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" Measurability Theorems for Stochastic Extremals

P. Kall (Ziirich), W. Oettli (Mannheim)

In [1] a direct and elementary proof was given for the measurability of the
optimal value of a stochastic linear .program. It turns out that the same tech—-
nique yields measurability statements for very general nonlinear optimization

problems, too.

1. Let Q be some measurable space, and let X be some subset of r".

Throughout. we suppose that X contains a countable deunse subset E=.{gi}iEIN .
~Let- the functions F: X x @ > R and f: X x Q> IR be _measﬁrable on. @ for

every x€X, We are interested in the measurability of the optimal value

o

inf_ [F(x,0) |X€X,£(x,0) <0} if {x[x€X,f(x,0) < o} + ¢,
d(w) = .
' + o else,
Let us define in addition for n€lN
, - , * 1y | 1 |
..1nfx {F(x,w)|x€X,f(x,w) < ;—} if {xleX,f_(x,w) < ;} + @,

+ o else,
and for all n€WN, i€W

_ F(gi,w) if f(g.,w)s—]-,

P 1 n

Qin(w) -
. + o else.

According to our measurability assumptions @in(w) "is an extended real valued

measurable function for every n€IN and i€NN.

Lemma: Let F and £ be upper semicontinuous on X for every wEQ, and

suppose that Sup Tn(w) = o(w) for all w€Q. Then  ®(w) s measurable.

Proof: For all n€IN and i€IN we have Tn(w) < @in(w), implying Tn(u_)) <
< inf. 6. < inf. &, . i >
1nf1 @ln(w), and hence sup_ Tn(w) = sup_ 1nf1 @ln(m) By bypothesw then

(n ' ‘ d(w) < sup_ infi @in(w).




To show the converse inequality we suppose first that @(w) < 4o, Then there
exist points x€X satisfying f(x,w) < 0, and - due to the upper semicontinuity
of T and f = for.every such x and for all e > 0, n€lN there exists a

giEE such that
. 1 .
f(Ei,w)'S = F(Ei,m) < F(x,w) + €.

Hence for every n€IN " we have infi @in(w) < F(x,w) + €, and therefore
sup_ infi @in(w) < F(x,w) + €. Since this inequality is true for all
x€{x]x€X,*f(x,w) < 0} and for every e > O, we have

v ‘ ) . -
(2) — supn 1nfi @in(w) < 0{w). | |
‘Inequality (2) is trivially satisfied if ®(w) = +wo, From (1) and (2) we obtain

3) - _ é(w) = sup_ infi @in(w).- ;

Since the infimum and supremum of countably many measurable functions is again

measurable, the Lemma follows. . | q.e.d.

The éssumption sup_ Tn(w) 2 ¢(w) may be replaced by the assumption that
the Kuhn-Tucker condition holds for all w with &(w) < 4, More precisely we

have

Theorem 1: Let F and f be upper semicontinuous on X for every weqQ.
Suppose that for:every mE{wl@(w) < %¥} there extsts a real nwmber u(w) 20

“such that
#(w) < F(x,w)+u(w) f(x,0) Vx€X  (K.-T. condition),

-&ﬁd sapposevihat fbr ébery wE{wl@(w) = «»} we have supn'Tn(m) = +oo, Theﬁ

®(w) s measurable. ' : .

Proof: We have to show that sup_ Tn(w) > o(w) for all w satisfying
®(w) < 4o, Then the result follows from the Lemma. According to the Kﬁhn—Tucker
condition assumed, F(x,n) = é(w) - u(w)°% for all x€X such that f(x,w):i'%w

Hence_'Tn(w) > @(w)v— u(w);%, which implies

o . - >
SUp Tn(w) > d(w). g.e.d.



n

Corollary 1: If X =R , ¢f F is convex in x for every w€Q, and 1f

f(x,w) = max $%.(x,w), where the functions Zj are linear—affine in x, then
1<j<m ,

¢ (w) ‘is-m@asurabie.

~ Proof: F and f are continuous in x, since they are convex over all of
n : o . . e . . :
R™ . The Kuhn-Tucker condition is satisfied, since it always holds for convex
programs with only linear constraints. If the linear system Qj(x,w) £0

(with j=l,...,m) has no solution, then it is a standard result of linear pro-

gramming that the system lj(x,w) < % (j=1,...,m) also has no soiution for all
sufficiently large n€lN. Thus ©®(w) = +o implies sup Tn(w) = +, The assump-—

tions of Theorem 1| are therefore satisfied. q.e.d.

Corollary '1 implies in particular that the optimal value of a stochastic

linear program is measurable.

