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1 Introduction

During the design of a reactive system it may occur that certain information rele-
vant for the present stage of the specification is either not yet available or should
be supressed but will be provided at a later stage. This is where the concept of
underspecification or partial specification comes in. One way to handle the situ-
ation of incomplete information is to admit a specification that leaves room fot
later refinement steps in which additional knowledge can be incorporated. The
loose specification in the area of algebraic specification of abstract data types is
an example for such an approach. There are various ways how underspecification
or partial specification can be incorporated into a process algebra setting. [LT91J
consider e.g. partial specifications, where the specification of some components
is left open. The interpretation is here that these parts may show any behaviour.
Such a partial specification S defines an infinite set of concrete processes, i.e. all
processes being equivalent to some instance of S, and can e.g. be used to reduce
the complexity of compositional verification.
We are here interested in a more restricted form of underspecification which
arises from a situation where at a certain point in the system design the decision
between various known options of system behaviour is to be postponed. Hence
the degree of underspecification is less than in the case of the partial specifica-
tion. One would like to describe the alternatives within one process expression
but at the same time it should be dear that only some of the options will be
chosen in a later design step. This can be achieved by introducing a special
underspecification operator via which the options are combined. The interpre-
tation of such an underspecification term is that it describes a set of alternative
processes, among which we have to choose in a later step. Refinement can be
modelled by indusion between sets of alternatives.
In arecent paper [VD98J Veglioni and De Nicola consider a simple process al-
gebra BP of finite processes and propose an alternative approach which avoids
the introduction of an additional operator by giving a new interpretation to the
choice operator + .The operator + is interpreted as underspecification whenever
it combines processes which have some initial action in common. The meaning
of such a term is aset of deterministic trees (possible worlds). Refinement can
then again be modelled by indusion between sets of possible worlds. This view of
underspecification can be illustrated by the coffee dispenser example of [VD98].
The coffee dispenser provides a maximum of n units of coffee, where ;" is deter-
mined by the size of the coffee container. If, for some reason, the actual size has
not yet been decided a specification might be given by:

CofMach = cof + cof.cof + cof.cof.cof + ...
This system is not meant to be nondeterministic, but allows for different imple-
mentations ( possible worlds)

Cof M achl = cof; Cof M achz = cof.cof; ...

In a subsequent design step one may then take adecision for one of these vari-
ants thus performing a refinement step.
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This use of the choice operator, though debatable, allows for a simple opera-
tional semantics that is derived from the classical transition system semantics
and that is equivalent to a very intuitive denotational semantics of underspecified
processes in terms of sets of deterministic trees. It also allows for the definition
of a possible worlds equivalence that can be related to other equivalences for the
language BP. It is restricted, however, as far as the modelling of underspecifica-
tion combining two arbitrary processes is concerned. [VD9S] introduce for this
purpose a special underspecification operator ffi that is used together with the
+ operator understood as above.

In this paper we consider two variants of underspecification:

I) the variant-of [VD9S] for an extended language expressing underspecification
by the + operator for processes with some common initial action, which we
adapt to allow for expressing underspecification among arbitrary processes.

II) an approach where + has its classical meaning and underspecification is
described via a separate operator.

The language BP of[VD9S] offinite, sequential processes is not powerful
enough to specify complex processes. At least recursion and a parallel construct
have to be added for a more realistic setting. In a first part of the paper we dis-
cuss how the idea of [VD9S] introducedfor finite processes can be carried over to
a larger dass of processes including recursion. To handle recursion we use metric
spaces. We give a denotational semantics for underspecified processes in terms of
compact sets of trees which induces a denotation al possible worlds equivalence
and study its properties. We then consider general underspecification and discuss
the approaches I) and II). We treat the question of an operational semantics. It
turns out that the equivalence of denotational and operational semantics that
holds for finite processes is not valid in general. We also sketch possible exten-
sions.

The paper is organized as folIows. Section 2 contains the definitions. In section
3 we describe a domain of trees upon which we will build our semantics. Section 4
presents the denotational possible worlds semantics for the language of recursive
processes. In section 5 properties of the possible worlds semantics are presented.
In section 6 we discuss general underspecification. Section 7 treats operational
semantics. Section S contains extensions and connections to related work.

2 Definitions and elementary facts about metric spaces

In the next sections we give a summary of the concepts of processes and metric
topology.

2.1 Processes

W consider processes that are able to perform actions from a given set Act. An
action represents any activity of a system at a chosen level of abstraction.
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A transition system over Aet is a pair (A, ~), where A is the dass of processes
(or states) and ~~ A x Act x A is the transition relation. We write p ~ q for
(p, a, q) E~. On transition systems a variety of semantic equivalences have been
investigated as e.g. presented in [vG90].

We first extend the dass BP of [VD98] of finite processes by recursion to
model infinite behaviour. A parallel construct will be introduced in section 6,
concatenation and infinite summation are discussed in section 8.
The dass RBP of processes given by

- 0 E RBP
- a.P E RBP (prefix) for all a E Act, P E RBP
- X E RBP for all X E I df
- P + Q E RBP (sum) for all P, Q E RBP
- fix(X = P) for all XE Idf, PE RBP such that X is guarded in P

Here I df is a set of identifiers. An occurrence of X E I df is free in P iff it does
not occur within a subterm of the form fix(X = Q). An identifier X E Idf is
guarded in P iff each free occurence of X in P is in the scope of aprefix operation.
A process is closed iff it does not contain any free occurrences of identifiers. For
P, Q E RBP, X E Idf, P[X/Q] denotes the process where each free occurrence
of X in P is substituted by Q.
RBP yields a labelIed transition system with the transitions a.P ~ P, P+Q ~
pI if P ~ pI or Q ~ PI, fix (X = P) ~ pI if P[X/fix(X = P)] ~ PI.
Processes can be drawn as process graphs, i.e. rooted, connected, directed graphs.
The nodes, edges and root of a graph Gare denoted by N(G), E(G) and R(G).
We want to define the sub dass of deterministic processes. For this we introduce
a set IN IT of assignments that associate a set of actions with each identifier

INIT = {O'IO': Idf ~ P(Act)}.

