular, our approach is designed to cover cycles caused by multi-link forwarding,
where several forwarding paths need to be taken into account at the same time. The same set of se-
quence numbers can also be applied for EEF and LEF solely. Although both strategies try to prevent
forwarding cycles by requiring the node’s energy efficiency to be smaller than that of a forwarding
node, cycles may occur as soon as packet reception ratios between nodes start to change. In this case,
sequence numbers can be used similarly to EEAF.

The simulations, as well as the experimental evaluations, have shown that EEAF clearly outperforms
EEF in terms of the information delivery ratio, consumed energy, and energy efficiency. Compared to
the best results achieved by strategies based on a greedy increment tree (GIT) or minimum spanning
tree (MST), EEAF performed very well and almost achieved the same results; the reader should keep
in mind that it is a fully distributed algorithm. As for EEF and LEF, multi-link forwarding again

140 CHAPTER 6. ENERGY-EFFICIENT AGGREGATION FORWARDING

improved single-link forwarding in terms of delivered information as well as energy efficiency. Thus,
MEEAF seams to be a very promising strategy for aggregation scenarios as considered in this chapter.

Nevertheless, a drawback of EEAF is perhaps the condition that source nodes must be known before
the aggregation tree construction can start. Although this might often be possible, there might also be
scenarios in which this information is not available. In this case, the group-independent spanning trees
proposed by GIST seems to be a good alternative6. Although its energy efficiency was not significantly
better than that of EEF, we believe that this will change if the network size increases. However, we
leave this investigation to future work.

In conclusion, we now have a comprehensive framework of forwarding strategies on hand that ac-
counts for energy efficiency, lifetime efficiency, and energy-efficient aggregation. As already men-
tioned earlier, which strategy is most suitable depends on the application scenario. In future work,
LEF could be extended similarly to EEF by an aggregation component that would modify the energy
cost of source nodes appropriately. In so doing, lifetime-efficient aggregation forwarding could be
provided, too.

That concludes our analyses of the forwarding strategies contained in this thesis. In the following
chapter, we will finally consider the potential of topology management in order to conserve energy in
a different way. By putting redundant nodes into a low-power sleep mode, energy will be consumed
only by active nodes, which form a connected overlay network that can be used for communication
purposes.

6If it is extended like in this chapter to account for energy efficiency.

CHAPTER7
A Topology and Energy Control

Algorithm

“The greatest obstacle to discovery is not ignorance,
but the illusion of knowledge.”

– D. Boorstin –

7.1 Introduction

As research in sensor networks has become more and more widespread [11, 67], low-cost hardware
and embedded systems have been enabled by micro-sensor and radio technology advances. As we
have seen, by taking energy efficiency into consideration [127], densely populated sensor networks
consisting of hundreds or thousands of battery-powered nodes are no longer unrealistic. However,
recharging might be impossible due to local conditions or perhaps even inefficient due to low-cost
components. Thus, in order to minimize the energy consumption and extend the network’s lifetime,
algorithms are also required that take advantage of high node densities to exploit available redundancy
while still maintaining the network operable.

In this thesis, we have so far considered energy-efficient algorithms that are tailored to the problem of
data forwarding in order to save energy. Unnecessary transmissions are avoided, either due to forward
error correction, energy-efficient forwarding paths, or due to in-network processing. However, as most
energy is spent on keeping the radio transceiver active [115, 211], even in idle mode, this issue requires
further consideration. Instead of keeping the transceiver on all the time, all sensor nodes could save the
most energy if they turned their wireless communication radios off most of the time. To still maintain
communication through the network, it is necessary that either some or all nodes wake up periodically
or at certain times. Alternatively, it is also possible that a small number of nodes is prevented from
turning their radios off at all. It is quite challenging to make sure that the network is not partitioned.
The decision as to which nodes may sleep and which nodes must be awake is the task of the topology
control or topology management that is tackled in this chapter.

142 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

In the following, we will present a new topology and energy control algorithm called TECA that
(i) extends the network’s lifetime by putting nodes into sleep mode (radio is turned off), and (ii) still
guarantees network connectivity. We will show by means of simulations that our algorithm saves more
energy than other approaches and additionally minimizes packet losses by considering link qualities
appropriately. Furthermore, network partitions are effectively avoided.

The structure of this chapter is as follows: In the next section, we first outline related work. After
that we describe TECA in its basic functions and discuss some details in Section 7.3. An exploration
of different parameter settings of TECA is provided in Section 7.4. A comparison with two other
topology management approaches is presented in Section 7.5 by means of simulations. Section 7.6
contains an evaluation of real-world experiments. Finally, the chapter ends with concluding remarks
in Section 7.7.

7.2 Related Work

Several energy-aware approaches have been proposed in the literature. In addition to the work de-
scribed in Chapters 4 to 6, adaptive MAC layer protocols like S-MAC [270], T-MAC [241] and
WiseMAC [81] allow nodes to turn their radios off if they are not participating in communication.
All of these protocols direct their major focus to reducing idle listening by introducing a duty cycle.
In S-MAC, time is slotted in relatively large time frames consisting of an active and a sleep cycle.
Only in the active cycle are data transmissions possible. During the sleep cycle, the radio is turned
off to save energy. The length of the active cycle is fixed, whereas the sleep time is under the control
of the application. As a consequence, nodes must listen to the channel during the entire active phase,
even if no transmissions are detected. T-MAC improves this situation by introducing a timeout value
TA that determines the length of the active cycle. If a node detects activity on the channel after the
timeout (data transmissions or collisions), it resets the timer. Otherwise, it will assume that the channel
is idle and will go to sleep. Unlike S-MAC and T-MAC, WiseMAC is based on preamble techniques,
while active and sleeping phases are not synchronized among nodes. Rather, each node informs its
neighbors about its own wake-up time. With this knowledge, another node that has data to send just
starts the transmission at the right time with a wake-up preamble.

In addition to energy-efficient MAC layer protocols, there exist several algorithms in the literature re-
garding topology control or topology management. Typically, two different approaches can be distin-
guished: (i) power control algorithms that minimize the node’s transmission power, and (ii) topology-
based approaches that build a backbone of active nodes, which perform data forwarding while all other
nodes turn their radios off. Both approaches are orthogonal to the above-mentioned energy-efficient
MAC protocols and can be combined easily.

The goals of power control approaches are to minimize interference, packet collisions and retransmis-
sions, as well as to improve spatial reuse1 [235, 268]. Ramanathan et al. [197] present two algorithms
that maintain connectivity in the network by adjusting the maximum transmission power of a node.
Both algorithms are centralized and based on global knowledge. Li et al. [151, 152] propose LMST,

1Spatial reuse refers to the scheduling of multiple (mutually non-interfering) transmissions simultaneously.

7.2. RELATED WORK 143

where each node builds a minimum spanning tree based on local information. The authors prove that
their topology control algorithm preserves network connectivity, while the node degree is bounded by
six. Furthermore, the constructed topology can be transformed into a bidirectional one by removing all
uni-directional links without affecting connectivity. While the algorithm is limited to homogeneous
networks, Li and Hou extend their approach in [150] to heterogeneous networks where nodes may
have different maximum transmission ranges.

Another approach that relies on the number of adjacent neighbors is proposed by Blough et al. [27].
In k-Neigh, each node adaptively decreases its transmission power until just k symmetric links to
adjacent nodes remain. Using distance estimates, the k nearest neighbors are determined that then
control the node’s transmission power. The authors prove that their algorithm terminates after a total
of 2n messages have been exchanged, with n being the number of nodes in the network. Also, they
give an estimate for k that achieves connectivity with high probability. Interestingly, the value of k
is only loosely dependent on the number n of nodes. Thus, knowledge about an exact value for n is
not necessary. However, implementing k-Neigh in practice requires the ability to make good distance
estimates, which is not always possible.

Although many approaches claim to reduce interference by means of the spareness of the network as a
result of power adjustment, Burkhart et al. [33] disprove this implication. They propose interference-
minimal connectivity-preserving and spanner constructions. However, power control approaches may
improve the network’s capacity by reducing interference, but in terms of energy efficiency, their sav-
ings will likely be marginal compared to those achieved by reducing idle listening [213]. In contrast
to power control, topology-based approaches exploit the fact that in densely populated networks many
nodes will be redundant. By turning the radios of these nodes off, a topology of active nodes is
constructed. Because idle listening is omitted, those approaches will likely yield much better energy
conservation.

Xu et al. [262] have proposed geographic adaptive fidelity (GAF), a topology control protocol that
uses the geographic positions of nodes to subdivide the sensor network into virtual grid cells. The
cell size of the grid is chosen such that all nodes in one cell are able to communicate with all other
nodes in adjacent cells. Given a transmission range r, the cell size a is equal to r/

√
5. Since from

a routing perspective nodes in the same grid cell are considered equivalent, just one node needs to
be active with its radio turned on, while all other nodes may sleep. In so doing, GAF exploits the
redundancy in the network and prolongs the network’s lifetime with increasing node density. To
balance the energy consumption, sleeping nodes periodically wake up and rotate the role of the awake
node among themselves. Since GAF assumes that each active node can communicate with all nodes
in adjacent cells, the network is assumed to remain connected by the built backbone topology, i. e.,
there will be no more partitions than in the underlying raw topology. However, this assumption does
not always hold true in reality, where nodes might experience high packet losses. Furthermore, the
geographic information GAF relies on is not always available.

Similar to GAF, Ye et al. [269] have proposed PEAS, a robust energy-conserving protocol for long-
lived sensor networks. However, no geographic information is required. Instead, nodes use two
transmission powers for the communication within a transmission range rt and a probing range rp.
Like grid cells in GAF, only one node per probing range has to be turned on all the time, while all

144 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

other nodes sleep. For rt ≥ (1 +
√

5)rp, PEAS then achieves asymptotic connectivity, using the same
assumptions as GAF.

Span [54, 55] is another protocol that builds a topology backbone composed of forwarding “coordi-
nators”. It attempts to preserve the network’s original capacity and connectivity while reducing its
energy consumption. The node’s decision to become a coordinator depends on its residual energy
and its surrounding neighborhood. For example, a node will become a coordinator if it is able to
connect two other coordinators that were not yet connected. Like in GAF and PEAS, nodes will pe-
riodically wake up to balance the energy consumption, but will sleep if they are redundant regarding
the forwarding backbone.

TMPO [21] has many concepts in common with Span. However, its focus is on efficient communi-
cation rather than on energy conservation due to sleeping nodes. Based on a minimal dominating set
(MDS), a backbone topology is constructed by transforming the MDS into a connected dominating
set (CDS) [93]. TMPO uses the concept of clustering [10, 104] to build the MDS. By introducing
gateways and doorways, these clusters get connected in the CDS, guaranteeing network connectivity.
A similar approach termed cluster-based energy conservation (CEC) is presented in [260].

Nikaein and Bonnet [183] emphasize a similar motivation and focus on the routing performance. They
propose an algorithm that constructs a routing topology based on a forest. Each tree in the forest forms
a zone that is maintained proactively. In so doing, the network can be seen as a set of non-overlapping
zones, which are linked by extracting the best nodes in terms of connectivity. The authors have shown
that the routing performance is significantly improved with the help of topology management, in terms
of packet delivery ratios as well as delays.

Dousse et al. [77] consider networks where nodes switch between on and off modes independent of
each other. Since the on/off schedules are completely uncoordinated, the network might be discon-
nected most of the time. Assuming a store-and-forward routing mechanism, data is sent from nodes
to a sink. Under some simplifying conditions, the maximum latency and variance are bounded. More-
over, the latency grows linearly with the distance between a node and a sink, depending on the node
density, the connectivity range, and the duration of active and sleep periods.

Also putting nodes to sleep, ASCENT [50] builds a topology relying on the number of neighbors a
node has discovered. However, only those nodes whose packet losses are below a given threshold
are considered to be neighbors. The neighbor threshold NT determines whether or not a node will
join the backbone topology. If the node’s number of neighbors is smaller than NT , the node will
become active with its radio turned on. Otherwise, ASCENT will assume that there are enough active
neighbors maintaining connectivity, and the node will switch to a passive state. Although passive
nodes do not join the backbone topology, they still overhear packet transmissions. If the number
of neighbors drops below NT , or active nodes send help messages indicating poor link qualities to
adjacent nodes, a passive node will revert to the active state. Since ASCENT attempts to prolong the
network’s lifetime, each node will have a passive timeout after it goes to sleep and turn off its radio.
In addition, there will be a sleeping timeout after sleeping nodes have moved back to the passive state
again. However, due to the simplicity of ASCENT and the fact that it mainly relies on the number of
active neighbors, there might be situations where the network is partitioned.

7.3. THE TOPOLOGY AND ENERGY CONTROL ALGORITHM 145

Like ASCENT, Naps [98] bounds the node degree in the constructed topology. While ASCENT tries
to achieve a stable system, Naps puts nodes to sleep faster and more aggressively. Simulations show
that most of the nodes are part of the largest connected component, but several distinct partitions
are not unlikely. Similar to Naps, AFECA [261] puts nodes into sleep mode, with the sleeping time
being related to the number of neighbors. Hence, each node must have an accurate knowledge of its
neighborhood’s size.

Gupta et al. [103] studied the problem of the minimum connected sensor cover: In response to a query,
the network is self-organized into a logical topology that involves only a small subset of sensor nodes
that are sufficient to process the query. Other nodes do not participate during the query execution and
thus are able to save energy. However, they must not necessarily turn their communication radios off.
The minimum connected sensor cover then describes the minimum subset of nodes that are connected
and that cover the region specified in the query. Of course, it will be more beneficial to construct the
topology if the query runs sufficiently long. Otherwise, the communication cost of constructing the
topology may not be amortized by its energy savings.

Schurgers et al. [214] propose STEM, a topology control protocol where nodes are equipped with a
second radio channel for paging. The paging channel operates on a lower frequency and with less
bandwidth in order to conserve energy. In idle operation, nodes will shut down their main radios,
while their second radios will remain active all the time. In case packets need to be forwarded, the
paging channel will be used to turn the main radio on to enable data communication.

In contrast to related work, we present a topology-based approach without the need of a second com-
munication radio or the knowledge of geographic information. Unlike most of the proposed algo-
rithms, our simulations are based on a realistic connectivity model, which considers different packet
reception ratios rather than using a simplified unit disk graph. We assume that all nodes will be
battery-powered and will have the same transmission range. Mobility is not taken into account since
we assume that most applications will rely on static sensor network.

7.3 The Topology and Energy Control Algorithm

Before we compare our approach with GAF, ASCENT, and a randomized algorithm called RAND in
Section 7.5, we shall first describe the basic concept of the algorithm and discuss some basic features.

7.3.1 Basic Concept

Our proposed topology and energy control algorithm (TECA) is motivated by a classic clustering
approach. Clustering the network means that each node is assigned to a cluster of nodes in which
one master node acts as the cluster head. The cluster head is responsible for all its assigned nodes
and might perform special application tasks, like handling data aggregation, controlling access to
the medium, or providing routing-related functions. Once the network has been divided into several
clusters, TECA will select some nodes to act as bridges between two or more clusters. In this way, the
entire network gets connected.

146 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

As shown in Figure 7.1, a sensor node can be in one of five states: initial, sleeping, passive, bridge, or
cluster head. After a node is powered on, it will be in the initialization state with its radio turned on
until a timer Ti expires. In this state, nodes overhear packet transmissions, build a neighborhood table,
and measure link qualities to adjacent nodes. After time Ti has elapsed, a node will change its state to
passive. Like in the initialization state, passive nodes overhear ongoing packet transmissions and keep
their neighborhood tables up-to-date. Additionally, in the case of network disconnections, they will
become active, either as a cluster head or a bridge. Otherwise, they will stay passive for a time Tp until
they will go to sleep to save energy. We refer to a node as sleeping if it has turned its communication
radio off. Other energy-consuming components like sensing and processing units may still be turned
on.

Cluster
head Initial

Tc
Ti

Ts

Tp
Bridge SleepingPassive

Figure 7.1: TECA’s state transitions

Since TECA conserves energy by putting redundant nodes to sleep, a major challenge is to maintain
connectivity in the network. Of course, a node with information about all nodes and the links between
them has the ability to build a well-connected topology. However, TECA should be self-configuring
and should work in a distributed and localized fashion. Therefore, after clustering the entire network,
TECA maintains connectivity by selecting bridges that connect different clusters. We will describe
the cluster head and bridge selection process in detail in the next section. In addition to maintaining
network connectivity, TECA tries to select as few nodes as possible. Furthermore, it explicitly con-
siders link qualities by measuring the links’ packet delivery ratios, as packet losses are very common
due to low-power radios, reflections, attenuation, and multipath/fading effects.

7.3.2 TECA in Detail

The topology built by TECA is based on neighborhood information that nodes exchange periodically.
These beacons will be broadcast by non-sleeping nodes each time an announcement timer Ta ex-
pires. Beacons contain the node’s id, state, residual energy, a timeout value, and 1-hop neighborhood
information. However, only information about active neighbors, i. e., cluster heads and bridges, are in-
cluded in the packet. To identify asymmetric links and to provide other nodes with link qualities, link
loss information for each active neighbor is added. This information is based on local measurements
and is adapted by exponential smoothing over time. Since packet loss may be different depending
on the transmission direction, both directions are considered independently. Thus, we can identify
asymmetric links through a difference in packet loss that exceeds a predefined threshold.

7.3. THE TOPOLOGY AND ENERGY CONTROL ALGORITHM 147

While a node is in the initialization state, it will only sends beacons every announcement time. After
it has changed its state to passive, it will first set a passive timer Tp, after which it will turn its commu-
nication radio off and sleep to save energy. As long as a node is not sleeping, it will check its current
state each time it receives or must send an announcement packet. The corresponding CheckState(n)
function is shown in Algorithm 7.1.

Algorithm 7.1 CheckState(Node n)
1: if IsCluster(n) then
2: if n.state 6= clusterhead then
3: n.state← clusterhead
4: set cluster head timer Tc
5: end if
6: else if IsBridge(n) then
7: if nstate 6= bridge then
8: n.state← bridge
9: end if

10: else
11: if n.state 6= passive then
12: n.state← passive
13: set passive timer Tp
14: end if
15: end if

Once a node has lost its cluster head and decided to be a cluster head itself, function IsCluster(n)
will return true. Otherwise, the node will verify that it should be active to connect different clusters
based on its 2-hop neighborhood information. If function IsBridge(n) also returns false, the node will
change to (or stay in) the passive mode. We now consider both functions in more detail in the next
two sections and describe how the cluster as well as the bridge selection process is performed.

Cluster Head Selection

The clustering selection process works as follows: As long as a node is not assigned to a cluster, it
is a potential cluster candidate itself, which the node will propagate to its neighborhood. By using
a predefined performance metric, e. g., residual energy, the best suitable node can be found, i. e., the
node with the best cluster selection value. Eventually, that node will become a cluster head. All
other nodes in the cluster head’s 1-hop neighborhood will be assigned to it, and will no longer be
cluster head candidates. With that mechanism, any node will finally either be a cluster head itself or
be assigned to one.

Figure 7.2 depicts a possible cluster formation for a sample sensor network with five cluster heads.
Each cluster is indicated by a circle around the cluster head that is equal to its radio transmission
range. Although some nodes are within transmission range of more than one cluster head, they are
assigned to just one cluster. Later, these nodes might become potential bridges (or bridge candidates)
to connect two or more clusters with each other.

148 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

1

2

4

3

5

Figure 7.2: TECA’s cluster formation

After the cluster selection process, adjacent cluster heads will be at most three hops apart, i. e., starting
from an arbitrary cluster head, another one can be reached in at most three hops.

PROOF. Assume that there are more than two nodes between a cluster head 1 and another cluster head
2 as shown in Figure 7.3(a). Consider the node i that is two hops away from cluster head 1. Since
this node is not a cluster head itself (otherwise, node 1 would reach another cluster head in fewer than
three hops), it must be assigned to an additional cluster 3 that must be within its 1-hop neighborhood,
as shown in Figure 7.3(b). Thus, starting from cluster head 1, another cluster head can be reached over
node i in at most three hops. �

i

i

1 2

3

1 2

(a)

i

i

1 2

3

1 2

(b)

Figure 7.3: Illustration of the number of hops between adjacent clusters

After a node has been selected as a cluster head, it will set a cluster timer Tc, during which it will not
change its state. Due to load and energy balancing, it will try to find another cluster it could join to if
Tc expires. The running time of Tc is defined as

Tc = min{α, li} · Liniti , (7.1)

with α ∈ [0 . . . 1] being the cluster timeout factor, Liniti being the initially assigned energy in time
units, and li being the fraction of node i’s residual energy (lifetime).

The algorithm of the cluster head selection is shown in Algorithm 7.2. First, the best cluster head with
respect to residual energy is determined from among all 1-hop neighbors. Note that we only consider
neighbors with a packet loss rate below a predefined loss threshold LT . In the case of indecision

7.3. THE TOPOLOGY AND ENERGY CONTROL ALGORITHM 149

regarding the nodes’ energy values, we use the node’s id as a tie breaker. If no existing cluster head
is found, the node will become a cluster head itself. However, if the node is already a cluster head
and has found another one whose cluster timeout timer has not expired and whose residual energy is
higher, it will change its state and become part of the newly-found cluster.

Algorithm 7.2 IsCluster(Node n)
1: if n.state = clusterhead ∧ time < n.Tc then
2: return true
3: end if
4: c← null
5: for all Neighbors m ∈ N : 1− prrn,m · prrm,n ≥ LT do
6: if m.state = clusterhead ∧ m.Tc < time then
7: if !c ∨ m.energy > c.energy ∨ (m.energy = c.energy ∧ m.id < c.id) then
8: c← m
9: end if

10: end if
11: end for
12: if !c ∨ (n.state = clusterhead ∧ (n.energy > c.energy ∨

(n.energy = c.energy ∧ n.id < c.id))) then
13: c← n
14: end if
15: return c.id = n.id

Bridge Selection

The next step after decomposing the entire network into clusters is to select bridge nodes to connect
clusters to each other. Other nodes that are neither cluster heads nor bridges will turn their radios off
and sleep without participating in any network communication. However, the cluster heads to which
sleeping nodes have been assigned are responsible for them. For example, cluster heads may store
and forward data packets to sleeping nodes as soon as these wake up. If sleeping nodes have detected
an event that should be forwarded, e. g., to a network sink, they can wake up immediately and send
their data to the cluster head, which forwards the data on to the sink. As every node is assigned to a
cluster head, which in turn maintains connectivity to the sink, local events can thus be propagated and
processed at any time.

After the cluster head selection process, all non-cluster heads will remain passive until their passive
timers Tp expire. During this phase, they will listen to announcement packets for their neighbors.
If a passive node is aware of the existence of more than one cluster, that node will become a bridge
candidate.

Determining which of these nodes will become bridges is a great challenge. There are three main
requirements that should be taken into account: Bridges must connect different clusters in an optimal
way, i. e.,

1. the packet reception ratio between clusters should be maximized,

2. the connection should be long-lived, and

150 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

3. the number of selected bridges should be minimal to prolong the entire network’s operational
lifetime.

The basic idea of our bridge selection algorithm is to consider a node’s 2-hop neighborhood as a graph
with different link costs. Then, we compute the minimum spanning tree (MST) of the graph, but only
take virtual links between cluster heads into account. Virtual links are composed of one or maybe
several nodes that connect cluster heads in the best way with respect to the above requirements. Thus,
a virtual link is the best path for connecting two cluster head with each other. Figure 7.4 shows an
example in which all five cluster heads are connected by such virtual links.

1

2

4

3

5

Figure 7.4: Virtual cluster links in TECA

To reflect both the link’s packet reception ratio and its lifetime, link costs are introduced. Later we will
additionally use a penalty cost to minimize the number of active nodes. The packet reception ratios
of virtual links are computed as follows: Given a virtual link containing k nodes n1 . . . nk, with n1

and nk being cluster heads, let prri, 1 ≤ i ≤ k, be the packet reception ratio between n1 and ni and
prri−1,i, respectively prri,i−1 the reception ratio between two successive nodes. We then define prri
as

prri =

1 i = 1,∏i
j=2 prrj−1,j · prrj,j−1 i = 2 . . . k.

(7.2)

Thus, the virtual link’s packet reception ratio is defined as prrk2.

Also, the lifetime of a virtual link is defined as lifetimek with

lifetimei =

li i = 1,

min{lifetimei−1, li} i = 2 . . . k,
(7.3)

where li is the node’s residual energy fraction.

2Note that prrk is defined as the product of the links’ packet reception ratios regarding both directions in order to reflect
successful transmissions of data packets and acknowledgements.

7.3. THE TOPOLOGY AND ENERGY CONTROL ALGORITHM 151

Then, the cost of a virtual link is defined as a priority function f that combines the link lifetime and
packet reception ratio as

ci = 1− f(prri, lifetimei). (7.4)

We will investigate this priority function in the next section in more detail.

Figure 7.5 first shows one possible mapping between virtual links and activated nodes - the bridges.
Of course, more bridges than necessary have been selected than if we had computed the global MST
on the entire network. However, note that all nodes just have a localized view of the network and thus
are only able to take 2-hop neighborhood information into account.

1

2

4

3

5

Figure 7.5: Built topology

The appropriate bridge selection algorithm is shown in Algorithms 7.3 and 7.4. First, let us have a
look at the IsBridge(n) function. If a node n already acts as a cluster head with its cluster timer Tc
still running, the node will not change its state. Furthermore, if the node has discovered fewer than
two clusters in its 2-hop neighborhood N2, it will not have to be active. Otherwise, using function
BuildTopology(n), the node will build a minimum cluster spanning tree (MCST) that consists of all
cluster heads and bridges known. The set MCSTN will then contain all neighbors that should be ac-
tive in order to build the backbone topology, i. e., cluster heads and bridge nodes. Thus, IsBridge(n)
will return true if MCSTN contains node n.

The MCST built in Algorithm 7.4 relies on a priority search on the neighborhood graph [63]. Nodes
that are dead, i. e., without any residual energy, or are asleep are not considered. The crucial point of
the algorithm is that the MST is not constructed with respect to all nodes but just to cluster heads, i. e.,
by considering virtual links only. In order to obtain the MST, we employ a heap, which implements
a priority queue to find the next node with a minimum cost, starting at an arbitrary cluster head.
The node’s cost, as a combination of packet reception ratio and lifetime, is computed according to
Equation 7.2, 7.3, and 7.4.

The virtual links are then established by using the set virtual link of node n. Each time a new cluster
head is visited, all nodes along the virtual link are added to MCSTN . In addition, the appropriate
node is marked (with cost equal to −∞) and its reception ratio, lifetime, and virtual link set are reset.

152 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

Algorithm 7.3 IsBridge(Node n)
1: if n.state = clusterhead ∨ |{Nodes m ∈ N2 : m.state = clusterhead}| < 2 then
2: return false
3: end if
4: MCSTN ← BuildTopology(n)
5: return n ∈MCSTN

Algorithm 7.4 BuildTopology(Node n)
1: for all Nodes m ∈ N2 ∪ {n} do
2: m.cost← (m.state ∈ {sleeping, dead}) ?−∞ :∞
3: m.virtual link ← {m}
4: end for
5: MCSTN ← ∅
6: for all Nodes m ∈ N2 : m.state = clusterhead do
7: if m.cost 6= −∞ then
8: m.lifetime← m.energy
9: m.prr ← 1

10: MCSTN ←MCSTN ∪ {m}
11: queue.push(m,−∞)
12: repeat
13: v ← queue.pop()
14: if v.state = clusterhead ∧ v.cost 6= −∞ then
15: MCSTN ←MCSTN ∪ v.virtual link
16: v.lifetime← v.energy
17: v.prr ← 1
18: v.cost← −∞
19: v.virtual link ← {v}
20: end if
21: for all Neighbors w ∈ N1

v : w /∈ v.virtual link do
22: if w.cost 6= −∞ then
23: l← min{v.lifetime,w.energy}
24: prr ← v.prr · prrv,w · prrw,v
25: prr ← (1− prr < LT) ? ε : prr
26: c← 1− f(prr, l)
27: if c < w.cost ∨ (c = w.cost ∧

Cmp(v.virtual link ∪ {w}, w.virtual link) < 0) then
28: w.lifetime← l
29: w.prr ← prr
30: w.cost← c
31: w.virtual link ← v.virtual link ∪ {w}
32: queue.update(w, c)
33: end if
34: end if
35: end for
36: until !queue.empty()
37: end if
38: end for
39: return MCSTN

7.3. THE TOPOLOGY AND ENERGY CONTROL ALGORITHM 153

After visiting node v, its 1-hop neighborhood N1 is processed. However, nodes that are already
contained in v’s virtual link set are skipped to avoid loops. For all other nodes, the nodes’ costs are
computed according to Equation 7.4.

In order to get a well-connected topology, the reception ratio of a virtual link will artificially decrease
if its loss rate is higher than LT . In this case, the reception ratio will be set to a predefined value ε with
0 < ε � 1. In so doing, other virtual links may be preferred even if their costs (possibly influenced
by the lifetime) may actually be worse.

If an adjacent node w is reachable over node v with lower cost, w’s variables lifetime, prr,
virtual link, and cost will be updated. Additionally, the heap will be updated. Should both costs
be the same, the virtual link will be used as a tie-breaker. Therefore, function Cmp(link1, link2)
compares two virtual links, returning minus one if the former is better, i. e., if

1. |link1| < |link2|, or

2. |{n ∈ link1 : n.state = {clusterhead, bridge}}| >
|{m ∈ link2 : m.state = {clusterhead, bridge}}|, or

3.
∑

n∈link1 n.energy >
∑

m∈link2 m.energy, or

4. minn∈link1∧n/∈link2{n.id} < minm/∈link1∧m∈link2{m.id}.

Note that the node’s cost mainly depends on the priority function f , which we consider in the next
section in more detail.

PRR Lifetime Model

The priority function f uses two parameters, the packet reception ratio and a lifetime factor. Based
on both values, it determines the node’s priority expressed as a value within [0..1]. The higher the
priority, the higher the probability to visit the appropriate node next. Certainly, there are many possible
functions that would fulfill this requirement. We propose a two-dimensional linear function controlled
by two parameters α and β, which is defined as

f(prr, lifetime) = prr [(1− α) · lifetime+ α] + (1− prr) · β · lifetime. (7.5)

In Figure 7.6, the priority function is plotted for some α, β pairs. Changing the parameters α and β
influenced the weighting of prr and lifetime. For example, a topology just based on residual energy
will be achieved by using α = 0, β = 1. On the other hand, α = 1, β = 0 will lead to a topology
optimized in terms of packet loss. Note that these cases can also be achieved by using a simpler linear
combination like γ · prr+ (1− γ) · lifetime, respectively by using α = γ and β = 1− γ. However,
satisfying the following requirements would then not be possible:

1. Nodes with a reception ratio close to zero as well as

154 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

p
ri

o
ri

ty

prr

lifetime

(a) α = 0, β = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

p
ri

o
ri

ty

prr

lifetime

(b) α = 1, β = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

p
ri

o
ri

ty

prr

lifetime

(c) α = 0, β = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

p
ri

o
ri

ty

prr

lifetime

(d) α = 1, β = 1

Figure 7.6: Priority function f with different α, β values

2. nodes with little residual energy should be considered worthless3.

