Measurability Theorems for Stochastic Extremals

P. Kall

W. Oettli **

[42]

Summary: Measurability of the optimal value is proved for a rather general class of parametric optimization problems. The class considered includes in particular the stochastic convex programs. The measurability of the optimal solutions is discussed for a special case.

^{*} Institut für Operations Research und Mathematische Methoden der Wirtschaftswissenschaften, Universität Zürich, CH-8006 Zürich, Switzerland

^{**} Fakultät für Mathematik und Informatik, Universität Mannheim, D-6800 Mannheim, Germany.

Measurability Theorems for Stochastic Extremals

P. Kall (Zürich), W. Oettli (Mannheim)

In [1] a direct and elementary proof was given for the measurability of the optimal value of a stochastic linear program. It turns out that the same technique yields measurability statements for very general nonlinear optimization problems, too.

1. Let Ω be some measurable space, and let X be some subset of \mathbb{R}^n . Throughout we suppose that X contains a countable dense subset $\Xi = \left\{ \xi_i \right\}_{i \in \mathbb{N}}$. Let the functions $F \colon X \times \Omega \to \mathbb{R}$ and $f \colon X \times \Omega \to \mathbb{R}$ be measurable on Ω for every $x \in X$. We are interested in the measurability of the optimal value

$$\Phi(\omega) = \begin{cases} \inf_{\mathbf{x}} \left\{ F(\mathbf{x}, \omega) \mid \mathbf{x} \in \mathbf{X}, f(\mathbf{x}, \omega) \leq 0 \right\} & \text{if } \left\{ \mathbf{x} \mid \mathbf{x} \in \mathbf{X}, f(\mathbf{x}, \omega) \leq 0 \right\} \neq \emptyset, \\ + \infty & \text{else.} \end{cases}$$

Let us define in addition for nEN

$$\tau_{n}(\omega) = \begin{cases} \inf_{\mathbf{x}} \left\{ F(\mathbf{x}, \omega) \middle| \mathbf{x} \in \mathbf{X}, f(\mathbf{x}, \omega) \leq \frac{1}{n} \right\} & \text{if } \left\{ \mathbf{x} \middle| \mathbf{x} \in \mathbf{X}, f(\mathbf{x}, \omega) \leq \frac{1}{n} \right\} \neq \emptyset, \\ + \infty & \text{else,} \end{cases}$$

and for all nEIN, iEIN

$$\Phi_{in}(\omega) = \begin{cases} F(\xi_i, \omega) & \text{if } f(\xi_i, \omega) \leq \frac{1}{n}, \\ + \infty & \text{else.} \end{cases}$$

According to our measurability assumptions $\Phi_{in}(\omega)$ is an extended real valued measurable function for every $n\in\mathbb{N}$ and $i\in\mathbb{N}$.

Lemma: Let F and f be upper semicontinuous on X for every $\omega \in \Omega$, and suppose that $\sup_{n} \tau_{n}(\omega) \geq \Phi(\omega)$ for all $\omega \in \Omega$. Then $\Phi(\omega)$ is measurable.

Proof: For all $n \in \mathbb{N}$ and $i \in \mathbb{N}$ we have $\tau_n(\omega) \leq \Phi_{in}(\omega)$, implying $\tau_n(\omega) \leq \inf_i \Phi_{in}(\omega)$, and hence $\sup_n \tau_n(\omega) \leq \sup_n \inf_i \Phi_{in}(\omega)$. By hypothesis then

(1) $\Phi(\omega) \leq \sup_n \inf_i \Phi_{in}(\omega)$.

To show the converse inequality we suppose first that $\Phi(\omega) < +\infty$. Then there exist points xEX satisfying $f(x,\omega) \le 0$, and - due to the upper semicontinuity of F and f - for every such x and for all $\varepsilon > 0$, nEN there exists a $\xi_i \in \Xi$ such that

$$f(\xi_i, \omega) \leq \frac{1}{n}, F(\xi_i, \omega) \leq F(x, \omega) + \varepsilon.$$

Hence for every $n \in \mathbb{N}$ we have $\inf_{i} \Phi_{in}(\omega) \leq F(x,\omega) + \varepsilon$, and therefore $\sup_{n} \inf_{i} \Phi_{in}(\omega) \leq F(x,\omega) + \varepsilon$. Since this inequality is true for all $x \in \{x \mid x \in X, f(x,\omega) \leq 0\}$ and for every $\varepsilon > 0$, we have

(2)
$$\sup_{n} \inf_{i} \Phi_{in}(\omega) \leq \Phi(\omega).$$

Inequality (2) is trivially satisfied if $\Phi(\omega) = +\infty$. From (1) and (2) we obtain (3) $\Phi(\omega) = \sup_{n \to \infty} \inf_{n \to \infty} \Phi(\omega).$

Since the infimum and supremum of countably many measurable functions is again measurable, the Lemma follows. q.e.d.