For X, Y E Idf, U E P(Aet) we put

O'(X/U](Y) := { ~(Y) r : ~
The function I : RBP ~ INIT ~ P(Act) giving the set of initial actions

for a process P is defined as folIows:

1(0)(0') = 0
I(a.P)(O') = {a}
I(Jix(X = P))(O') = lfpp,x(O')

I(X)( 0') = O'(X)
I(P + Q)(O') = I(P)(O') U I(Q)(O')

where lfpp,x(O') is the least fixed point of PP,x(O') : P(Act) ~ P(Act) given
by PP,x(O')(U) = I(P)O'[X/U].

Let P E RBP, 0' EIN IT. The relation 0 C RBP x IN IT characterizes
the processes that are deterministic under an assignment 0' and is given as follows
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(O,a) E 5
(X,a) E 5
(a.P,a) E 5 if (P,a) E 5
(P1 + P2, a) E 5 if I(P1)a n I(P2)a = 0 and (Pi, a) E 5 i = 1,2
(jix(X = P), a) E 5 if (P, a) E 5

(P, a) E 5 means that Pis deterministic under a.

Example 1. (X + Y, a) E 5 for a(X) = {a}, a(Y) = {b, c}

Let us call a process P deterministic if (P, a) E 5 for all a.

Example 2. 0, X, fix(X = a.X + b.Y) are deterministic; if P, Q are determin-
istic, so is a.P + b.Q; fix(X = a.X + Y) is not deterministic.

To handle recursion we will use the metric setting, proposed by [Niv79] and first
investigated in [dBZ82].

2.2 Metric Spaces

We recall some basic facts from (metric) topology. We presuppose the not ions
of metric space, compactness, completeness of a metric space and the theorem
that each metric space has a unique completion. Given a metric d on M, then d
and l~d induce the same topology on M, hence in the following we will restriet
ourselves to metric spaces (M, dM) with dM : M x M -+[0,1]. A metric space
(M, dM) is called discrete iff for every x E M there exists E: > 0 such that
dM(X, y) < E: implies x = Y . A n-ary function f : Mx ... x M -+ N is called
non-distance-increasing iff

A non-distance-increasing function f : Mx ... x M -+ N, where (N, dN) is a
complete metric space has a unique extension to the completion of Mx ... x M.
f : Mx ... x M -+ N is called contmctive iff there exists a constant c, 0 ~ c < 1
such that dN(j(Xl, ... , xn), f(Yl,"', Yn)) ~ c. maxi=l...n dM(Xi, Yi)'
The fixed point theorem by BanachjCacciopoli states that every contractive
function f : M -+ M on a complete metric space M has a unique fixed point in
M.
If (M, dM) is a (complete) metric space then (Pnco(M), dH) is a (complete)
metric space where •

Pnco(M) = {U t; MI U ::f. 0, U compact}

and
dH(X, Y) = max{sup inf d(x, y), sup inf d(x, y)}

xEX yEY yEY xEX
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for X, Y E Pnco(M).
If (M, dM) is a discrete space then Pnco(jVI) = Pnj(M), where

Pnj(i'vI) = {U <;;; MI U =f 0, U finite}

In section 4 we will define a semantics that associates with each process
P E RBP a compact set of trees. In the sequel we will frequently make use
of the fact that a subset S of a metric space is compact if every sequence in S
contains a subsequence that converges in 5. In addition, the following theorems
turn out to be usefu!.

Theorem 1. Let (M, d) be ametrie space. 1f X <;;; Pnco(M) is compact and
X =f 0 then UAEX A E Pnco(M).

Proof. Let U be an open cover for UA and A EX. As A is compact there must
be a finite subset of U that covers A and yields an open neighbourhood U(A)
of A. Hence {U(A)}AEX is an open cover for X, from where we obtain a finite
cover of X , as X is compact. From this finite cover we obtain a finite cover for
UA.

The next theorem will enable us to lift certain set-valued operations f defined
on trees to operations defined on compact sets of trees by pointwise application
of f. As the theorem is stated for arbitrary metric spaces it can also serve as a
basis for a possible worlds semantics that is based on other models than trees.

Theorem 2. Let (M, dM), (N, dN) be metric spaces. f : M x M ---+ Pnco(N) a
non-distance-increasing funetion. We put for U, V E Pnco(M)

j(U, V) = U f(u, v)
uEU,vEV

then

i) j(U, V) is a nonempty compact subset of N fOT all U, V E Pncd(M).
ii) dH(j(U, V), j(U', V')) :::;max(dH(U, U'), dH(V, V'))

fOT all U, V E Pnco(M), i.e. j : Pnco(M) x Pnco(M) ---+ Pnco(N) zs non-
distance-incTeasing.