But if we set α = 0, β = 0, the priority function will exactly express the desired behavior, as shown in
Figure 7.6(c). In Section 7.4, we will later investigate the influence of different α, β values by means
of simulations and evaluate how the performance of TECA is affected.

Penalty Cost

As described above, the third requirement of the bridge selection process is to minimize the number
of selected bridges to save as much energy as possible. For example, consider the sub-graph depicted
in Figure 7.7. If we take only the link loss (depicted as weights on each link) into account and neglect
the link lifetime, all nodes 6, 7, and 8 will be selected as bridges. The MCST will then contain link
(2, 7, 3) with cost (packet loss) 0.0 and link (2, 6, 8, 4) with cost 0.1. However, if we also take the
energy consumption into account and accept higher link costs, link (2, 7, 8, 4) could be an alternative
since node 6 then could sleep. Thus, the main question is how to tackle both cases.

3In this context, the term “worthless” means that the node’s priority should be zero such that other nodes will be
preferred regarding the constructed topology.

7.3. THE TOPOLOGY AND ENERGY CONTROL ALGORITHM 155

1

2

4

3

5

6

7

8

0.0
0.0

0.0

0.1
0.0

0.30.8 0.2

Figure 7.7: Topology showing different link costs

We will handle this situation by introducing a penalty cost. The idea is to penalize all nodes that are
not yet part of the backbone topology. For example, consider Figure 7.7 again. Assuming the bridge
selection algorithm shown in Algorithm 7.4 starts in node 2, link (2, 7, 3) will be the first virtual link
added to MCST because all nodes 6, 7, and 8 will cause penalty costs. Next, node 7 will become (or
remain) active and will later be preferred over other nodes, i. e., it will no longer be penalized. Then,
depending on the used penalty value PV , link (2, 7, 8, 4) might have a lower cost than link (2, 6, 8, 4),
despite a lower packet reception ratio.

We compute the penalty cost of a virtual link as follows: Given a virtual link containing k nodes
n1 . . . nk, with n1 and nk being cluster heads, let penaltyi be assigned to node ni with 1 ≤ i ≤ k.
With PV denoting the penalty value (0 ≤ PV < 1) and specifying 0 < ε � 1, the penalty cost on
the link from node n1 to ni is defined as

penaltyi =

ρi i = 1,

penaltyi−1 + (1− penaltyi−1) · ρi i = 2 . . . k,
(7.6)

with

ρi =

ε+ PV ni 6= {clusterhead, bridge} ∨ (ni = {clusterhead, bridge} ∧ ni /∈MCSTN),

ε otherwise.

Then, the cost function defined in Equation 7.4 changes to

ci = ωi + (1− ωi) · penaltyi, (7.7)

with ωi = 1− f(lifetimei, lossi) and i = 2 . . . k.

The constant ε is used to penalize longer links in terms of hops. Furthermore, passive nodes will
always receive penalty costs until they become active. For example, consider node 6 in Figure 7.7. If
PV is high enough that link (2, 7, 8, 4) has been added to MCST, node 6 will become a sleeping node.
However, in this case, another problem may occur. If node 7 is aware of another link outside the scope
of node 6 which connects cluster heads 2 and 3 better than link (2, 7, 3), it may not become active at

156 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

all if it chooses link (2, 6, 8, 4) to connect clusters 2 and 4. Consequently, node 6, as well as node 7,
goes to sleep.

Hence, just adding a penalty cost to Algorithm 7.4 could lead to disconnected clusters depending on
the order in which nodes are added to MCST, or more precisely depending on the order in which
already activated nodes like cluster heads and bridges are added to MCST. Since the topology is com-
puted in a distributed fashion, each node likely builds the MCST on different sub-graphs representing
the node’s 2-hop neighborhood. Thus, we cannot guarantee that for each node Algorithm 7.4 will start
with the same cluster head, which might lead to different MCSTs.

For example, consider Figure 7.7 again. Let PV be 0.2, and the amount of residual energy be neg-
ligible. Furthermore, let us assume that nodes 6, 7, and 8 are bridges, and that the bridge selection
algorithm of node 6 starts at cluster head 2, and that of node 7 at cluster head 4. First, let us consider
the MCST computed by node 6. Because link (2, 7, 3) has minimal cost, it will be added to node 6’s
MCST first. As node 7 should be a bridge, it will not receive a penalty cost. Thus, link (3, 7, 8, 4) is
better than link (2, 6, 8, 4), and it is added next. That terminates the algorithm, with node 6 becoming
passive.

The MCST of node 7 is built as follows: Since the bridge selection algorithm starts at node 4, link
(4, 8, 6, 2) will be added first. However, the next best link will then be (4, 8, 3). Thus, node 7 will
assume that it is redundant and become passive. Hence, in the end, both nodes 6 and 7 will be passive,
likely resulting in a partitioned network.

As we have seen, the graph’s traversal order is crucial and may lead to different MCSTs if link/node
cost changes during the traversal. Therefore, we propose the following algorithmic approach:

1. Search for the best virtual link in the graph, i. e., the link with the minimum cost.

2. Add that link to MCST.

3. Now search for the next best virtual link in the graph that is not yet contained in MCST.

4. If such a link exists, go back to step 2. Otherwise, terminate.

In this way, we can enhance Algorithm 7.4 by using the cost function defined in Equation 7.7. The
extended bridge selection algorithm is shown in Algorithms 7.5 and 7.6. Set MCSTL contains the
selected MCST’s links, whereas MCSTN contains the selected nodes. Then, the MCST is built up
successively. Virtual links are added to MCSTL according to their link costs, starting with the best
link. The algorithm will terminate if no further link can be found, i. e., the MCST is complete. The
number of times the priority search function will be called is bounded by M − 1, where M denotes
the number of cluster heads, because MCSTL contains at most M − 1 virtual links.

Referring to the last example, now both nodes 6 and 7 will add link (2, 7, 3) to MCST first, independent
of the traversal’s starting point. Afterwards, link (2, 7, 8, 4) will be added next, as node 7 has already
been selected and thus does not receive a penalty cost. Consequently, only node 6 will become passive,
while node 7 will stay in its bridge state.

7.3. THE TOPOLOGY AND ENERGY CONTROL ALGORITHM 157

Algorithm 7.5 BuildTopology(Node n)
1: MCSTN ← {Nodes m ∈ N2 : m.state = clusterhead}
2: MCSTL ← ∅
3: repeat
4: best link ← PrioritySearch(n,MCSTN ,MCSTL)
5: if best link 6= ∅ then
6: MCSTN ←MCSTN ∪ best link
7: MCSTL ←MCSTL ∪ {best link}
8: end if
9: until best link = ∅

10: return MCSTN

Sleeping Timeout

After cluster heads and bridge nodes have been selected, all remaining nodes will stay passive until
their passive timers Tp have expired. The intuition behind passive nodes is the ability to react to
changes in the neighborhood before nodes go to sleep. For example, until the topology has reached a
stable state, nodes that have already been activated might become passive again, requiring other nodes
to be active instead.

If Tp expires, a passive node will go to sleep and will wake up (at last) at the cluster timeout to
participate in rebuilding the topology. However, if only the timeout of the assigned cluster head is
considered, network partitions may result. For example, Figure 7.8 shows a topology of five nodes. Let
nodes 1 and 3 be cluster heads, node 2 be a bridge, and nodes 4 and 5 be sleeping nodes. Furthermore,
let node 4 be assigned to cluster 1, and nodes 2 and 5 be assigned to cluster 3. Assuming that the
timeout of cluster 3 is before that of cluster 1, node 5 will wake up first but will not find a cluster
to join. Thus, it will become a cluster head itself. If node 4 does not wake up at the same time, the
network will be partitioned since node 5 will not be connected to nodes 1 and 2. Moreover, if node 2
dies due to lack of energy before the timeouts of clusters 1 and 3, both clusters will be partitioned, too.
In such a case, node 4 must wake up in time to take over the role of node 2.

1
2

4

3

5

Figure 7.8: Sleeping timeout example

Hence, a node will wake up if

1. a cluster timeout of a known cluster in the node’s neighborhood has occurred, or

2. a bridge has run out of energy, with the network remaining connected if the considered node
will be active.

158 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

Algorithm 7.6 PrioritySearch(Node n,MCSTN ,MCSTL)
1: for all Nodes m ∈ N2 ∪ {n} do
2: m.cost← (m.state ∈ {sleeping, dead}) ?−∞ :∞
3: m.virtual link ← {m}
4: end for
5: best link ← ∅
6: best cost←∞
7: for all Nodes m ∈ N2 : m.state = clusterhead do
8: if m.cost 6= −∞ then
9: m.lifetime← m.energy

10: m.prr ← 1
11: queue.push(m,−∞)
12: repeat
13: v ← queue.pop()
14: if v.state = clusterhead ∧ (v.cost 6= −∞) then
15: if v.virtual link /∈MCSTL ∧ (v.cost < best cost ∨

(v.cost = best cost ∧ Cmp(v.virtual link, best link) < 0)) then
16: best link ← v.virtual link
17: best cost← v.cost
18: end if
19: v.lifetime← v.energy; v.prr ← 1; v.cost← −∞
20: v.virtual link ← {v}
21: end if
22: for all Neighbors w ∈ N1

v : w /∈ v.virtual link do
23: if w.cost 6= −∞ then
24: l← min{v.lifetime,w.energy}
25: prr ← v.prr · prrv,w · prrw,v
26: prr ← (1− prr > LT) ? ε : prr
27: p← ε
28: if w.state /∈ {clusterhead, bridge} ∨

(w.state ∈ {clusterhead, bridge} ∧ w /∈MCSTN) then
29: p← p+ PV
30: end if
31: p← v.penalty + (1− v.penalty) · p
32: c← (1− f(prr, l)) + f(prr, l) · p
33: if c < w.cost ∨ (c = w.cost ∧

Cmp(v.virtual link ∪ {w}, w.virtual link) < 0) then
34: w.lifetime← l
35: w.prr ← prr
36: w.penalty ← p
37: w.cost← c
38: w.virtual link ← v.virtual link ∪ {w}
39: queue.update(w, c)
40: end if
41: end if
42: end for
43: until !queue.empty()
44: end if
45: end for
46: return best link

7.4. PERFORMANCE EVALUATION OF TECA 159

Based on the MCST, the sleeping timeout of a node n is calculated as follows: First, the minimum of
all known cluster timeouts is determined. Then, Algorithm 7.5 is used to identify superior nodes that
“suppress” node n to keep it from becoming active. E. g., in Figure 7.8, node 2 is a node superior to
node 4. Therefore, Algorithm 7.5 needs to be modified as follows: Let Ω be the set of active nodes
(cluster heads and bridges) in the node n’s 2-hop neighborhood. Unlike before, the priority search is
performed on Ω ∪ {n}\{i} for each bridge i. If for this case node n needs to be active, bridge i will a
node superior to n. Additionally, let ΩC be the set of known cluster heads, and ΩS be the set of nodes
superior to n. The sleeping timeout is then calculated as

Ts = min
j∈ΩC∪ΩS

{tj}, (7.8)

with tj being the cluster timeout if j ∈ ΩC . If j ∈ ΩS , the timeout will be determined by the node’s
residual energy value.

7.4 Performance Evaluation of TECA

As described in the last section, TECA’s performance relies on the user-defined parameters α, β, and
PV , which have a significant impact on the topology being built. While α specifies the fraction with
which packet reception ratios on links are considered, β affects the link’s lifetime in the final topology.
PV controls the penalty cost fraction, which is used to keep the number of activated nodes as low as
possible, and thus maximizes the number of sleeping nodes. In the following, we investigate the
influence of these parameters by means of simulation.

7.4.1 Simulation Setup

We use the following simulation setup: Nodes are placed randomly in an area of size 100× 100 m2 by
using a uniform distribution function. All simulations are based on static networks with a node density
µ of 20, specifying the average number of neighbors within a node’s radio transmission range. For
each pair of nodes, we computed the packet reception ratio based on the model presented in Chapter 4.
The loss threshold NT is set to 0.8. According to the appropriate link loss rate, packets are dropped
randomly in the network. Packet collisions are not taken into account since in the majority of cases
they depend on the employed MAC schemes, which are beyond the scope of this chapter.

In order to highlight only the influence of different values for α, β, and PV , we assume that all nodes
know their neighbors and have sufficient information about their packet reception ratios. As β can only
be evaluated for different link lifetimes, the node’s residual energy faction will be randomly chosen
within (0..1]. Then, for all parameter combinations, the TECA algorithm is started on each node. The
simulation continues until no more state changes occur, and the built topology is stable. In total, we
carried out 200 simulation runs.

160 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

7.4.2 Performance Metrics

In order to investigate the performance of TECA based on different parameter settings, we are inter-
ested in the following metrics: the mean cluster link lifetime (MCLL), the mean cluster link loss rate
(MCLLR), and the mean number of active nodes (MNAN). MCLL and MCLLR are computed
by taking all virtual links of the global MCST into account, which is built according to Algorithm 7.4,
but with two modifications: (i) Only activated nodes, i. e., cluster heads and bridge nodes, are con-
sidered, and (ii) neighbor tables of all nodes are taken into account simultaneously in order to get a
global spanning tree.

MCLL then indicates the average lifetime until the MCST gets partitioned. Similarly,MCLLR spec-
ifies the quality with which cluster heads are connected. The formal definitions ofMCLL, MCLLR,
and MNAN are as follows: Assuming there are P partitions in the global topology of cluster heads
and bridges, letMCSTp be the MCST of partition p, Cp be the number of cluster heads, andBp be the
number of selected bridges in partition p. The number of cluster links per partition is equal to Cp − 1
due to the spanning tree property of MCSTp. Furthermore, let nijp be the i-th node of a cluster link
j in partition p, with energyijp being the node’s residual energy fraction, and ljp being the length of
link j in hops.

Then, MCLL is defined as

MCLL =

∑P
p=1

∑Cp−1
j=1 min1≤i≤ljp

{energyijp}∑P
p=1 (Cp − 1)

. (7.9)

According to Equation 7.2, let lossjp be the loss rate of cluster link j containing ljp nodes in partition
p, i. e., with loss = 1− prr. Thus, MCLLR can be calculated from

MCLLR =

∑P
p=1

∑Cp−1
j=1 lossjp∑P

p=1 (Cp − 1)
. (7.10)

For MNAN , we get

MNAN =

∑P
p=1 (Cp +Bp)

N
, (7.11)

with N being equal to the total number of network nodes.

7.4.3 Simulation Results

Figure 7.9 depicts the simulation results for PV = 0 and PV = 0.8. Starting with the results for
PV = 0, Figure 7.9(a) shows the average cluster link lifetime MCLL. As expected, the highest
value is achieved if just lifetime is taken into account (by TECA’s priority function f) and packet
reception ratios are not considered, which is expressed as α = 0, β = 1. On the other hand, if the link
lifetime is neglected completely (α = 1, β = 0), MCLL is worst. However, for α < 1, nodes having

7.4. PERFORMANCE EVALUATION OF TECA 161

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
C

L
L

α

β

(a) MCLL (PV = 0)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
C

L
L

α

β

(b) MCLL (PV = 0.8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
C

L
L

R

α

β

(c) MCLLR (PV = 0)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
C

L
L

R

α

β

(d) MCLLR (PV = 0.8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
N

A
N

α

β

(e) MNAN (PV = 0)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

M
N

A
N

α

β

(f) MNAN (PV = 0.8)

Figure 7.9: Simulation results for different α, β, and PV values (µ = 20)

high reception ratios are prioritized in terms of their residual energy levels, without using node ids as
tie-breakers4. Hence, the expected MCLL increases.

The average cluster link loss rate MCLLR depicted in Figure 7.9(c) shows a low loss rate for most
α-β-pairs, with α = 1 and β = 0 performing best. As activating additional bridge nodes causes
no penalty cost, the MCLLR is small as long as α � 0 and β � 1. If only lifetime is taken

4See function Cmp(link1, link2) in Section 7.3.2.

162 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

into account (α = 0, β = 1), the resulting MCLLR is worst. Because direct links between cluster
heads usually have the longest link lifetimes (note that cluster heads are selected on the basis of their
residual energies), the loss probability on such links is often very high, likely higher than the selected
loss threshold LT . Hence, MCLLR increases for β → 1.

As shown in Figure 7.9(e), the average number of active nodes MNAN (cluster heads and bridge
nodes) varies between 18% and 55%. The best result is achieved for α = 0 and β = 1. In this
case, packet reception ratios are neglected, and the decision as to whether or not bridge nodes are
activated depends solely on the lifetime of links that connect cluster heads to each other. Thus, direct
links consisting of no intermediate bridges leads to a smaller MNAN . Since the lifetimes of direct
links rely only on the energy of cluster heads, they are preferred over other links, even if the packet
reception ratios between those clusters are worse than LT . Reducing the number of selected bridges is
also feasible if the number of cluster heads connected by a single bridge node increases, i. e., a bridge
is used to connect more than two cluster heads at the same time. However, the MNAN cannot be
minimized arbitrarily because TECA will always try to maintain connectivity in the first place.

Figures 7.9(b), 7.9(d), and 7.9(f) show the MCLL, MCLLR, and MNAN if activating additional
bridges cause a penalty cost of 0.8. As intended, MNAN decreases, especially for β → 1, which
minimizes the influence of the packet reception ratio on the overall activation cost. As a consequence,
if β increases, MCLLR changes significantly for the following reason: According to Figure 7.6,
direct links between cluster heads which have maximal lifetimes but minimal packet reception ratios
experience costs of 1− β. Thus, for small β values, penalty costs are compensated by better delivery
ratios due to more bridges. However, for β → 1, using additional bridge nodes between cluster heads
are avoided, unless direct links do not exist. This is also shown in Figures 7.9(e) and 7.9(f) by the
MNAN metric.

In conclusion, the simulation results show that setting the parameters right is a difficult and
application-dependent task, influencing any decision to maximize either the time the topology re-
mains stable or the packet delivery ratio between clusters. This trade-off can actually only be solved if
the application’s aim of the wireless sensor network is taken into account. We thus make the follow-
ing assumptions: The packet delivery ratio within the network is assumed to be very important and is
thus considered with high priority. In addition, link lifetimes of connected cluster heads should not
be neglected in order to balance the energy consumption among all nodes evenly and achieve stable
topologies. Especially at the end of the network’s lifetime, it may be beneficial to use nodes with more
residual energy because non-active nodes will then sleep longer. Hence, we set both α and β to zero.
Furthermore, we set the the penalty cost to 0.8 to keep the number of active nodes as low as possible.
Bridge nodes are thus forced to connect as many cluster heads as feasible, accounting for a maximum
packet loss of 20% between them.

7.5 Simulative Comparison to other Approaches

We have conducted extensive simulations comparing TECA with other proposed approaches, namely
GAF, ASCENT, and a randomized topology algorithm called RAND. While GAF [262] uses ge-

7.5. SIMULATIVE COMPARISON TO OTHER APPROACHES 163

ographic information to build the topology, ASCENT [50] is based on a neighbor threshold NT ,
bounding the number of active nodes as described in Section 7.2. In contrast to TECA, neither of them
takes the network connectivity into account explicitly. Preventing network partitions is addressed by a
smaller grid size in GAF, a higher neighbor threshold in ASCENT, or a higher activation probability in
RAND. However, connectivity is not guaranteed. Thus, applications might fail due to disconnections.

Before we compare those four algorithms in detail in different simulation scenarios, Figure 7.10 gives
a first impression of how the topologies built of active nodes may look. For a density µ of 20 nodes,
it is clearly shown that the topology of GAF consists of the most nodes, while TECA, ASCENT,
and RAND use fewer active nodes. However, the topologies of ASCENT and RAND are already
partitioned, although all sleeping nodes in ASCENT have five active neighbors as proposed in [50],
and RAND activates nodes with a probability of 25%.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(a) TECA

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(b) GAF

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(c) ASCENT

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(d) RAND

Figure 7.10: Backbone topologies of TECA, GAF, ASCENT, and RAND (µ = 20)

164 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

7.5.1 Simulation Setup

All algorithms have been simulated using the same setup as in the previous section, considering a
network area of 100 × 100 m2. In the following, we investigate the influence of the node density, the
initial energy value, the cluster timeout factor, as well as the network performance over time. In so
doing, we would like to answer the following questions:

1. How many nodes are selected by TECA as cluster heads, bridges, passive and sleeping nodes?
How does the topology change over time? How many nodes do GAF, ASCENT, and RAND
each select?

2. What is the energy consumption over time? How much can the network’s operational lifetime
be extended?

3. Are there still situations where network partitions occur? How loss-resistent is the topology in
terms of the end-to-end packet delivery?

4. How does the network lifetime scale with respect to node density, initial energy, and the cluster
timeout factor?

To obtain initial answers to these questions, we have focused the simulations on the node’s selection
process that is responsible for the energy consumption in the first place, i. e., which nodes will become
active and which nodes will be sleeping. We used a simplified energy model that only considers
the energy consumed by turning the nodes’ radio transceivers on and off. The energy consumed
by transmitting and receiving was neglected because the additional costs are marginal compared to
the cost for idle listening. Furthermore, note that the simulation time is considerably shorter than
the lifetime of real sensor nodes. Thus, concerning the actual node lifetime, the number of packet
transmissions will be low because nodes will sleep most of the time. Other MAC layer issues for
minimizing idle listening are not considered as they are complementary to the topology management
and can be used in addition.

An overview of the simulation parameters used is given in Tables 7.1 and 7.2. TECA was run with
α = 0, β = 0, and PV = 0.8, representing an appropriate trade-off between optimizing the packet
delivery ratio and optimizing the link lifetime. Once per second, active and passive nodes sent an
announcement packet that contained the node’s id, state, energy, timeout, and link loss information
about its active neighbors. To keep neighbor information consistent, a sequence number was included,
too. Nodes are considered dead if an announcement has not been received within Td = 10 s. To reduce
the computational complexity, nodes did not verify their states each time a control packet was received
but set a timer first. The appropriate verification timeout Tv was set to 200 ms. When it expired, the
node’s state was verified, bundling all neighborhood changes that occurred within Tv. The passive
timeout Tp after a node switches from passive to sleep was two seconds. How long a node sleeps (Ts)
depends on the cluster timeout factor and on the timeouts of adjacent nodes. It is calculated by each
node individually according to Equation 7.8. To get first link loss estimates, an initialization phase of
ten seconds (Ti) is carried out before the actual simulation is started.

7.5. SIMULATIVE COMPARISON TO OTHER APPROACHES 165

Simulation parameter Setting

Simulation area 100 × 100 m2

Number of simulation runs 200
80% radio transmission range 24.3 m
Loss threshold LT 0.8
Number of retransmissions 3
Tinit (Ti) 10 s
Tannouncement (Ta) 1 s
Tpassive (Tp) 2 s
Tverify (Tv) 200 ms
Tdead (Td) 10 s

Table 7.1: Simulation settings

Simulation parameter Setting

Simulation time [s] 1 . . . 105

Node density µ 10 . . . 50
Initial energy T energy [s] 102 . . . 105

Cluster timeout factor γ 0.1 . . . 1.0

Table 7.2: Varied simulation parameters

With r being the radio transmission range of a node, GAF uses a grid cell size of r/
√

5. According to
the packet reception model discussed in Section 4.3.1 of Chapter 4, the cell size must be about 10 m in
order to achieve a connectivity of about 80% between adjacent cells. Like TECA, GAF employs the
same timeouts: Ti, Ta, Tp, Tv, and Td. However, the sleeping timeout Ts is calculated differently: As
each grid cell can be considered to be a cluster itself, with the active node being the cluster head that
computes the cluster timeout Tc like in TECA, Ts is equal to Tc. Furthermore, a node goes to sleep
as soon as it has encountered another node with more energy. Announcement packets do not include
1-hop neighborhood information because packet reception ratios are not captured. Instead, the nodes’
geographical position needs to be included.

Like TECA, ASCENT relies on link measurements concerning the reception quality, and thus uses a
similar packet structure. The sleeping timeouts are calculated by considering the timeouts of all active
neighbors, which set their own timeouts according to Equation 7.1 (like cluster heads in TECA).
Thus, Ts is the minimum of all active neighbor’s timeouts. The neighbor threshold NT controlling
ASCENT’s topology is set to five, as recommended by the authors in [50]. Other parameters were
used in the same way as in TECA.

In RAND, all nodes use a random variable to decide whether or not they operate in an active or in a
sleeping mode. Only if a node cannot find an active neighbor will it stay active itself. Hence, each
node (whether active or sleeping) should have a neighbor that is part of the backbone topology if the
probability of being active is high enough. For the simulations, we set the activation probability to
0.25, which is almost the same level that TECA achieves at a density of 20 nodes. Thus, in contrast to
ASCENT, the number of active nodes increases if more nodes are deployed within the network.

7.5.2 Network Performance over Time

In the first simulation scenario, we considered the selection of active nodes by TECA, GAF, ASCENT,
and RAND and their evolution over time, setting the node density µ to 20. We used an initial node
energy value sufficient for 1,000 s, i. e., after 1,000 seconds a node will die if it keeps its radio turned on
all the time. This represents an initial energy of 960 J according to the energy consumption of an ESB
node as defined in Section 4.3.3 of Chapter 4. The cluster timeout factor γ was set to 0.5, balancing
network lifetime and energy consumption evenly among all nodes. Due to an initial energy value of

166 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

1,000 seconds, sleeping nodes then wake up approximately every 500 seconds in order to balance the
energy consumption and to check whether or not the topology had changed in the meantime. Since all
nodes were powered on almost at the same time, these cycles are thus more or less synchronized. The
following plots therefore contain some peaks, respectively show a “steplike” behavior.

Fraction of Different Node Types

Figure 7.11 depicts the percentage of nodes that were active, passive, sleeping, or dead over time for
TECA, GAF, ASCENT, and RAND, respectively. As discussed before, active nodes are nodes the
backbone topology consists of, i. e., in TECA, cluster heads and bridges. Passive nodes will still have
their radios on and will probe the network, becoming active if necessary. After the passive timeout
has expired, they will go into the sleep mode, turn their radios off and change back to passive after the
sleeping timeout Ts. If the energy of a node has been consumed completely, the node will “die” and
will no longer be available in the network.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
n
o
d
es

Time [min]

Active nodes
Passive nodes

Sleeping nodes
Dead nodes

(a) TECA

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
n
o
d
es

Time [min]

Active nodes
Sleeping nodes

Dead nodes

(b) GAF

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
n
o
d
es

Time [min]

Active nodes
Passive nodes

Sleeping nodes
Dead nodes

(c) ASCENT

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
n
o
d
es

Time [min]

Active nodes
Sleeping nodes

Dead nodes

(d) RAND

Figure 7.11: Fraction of different node types (µ = 20, γ = 0.5, T energy = 1, 000 s)

At the beginning of the simulation, TECA, as well as RAND, selected fewer active nodes, which led
to more nodes that slept and saved energy. GAF and ASCENT required more active nodes because
of a small grid cell size and a high neighbor threshold, respectively. If the states of cluster heads
in TECA changed, it took some time until the topology was stable again. In this case, some nodes

7.5. SIMULATIVE COMPARISON TO OTHER APPROACHES 167

needed to stay passive, to decide whether or not to become active. The time span until the topology
was stabilized depended on the announcement time Ta, the time nodes stayed passive, and on how fast
nodes verified their state after neighborhood changes. However, even if TECA needed more time to
settle, Figure 7.11(a) shows that the number of passive nodes is often very small. The total number of
active nodes was almost constant until the majority of nodes had run out of energy. On the average,
after 100 minutes, almost all nodes were dead, although the maximum lifetime over all simulation
runs lasted for about 160 minutes. Thus, it should be noted that all time plots show average values per
time unit and indicate the maximum time until all nodes were dead.

Since GAF is based solely on the number of selected nodes in a grid cell, the number of active nodes
was significantly higher than for TECA. As long as not all nodes within a cell were dead, the number
of active nodes was constant. However, as soon as entire cells died, the number of active nodes
decreased quickly. Passive nodes were not required since once a node had discovered a neighbor with
more energy within the same cell it went to sleep.

Although ASCENT kept the number of active neighbors of non-dead nodes constant, the total number
of active nodes decreased as soon as nodes ran out of energy. In the same way, the number of active
nodes in RAND dropped, as the expectation value of active nodes decreases if the number of dead
nodes increases. The fraction of dead nodes shows that nodes in TECA and RAND stayed alive longer
than in GAF and ASCENT. However, closer to the end, TECA selected more nodes than RAND in
order to prevent network partitions, leading to a shorter lifetime until all nodes were dead. Hence,
concerning the average network lifetime, RAND outperformed all other topology algorithms.

Fraction of Residual Energy

Figure 7.12 depicts the residual energy averaged over all alive nodes, active nodes, and sleeping nodes.
While sleeping nodes do not consume energy, the energy of active nodes constantly decreases until
the topology is rebuilt. After rebuilding the topology, nodes with little remaining energy went to
sleep, and nodes sleeping before became active. Thus, the residual energy averaged over active nodes
shows several peaks. Since in ASCENT nodes stayed active until they ran out of energy, the energy
balance among all nodes was worse, which is indicated by a large deviation between the residual
energy of sleeping and active nodes. A comparison of all algorithms shows that RAND ran for about
64 minutes, TECA for 54 minutes, ASCENT for 39 minutes, and GAF for only 30 minutes until the
average residual energy fraction was 0.2. Although RAND achieved a longer lifetime, TECA balanced
energy among nodes much better. This is due to its cluster selecting process, which takes the residual
energy values of nodes into account, rather than selecting nodes randomly like in RAND.

Network Partitions

Concerning the “quality” of the topology, RAND may suffer from bad packet delivery ratios due to
network partitions. Even if the number of active nodes in TECA and RAND was almost the same at the
beginning of the simulation (see Figures 7.11(a) and 7.11(d)), arbitrarily selecting active nodes may be
insufficient if the probability of becoming active is too small. This issue is shown in Figure 7.13, which

168 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
re

si
d
u
al

 e
n
er

g
y

Time [min]

Alive nodes
Active nodes

Sleeping nodes

(a) TECA

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
re

si
d
u
al

 e
n
er

g
y

Time [min]

Alive nodes
Active nodes

Sleeping nodes

(b) GAF

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
re

si
d
u
al

 e
n
er

g
y

Time [min]

Alive nodes
Active nodes

Sleeping nodes

(c) ASCENT

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
re

si
d
u
al

 e
n
er

g
y

Time [min]

Alive nodes
Active nodes

Sleeping nodes

(d) RAND

Figure 7.12: Fraction of residual energy (µ = 20, γ = 0.5, T energy = 1, 000 s)

depicts the average number of network partitions over time. In order to provide a fair comparison of
all algorithms, not only the number of partitions regarding the overlay backbone topology but also
regarding the raw topology (that consists of all nodes alive) is shown. By taking all alive nodes
into account, the number of partitions provides a lower bound for each algorithm considered. Thus,
guaranteeing connectivity requires that the number of partitions be the same in both cases.