The assumption $\sup_{n} \tau_n(\omega) \ge \Phi(\omega)$ may be replaced by the assumption that the Kuhn-Tucker condition holds for all ω with $\Phi(\omega) < +\infty$. More precisely we have

Theorem 1: Let F and f be upper semicontinuous on X for every $\omega \in \Omega$. Suppose that for every $\omega \in \{\omega \mid \Phi(\omega) < +\infty\}$ there exists a real number $u(\omega) \geq 0$ such that

$$\Phi(\omega) \leq F(x,\omega) + u(\omega) \cdot f(x,\omega) \quad \forall x \in X \quad (K.-T. condition),$$

and suppose that for every $\omega \in \{\omega \mid \Phi(\omega) = +\infty\}$ we have $\sup_{\mathbf{n}} \tau_{\mathbf{n}}(\omega) = +\infty$. Then $\Phi(\omega)$ is measurable.

Proof: We have to show that $\sup_n \tau_n(\omega) \geq \Phi(\omega)$ for all ω satisfying $\Phi(\omega) < +\infty$. Then the result follows from the Lemma. According to the Kuhn-Tucker condition assumed, $F(x,\omega) \geq \Phi(\omega) - u(\omega) \cdot \frac{1}{n}$ for all $x \in X$ such that $f(x,\omega) \leq \frac{1}{n}$. Hence $\tau_n(\omega) \geq \Phi(\omega) - u(\omega) \cdot \frac{1}{n}$, which implies

$$\sup_{n} \tau_{n}(\omega) \geq \Phi(\omega).$$
 q.e.d.

Corollary 1: If $X = \mathbb{R}^n$, if F is convex in x for every $\omega \in \Omega$, and if $f(x,\omega) = \max_{1 \le j \le m} \ell_j(x,\omega)$, where the functions ℓ_j are linear-affine in x, then $\ell_j(\omega)$ is measurable.

Proof: F and f are continuous in x, since they are convex over all of \mathbb{R}^n . The Kuhn-Tucker condition is satisfied, since it always holds for convex programs with only linear constraints. If the linear system $\ell_j(x,\omega) \leq 0$ (with $j=1,\ldots,m$) has no solution, then it is a standard result of linear programming that the system $\ell_j(x,\omega) \leq \frac{1}{n}$ ($j=1,\ldots,m$) also has no solution for all sufficiently large $n\in\mathbb{N}$. Thus $\Phi(\omega)=+\infty$ implies $\sup_n \tau_n(\omega)=+\infty$. The assumptions of Theorem 1 are therefore satisfied.

Corollary 1 implies in particular that the optimal value of a stochastic linear program is measurable.

2. The assumption, made in Theorem I, that the Kuhn-Tucker condition be satisfied for all ω with $\Phi(\omega) < +\infty$ is very restrictive, since even for convex programs the Kuhn-Tucker condition generally holds only if $\inf_{\mathbf{x} \in X} f(\mathbf{x}, \omega) < 0$. It is for this reason that we introduce a modified optimal value, $\Psi(\omega)$, defined as

$$\Psi(\omega) = \begin{cases} \inf_{\mathbf{x}} \left\{ F(\mathbf{x}, \omega) \middle| \mathbf{x} \in \mathbf{X}, f(\mathbf{x}, \omega) \leq 0 \right\} & \text{if } \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}, \omega) < 0, \\ \sup_{\mathbf{n}} \tau_{\mathbf{n}}(\omega) & \text{if } \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}, \omega) = 0, \\ +\infty & \text{if } \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}, \omega) > 0. \end{cases}$$

Theorem 2: Let F and f be upper semicontinuous on X for every $\omega \in \Omega$. Suppose that for all $\omega \in \{\omega \mid \inf_X f(x,\omega) < 0\}$ there exists a real number $u(\omega) \geq 0$ such that

$$\Psi(\omega) \leq F(x,\omega) + u(\omega) \cdot f(x,\omega) \ \forall x \in X$$
 (K.-T. condition).