Proof. i) We first observe that 5 = {f(u,v)lu E U, v E V} is a nonempty
compact set for U, V E Pnco(M): let (J(Ui, Vi))iEI be a sequence in 5, hence
((Ui, Vi))iEI is a sequence in U x V, hence there is a subsequence ((Ui;, ViJ)jEJ
of ((Ui, Vi))iEI that converges to som'e (uo, vo) in U x V. As f is non-distance-
increasing (J (Ui; , Vi; )) jE J converges to f (Uo, vo) E 5. Application of theorem 1
yields the result.
ii) Let U, V E Pnco(M). We first observe that

d(j(U, V), j(U', V'))

= d( U f(u, v),
uEU,vEV

U
u.'EU',v/EV'

f(u', v'))
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::; d({j(u,v): u E U, v E V},{j(u',v'): u' E U',v' E V'})

= max( sup inf d(f(u,v),j(u',v')), sup inf d(f(u,v),j(u',v')))
uEU,vEV u'EU',v'EV' u'EU',v'EV' uEU,vEV

As j is non-distance-increasing, we obtain for all u E U, v E V

inf d(f(u, v), j(u', v')) ::; inf max(d(u, u'), d(v, v'))
u1EU',v'EVl u/EU',v/EV'

= max( inf d(u,u'), inf d(v,v'))
u'EU' v'EV'

::; max(sup inf d(u, u'), sup inf d(v, v'))
uEuu'EU' vEvv'EV'

::;max(d(U, U'), d(V, V')).

Hence
Li ::; max(d(U, U'), d(V, V')) for i = 1,2.

3 A domain of trees

The semantics of BP is given in [VD98] in terms of finite sets of finite determin-
istic trees with edge labels in Act. In order to be able to model the meaning of
recursive processes we have to admit infinite sets of possibly infinite trees. We
define in the following a suitable metric space (D, d) of trees and use Pnco(D)
as semantic domain for RBP (and the extended languages introduced sections
6 and 8), as compactness generalizes finiteness. The choice of D is justified as
folIows. Bisimular terms in BP obtain the same meaning in [VD98], hence this
semantics can be viewed as a mapping from BP to Pnf(Tfinbran/~) . Here
T finbran denotes the dass of (isomorphism dasses of) finitely branching trees
with edge labels in Act and ~ denotes bisimulation.
The natural metric on T finbran is given by

d ( ) . f{ 1 I (n) (n)}T t1, tz = m 2n t1 = tz

where t(n) denotes the n-cut of t . With this metric T finbran is a complete metric
space. The metric carries over to T finbran/ ~ and yields an incomplete metric
space (Tfinbran/~,dT). Let (.<1,0) denote the completion of (Tfinbran/~,dT).
(.<1,0) can be given an alternative, more flexible characterization as follows. Let
CMS be the category where the objects are complete metric spaces and. the
arrows are non-distance-increasing functions. The functor F :CMS -+ CMS is
given by

F(M) = {0}UPnco(Aet x M)

and
F(f) = AU.{(a,j(m))I(a,m) EU}.
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It is a weIl known fact that F has a unique fixed point in CMS [MCZ91,dBZ82]
that can be obtained as the metric completion (D, d) of Ui::::O Di where

Do = {0},Di+1 = F(Di) i:2: o.

As Di is discrete for i :2: 0, we have

Ui::::ODi consists of finitely branching trees of finite height.

Theorem 3. (D, d) and (.,1,0) are isometrie.

Prao/. This proof is due to [Bai94] and consists of the foIlowing observations:
1. the mappings Fn : Tj~~bran/ ~ --+ Dn , defined by

for
t E Tj~~bran = {t E Tjinbranll :s height(t) :s n}

are welldefined, bijective and distance-preserving ,
2. for every t E Tjinbran the sequence F([t(n)]~)n::::O is a Cauchy sequence in D,
3. the mapping F: Tjinbran/ ~ --+ D given by F([t]~) = limn-roo Fn([t(n)]~)
is an embedding,
4. F(Tjinbran/ ,..,.)is dense in D.

By standard arguments [dBZ82] one can introduce operators 0, +, and . on
D as foIlows:

0: corresponds to the empty tree 0
+: Ui>o Di x U>o Di --+ Ui>O Di
tl+t2":=t1Ut2- -

+ joins two trees at the root
. : Act X Ui>O Di --+ Ui>O Di
a.t:={(a,tD -

As + and . are non-distance-increasing on Ui>O Di they may hence be uniquely
extended to D. The initial actions function 110r trees in D is given by

I(t) = {a: (a,x) E t for some xE UDi} for t E UDi.
i::::O i::::O

For t = lim tn E D we choose some c < ~.and determine N such that d(tn, t) < ~
for all n :2: N. We put

I(t) = U I(tk)
k::::N

Lemma 1. I(t) is finite for alt tED.

8



The subset Dd <; D of deterministic trees is given by

Dg = {0}
D1+I = {0}u
{U E Pnf(A x D1) : VaVbVxVy (a, x) E U 1\ (b, y) E U 1\ (a, x) i= (b, y) :::}a i=
b} far i 2:: 0

Dd is the completion of UD1. For i 2:: 0 the sub set Drd <; Di of raot deter-
ministic trees is given by Drd = {t E Di : VaVbVxVy ((a, x) E t 1\ (b, y) E
t 1\ (a, x) i= (b, y) :::} a i= b}.

4 Denotational infinite possible worlds semantics für
RBP

In this section we present the denotational semantics for RBP in terms of com-
pact sets of deterministic trees where each tree represents one option of the
specification at the present stage. The choice between the options is to be de-
cided in a later design step thus performing a refinement. The interesting part
of this semantics is the definition of an operator * on compact sets of trees that
models the intended interpretation of + .

EXAMPLE Let PI = a.b.O + a.c.O, P2 = a.e.O + d.O. The intended meaning
of PI, resp. of P2 is shown in Figure 1 while the intended meaning of PI + P2 is

a

b

shown in Figure 2

a

c
resp.

Fig.1.