As Figure 7.13(a) illustrates, TECA maintained the network connectivity very well and outperformed
GAF, ASCENT, and RAND clearly. The connectivity of TECA’s topology was almost optimal over
the entire simulation time. The first increase and later decrease of the number of partitions can be
explained as follows: As long as many nodes were alive, nodes which ran out of energy caused
disconnections after some time and thus increased the number of partitions. However, once all nodes
of a partition were dead, a partition “vanished” again. Thus, the number of partitions decreases at the
end of the network’s lifetime.

Since neither GAF, ASCENT, nor RAND took the network connectivity into account explicitly, it
is not surprising that the network is partitioned from time to time, although the raw topology was
not partitioned. However, considering the small-size simulation area, the number of partitions was
substantial and would likely be higher if the size of the network increased. Although a smaller grid
size used by GAF, a higher neighbor threshold used by ASCENT, or a larger activation probability used

7.5. SIMULATIVE COMPARISON TO OTHER APPROACHES 169

 0

 2

 4

 6

 8

 10

1 20 40 60 80 100 120 140 160

N
u
m

b
er

 o
f

p
ar

ti
ti

o
n
s

Time [min]

Alive nodes
Active nodes

(a) TECA

 0

 2

 4

 6

 8

 10

1 20 40 60 80 100 120 140 160

N
u
m

b
er

 o
f

p
ar

ti
ti

o
n
s

Time [min]

Alive nodes
Active nodes

(b) GAF

 0

 2

 4

 6

 8

 10

1 20 40 60 80 100 120 140 160

N
u
m

b
er

 o
f

p
ar

ti
ti

o
n
s

Time [min]

Alive nodes
Active nodes

(c) ASCENT

 0

 2

 4

 6

 8

 10

1 20 40 60 80 100 120 140 160

N
u
m

b
er

 o
f

p
ar

ti
ti

o
n
s

Time [min]

Alive nodes
Active nodes

(d) RAND

Figure 7.13: Number of network partitions (µ = 20, γ = 0.5, T energy = 1, 000 s)

by RAND might have led to more resistant topologies with regard to network partitions, note that then
also less energy could be conserved. As a consequence, the operational lifetime of the network would
be shorter.

Independent of such parameters, TECA maintained the network connectivity much better. However,
guaranteeing connectivity requires full knowledge of any node about its 2-hop neighborhood. Thus,
short-term partitions may sometimes occur, because

• it may take some iterations until the topology is stable,

• nodes may go to sleep before they know about new clusters around,

• inconsistency in neighbor tables may exist due to lost announcement packets, or

• estimates about packet reception ratios may be wrong.

The first two issues could be solved by larger passive state timeouts and shorter announcement in-
tervals, reducing the time until TECA has established a stable topology. However, in the majority
of cases, partitions will likely occur due to neighbor table inconsistencies if information about state
changes of adjacent nodes gets lost. In such a case, nodes might make wrong decisions about whether

170 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

or not to become active. In order to minimize such situations, as well as to reduce the probability of
lost packets, announcement packets were retransmitted three times5.

Besides, it should be noted that the number of partitions was based on an 80%-connectivity, i. e., nodes
were considered connected if their packet reception ratios were greater than 1−LT (see Section 7.3.2).
Thus, short-term link measurements may lead to wrong estimates concerning packet loss by assuming
that two nodes are connected, although their link losses might be larger than LT .

Packet Delivery Ratio

It is also interesting to investigate the overall network quality in terms of packet delivery performance.
As no assumption is made about communication patterns or the arrangement of source and sink nodes
within the network, we used the following setup: Among all nodes, we randomly selected 100 pairs of
nodes, each consisting of an arbitrary sending and an active receiving node. Packets were forwarded,
using up to three retransmissions, by each active node that received a packet correctly. As sleeping
nodes had their communications radios turned off, they did not participate in forwarding. If the sending
node was sleeping, it woke up temporarily. Network congestion was neglected. Note that if congestion
had been taken into account, the performance of GAF and ASCENT might have been worse due to
their denser backbone topologies.

By means of this setup, we evaluated the end-to-end packet delivery ratio once per minute. As we fo-
cused only on the delivery ratio, delay issues were of no concern. The propagation and the processing
time of forwarding packets were thus neglected. Figure 7.14 shows the resulting end-to-end packet
delivery ratio averaged over all sender-receiver pairs. As for Figure 7.13, considering all nodes to be
alive provides an upper bound for the forwarding process.

Figure 7.14(a) and 7.14(c) illustrate that TECA and ASCENT achieved the highest delivery ratios,
which are quite tight regarding their upper bounds. Although ASCENT did not guarantee connectivity,
its performance was almost optimal. On the other hand, TECA’s delivery ratio was often worse than
its upper bound. However, note that the lifetime of TECA was much longer; and note that ASCENT
benefited from a dense topology. The topology of TECA was considerably lighter, which minimized
the probability of successfully delivering packets to the destination node. Thus, it is assumed that in
case of congestion, TECA may perform even better than ASCENT.

Nevertheless, both algorithms took advantage of actively measuring packet reception ratios. While
ASCENT considered nodes as neighbors only if their estimated loss rate was below the LT threshold,
TECA selected only well-connected bridge nodes to connect cluster heads with each other. However,
in order to achieve high end-to-end delivery ratios, not only the quality of established links, but also
the number of network partitions is important. While TECA benefited from avoiding network parti-
tions, GAF and RAND suffered from partitions, as well as from bad link connections, because neither
algorithm took reception ratios into account. Figure 7.14(b) shows that the assumption made by GAF
that every node in a grid cell would be able to communicate with nodes in adjacent cells did not al-
ways hold true, partly affecting the end-to-end packet delivery ratio between nodes. On the other hand,

5Note that using acknowledgements is not possible as announcement packets are sent by broadcast.

7.5. SIMULATIVE COMPARISON TO OTHER APPROACHES 171

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Time [min]

Alive nodes
Active nodes

(a) TECA

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Time [min]

Alive nodes
Active nodes

(b) GAF

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Time [min]

Alive nodes
Active nodes

(c) ASCENT

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Time [min]

Alive nodes
Active nodes

(d) RAND

Figure 7.14: End-to-end packet delivery ratio (µ = 20, γ = 0.5, T energy = 1, 000 s)

RAND suffered from both a random selection of active nodes and a heavily partitioned network, as
shown in Figure 7.14(d). However, in contrast to GAF, the number of active nodes was substantially
lower, which though it increased its lifetime, deteriorated its delivery performance considerably.

A comparison of the end-to-end packet delivery ratio among all algorithms is provided in Figure 7.15,
which shows a superior performance for TECA. Although TECA’s delivery ratio was lower than its
upper bound and not as tight as for ASCENT, it outperformed GAF, ASCENT, and RAND most of
the time. Not until about 80 minutes had passed did TECA’s delivery ratio drop below that of RAND
because from this time on nodes ran out of energy quickly.

Again, the packet delivery ratio achieved by GAF, ASCENT, and RAND could be improved, which,
however, would have increased their energy consumption and thus would have worsened their network
lifetimes. Moreover, finding the right thresholds and parameters will heavily depend on the environ-
ment the nodes are placed into, which might change over time. In contrast, TECA did not rely on such
conditions and was able to establish a backbone topology that was nearly optimal concerning both
the number of network partitions and the packet delivery ratio. Thus, independent of environmental
conditions, TECA is expected to achieve good performance results, while connectivity will be (almost
always) maintained.

172 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 40 60 80 100 120 140 160

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Time [min]

TECA
GAF

ASCENT
RAND

Figure 7.15: Comparison of end-to-end packet delivery ratios (µ = 20, γ = 0.5, T energy = 1, 000 s)

7.5.3 Influence of Node Density

By means of further simulations, we also investigated the influence of different node densities on the
performance of TECA, GAF, ASCENT, and RAND. Based on the same simulation settings as before,
the following section analyzes how many nodes were be active and how the residual energy changed
if the node density increased.

Fraction of Active Nodes and of Residual Energy

Figure 7.16(a) depicts the fraction of active nodes after 100 seconds, averaged over all simulation runs.
Until this time, actually each algorithm should have achieved a stable topology. In addition to average
values, 0.95 quantiles are shown, which, however, were often too tight to be seen clearly. While all
algorithms benefited from higher node densities with respect to the number of active nodes, TECA
outperformed ASCENT, GAF, and RAND when the density was larger than 20 nodes. Compared to
ASCENT and GAF only, TECA always performed better. The fraction of active nodes used by RAND
was nearly 25% due to its activation probability. For low and moderate node densities, it outperformed
ASCENT and GAF clearly, which rather tried to keep the number of active neighbors constant. GAF
required many active nodes due to its constraint that all nodes in adjacent grid cells should be able to
communicate with each other; thus, the size of a grid cell needed to be quite small. On the other hand,
ASCENT performed better because nodes slept when they found enough active neighbors.

Hence, if the density of nodes was high enough, TECA achieved the best result, as it was more adaptive
than ASCENT, GAF, and RAND. Because redundant nodes went to sleep as soon as they discovered
that the backbone topology was well connected, fewer nodes were active. Thus, reliance on a fixed
fraction or on a fixed number of active nodes could be avoided.

Due to the differences in the number of active nodes, there were significant differences in the overall
energy consumption of the network, as shown in Figure 7.16(b). This figure depicts the fraction of
residual energy averaged over all nodes after 1,000 seconds, i. e., after the lifetime of a single node that
never slept. Because TECA performed best concerning the number of active nodes for node densities

7.5. SIMULATIVE COMPARISON TO OTHER APPROACHES 173

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
 o

f
ac

ti
v
e

n
o
d
es

Node density

TECA
GAF

ASCENT
RAND

(a) Fraction of active nodes (t = 100 s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
 o

f
re

si
d
u
al

 e
n
er

g
y

Node density

TECA
GAF

ASCENT
RAND

(b) Fraction of residual energy (t = 1,000 s)

Figure 7.16: Fraction of active nodes and of residual energy (γ = 0.5, T energy = 1, 000 s)

larger than 20, it saved the most energy. Thus, TECA can be expected to prolong the network’s
operational lifetime most if the node density increases.

Network Lifetime Factor

We define the network lifetime as the time that expires until 80% of all nodes have died, rather than as
the time until the first node runs out of energy, as considered in Chapter 5. As the network may still
be useable even if some nodes have dropped out, this should be an adequate percentage in order to
reflect the network useability. In particular, note that the aim of the topology management is to exploit
a high redundancy of nodes by maintaining a network consisting of only some nodes. Thus, nodes are
intended to die during the network lifetime anyway.

In order to be independent of the amount of initial energy, we analyzed the network lifetime factor,
which is defined as the ratio of network lifetime and initial energy in time units. Figure 7.17 shows the
network lifetime factor for different fractions of dead nodes and node densities, using an initial energy
of 1,000 seconds, as before. Due to higher energy savings, each algorithm benefited from a greater
node density and improved the network lifetime factor accordingly.

Concerning the performance of all algorithms, TECA was able to achieve the best energy balance
among all nodes. This is indicated by the even increase in the lifetime factor, independent of the
fraction of dead nodes. Thus, the majority of nodes stayed alive very long, as shown in Figure 7.17(a).
Since GAF required one active node per grid cell, cells with only few nodes died early. Hence, its
network lifetime factor for a fraction of 20% of dead nodes was much smaller (see Figure 7.17(b)). As
shown in Figure 7.17(c), ASCENT’s energy balance was also worse because all nodes stayed active
until they had run out of energy. The energy balance of RAND was not much better although nodes
became active randomly. However, since residual energy was not taken into account, RAND was also
outperformed by TECA regarding the time the first nodes took to consume their available energy.

Figure 7.18 provides a better plot to compare TECA, GAF, ASCENT, and RAND, showing the net-
work lifetime factors for the case of 80% of dead nodes. We see that as long as the density was less

174 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

N
et

w
o
rk

 l
if

et
im

e
fa

ct
o
r

Node density

 20% dead
 40% dead
 60% dead
 80% dead

100% dead

(a) TECA

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

N
et

w
o
rk

 l
if

et
im

e
fa

ct
o
r

Node density

 20% dead
 40% dead
 60% dead
 80% dead
100% dead

(b) GAF

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

N
et

w
o
rk

 l
if

et
im

e
fa

ct
o
r

Node density

 20% dead
 40% dead
 60% dead
 80% dead

100% dead

(c) ASCENT

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

N
et

w
o
rk

 l
if

et
im

e
fa

ct
o
r

Node density

 20% dead
 40% dead
 60% dead
 80% dead
100% dead

(d) RAND

Figure 7.17: Network lifetime factor (γ = 0.5, T energy = 1, 000 s)

than 25 nodes, RAND achieved the longest network lifetime. For higher node densities, it was outper-
formed by TECA. The network lifetimes of GAF and ASCENT were significantly worse. As long as
the density was low, RAND performed better because it kept the fraction of active nodes constant, even
when the density decreased to 10 nodes. In contrast, TECA required a larger fraction of active nodes
in order to maintain connectivity. Thus, when more nodes were deployed, connectivity was achieved
by using a smaller node fraction, which increased the network lifetime of TECA accordingly.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 15 20 25 30 35 40 45 50

N
et

w
o
rk

 l
if

et
im

e
fa

ct
o
r

Node density

TECA
GAF

ASCENT
RAND

Figure 7.18: Comparison of network lifetime factors (γ = 0.5, T energy = 1, 000 s, 80% dead)

7.5. SIMULATIVE COMPARISON TO OTHER APPROACHES 175

Packet Delivery Ratio

As discussed earlier, RAND’s higher lifetime factor may have come at the expense of network parti-
tions and worse packet delivery ratios. This is also illustrated in Figure 7.19(a), which shows the end-
to-end packet delivery ratio for different node densities, averaged over time until 80% of nodes have
died. ASCENT achieved the highest delivery ratio because it was able to maintain a well-connected
network for most of its lifetime. But it should be noted that the lifetime of ASCENT was significantly
shorter, which may have influenced the absolute number of packets delivered considerably. Regarding
the performance of TECA, the average delivery ratio was always better than the ratios of GAF and
RAND, although TECA’s lifetime lasted much longer.

Thus, it may be insufficient to consider solely the packet delivery ratio since each algorithm led to
a different network lifetime. To obtain a measure that quantifies the total amount of data delivered,
Figure 7.19(b) depicts the product of the delivery ratio and the network lifetime. Combining both
metrics shows that the lower delivery ratio of RAND was compensated by a larger network lifetime.
The same applies for GAF, which performed similar to ASCENT. However, the performance of TECA
was up to about 50% better and thus superior to the performance of GAF, ASCENT, and RAND. This
again shows that TECA trades off the different performance metrics very well.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Node density

TECA
GAF

ASCENT
RAND

(a) PDR

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 15 20 25 30 35 40 45 50

E
n
d
−

to
−

en
d
 P

D
R

 x
 n

et
w

o
rk

 l
if

et
im

e
fa

ct
o
r

Node density

TECA
GAF

ASCENT
RAND

(b) PDR × network lifetime factor

Figure 7.19: End-to-end packet delivery ratio (γ = 0.5, T energy = 1, 000 s, 80% dead)

Finally, the following two sections analyze the influence of the amount of initial energy and the influ-
ence of different wake-up times, considering a fixed density of 20 nodes.

7.5.4 Influence of the Initial Energy

The amount of energy a node has at the beginning of the simulation certainly determines the overall
network lifetime. Thus, it is expected that the greater the initial energy, the longer the network lifetime
will be. However, because the time required to reach a stable topology is independent of the initial
energy, the relative amount of energy consumed before nodes sleep will increase if the initial energy
decreases. This may have a significant impact on the network lifetime, particularly on TECA.

176 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

Figure 7.20 depicts the network lifetime factor for initial energy values between 102 s and 105 s.
It is clearly shown that in contrast to GAF, ASCENT, and RAND, the lifetime of TECA changed
substantially when the initial energy decreased. This was mainly due to the fact that TECA needed
more time to reach a stable topology. As redundant nodes first stayed passive before they went to
sleep, the relative energy spent during this time is significant. Thus, the more energy a node had, the
less important was the time it stayed passive.

 0

 1

 2

 3

 4

 5

 6

10
2

10
3

10
4

10
5

N
et

w
o
rk

 l
if

et
im

e
fa

ct
o
r

Initial energy [s]

TECA
GAF

ASCENT
RAND

Figure 7.20: Network lifetime factor (µ = 20, γ = 0.5, 80% dead)

Hence, the impact of the initial energy on GAF, ASCENT, and RAND was rather marginal. The
network lifetime increased only slightly if more energy was initially available. Because GAF and
RAND terminated quite fast due to their simplicity, they were nearly independent of the initial amount
of energy. As ASCENT used passive nodes similar to TECA, its lifetime increased slightly more.
However, compared to TECA, the time required by ASCENT for the number of active neighbors to
converge towards the predefined threshold was significantly shorter. Nevertheless, although TECA
consumed more energy in order to reach a stable topology, its network lifetime was much better than
that for either GAF or ASCENT. Only RAND achieved a longer lifetime, but at the expense of a worse
network performance, as shown above.

7.5.5 Influence of the Wake-Up Time

In the last set of simulations, we investigated the influence of different timeouts after sleeping nodes
had woken up. Note that in GAF, ASCENT, and RAND, each active node was considered a cluster
head, such that all sleeping nodes calculated their sleeping timeouts according to Equation 7.1. Thus,
we concentrated on the impact of the cluster timeout factor, which was described in Section 7.3.2.

Figure 7.21(a) depicts the standard deviation of the residual energy, calculated at the end of the net-
work lifetime, in order to show how the energy balance among nodes is influenced by different cluster
timeout factors. The smaller the standard deviation, the more even is the energy consumption of nodes.

For all algorithms, the energy balance improved if nodes woke up more frequently, i. e., if the cluster
timeout factor became smaller. The impact on ASCENT was less significant because active nodes
stayed active until they had run out of energy. Only in TECA, GAF, and RAND did active nodes go to
sleep as soon as they found adjacent neighbors with more energy. They thus rotated the role of being

7.5. SIMULATIVE COMPARISON TO OTHER APPROACHES 177

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
td

.
d
ev

ia
ti

o
n
 o

f
re

si
d
u
al

 e
n
er

g
y

Cluster timeout factor

TECA
GAF

ASCENT
RAND

(a) Standard deviation of residual energy

 0

 1

 2

 3

 4

 5

 6

 7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
e
tw

o
rk

 l
if

e
ti

m
e
 f

a
c
to

r

Cluster timeout factor

TECA

GAF

ASCENT

RAND

(b) Network lifetime factor

Figure 7.21: Influence of cluster timeout factors (µ = 20, T energy = 1, 000 s, 80% dead)

active more evenly among all nodes, improving the load balance in the network. The fact that GAF
performed worse was due to the grid structure used, which balanced the energy consumption per grid
cell only. Even if just two nodes in a cell were left, with both nodes having less energy than nodes in
adjacent cells, one node was active. Thus, the more evenly nodes were deployed within an area, the
better the energy balance of GAF was. As shown in Figure 7.21(a), TECA achieved the best energy
balance, since during the construction of the backbone topology, link lifetimes were also taken into
account6.

While the energy consumption in the network will be balanced more evenly if sleeping nodes wake up
frequently, the network lifetime will decrease as more energy is spent. This is shown in Figure 7.21(b)
which illustrates the influence of different cluster timeout factors on the network lifetime factor. TECA
and RAND benefited from higher timeout factors more than did GAF and ASCENT because GAF was
restricted to its grid structure and ASCENT suffered from nodes staying active all the time. However,
if the cluster timeout factor was one, nodes in TECA and RAND also stayed active until they had run
out of energy, resulting in dead nodes sooner. As a consequence, the network lifetime factor dropped,
compared to cluster timeout factors smaller than one.

In conclusion, the results of the simulations show that TECA often outperforms GAF, ASCENT, and
RAND regarding many performance metrics, in particular regarding the fraction of active nodes, net-
work connectivity, packet delivery ratio, network lifetime, and load balance. The approach taken by
TECA thus seems to be reasonable from a theoretical point of view. Whether similar results can be
achieved also in a practical implementation is part of the next section.

6Note that TECA’s priority function as defined in Equation 7.5 is applied for α = 0 as well as β = 0.

178 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

7.6 Experimental Evaluation

By running real-world experiments in our WSN testbed, we tried to confirm the results we obtained by
means of simulations. We implemented and tested all algorithms on the ESB platform, based on the
implementation used in the simulation and evaluated their performances during several experiments.

7.6.1 Experimental Setup

The setting of the evaluation setup is presented in Table 7.3. As described in Chapter 3, our WSN
testbed consists of 24 ESB nodes placed in a 4 × 6 grid structure with a distance between two nodes
of about 60 cm. The node’s transmission power was set to 15%. The initial energy was set such that
each node could stay active for one hour, using the same energy model as before, i. e., nodes would
consume energy only if their communications radios were turned on. The cluster timeout factor was
set to 0.5 in order to trade off energy balance and topology changes. In contrast to the settings used
in the simulation, we had to consider the limited communication and processing capabilities of the
ESB nodes. Thus, the initial energy and the following timeouts were increased appropriately. Every
ten seconds (Ta), active nodes sent announcement packets, using three retransmissions to account for
packet loss. The loss threshold used by TECA and ASCENT was again set to 0.8. Neighbors were
considered dead if no announcement packets had been received for 50 seconds (Td), which is equal
to losing five announcements successively. Upon receiving announcement packets from neighbors,
nodes waited one second (Tv) before they verified their states in order to minimize processing. While
the timeouts of active and sleeping nodes were based on residual energies and determined by the
cluster timeout factor, the timeout of passive nodes (Tp) was set to 30 seconds (used by TECA and
ASCENT only).

Evaluation parameter Setting

Evaluation runs 10
Number of ESB nodes 24
Initial energy T energy 3,600 s
Cluster timeout factor 0.5
Number of retransmissions 3
Loss threshold LT 0.8
Tinit (Ti) 60 s
Tannouncement (Ta) 10 s
Tpassive (Tp) 30 s
Tverify (Tv) 1 s
Tdead (Td) 50 s

Table 7.3: Evaluation settings

In addition to these settings, TECA was run with α = 0, β = 0, and PV = 0.8. GAF used a grid cell
size of 1.6 m, which led to six cells, of which each consisted of four nodes. The neighbor threshold
used by ASCENT was set to five; the activation probability of RAND was 0.3.

In order to obtain statistical information, an additional ESB node was used, called the evaluation node.
This node was used only to gather information and was not part of the evaluated network. Once per

7.6. EXPERIMENTAL EVALUATION 179

minute, the evaluation node polled every other node in the network and requested state information.
For example, whether a node was active or sleeping, for information about its residual energy, or the
number of packets sent and received7. However, as evaluating the network connectivity over time
would have been very time-consuming if each node had sent packets to every other node during the
runtime of the experiment, we used the following heuristic: Before the actual evaluation was started,
the connectivity between any pair of nodes was measured by means of ping packets. Thus, like
in Chapter 4, all nodes broadcast 100 pings, while adjacent nodes captured the number of received
packets. Afterwards, the obtained neighbor tables were transmitted to the evaluation node for later
processing. A connected computer calculated the appropriate connectivity graphs and evaluated the
average connectivity of the backbone topology over time. While network partitions were determined
according to the link loss threshold LT , the topology’s average end-to-end packet delivery ratio was
simulated. As in the previous section, an arbitrary node was selected that sent 100 packets towards
an arbitrary active node by enhanced flooding, i. e., already received packets were discarded. Packets
were forwarded by active nodes only. To account for packet losses, three retransmissions were em-
ployed. The simulations were repeated 100 times to obtain a good estimate of the overall network
connectivity.

7.6.2 Evaluation Results

We now present the experimental results, which are averaged over ten evaluation runs. Figure 7.22
gives an overview of several performance metrics measured over time. The fractions of active and
dead nodes of all algorithms are shown in Figures 7.22(a) and 7.22(b), respectively. As long as less
than 40% of nodes were dead, the topology of TECA consisted of about five to six active nodes.
GAF activated about seven nodes and thus one node more than the number of grid cells. Hence,
the assumption that all nodes being part of the same cell are connected to each other does not hold
true. Also, RAND used slightly more active nodes than specified by its activation probability. This
may either be due to the node’s random number generator or due to the fact that not all nodes found
active neighbors, in which case they became active themselves. With ASCENT, the fraction of active
nodes started at about 50%. Thus, almost half the nodes did not find five active neighbors whose
packet reception ratios were better than 20%. But note that due to the small network size, around
two-thirds of all nodes are border nodes, decreasing the average number of neighbors clearly. As
a consequence, ASCENT’s network lifetime was shorter than those for TECA, GAF, and RAND.
Furthermore, the fraction of dead nodes increased heavily as soon as nodes had run out of energy, as
shown in Figure 7.22(b)

The higher energy consumption of ASCENT is also illustrated in Figure 7.22(c), which depicts the
fraction of residual energy averaged over all nodes. Due to fewer active nodes, TECA performed
best (most of the time) and consumed far less energy. However, in the end, RAND achieved a longer
operation time because its expectation value of active nodes decreased if nodes ran out of energy. The
best energy balance is achieved by GAF, which rotated the role of being active quite evenly among
all nodes and thus showed little variation in its operation time. After 240 minutes, the remaining

7It was therefore necessary not to turn off the radio transceiver of sleeping nodes. However, that did not effect the
“artificially” calculation of the energy consumption, which solely considered the state of a node.

180 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 60 120 180 240 300 360

F
ra

c
ti

o
n
 o

f
a
c
ti

v
e
 n

o
d
e
s

Time [min]

TECA
GAF

ASCENT
RAND

(a) Fraction of active nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

1 60 120 180 240 300 360

F
ra

c
ti

o
n
 o

f
d
e
a
d
 n

o
d
e
s

Time [min]

TECA
GAF

ASCENT
RAND

(b) Fraction of dead nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

1 60 120 180 240 300 360

F
ra

ct
io

n
 o

f
re

si
d
u
al

 e
n
er

g
y

Time [min]

TECA
GAF

ASCENT
RAND

(c) Fraction of residual energy

 0

 10

 20

 30

 40

 50

 60

1 60 120 180 240 300 360

C
u
m

u
la

ti
v
e
 a

c
ti

v
e
 t

im
e
 [

m
in

]

Time [min]

TECA
GAF

ASCENT
RAND

(d) Cumulative active time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 60 120 180 240 300 360

C
u
m

u
la

ti
v
e

n
u
m

b
er

 o
f

p
ac

k
et

s
se

n
t

Time [min]

TECA
GAF

ASCENT
RAND

(e) Number of packets sent

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 60 120 180 240 300 360

C
u
m

u
la

ti
v
e

n
u
m

b
er

 o
f

p
ac

k
et

s
re

ce
iv

ed

Time [min]

TECA
GAF

ASCENT
RAND

(f) Number of packets received

Figure 7.22: Overview of several evaluated performance parameters

nodes ran out of energy almost at the same time (see Figure 7.22(b)). Corresponding to the fraction of
residual energy, Figure 7.22(d) shows the cumulative times in which nodes stayed active, respectively
in which nodes slept. For example, after one hour, nodes running TECA had slept about 45 minutes,
in contrast to only 30 minutes for those running ASCENT.

We also measured the average numbers of announcement packets sent, respectively received cor-
rectly, which are illustrated in Figures 7.22(e) and 7.22(f) over time. Concerning the number of sent

7.6. EXPERIMENTAL EVALUATION 181

announcements, TECA and GAF performed similarly. Thus, although TECA needed more packet
exchanges until it reached a stable topology, this overhead was compensated by a lower fraction of
active nodes. Moreover, compared to ASCENT and RAND, it even performed better. However, re-
garding the number of packets received correctly, GAF achieved the best performance. Due to its grid
structure used, the GAF algorithm was able to terminate rapidly, putting nodes to sleep very quickly.
In addition, it did not use passive nodes like TECA and ASCENT to improve its topology. Since the
number of received packets will be the higher the more nodes have their communication radios turned
on, TECA was affected most, showing a high increase of received packets when nodes woke up. How-
ever, afterwards, it benefited from a better backbone topology, which consisted of fewer active nodes
and thus caused a lower energy consumption.

How the network connectivity was influenced by TECA, GAF, ASCENT, and RAND is shown in
Figures 7.23 and 7.24, which present the average number of partitions and the end-to-end packet
delivery ratio over time. As mentioned above, both metrics were evaluated by simulations, using
state information captured during the experiments. As depicted in Figure 7.23(a), TECA’s topology
was always connected, even at the end of its operation time8. In contrast, the topologies of GAF,

 0

 0.5

 1

 1.5

 2

1 60 120 180 240 300 360

N
u
m

b
er

 o
f

p
ar

ti
ti

o
n
s

Time [min]

Alive nodes
Active nodes

(a) TECA

 0

 0.5

 1

 1.5

 2

1 60 120 180 240 300 360

N
u
m

b
er

 o
f

p
ar

ti
ti

o
n
s

Time [min]

Alive nodes
Active nodes

(b) GAF

 0

 0.5

 1

 1.5

 2

1 60 120 180 240 300 360

N
u
m

b
er

 o
f

p
ar

ti
ti

o
n
s

Time [min]

Alive nodes
Active nodes

(c) ASCENT

 0

 0.5

 1

 1.5

 2

1 60 120 180 240 300 360

N
u
m

b
er

 o
f

p
ar

ti
ti

o
n
s

Time [min]

Alive nodes
Active nodes

(d) RAND

Figure 7.23: Measured number of network partitions

8That is, the connectivity graph does not contain links with packet reception ratios smaller than 1 − LT , respectively
20%.

182 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

 0

 0.2

 0.4

 0.6

 0.8

 1

1 60 120 180 240 300 360

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Time [min]

Alive nodes
Active nodes

(a) TECA

 0

 0.2

 0.4

 0.6

 0.8

 1

1 60 120 180 240 300 360

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Time [min]

Alive nodes
Active nodes

(b) GAF

 0

 0.2

 0.4

 0.6

 0.8

 1

1 60 120 180 240 300 360

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Time [min]

Alive nodes
Active nodes

(c) ASCENT

 0

 0.2

 0.4

 0.6

 0.8

 1

1 60 120 180 240 300 360

E
n
d
−

to
−

en
d
 p

ac
k
et

 d
el

iv
er

y
 r

at
io

Time [min]

Alive nodes
Active nodes

(d) RAND

Figure 7.24: Evaluated end-to-end packet delivery ratio

ASCENT, and RAND were partitioned occasionally, although more nodes were active. However, the
number of partitions was quite low due to the small network size. Compared to GAF and ASCENT,
RAND suffered from disconnections more frequently. But it should be noted that GAF benefited from
an even distribution of active nodes by exploiting geographic information, while ASCENT benefited
from a higher fraction of active nodes.

Due to the relatively small-sized testbed, partitions had only little impact on the network performance,
as shown in Figure 7.24. All algorithms achieved acceptable packet delivery ratios; often, the delivery
ratios were even nearly 100%. If, in addition, the operation time of each algorithm is taken into
account, TECA showed the best performance, since its delivery ratios remained high for a long time.
While GAF and ASCENT performed worse due to shorter lifetimes, RAND suffered from worse
packet delivery ratios, although its maximum operation time was about 10% longer.