2. The assumption, made in Theorem I, that the Kihn-Tucker condition be
satisfied for all w with &(w) < +o is very restrictive, since even for convex
programs the Kuhn-Tucker condition generally holds only if infXEX f(x,w) < 0., It

is for this reason that we introduce a modified optimal value, ¥Y(w), defined as

( ' -
infx {F(x,w)leX,f(x,w) < O} if inf f(x,0) <0,

, xEX
C¥(w) = sup_ Th(m) ' if -ianEX f(x,w) = 0,
+oo 1f 1nfx€X f(x,m) > 0,

Theorem 2: Let F and f be upper semicontinuous on X for every w€Q.
Suppose that for all wE{w|ian £(x,0) < 0} there exists a real number u(w) = 0

such that
Y(w) < F(x,w)+u(w)°f(x,w)>VxEX (K.—T,.condition).
Thenl Y (w) is_measurable.
Proof: As in the proof of the Lemma we have for all w«€Q that

. . .
SuPn,Fn(w) < sup 1nfi @in(w).




1f infx f(x,0) < 0 we conclude from the Kuhn-Tucker condition, as in the proof

of Theoremll, that

¥ (w) $ sup_ Tn(m).

This is also truée if infx,f(x,w) 0, from the definition of 'Y._If~vinfxvf(x,w)ﬂ>0,

then there is a real number ¢(w) > O such that f£(x,0) 2 p(w) for all x€X, im-
. -1 ' ' v
= » D ——— = £ .
Plylng In(w) +c0  for all n OB and thereby ¥(w) sgpn_rn(@) ‘%w Hegce
we have for all w€Q
< inf
(%) Y(w) < sup_ 1nfi @in(w).
On the other hand for all w 'satisfying infx f(x,w) # O the relation
. < ) K
(5) sup 1nfi @in(w) < ¥(w)
“follows from the upper semicontinuity of ‘F and {f, as in the proof of the Lemma.
Let now infX f(x,w) =0. Choose n€WN and ¢ >0 afbitraril§. Then for every x&X
satisfying f(x,w) < there exists, according to the upper semicontinuity of F

1
2n
and f, an element EiGE such that

f(gi,w) < f(x,w) + 5% < i—, F(gi,w) < F(x,w) + €.

Hence @ih(w) < F(x,w) + ¢ and infi ¢in(w) <17 + ¢, Since € was arbitrary we

2n
- get
i ’ < <
sup_ 1nfi @in(w) < sup Tzn(w) < sup Tn(w).
Since sup_ Tn(w) = ¥Y(w) in the case under consideration, (5) again holds. In con-

clusion we have from (4), (5)
Y(w) = sup_ }nfi @in(m),

which proves the measurability of VY(w). o , q.e.d.

Corollary 2: Let X be a convex set, and let F and £ be convex functions

in x for every wEQ. Then Y¥(w) 18 measurable.

Proof: The Kuhn-Tucker condition, as required in Theorem 2, is satisfied, since
ian f(x,w) < 0 1is the well-known élater—condition, the latter implying in the con-

vex case the validity of the Kuhn-Tucker condition. The requirement of upper semi-




Vcontiﬁuity may be dropped in the convex case. Indeed, the upper semicontinuity
of F (resp., f) was used only to conclude that fer every‘ x€X and € > O
there exists EiGE satisfying

(6) o F(E,0) < F(x,u) + c.

In the coﬁvex case the same conclusion may be reached as follows: Let =z be an

arbitrary point in the relative interior of X. Then 'x, = x+A(z-x) with

X

O < X< 1 1is also in the relative interior of X. Since F 1is convex in x we

F(xx,m) < F(x,w) + A(F(z,w) - F(x,w)}.

Choose X > 0 so small that

3
7 F(xx,w) < F(x,w) * 5
Since x, 1is in the relative interior of X, since F - as a convex function - is

A

continuous in the relative interior of its domain X, and since E is demse in X,
there exists _EiEE such that

8 F(E.,0) - F < £,

(8) I (glsw) (anw)l )

From (7) and (8) follows (6). : . » g.e.d.

3. We would like to point out that Corollary 1 could also be derived from

Theorem 2 instead of from Theorem 1, since it may be shown under the assumptions of

Corollary 1 that ¢ and ¥ coincide. Under the weaker assumptions QfFCorollary 2,

however, ¢ and Y may differ, as the following examplés show: Choose
o 2 . ' 2/
X = {(x],xz)lx1 > ]} < IR”, F(xi,xz,w) = xz,f(xr,xzem)= (xz)//gl. |

Then &(w) = 0, but Y¥(w) = sup_ Tn(w) = =, To take another.example, let’
X = [0,1] Hﬁ R F(x;w) =0, £f(O,w) =1, £(x,0) = x2 for x > 0.

Then ©¢(w) = +oo, buf W(w).= 0. A further comparison of @ and ¥ therefore seems

appropriate,

Theorem 3: If X s compact, and F and f are lower semicontinuous tn X

for every w€Q, then &(w) = ¥(w).




Proof: We have to show that if infX f(x,w) = 0 then sup | Tn(w) = d(w).
Obviously’ sup_ Tn(m) < ¢(w). On the other hand, by lower semicontinuity and

compactness, for every n€IN there exists xn€X satisfying

1 .
g < - n = 'y
f(xn?w) <o F(xn,w) Tn(u)_

‘Let {xn } be a subsequence converging to some XO€X. Then, by lower semicontinuity

j

and by the monotonicity of Tn(m),

f(xo,m) S'li@ inf f(xn:’w) <0, F(xo,w) < 11@ inf F(xn.,w) < sup_ Tn(m),
joeo i , jooo i

implying supn’Tn(w) > o(w). o q.e.d.