For the definition of * we proceed aS follows. We first define a function rdet
that decomposes a tree t into a set rdet(t) of root deterministic trees which have
the same initial actions as t. We define an operation * on root deterministic trees
that already reflects the desired interpretation of +. This operation is extended
to arbitrary trees by using the function rdet and then lifted to compact sets of
trees using the theorem 2.
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b c e

Fig.2.

Remark 1. It should be noted that the corresponding operator * of [VD98] can-
not be used for trees in D. This is due to the fact that D contains infinitely
branching trees for which * is not welldefined. However, * and * coincide for
(finite sets of) finite deterministic trees and hence finite processes obtain the
same meaning in both semantics.

Definition 1. Let tE Ui>o Di. We put
rdet(0) = {0}. For t =j:. 0 let

Ft = {fl f : I(t) -+ UDi such that (a, f(a)) E t}
i~O

and
rdet(t) = {{(a, f(a))1 a E I(t)} I fE Ft}

Remark 2. rdet(t) is finite for all t E Ui~O Di, t = Ut'Erdet(t) t' for all t E
Ui~O Di and rdet(t) = {t} for each root deterministic t E Ui~O Di.

rdet decomposes a tree in Ui>o Di into a set of trees t' in U Did with I(t) =
I(t'). -

Lemma 2. rdet : Ui~O Di -+ Pnco(D) U {{0}} is non-distance-increasing.

Proof. Gase 1 dH (tl, t2) = 1 : is obvious.
Gase 2 dH(tI, t2) = fr < 1 for some k: we show that

1
dH(rdet(td, rdet(t2)) :S 2k'

Let T E rdet(td, T = {(al, Td, ... , (an, Tn)} where ai =j:. aj for i =j:. j. As for
i = 1 ... n (ai, Ti) E tl and SUPXEtl infYEt2 d(x, y) :S fr there must be some
y E t2 Y = (ai, Ai) with dH((ai, Ti), (ai,Ai)) :S fr'
Put P = {(al, Ad, ... , (an, An)} then dH(T, p) :S fr, hence

dH(rdet(td, rdet(t2)) =

. 1
max( sup inf d(x,y), sup inf d(x,y)):S k'

xErdet(tl) yErdet(t2) yErdet(t2) xErdet(td 2
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Hence rdet can be canonically extended to a non-distance-increasing map
rdet :D -+ Pnco(D).

Example 3. Let tED and tn as shown below in Figure 3. Then t = lim tn and
rdet(t) = lim(rdet(tn)).

t

7!a
o 0

n

rdet(tn)= n

Fig.3.

rdet(t)=

Definition 2. Let t, t' E Ui2:0 Di be raot deterministic.Let

Ft,t' = {fl f : I(t) U I(t') -+ U Di such that (a, f(a)) E t V (a, f(a)) E t'}.
,i2:0

We put

t * t' = {{(a, f(a))1 a E I(t) U I(t')} I fE Ft,t'}

U t * t'
tErdet(tl )

t' E'rdet(t2)

Lemma 3. Let tl, t2 E Ui>O Di be deterministic trees. Then t1 *t2 contains only
deterministic trees. -

Proof. By induction on the size of I(td n I(t2).
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Example 4.

Lemma 4. Let t1, tz E Ui::O:o Di be root deterministic then

Proof. ThecasethatdH(tl,t~) = 1ordH(tz,t~) = 1istrivial.LetnowdH(tl,t~) <
1 and dH(tz, t~) < 1. Then I(td = I(t~) and I(tz) = I(t~). Let T = tl * tz ,
T' = t~ * t~ . Each t E T is a combination of parts of t1 and parts of tz, i.e.

where (ai, Ti) E t1, (bj,Tj) E tz.
For each i E I choose Ti such that (ai, Ti) E t~ and for each j E J choose Tj

such that (bj, Tj) E tz and put

Then

hence

Proof.

tErdet(tl )

iErdet(t2)
t' Erdd(t~)

i' Erdet(t;)
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By lemma 4 * is a non-distance-increasing function

* . U Drd x U Drd -+ Pnco(D).
i~O i~O

Hence by theorem 2

*: Pnco(U Drd) x Pnco(U Drd) -+ Pnco(D)
i~O i~O

is a non-distance-increasing function. As rdet( td, rdet( tz), rdet( t~), rdet( t~) are
elements in P nco (Ui~O Drd) we get

dH(rdet(td '* rdet(tz), rdet(t~) '* rdet(t;))

::; max( dH(rdet( td, rdet( t~)), dH (rdet( tz), rdet( t;)))

::;max(dH(tl, t~), dH(tZ, t;))

as rdet is non-distance-increasing.

Hence * can be canonically extended to a non-distance-increasing map

* :D x D -+ Pnco(D).

Theorem 5. Let Tl, Tz be nonempty compact sets 0/ trees in D then

i) Tl,*Tz := Uti ETi tl * tz is a nonempty compact subset 0/ D
ii) '* : Pnco(D) x Pnco(D) -+ Pnco(D) a non-distance-increasing /unction.

Proo/. By theorem 2 and theorem 4.

Remark 3. If Tl, Tz consist of deterministic trees then Tl,*Tz consists of deter-
ministic trees.

Definition 3. Let ENV = {erler: Idf -+ Pnco(D)} be the set of environments.
For TE Pnco(D), X, Y E Idf

er[X/T](Y) := {~(Y) ~ : ~

The meaning function ((.)) : RBP-+ ENV -+ Pnco(D) is given by

((O))(er) = {0}
((X))(er) = er(X)
((a.P))(er) = {{(a,t)}lt E ((P))(er))
((Pl + Pz))(er) = ((Pl))(er),*((Pz)) (er)
((fix(X = P)))(er) = fix Pp,x(er)
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where fix pp,x(i7) is the unique fixed point of the contmctive mapping

defined by

Remark 4. For each closed process P, ((P)) is a set of deterministic trees in D.