Finally, Table 7.4 shows the lifetime factors and packet delivery ratios for different fractions of dead
nodes, averaged over time until the appropriate fraction of nodes was dead. In addition to average
values, the corresponding 0.95 t-quantiles are shown, too, identifying the variation among the different
evaluation runs. As shown in the fourth row (80% dead nodes), the network lifetime of TECA was
about 43% longer than that of ASCENT, and about 4% longer than those of GAF and RAND. If we
consider the time that elapsed until all nodes ran out of energy, RAND performed about 7% better than

7.7. CONCLUSIONS 183

Performance metric TECA GAF ASCENT RAND

20% dead 2.29 [2.03, 2.55] 2.73 [2.45, 3.01] 0.98 [0.98, 0.98] 1.73 [1.52, 1.94]
40% dead 2.89 [2.54, 3.24] 3.97 [3.97, 3.97] 0.98 [0.98, 0.98] 2.37 [2.00, 2.74]
60% dead 3.60 [3.32, 3.89] 3.97 [3.97, 3.97] 1.96 [1.95, 1.96] 3.08 [2.66, 3.49]
80% dead 4.14 [3.90, 4.37] 3.97 [3.97, 3.97] 2.90 [2.89, 2.91] 3.97 [3.55, 4.39]

Network lifetime factor

100% dead 4.57 [4.35, 4.79] 3.97 [3.97, 3.97] 3.43 [3.10, 3.75] 4.90 [4.46, 5.34]
20% dead 0.98 [0.97, 0.99] 0.96 [0.94, 0.97] 0.96 [0.94, 1.00] 0.96 [0.92, 0.99]
40% dead 0.98 [0.97, 0.99] 0.95 [0.94, 0.96] 0.96 [0.94, 1.00] 0.95 [0.92, 0.97]
60% dead 0.97 [0.96, 0.99] 0.95 [0.94, 0.96] 0.97 [0.94, 1.00] 0.93 [0.92, 0.95]
80% dead 0.95 [0.94, 0.97] 0.95 [0.94, 0.96] 0.98 [0.96, 1.00] 0.89 [0.86, 0.93]

Packet delivery ratio

100% dead 0.84 [0.81, 0.88] 0.95 [0.94, 0.96] 0.84 [0.78, 0.91] 0.77 [0.70, 0.83]
20% dead 2.24 [1.96, 2.53] 2.61 [2.31, 2.91] 0.94 [0.89, 1.00] 1.65 [1.40, 1.92]
40% dead 2.83 [2.45, 3.21] 3.77 [3.72, 3.82] 0.94 [0.89, 1.00] 2.24 [1.85, 2.66]
60% dead 3.51 [3.18, 3.84] 3.77 [3.72, 3.82] 1.90 [1.82, 1.97] 2.87 [2.44, 3.32]
80% dead 3.94 [3.67, 4.22] 3.77 [3.72, 3.82] 2.84 [2.76, 2.91] 3.54 [3.04, 4.08]

Packet delivery ratio ×
network lifetime factor

100% dead 3.86 [3.50, 4.23] 3.77 [3.72, 3.82] 2.89 [2.41, 3.42] 3.75 [3.11, 4.45]

Table 7.4: Evaluated network lifetime factors and packet delivery ratios

TECA, achieving a lifetime factor of 4.9. Concerning the topologies’ average packet delivery ratios,
ASCENT outperformed all other algorithms as long as the dead node fraction was less than 80%.
However, the smaller lifetime factor of ASCENT should not be neglected. Even if the packet delivery
ratio was higher, the total number of delivered packets may have been much smaller. Combining
the lifetime factor and the average packet delivery ratio per time unit is thus quite reasonable, as it
indicates over which topology more packets may be transmitted. Then, ASCENT performed even
worse due to the shortest network lifetime, as shown in the last five rows of Table 7.4. On the other
hand, TECA achieved a superior performance, which verifies our simulation results from Section 7.5.

7.7 Conclusions

In this chapter, we have presented a new topology and energy control algorithm that establishes a
backbone topology of active nodes, taking into account the residual energies and packet delivery ratios
of nodes. In addition to active nodes, TECA identifies redundant nodes, which are not required to
maintain connectivity. While active nodes will keep their communication radios turned on, redundant
nodes will switch to a low-power energy mode and turn their radios off completely. In so doing, a
significant amount of energy can be conserved, extending the network lifetime substantially.

One of the design issues of TECA has been network connectivity, which is achieved by calculating
minimum cluster spanning trees. Nodes that are part of these spanning trees will act either as cluster
heads or bridges to connect different clusters with each other. By using only local information, TECA
operates in a fully distributed manner. Furthermore, it is able to adapt to different environments and
application requirements by accounting for node densities, packet losses, and link lifetimes.

Results from both simulations and real-world experiments have proven the superior performance of
TECA, compared to three other approaches proposed in the literature. Although the experiments were
carried out on a small-sized network consisting of only a few nodes, the results are very interesting, as
they indicate a similar network performance to the one obtained by means of simulations. Despite a

184 CHAPTER 7. A TOPOLOGY AND ENERGY CONTROL ALGORITHM

higher overhead, TECA performs best and trades off the number of active nodes, energy consumption,
network connectivity, network lifetime, as well as the packet delivery ratio very well.

For future work, it would be advisable to augment TECA also by MAC-related features, like schedul-
ing of packet transmissions, as well as of active and sleep times, in order to reduce idle listening. In
so doing, even active nodes will benefit from lower duty cycles and conserve energy most of the time.
Furthermore, cluster heads could be used to manage the access to the wireless channel by means of
TDMA (time division multiple access). In addition, they could easily be used to aggregate data, as
packets are likely to be sent to a cluster head first.

Although TECA is a complementary approach to the forwarding strategies we considered in the pre-
ceding chapters, analyzing the combination of topology management and energy efficient forwarding
would also be an interesting aspect of future work. In particular, the priority function of TECA could
be augmented by information regarding energy-efficient forwarding paths, lifetime efficiency, and data
aggregation.

That actually concludes the scientific contributions of this thesis. In the following chapter, we will
finally present several application scenarios which are already in use, either by research or industrial
institutions. Afterwards, Chapter 9 will summarize the thesis and its major contributions.

CHAPTER8
Sensor Network Applications

“Computers do not solve problems – computers
carry out solutions, specified by people, to prob-
lems.”

– D. D. Spencer –

8.1 Introduction

In the last few years, there has been a vast number of application proposals and deployments for sensor
networks [14, 116]. While some application scenarios have not yet been fully evaluated in practice
and so far are based only on prototype systems, other applications have already been used for years.
For researchers, particularly the huge variety of possibilities for collaborations between the sensing,
processing, and actuating performed by dozens or hundreds of very small, low-powered sensor nodes
offers tremendous opportunities, making sensor networks so interesting and challenging.

As most sensor nodes are battery-powered, and recharging batteries is often difficult, almost each
application has to deal with issues like minimizing the energy consumption of the sensor network.
Achieving a high energy efficiency on each layer of the network stack is thus very important. There-
fore, the algorithms proposed in this thesis can be used, as they perfectly fit into the context of many
application scenarios. While energy-efficient forwarding and aggregation may be used for the data
gathering process, TECA may be used to minimize the energy consumption of idle listening as well
as to establish a well-connected forwarding network.

Although research regarding energy efficiency is one of the most interesting aspects of sensor net-
works, the development of easy to use deployments has recently also become of great interest in
terms of applications. E. g, Greenstein et at. [101] have proposed a generic sensor network applica-
tion construction kit (SNACK), which consists of a configuration language, several useful libraries,
and an appropriate compiler. Many language features are already available, to provide simplicity as
well as efficiency. For example, SNACK implements high-level concepts like routing trees and peri-
odic sensing, making the development of new sensor network applications much easier. Furthermore,

186 CHAPTER 8. SENSOR NETWORK APPLICATIONS

SNACK provides independently implemented services, which can be used by any application. Simi-
larly, Heinzelman et at. [113] describe a middleware approach to providing higher-level abstractions
of complex, low-level concepts to programmers, thereby easing the design and implementation of
applications.

In this chapter, we will review several application examples that employ sensor networks. According
to Akyildiz et al. [12], we will classify them into the main categories of habitat and environment
monitoring, health care, home automation, smart places, and military.

8.2 Habitat Monitoring

In the area of civil applications, habitat monitoring is one of the application drivers for wireless com-
munication technology [49, 232]. Due to their autonomous operation, wireless sensor networks are
quite helpful to study many aspects of wildlife. While earlier observation techniques were intrusive,
time-consuming, and expensive, deploying an unattended sensor network requires human interaction
only to set up, respectively remove the network. Thus, intrusion into the wildlife habitat is reduced
substantially. Furthermore, long-term observations become possible, providing live data conveniently.

8.2.1 Great Duck Island

One early project in habitat monitoring was the Great Duck Island (GDI) project [165], which was
named after a small island in the Gulf of Maine where the project took place. The island is an active site
for ecological research, and much of it focuses on the nesting habits of Leach’s Storm Petrels [254].
The research objective was to observe the seabirds’ behavior and the microclimate in and around the
nesting burrows by means of long-term monitoring. The great advantage of using wireless techniques
was their non-intrusive and non-disruption characteristics. In the spring of 2002, researchers manu-
ally placed 32 sensor nodes in the nesting burrows and installed a base station on the island. Via a
satellite link the network was connected to the Internet, offering real-time live data access over the
web. The sensors’ placement formed a grid across the island from east to west, as well as up the
island. Figure 8.1(a) shows an acrylic enclosure that was used to deploy the first generation of nodes
above the ground. Later in the project, those nodes were replaced by smaller ones that are illustrated
in Figure 8.1(b), which also depicts the placement of nodes within (1) and outside (2) the nesting
burrows, the base station (3), and the research station (4) that was connected via satellite (5) to a lab
in California.

Before the network was deployed, each node was preconfigured, e. g., a unique address was assigned
to each node for routing purposes and identification. At programmed times, each sensor node went on
to sent its data to the base station and off to save energy. Data collected by sensor nodes consisted of
temperature and humidity readings, barometric pressure, and information about the birds’ presence,
which was obtained by means of mid-range infrared. Because all nodes were widely scattered over the
island, with some nodes being more than 300 meters deep in the forest, data was sent via multi-hop
to the base station, by using the nodes’ low-power, wireless transceivers. Multiple times, the sensor

8.2. HABITAT MONITORING 187

hours (Ah). However we can neither use every drop of en-
ergy in the batteries nor are the batteries manufactured with
identical capacities from batch to batch or from manufac-
turer to manufacturer. We make a conservative estimate
that the batteries will be able to supply 2200 mAh at 3 volts.

Assuming the system will operate uniformly over the de-
ployment period, each node has 8.148 mAh per day available
for use. The application chooses how to allocate this energy
budget between sleep modes, sensing, local calculations and
communications. We note that since different nodes in the
network have different functions, they also may have very
different power requirements. For example, nodes near the
gateway may need to forward all messages from a patch,
whereas a node in a nest may need to merely report its own
readings. In any network, there will be some set of power
limited nodes; when these nodes exhaust their supplies, the
network is disconnected and inoperable. Consequently, we
need to budget our power with respect to the energy bottle-
neck of the network. To form an estimate of what is possible
on a Mica mote with a pair of AA batteries, we tabulated
the costs of various basic operations in Table 2.

Operation nAh
Transmitting a packet 20.000
Receiving a packet 8.000
Radio listening for 1 millisecond 1.250
Operating sensor for 1 sample (analog) 1.080
Operating sensor for 1 sample (digital) 0.347
Reading a sample from the ADC 0.011
Flash Read Data 1.111
Flash Write/Erase Data 83.333

Table 2: Power required by various Mica operations.

The baseline life time of the node is determined by the cur-
rent draw in the sleep state. Minimizing power in sleep mode
involves turning off the sensors, the radio, and putting the
processor into a deep sleep mode. Additionally, I/O pins on
the microcontroller need to be put in a pull-up state when-
ever possible, as they can contribute as much as 100 µA of
leakage current. Mica architecture uses a DC booster to pro-
vide stable voltage from degrading alkaline batteries. With
no load, the booster draws between 200 and 300 µA, depend-
ing on the battery voltage. While this functionality is crucial
for predictable sensor readings and communications, it is not
needed in the sleep mode. Furthermore, the current draw
of the microprocessor is proportional to the supply voltage.
We modified Mica motes with a Schottky diode, which al-
lows us to reliably bypass the DC booster while reducing
the supply voltage in sleep modes. The modification allows
us to achieve between 30 and 50 µA current draw (battery
dependent), which reduces the energy available for tasks to
6.9 mAh per day.

4.4 Sensor Deployment
We deployed a wireless sensor network using Mica motes

with Mica Weather Boards in July 2002. The network con-
tains all elements of the architecture described in Section 3.

To withstand the variable weather conditions on GDI, we
designed environmental protective packaging that minimally
obstruct sensing functionality. Mica motes by their design
are fairly robust mechanically, with the battery case firmly
integrated with the main processing and sensor boards, and

Figure 3: Acrylic enclosure used for deploying the
Mica mote.

mounting holes for securing the sensor boards. To provide
weather-proofing, we coat the entire sensor package with a
10 micron parylene sealant, which protects exposed electri-
cal contacts from water. The sensors remain exposed to
protect their sensitivity. Each coated node is then enclosed
in a transparent acrylic enclosure. The enclosure is venti-
lated to not distort the sensor readings; its primary func-
tion is to provide additional protection against mechanical
failures and to raise the sensor off the ground. Acrylic pack-
aging was chosen because it is infrared and radio frequency
transparent, which won’t obstruct sensor readings or wire-
less communication.

The acrylic enclosure shown in Figure 3 is used for de-
ploying nodes above the ground on Great Duck Island. The
size of the Mica mote itself was almost too large to fit in pe-
trel burrows; therefore we placed the parylene sealed motes
into the burrows without enclosures. Not using the enclo-
sure is less robust; we’ve noticed expansion and contraction
of connectors over the course of four weeks leading to faulty
electrical connections. We advocate the future use of sol-
dered connections to solve this problem.

4.5 Patch Gateways
Using different gateway nodes directly affects the underly-

ing transit network available. We implemented two designs:
an 802.11b single hop with an embedded linux system and
a single hop mote-to-mote network.

Initially, we chose CerfCube [1], a small, StrongArm-based
embedded system, to act as the sensor patch gateway. Each
gateway is equipped with a CompactFlash 802.11b adapter.
Porting functionality to CerfCubes is fairly easy; they run
an embedded version of Linux operating system. Perma-
nent storage is plentiful – the gateway can use the IBM
MicroDrive which provides up to 1 GB of storage. Sup-
plying adequate power for this device is a challenge, with-
out power management features this device consumes about
2.5W (two orders of magnitude more than the motes). To
satisfy the CerfCube power requirements, we considered a
solar panel providing between 60 and 120 Watts in full sun-
light connected to a rechargeable battery with capacity be-
tween 50 and 100 Watt-hours (e.g., sealed lead-acid). Re-
searchers from Intel Research and JPL have demonstrated
delay-tolerant networking using CerfCubes and motes [10]

(a) Acrylic enclosure (b) Placement of sensor nodes

Figure 8.1: Sensor nodes used by the Great Duck Island project (from [2])

network was extended by additional sensor nodes. By 2003, over one million readings had been logged
and analyzed. In August 2003, the network consisted of about 150 sensor nodes, including more than
25 weather stations.

8.2.2 ZebraNet

In the ZebraNet project at Princeton University [128], the behavior of zebras was studied to support
wildlife tracking. From the biological point of view, the project’s objective was to understand the
animals’ long-range migration, inter-species interaction, and nocturnal behavior. On the computer
systems side, the goal was to design a power-aware and position-aware communication system. In
comparison to the GDI project, not the wildlife habitat but the wildlife itself was to be monitored.
After one year of research, the first ZebraNet system was deployed at the Mpala Research Centre in
central Kenya in January 2004 [274].

In order to track the positions of zebras and monitor their activities, several sensors collecting bio-
metric data like heart rate and temperature were integrated into a collar that could be mounted around
the neck of a zebra, as shown in Figure 8.2. Collars also included a GPS device, flash memory for
data storage, wireless transceivers, solar cells for battery recharging, and a small CPU. Since there
was no cellular service available that covers the entire territory where animals were studied, ad-hoc
routing techniques were required. However, because the wireless transceivers were organized in a
mobile network, connectivity to a base station could not be guaranteed all the time. Sensor nodes
thus operated in a store-and-forward mode: Local data like GPS position samples and biometric data
were stored in memory as long as possible. If two zebras were within communication range, they
exchanged their data logs with each other using a low-power, short-range radio. To communicate with
a mobile base station, which could be a car or a plane, a second, long-distance radio was used. If
a base station could be reached by the second radio, all data not already transmitted were delivered.
Thus, eventually, almost all data logs could be collected, even though the latency was perhaps high.
To avoid sending the same data more than once, each node also held a list of delivered and deleted
data that was additionally communicated to peer sensor nodes. Furthermore, data logs were dated by
timestamps, providing information as to which data would be erased first if a node ran out of memory.

188 CHAPTER 8. SENSOR NETWORK APPLICATIONS

(a) A dazed zebra (b) Sensor collar

Figure 8.2: Mounting a sensor collar to the neck of a zebra (from [206])

8.2.3 WildCENSE

The wildCENSE project [6] aims at developing a mobile wireless sensor network to monitor the habitat
of Indian Nilgai. The Nilgai are antelopes and one of the most commonly seen wild animals of
northern India. Since their behavior is similar to that of zebras, wildCENSE relies on the experiences
obtained from the ZebraNet project. Animals are collared in the same way to track their geographical
area of movement and to monitor their habitat and behavior. The collars comprise similar components,
like a microcontroller, GPS, temperature, humidity, light, orientation sensors, off-chip flash memory,
an RF XBee-Pro module, a battery, and solar modules for recharging. Again, nodes exchange data
logs among each other until they come into the vicinity of a mobile base station.

8.2.4 Cane Toad Monitoring

The cane toad monitoring project [120] investigates an acoustic wireless sensor network to monitor
amphibian populations in the monsoonal woodlands of northern Australia. The project took place in
the Kakadu National Park of the Northern Territory, Australia, with the goal to count the population
of native frogs and the invasive cane toad species, which is depicted in Figure 8.3(a). Their expanding
distribution has raised grave concerns concerning their influence on Australia’s fauna, especially in
the Kakadu National Park. The dark region in Figure 8.3(b) illustrates their wide-area distribution in
2003.

The system requirements for monitoring cane toads are quite challenging because recognizing vocal-
izations of different frog species requires high-frequency acoustic sampling, complex signal process-
ing, and a wide-area sensing coverage [223]. The prototype used in the project consists of several
less expensive mica2 motes [65] (to achieve a high coverage) and only a few powerful stargate gate-
ways [66]. While acoustic samples are collected by mica2 motes, stargate devices are used to classify

8.2. HABITAT MONITORING 189

The Design and Evaluation of a Hybrid Sensor Network For
Cane-toad Monitoring

Wen Hu∗†, Van Nghia Tran∗, Nirupama Bulusu‡, Chun Tung Chou∗, Sanjay Jha∗†, Andrew Taylor∗
∗ The University of New South Wales, Australia, {wenh,vantran,ctchou, sjha, andrewt}@cse.unsw.edu.au

†National ICT Australia Limited
‡ Portland State University, nbulusu@cs.pdx.edu

Abstract— This paper investigates a wireless, acoustic sensor network
application — monitoring amphibian populations in the monsoonal
woodlands of northern Australia. Our goal is to use automatic recognition
of animal vocalizations to census the populations of native frogs and
the invasive introduced species, the Cane Toad (see Fig. 1). This is
a challenging application because it requires high frequency acoustic
sampling, complex signal processing and wide area sensing coverage.

We set up two prototypes of wireless sensor networks that recognize
vocalizations of up to 9 frog species found in northern Australia. Our first
prototype is simple and consists of only resource-rich Stargate devices.
Our second prototype is more complex and consists of a hybrid mixture
of Stargates and inexpensive, resource-poor Mica2 devices operating in
concert. In the hybrid system, the Mica2s are used to collect acoustic
samples, and expand the sensor network coverage. The Stargates are
used for resource-intensive tasks such as Fast Fourier Transforms (FFTs)
and machine learning.

The hybrid system incorporates three algorithms designed to account
for the sampling, processing and communication bottlenecks of the
Mica2s (i) high frequency sampling, (ii) compression and noise reduction,
to reduce data transmission by up to 90%, and (iii) sampling scheduling,
which exploits the sensor network redundancy to increase the effective
sample processing rate.

We evaluate the performance of both systems over a range of scenarios,
and demonstrate that the feasibility and benefits of a hybrid systems
approach justify the additional system complexity.

Fig. 1. The Cane Toad and its 2003 Australian distribution.

I. INTRODUCTION

This paper explores the use of wireless sensor network technology
for monitoring amphibian populations in remote areas of Australia’s
Northern Territory.

The Cane toad (Bufo marinus) was introduced to Australia in the
1930s in the belief it would control pests in Sugar Cane crops [1].
Since their introduction they have progressively spread through north-
eastern Australia. Their expanding distribution, density and ecology
characteristics have raised grave concerns regarding their impact on
Australia’s native fauna. Fig. 1 illustrates their 2003 distribution. Of
particular concern is Kakadu National Park, a vast World Heritage
area, recently colonized by Cane Toads [2].

In previous work, Taylor et al have developed software to census
frog populations by automatic recognition of their vocalizations

based on machine learning algorithms [3]. They have deployed frog
monitoring stations in Kakadu National Park and the Roper valley
of the Northern Territory. Each of these monitoring stations contains
a solar panel, battery, power management electronics, microphone &
preamp, temperature sensors, rain gauge, and a Pleb. The Pleb is a
single board computer built at UNSW based on a 200MHz Stron-
gArm processor. These monitoring stations have no communications
capability. Condition monitoring and data collection can only be done
by expensive, typically annual, site visits.

Our goal is to deploy a large scale, inexpensive wireless sensor
network that can operate unattended and is capable of monitoring,
tracking and measuring the impact of cane toads in areas such as
Kakadu National Park from acoustical observations. It is challenging
to implement such a real world sensor network application which
incorporates in-network reasoning. Our work builds on lessons in
robust, adaptive system design from current sensor deployments for
habitat monitoring [4], [5] which focus primarily on simple data
collection tasks (e.g. collect temperature and humidity data).

The purpose of this paper is to explicate these systems contribu-
tions which enable in-network reasoning:

• We describe a novel real-world sensing application (cane toad
monitoring), which consists of many resource-intensive tasks.
Accordingly, we set up the first prototype that has purely
resource-rich sensors. One of the key disadvantages of the first
prototype is the high financial cost of such a system. Therefore,
we design a hybrid system that consists of both resource-rich and
resource-impoverished sensors, where resource-impoverished
sensors extend sensing coverage and are used for simple tasks
like collecting acoustic samples, and resource-rich sensors are
used for resource-intensive tasks like FFTs and machine learning
procedures.

• To enable the hybrid system, we design and incorporate three
algorithms to account for the sampling, processing and com-
munication bottlenecks of resource-impoverished sensors — (i)
high frequency sampling, (ii) compression and noise reduction,
to reduce data transmission by up to 90%, and (iii) sampling
scheduling, which exploits the sensor network redundancy to
increase effective sample processing rate.

• We implement and evaluate the performance of both systems
over a range of scenarios, and demonstrate that the feasibility
and benefits of a hybrid systems approach justify the additional
systems complexity.

In the rest of the paper, we discuss related work in sensor network
deployments and acoustic sensing applications (Section II); provide
an overview of our frog vocalization recognition algorithm (Section
III) which drives our system requirements and design; describe the
components, systems architecture and design contributions of our two
systems prototypes (Section IV); evaluate our system prototypes and

(a) The cane toad

The Design and Evaluation of a Hybrid Sensor Network For
Cane-toad Monitoring

Wen Hu∗†, Van Nghia Tran∗, Nirupama Bulusu‡, Chun Tung Chou∗, Sanjay Jha∗†, Andrew Taylor∗
∗ The University of New South Wales, Australia, {wenh,vantran,ctchou, sjha, andrewt}@cse.unsw.edu.au

†National ICT Australia Limited
‡ Portland State University, nbulusu@cs.pdx.edu

Abstract— This paper investigates a wireless, acoustic sensor network
application — monitoring amphibian populations in the monsoonal
woodlands of northern Australia. Our goal is to use automatic recognition
of animal vocalizations to census the populations of native frogs and
the invasive introduced species, the Cane Toad (see Fig. 1). This is
a challenging application because it requires high frequency acoustic
sampling, complex signal processing and wide area sensing coverage.

We set up two prototypes of wireless sensor networks that recognize
vocalizations of up to 9 frog species found in northern Australia. Our first
prototype is simple and consists of only resource-rich Stargate devices.
Our second prototype is more complex and consists of a hybrid mixture
of Stargates and inexpensive, resource-poor Mica2 devices operating in
concert. In the hybrid system, the Mica2s are used to collect acoustic
samples, and expand the sensor network coverage. The Stargates are
used for resource-intensive tasks such as Fast Fourier Transforms (FFTs)
and machine learning.

The hybrid system incorporates three algorithms designed to account
for the sampling, processing and communication bottlenecks of the
Mica2s (i) high frequency sampling, (ii) compression and noise reduction,
to reduce data transmission by up to 90%, and (iii) sampling scheduling,
which exploits the sensor network redundancy to increase the effective
sample processing rate.

We evaluate the performance of both systems over a range of scenarios,
and demonstrate that the feasibility and benefits of a hybrid systems
approach justify the additional system complexity.

Fig. 1. The Cane Toad and its 2003 Australian distribution.

I. INTRODUCTION

This paper explores the use of wireless sensor network technology
for monitoring amphibian populations in remote areas of Australia’s
Northern Territory.

The Cane toad (Bufo marinus) was introduced to Australia in the
1930s in the belief it would control pests in Sugar Cane crops [1].
Since their introduction they have progressively spread through north-
eastern Australia. Their expanding distribution, density and ecology
characteristics have raised grave concerns regarding their impact on
Australia’s native fauna. Fig. 1 illustrates their 2003 distribution. Of
particular concern is Kakadu National Park, a vast World Heritage
area, recently colonized by Cane Toads [2].

In previous work, Taylor et al have developed software to census
frog populations by automatic recognition of their vocalizations

based on machine learning algorithms [3]. They have deployed frog
monitoring stations in Kakadu National Park and the Roper valley
of the Northern Territory. Each of these monitoring stations contains
a solar panel, battery, power management electronics, microphone &
preamp, temperature sensors, rain gauge, and a Pleb. The Pleb is a
single board computer built at UNSW based on a 200MHz Stron-
gArm processor. These monitoring stations have no communications
capability. Condition monitoring and data collection can only be done
by expensive, typically annual, site visits.

Our goal is to deploy a large scale, inexpensive wireless sensor
network that can operate unattended and is capable of monitoring,
tracking and measuring the impact of cane toads in areas such as
Kakadu National Park from acoustical observations. It is challenging
to implement such a real world sensor network application which
incorporates in-network reasoning. Our work builds on lessons in
robust, adaptive system design from current sensor deployments for
habitat monitoring [4], [5] which focus primarily on simple data
collection tasks (e.g. collect temperature and humidity data).

The purpose of this paper is to explicate these systems contribu-
tions which enable in-network reasoning:

• We describe a novel real-world sensing application (cane toad
monitoring), which consists of many resource-intensive tasks.
Accordingly, we set up the first prototype that has purely
resource-rich sensors. One of the key disadvantages of the first
prototype is the high financial cost of such a system. Therefore,
we design a hybrid system that consists of both resource-rich and
resource-impoverished sensors, where resource-impoverished
sensors extend sensing coverage and are used for simple tasks
like collecting acoustic samples, and resource-rich sensors are
used for resource-intensive tasks like FFTs and machine learning
procedures.

• To enable the hybrid system, we design and incorporate three
algorithms to account for the sampling, processing and com-
munication bottlenecks of resource-impoverished sensors — (i)
high frequency sampling, (ii) compression and noise reduction,
to reduce data transmission by up to 90%, and (iii) sampling
scheduling, which exploits the sensor network redundancy to
increase effective sample processing rate.

• We implement and evaluate the performance of both systems
over a range of scenarios, and demonstrate that the feasibility
and benefits of a hybrid systems approach justify the additional
systems complexity.

In the rest of the paper, we discuss related work in sensor network
deployments and acoustic sensing applications (Section II); provide
an overview of our frog vocalization recognition algorithm (Section
III) which drives our system requirements and design; describe the
components, systems architecture and design contributions of our two
systems prototypes (Section IV); evaluate our system prototypes and

(b) Distribution of cane toads in the Northern
Australia in 2003

Figure 8.3: The cane toad and its distribution in Australia (from [120])

different acoustic samples, based on Fast Fourier Transformation (FFT), which transfers acoustic sig-
nals from the time domain into the frequency domain. Compression and noise reduction is performed
by mica2 motes before transmission of the data to the stargate gateways, in order to reduce the amount
of data to be sent. If a sensor node has detected the existence of a frog species, its own location will
be used as the location of the frog. Sensor nodes obtain their location either by means of GPS or other
localization algorithms. If several adjacent nodes detect a frog species at the same time, the gateway
device will coordinate their sampling tasks and calculate the region of overlapping detection areas.
Because the long-term migration of frogs is to be tracked, this information is sufficient. By sampling
scheduling, the efficiency of the system can be increased significantly. Coordinated by the gateway, a
schedule for acoustic sampling and transmitting is created. Thus, while one node is compressing and
transferring data, another node will be sampling, which increases the processing rate by about 50%.
Furthermore, as the transmission of data is coordinated due to sampling scheduling, collisions will
mostly be avoided.

8.2.5 Electronic Shepherd

The electronic shepherd project [237] was conducted in Norway with the original aim to develop a
system that could be used to keep track of sheep while they are out on grazing land during summer-
time. Each year, at the beginning of September, the sheep return. But, unfortunately, some sheep are
always missing. While some sheep get caught by predators or fall off cliffs, others just remain in the
mountains. Hence, keeping track of them would be very helpful.

The challenge was to develop a wireless, mobile communication system that was small enough to
be carried by sheep, robust enough to survive in the precipitous terrain, and energy-efficient enough
to be able to operate for several months. Furthermore, the location and the “state” of the sheep,
e. g., their pulse and temperature, should be able to queried at any time. Because the communication
system had to be cheap, it was realized by using low-power and low-bandwidth radio communication
equipment, including GPS receivers, UHF radio communication transceivers, and GPRS modems
offering a connection to the Internet. Figure 8.4 shows a radio tag used in the electronic shepherd

190 CHAPTER 8. SENSOR NETWORK APPLICATIONS

project. The left picture shows the ordinary version, and the one in the right the packed version that
can be attached to the ear of the sheep.

The system is quite innovative as flock behavior can be supported. Using the low-cost radios, a flock
leader monitors a number of other objects belonging to the same flock. In this way, only the flock
leader needs to have a GPRS modem that can be used to reach any computer in the Internet over a
cellular GSM or UMTS network. While the electronic shepherd system was designed for the purpose
of animal tracking, it can also be used for other applications where objects are to be monitored at a
low cost.