Then $\Psi(\omega)$ is measurable.

Proof: As in the proof of the Lemma we have for all $\omega \in \Omega$ that

$$\sup_{n \to n} \tau_n(\omega) \leq \sup_{n} \inf_{i} \Phi_{in}(\omega).$$

If $\inf_X f(x,\omega) < 0$ we conclude from the Kuhn-Tucker condition, as in the proof of Theorem 1, that

$$\Psi(\omega) \leq \sup_{n} \tau_{n}(\omega).$$

This is also true if $\inf_X f(x,\omega) = 0$, from the definition of Ψ . If $\inf_X f(x,\omega) > 0$, then there is a real number $\rho(\omega) > 0$ such that $f(x,\omega) \ge \rho(\omega)$ for all $x \in X$, implying $\tau_n(\omega) = +\infty$ for all $n > \frac{1}{\rho(\omega)}$, and thereby $\Psi(\omega) = \sup_n \tau_n(\omega) = +\infty$. Hence we have for all $\omega \in \Omega$

$$\Psi(\omega) \leq \sup_{n} \inf_{i \in [n]} \Phi_{in}(\omega).$$

On the other hand for all $\,\omega\,$ satisfying $\inf_X f(x,\omega) \, \neq \, 0\,$ the relation

(5)
$$\sup_{n} \inf_{i} \Phi_{in}(\omega) \leq \Psi(\omega)$$

follows from the upper semicontinuity of F and f, as in the proof of the Lemma. Let now $\inf_X f(x,\omega) = 0$. Choose $n \in \mathbb{N}$ and $\varepsilon > 0$ arbitrarily. Then for every $x \in X$ satisfying $f(x,\omega) \leq \frac{1}{2n}$ there exists, according to the upper semicontinuity of F and f, an element $\xi \in \mathbb{R}$ such that

$$f(\xi_i,\omega) \le f(x,\omega) + \frac{1}{2n} \le \frac{1}{n}, F(\xi_i,\omega) \le F(x,\omega) + \varepsilon.$$

Hence $\Phi_{in}(\omega) \leq F(x,\omega) + \varepsilon$ and $\inf_{i} \phi_{in}(\omega) \leq \tau_{2n} + \varepsilon$. Since ε was arbitrary we get

$$\sup_{n} \inf_{i \in I_n} \Phi_{in}(\omega) \leq \sup_{n} \tau_{2n}(\omega) \leq \sup_{n} \tau_{n}(\omega)$$
.

Since $\sup_{n \to n} \tau_n(\omega) = \Psi(\omega)$ in the case under consideration, (5) again holds. In conclusion we have from (4), (5)

$$\Psi(\omega) = \sup_{n} \inf_{i} \Phi_{in}(\omega),$$

which proves the measurability of $\Psi(\omega)$.

q.e.d.

Corollary 2: Let X be a convex set, and let F and f be convex functions in x for every $\omega \in \Omega$. Then $\Psi(\omega)$ is measurable.

Proof: The Kuhn-Tucker condition, as required in Theorem 2, is satisfied, since $\inf_X f(x,\omega) < 0$ is the well-known Slater-condition, the latter implying in the convex case the validity of the Kuhn-Tucker condition. The requirement of upper semi-

continuity may be dropped in the convex case. Indeed, the upper semicontinuity of F (resp. f) was used only to conclude that for every xEX and $\varepsilon > 0$ there exists $\xi_i \in \Xi$ satisfying

(6)
$$F(\xi_{i},\omega) \leq F(x,\omega) + \varepsilon.$$

In the convex case the same conclusion may be reached as follows: Let z be an arbitrary point in the relative interior of X. Then $x_{\lambda} = x + \lambda(z - x)$ with $0 < \lambda \le 1$ is also in the relative interior of X. Since F is convex in X we have

$$F(x_{\lambda}, \omega) \leq F(x, \omega) + \lambda \{F(z, \omega) - F(x, \omega)\}.$$

Choose $\lambda > 0$ so small that

(7)
$$F(x_{\lambda}, \omega) \leq F(x, \omega) + \frac{\varepsilon}{2}.$$

Since x_{λ} is in the relative interior of X, since F - as a convex function - is continuous in the relative interior of its domain X, and since E is dense in X, there exists $\xi_{i} \in \Xi$ such that

(8)
$$|F(\xi_{i}, \omega) - F(x_{\lambda}, \omega)| \leq \frac{\varepsilon}{2}.$$

From (7) and (8) follows (6).

q.e.d.