Example 5. Let P = fix(X = a.O + a.X) and Q = a.O + fix(X = a.X) then
((P)) consists of infinitely many worlds while ((Q)) has two possible worlds as
shown below.

((p)) =

a

a

a

a

a

a

As in the finite case one obtains a refinement notion as inclusion between
sets of the possible worlds.

Definition 4. Let P, Q E RBP be closed processes. Q is a (denotational) pos-
sible woTlds refinement 0/ P, written P '5:D Q ijj ((Q)) ~ ((P)). P and Q are
(denotational) possible woTlds equivalent, P =D Q, ijj ((P))=((Q)).

Exarriple 6. P '5:DQ where P, Q are taken from example 5.

5 Properties of the infinite possible worlds refinement

[VD98] gave an axiomatic and operational characterization of the possible worlds
refinement and showed that bisimulation implies denotational possible worlds
equivalence for finite processes. Theyinformally argue that bisimulation does
not imply operational possible worlds equivalence for infinite processes, see also
section 7. This is the starting point for this section. It is not difficult to see
that the above possible worlds equivalence also satisfies the axioms given in
[VD98]. In addition we establish an axiom for recursive processes, which will be
of some importance when we look for an operational semantics that is equivalent
to the denotational one. We then address the quest ion of the relation between
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bisimulation and possible worlds equivalence. We show that bisimulation implies
denotational possible worlds equivalence also for infinite processes. This is done
by a sequence of steps using three auxiliary functions

hi: RBP -t Envi -t Hi, i = 1,2

where HI = D and H2 = T jinbran and

det : D -t Pnco(D)

that associates a set of deterministic trees with each tED. We show that for
each closed process P

where F : T finbran/ ~ -t D, and

«P)) = det(hdP))

and
(RBP,Act,-t,P) is bisimularto (Tjinbran,Act,-t,h2(P))

hence PI ~ P2 yields «PI)) = «P2)).

The next technicallemma is needed in this section for arguments involving
recursive processes.

Lemma 5. Let P,PI, ... , Pn E RBP and Xl,'" ,Xn E Idf, Xi =1= Xj fori =1= j,
u E ENV. Then

«P[X I /PI, ... , Xn/ Pn])) (u)

= «P))u[XI/«PI))(u), ... , Xn/«Pn))(u)].

Proof. By induction on the structure of P. We only show the case

P = fix (X = P').

We assume w.l.o.g. that X does not appear free in PI,"" Pn.

Gase 1 X 'f. {Xl,"" Xn}.Then

By induction hypothesis

hence for all T
<pP'[XI/P" ...,Xn/PnJ,x(u)(T) =

«P'[XI/ PI,"" Xn IPn])) u[X/T]

«Pi) )U[XI/ «Pd) (u), ... , Xn/ «Pn) )(u), X/Tl
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hence
((P(XdP1, ... ,Xn/Pn]))(0") =

fix pp'[XI/P".,Xn/Pn],X(O") =
fix PP',xO"(Xd((P1))(0"), , Xn/((Pn))(O")J

= ((P))o-[Xd((P1))(0"), ,Xn/((Pn))(O")J.

Gase 2 X = Xi for some i E {I ... n}. W.l.o.g. we may choose i = 1. Then
X = Xl does not occur free in P. As X does not occur free in P1, ... , Pn, it also
does not occur free in P(Xz/ Pz, ... ,Xn/ PnJ and hence by case 1

((P(Xz/ Pz, ... ,Xn/ Pn]) )(0") = ((P(Xz / Pz, ... , Xn/ Pn]) )o-[Xl/ ((P1) )(O")J

= ((P)0"(Xd((P1))(0"), Xz/((Pz))(O"), ... ,Xn/((Pn»(O")J

= ((P»O"(Xz/((Pz»)(O"), ... ,Xn/((Pn)(O-)J.

5.1 Axioms

Lemma 6. The (denotational) possible worlds refinement satisfies the following
axioms. Let P, Q, R be closed processes:

AO: a.P + a.Q ~D a.P
Al:P+Q=DQ+P
A2: P + P =D P
A3: (P +Q) + R =D P + (Q + R)
A4: (P + 0) =D P
A5: a.(b.P + b.Q + R) =D a.(b.P + R) + a.(b.Q + R)
A6: fix(X = P') =D P'(X/ fix (X = P')J

where P' E RBP and X is the only variable occurring free in P'.

Proof. The axioms Al to A5 were already established by (VD98J and carry over
to infinite processes. For A6 we show that

((P'(X/ fix(X = P')]»

is a fixed point of
pp',x(O")(T) = ((P'»)o-(X/TJ.

((P'(X/fix(X = P')]») = ((P'»O"(X/((Jix(X = P'»)J

= ((PI»O"(X/((P'»O"(X/((Jix(X = P'»)]]

= ((P'»O"(X/((P'(X/ fix(X = P')]»J
by lemma 5.
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5.2 Bisimulation and denotational possible worlds equivalence

To establish the relation between the two equivalence notions we use au~lhary
functions hi, i = 1,2, defined in the following.

Definition 5. Let Envl = {O" : Idf -t D}, h1: RBP -t Envl -t D is given
by

hdO)(O") = 0
hdX)(O") = O"(X)
hda.P)(O") = a. hdP)(O")
hdP1 + Pz)(O") = hdPd(O") + h1(PZ)(0")
hdfix(X = P))(O") = fix rpP,x(O")

where fix rpP,x(O") is the unique fixed point 0/ the contmetive mapping
rpP,x(O") : D -t D where rpp,x(O")(t) = hdP)O"[X/tJ

Lemma 7. Let P be a deterministic process, 0" E Envl

where ä-(X) = {O"(X)} for all X E Idf. In particular ((P)) = {h1(P)} for all
closed deterministic P.