(a) Ordinary version (b) Packed version

Figure 8.4: The electronic shepherd radio tag (from [237])

8.3 Environment Observation and Forecast Systems

In contrast to habitat monitoring systems that monitor the behavior of animals or try to track their
positions, environment observation and forecast systems focus on the observation of the environment
itself, aiming to (i) understand biological ecosystems, (ii) alert to emergencies like fires, or (iii) fore-
cast future behaviors or situations. In the following, we will consider four environment monitoring
systems. Other examples not mentioned are the GlacsWeb project [168] to monitor the behavior of
glaciers, SenSlide [220] aiming at predicting landslides, the Four Seasons project [259] for monitoring
the health of human-made structures, or the Wireless Vineyard [34].

8.3.1 ALERT

One of the first and widely accepted standards for forecasting potential floods, rainfalls, or tropical
cyclones is ALERT, which is an acronym for automated local evaluation in real-time [252]. The
standard was originally developed by the National Weather Service in the 1970’s and has been used
by several institutions widely in the U. S., but also in Argentina, Australia, China, India, Indonesia,
Jamaica, and Spain. Since that time, many ALERT user groups have cooperated with industrial ven-
dors and government agencies, which are involved in the early detection of flood conditions and their
forecasting. However, in addition to flood warnings, the achieved technological advancement of auto-

8.3. ENVIRONMENT OBSERVATION AND FORECAST SYSTEMS 191

mated real-time monitoring systems are also useful in many other areas of water resource management
and planning.

The ALERT standard specifies a method for using remote sensors in the field, in order to transmit
environmental real-time data to a central computer for processing. Usually, ALERT sensor sites are
equipped with multiple meteorological sensors, like water level, wind, barometric, and temperature
sensors. While there exists a vast number of manufacturers of ALERT hardware, all devices are
designed according to common communication criteria. Thus, interchanging software or equipment is
often possible. The success of the ALERT technology is especially due to its accuracy, reliability, and
low cost, whereby it offers real-time data acquisition, automated hydrologic and hydraulic forecast
modeling, as well as automated warnings for many applications.

8.3.2 FireWxNet

In [110], Hartung et al. present FireWxNet, which is a portable wireless system for monitoring weather
conditions in rugged wildland fire environments. With over 96,000 fires burning almost 10 million
acres in the U. S. in 2006 alone [181], wildland firefighting has been a necessary but dangerous task
long ago. While fire behavior is extremely sensitive to changes in environmental conditions like tem-
perature, relative humidity, and wind, forecasting weather conditions based on previously recorded
observations is usually the only way to obtain at least general predictions. Already small changes in
elevation may influence the actual fire behavior considerably, making forecasts quite difficult. Ac-
curately monitoring the environmental conditions of fires could thus improve forecasts and warning
systems significantly. Furthermore, deploying a wireless network within forest fire regions offers an
easy and at the same time safe way to measure and observe local weather conditions over a wide range
of locations. While this information was previously unattainable, FireWxNet provides the necessary
information in real-time, allowing researchers to better predict fire behavior under safety considera-
tions.

The system was developed as a tiered structure in order to take different deployment capabilities into
account. On the upper tier, long-distance communication radios with directional antennas are used to
connect weather stations deployed hundreds of kilometers into the wilderness with a base station that
provides Internet access via a satellite link. At the other end of the radios, three wireless, multi-hop
weather networks are connected, which consist of multiple sensor nodes. In addition, two steer-
able web-enabled cameras are integrated into the network to provide visual verifications of captured
weather conditions. Figure 8.5(a) shows a station with a long-distance, directional antenna, connect-
ing a weather network with the base station. Due to lack of electricity, solar panels are used to provide
power. Figure 8.5(b) shows a weather station. To protect the sensor nodes from outdoor influences,
an enclosure was built around the nodes, which are attached to the ceiling inside. The setup was used
during a one week deployment in the Selway-Salmon Complex Fires of 2005.

Closely related to FireWxNet is the FireBug application [75], which was developed by researchers at
the University of California, Berkeley. During a prescribed burn, they measured environment condi-
tions by means of a sensor network consisting of 10 nodes as a flame front passed by, and demonstrated

192 CHAPTER 8. SENSOR NETWORK APPLICATIONSFigure 4: System Overview: Radios with directional antennas were used at each peak and at the basecamp
to relay data from our sensor network and webcam.

Figure 5: The Backhaul link set up on Boulder Peak.
To the near side is an Access5830 with a directional
antenna. On the far side is a M900S connected to a
Yagi antenna. Below are two of the solar panels we
used to provide power.

which extended the range to just over 32 kilometers. These
radios also operated in the 900Mhz-930Mhz range, but were
slightly slower at 3 megabits per second. All the Trango
radios used the standard 802.11 and TCP/IP protocols for
communication, and were manually given IP addresses prior
to deployment.

Though the 900Mhz spectrum gave us increased range
in our wireless hops as compared to 2.4Ghz, it did present
a small problem. Our sensor nodes also operated in the
900Mhz range, and the initial configuration values of each
were close enough to interfere with each other. In fact, our
entire base camp was so flooded with signal that the CSMA
protocol implemented on the sensor nodes would back off
indefinitely. We fixed this issue by configuring the Trango
radios to communicate using the 924Mhz frequency.

We mounted the radios and antennas to a pole 1-2 me-
ters off the ground which was then mounted to a secure base.
The radios were all powered with a power-over-ethernet setup
using a 24V power supply. Once set up, the Access5830 ra-
dios required a single user at each end in order to fine-tune
the antenna direction. Since the M900S radios were many-
to-one, only one user at the SU was required to fine tune
the connection. All of the radios provided both a web-based
and a command-line telnet interface to help the user align
the antennas to ensure maximum signal strength. Figure
5 shows an example setup. Once aligned, the radios func-

tioned exactly as a wired ethernet link. At each hop radios
were connected to the next hop via an ethernet switch.

The ethernet switches at each hop were Linksys WRTG45
4-port Wireless Access Point (WAP) switches. This meant
that every radio hop in our network also provided standard
802.11 WiFi internet access to any units in the area. We fre-
quently took advantage of this feature since we could moni-
tor and manage all of our sensor nets and web cameras from
anywhere in proximity to our network.

3.2.2 Power
With no access to electricity between the Incident Com-

mand and any hop in our backhaul, we decided to use solar
panels and large batteries to power the various equipment.
At each hop in our backhaul we set up two solar panels, a
24V and a 12V, and four 12V batteries. During the day the
solar panels produced enough energy to both run the sys-
tem and charge the batteries, while at night the system ran
solely from the batteries. Even with the rapidly decreasing
daylight during the fall in northern Idaho we were able to
keep all of the radios fully powered and connected for the
length of our deployment. Further, all of the switches, ac-
cess points, and web cameras were powered by the batteries
and solar arrays as well.

To protect the equipment from moisture, animals, and
other hazards we placed the switches, access points, and
base stations inside a large plastic waterproof briefcase made
by Pelican. We drilled holes in the back of the case to run
wires, and then sealed the holes with electrical tape. Since
the cases were rather thick black plastic, we worried that
with the temperatures reaching upwards of 33oC, the equip-
ment would overheat. Especially worrisome was the lack of
airflow inside the cases since none of the equipment inside
contained even a single fan. However, we found this to not
be a problem even when the cases spent most of the day in
direct sunlight.

3.3 Weather Network Hardware
The weather networks consisted of a number of sensor

nodes, a webcam, and a small embedded computer running
linux. We tested our system using two different webcams.
The first was a Sony SNC-RZ30N and the second was a
Panasonic KX-HCM280. The basic functionality described
below was the same for both cameras. We set up each in-
side a protective case with a clear plastic dome to protect
the equipment from the elements while still allowing clear
viewing as shown in Figure 7(c). Once the webcam was
mounted, it only needed to be powered on and connected to
an ethernet switch. The cameras required only minimal con-

32

(a) A station that connects the weather network to
the base station via a directional antenna

(a) An enclosure we built for our sensor nodes.
The open bottom, vented ceiling, and slotted
walls allowed the sensors to accurately record
conditions.

(b) Nodes were attached to the ceiling with in-
dustrial velcro. All sensors faced down towards
the open bottom.

(c) One of the webcams used in our deployment

Figure 7: Weather Network Hardware

3.4 Weather Network Software
Constructing a reliable, self-healing, multi-hop network

for an actual deployment presents many design implications
and challenges that no simulator can fully emulate. Prob-
lems such as interference and asymmetric links are not only
hard to simulate, but also vary greatly from deployment to
deployment as we show in section 4. In order for our system
to function we needed to design a robust mechanism which
would ensure, with high probability, that our data would
reach our base stations even in the varying presence of in-
terference and asynchronous links. Rather than implement
a protocol with guaranteed delivery, we developed a best-
effort converge-cast protocol similar to [11, 14]. In place of
reliability mechanisms we chose to send messages multiple
times, in effect creating a forward error correction mecha-
nism. In this way we reduced the need for every packet to
reach the base station during a certain time period to only
needing a single packet per node.

Rather than creating a single monolithic application, we
built our sensor network on the MANTIS operating sys-
tem[2]. MANTIS is a multi-threaded, embedded operating
system closely resembling Unix. We chose this operating
system for several reasons: First, it provides easy to use
interfaces to all of the features of the nodes such as commu-
nications and energy-efficient scheduling. Second, MANTIS
can be used on multiple platforms and has already been
ported to the Mica2, MicaZ and TelosB nodes. Finally, all
applications for the MANTIS operating system are written
in the standard C programming language.

3.4.1 Deployment Issues
The fairly sparse nature of our deployment, our desire to

utilize radio links as long as possible, and considerations
about the topology of the area we deployed in led to some
interesting deployment challenges. Our deployments were
fairly linear and some had very little, if any, overlap of com-
munication between nodes that were not adjacent to each
other. This meant that we needed to be sure bi-directional
links existed between nodes to ensure that data from nodes
further down in the chain would reach our base station.
Large changes in elevation between nodes and dense for-
est and/or underbrush further complicated our deployment.
Due to the large change in elevation we found that the range
of the radios was much greater than if the nodes were both
placed on level ground. Most other deployments have used
dense clusters of nodes and placed them at distances of less
than 30m to ensure connectivity. In our deployment, for ex-
ample, our average distance between nodes was 138m with
our longest link nearly 393m. We were able to achieve such
large distances by exploiting a phenomena called Fresnel
Zones[20], which is basically what causes multipath inter-
ference. Fresnel Zones are a measurement of the phase dif-
ference between the reflections of radio waves between trans-
mitter and receiver. Being out of phase can cause a canceling
effect and significantly weaken the ability to receive the sig-
nal. With Fresnel Zones, the Earth is the primary cause for
such reflections because the ground itself acts as a major
obstacle. Therefore, the further the nodes are located from
the ground, the less interference encountered. Most of the
nodes in our deployment sent their radio signals from peaks
to valleys and along steep hillsides where there was far less
ground to cause interference. In informal testing we were
able to establish a radio link of .71Km (.44 miles) between

34

(b) Weather station

Figure 8.5: A solar-powered station and a weather station (from [110])

the feasibility of sensor technology in a fire environment. Unlike FireWxNet, it was not intended to
forecast fire behavior but rather to measure or track a flame front in itself.

8.3.3 Monitoring Volcanic Eruptions

Researchers at Harvard recently started to study the use of low-power sensor networks for geophysical
monitoring. In contrast to traditional data collection equipment, which is often heavy and power-
hungry, smaller and lighter sensor nodes offer a new possibility for scientific studies. The advances
in microelectronic technology now make deploying hundreds of nodes feasible. However, volcanic
studies demand high data rates and fidelity, which need to be addressed in advance.

In July 2004, Werner et al. deployed a first sensor array at Volcán Tingurahua, an active volcano in
central Ecuador, monitoring its seismic activity [248]. By means of low-frequency acoustic (infra-
sonic) sensors, volcanic eruptions were monitored over a period of 54 hours, in which at least nine
explosions occurred. After collection of infrasonic signals, data were transmitted to a remote base sta-
tion, using a wireless link about 9 km long. Data were collected by means of triggered event detection
and reliable data retrieval. The distributed event detector automatically triggered the transmission of
data if correlated signals were received by multiple nodes. Bandwidth usage, as well as energy con-
sumption, could thus be reduced considerably. In order to achieve high data fidelities, all sensor nodes
were time-synchronized using separate GPS receivers. Finally, the collected data were compared to
data acquired at a nearby wired sensor network for verification.

While the deployment in 2004 was a first proof of concept, a larger network was deployed over 3 km
on the Reventator volcano in the western Amazon in Ecuador in August 2005 [249]. The network
consisted of 16 nodes that were equipped with a microphone and a seismometer to collect acoustic and
seismic data. Via a multi-hop network, data was relayed to a gateway node, which used a long-distance
radio for communicating with a base station. While most nodes were connected to the gateway over
three or fewer hops, some nodes needed even more than six hops. Using a GPS receiver along with a
multi-hop time-synchronization protocol, a network-wide global time was established. Figure 8.6(a)
shows a wireless sensor node together with an attached interface board used to connect the external

8.3. ENVIRONMENT OBSERVATION AND FORECAST SYSTEMS 193

antenna and sensors. While seismometers were buried nearby the nodes, microphones were mounted
on PVC poles and shielded from wind and elements with plastic tapes. As shown in Figure 8.6(b),
those poles were used to elevate antennas so as to minimize any ground effects, which may have
reduced the radio communication range.

(a) A sensor node with attached interface hardware (b) External antennas mounted on PVC poles

Figure 8.6: Monitoring equipment used on the Reventator volcano (from [247])

Currently, much larger node arrays are deployed to monitor volcanic eruptions over several months.
Continuous Internet connectivity via a satellite uplink is also provided, allowing real-time access to
sensed data. Another idea which was recently realized was to trigger a satellite to take pictures of
active volcanos after an eruption. Researchers from several institutes are collaborating within the
Volcano SensorWeb project at NASA’s Jet Propulsion Laboratory [71].

8.3.4 Redwood Ecophysiology

In the redwood ecophysiology1 project [239], the microclimate of coastal redwood canopies is being
studied. While a lot of research has already been done, much of the work focused on the microclimate
either on the ground or above tree canopies. However, the microclimate is also affected by (and itself
affects) the interactions of trees and their environment. Hence, the dynamic processes within trees also
need to be understood. Due to the lack of empirical data, the physiology of the entire tree canopy is
still an open problem. The goal of the redwood project thus was to study the ecophysiology of redwood
trees by monitoring the microclimate between the ground and the canopy. By using a large number of
wireless sensor nodes (weather stations), such environmental dynamics as spatial variation, as well as
temporal microclimate dynamics were captured. Over 44 days, the life of 70-meter tall redwood trees
was monitored on the Sonoma Coast, California. Every five minutes, data was collected by about 40
to 50 nodes per tree and transmitted to more powerful data loggers that stored data in local databases
and then transmitted these to an offsite database over GPRS cellular modems.

The final placement of nodes in the redwood trees is schematically shown in Figure 8.7. Nodes were
manually placed at different elevations, spaced roughly two meters apart. Different types of sensors

1Ecophysiology, or environmental physiology, is a biological discipline which studies the adaptation of physiology to
environmental conditions [253].

194 CHAPTER 8. SENSOR NETWORK APPLICATIONS

were used in order to measure air temperature, relative humidity, light conditions, and photosyntheti-
cally active solar radiation.

Although the deployment and the data collection process were quite successful, it turned out that
long-term environmental monitoring should also include a network monitoring component to account
for data inconsistencies and node failures. Thus, monitoring the system’s performance will become
important as well, in order to provide real-time information and alert researchers in case of anomalies.

Figure 8.7: The placement of nodes in redwood trees (from [68])

8.4 Health Care

Sensor networks can also help in several areas of health care. For example, health-care applications
involve the monitoring of human physiological data, drug administration in hospitals, the tracking
of patients and doctors, or recognition of emergency situations [11]. While today many sensors are
already used in hospitals to monitor the vital functions of patients, they are often connected through
wired systems. The mobility of patients is thus very restricted. Furthermore, vital functions are
monitored only if necessary. Hence, using wireless sensors instead can improve the patients’ quality
of life substantially, and more rapidly detect any kind of emergency situation. Patients can be under
permanent monitoring while they are inside the hospital or at home [19]. If there is any change in
the state of a patient, alerts can be triggered automatically, providing all the necessary information.
Another application can be the tracking of doctors or patients within a hospital, but also the tracking
of expensive medical equipment [20].

8.5. HOME AUTOMATION AND SMART PLACES 195

8.4.1 Smart Home Care

Researchers at Stanford, California, have proposed a wireless, smart home care system to account for
the needs of the elderly or persons who need medical assistance [233]. Motivated by the growing do-
main of caregiving, they developed a wireless sensor network that supports multiple sensing and event
detection modalities based on sensor fusion and distributed vision-based reasoning. Image sensing is
employed to verify, as well as to analyze, data reported by other sensors. For example, in the event
of an accidental fall, the fall will be detected by a wireless badge node carried by the person under
care [109], alerting the network’s base station. Automatically, the caregiving center will be called and
a voice connection to the person will be established. In monitoring the indoor environment, the voice
channel is carried over an IEEE 802.15.4 radio link, which is also used to track the position of the
person based on signal strength measurements. Also triggered by the detection of a fall, wall-mounted
image sensor nodes will provide additional information on the user’s condition, which is quite useful
for the subsequent emergency service.

8.4.2 Implanted Biomedical Devices

Another challenging application area is considered by Schwiebert et al. in [216], who describe their
experiences with biomedical devices that operate within the human body to compensate diseases. They
are currently working on an artificial retina as part of the smart sensors and integrated microsystems
(SSIM) project. The goal of the project is to restore vision to visually-impaired and blind individuals.
The artificial retina should be permanently implanted as shown in Figure 8.8 in the eye and provide
sufficient visual functionality so as to “see” at an acceptable level. The developed retina prosthesis
consists of about 100 micro-sensors, organized as an array within a smart sensor, which is connected
to a wireless RF transceiver. Acting as the base station for the artificial retina, an external computer
system is used for image processing as well as for translating between images recorded by a built-in
camera and signals intended to be transmitted to the retina. Therefore, special networking protocols
needed to be developed to account for the challenges of human-embedded smart sensor arrays.

Implanted biomedical devices can also be used in other applications, including glucose level monitors,
organ monitors, cancer detectors, or general health monitors. While implanting biomedical sensors
within the human body may have the potential to revolutionize medicine, special requirements first
need to be accomplished. Besides the limitations of power and computational capabilities, the design
of biomedical devices must be bio-compatible, fault-tolerant, energy-efficient, and scalable. Further-
more, the wireless system must be reliable, almost maintenance-free, and ultra-safe, emphasizing
application-specific solutions that differ vastly from other sensor network application domains.

8.5 Home Automation and Smart Places

As another category of applications for sensor networks, the field of home automation and smart
places offers context-aware assistance to people. The vision is that all electronic appliances will form
a network and collaborate to satisfy the needs of a user and afford a high degree of convenience [12].

196 CHAPTER 8. SENSOR NETWORK APPLICATIONS

Figure 8.8: Location of the retina prosthesis chip within the eye (from [216])

For example, networking almost everything opens new possibilities to control and monitor special
devices in order to trigger predefined events, to account for security and safety issues, to reduce energy
costs, or simply to increase convenience. However, today’s home automation solutions are highly
proprietary and often restricted to special infrastructures, like non-standardized networks or power
supply cables [189].

8.5.1 The Intelligent Home

Intelligent Home [1] is a Western Australian company which provides fully integrated solutions for
home automation. Figure 8.9 illustrates their showroom, which is used to present the components of
a smart home [147]. Their solutions cover structured cabling, multi-room audio, controlled lighting,
security and CCTV, phone/intercom systems, and home theater. The system is under the total control
of a user, anywhere and anytime. The multi-room audio system allows a user to listen to his music
in any room, without the need of multiple stereo systems. Over the installed cable system, each room
is connected to the main stereo system, allowing a user to change titles, sound, and volume. By the
use of touch-screen control panels, any audio source such as a tuner, CD or DVD can be distributed
to designated locations around the home. The controlled lighting system makes it feasible to program
lighting to control any light anywhere in the home. Predefined configurations for any situation are
possible, e. g., switching on particular lights upon coming home or leaving, creating different lighting
levels in different rooms, or providing security features by programming specific lights to switch on
at night. Security and safety is also provided by CCTV. By placing cameras in specific areas around
the home, e. g., over the front door or in the backyard, these areas are kept under surveillance and can
be monitored from any TV within the home. In combination with the phone system, this provides
efficient communication inside as well as outside the home. Entertainment is offered by the home

8.5. HOME AUTOMATION AND SMART PLACES 197

Figure 8.9: The intelligent home showroom (from [1])

theater center, which includes various audio and video components, allowing a user to watch movies,
listen to music, or play games.

8.5.2 MavHome

Though the intelligent home just described offers multiple possibilities to program and control con-
nected devices and complex tasks, the inhabitants’ way of living is not considered by the system
automatically. Concerning this matter, the goal of the MavHome project [3] is to create a home that
acts like an intelligent agent. Through sensors, MavHome perceives the state of a home and its inhab-
itants and acts appropriately. The system must have the ability to predict and reason about different
situations. For example, consider the following scenario from [62]: “At 6:45am, MavHome turns up
the heat because it has learned that the home needs 15 minutes to warm to optimal waking temper-
ature. The alarm sounds at 7:00, after which the bedroom light and kitchen coffee maker turn on.
Bob steps into the bathroom and turns on the light. MavHome records this interaction, displays the
morning news on the bathroom video screen, and turns on the shower. When Bob finishes grooming,
the bathroom light turns off while the kitchen light and display turn on, and the news program moves
to the kitchen screen. During breakfast, Bob requests the janitor robot to clean the house. When Bob
leaves for work, MavHome secures the home, and starts the lawn sprinklers despite knowing the 30%
predicted chance of rain. Because the refrigerator is low on milk and cheese, MavHome places a
grocery order. When Bob arrives home, his grocery order has arrived and the hot tub is waiting for
him.”

Implementing such an intelligent agent system requires that knowledge about the environment as well
as inhabitants can be acquired and applied. By means of effective prediction algorithms, MavHome
is able to learn about the inhabitants’ behavior and to predict their next actions. Previously seen
interactions between inhabitants and various devices are used for this purpose. In [70], Cook et al.
present two algorithms for predicting actions inhabitants will take and for learning a policy to control

198 CHAPTER 8. SENSOR NETWORK APPLICATIONS

the home. Both algorithms rely on techniques known from artificial intelligence and trade-off the
overall goal of minimizing the prediction error and maximizing comfort and efficiency.

8.5.3 Embedded Script-Driven Home Automation

One possibility of making the installation and configuration of home automation more convenient is
to use adaptable plug-and-play solutions based on generic sensor networks as proposed in [105, 106].
In contrast to proprietary solutions that are usually restricted, wireless solutions do not rely on any
infrastructures and thus offer a higher degree of freedom. Especially, if the installation of a system is
carried out at a future date which could not be considered during the construction of a building.

The idea of the prototype described in [105] is to gather all kinds of sensor readings in a home and
forward them hop-by-hop to an embedded system, which is referred as the home automation server.
Therefore, the sensor nodes have to be distributed in the house according to the requirements of the
considered applications. During this distribution process, the user is given hints by the system on
where to place intermediate nodes for the purpose of communication. After that, the operational
phase takes place, in which events are forwarded by the network to the root node and eventually to
the home automation server in a tree-like fashion. Each time a new event is detected, the server runs
over a list of so-called script statements which can be defined by the user via a web-interface as shown
in Figure 8.10. In case of a match between the received event and the matching part of a statement,
one or more actions are performed which can either be executed by the sensor nodes themselves or by
multiple plugs which can be controlled via an Ethernet connection by the embedded home automation
server itself. For example, the action may serve one particular purpose like, e. g., baby surveillance.
In this case, the executed action could be as simple as signaling the user with the buzzer or by sending
him some information over the web by the embedded server, e.g., to submit an SMS via an external
service.

Figure 8.10: Browser-based configuration of home automation rules

The user can define an arbitrary number of rules, each of which appears as a single line that can be
unfolded to a dialog for later editing. A rule consists of three elements whereas the triggering event
and the action to be performed are the two compulsory elements. Whenever an event like a sensor
reading occurs, it is compared with all rules. If the event matches a rule, the according action is
performed. Whether an action is performed must not always depend on an event only but also on

8.6. MILITARY APPLICATIONS 199

a condition which, unlike the event, persists over some time and does not occur at a single moment
only. So a rule can have an arbitrary number of conditions which have to be met in addition to an
occurring event. A condition can e.g., be a specific time of the day or a prior sensor reading like light
or temperature. Multiple events, conditions and even actions can be defined within a single rule by the
user. Thus, the strength and contribution of the application lies in the combination of a larger number
of sensor readings, which allows to derive higher level semantics as compared to reacting on single
sensor readings only.

8.6 Military Applications

Initially, research and development in sensor networks have actually been driven by defense and mili-
tary applications, focusing, e. g., on enemy tracking, battlefield surveillance, detection of chemical, bi-
ological, and nuclear attacks, or reconnaissance of opposing forces [58]. Due to their self-organization
techniques, large-scale deployment, autonomous operation, and increased fault tolerance, wireless
sensor networks are very well suited for such surveillance missions, which are often driven by target
tracking and classification [31]. Especially unmanned surveillance missions have become of great
interest for the military.

The distributed sensor networks (DSN) program, which was started around 1980 and funded by the
Defense Advanced Research Projects Agency (DARPA) [236], was one of the first modern research
projects in the field of sensor networks. The technology components for a DSN ranged from acoustic
sensors, high-level protocols for communication [226], processing techniques and algorithms, dis-
tributed software, to signal processing and situation assessment [250]. For demonstration purposes,
distributed acoustic tracking was chosen as the target problem [58].

8.6.1 Sensor Information Technology

Even though the DSN program was intended to address networks consisting of a large number of
sensor nodes, the appropriate components were not yet technically mature. Leveraging the latest
technology advances, DARPA launched a new research program named sensor information technol-
ogy (SensIT) in 1999. Based on micro-electro-mechanical systems (MEMS) [92], inexpensive and
low-power processors are offered, which allow for large deployments of wireless sensor networks.
The goals of the SensIT project were to develop new networking techniques that could be used in
unstructured and sometimes hostile environments, and to develop networked information processing
procedures [139]. Thus, the main function of SensIT is to detect, identify, locate, and track any kind
of objects.

In [174], Meesookho et al. describe experimental results for vehicle target classifications in battle-
fields. The aim was to classify military vehicles passing through a field of a large number of sensor
nodes between two checkpoints, as shown in Figure 8.11. Each sensor node collected acoustic and
seismic data from vehicles in order to locate and classify ten different armored vehicles. Two neigh-
boring nodes located along the track were selected as data sources for the experiment, performing

200 CHAPTER 8. SENSOR NETWORK APPLICATIONS

Figure 8.11: Overview of the SensIT scenario (from [173])

collaborative signal processing and data fusion. Together with the sensor and vehicle locations, time-
stamped details of the experiment were logged for later processing. The experimental results showed
that a 50% relative improvement in the classification error could be achieved by means of collabora-
tion. Only when the convoy contained a larger number of vehicles or vehicles of various types, was
the performance degraded. However, the collaboration between two nodes still yielded significant
improvements.

8.6.2 EnviroTrack

He et al. present a similar system for the object tracking of hostile targets in [111]. Acquiring and
verifying information about enemy capabilities and the positions of moving targets is performed by
energy-efficient surveillance based on the EnviroTrack middleware [8]. For evaluation purposes, a
network consisting of 70 mica2 motes [65, 115] equipped with dual-axis magnetometers was used. As
typical surveillance missions last from a few days to several months, an energy-aware design scheme
was required because it may not be possible to replenish the energy of power-constraint sensor devices
manually due to inaccessible hostile territories. The main issues of the EnviroTrack systems thus
were longevity, adjustable sensitivity, stealthiness, and effectiveness. Adjustable sensitivity of sensors
makes it possible to adapt to different surveillance terrains and security requirements. While critical
missions may require a high degree of sensitivity in order to capture all potential targets, decreasing
the system’s sensitivity may be useful if false alarms and unnecessary power dissipation are to be
minimized. Achieving stealthiness is also crucial, especially for military applications. As RF signals
can be intercepted easily, a zero communication exposure is desired in the absence of significant
events. Thereby, the effectiveness of the system may be slightly relaxed if the accuracy of location
estimates and the latency of detection reports are still acceptable. In so doing, the system may trade off
energy-awareness and surveillance performance. To detect and track the positions of hostile targets, it
is also required that all nodes be time-synchronized [44, 89] and know their own positions [60, 186].

8.6. MILITARY APPLICATIONS 201

8.6.3 Counter-Sniper System

The counter-sniper system PinPtr [224] tackles the problem of locating snipers in urban environments,
and tries to overcome the limitations of existing systems. The system’s performance is analyzed by
means of real measurements, obtained at a U.S. Army facility. Based on a wireless ad-hoc sensor
network, shooters are detected and located quite accurately, achieving an average location error of
about one meter within two seconds. Figure 8.12 shows the graphical user interface of the system.
The estimated position of the shooter is shown as the red circle, while the direction of the shot is
indicated by an arrow. Coordinates and elevations are displayed in the top right corner. The location
of sensor nodes are shown as green circles.

Figure 8.12: Graphical user interface of PinPtr (from [224])

The system consists of a large number of mica2 sensor motes [65], which provide good coverage of the
urban environment and high accuracy. Furthermore, due to a high degree of redundancy, even multiple
sensor failures can be tolerated. Via acoustic signals like muzzle blasts and shockwaves, sensors are
able to detect a shot and measure its time of arrival. Afterwards, all timestamps are delivered to a
central base station, using data aggregation and an underlying gradient-based converge-cast routing
system. Assigning one node as the root, each node rebroadcasts data packets up to three times along
multiple paths towards the root node. However, while data reporting is thus fast and robust, the
message overhead is significant.

Using a similar tree structure, all sensor nodes synchronize their local clocks to the clock of a selected
root node. Because precise time synchronization is crucial for the application in order to compute the
sniper’s location from the nodes’ time of arrival values, the global time is estimated by synchronizing
nodes with nodes one level higher. Therefore, the flooding time synchronization protocol [167] is
used. Since data reports additionally need to include the positions of sensor nodes, Simon et al.
propose a self-localization algorithm based on acoustic range estimates [207] and passive acoustic
sensor localization [140]. However, due to practical shortcomings, the current counter-sniper system
uses sensors at known locations.

202 CHAPTER 8. SENSOR NETWORK APPLICATIONS

8.7 Conclusions

In this chapter, we have considered several examples of different sensor network application areas,
ranging from habitat monitoring, environment observation and forecasting to health care, home au-
tomation, smart places, and military applications. However, there is no claim to completeness due to
the vast number of proposed and employed applications existing today. We have seen that depending
on the application and the deployment conditions, the network requirements may be quite different.
For example, some scenarios demand mobility or store-and-forward concepts, while others rely on
densely populated, but static networks, transmitting sensed data immediately. Hence, protocols and
algorithms developed are usually targeted to specific application scenarios.

The algorithms and protocols proposed in this thesis were tailored to static networks, as they can
be found in several application scenarios. Due to their energy limitations, these networks require an
energy-efficient design in order to operate a long time in an unattended manner. Furthermore, as the
examples in this chapter have shown, data often need to be forwarded to a sink node for later processing
or storage. Thus, the approaches proposed in the previous chapters may be used for multiple real-world
deployments, as they are already in use.

