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Measurabi lity.Theorems for Stochastic Extrernals

P. KalI (Zürich), W. Oettli (Mannheim)

In [1]a direct and elementary proofwas given for the measurability of the

optimal value of a stochastic linear program. It turns out:that the same tech-

nique yields measurability statements for very general nonlinear optimization

problems, too.

1. Let Q be some measurable space, and let X be some subs~t of lRn•

Throughoutwe suppose that X contains a countable dense subset ~ = { ~ . } . ~lN •
1 1\::.

Let,the functions F: X x Q + lR andf: X x Q + lR be measurable on Q for

every xEX. We are interested 1n the measurability of the opti~~l value

{ inf {F(x,w) IxEX,f(x,w) :::;O} if {x IxEX,f(x,w) :::;O} :j: C/J,
x4>(w)=

+= else.

Let us deHne 1n addition for nElN

{ inf {F(x,w) fxEX,f(x,w) :::;.!.} if {xlxEX,f(x,w) :::;!}:j: C/J,
T (w) x n n

==n
+= else,

and for all nElN, iElN

q, . (w)
1n { F(e ,w) if

1

+ = else.

( ) < !f ~i'w - n'

According to our measurability assumptions q,. (w)
1n

is an extended real valued

measurable function for every nElN and iElN.

Lemma: Let F and f be upper semicontinuous on X for every wEQ, and

suppose that sUPn Tn(W) ~ ~(w) for all wEQ. Then q,(w) is measurable.

Proof: For all nON and iON we have T (w) :::;«P. (w), implying T (w) :::;n 111 n .

:::;info q,.(w), and hence sUPn T (w) :::;sup info ~. (w). By hypothesis then1 1n n n 1 1n
(I) q,(w):::;sup in£. q,. (w).n 1 1n



To show the converse inequality ,.;resuppose first that cjl(w)< +=. Then there

exist points xEX satisfying f(x,w) ~ 0, and - due to the upper semicontinuity

of F and f - for every such x and for all E: > 0, nEm there exists a
s.E:: such that~

fes.,w) <1. F(s. ,00) ~ F(x,w) + E:.1. - n' 1.

Hence for every nEm we have info ~. (00) ~ F(x,w) + E:, and therefore1. 1.n
sup info ~. (00) ~ F(x,w) + E:. Since this inequality is true for alln 1. 1.n
XE{xlxEX,~f{x,w) ~ O} and for every E: > 0, we have
(2) sup info ~. (00) ~ t(w).n 1. 1.n
Inequality (2) is trivially satisfied if ep(w)= +=. From (I) and (2) we obtain
(3) ep(w)= sUPn info ~. (00).1. 1.n
Since the infimum and supremum of countably many measurable f~nctions 1.Saga1.n

measurable, the Lemma follöwso q.e.d.

The assumption sUPn Tn(W) ~ ep(w) may be replaced by the assumption that

the Kuhn-Tucker condition holds for all 00 with ~(w) <+=. More precisely we
have

Theorem I: Let F and f be upper sernicontinuous on X for every wEQ.

Suppose that for'every wE{wl~(w) < +=} there exists areal number u(w) ~ °
such that

~(w) ~ F(x,w)+u(w).f(x~w) VxEX (K.-T. condition) ~

- .
and suppose that for every wE{wl~(w) = +=} we have sUPn Tn(W) = +=. Then

~(w) is measurable.

Proof: He have to show that sup T (u) ;?: ~(w) for all 00 satisfyingn n

ep(w)< +=. Then the result follows from the Lemma. According to the Kuhn-T~cker
condition assumed,

Hence

IF(x,w) ~ ~(w) ~ u(w) 0- for all xEX suchthat
n

T (00) ~ ~(w) - u(w).1. which impliesn n'

SUp . T (w) ~ ~(w).
n n

If(x,w) ~ -.
n

q.e.d.
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Corollary I: If X = JRn, if F is conve~c in x for every wEn, and if

(with j=I, ••• ,m) has no solution, then it is a standard result of linear pro-

Proof: Fand f are continuous in x, since they are convex over all of

JRn. The Kuhn-Tucker condition is satisfied, since it always holds for convex

programs with only linear constraints. If the linear system

"

"I
-~

I
I
I

x, then

£_(x,w) :::;0
J

sUPn Ln(W) = +00. The assump-

also has no solution for all

are linear-affine inL
J

- ( ) < 1 (--I )gramm~ng that the system £. x,w - - J- , ••• ,mJ _ n-

suffi.ciently large nEJN. Thus Hw) = +00 implies

max £.(x,w), where the functions
I:::;j:::;m J

~(w) is-measurable.

f(x,w) =

tions of Theorem 1 are therefore. satisfied. q.e.d.

Corollary 1 implies in particular that the optimal value of a stochastic

linear program is measurable.