Proof. By induction on the structure of P. The basis of induction and the han-
dling of the operators choice and prefixing are straightforward. We consider the
case

P = fix (X = P')

and show that {h1 (P) (O")} is a fixed point of PP',x (ä-) (T). By induction assump-
tion

pp',x(ä-)({hdP)(O")}) = ((P'))ä-[X/{h1(fix(X = P'))(O")}J

= {h1(P')a-(X/hdfix(X = P'))(O")]}

= {h1(fix(X = P')(O"))}

= {hdP)(O")}.

Definition 6. Let Envz = {O" : Idf -t Tjinbran}, hz: RBP -t Envz -+
Tjinbran is given by

hz(O)(O") = t0, (the empty tree)
hz(X)(O") = O"(X)
hz(a.P)(O") = a. hz (P)(O"), (prefixing 0/ the tree)
hZ(P1 + PZ)(O") = hz (Pd (0") + hz (Pz)(O"), (joining at the root)
hz(fix(X = P))(O") = fix fp,x(O")

where fp,x(O") : Tjinbran -t Tjinbran, fp,x(O")(t) = hz(P)O"(X/tJ is a contmc-
tive mapping.
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/R~) et P,PI,"',Pn E RBP andXI"",Xn E 1df,Xi -I Xj, fori-l
i J.Then
~/ h2(P[XI/h2(Pr), ... , Xn/h2(Pn)])(0")

= h2 (P)0"[XI/h2 (Pd (0"), ... ,Xn/h2(Pn)(0")]

holds in analogy to lemma 5.

Let F : T jinbran/ ~ --1- D be given by F([t]~) = limn--+oo (Fn[t(nl]) where
Fn is defined by Fn([t0]~) = 0, Fn([tl~) = {(a, Fn-dt']~) : t ~ t'} for t with
1 ::; heigh(t) ::; n, see also theorem 3.

Lemma 8. Let P E RBP, XI,X2"",Xn E 1df the identifiers that occur free
in P and PI,"" Pn closed processes E RBP. Let TE EnV2 with T(X;) = h2(Pi)
and 0" E EnVI with O"(Xi) = F([h2(P;)]~). Then hr(P)O" = F([h2(P)T]~)

Praof. By induction on the structure of P. The basis of induction is obvious.
Induction step:
1. P = a.P':

hl(P)(O") = {(a, hl(P')(O"))} = {(a,F[h2(P')(T)]~)}

= lim{(a, Fn-l ([(h2(P')( T))(n-l)]~))}

= lim Fn([(a. h2(P')(T))(nl]~)

= F([a. h2(P')(T)]~)

= F([h2(a.P')(T)]~) = F([h2(P)(T')]~)

2. P = PI + P2: by simple calculation
3. P = fix(X = pt): we show that F([h2(Jix(X = P'))(T)]~) is a fixed point
of <P P',X (0").

F([h2(Jix(X = P'))(T)]~) = F([h2(P')r[X/h2(P)(r)]]~)

= F([h2(P')r[X/h2(P[XI/ PI,"" Xn/ Pn])]]~)

= F([h2(P')(r')]~) = hl(P')(O"')

= hl (P')O"[X/ F([h2(P[XI/ PI,"" Xn/ Pn])]~)]

= hr(P')O"[X/ F([h2(P)(r)]~)]

by induction assumption, where O"'(X) = F([h2(P[XI/ PI,"" XnIPn])]~)
and 0"' (Y) = O"(Y) for Y -I X

Lemma 9. Let P, PI,"" Pn E RBPand Xl,"" Xn E 1df, Xi -I Xj, for' i -I
j, identifiers in P, a E Act. 1f Xl,"" Xn are guarded in P then P[XI/ PI,"" Xn/ Pn] ~
Q implies the existence of P' E RBP such that P ~ p' and P'[XI/ PI,"" Xn/ Pn] =
Q

Praof. [BMC94]
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Lemma 10. Let P E RBP, a E Act, (7 E Env2' If P ~ pi then h2(P)((7) ~
h2 (P')( (7).

Proof. By structural induction. We only show the case

P = fix(X = Q).

Let P ~ P', i.e. Q[X/P] ~ Pi. By lemma 9 there exists Q' E RBP such that
Q ~ Q' and Q/[X/P] = P'. We apply the induction hypothesis to Q, hence

h2(Q)((7) ~ h2(Q')((7) for aB (7

hence

h2(Q)C7[X/h2(P)((7)] ~ h2(Q')(7[X/h2(P)((7)] for aB (7

hence h2(P)((7) ~ h2(P')((7) by remark 5.

Lemma 11. Let P E RBP and X I, ... ,X n the identifiers that occur free in P,
Xi i- Xj, for i i- j. Let (7 E Env2 such that (7(Xi) = h2(Pi) where Pi E RBP is
closed. If Xl, ... , Xn are guarded in P then for alt t' E T jinbran if h2 (P)(7 ~ t'
then there exists P' E RBP, pi closed, such that P[XdPI, ... ,Xn/Pn] ~
pi and h2(P') = t'

Proof. By structural induction, lemma 9 and remark 5.

Lemma 12. R = HQ, h2(Q))1 Q E RBP closed} is abisimulation between
(RBP,Act,-+,P) and (Tjinbran,Aet,-+,h2(P)),

Proof. By lemma 10 and lemma 11.