3. We would like to point out that Corollary 1 could also be derived from Theorem 2 instead of from Theorem 1, since it may be shown under the assumptions of Corollary 1 that Φ and Ψ coincide. Under the weaker assumptions of Corollary 2, however, Φ and Ψ may differ, as the following examples show: Choose

$$X = \{(x_1, x_2) | x_1 \ge 1\} \subset \mathbb{R}^2, F(x_1, x_2, \omega) = x_2, f(x_1, x_2, \omega) = (x_2)^2 / x_1.$$

Then $\Phi(\omega) = 0$, but $\Psi(\omega) = \sup_{n \to \infty} \tau_n(\omega) = -\infty$. To take another example, let $X = [0,1] \subset \mathbb{R}^1$, $F(x,\omega) \equiv 0$, $f(0,\omega) = 1$, $f(x,\omega) = x^2$ for x > 0.

Then $\Phi(\omega) = +\infty$, but $\Psi(\omega) = 0$. A further comparison of Φ and Ψ therefore seems appropriate.

Theorem 3: If X is compact, and F and f are lower semicontinuous in x for every $\omega \in \Omega$, then $\Phi'(\omega) = \Psi(\omega)$.

Proof: We have to show that if $\inf_X f(x,\omega) = 0$ then $\sup_n \tau_n(\omega) = \Phi(\omega)$. Obviously $\sup_n \tau_n(\omega) \leq \Phi(\omega)$. On the other hand, by lower semicontinuity and compactness, for every $n \in \mathbb{N}$ there exists $x \in X$ satisfying

$$f(x_n, \omega) \le \frac{1}{n}, F(x_n, \omega) = \tau_n(\omega).$$

Let $\{x_n\}$ be a subsequence converging to some $x \in X$. Then, by lower semicontinuity and by the monotonicity of $\tau_n(\omega)$,

$$\begin{split} f(x_0,\omega) &\leq \liminf_{j \to \infty} \ f(x_n,\omega) \leq 0, \ F(x_0,\omega) \leq \liminf_{j \to \infty} \ F(x_n,\omega) \leq \sup_n \ \tau_n(\omega), \\ & j \to \infty \end{split}$$
 implying $\sup_n \tau_n(\omega) \geq \Phi(\omega).$

Combining Theorems 2 and 3 one can derive measurability statements for $\Phi(\omega)$. In particular we obtain very easily the following result which is contained in [2, Corollary 4.3].

Corollary 3: Let X be a closed convex set, and let F and f be lower semicontinuous convex functions on X for every $\omega \in \Omega$. Then $\Phi(\omega)$ is measurable.

Proof: For all k∈N denote by $\Phi_k(\omega)$ [resp. $\Psi_k(\omega)$] the functions which are obtained if in the definition of Φ [resp. Ψ] we replace X by the compact subset $X_k \equiv \{x \mid x \in X, \|x\| \le k\}$. By Corollary 2 $\Psi_k(\omega)$ is measurable. By theorem 3 Φ_k equals Ψ_k , hence is measurable. The measurability of Φ follows since obviously $\Phi(\omega) = \inf_k \Phi_k(\omega)$.

4. In this section we want to discuss briefly the measurability of the solution mapping for the case of set-valued constraints.

Let X be a nonvoid, compact, convex subset of \mathbb{R}^n . Let Γ be the family of all nonvoid, closed, convex subsets of X. For arbitrary CET define $U(C,\varepsilon) = \{x \in X \mid \exists \xi \in C \colon \|x - \xi\| \le \varepsilon\}$. Obviously $U(C,\varepsilon)$ is also in Γ . We make Γ a metric space by introducing the Hausdorff-distance

$$d(C_1,C_2) = \min \left\{ \theta \big| \theta \in \mathbb{R}, C_1 \subset U(C_2,\theta), C_2 \subset U(C_1,\theta) \right\}.$$

