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Abstract

Medical imaging often requires a preprocessing step where filters are applied
that remove noise while preserving semantically important structures such as
edges. This may help to simplify subsequent tasks such as segmentation. One
dass of recent adaptive denoising methods consists of methods based on nonlinear
partial differential equations (PDEs). In the present paper we survey our recent
results on PDE-based preprocessing methods that may be applied to medical imag-
ing problems. We focus on nonlinear diffusion filters and variational restoration
methods. We explain the basic ideas, sketch some algorithmic aspects, illustrate
the concepts by applying them to medical images such as mammograms, comput-
erized tomography (CT), and magnetic resonance (MR) images. In particular we
show the use of these filters as preprocessing steps for segmentation algorithms.

1 Introduction
Abasie component of most computer-supported medical image analysis systems is a
preprocessing stage for the enhancement of raw image data. This includes both noise re-
duction and elimination of spurious details in order to improve the result of a subsequent
segmentation algorithm, far example, and enhancement of various features relevant for
visual inspection in some diagnostic task.

The most basic operation for noise reduction or feature detection is to combine given
image data linearly within some local neighbourhood. Here one applies a linear filter
in order to compute for instance a local average, or to estimate a partial derivative
for the detection of signal transitions. A fundamental drawback of a linear processing
stage, however, is the fact that there is no feedback from filter outputs to the processing
stage that may be used to control the spatial support of smoothing or to switch from
local averaging to anisotropie smoothing in order to preserve signal transitions. Partial
differential equations (PDEs) are the appropriate concept to model this and similar
functionalities in a mathematical sound way. They lead to well-defined algorithms for
the preprocessing of raw image data that are by far more powerful than linear processing
stages. In particular, PDEs encode adaptive behaviour in a purely data-driven way that
is flexible enough to cope with the rich image structure commonly found in medical
images. As a result, an (interactive) user is typically left with just two well-defined
global parameters that can be used to browse given image data.
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Nonlinear PDE-based image processing has been introduced to the field of computer
vision by Perona and Malik [18]' and to the field of medical imaging by Gerig et al. [8].
In the last years there has been an intensive research reaching from the mathematical
foundations and properties of PDE-based image processing to sound discretizations and
stable numerical algorithms on parallel computer architectures. However, since these
more advanced issues are not the objective of this artic1e, we confine ourselves to a short
presentation of the elementary mathematical definitions and the formalism underlying
PDE-based image processing in the next section. Rather, the present artic1e aims at
surveying some of our PDE-based image processing applications with emphasis on med-
ical image computing. Relevant references will be given below for the reader interested
in a more detailed exposition of the underlying mathematical and computational issues
as well as the different generalizations that have been used to compute the examples
that will be discussed in the remainder of this artic1e.

2 Basic mathematical formulations
Assume that a greyscale image is given by a bounded real-valued function f(x) with
x = (Xl, X2)T E ]R2. Typically, large values of f represent bright structures, while low
values correspond to dark features. This is illustrated in Figure l(a). One mayas well
regard the function f as a surface in ]R3, as is depicted in Figure 1(b).

One important c1ass of PDE techniques for adaptive image smoothing consists of
diffusion filters. Here the grey values ofthe image f(x) may be regarded as space-variant
concentrations of some chemical substance. If we assume that the concentrations f(x)
represent the state at time t = 0, and that they are diffused over time, we may use
the physical laws of diffusion phenomena to describe this evolution. Let us assume
that u(x, t) denotes the concentration at time t 2: 0 and that the initial condition
u(x,O) = f(x) holds, then the evolution is governed by the so-called diffusion equation

Ut = div (D'\7u) (1)

where the subscript denote partial derivatives, '\7u := (UX1, ux2)T, and div is the diver-
gen ce operator (i.e. div (~) = aX1 + bX2)' Roughly speaking, this equation tells us that
the temporal evolution of our image u(x, t) is determined by its second order spatial
derivatives. D is a positive definite 2 x 2 matrix that is called the diffusion tensor. It
steers the diffusion process in such a way that the eigenvectors prescribe the diffusion
directions and the corresponding eigenvalues determine the amount of diffusion along
these directions. Diffusion filters differ from each other by the way this diffusion tensor
is chosen.

Let us start by studying the simplest diffusion filter. It has been axiomatically
derived almost four decades ago in Japan [11, 25]. If we have two identical eigenvalues
(say Al = A2 = 1), then the process is isotropie and the directions of the eigenvectors do
not matter. The result of such an isotropic linear diffusion process can be seen in Figure
l(c),(d). Although it removes noise and small-scale details very weIl, it is of restricted
use only: it cannot distinguish between noise and semanticaIly important structures
such as edges. Both are blurred in the same way.
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Figure 1: (a) Top left: slice of an MR image. (b) Top right: surface representation of (a).
(c) Middle left: after linear diffusion filtering. (d) Middle right: surface representation
of (c). (e) Bottom left: after anisotropie edge-enhancing diffusion filtering. (f) Bottom
right: surface representation of (e).