Definition 7. Let tE Ui20 Di, I(t) = {al"", an}'

t(a) := {t/l (a, t') E t} a E Act

det(t):= {{(al,xI), ... ,(an,Xn)} where Xi E det(t'),t' E t(ai) fori = l. .. n }

Lemma 13. det(t) is non-distance-increasing on Ui20 Di

Proof. By lemma 2.

Hence det can be extended to. det : D -+ D.

Lemma 14. Let P E RBP, (7 E EnvI, ä-(X) = det((7(X) . Then

((P))(ä-) = det(hl(p)((7)).

In particular ((P)) = det(hdP)) for alt closed processes P.
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Proof. By induction on the structure of P. We consider the case

P = fix(X = P')

and show that det(hdP)(O")) = det(hdfix(X = P'))(O")) is a fixed point of
pp',x(&).

det(hdP)(O")) = det(h1(P'))0"[X/h1(P)(0")])

= det(hdP')(O"'))

= ((P'))(&)

by induction hypothesis, where

O"'(y) = O"(Y) forY =j:. X, O"'(X) = (P)(O").

hence
det(hdP)(O")) = ((P'))&[X/det(h1(P)(0")]

hence det(h1 (P)(O")) is a fixed point of PP' ,x (&) and ((P))( &) = det( hdP) (0"))

Theorem 6. Let P, Q E RBP be closed processes. 1f P ~ Q then P =D Q

Proof. By lemma 8, lemma 12 and lemma 14.

6 General underspecification

It is desirable to be able to describe underspecification that allows to combine
arbitrary processes to an underspecified term. [VD98] introduce für this purpose
an operator EB that is used in combination with + interpreted as above. So e.g.
(a.P +a.Q) EB c.R displays underspecification twice on the top level. Its meaning
is a set consisting of three trees, provided P, Q and Rare deterministic. It seems
c1earer to use a single concept for underspecification. In this section we sketch
two alternatives how this can be achieved.

One way to incorporate general underspecification is to use the + as un-
derspecification operator as above together with special symbols that allow to
treat arbitrary processes within this setting. Let bi, i :::::0, be symbols ~ Act. If
we want to model that the decision between a process P and a process Q that
e.g. have disjoint sets of initial actions is to be postponed at the present design
step, one' could express this by bi'P + bi.Q for some i. Taking this option has
some advantages. One can use our meaning function for assigning a meaning to
underspecified terms that reflects the intended meaning. Consider e.g. the term
hP + bi.Q, then

((bi.P + bi.Q)) = ((bi.P))*((bi.Q))

= bd((P)) U ((Q))),

i.e. we obtain as meaning all options of P plus all options of Q prefixed by bi.
The deltas may be now discarded if we are not interested in reconstructing the
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points at which we expressed the underspecification and should be kept other-
wise. Also, in contrast to an additional underspecification operator one may here
use classical transition systems for operational semantics. Equivalence notions
that take care of the role of the special symbols Oi have then to be defined ap-
propriately. One problem with this view and also the mixed one of [VD98] arises
if we want to introduce a parallel construct into the language. If we maintain
that the meaning of a process should be a set of deterministic trees then the
meaning of a.b.O[a.c.O has to be a set consisting of two trees. In a refinement
step one of them would be discarded which means that certain computation
paths would be lost. On the other hand the meaning of a.b.Olc.d.O is a singleton
set and there is no furt her refinement. This problem can be solved by admitting
sets of nondeterministic trees as semantics for a language including a parallel
construct. It should be noted that Pnco(D) is still a suitable domain for such an
interpretation. However, the definition of the operation * has to be modified as
in its present definition it resolves any nondeterminism of its arguments.
Another way to incorporate underspecification is to separate the issues of non-
determinism and underspecification completely by introducing aseparate und er-
specification operator and interpreting + in the standard way. In this setting a
parallel construct can be easily incorporated.
We introduce a language UP that contains an underspecification operator which
is semantically interpreted by the union of sets of trees. The operator + has its
conventional meaning and the parallel construct is given. an interleaving inter-
pretation. The meaning of processes in UP will be given by sets of trees that
are no longer deterministic. UP is given by

- 0 E UP
- a.P E UP a E Act, P E UP
- XE UP XE Idf
- P + Q E UP P, Q E UP (choice)
- POQ E UP P, Q E UP (underspecification)
- PIQ E UP P, Q E UP (parallel construct)
- fix(X = P) E UP
where XE Idf, PE UP such that X is guarded in P.

Example 7. The specification of the coffee dispenser could be rewritten in the
above setting by

Gofmach = cof 0 cof.cof 0 cof.cof.cof 0

Example 8. The expression (a.P + b.Q) + (a.P' + c.R) of BP is expressed in UP
by (a.POa.P') + b.Q + c.R.
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Lemma 15. Let Tl, T2, T{, T~ E Pnco(D), then
a)

b)
dH(Tl -tT2, T{ -tTn ::;max(dH(Tl, T{), dH(T2, Tm

where Tl -tT2 = {tl + t2 I ti E Ti}
e)

dH(Tl IT2, T{ ITn ::; max(dH(Tl, T{), dH(T2, T~))

where Tl IT2 = {tllt2 I ti E T;} and I defined as in [dBZ82}

Proof. By theorem 2.

Definition 8. The meaning function [[.]] : UP -+ ENV -+ Pnco(D) for under-
speeified processes E UP is given by

[[0]](0") = {0}
[[X)](O") = O"(X)
[[a.P)](O") = {{(a, t)}1 tE [[P)](O")}
[[P + Q))(O") = [[P))(O")-t[[Q]](O")
[[PIQ))(O") = [[P)](O") I[[Q]](O")
[[POQ))(O") = [[P))(O") U [[Q]](O")
[[jix(X = P))](O") = fix wp,x(O")

where fix wP,x (0") is the unique fixed point of the eontraetive mapping

given by Wp,x(O")(T) = [[P]]O"[X/T].