Let Ω be a measurable space. Let $c: \Omega \ni \omega \to c(\omega) \in \Gamma$ be a measurable mapping, and let $F: X \to \mathbb{R}$ be a continuous, convex function. The function $\Phi(\omega): \Omega \to \mathbb{R}$ is defined as

$$\Phi(\omega) = \min \{F(x) | x \in c(\omega) \}.$$

Under the assumptions made we may associate with each $\omega \in \Omega$ a set $\hat{c}(\omega) \in \Gamma$ - the solution set - according to

$$\hat{c}(\omega) = \left\{ x \in c(\omega) \middle| F(x) = \Phi(\omega) \right\}.$$

The measurability of $\hat{c}(\omega)$, considered as a multivalued mapping from Ω into \mathbb{R}^n , has been discussed in [2]. We do not know about practical conditions which ensure the measurability of $\hat{c}(\omega)$ if considered as a singlevalued mapping from Ω into Γ . But instead we can show measurability of a multivalued mapping γ closely related to \hat{c} . Recall that a multivalued mapping

$$\gamma: \Omega \ni \omega \rightarrow \gamma(\omega) \subset \Gamma$$

is called measurable if the set

$$\gamma^{-1}(H) \equiv \{\omega \in \Omega | \gamma(\omega) \cap H \neq \emptyset\}$$

is measurable in Ω for any closed subset $H \subset \Gamma$. Now take as γ the multivalued mapping which assigns to each $\omega \in \Omega$ the family of all nonvoid, closed, convex subsets of $\hat{c}(\omega)$. Then we have

Theorem 4: The multivalued mapping $\gamma(\omega)$ is measurable.

Proof: It is easy to see that for arbitrary CEF the requirement CE $\gamma(\omega)$ is equivalent with the two requirements

(9)
$$C \subset c(\omega), \min \{F(x) | x \in c(\omega)\} \ge \max \{F(x) | x \in C\}.$$

The function F(x) is uniformly continuous on the compact set X. This implies that the two functions

$$m(C) = \min \{F(x) | x \in C\}, M(C) = \max \{F(x) | x \in C\}$$

are continuous on Γ . Now let $H \subset \Gamma$ be closed in Γ . We have to show that

 $\gamma^{-1}(H)$ is measurable in Ω . Because of (9) we have

$$\gamma^{-1}(H) = \{\omega \in \Omega \mid \exists C \in H: C \subset c(\omega) \& m(c(\omega)) \ge M(C)\}.$$

i.e., $\gamma^{-1}(H)$ is the inverse image with regard to the measurable mapping $c(\omega)$ of the set

$$K = \{D \in \Gamma \mid \exists C \in H: C \subset D \& m(D) \geq M(C)\}.$$

We show that K is closed in Γ . Let $\left\{D_n\right\}_{n\in\mathbb{N}}$ be a sequence from K, converging to some element DEF. By the definition of K there exists for all $n\in\mathbb{N}$ a set $C_n\in\mathbb{N}$ such that

$$C_n \subset D_n \& m(D_n) \ge M(C_n)$$
.

In view of our convexity assumptions Blaschke's selection theorem [3] ensures that Γ is sequentially compact. Hence H is also sequentially compact, and there exists a convergent subsequence $C_n \to CEH$. The continuity of m and M implies in the limit

$$m(D) \ge M(C)$$
.

From $C \subset U$ $(C_n, d(C_n, C))$, $C_n \subset D_n$, $D_n \subset U$ $(D, d(D, D_n))$ it follows that $C \subset U$ $(D, d(C_n, C) + d$ $(D_n, D))$.

Since $d(C_n,C) \rightarrow 0$ and $d(D_n,D) \rightarrow 0$ we have in the limit

$$C \subset D$$
.

Therefore DEK, and K is closed. Since $\gamma^{-1}(H) = c^{-1}(K)$ with c measurable and K closed, the measurability of the set $\gamma^{-1}(H)$ in Ω follows. q.e.d.

Note that the function $\Phi(\omega)$ is measurable, being the composition of the measurable mapping $c(\omega)$ and the continuous function m(C).

References

[1] P. Kall: Some Remarks on the Distribution Problem of Stochastic Linear Programming. Methods of Operations Research 16 (1973), 189-196.

- [2] R. T. Rockafellar: Measurable Dependence of Convex Sets and Functions on Parameters. J. Math. Anal. Appl. 28 (1969), 4-25.
- [3] H. G. Eggleston: Convexity. Cambridge University Press, Cambridge, 1969.