In the future, the technology advances will allow further applications that are not possible today. As
sensor nodes become smaller, networks tend to be deployed more densely. Thus, sometime, the vision
of smart dust introduced by Pister in 2001 [245] will no longer merely be science fiction. Sensor
motes the size of a grain of sand or even of dust particles may become reality and form the basis for
integrated, massively distributed sensor networks. However, energy efficiency will remain one of the
key challenges that need to be addressed.

According to Culler’s keynote speech in 2006 [69], sensor networks will additionally become the
next tier of the Internet. While we are today able to essentially connect everybody, we will be able
to connect and observe essentially everything of value in the future. Sensor networks will become
ubiquitous and will be integrated seamlessly, networking most of the physical world. Achieving these
visions remains a great challenge, for research, as well as for the industry.

CHAPTER9
Conclusions and Future Work

“Every now and then, go away, have a little relax-
ation, for when you come back to your work your
judgment will be surer. Go some distance away be-
cause then the work appears smaller and more of it
can be taken in at a glance, and a lack of harmony
and proportion is more readily seen.”

– L. Da Vinci –

9.1 Conclusions

In the past few years, wireless sensor networks have attracted a great deal of interest. Several appli-
cations have either newly emerged or have been simplified by means of small-sized, wireless sensor
nodes that are able to remain unattended in a specific environment. Communication over a wireless
medium entails a simple deployment of hundreds (and soon maybe thousands) of nodes placed almost
anywhere. Since sensor nodes are equipped with a central processing unit, application tasks can be
distributed throughout the network easily, making the network more scalable. Moreover, localized
algorithms, which rely only on information a node has received from its neighborhood, enable the use
of simple instructions that even low-power sensor nodes are able to execute.

The limitations in terms of processing, storage, and energy capacity require new algorithms and pro-
tocols, which take the specific conditions of a wireless sensor network into account. In this thesis, our
main focus was on energy consumption, which is heavily influenced by the use of radio communi-
cation. Reducing the energy consumption extends the overall lifetime of the network and is thus an
important goal that implemented algorithms and protocols must fulfill. Furthermore, it is commonly
assumed that the sensor nodes are battery-powered, and batteries are not replaceable, either due to
inaccessible terrain or to the use of low-cost hardware, making the battery replacement inefficient.

However, solely minimizing the energy consumption in the network is not possible because the net-
work operation should not (or almost not) be affected. We accounted for this trade-off by focusing

204 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

instead on the energy efficiency, which was defined as the number of data bytes delivered to a sink
node per consumed energy unit. In this way, both the delivery process for data issued by sensor nodes,
as well as the energy consumption within the network could be optimized at the same time.

All algorithms and protocols proposed in this thesis were implemented and evaluated by means of
real hardware, the embedded sensor board (ESB), which was developed as a research platform by
the Free University of Berlin. We first described the platform in detail and investigated the radio
characteristics of its TR1001 transceiver. As the TR1001 module is only able to send single bits over a
radio frequency, the transceiver is connected to a universal asynchronous receiver/transmitter (UART)
circuit. The UART makes it possible to transmit an entire byte stream according to a predefined bit
rate. Because the communication is asynchronous, data bytes are framed by means of start and stop
bits before they are transmitted. As long as no bit errors occur and the state machines of the sender and
receiver are synchronized, the communication works well. However, once the synchronization is lost,
the remaining transmissions may become useless if no resync is performed. In this case, the receiver
may misinterpret data bits as start or stop bits and vice versa. This behavior is extremely prejudicial to
forward error correction (FEC) because the number of bit errors may increase substantially. Thus, we
proposed an appropriate resync mechanism which is able to re-synchronize the sender’s and receiver’s
state machines, rendering the remaining communication still useful if FEC is employed [37]. We
considered different types of FEC codes: a single and double error correcting code, a Hamming code,
a Reed-Solomon code, a random linear fountain code, and a Raptor code. By means of real-world
experiments, we showed that the double error correcting code and the Reed-Solomon code performed
similarly and that both codes are suitable to correct bit errors within a packet [43]. If entire packets
within a stream are to be recovered (as would be desirable for bulk data transmissions), using random
linear fountain codes will be most suitable, as the redundancy of the code need not be predefined [41].

While forward error correction is able to reduce the number of packets retransmitted by a sending node
and thus reduces the energy consumption in the network, much energy may still be wasted if packets
are forwarded along inefficient routes. We demonstrated by means of simulations that forwarding
strategies based on a minimum hop counter or a maximum end-to-end packet delivery ratio may
perform badly if they are used in a wireless network. Considering a static network, we proposed
the use of an energy-efficient strategy (EEF) in order to maximize the average number of data bytes
per consumed energy unit along a forwarding path [36, 42]. We showed that the performance of
EEF in terms of energy efficiency is superior to that of a broad range of other approaches proposed
in the literature. In addition, we proposed the concept of multi-link forwarding (MEEF) that takes
advantage of opportunistic routing: Rather than sending a data packet to a single receiver, the packet
is sent to several nodes at once, from among which a forwarder is selected afterwards. In so doing,
the energy efficiency could be further improved because packet retransmissions in case of packet loss
could often be avoided. However, even if multi-link forwarding was not applied, single-link energy
efficient forwarding (SEEF) still outperformed all other strategies considered. SEEF and MEEF were
carefully simulated and additionally implemented on the ESB platform. The results showed that again
both strategies outperformed other approaches, even in our real-world experiments.

Although the EEF strategy achieved the best trade-off between the number of data packets delivered
and the energy required to forward packets, the energy consumption within the network may not be
balanced because nodes along energy-efficient forwarding paths may be used more often than others.

9.1. CONCLUSIONS 205

Thus, if additionally the time at which the first node runs out of energy should be maximized, the
residual energy of nodes needs to be taken into account as well. For this purpose, we presented a strat-
egy called lifetime-efficient forwarding (LEF), which extended EEF appropriately [35, 38]. Similar to
EEF, we proposed two versions (SLEF and MLEF) to account for single-link and multi-link forward-
ing. Again, both strategies were fully analyzed, simulated, and implemented. The results showed that
LEF outperformed EEF clearly in terms of lifetime efficiency. However, avoiding low-energy nodes
came at the expense of energy efficiency and increased the overall energy consumption of the network.
Thus, in real-world deployments, it is more likely that the type of application will determine whether
EEF or LEF is preferable.

Exploiting the content of data packets is another way to reduce the number of packet transmissions,
and thus the energy consumption. By means of in-network processing, correlated data may be com-
bined and aggregated to a single packet that can then be forwarded on its own, instead of sending each
packet individually. While such data aggregation can be used independently of the forwarding strat-
egy, we pointed out that considering the effects of aggregation during the construction of forwarding
paths is extremely beneficial. If it is known a priori which nodes will issue data packets, building
an aggregation tree that is tailored to energy efficiency is desirable. For this purpose, we proposed
single-link and multi-link energy-efficient aggregation forwarding (SEEAF and MEEAF) [40]. Both
strategies yielded forwarding paths with a high potential for aggregation, rendering the forwarding
process much more efficient. We presented a mechanism to avoid forwarding cycles, which, if they
are not taken into account, may otherwise occur during the construction of an aggregation tree. The
mechanism can be used by EEF and LEF, too, if the packet reception rates on forwarding links start
to change. Simulation results, as well as the experimental results obtained by means of our real-world
testbed, showed that EEAF clearly outperformed EEF in terms of the information delivery ratio, en-
ergy consumption, and energy efficiency. Compared to a centralized solution, the performance of
EEAF was only slightly worse and thus quite good, keeping in mind that EEAF is a fully distributed
algorithm.

Besides those forwarding algorithms, we studied the impact of a topology management algorithm to
reduce the energy consumption of idle listening. Because keeping the radio transceivers of all nodes on
all the time is a huge waste of energy, we proposed a topology and energy control algorithm (TECA)
to establish a backbone of only active nodes [39]. While active nodes keep their radios on, non-
active nodes go into a low-power sleep mode with their communication radios turned off. We decided
that maintaining connectivity within the network is an important objective of many applications and
thus considered it as a key design issue. At first, TECA divides the network into several clusters of
nodes and selects for each cluster a cluster head. By calculating a spanning tree that covers all cluster
heads, interconnecting bridge nodes are then selected, which afterwards become part of the backbone
topology. All other nodes are considered redundant and will turn off their radios for a certain period
of time to save energy. By using only local information, TECA operates in a fully distributed manner
and outperforms other approaches clearly. Results from both simulations and real-world experiments
have identified its superior performance in terms of the number of active nodes, energy consumption,
network connectivity, and network lifetime.

206 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.2 Future Work

In future research, the issues discussed in this thesis can be extended. For example, it would be
interesting to investigate the synchronization problem on other hardware than that of the ESB platform.
As the next generation of the ESB does not employ any UART circuits for wireless communication,
it is expected that the transmission of a bit stream will be much more reliable. However, since data
bytes are no longer framed by start and stop bytes, the time synchronization between a sender and a
receiver need to be more precise. What would happen in this case if a receiver got out of sync could
be a topic of future work.

Furthermore, the analyses of FEC could be extended. Other codes than the ones considered in this
thesis could be implemented and investigated concerning their suitability for sensor networks. In this
context, particularly adaptive FEC would be of great interest, since it allows dynamic tuning of the
amount of redundancy per packet. The dissemination of data could be further analyzed as well. Other
protocols than the acknowledgement-based and the request-based protocol could be considered and
evaluated for different FEC codes.

The focus in designing the EEF algorithm was solely on energy efficiency. Other functions that could
be incorporated are the end-to-end packet latency, which may be important with respect to real-time
traffic, and congestion control. Both metrics could be measured on-the-fly during packet transmissions
and taken into account when forwarding paths are established. Moreover, the selection of appropriate
metrics for different applications needs to be investigated. Extending EEF to the multi-sink case can
be achieved by calculating the node’s energy efficiency for each sink separatively. In case data packets
may be forwarded to any sink, only the best one in terms of energy efficiency need to be stored.
Otherwise, the energy-efficient path of each sink is stored individually. Data packets are then sent to
that sink that requested them. Thus, the EEF algorithm does not need many changes, as the number
of sinks only influences its computation time and memory usage.

Other extensions of EEF are also possible: Note that for the sake of simplicity, we assumed for our
mathematical analyses that packets received are not buffered by forwarding nodes. That is, it is as-
sumed that some packets may be forwarded more than once, e. g., if acknowledgements get lost.
Considering appropriate receiving buffers makes the mathematical analysis more difficult because
then two cases need to be distinguished, namely whether or not a packet has already been forwarded.
However, the mathematical calculation of the end-to-end energy efficiency would be more accurate.
Furthermore, a lighter solution than the polling mechanism used for multi-link forwarding could be
considered: Instead of actively polling each potential forwarder individually, each forwarding node
could set a timer upon receiving a packet, based on its position in the forwarder list. If a timer ex-
pires, an acknowledgement could be sent back immediately to inform the sender about the successful
transmission. Upon receiving an acknowledgement, the sender would then need to broadcast a “stop”
message to avoid the transmissions of other acknowledgements and to trigger the actual forwarding
of the packet. Whether or not such an approach could increase the energy efficiency of the protocol
remains to be discussed.

The integration of EEF with existing MAC protocols like S-MAC or Wise-MAC could also be part
of future work, especially, if the employed MAC requires the use of an energy model other than that

9.2. FUTURE WORK 207

assumed by EEF. As several MAC protocols already rely on periodic beacon packets, they could easily
be augmented by EEF information in order to establish forwarding paths. Moreover, MAC-related
information regarding contention could be integrated into EEF.

In order to balance the energy consumption in the network and to avoid the burn-out of frequently
used sensor nodes, we proposed the LEF algorithm. However, as shown by means of simulations and
experiments, this comes at the expense of less energy efficiency. Thus, an adaptive forwarding behav-
ior would be desirable. It may also be possible to incorporate application knowledge to distinguish
between simple relay nodes and more important sensing nodes. Similar to EEF, the EEAF strategy
could then be augmented by a lifetime component, too. While relay nodes could only perform for-
warding, more powerful sensor nodes could perform aggregation. To achieve a longer lifetime of such
nodes, they could propagate their residual energy levels to their neighborhood. In this way, they would
only be used if really necessary. Analyzing the impact of partially correlated data could also be part of
future research. Moreover, the simulations could be augmented by means of data obtained from real
deployments, rather than assuming that all data issued by nodes can be aggregated without any extra
space.

The topology management algorithm TECA can be extended in different ways. So far, only the resid-
ual energy of nodes is used for clustering the network; the nodes with the most energy become cluster
heads, which are connected by bridge nodes afterwards. Other metrics like the number of neighbors
or special hardware characteristics could be taken into account as well. Moreover, cluster heads could
be augmented by specific controlling tasks, e. g., by providing a time division multiple access within
their cluster. The impact of variable radio transmission powers could be investigated, too. Highly
interesting in this context would be how to find the best transmission power in terms of energy effi-
ciency. At last, investigating how TECA, EEF, LEF, and EEAF would perform in conjunction is also
very interesting.

Although we designed all algorithms to be independent of geographic information, taking advantage
of geographic knowledge (if available) is certainly possible. Appropriate approaches that combine
geographic routing and energy-efficient forwarding have already been proposed in the literature. Es-
pecially when the network is not static but mobile, it is very useful to exploit such information.

The experiments carried out for all algorithms offered several insights, but more comprehensive exper-
iments are required to obtain results that are better validated. First of all, the number of sensor nodes
would need to be increased, at least to about 100, in order to provide enough forwarding alternatives
and possibilities to cluster the network. By means of real application scenarios, all nodes could then
be deployed, e. g, within a building, and used over a longer period of time. Achieving an optimal de-
ployment of nodes would be desirable and thus interesting from a practical point of view. In addition,
analyzing the integration of different protocols remains an important research task, which needs to be
tackled in the future.

Bibliography

[1] Automated Solutions. URL http://www.intelligenthome.com.au/. Online. Accessed at
2007-06-23.

[2] The Great Duck Island Project. URL http://www.greatduckisland.net/. Online. Accessed
at 2007-06-23.

[3] MavHome - Managing an Adaptive Versatile Home. URL http://cygnus.uta.edu/mavhome/.
Online. Accessed at 2007-06-23.

[4] The Official Bluetooth Web Site. URL http://www.bluetooth.com/bluetooth/. Online.
Accessed at 2007-06-23.

[5] ScatterWeb. URL http://cst.mi.fu-berlin.de/projects/ScatterWeb/. Online. Ac-
cessed at 2007-06-23.

[6] Sensor Networks for Wildlife Monitoring. URL http://intranet.da-iict.org/˜ranjan/
research/papers/wildcense/index.htm. Online. Accessed at 2007-06-23.

[7] 21 Ideas for the 21st Century. In: Business Week, pages 78–167, August 1999.

[8] Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans, D., George, J., George, S., Gu, L., He, T., Krish-
namurthy, S., Luo, L., Son, S., Stankovic, J., Stoleru, R., and Wood, A. EnviroTrack: Towards an
Environmental Computing Paradigm for Distributed Sensor Networks. In: Proceedings of the 24th IEEE
International Conference on Distributed Computing Systems (ICDCS), pages 582–589. IEEE Computer
Society, Tokyo, Japan, March 2004.

[9] Ahn, J.-S., Hong, S.-W., and Heidemann, J. An Adaptive FEC Code Control Algorithm for Mobile
Wireless Sensor Networks. In: Journal of Communications and Networks, Vol. 7, No. 4, pages 489–499,
December 2005.

[10] Akkaya, K. and Younis, M. F. A Survey on Routing Protocols for Wireless Sensor Networks. In: Ad Hoc
Networks, Vol. 3, No. 3, pages 325–349, May 2005.

[11] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. A Survey on Sensor Networks. In: IEEE
Communications Magazine, Vol. 40, No. 8, pages 102–114, August 2002.

[12] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. Wireless Sensor Networks: A Survey.
In: Computer Networks, Vol. 38, No. 4, pages 393–422, March 2002.

[13] Apilo, O., Lassila, P., and Virtamo, J. Performance of Local Forwarding Methods for Geographic
Routing in Large Ad Hoc Networks. In: Proceedings of the 5th IFIP Mediterranean Ad Hoc Networking
Workshop (MED-HOC-NET), pages 121–128. Lipari, Italy, June 2006.

[14] Arampatzis, T., Lygeros, J., and Manesis, S. A Survey of Applications of Wireless Sensors and Wireless
Sensor Networks. In: Proceedings of the 13th Mediterranean Conference on Control and Automation
(MED), pages 719–724. IEEE Computer Society, Cyprus, Greek, July 2005.

http://www.intelligenthome.com.au/
http://www.greatduckisland.net/
http://cygnus.uta.edu/mavhome/
http://www.bluetooth.com/bluetooth/
http://cst.mi.fu-berlin.de/projects/ScatterWeb/
http://intranet.da-iict.org/~ranjan/research/papers/wildcense/index.htm
http://intranet.da-iict.org/~ranjan/research/papers/wildcense/index.htm

210 Bibliography

[15] Avin, C. and Krishnamachari, B. The Power of Choice in Random Walks: An Empirical Study. In:
Proceedings of the 9th ACM International Simposium on Modeling Analysis and Simulation of Wireless
and Mobile Systems (MSWIM), pages 219–228. ACM Press, Torremolinos, Spain, October 2006.

[16] Awerbuch, B. Optimal Distributed Algorithms for Minimum Weight Spanning Tree, Counting, Leader
Election, and Related Problems. In: Proceedings of the 19th ACM Symposium on Theory of Computing
(STOC), pages 230–240. ACM Press, New York, NY, USA, 1987.

[17] Awerbuch, B. and Leighton, T. A Simple Local-Control Approximation Algorithm for Multicommodity
Flow. In: Proceedings of the 34th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 459–468. IEEE Computer Society, Palo Alto, CA, USA, November 1993.

[18] Awerbuch, B. and Leighton, T. Improved Approximation Algorithms for the Multi-Commodity Flow
Problem and Local Competitive Routing in Dynamic Networks. In: Proceedings of the 26th ACM
Symposium on Theory of Computing (STOC), pages 487–496. ACM Press, Montreal, Canada, May
1994.

[19] Baker, C. R., Armijo, K., Belka, S., Benhabib, M., Bhargava, V., Burkhart, N., Minassians, A. D., Dervi-
soglu, G., Gutnik, L., Haick, M. B., Ho, C., Koplow, M., Mangold, J., Robinson, S., Rosa, M., Schwartz,
M., Sims, C., Stoffregen, H., Waterbury, A., Leland, E. S., Pering, T., and Wright, P. K. Wireless Sen-
sor Networks for Home Health Care. In: Proceedings of the 21st IEEE International Conference on
Advanced Information Networking and Applications (AINA), pages 832–837. IEEE Computer Society,
Niagara Falls, Canada, May 2007.

[20] Baldus, H., Klabunde, K., and Müsch, G. Reliable Set-Up of Medical Body-Sensor Networks. In:
Proceedings of the 1st European Workshop on Wireless Sensor Networks (EWSN), pages 353–363.
Springer, Berlin, Germany, January 2004.

[21] Bao, L. and Garcia-Luna-Aceves, J. J. Topology Management in Ad Hoc Networks. In: Proceedings of
the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC),
pages 129–140. ACM Press, Annapolis, MD, USA, June 2003.

[22] Berlekamp, E. R. Algebraic Coding Theory. McGraw Hill, New York, NY, USA, 1968.

[23] Bhardwaj, M., Garnett, T., and Chandrakasan, A. P. Upper Bounds on the Lifetime of Sensor Networks.
In: Proceedings of the 5th IEEE International Conference on Communications (ICC), pages 785–790.
IEEE Computer Society, Helsinki, Finland, June 2001.

[24] Bierl, L. Das große MSP430 Praxisbuch. Franzis Verlag GmbH, Poing, Germany, 2004. In German.

[25] Biswas, S. and Morris, R. Opportunistic Routing in Multi-Hop Wireless Networks. In: ACM SIGCOMM
Computer Communication Review, Vol. 34, No. 1, pages 69–74, January 2004.

[26] Biswas, S. and Morris, R. ExOR: Opportunistic Routing in Multi-Hop Wireless Networks. In: Proceed-
ings of the 28th ACM International SIGCOMM. ACM Press, Philadelphia, PA, USA, August 2005.

[27] Blough, D., Leoncini, M., Resta, G., and Santi, P. The K-Neigh Protocol for Symmetric Topology Control
in Ad Hoc Networks. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MOBIHOC), pages 141–152. ACM Press, Annapolis, MD, USA, June
2003.

[28] Blough, D. and Paolo, S. Investigating Upper Bounds on Network Lifetime Extension for Cell-Based
Energy Conservation Techniques in Stationary Ad Hoc Networks. In: Proceedings of the 8th ACM
International Conference on Mobile Computing and Networking (MOBICOM), pages 183–192. ACM
Press, Atlanta, GA, USA, September 2002.

[29] Boukerche, A., Cheng, X., and Linus, J. Energy-Aware Data-Centric Routing in Microsensor Networks.
In: Proceedings of the 6th ACM International Workshop on Modeling Analysis and Simulation of Wire-
less and Mobile Systems (MSWIM), pages 42–49. ACM Press, San Diego, CA, USA, September 2003.

Bibliography 211

[30] Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. Gossip Algorithms: Design, Analysis and Applications.
In: Proceedings of the 24th Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), pages 1653–1664. IEEE Computer Society, Miami, FL, USA, March 2005.

[31] Brooks, R. R., Ramanathan, P., and Sayeed, A. M. Distributed Target Classification and Tracking in
Sensor Networks. In: Proceedings of the IEEE, Vol. 91, No. 8, pages 1163–1171, August 2003.

[32] Bulusu, N., Heidemann, J., and Estrin, D. GPS-Less Low Cost Outdoor Localization for Wireless Sensor
Networks. In: Personal Communications Magazine, Vol. 7, No. 5, pages 28–34, October 2000.

[33] Burkhart, M., von Rickenbach, P., Wattenhofer, R., and Zollinger, A. Does Topology Control Reduce
Interference? pages 9–19. ACM Press, Roppongi Hills, Tokyo, Japan, May 2004.

[34] Burrell, J., Brooke, T., and Beckwith, R. Vineyard Computing: Sensor Networks in Agricultural Produc-
tion. In: IEEE Pervasive Computing, Vol. 3, No. 1, pages 38–45, January–March 2004.

[35] Busse, M., Haenselmann, T., and Effelsberg, W. A Comparison of Lifetime-Efficient Forwarding Strate-
gies for Wireless Sensor Networks. In: Proceedings of the 3rd ACM International Workshop on Perfor-
mance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN), pages 33–40.
ACM Press, Torremolinos, Spain, October 2006.

[36] Busse, M., Haenselmann, T., and Effelsberg, W. Energy-Efficient Forwarding Schemes for Wireless
Sensor Networks. In: Proceedings of the 7th IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WOWMOM), pages 125–133. IEEE Computer Society, Niagara-
Falls, Buffalo-NY, USA, June 2006.

[37] Busse, M., Haenselmann, T., and Effelsberg, W. The Impact of Resync on Wireless Sensor Network
Performance. In: Proceedings of the 1st Workshop on Performance Control in Wireless Sensor Networks
(PWSN), pages 63–70. Coimbra, Portugal, May 2006.

[38] Busse, M., Haenselmann, T., and Effelsberg, W. Poster Abstract: A Lifetime-Efficient Forwarding Stra-
tegy for Wireless Sensor Networks. In: Adjunct Proceedings of the 3rd European Workshop on Wireless
Sensor Networks (EWSN), pages 20–21. ETH Zurich, Zurich, Switzerland, February 2006.

[39] Busse, M., Haenselmann, T., and Effelsberg, W. TECA: A Topology and Energy Control Algorithm
for Wireless Sensor Networks. In: Proceedings of the 9th ACM International Simposium on Model-
ing Analysis and Simulation of Wireless and Mobile Systems (MSWIM), pages 317–321. ACM Press,
Torremolinos, Spain, October 2006.

[40] Busse, M., Haenselmann, T., and Effelsberg, W. Energy-Efficient Aggregation Forwarding for Wireless
Sensor Networks. In: Proceedings of the IARIA International Conference on Sensor Technologies and
Applications (SENSORCOMM), pages 584–589. IEEE Computer Society, Valencia, Spain, October
2007.

[41] Busse, M., Haenselmann, T., and Effelsberg, W. Energy-Efficient Data Dissemination for Wireless
Sensor Networks. In: Proceedings of the 3rd IEEE International Workshop on Sensor Networks and
Systems for Pervasive Computing (PERSENS), pages 301–306. IEEE Computer Society, White Plains,
NY, USA, March 2007.

[42] Busse, M., Haenselmann, T., and Effelsberg, W. Energy-Efficient Forwarding in Wireless Sensor Net-
works. In: Pervasive and Mobile Computing, 2008. To appear.

[43] Busse, M., Haenselmann, T., King, T., and Effelsberg, W. The Impact of Forward Error Correction
on Wireless Sensor Network Performance. In: Proceedings of the 2nd ACM Workshop on Real-Word
Wireless Sensor Networks (REALWSN), pages 67–71. ACM Press, Uppsala, Sweden, June 2006.

[44] Busse, M. and Streichert, T. Time Synchronization. In: Wagner, D. and Wattenhofer, R., editors, Algo-
rithms for Sensor and Ad Hoc Networks, pages 359–380. Springer, Berlin, Germany, 2007.

212 Bibliography

[45] Byers, J., Luby, M., Mitzenmacher, M., and Rege, A. A Digital Fountain Approach to Reliable Distri-
bution of Bulk Data. In: Proceedings of the 21st ACM International SIGCOMM, pages 56–67. ACM
Press, Vancouver, BC, Canada, September 1998.

[46] Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraula, G., and E.Bonabeau. Self-
Organization in Biological Systems. Princeton University Press, Princeton, NJ, USA, 2003.

[47] Cao, Q., He, T., Fang, L., Abdelzaher, T., Stankovic, J., and Son, S. Efficiency Centric Communication
Model for Wireless Sensor Networks. In: Proceedings of the 25th Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), pages 1–12. IEEE Computer Society, Barcelona, Spain,
April 2006.

[48] Cerpa, A., Busek, N., and Estrin, D. SCALE: A Tool for Simple Connectivity Assessment in Lossy
Environments. Technical Report 21, Center for Embedded Networked Sensing, University of California,
Los Angeles, CA, USA, September 2003.

[49] Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., and Zhao, J. Habitat Monitoring: Application
Driver for Wireless Communications Technology. In: SIGCOMM Computer Communication Review,
Vol. 31, No. 2, pages 20–41, April 2001.

[50] Cerpa, A. and Estrin, D. ASCENT: Adaptive Self-Configuring Sensor Network Topologies. In: Proceed-
ings of the 21st Joint Conference of the IEEE Computer and Communications Societies (INFOCOM),
pages 1567–1576. IEEE Computer Society, New York, NY, USA, June 2002.

[51] Cerpa, A., Wong, J. L., Kuang, L., Potkonjak, M., and Estrin, D. Statistical Model of Lossy Links in
Wireless Sensor Networks. In: Proceedings of the 4th ACM/IEEE International Symposium on Informa-
tion Processing in Sensor Networks (IPSN), pages 81–88. IEEE Computer Society, Los Angeles, CA,
USA, April 2005.

[52] Chang, J. and Tassiulas, L. Maximum Lifetime Routing in Wireless Sensor Networks. In: IEEE/ACM
Transactions on Networking, Vol. 12, No. 4, pages 609–619, August 2004.

[53] Chang, J.-H. and Tassiulas, L. Fast Approximate Algorithms for Maximum Lifetime Routing in Wireless
Ad-Hoc Networks. In: Proceedings of the IFIP-TC6 / European Commission International Conference
(NETWORKING), pages 702–713. Springer, Paris, France, May 2000.

[54] Chen, B., Jamieson, K., Balakrishnan, H., and Morris, R. Span: An Energy-Efficient Coordination
Algorithm for Topology Maintenance in Ad Hoc Wireless Networks. In: Proceedings of the 7th ACM In-
ternational Conference on Mobile Computing and Networking (MOBICOM), pages 85–96. ACM Press,
Rome, Italy, July 2001.

[55] Chen, B., Jamieson, K., Balakrishnan, H., and Morris, R. Span: An Energy-Efficient Coordination
Algorithm for Topology Maintenance in Ad Hoc Wireless Networks. In: Wireless Networks, Vol. 8,
No. 5, pages 481–494, September 2002.

[56] Chen, J.-Y., Pandurangan, G., and Xu, D. Robust Computation of Aggregates in Wireless Sensor Net-
works: Distributed Randomized Algorithms and Analysis. In: Proceedings of the 4th ACM/IEEE In-
ternational Symposium on Information Processing in Sensor Networks (IPSN), pages 348–355. IEEE
Press, Los Angeles, CA, USA, April 2005.

[57] Chien, R. Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes. In: IEEE Transac-
tions on Information Theory, Vol. 10, No. 4, pages 357–363, October 1964.

[58] Chong, C.-Y. and Kumar, S. P. Sensor Networks: Evolution, Opportunities, and Challenges. In: Pro-
ceedings of the IEEE, Vol. 91, No. 8, pages 1247–1256, August 2003.

[59] Choudhury, R. R. and Va, N. H. MAC-Layer Anycasting in Ad Hoc Networks. In: ACM SIGCOMM
Computer Communication Review, Vol. 34, No. 1, pages 75–80, January 2004.

Bibliography 213

[60] Chu, H.-C. and Jan, R.-H. A GPS-Less Self-Positioning Method for Sensor Networks. In: Proceedings of
the 11th IEEE International Conference on Parallel and Distributed Systems (ICPADS), pages 629–633.
IEEE Computer Society, Fuduoka, Japan, July 2005.

[61] Ciciriello, P., Mottola, L., and Picco, G. P. Efficient Routing from Multiple Sources to Multiple Sinks
in Wireless Sensor Networks. In: Proceedings of the 4th European Conference on Wireless Sensor
Networks (EWSN), pages 34–50. Springer, Delft, The Netherlands, January 2007.

[62] Cook, D. J., Youngblood, M., Heierman, E. O., Gopalratnam, K., Rao, S., Litvin, A., and Khawaja, F.
MavHome: An Agent-Based Smart Home. In: Proceedings of the 1st IEEE International Conference on
Pervasive Computing and Communications (PERCOM), pages 521–524. IEEE Computer Society, Fort
Worth, TX, USA, March 2003.

[63] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algorithms. MIT Press,
Cambridge, MA, USA, 2001.

[64] Couto, D. S. J. D., Aguayo, D., Chambers, B., and Morris, R. A High-Throughput Path Metric for Multi-
Hop Wireless Routing. In: Proceedings of the 9th ACM International Conference on Mobile Computing
and Networking (MOBICOM), pages 134–146. ACM Press, San Diego, CA, USA, September 2003.

[65] Crossbow. The MICA2 Mote Platform. URL http://www.xbow.com/Products/Product_
pdf_files/Wireless_pdf/MICA2_Datasheet.pdf. Online. Accessed at 2007-06-23.

[66] Crossbow. The Stargate Gateway Platform. URL http://www.xbow.com/Products/
Product_pdf_files/Wireless_pdf/Stargate_Datasheet.pdf. Online. Accessed at
2007-06-23.