Example 9. [[a.(b.d + b.O)Oc.O)) consists of one deterministic tree and one non-
deterministic tree.

Example 10. [[a.b.Ola.c.O)) consists of one nondeterministic tree.

A RBP term is strictly guarded if in every subterm of the form fixX = Q
the variable X only occurs immediately prefixed, i.e. in the form a.X. There is
a simple translation tr from strictly guarded RBP terms to UP such that for
each closed process P E RBP

((P)) = [[tr(P)]].

tr is given by tr(O) = 0, tr(X) = X, tr(a.S) = a.tr(S), (tr(jix(X = Q))
fix(X = tr(Q)).
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Für additive terms, i.e. terms of the form P + Q we proeeed as follows:
determine all minimal summands of P and Q, i.e. all summands Pi of P and Qj
of Q that are no summands themselves. Substitute eaeh minimal summand of
the form fix(X = R) by R[X/ fix(X = R)]. This gives rise to a modified set
of minimal summands eaeh of whieh is either 0 or X or of the form a.S. For
eaeh a E Act we eolleet all terms of the form a.S and eombine their translations
tr(a.S) with the operator 0 resulting in a term tao The terms ta, tb,'" are
eombined with the + operator yielding a term Z E UP. We define tr(P+Q) = Z.

The semanties ((P)) and [[tr(P)]] eoineide.

Example 11. The expression

(a.d.O + b.O+ c.O) + (jix(X = a.O + a.X) + c.e.O)

of RBP is translated into

(a.d.O) 0 a.O 0 a.fix(X = a.O 0 a.X)) + b.O+ (c.O 0 c.e.O).

7 Operational characterization

One of the advantages of the use of + in [VD98] is that one may use classieal
transition systems to obtain an operational meaning for proeesses in BP. [VD98]
assoeiate with P E BP an operational meaning PW(P) eonsisting of all pro-
eess graphs H that are isomorphie to a minimal deterministie graph G satis-
fying R(G) = P and (Q ~ Q', Q E N(G) ~ 3Q" E N(G) : (Q, a, Q") E
E(G) and Q ~ Q").

[VD98] show that two proeesses P, Q E BP are denotational possible worlds
equivalent (P =D Q) iff PW(Q) = PW(P).

For infinite proeesses [VD98] remark: ... that infinite processes are already con-
sidered in the operational characterization,. in fact it is not restricted to finite
transitions systems. For example we have that

a a

strictly refines
a

a
o
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We also have that:

strictly refines
j
o

a
a

though they are bisimilar. Notice, in fact, that the process on the left admits
only two possible worlds .... Unfortunately definition 3 (Definition of PW) cannot
be directly used for infinite processes; it is not sufficiently abstract for loops. For
example:

is not equivalent to d
However, this can be easily resolved by choosing a graph equivalence weaker

than isomorphism ...
Let us assurne that we choose such a weak notion of equivalence that identifies
the above graphs. Then the resulting operational semantics will be incomparable
with the denotational semantics in the sense that
i) there are processes P and Q for which PW(P) = PW(Q) but P i:-D Q
ii) there are processes P and Q for which P =D Q but PW(P) i:- PW(Q)

Example 12. Let P == jix(X = a.O + a.X) and Q == a.O + jix(X = a.X). The
process graph of P is GI whereas the process graph of Q is

Hence in the view of [VD98] PW(P) and PW(Q) coincide under the assumed
weaker notion of graph equivalence, but Q i:-D P, see example 5.
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Example 13. Let P = fix(X = R) = fix(X = a.O+a.X) and Q = R[X/ fix (X =
R)] = a.O + a.fix(X = a.O + a.X), By axiom 6 P =D Q.The transition system
for Q is

If Cl admits only two possible worlds then analogously

PW(Q)

a,
a
d

hence PW(P) =I- PW(Q) under the assumed not ion of graph equivalences.

The quest ion of an appropriate operational semantics for RBP and UP
remains open.

8 Extensions and related work

8.1 Concatenation

It is not difficult to see that concatenation can be easily incorporated into our
setting. We omit the 0 process, consider instead each a E Act as a basic pro-
cess and substitute prefixing by concatenation, thus obtaining a language RCP.
The corresponding semantic operator 0!1 Ui>O Di is non-distance-increasing.and
hence all constructions carry over to tllis case.

8.2 Infinite sums

For simplicity we considered in RBP a standard binary 'choice'. It should be
noted that the approach can be extended to an infinite summation operator 2).
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The language thus obtained would then include the coffee machine example :
Co j Mach = coj + cof.CD j + ... = £i'21 cor.However, we then no longer choose
D as our basic domain, but the complete pseudometric space T l~, as D is too
coarse to distinguish between P1 = £i'21ai and P2 = £i'21ai + jix(X = a.X).

8.3 Other models of computation

As already suggested in [VD98] the possible worlds concept can be used to
obtain a whole spectrum of possible worlds notion, as e.g. trace possible worlds
equivalence and so forth. Another track of transfer of the possible worlds idea
leads to other models of computation as e.g. true concurrency models provided
we consider a language with concurrency features.

8.4 Related work

The idea oftwo different types of nondeterminism and their modelling by branch-
ing respectively sets is not new. In the special case of a finite alphabet Act it
can be found in [Rou85], where a CSP-type language with the choice-operator of
Dijkstra and the n-operator of [BHR84] is considered and interpreted in terms
of (sets of) trees.
For a finite alphabet Act [Rou85] establishes the relation between the Hennessy-
Milner logic HML and Pe(T) where Pe(T) denotes the closed subsets of the
pseudometric space T.
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