Combining Theorems 2 and 3 one can derive measurability statements for ¢(w).
In particular we obtain very easily the following result which is contained in

[2, Corollary 4.3].

Corollary 3: Let X be a closed convex set, and let F and £ be lower

semicontinuous convex functions on X for every -w€Q. Then ¢(w) <s measurable. .

Proof: For all kEW  denote by @k(w) [resp. Wk(w)l the functions which are
obtained if in the definition of K [resp. ¥] we replace X . by the éaﬁpact'sub—
set Xg = {xlxéX,l]x*] < k}..By Corollary 2 Wk(w) is measurable. By theorem 3

k

% eéquals Wk, hence is measurable. The measurability of & follows since obviously

= .. ‘ ce'd
@ (w) 1nfk @k(m). _ q e

4. In this section we want to discuss briefly the measurability of the solu-

tion mapping for the case of set-valued constraints.

Let X be a nonvoid, compact, convex subset of "R™., Let T be the famiiy
of all nonvoid, closed, convex subsets of X. For arbitrary CE€T define U(C,e) =
= {xexlagec:llx-fg|[s s}; Obviously U(C,e) is also in T. We make T a metric

space by introducing the Hausdorff-distance

d(Cl,Cz)‘ = min {9]6€R, C

< U(C,,8), €, < U(C,,0)}.

1 2




Let Q be a measurable space. Let c: Q3w » c(w)€l be a measurable mapping,
and let F: X > IR he a continuous, convex function. The function ¢(w): & + R

is defined as
d(w) = minv{F(x)!xEc(w)};

Under the assumptions made we may associate with each wE€Q a set &(w)Er - the

solution set — according to
&) = {x€c(w) [F(x) = e},

'The“measurability of &(w), considered as a multivalued mapping from £

into . Hfl , has been discussed in {2]. We do not know about practiéal conditions
which ensure the measurability of &(w) _if considered as a singlevalued mappﬁng
from @ .into I'. But instead we can show measurability of a muitivalued mapping Y

closely related to &. Recall that a multivalued mapping
y: Dw > y(w) r
1s called mea;urable 1f the set
y ' = {wealy nu ¢}

is measurable in  for any closed subset H < T, Now take as 7y the multivalued
vmapping which assigns to each w€Q the family of all nonvoid, closed, convex sub-—

séts of &(w). Then we. have

Theorem 4: The multivalued mapping Y{(w) <s measurable.

Proof: It is easy to see that for arbitrary CE€I' the reqﬁirement CEy(w) is
equivalent with the two requirements

(9) C < c{w), min {F(x)|x€c(w)} > max {F(X)|X€C}.

The function F(x) 1is uniformly continuous on the compact set X, This implies

that the two functions

m(C) = min {F(x)|x€C}, M(C) = max {F(x)leC}

are continuous on TI'. Now let H < T be closed in T. We have to show that




'Y_I(H) is measurable in . Because of (9) we have

Y—](H) =v{m€Q[3C€H: C < clw) & m(c(w)) 2 M(C)}.

i.edy, ¥ ](H) is the inverse image with regard to the measurable mapping . c(w)

of the set .
K = {per|aces: ¢ = b & m(d) = M(C)}.

We show that K 1is closed in T. Let {Dn}

D€ be a sequence from K, converging

to some element DET. By the definition of K there exists for all n€EN a set

CnEH such that

C <D & m(D ) = M(C).
n n n n

In view of our convexity assumptions Blaschke's selection theorem [3] ensures that T .

7

is sequentially compact. Hence H 1is also sequentially compact, -and there exists
a convergent subsequence Cn > CEH. The continuity of m and M implies in the
J
limit
' m(D) = M(C).
From C<U (c_,d(c ,0)), ¢ =D , D cU (p,d(®,p)) it follows that

R=Ri] (D,d(Cn,C) + d (Dn,D')).

Since. d(Cn‘,C) -~ 0 and d(Dn,D) -+ Q0 we have in the limit
h]
C < D,

Therefore DEK, and K 1is closed. Since Y—I(H) = c_l(K) with ¢ measurable and .

K closed, the measurability of the set y—l(H) in Q'-foiiows. ‘ _q.é.d.

Note that the function &(w) is measurable, being the composition of the

measurable mapping Q(w) and the continuous function mm{C).

References

[1] P. Kall: Some Remarks on the Distribution Problem of Stochastic Linear Program-

ming. Methods of Operations Research 16 (1973), 189-196.




[2] R. T. Rockafellar: Measurable Dependence of Cenvex Sets and Functions on

Parameters., J. Math. Anal. Appl. 28 (1969), 4-25.

[3] H. G. Eggleston: Convexity. Cambridge University Press, Cambridge, 1969.




	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010