2. The assumption, made in Theorem I, that the Ktihn-Tucker condition be

satisfied for all w with ~(w) < += is very restrictive, .sinceevenfor convex

programs the Kuhn-Tucker condition generally holds only if infxEX f(x,w) < O. It

is for this reason that ,.,eintroduce a modifiedoptimal value, '¥(w), defined as
(

{F(x,w)lxEX,f(x,w) O}
J

inf :::; if infxEX f(x,w) < 0,x
'¥(w) sUPn T (w) if infxEX f(x,w) 0,

l
n

+= if infxEX f(x,w) > O.

Theorem 2: Let F and f be upper semicontinuous onX for every wEn.

Suppose that for all wE{wlinf f(x,w) < o}
X

there exists areal number u(w);::: 0

suchthat

'¥(w):::;F(x,w)+u(w).f(x,w) VxEX (K.-T. condition).

Then '¥(w) is measurable.

Proof: As in the proof of the Lemma we have for all wEn that

sup T (w) :::;sup inf.~. (w).
n ..n n ~ ~n
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If infX f(x,tu)< 0 we conclude from theKuhn-Tucker condition, as ~n the proof

of Theorem 1, that

~(tu)~ sup T (tu).n n

This ~s also tru~ if infX f(x,tu) 0, from the definition of~. If infX f(x,tu)>0,

then there is areal numberp (tu)> 0 such that f(x,w) ~ p(tu) for all xEX, ~m-

plying T (tu).n += for all I
n > p (w) and thereby ~(w) = sup T (tu)= ~. Hencen n

we have for all

(4)

tuEQ

~(tu)~ sup inf. <P. (tu).n ~ ~n

On the other hand for all w satisfying infX f(x,w) * 0 the relation

(5) sup info <P. (tu)~ ~(tu)n ~ ~n

follmvs from the upper semicontinui ty of Fand f , as ~n the ,proof of the Lemma.
~,'

Let now infX f(x"w) = O. Choose nON and E: >0 arbitrarily. Then for every xEX

satisfying f(x,tu}~ 2~ there exists, according to the upper semicont:inuity of F

and f, an element ~.EE such that
~

n F(~. ,w) ~ F(x,w) + E:.~

Hence <P. (tu)~ F(x,tu)+ E: and inf.~. (tu)~ T2n + E:. Since E: was arbitrary we~n ~ ~n

get

sup inf. <P. (tu)~ sUPn T2 (tu)~ sup T (w).n ~~n n n n

Since sUPn Tn(tu)= ~(tu) in the case under consideration, (5) again holds. In con-

clusion we have from (4), (5)

~(tu) sup inf. <P. (w),n ~ ~n

which prov~s the measurability of ~(tu). q.e.d.

Corollary 2: Let X be a convex set., and Zet F and f be convex functions

in x for evel1j .wEQ. Then ~(tu) 1-S measurabZe.

Proof: The Kuhn-Tucker condition, as required ~n Theorem 2, is satisfied, since
,

infX f(x,w) < 0 is the well-knmvn Slater-condition, the latter'implying in the con-

vex case the validity of the Kuhn-Tucker condition. The requirement.of upper semi-
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continuity may be dropped in the convex case. Indeed, tileupper semicontinuity

of F (resp. f) was used only to conclude that fer every xEX and E; > 0

there exists t;iEEi)atisfying

(6) F(t;.,w) S F(x,w) + E.~

In the convex case the same conclusion may be reached as follm.;rs:Let z' be an

arbitrary point in the relative interior of X. Then xA = X+A(Z-X) with

o < X ~

have

is also in the relative interior of X. Since F ~s convex ~n x ,.;re

F(xX'w) ~ F(x,w) + X(F(z,w) - F(x,w»).

Choose X > 0 so small that

(7)

Since ~s ~n the relative interior of x, since F - as a convex function - ~s

(8)

continuous ~n the relative interior of its domain X, and since

there exists t;.EE such that
, ~

IF(t;i'w)- F(xX'w) I ~ 1.
From (7) and (8) follows (6).

is dense in X,

q.e.d.

3. We would like to point out th~t Corollary 1 could also be derived from

Theorem 2 instead of from Theorem 1, since it may be shmvn under the assumptions of

Corollary that ~ and ~ coincide. Under the weaker assumptions of Corollary 2,

however, ~ and ~ may differ, as the following examples show: Choose

Then ~(w) = 0, but ~(w) = sup T (w) = -00. To take another example, letn n

X == [0,1] c lR1 , F(x,w) _ 0, f(O,w) = 1, f(x,w) = x2 for x > O.

Then 1>(w) = +00, but ~(w)

appropriate.