[67] Culler, D., Estrin, D., and Srivastava, M. B. Overview of Sensor Networks. In: IEEE Computer, Vol. 37,
No. 8, pages 41–49, August 2004.

[68] Culler, D. E. Toward the Sensor Network Macroscope. Keynote at the 6th ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MOBIHOC), May 2005. URL http://www.cs.
berkeley.edu/˜culler/talks/mobihoc.ppt. Online. Accessed at 2007-06-23.

[69] Culler, D. E. The Next Tier of the Internet. Keynote at the 3rd IEEE International Conference on
Broadband Communications, Networks, and Systems (BROADNETS), October 2006. URL http:
//www.cs.berkeley.edu/˜culler/talks/. Online. Accessed at 2007-06-23.

[70] Das, S. and Cook, D. J. Designing Smart Environments: A Paradigm Based on Learning and Prediction.
In: Shorey, R., Ananda, A. L., Chan, M. C., and Ooi, W. T., editors, Mobile, Wireless, and Sensor
Networks, pages 337–357. J. Wiley & Sons, New York, NY, USA, March 2006.

[71] Davies, A., Chien, S., Wright, R., Miklius, A., Kyle, P., Welsh, M., Johnson, J., Tran, D., Schaffer, S.,
and Sherwood, R. Sensor Web Enables Rapid Response to Volcanic Activity. In: EOS Transactions
American Geophysical Union, Vol. 87, page 1, January 2006.

[72] De Couto, D. S. J., Aguayo, D., Chambers, B., and Morris, R. Performance of Multihop Wireless
Networks: Shortest Path is Not Enough. In: ACM SIGCOMM Computer Communication Review,
Vol. 33, No. 1, pages 83–88, January 2003.

[73] Dimakis, A. G., Sarwate, A. D., and Wainwright, M. J. Geographic Gossip: Efficient Aggregation
for Sensor Networks. In: Proceedings of the 5th ACM/IEEE International Symposium on Information
Processing in Sensor Networks (IPSN), pages 69–76. ACM Press, Nashville, TN, USA, April 2006.

[74] Ding, M., Cheng, X., and Xue, G. Aggregation Tree Construction in Sensor Networks. In: Proceedings
of the 58th IEEE International Vehicular Technology Conference (VTC), pages 2168–2172. IEEE Press,
Orlando, FL, USA, October 2003.

[75] Doolin, D. and Sitar, N. Wireless Sensors for Wildfire Monitoring. In: SPIE International Symposium
on Smart Structures and Materials, pages 477–484. San Diego, CA, USA, May 2005.

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Stargate_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Stargate_Datasheet.pdf
http://www.cs.berkeley.edu/~culler/talks/mobihoc.ppt
http://www.cs.berkeley.edu/~culler/talks/mobihoc.ppt
http://www.cs.berkeley.edu/~culler/talks/
http://www.cs.berkeley.edu/~culler/talks/

214 Bibliography

[76] Doshi, S., Bhandare, S., and Brown, T. X. An On-Demand Minimum Energy Routing Protocol for a
Wireless Ad Hoc Network. In: ACM SIGMOBILE Mobile Computing and Communications Review,
Vol. 6, No. 3, pages 50–66, July 2002.

[77] Dousse, O., Mannersalo, P., and Thiran, P. Latency of Wireless Sensor Networks with Uncoordinated
Power Saving Mechanisms. In: Proceedings of the 5th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC), pages 109–120. ACM Press, Roppongi Hills, Tokyo,
Japan, May 2004.

[78] Dubois-Ferrière, H., Estrin, D., and Vetterli, M. Packet Combining in Sensor Networks. In: Proceedings
of the 3rd ACM International Conference on Embedded Networked Sensor Systems (SENSYS), pages
102–115. ACM Press, San Diego, CA, USA, November 2005.

[79] Dulman, S., Nieberg, T., Wu, J., and Havinga, P. Trade-Off Between Traffic Overhead and Reliability
in Multipath Routing for Wireless Sensor Networks. pages 1918–1922. ACM Press, New Orleans, LA,
USA, March 2003.

[80] Egorova-Förster, A. and Murphy, A. L. A Feedback-Enhanced Learning Approach for Routing in WSN.
In: Proceedings of the 4th Workshop on Mobile Ad-Hoc Networks (WMAN), pages 397–408. VDE,
Bern, Switzerland, February 2007.

[81] El-Hoiydi, A. and Decotignie, J.-D. WiseMAC: An Ultra Low Power MAC Protocol for the Downlink of
Infrastructure Wireless Sensor Networks. In: Proceedings of the 9th IEEE International Symposium on
Computers and Communications (ISCC), pages 244–251. IEEE Computer Society, Alexandria, Egypt,
June 2004.

[82] ElBatt, T. A., Krishnamurthy, S. V., Connors, D., and Dao, S. K. Power Management for Throughput
Enhancement in Wireless Ad-Hoc Networks. In: Proceedings of the 4th IEEE International Conference
on Communications (ICC), pages 1506–1513. IEEE Computer Society, New Orleans, LA, USA, June
2000.

[83] Elson, J., Girod, L., and Estrin, D. Fine-Grained Network Time Synchronization Using Reference Broad-
casts. In: SIGOPS Operating System Review, Vol. 36, No. SI, pages 147–163, December 2002.

[84] Estrin, D., Govindan, R., Heidemann, J., and Kumar, S. Next Century Challenges: Scalable Coordina-
tion in Sensor Networks. In: Proceedings of the 5th ACM International Conference on Mobile Comput-
ing and Networking (MOBICOM), pages 263–270. ACM Press, Seattle, WA, USA, August 1999.

[85] Forney, G. D. On Decoding BCH Codes. In: IEEE Transactions on Information Theory, Vol. 11, No. 4,
pages 549–557, October 1965.

[86] Gallager, R. G., Humblet, P. A., and Spira, P. A Distributed Algorithm for Minimum Weight Spanning
Trees. In: ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, pages 66–77,
January 1983.

[87] Gan, L., Liu, J., and Jin, X. Agent-Based, Energy-Efficient Routing in Sensor Networks. In: Proceedings
of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 472–479. IEEE Computer Society, New York, NY, USA, July 2004.

[88] Ganeriwal, S., Ganesana, D., Shim, H., Tsiatsis, V., and Srivastava, M. B. Estimating Clock Uncertainty
for Efficient Duty-Cycling in Sensor Networks. In: Proceedings of the 3rd ACM International Conference
on Embedded Networked Sensor Systems (SENSYS), pages 130–141. ACM Press, San Diego, CA,
USA, November 2005.

[89] Ganeriwal, S., Kumar, R., and Srivastava, M. B. Timing-Sync Protocol for Sensor Networks. In: Pro-
ceedings of the 1st ACM International Conference on Embedded Networked Sensor Systems (SENSYS),
pages 138–149. ACM Press, Los Angeles, CA, USA, 2003.

Bibliography 215

[90] Ganesan, D., Govindan, R., Shenker, S., and Estrin, D. Highly-Resilient, Energy-Efficient Multipath
Routing in Wireless Sensor Networks. In: ACM SIGMOBILE Mobile Computing and Communications
Review, Vol. 5, No. 4, pages 11–25, October 2001.

[91] Garay, J. A., Kutten, S., and Peleg, D. A Sub-Linear Time Distributed Algorithm for Minimum-Weight
Spanning Trees. In: SIAM Journal of Computing, Vol. 27, No. 1, pages 302–316, February 1998.

[92] Gardner, J. W., Varadan, V. K., and Awadelkarim, O. O. Microsensors, MEMS and Smart Devices. J.
Wiley & Sons, New York, NY, USA, November 2001.

[93] Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York, NY, USA, 1979.

[94] Garg, N. and Konemann, J. Faster and Simpler Algorithms for Multicommodity Flow and Other Frac-
tional Packing Problems. In: Proceedings of the 39th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 300–309. IEEE Computer Society, Palo Alto, CA, USA, November 1998.

[95] Geier, J. Wireless LANs. SAMS, Indianapolis, IN, USA, 2001.

[96] Ghosh, S., Basu, S., and Touba, N. A. Reducing Power Consumption in Memory ECC Checkers. In:
Proceedings of the 4th IEEE International Test Conference (ITC), pages 1322–1331. IEEE Computer
Society, October 2004.

[97] Gnawali, O., Yarvis, M., Heidemann, J., and Govindan, R. Interaction of Retransmission, Blacklisting,
and Routing Metrics for Reliability in Sensor Network Routing. In: Proceedings of the 1st IEEE Interna-
tional Conference on Sensor and Ad Hoc Communications and Networks (SECON), pages 34–43. IEEE
Computer Society, Santa Clara, CA, USA, October 2004.

[98] Godfrey, P. B. and Ratajczak, D. Naps: Scalable, Robust Topology Management in Wireless Ad Hoc
Networks. In: Proceedings of the 3rd ACM/IEEE International Symposium on Information Processing
in Sensor Networks (IPSN), pages 443–451. ACM Press, Berkeley, CA, USA, April 2004.

[99] Goldenberg, D. K., Bihler, P., Yang, Y. R., Cao, M., Fang, J., Morse, A. S., and Anderson, B. D. O. Lo-
calization in Sparse Networks using Sweeps. In: Proceedings of the 12th ACM International Conference
on Mobile Computing and Networking (MOBICOM), pages 110–121. ACM Press, Los Angeles, CA,
USA, September 2006.

[100] Gomez, J., Campbell, A. Z., Naghshineh, M., and Bisdikian, C. Conserving Transmission Power in
Wireless Ad Hoc Networks. In: Proceedings of the 9th IEEE International Conference on Network
Protocols (ICNP), pages 24–34. IEEE Computer Society, Riverside, CA, USA, November 2001.

[101] Greenstein, B., Kohler, E., and Estrin, D. A Sensor Network Application Construction Kit (SNACK).
In: Proceedings of the 2nd ACM International Conference on Embedded Networked Sensor Systems
(SENSYS), pages 69–80. ACM Press, Baltimore, MD, USA, November 2004.

[102] Gulliver, T. A. and Bhargava, V. K. A Systematic (16,8) Code for Correcting Double Errors and De-
tecting Triple-Adjacent Errors. In: IEEE Transactions on Computers, Vol. 42, No. 1, pages 109–112,
January 1993.

[103] Gupta, H., Zhou, Z., Das, S. R., and Gu, Q. Connected Sensor Cover: Self-Organization of Sensor
Networks for Efficient Query Execution. In: IEEE/ACM Transactions on Networking, Vol. 14, No. 1,
pages 55–67, February 2006.

[104] Hac, A. Wireless Sensor Network Designs. J. Wiley & Sons, New York, NY, USA, 2004.

[105] Haenselmann, T., Busse, M., King, T., Effelsberg, W., and Fuchs, M. Embedded Script-Driven Home-
Automation with Sensor Networks. In: Proceedings of the 1st IFIP Home Networking Conference. Paris,
France, December 2007. To Appear.

216 Bibliography

[106] Haenselmann, T., King, T., Effelsberg, W., Busse, M., and Fuchs, M. Skriptbasierte drahtlose Gebudeau-
tomation mit Sensornetzen. In: PIK – Praxis der Informationsverarbeitung und Kommunikation:
Fachzeitschrift fr den Einsatz von Informationssystemen, Vol. 03, pages 163–169, July 2007. In German.

[107] Hamming, R. W. Error Detection and Error Correction Codes. In: The Bell System Technical Journal,
Vol. 26, No. 2, pages 147–160, March 1950.

[108] Han, K.-H., Ko, Y.-B., and Kim, J.-H. A Novel Gradient Approach for Efficient Data Dissemination
in Wireless Sensor Networks. In: Proceedings of the 60th IEEE International Vehicular Technology
Conference (VTC), pages 2979–2983. IEEE Press, Los Angeles, CA, USA, September 2004.

[109] Hansen, T. R., Eklund, J. M., Sprinkle, J., Bajcsy, R., and Sastry, S. Using Smart Sensors and a Camera
Phone to Detect and Verify the Fall of Elderly Persons. In: Proceedings of the 3rd European Medicine,
Biology and Engineering Conference (EMBEC), pages 2486–2489. Prague, Czech Republic, November
2005.

[110] Hartung, C., Han, R., Seielstad, C., and Holbrook, S. FireWxNet: A Multi-Tiered Portable Wireless
System for Monitoring Weather Conditions in Wildland Fire Environments. In: Proceedings of the 4th
ACM International Conference on Mobile Systems, Applications, and Services (MOBISYS), pages 28–
41. ACM Press, Uppsala, Sweden, June 2006.

[111] He, T., Krishnamurthy, S., Stankovic, J. A., Abdelzaher, T., Luo, L., Stoleru, R., Yan, T., Gu, L., Hui, J.,
and Krogh, B. Energy-Efficient Surveillance System Using Wireless Sensor Networks. In: Proceedings
of the 2nd ACM International Conference on Mobile Systems, Applications, and Services (MOBISYS),
pages 270–283. ACM Press, Bosten, MA, USA, June 2004.

[112] Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D., and Ganesan, D. Building Effi-
cient Wireless Sensor Networks with Low-Level Naming. In: Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP), pages 146–159. ACM Press, Banff, Alberta, Canada, October
2001.

[113] Heinzelman, W. B., Murphy, A. L., Carvalho, H. S., and Perillo, M. A. Middleware to Support Sensor
Network Applications. In: IEEE Network, Vol. 18, No. 1, pages 6–14, January/February 2004.

[114] Heinzelman, W. R., Chandrakasan, A., and Balakrishnan, H. Energy-Efficient Communication Protocol
for Wireless Microsensor Networks. In: Proceedings of the 33rd IEEE Hawaii International Conference
on System Sciences (HICSS), pages 1–10. IEEE Computer Society, Maui, HI, USA, January 2000.

[115] Hill, J. and Culler, D. Mica: A Wireless Platform for Deeply Embedded Networks. In: IEEE Mirco,
Vol. 22, No. 6, pages 12–24, November 2002.

[116] Hof, H.-J. Applications of Sensor Networks. In: Wagner, D. and Wattenhofer, R., editors, Algorithms
for Sensor and Ad Hoc Networks, pages 1–20. Springer, Berlin, Germany, 2007.

[117] Hsiao, M. Y. A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes. In: IBM Journal of
Research and Development, Vol. 14, No. 4, pages 395–401, July 1970.

[118] Hu, L. Topology Control for Multihop Packet Radio Networks. In: IEEE Transactions on Communica-
tions, Vol. 41, No. 10, pages 1474–1481, October 1993.

[119] Hu, L. and Evans, D. Localization for Mobile Sensor Networks. In: Proceedings of the 10th ACM In-
ternational Conference on Mobile Computing and Networking (MOBICOM), pages 45–57. ACM Press,
Philadelphia, PA, USA, October 2004.

[120] Hu, W., Tran, V. N., Bulusu, N., Chou, C.-T., Jha, S., and Taylor, A. The Design and Evaluation of a
Hybrid Sensor Network for Cane-Toad Monitoring. In: Proceedings of the 4th ACM/IEEE International
Symposium on Information Processing in Sensor Networks (IPSN), pages 503–508. IEEE Press, Los
Angeles, CA, USA, April 2005.

Bibliography 217

[121] Hui, J. W. and Culler, D. The Dynamic Behavior of a Data Dissemination Protocol for Network Pro-
gramming at Scale. In: Proceedings of the 2nd ACM International Conference on Embedded Networked
Sensor Systems (SENSYS), pages 81–94. ACM Press, Baltimore, MD, USA, November 2004.

[122] Intanagonwiwat, C., Estrin, D., Govindan, R., and Heidemann, J. Impact of Network Density on Data
Aggregation in Wireless Sensor Networks. In: Proceedings of the 22nd IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 457–458. IEEE Press, Vienna, Austria, July 2002.

[123] Intanagonwiwat, C., Govindan, R., and Estrin, D. Directed Diffusion: A Scalable and Robust Com-
munication Paradigm for Sensor Networks. In: Proceedings of the 6th ACM International Conference
on Mobile Computing and Networking (MOBICOM), pages 56–67. ACM Press, Boston, MA, USA,
August 2000.

[124] Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., and Silva, F. Directed Diffusion for
Wireless Sensor Networking. In: IEEE/ACM Transactions on Networking, Vol. 11, No. 1, pages 2–16,
February 2003.

[125] Jia, L., Noubir, G., Rajaraman, R., and Sundaram, R. GIST: Group-Independent Spanning Tree for
Data Aggregation in Dense Sensor Networks. In: Proceedings of the 2nd IEEE International Conference
on Distributed Computing in Sensor Systems (DCOSS), pages 282–304. Springer, San Francisco, CA,
USA, June 2006.

[126] Johnson, D. B. and Maltz, D. A. Dynamic Source Routing in Ad Hoc Wireless Networks. In: Imielinski,
T. and Korth, H., editors, Mobile Computing, Vol. 353, pages 153–181. Kluwer Academic Publishers,
1996.

[127] Jones, C. E., Sivalingam, K. M., Agrawal, P., and Chen, J.-C. A Survey of Energy-Efficient Network
Protocols for Wireless Networks. In: Wireless Networks, Vol. 7, No. 4, pages 343–358, August 2001.

[128] Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., and Rubenstein, D. Energy-Efficient Computing
for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet. In: ACM SIGOPS
Operating Systems Review, Vol. 36, No. 5, pages 96–107, December 2002.

[129] Kalpakis, K., Dasgupta, K., and Namjoshi, P. Efficient Algorithms for Maximum Lifetime Data Gathering
and Aggregation in Wireless Sensor Networks. In: Computer Networks, Vol. 42, No. 6, pages 697–716,
August 2003.

[130] Karl, H. Protocols and Architectures for Wireless Sensor Networks. Springer, Berlin, Germany, 2005.

[131] Kim, J. and Bohacek, S. A Comparison of Opportunistic and Deterministic Forwarding in Mobile
Multihop Wireless Networks. In: Proceedings of the 1st ACM International Workshop on Mobile Op-
portunistic Networking (MOBIOPP), pages 9–16. ACM Press, San Juan, Puerto Rico, June 2007.

[132] Köppe, E., Liers, A., Ritter, H., and Schiller, J. Low-Power Image Transmission in Wireless Sensor
Networks Using ScatterWeb Technology. In: Proceedings of the 1st IEEE International Workshop on
Broadband Advanced Sensor Networks (BASENETS), pages 69–76. IEEE Computer Society, San Josè,
CA, USA, October 2004.

[133] Kottapalli, V. A., Kiremidjian, A. S., Lynch, J. P., Carryer, E., Kenny, T. W., Law, K. H., and Lei, Y.
Two-Tiered Wireless Sensor Network Architecture for Structural Health Monitoring. In: Proceedings of
the SPIE International Symposium on Smart Structures and Materials, pages 9–18. San Diego, CA, US,
March 2003.

[134] Kou, L., Markowsky, G., and Berman, L. A Fast Algorithm for Steiner Trees. In: Acta Informatica,
Vol. 15, No. 2, pages 141–145, June 1981.

[135] Krishnamachari, B., Estrin, D., and Wicker, S. Impact of Data Aggregation in Wireless Sensor Net-
works. In: Proceedings of the 22nd IEEE International Conference on Distributed Computing Systems
(ICDCS), pages 575–578. IEEE Press, Vienna, Austria, July 2002.

218 Bibliography

[136] Kruskal, J. B. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. In:
Proceedings of the American Mathematical Society, Vol. 7, pages 48–50, 1956.

[137] Kulkarni, P., Ganesan, D., Shenoy, P., and Lu, Q. SensEye: A Multi-Tier Camera Sensor Network. pages
229–238. ACM Press, Hilton, Singapore, November 2005.

[138] Kulkarni, S. S. and Wang, L. MNP: Multihop Network Reprogramming Service for Sensor Networks. In:
Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS),
pages 7–16. IEEE Press, Columbus, OH, USA, June 2005.

[139] Kumar, S. and Shepherd, D. SensIT: Sensor Information Technology for the Warfighter. In: Proceedings
of the 4th ISIF International Conference on Information Fusion (FUSION), pages TuC–1–3–TuC–1–9.
Montreal, Canada, August 2001.

[140] Kushwaha, M., Molnar, K., Salla, J., Volgyesi, P., Maróti, M., and Lédeczi, A. Sensor Node Local-
ization Using Mobile Acoustic Beacons. In: Proceedings of the 2nd IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS), pages 1–9. IEEE Computer Society, Washington, DC,
USA, November 2005.

[141] Lacan, J. and Perennou, T. Evaluation of Error Control Mechanisms for 802.11b Multicast Transmis-
sions. In: Proceedings of the 4th International Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WIOPT), pages 1–6. IEEE Computer Society, Boston, MA, USA, April
2006.

[142] Larsson, P. Selection Diversity Forwarding in a Multihop Packet Radio Network with Fading Channel
and Capture. In: ACM SIGMOBILE Mobile Computing and Communications Review, Vol. 5, No. 4,
pages 47–54, October 2001.

[143] Lee, M. and Wong, V. W. S. An Energy-Efficient Spanning Tree Algorithm for Data Aggregation in
Wireless Sensor Networks. In: Proceedings of the IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM), pages 300–303. IEEE Press, Victoria, BC, Canada, August
2005.

[144] Lee, M. and Wong, V. W. S. LPT for Data Aggregation in Wireless Sensor Networks. In: Proceed-
ings of the 48th IEEE Global Telecommunications Conference (GLOBECOM), pages 2969–2974. IEEE
Communication Society, St. Louis, MO, USA, November 2005.

[145] Lee, M. and Wong, V. W. S. E-Span and LPT for Data Aggregation in Wireless Sensor Networks. In:
Computer Communications, Vol. 29, No. 13–14, pages 2506–2520, March 2006.

[146] Lee, S., Bhattacharjee, B., and Banerjee, S. Efficient Geographic Routing in Multihop Wireless Networks.
pages 230–241. ACM Press, Urbana-Champaign, IL, USA, May 2005.

[147] Lesser, V., Atighetchi, M., Benyo, B., Horling, B., Raja, A., Vincent, R., Wagner, T., Xuan, P., and
Zhang, S. The Intelligent Home Testbed. In: In Proceedings of the Autonomy Control Software Work-
shop (Autonomous Agent Workshop). Seattle, WA, USA, June 1999.

[148] Lesser, V., Ortiz, C. L., and Tambe, M. Distributed Sensor Networks: A Multiagent Perspective. Kluwer
Acedemic Publisher, Boston, MA, USA, 2003.

[149] Levis, P., Patel, N., and Culler, D. Trickle: A Self-Regulating Algorithm for Code Propagation and
Maintenance in Wireless Sensor Networks. In: Proceedings of the 1st USENIX/ACM Symposium on
Network Systems Design and Implementation (NSDI), pages 15–28. ACM Press, San Francisco, CA,
USA, March 2004.

[150] Li, N. and Hou, J. C. Topology Control in Heterogeneous Wireless Networks: Problems and Solutions.
In: Proceedings of the 23rd Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), pages 243–254. IEEE Computer Society, Hong Kong, China, March 2004.

Bibliography 219

[151] Li, N., Hou, J. C., and Sha, L. Design and Analysis of an MST-Based Topology Control Algorithm.
In: Proceedings of the 22nd Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), pages 1702–1712. IEEE Computer Society, San Francisco, CA, USA, April 2003.

[152] Li, N., Hou, J. C., and Sha, L. Design and Analysis of an MST-Based Topology Control Algorithm. In:
IEEE Transactions on Wireless Communications, Vol. 4, No. 3, pages 1195–1206, May 2005.

[153] Li, Q., Aslam, J., and Rus, D. Online Power-Aware Routing in Wireless Ad-Hoc Networks. In: Proceed-
ings of the 7th ACM International Conference on Mobile Computing and Networking (MOBICOM),
pages 97–107. ACM Press, Rome, Italy, July 2001.

[154] Li, X.-Y. Algorithmic, Geometric and Graphs Issues in Wireless Networks. In: Wireless Communica-
tions and Mobile Computing, Vol. 3, No. 2, pages 119–140, March 2003.

[155] Lin, S. and Costello, D. J. Error Control Coding: Fundamentals and Applications. Prentice Hall, 1983.

[156] Liu, H., Ma, H., Zarki, M. E., and Gupta, S. Error Control Schemes for Networks: An Overview. In:
Mobile Networks and Applications, Vol. 2, No. 2, pages 167–182, September 1992.

[157] Lloyd, E. L., Liu, R., Marathe, M. V., Ramanathan, R., and Ravi, S. S. Algorithmic Aspects of Topology
Control Problems for Ad Hoc Networks. In: Mobile Networks and Applications, Vol. 10, No. 1–2,
pages 19–34, February 2005.

[158] Luby, M. LT Codes. In: Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 271–282. IEEE Computer Society, Vancouver, BC, Canada, November 2002.

[159] Luby, M., Mitzenmacher, M., Shokrollahi, A., and Spielman, D. Efficient Erasure Correcting Codes. In:
IEEE Transactions on Information Theory, Vol. 47, No. 2, pages 569–584, February 2001.

[160] Lucent Technologies, Inc. URL http://www.lucent.com/. Online. Accessed at 2007-06-23.

[161] Lundgren, H., Nordstro, E., and Tschudin, C. Coping with Communication Gray Zones in IEEE 802.11b-
Based Ad Hoc Networks. In: Proceedings of the 5th ACM International Workshop on Wireless Mobile
Multimedia (WOWMOM), pages 49–55. ACM Press, Atlanta, GA, USA, September 2002.

[162] Luo, H., Ye, F., Cheng, J., Lu, S., and Zhang, L. A Two-Tier Data Dissemination Model for Large-Scale
Wireless Sensor Networks. In: Wireless Networks, Vol. 11, No. 1–2, pages 161–175, January 2005.

[163] MacKay, D. J. C. Information Theory, Inference, and Learning Algorithms. Cambridge University Press,
Cambridge, UK, 2003.

[164] Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. TAG: A Tiny Aggregation Service for
Ad-Hoc Sensor Networks. In: Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI), pages 131–146. Boston, MA, USA, December 2002.

[165] Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., and Anderson, J. Wireless Sensor Networks
for Habitat Monitoring. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA), pages 88–97. ACM Press, Atlanta, GA, USA, September 2002.

[166] Marina, M. and Das, S. On-Demand Multipath Distance-Vector Routing in Ad Hoc Networks. In:
Proceedings of the 9th IEEE International Conference on Network Protocols (ICNP), pages 14–23. IEEE
Computer Society, Mission Inn, CA, USA, November 2001.

[167] Maróti, M., Kusy, B., Simon, G., and Lédeczi, A. The Flooding Time Synchronization Protocol. In:
Proceedings of the 2nd ACM International Conference on Embedded Networked Sensor Systems (SEN-
SYS), pages 39–49. ACM Press, Baltimore, MD, USA, November 2004.

[168] Martinez, K., Riddoch, A., Hart, J., and Ong, R. A Sensor Network for Glaciers. In: Stevenson, A. and
Wright, S., editors, Intelligent Spaces, pages 125–138. Springer, 2006.

http://www.lucent.com/

220 Bibliography

[169] Massey, J. L. Shift-Register Synthesis and BCH Decoding. In: IEEE Transactions on Information Theory,
Vol. 15, No. 1, pages 122–127, January 1969.

[170] Mauve, M., Widmer, J., and Hartenstein, H. A Survey on Position-Based Routing in Mobile Ad-Hoc
Networks. In: IEEE Network Magazine, Vol. 15, No. 6, pages 30–39, November 2001.

[171] McAuley, A. J. Reliable Broadband Communications Using a Burst Erasure Correcting Code. In:
Proceedings of the 13th ACM International SIGCOMM, pages 287–306. ACM Press, Philadelphia, PA,
USA, September 1990.

[172] McMahan, M. L. Evolving Cellular Handset Architectures but a Continuing, Insatiable Desire for DSP
MIPSVector. In: Texas Instruments Technical Journal, Vol. 17, No. 1, pages 1–10, March 2000.

[173] Meesookho, C., Narayanan, S., and Raghavendra, C. S. Collaborative Classification Applica-
tions in Sensor Networks. Presentation, August 2002. URL http://sail.usc.edu/pdf/
CollaborativeClassificationApplicationsInSensorNetworks_chartchai_
SAM2002_08_07_02.pdf. Online. Accessed at 2007-06-23.

[174] Meesookho, C., Narayanan, S., and Raghavendra, C. S. Collaborative Classification Applications in
Sensor Networks. In: Proceedings of the 2nd IEEE Sensor Array and Multichannel Signal Processing
Workshop (SAM), pages 370–374. IEEE Signal Processing Society, Arlington, VA, USA, August 2002.

[175] Michail, A. and Ephremides, A. Energy-Efficient Routing for Connection-Oriented Traffic in Wireless
Ad-Hoc Networks. In: Mobile Networks and Applications, Vol. 8, No. 5, pages 517–533, October 2003.

[176] Min, R., Bhardwaj, M., Cho, S. H., Ickes, N., Shil, E., Sinha, A., and andf A. Chandrakasan, A. W.
Energy-Centric Enabling Technologies for Wireless Sensor Networks. In: IEEE Wireless Communica-
tions Magazine, Vol. 9, No. 4, pages 28–39, August 2002.

[177] Misra, A. and Banerjee, S. MRPC: Maximizing Network Lifetime for Reliable Routing in Wireless
Environments. In: Proceedings of the 4th IEEE International Wireless Communications and Networking
Conference (WCNC), pages 800–806. IEEE Computer Society, Orlando, FL, USA, March 2002.

[178] Moore, G. Cramming More Components onto Integrated Circuits. In: Electronics, Vol. 38, No. 8,
pages 114–117, April 1965.

[179] Murthy, S. and Garcia-Luna-Aceves, J. J. An Efficient Routing Protocol for Wireless Networks. In:
Mobile Networks and Applications, Vol. 1, No. 2, pages 183–197, June 1996.

[180] Nath, S., Gibbons, P. B., Seshan, S., and Anderson, Z. R. Synopsis Diffusion for Robust Aggregation in
Sensor Networks. In: Proceedings of the 2nd ACM International Conference on Embedded Networked
Sensor Systems (SENSYS), pages 250–262. ACM Press, Baltimore, MD, USA, November 2004.

[181] National Interagency Fire Center. Historical Wildland Fire Summaries. URL http://www.nifc.
gov/stats/. Online. Accessed at 2007-06-23.

[182] Niculescu, D. and Nath, B. Ad Hoc Positioning System (APS) using AOA. In: Proceedings of the 22nd
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pages 1734–1743.
IEEE Computer Society, San Francisco, CA, UAS, March 2003.

[183] Nikaein, N. and Bonnet, C. Topology Management for Improving Routing and Network Performances
in Mobile Ad Hoc Networks. In: Mobile Networks and Applications, Vol. 9, No. 6, pages 583–594,
December 2004.

[184] Nonnenmacher, J., Biersack, E. W., and Towsley, D. Parity-Based Loss Recovery for Reliable Multicast
Transmission. In: IEEE/ACM Transactions on Networking, Vol. 6, No. 4, pages 349–361, August 1998.