O. A further comparison of ~ ~nd ~ ,therefore seems

Theorem 3: If X is compact" and Fand f arelower senricontinuous in x

for every wEQ" then 1>'(w) = ~ (w) •



Proof: We have to show that if infX f(x,w) = 0
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then sup T (w) = ~(w).n n

Obviously sup T (w) ~ ~(w). On the other hand, by lower semicontinuity and
n n

compactness, for every nON there exists x EX satisfying
n

1fex ,w) ~ - , F(x ,w)
n .n n

T (w).
n

be a subsequence convereing to someLet {x }n.
J

and by the monotonicity of T (w),n .

x EX. Then, by lower semicontinuity
o

fex pw) ~ lim inf fex ..(,1) ~ 0, F(x ,w) ~ lim inf F(x ,w) ~ sUPn T (w),o . n.' 0 . n. nJ -+00 J J -)(lO J

implying q.e.d.

Combining Theorems 2 and 3 one can derive measurability st.atementsfor ~(w).

In particular we obtain very easily the following result which is contained 1n

[2, Corollary 4.3].

Corollary 3: Let X be a cZosed conVex set~ and Let F and f be Zower

semicontinuous convex functions on X for everywEn. Then cI>(w)is measurabZe.

Proof: For all kElli denate by ,cI>k(w)[resp. o/k(w)] the functions which are

obtained if in the definition of ~ [resp. '1'] we replace X by the compact sub-

set ~:: {xixEX, \lxII ~ k}. By Corollary 2 '¥k(w) is measurable. By theorem 3

.~k equaH'\; hence is Ilieasurable.The measurability of ~ follows since obviously

4. Inthis seetion we want to discuss briefly the measurability of the solu-

tion mapping for the case of set-valued constraints.

Let X be a nonvoid~ compact~ convex subset of n
:IR • Let r bethe family

of all nonvoid, closed, convex subsets of X. For arbitrary CEr define U(C,s)

= {xExI3i;EC:Ilx-i;ll~ E:}. Obviously U(C,s) is also in f. We make r ametrie

space by introducing the Hausdorff-distance
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is defined as

and let F: X ->- JR be a c:ontinuous'~ conVex function. The function <IJ(w):~ ->- JR

cIJ(w)}.e(w) = {xEc(w)!F(x)

<IJ(w) m1n {F(x)\xEc(w)}.

closely related to c. Recall that a multivalued mapping

from ~ into f. But instead we can shmvmeasurability of a multivalued mapping y

The'measurability of c(w), considered as a multivalued mapping from ~

into JRn , has been discussed 1n [2]. He do not know about practical conditions

which ensure the measurability of c(w) if considered asa singlevalued mapping

solution set - according to

Under the assumptions madewe may associate with each wE~ a set e(w)Ef - the

Let ~ be a measurable space. Let c: ~3w ->- c(w)Ef be a measurabZe mapping,

y: ~3w ->- y(w) C f

is called measurable if the set

is measurable in ~ for any closed subset H cf. Now take as y the multivalued

mapping which assigns to each wE~ the family of a11 nonvoid, closed, convex sub-

sets of c (w). Then 'vehave

Theorem 4: The muUivalued mapping y (w) is measurable.

Proof: It is easy to see that for arbitrary CEf the requirement CEy(w) 1S

equivalent with the two requirements

(9) Ce c(w), min {F(x)jxEc(w)} ~ max('(x) \xEcl.

The function F(x) 1S uniformly continuous on the compact set X. This implies

that the two functions

m(C) = m1n {F(x)lxEC}, M(C) = max {F(x)IxEC}

are continuous on f. Now let H c f be closed 1n r. \-1ehave to show that
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y-1(H) 1S measurable in n. Because of (9) we have

We show that K H closed in f. Let {D} be a sequence from K, convergingn nEJN

I
I
1,

I
f
I
~
~

K = {DEfI3CEH: C cD & m(D) ~.M(C)}.

y-I(H) = {wEnI3CEH: C c c(w) & m(c(w» ~ M(C)}.

1S the inverse image with regard to the measurable.mapping c(w)

ofthe set

1.e.,

to Some element DEr. By the definition of K there exists for all nElli a set

C EH such that
n

C cD & m(D ) ~ M(C ).n n n n

In V1ew of our convexity assumptions Blaschke'sselection theorem [3] ensures that r

is sequential1y compact. Hence H 1S also sequentially compact, .andthere exists

a convergent subsequence

limit

C + CEH. The continuity of m and M implies in then.
J

m(D) ~ M(C).

From C cU (C ,d(C ,C»), C cD, D c U (D,d(D,D») it follows thatn n n n n n

Ce U (D,d(C ,Cl + d CD ,D»).
n n

Since d(C ,Cl + 0 and d(D ,D) + 0 we have in the limitn. n
J

C c D.

Therefore DEK, and K 1S closed. Since y-I(H)

K closed, the measurability öf the set y-I(H)

-I= c (K) with

1n n follows.

c measurahle and

q.e.d.

Note that the function ~(w) 1S measurable, being the compasition of the

measurable mapping c(w) and the continuaus function m(e).
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