[185] Park, V. D. and Corson, M. S. A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless
Networks. In: Proceedings of the 16th Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), pages 1405–1413. IEEE Computer Society, Kobe, Japan, April 1997.

http://sail.usc.edu/pdf/CollaborativeClassificationApplicationsInSensorNetworks_chartchai_SAM2002_08_07_02.pdf
http://sail.usc.edu/pdf/CollaborativeClassificationApplicationsInSensorNetworks_chartchai_SAM2002_08_07_02.pdf
http://sail.usc.edu/pdf/CollaborativeClassificationApplicationsInSensorNetworks_chartchai_SAM2002_08_07_02.pdf
http://www.nifc.gov/stats/
http://www.nifc.gov/stats/

Bibliography 221

[186] Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., and Correal, N. S. Locating the
Nodes: Cooperative Localization in Wireless Sensor Networks. In: IEEE Signal Processing Magazine,
Vol. 22, No. 4, pages 54–69, July 2005.

[187] Pearl, J. Fusion, Propagation, and Structuring in Belief Networks. In: Artificial Intelligence, Vol. 29,
No. 3, pages 241–288, September 1986.

[188] Peleg, D. and Rubinovich, V. A Near-Tight Lower Bound on the Time Complexity of Distributed
Minimum-Weight Spanning Tree Construction. In: SIAM Journal of Computing, Vol. 30, No. 5,
pages 1427–1442, May 2000.

[189] Pellegrino, P., Bonino, D., and Corno, F. Domotic House Gateway. pages 1915–1920. ACM Press,
Dijon, France, April 2006.

[190] Perkins, C. E. and Bhagwat, P. Highly Dynamic Destination-Sequenced Distance-Vector Routing
(DSDV) for Mobile Computers. In: Proceedings of the 17th ACM International SIGCOMM, pages
234–244. ACM Press, London, UK, August 1994.

[191] Peterson, L. and Davie, B. S. Computer Networks: A Systems Approach. Morgan Kaufman, 2007.

[192] Peterson, W. W. and Weldon, E. J. Error-Correcting Codes. MIT Press, Cambridge, MA, USA, 1972.

[193] Prim, R. C. Shortest Connection Networks and Some Generalizations. In: Bell System Technical Journal,
Vol. 36, No. 6, pages 1389–1401, 1957.

[194] Pursley, M. B., Russell, H. B., and Wysocarski, J. S. Energy-Efficient Routing in Frequency-Hop Radio
Networks with Partial-Band Interference. In: Proceedings of the 2nd IEEE International Wireless Com-
munications and Networking Conference (WCNC), pages 79–83. IEEE Computer Society, Chigago, IL,
USA, September 2000.

[195] Qureshi, F. and Terzopoulos, D. Virtual Vision and Smart Camera Networks. In: Proceedings of the
International Workshop on Distributed Smart Cameras (DSC), pages 62–66. Boulder, CO, USA, October
2006.

[196] Raghunathan, V., Schurgers, C., Park, S., and Srivastava, M. B. Energy-Aware Wireless Microsensor
Networks. In: IEEE Signal Processing Magazine, Vol. 19, No. 2, pages 40–50, March 2002.

[197] Ramanathan, R. and Rosales-Hain, R. Topology Control of Multihop Wireless Networks using Transmit
Power Adjustment. In: Proceedings of the 19th Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM), pages 404–413. IEEE Computer Society, Tel-Aviv, Israel, March 2000.

[198] Rappaport, T. Wireless Communications: Principles and Practice. Prentice Hall, 2001.

[199] Reed, I. and Solomon, G. Polynomial Codes Over Certain Finite Fields. In: SIAM Journal on Applied
Mathematics, Vol. 8, No. 2, pages 300–304, June 1960.

[200] RF Monolithics, Inc. 868.35 MHz Hybrid Transceiver TR1001. URL http://www.rfm.com/
products/data/tr1001.pdf. Online. Accessed at 2007-06-23.

[201] RF Monolithics, Inc. ASH Transceiver Designer’s Guide. URL http://www.rfm.com/
products/tr_des24.pdf. Online. Accessed at 2007-06-23.

[202] Richardson, T., Shokrollahi, M. A., and Urbanke, R. Design of Capacity-Approaching Irregular Low-
Density Parity-Check Codes. In: IEEE Transactions on Information Theory, Vol. 47, No. 2, pages 619–
637, February 2001.

[203] Richardson, T. and Urbanke, R. Efficient Encoding of Low-Density Parity-Check Codes. In: IEEE
Transactions on Information Theory, Vol. 47, No. 2, pages 638–656, September 2001.

http://www.rfm.com/products/data/tr1001.pdf
http://www.rfm.com/products/data/tr1001.pdf
http://www.rfm.com/products/tr_des24.pdf
http://www.rfm.com/products/tr_des24.pdf

222 Bibliography

[204] Rodoplu, V. and Meng, T. H. Minimum Energy Mobile Wireless Networks. In: IEEE Journal on Selected
Areas in Communications, Vol. 17, No. 8, pages 1333–1344, August 1999.

[205] Ruzzelli, A. G., O’Hare, G. M. P., O’Grady, M. J., and Tynan, R. MERLIN: A Synergetic Integration
of MAC and Routing Protocol for Distributed Sensor Networks. In: Proceedings of the 3rd IEEE Inter-
national Conference on Sensor and Ad Hoc Communications and Networks (SECON), pages 266–275.
IEEE Computer Society, Reston, VA, USA, September 2006.

[206] Sadler, C. ZebraNet. URL http://cmsadler.googlepages.com/. Online. Accessed at 2007-
06-23.

[207] Sallai, J., Balogh, G., Maróti, M., Lédeczi, A., and Kusy, B. Acoustic Ranging in Resource-Constrained
Sensor Networks. In: Proceedings of the International Conference on Wireless Networks (ICWN), pages
467–472. Las Vegas, NV, USA, June 2004.

[208] Sankar, A. and Liu, Z. Maximum Lifetime Routing in Wireless Ad-Hoc Networks. In: Proceedings of
the 23rd Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pages
1089–1097. IEEE Computer Society, Hong Kong, China, March 2004.

[209] Saukh, O., Marrón, P. J., Lachenmann, A., Gauger, M., Minder, D., and Rothermel, K. Generic Routing
Metric and Policies for WSNs. In: Proceedings of the 3rd European Workshop on Wireless Sensor
Networks (EWSN), pages 99–114. Springer, Zuerich, Switzerland, February 2006.

[210] ScatterWeb. The Modular Sensor Board. URL http://www.scatterweb.de/content/
downloads/datasheets/fact-sheet-msb430-v1.0-en.pdf. Online. Accessed at 2007-
06-23.

[211] Schiller, J., Liers, A., Ritter, H., Winter, R., and Voigt, T. ScatterWeb - Low Power Sensor Nodes and
Energy Aware Routing. In: Proceedings of the 38th IEEE Hawaii International Conference on System
Sciences (HICSS), pages 286–294. IEEE Computer Society, Maui, HI, USA, January 2005.

[212] Schurgers, C. and Srivastava, M. B. Energy-Efficient Routing in Wireless Sensor Networks. In: Proceed-
ings of the IEEE Military Communications Conference (MILCOM), pages 357–361. IEEE Computer
Society, Vienne, VA, USA, October 2001.

[213] Schurgers, C., Tsiatsis, V., Ganeriwal, S., and Srivastava, M. Optimizing Sensor Networks in the Energy-
Latency-Density Design Space. In: IEEE Transactions on Mobile Computing, Vol. 1, No. 1, pages 70–80,
January 2002.

[214] Schurgers, C., Tsiatsis, V., Ganeriwal, S., and Srivastava, M. Topology Management for Sensor Net-
works: Exploiting Latency and Density. pages 135–145. ACM Press, Lausanne, Switzerland, June
2002.

[215] Schwartz, J. W. and Wolf, J. K. A Systematic (12,8) Code for Correcting Single Errors and Detecting
Adjacent Errors. In: IEEE Transactions on Computers, Vol. 39, No. 11, pages 1403–1404, November
1990.

[216] Schwiebert, L., Gupta, S. K. S., and Weinmann, J. Research Challenges in Wireless Networks of Biomed-
ical Sensors. In: Proceedings of the 7th ACM International Conference on Mobile Computing and
Networking (MOBICOM), pages 151–165. ACM Press, Rome, Italy, July 2001.

[217] Seada, K., Zuniga, M., Helmy, A., and Krishnamachari, B. Energy-Efficient Forwarding Strategies for
Geographic Routing in Lossy Wireless Sensor Networks. In: Proceedings of the 2nd ACM Interna-
tional Conference on Embedded Networked Sensor Systems (SENSYS), pages 108–121. ACM Press,
Baltimore, MD, USA, November 2004.

[218] Shah, R. and Rabaey, J. Energy-Aware Routing for Low-Energy Ad Hoc Sensor Networks. In: Proceed-
ings of the 4th IEEE International Wireless Communications and Networking Conference (WCNC),
pages 350–355. IEEE Computer Society, Orlando, FL, USA, March 2002.

http://cmsadler.googlepages.com/
http://www.scatterweb.de/content/downloads/datasheets/fact-sheet-msb430-v1.0-en.pdf
http://www.scatterweb.de/content/downloads/datasheets/fact-sheet-msb430-v1.0-en.pdf

Bibliography 223

[219] Shannon, C. E. A Mathematical Theory of Communication. In: Bell System Technical Journal, Vol. 27,
pages 379–423 and 623–656, July and October 1948.

[220] Sheth, A., Thekkath, C. A., Mehta, P., Tejaswi, K., Parekh, C., Singh, T. N., and Desai, U. B. SenSlide: A
Distributed Landslide Prediction System. In: ACM SIGOPS Operating Systems Review, Vol. 41, No. 2,
pages 75–87, April 2007.

[221] Shokrollahi, A. Raptor Codes. In: IEEE/ACM Transactions on Networking, Vol. 14, No. SI, pages 2551–
2567, June 2006.

[222] Shrivastava, N., Buragohain, C., and Agrawal, D. Medians and Beyond: New Aggregation Techniques for
Sensor Networks. In: Proceedings of the 2nd ACM International Conference on Embedded Networked
Sensor Systems (SENSYS), pages 239–249. ACM Press, Baltimore, MD, USA, November 2004.

[223] Shukla, S., Bulusu, N., and Jha, S. Cane-Toad Monitoring in Kakadu National Park Using Wireless
Sensor Networks. In: Proceedings of the 18th Asia-Pacific Advanced Network Meeting (APAN). Cairns,
Australia, July 2004.

[224] Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, B., Nádas, A., Pap, G., Sallai, J., and Frampton, K.
Sensor Network-Based Countersniper System. In: Proceedings of the 2nd ACM International Conference
on Embedded Networked Sensor Systems (SENSYS), pages 1–12. ACM Press, Baltimore, MD, USA,
November 2004.

[225] Singh, S., Woo, M., and Raghavendra, C. S. Power-Aware Routing in Mobile Ad Hoc Networks. In:
Proceedings of the 4th ACM International Conference on Mobile Computing and Networking (MOBI-
COM), pages 181–190. ACM Press, Dallas, TX, USA, October 1998.

[226] Sproull, R. F. and Cohen, D. High-Level Protocols. In: Proceedings of the IEEE, Vol. 66, No. 11,
pages 1371–1386, November 1978.

[227] Srinivasan, V., Chiasserini, C.-F., Nuggehalli, P. S., and Rao, R. R. Optimal Rate Allocation for Energy-
Efficient Multipath Routing in Wireless Ad Hoc Networks. In: IEEE Transactions on Wireless Commu-
nications, Vol. 3, No. 3, pages 891–899, May 2004.

[228] Stann, F., Heidemann, J., Shroff, R., and Murtaza, M. Z. RBP: Robust Broadcast Propagation in Wireless
Networks. In: Proceedings of the 4th ACM International Conference on Embedded Networked Sensor
Systems (SENSYS), pages 85–98. ACM Press, Boulder, CO, USA, October 2006.

[229] Stojmenovic, I. and Lin, X. Power-Aware Localized Routing in Wireless Networks. In: IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 12, No. 11, pages 1122–1133, November 2001.

[230] Stoleru, R., He, T., Stankovic, J. A., and Luebke, D. P. A High-Accuracy, Low-Cost Localization System
for Wireless Sensor Networks. In: Proceedings of the 3rd ACM International Conference on Embedded
Networked Sensor Systems (SENSYS), pages 13–26. ACM Press, San Diego, CA, USA, November
2005.

[231] Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., and Culler, D. An Analysis of a Large Scale
Habitat Monitoring Application. In: Proceedings of the 2nd ACM International Conference on Em-
bedded Networked Sensor Systems (SENSYS), pages 214–226. ACM Press, Baltimore, MD, USA,
November 2004.

[232] Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., and Estrin, D. Habitat Mon-
itoring with Sensor Networks. In: Communications of the ACM, Vol. 47, No. 6, pages 34–40, June
2004.

[233] Tabar, A. M., Keshavarz, A., and Aghajan, H. Smart Home Care Network Using Sensor Fusion and
Distributed Vision-Based Reasoning. In: Proceedings of the 4th ACM International Workshop on Video
Surveillance and Sensor Networks (VSSN), pages 145–154. ACM Press, Santa Barbara, CA, USA,
October 2006.

224 Bibliography

[234] Takahasi, H. and Matsuyama, A. An Approximation Solution for the Steiner Tree Problemin Graphs. In:
Mathematica Japonica, Vol. 24, No. 6, pages 573–577, 1980.

[235] Tavli, B. and Heinzelman, W. B. Energy and Spatial Reuse Efficient Network-Wide Real-Time Data
Broadcasting in Mobile Ad Hoc Networks. In: IEEE Transactions on Mobile Computing, Vol. 5, No. 10,
pages 1297–1312, October 2006.

[236] The Defense Advanced Research Projects Agency. Technical Offices Programs. URL http://www.
darpa.mil/body/off_programs.html. Online. Accessed at 2007-06-23.

[237] Thorstensen, B., Syversen, T., Bjørnvold, T.-A., and Walseth, T. Electronic Shepherd - A Low-Cost,
Low-Bandwidth, Wireless Network System. In: Proceedings of the 2nd ACM International Conference
on Mobile Systems, Applications, and Services (MOBISYS), pages 245–255. ACM Press, Boston, MA,
USA, June 2004.

[238] Toh, C.-K. Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad Hoc
Networks. In: IEEE Communications Magazine, Vol. 39, No. 6, pages 138–147, June 2001.

[239] Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T., Buon-
adonna, P., Gay, D., and Hong, W. A Macroscope in the Redwoods. In: Proceedings of the 3rd ACM In-
ternational Conference on Embedded Networked Sensor Systems (SENSYS), pages 51–63. ACM Press,
San Diego, CA, USA, November 2005.

[240] Upadhyayula, S., Annamalai, V., and Gupta, S. K. S. A Low-Latency and Energy-Efficient Algorithm for
Convergecast in Wireless Sensor Networks. In: Proceedings of the 46th IEEE Global Telecommunica-
tions Conference (GLOBECOM), pages 3525–3530. IEEE Communication Society, San Francisco, CA,
USA, December 2003.

[241] van Dam, T. and Langendoen, K. An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In: Proceedings of the 1st ACM International Conference on Embedded Networked Sensor
Systems (SENSYS), pages 171–180. ACM Press, Los Angeles, CA, USA, November 2003.

[242] Wang, H.-L., Miao, J., and Chang, M. An Enhanced IEEE 802.11 Retransmission Scheme. In: Proceed-
ings of the 5th IEEE International Wireless Communications and Networking Conference (WCNC),
pages 66–71. IEEE Computer Society, New Orleans, LA, USA, March 2003.

[243] Wang, L. and Kulkarni, S. S. Proactive Reliable Bulk Data Dissemination in Sensor Networks. In:
Proceedings of the 17th International Conference on Parallel and Distributed Computing and Systems
(PDCS), pages 773–778. ACTA Press, Phoenix, AZ, USA, November 2005.

[244] Wang, Y., Martonosi, M., and Peh, L.-S. Supervised Learning in Sensor Networks: New Approaches
with Routing, Reliability Optimizations. In: Proceedings of the 3rd IEEE International Conference on
Sensor and Ad Hoc Communications and Networks (SECON), pages 256–265. IEEE Computer Society,
Reston, VA, USA, September 2006.

[245] Warneke, B., Last, M., Liebowitz, B., and Pister, K. S. J. Smart Dust: Communicating with a Cubic-
Millimeter Computer. In: IEEE Computer, Vol. 31, No. 1, pages 44–51, January 2001.

[246] Wattenhofer, R., Li, L., Bahl, P., and Wang, Y.-M. Distributed Topology Control for Power-Efficient
Operations in Multihop Wireless Ad Hoc Networks. In: Proceedings of the 20th Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM), pages 1388–1397. IEEE Computer
Society, Anchorage, AK, USA, April 2001.

[247] Welsh, M. Deploying a Sensor Network on an Active Volcano. Presentation, 2006. URL http://iic.
harvard.edu/downloads/seminar_welsh_100406.pdf. Online. Accessed at 2007-06-23.

[248] Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., and Welsh, M. Monitoring Volcanic Eruptions with a
Wireless Sensor Network. In: Proceedings of the 2nd European Workshop on Wireless Sensor Networks
(EWSN), pages 108–120. IEEE Press, Istanbul, Turkey, 2005.

http://www.darpa.mil/body/off_programs.html
http://www.darpa.mil/body/off_programs.html
http://iic.harvard.edu/downloads/seminar_welsh_100406.pdf
http://iic.harvard.edu/downloads/seminar_welsh_100406.pdf

Bibliography 225

[249] Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., and Lees, J. Deploying a
Wireless Sensor Network on an Active Volcano. In: IEEE Internet Computing, Vol. 10, No. 2, pages 18–
25, March/April 2006.

[250] Wesson, R. B., Hayes-Roth, F. A., Burge, J. W., Stasz, C., and Sunshine, C. A. Network Structures for
Distributed Situation Assessment. In: IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-
11, pages 5–23, January 1981.

[251] Westhoff, D., Girao, J., and Acharya, M. Concealed Data Aggregation for Reverse Multicast Traffic
in Sensor Networks: Encryption, Key Distribution, and Routing Adaptation. In: IEEE Transactions on
Mobile Computing, Vol. 5, No. 10, pages 1417–1431, October 2006.

[252] Wikipedia. The Free Encyclopedia. ALERT - Automated Local Evaluation in Real-Time. URL http:
//www.alertsystems.org/. Online. Accessed at 2007-06-23.

[253] Wikipedia. The Free Encyclopedia. Ecophysiology. URL http://en.wikipedia.org/wiki/
Ecophysiology. Online. Accessed at 2007-06-23.

[254] Wikipedia. The Free Encyclopedia. The Leach’s Storm-Petrel. URL http://en.wikipedia.org/
wiki/Leach%27s_Storm-Petrel. Online. Accessed at 2007-06-23.

[255] Wikipedia. The Free Encyclopedia. Shannon-Hartley Theorem. URL http://en.wikipedia.
org/wiki/Shannon-Hartley_theorem. Online. Accessed at 2007-06-23.

[256] Wikipedia. The Free Encyclopedia. Universal Asynchronous Receiver/Transmitter. URL http://en.
wikipedia.org/wiki/UART. Online. Accessed at 2007-06-23.

[257] Willig, A. and Mitschke, R. Results of Bit Error Measurements with Sensor Nodes and Casuistic Con-
sequences for Design of Energy-Efficient Error Control Schemes. In: Proceedings of the 3rd European
Workshop on Wireless Sensor Networks (EWSN), pages 310–325. Springer, Zurich, Switzerland, Febru-
ary 2006.

[258] Woo, A., Tong, T., and Culler, D. Taming the Underlying Challenges for Reliable Multihop Routing in
Sensor Networks. In: Proceedings of the 1st ACM International Conference on Embedded Networked
Sensor Systems (SENSYS), pages 14–27. ACM Press, Los Angeles, CA, USA, November 2003.

[259] Xu, N., Rangwala, S., Chintalapudi, K., Ganesan, D., Broad, A., Govindan, R., and Estrin, D. A Wireless
Sensor Network for Structural Monitoring. In: Proceedings of the 2nd ACM International Conference
on Embedded Networked Sensor Systems (SENSYS), pages 13–24. ACM Press, Baltimore, MD, USA,
November 2004.

[260] Xu, Y., Bien, S., Mori, Y., Heidemann, J., and Estrin, D. Topology Control Protocols to Conserve Energy
in Wireless Ad Hoc Networks. Technical Report 6, Center for Embedded Networked Sensing, UCLA,
January 2003.

[261] Xu, Y., Heidemann, J., and Estrin, D. Adaptive Energy-Conserving Routing for Multihop Ad Hoc Net-
works. Technical Report 527, Information Sciences Institute, USC, October 2000.

[262] Xu, Y., Heidemann, J., and Estrin, D. Geography-Informed Energy Conservation for Ad-Hoc Rout-
ing. In: Proceedings of the 7th ACM International Conference on Mobile Computing and Networking
(MOBICOM), pages 70–84. ACM Press, Rome, Italy, July 2001.

[263] Xue, Y., Cui, Y., and Nahrstedt, K. Maximizing Lifetime for Data Aggregation in Wireless Sensor
Networks. In: Mobile Networks and Applications, Vol. 10, No. 6, pages 853–864, December 2005.

[264] Yang, Y., Wang, X., Zhu, S., and Cao, G. SDAP: A Secure Hop-by-Hop Data Aggregation Protocol
for Sensor Networks. In: Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MOBIHOC), pages 356–367. ACM Press, Florence, Italy, May 2006.

http://www.alertsystems.org/
http://www.alertsystems.org/
http://en.wikipedia.org/wiki/Ecophysiology
http://en.wikipedia.org/wiki/Ecophysiology
http://en.wikipedia.org/wiki/Leach%27s_Storm-Petrel
http://en.wikipedia.org/wiki/Leach%27s_Storm-Petrel
http://en.wikipedia.org/wiki/Shannon-Hartley_theorem
http://en.wikipedia.org/wiki/Shannon-Hartley_theorem
http://en.wikipedia.org/wiki/UART
http://en.wikipedia.org/wiki/UART

226 Bibliography

[265] Yarvis, M., Conner, W., Krishnamurthy, L., Chhabra, J., Elliott, B., and Mainwaring, A. Real-World
Experiences with an Interactive Ad Hoc Sensor Network. In: Proceedings of the 31st IEEE International
Conference on Parallel Processing Workshops (ICPPW), pages 143–152. IEEE Computer Society, Van-
couver, BC, Canada, August 2002.

[266] Ye, F., Chen, A., Liu, S., and Zhang, L. A Scalable Solution to Minimum Cost Forwarding in Large
Sensor Networks. In: Proceedings of the 12th IEEE International Conference on Computer Communi-
cations and Networks (ICCCN), pages 304–309. IEEE Computer Society, Scottsdale, AZ, USA, October
2001.

[267] Ye, F., Luo, H., Cheng, J., Lu, S., and Zhang, L. A Two-Tier Data Dissemination Model for Large-
Scale Wireless Sensor Networks. In: Proceedings of the 8th ACM International Conference on Mobile
Computing and Networking (MOBICOM), pages 148–159. ACM Press, Atlanta, GA, USA, September
2002.

[268] Ye, F., Yi, S., and Sikdar, B. Improving Spatial Reuse of IEEE 802.11-Based Ad Hoc Networks. In:
Proceedings of the 46th IEEE Global Telecommunications Conference (GLOBECOM), pages 1013–
1017. IEEE Computer Society, San Francisco, CA, USA, December 2003.

[269] Ye, F., Zhong, G., Lu, S., and Zhang, L. PEAS: A Robust Energy Conserving Protocol for Long-Lived
Sensor Networks. In: Proceedings of the 23rd IEEE International Conference on Distributed Computing
Systems (ICDCS), pages 200–210. IEEE Press, Providence, RI, USA, May 2003.

[270] Ye, W., Heidemann, J., and Estrin, D. An Energy-Efficient MAC Protocol for Wireless Sensor Networks.
In: Proceedings of the 21st Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), pages 1567–1576. IEEE Computer Society, New York, NY, USA, June 2002.

[271] Ye, W., Silva, F., and Heidemann, J. Ultra-Low Duty Cycle MAC with Scheduled Channel Polling.
In: Proceedings of the 4th ACM International Conference on Embedded Networked Sensor Systems
(SENSYS), pages 321–334. ACM Press, Boulder, CO, USA, October 2006.

[272] Younis, O. and Fahmy, S. HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad-
Hoc Sensor Networks. In: IEEE Transactions on Mobile Computing, Vol. 3, No. 4, pages 366–379,
October 2004.

[273] Zhang, H. and Hou, J. C. Maximizing α-Lifetime for Wireless Sensor Networks. In: Proceedings of the
3rd International Workshop on Measurement, Modeling, and Performance Analysis of Wireless Sensor
Networks (SENMETRICS), pages 70–77. San Diego, CA, USA, July 2005.

[274] Zhang, P., Sadler, C. M., Lyon, S. A., and Martonosi, M. Hardware Design Experiences in ZebraNet.
In: Proceedings of the 2nd ACM International Conference on Embedded Networked Sensor Systems
(SENSYS), pages 227–238. ACM Press, Baltimore, MD, USA, November 2004.

[275] Zhao, B. and Valenti, M. C. Practical Relay Networks: A Generalization of Hybrid-ARQ. In: IEEE
Journal on Selected Areas in Communications, Vol. 23, No. 1, pages 7–18, January 2005.

[276] Zhao, J. and Govindan, R. Understanding Packet Delivery Performance in Dense Wireless Sensor Net-
works. In: Proceedings of the 1st ACM International Conference on Embedded Networked Sensor
Systems (SENSYS), pages 1–13. ACM Press, Los Angeles, CA, USA, November 2003.

[277] Zhong, Z. and Nelakuditi, S. On the Efficacy of Opportunistic Routing. In: Proceedings of the 4th
IEEE International Conference on Sensor and Ad Hoc Communications and Networks (SECON), pages
441–450. IEEE Computer Society, San Diego, CA, USA, June 2007.

[278] Zhou, G., He, T., Krishnamurthy, S., and Stankovic, J. A. Impact of Radio Irregularity on Wireless Sensor
Networks. In: Proceedings of the 2nd ACM International Conference on Mobile Systems, Applications,
and Services (MOBISYS), pages 125–138. ACM Press, Boston, MA, USA, June 2004.

Bibliography 227

[279] Zorzi, M. and Armaroli, A. Advancement Optimization in Multihop Wireless Networks. In: Proceedings
of the 58th IEEE International Vehicular Technology Conference (VTC), pages 2891–2894. IEEE Press,
Orlando, FL, USA, October 2003.

[280] Zorzi, M. and Rao, R. R. Capture and Retransmission Control in Mobile Radio. In: IEEE Journal on
Selected Areas in Communications, Vol. 12, No. 8, pages 1289–1298, October 1994.

[281] Zorzi, M. and Rao, R. R. Geographic Random Forwarding (GeRaF) for Ad Hoc and Sensor Net-
works: Energy and Latency Performance. In: IEEE Transactions on Mobile Computing, Vol. 2, No. 4,
pages 349–365, October 2003.

[282] Zuniga, M. and Krishnamachari, B. Analyzing the Transitional Region in Low Power Wireless Links.
In: Proceedings of the 1st IEEE International Conference on Sensor and Ad Hoc Communications and
Networks (SECON), pages 517–526. IEEE Computer Society, Santa Clara, CA, USA, October 2004.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Outline

	The ScatterWeb Platform
	Introduction
	The Embedded Sensor Board
	MSP430 Microcontroller
	TR1001 Radio Transceiver
	Sensors and Equipment
	Power Consumption

	The Embedded Gate/USB
	The Embedded Gate/WEB
	Conclusions

	The Impact of Resync and Forward Error Correction
	Introduction
	The Resync Mechanism
	Communication Characteristics of ESB Nodes
	Design of an Appropriate Resync
	Experimental Evaluation
	Conclusions

	Forward Error Correction
	Forward Error Correction Codes
	Analyses of FEC Codes
	Experimental Evaluation
	Conclusions

	Data Dissemination Using FEC Coding
	FEC Schemes for Bulk Data Dissemination
	Data Dissemination Protocols
	Experimental Evaluation
	Conclusions

	Energy-Efficient Forwarding
	Introduction
	Related Work
	Models, Assumptions, and Metrics
	Packet Reception Model
	Link Asymmetry
	Energy Model
	Assumptions
	Metrics

	Analysis of Hop- and PRR-Based Forwarding Strategies
	Hop-Based Forwarding
	PRR-Based Forwarding

	Energy-Efficient Forwarding
	Single-Link Energy-Efficient Forwarding
	Multi-Link Energy-Efficient Forwarding
	Analysis of the Infinite Retransmissions Case
	Analysis of the Finite Retransmissions Case
	Analysis of the Optimal Number of Forwarders for MEEF

	Simulations
	Simulation Setup
	Influence of Node Density
	Influence of Contention
	Influence of Retransmissions
	Influence of Different Packet Sizes
	Influence of Receiving Energy Cost

	Experimental Evaluation
	ESB Implementation
	Experimental Setup
	Evaluation Results

	Conclusions

	Lifetime-Efficient Forwarding
	Introduction
	Related Work
	The Maximum Lifetime Problem
	Finite Retransmissions
	Infinite Retransmissions

	Lifetime-Efficient Forwarding
	Analysis of the Finite Retransmissions Case

	Evaluating the Forwarding Strategies
	Simulations
	Performance Comparison of LEF and EEF
	Network Performance over Time
	Influence of Node Density
	Influence of the Number of Source Nodes

	Experimental Evaluation
	Experimental Setup
	Evaluation Results

	Conclusions

	Energy-Efficient Aggregation Forwarding
	Introduction
	Related Work
	Energy-Efficient Aggregation Forwarding
	Construction of the Aggregation Tree
	The Problem of Forwarding Cycles
	An Algorithm to Prevent Forwarding Cycles
	The EEAF Algorithm
	Further Discussions

	Other Aggregation Tree Constructions
	Greedy Increment Tree
	Minimum Spanning Tree
	Steiner Minimum Tree Approximation

	Simulations
	Influence of Node Density
	Influence of the Number of Source Nodes

	Experimental Evaluation
	Experimental Setup
	Evaluation Results

	Conclusions

	A Topology and Energy Control Algorithm
	Introduction
	Related Work
	The Topology and Energy Control Algorithm
	Basic Concept
	TECA in Detail

	Performance Evaluation of TECA
	Simulation Setup
	Performance Metrics
	Simulation Results

	Simulative Comparison to other Approaches
	Simulation Setup
	Network Performance over Time
	Influence of Node Density
	Influence of the Initial Energy
	Influence of the Wake-Up Time

	Experimental Evaluation
	Experimental Setup
	Evaluation Results

	Conclusions

	Sensor Network Applications
	Introduction
	Habitat Monitoring
	Great Duck Island
	ZebraNet
	WildCENSE
	Cane Toad Monitoring
	Electronic Shepherd

	Environment Observation and Forecast Systems
	ALERT
	FireWxNet
	Monitoring Volcanic Eruptions
	Redwood Ecophysiology

	Health Care
	Smart Home Care
	Implanted Biomedical Devices

	Home Automation and Smart Places
	The Intelligent Home
	MavHome
	Embedded Script-Driven Home Automation

	Military Applications
	Sensor Information Technology
	EnviroTrack
	Counter-Sniper System

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