As a remedy, non linear diffusion filters can be considered. As simple representative
of this dass would try to reduce smoothing at edges. How can this be achieved? We
may identify edges as locations where l'Vul is large, and reduce the diffusion process
there by choosing eigenvalues that are decreasing in I'Vu I, e.g.

(2)

Such diffusivities are well-suited far denoising purposes, and the resulting diffusion equa-
tion has a unique solution that is stable under perturbations of the initial data and the
parameters [22, 23].

Using faster decreasing diffusivities as is done e.g. in [18] even allows contrast en-
hancing behaviour. One the other hand, this may create problems such as unsolved
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existence and uniqueness quest ions and high sensitivity to noise. However, also in this
case there exists a mathematically sound theory that shows that regularizations of these
filters do not suffer from such theoretical and practical problems [6, 25]' while still
retaining contrast-enhancing properties. This framework can also be extended to the
algorithmically important discretizations of these filters [25]. The basic idea behind
these regularizations is to replace the edge detector 'Vu by a Gaussian-smoothed version
of it.

The whole concept can be improved furt her by introducing anisotropie behaviour into
the diffusion process. Figure l(e),(f) shows an example where an anisotropie diffusion
filter has been specifically designed for the enhancement of edges [25]. It uses a diffusion
tensor with eigenvectors parallel and orthogonal to the image edges. The eigenvalue that
steers the diffusion across the edge is chosen such that it becomes very small when the
edge contrast is high. In order to achieve good noise rem oval , smoothing parallel to the
edge is permitted by keeping the corresponding eigenvalue to a fixed value. As an edge
detector, a Gaussian-smoothed version of the evolving image gradient is used. In Figure
l(e),(f) it can be seen that this diffusion filter, which adapts itself in a nonlinear way to
the evolving image, is well-suited for smoothing noise while simultaneously preserving
important features such as edges. For further applications of nonlinear diffusion filtering
to medical images we refer to [2, 3, 8, 10, 15, 20, 29] and the references therein.

Another important concept for PDE-based image restoration results from the con-
sideration of variational methods [7, 16, 22]. Many methods of this type use two as-
sumptions: 1. the restored image u(x, t) should not deviate too much from the original
image f(x) and 2. it should be piecewise smooth. These requirements are assembled in
an energy which is minimized by the optimal restoration. A typical structure of such
an energy is given by

(3)

(4)

where the so-called smoothness potential \[1 is an increasing function in its argument,
e.g. \[1(82) = e2Jl + 82/e2. One can guarantee that this energy has a unique minimum
if \[1(82) is a convex function in 8 [22]. In nonconvex cases such as [16]' this is not
necessarily the case, and algorithms may get stuck in a local minimum.

The first summand of Ej(u) encourages similarity between the restored image and
the original one, while the second summand rewards smoothness. The smoothness
weight t > 0 is called regularization parameter. From variational ca1culus it follows that
the minimizer of Ej(u) satisfies the Euler-Lagrange equation

u ~ f = div (\[1'(I'VuI2) 'Vu).

where \[1' is the derivative of \[1. The left hand side of this equation may be regarded as
an approximation to Ut. Hence, the variational method approximates a diffusion filter
with diffusion tensor \[1'(I'VuI2)I at time t. The eigenvalues of this tensor are given by

\[1' 'Vu 2 _ 1
(I I) - Jl + l'VuI2/e2
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(a) (b)

(c) (d)

Figure 2: Denoising of a mammogram. (a): Section of the original data. (b): Restored
image. (c),(d): Pseudo-3D plots of (a),(b). From [24].

\

which is just the diffusivity from (2). Hence, the diffusion is slowed down at edges where
IVul is large. This ensures that filters of this type are discontinuity preserving while
simultaneously smoothing within the interior of regions. More details on the relations
between diffusion filtering and variational methods are described in [21].

Variational methods are very useful for image restoration. Image restoration refers to
denoising of severly perturbed image data or to the restoration of image data distorted
by the imaging device (point spread function, physical effects). An application of such
a variational restoration method is shown in Figure 2, where an approximation to the
so-called total variation smoothness potential w([VuI2) = IVul has been used [19].
It can be seen that this technique is well-suited for removing noise while retaining
the diagnostically important microcalcifications. Consequently, such a preprocessing
constitutes an important tool for the clinician. We remark that this result cannot be
computed using traditional methods such as median filtering.

Both diffusion filters and variational methods reveal essentially two natural param-
eters: a smoothness parameter t and a contrast parameter c. Larger values for t cor-
respond to a stronger image simplication. Locations with gradient magnitudes larger
than c are regarded as edges where the smoothing process is inhibited, while locations
with gradient magnitudes smaller than c are supposed to belong to the interior of a
segment. Here smoothing is desired in order to simplify these structures. The choice of
the parameters t and c has of course to depend on the image data and the desired appli-
cation. There are, however, some heuristic guidelines that help to ease these parameter
adaptations [27].

Other important classes of PDE-based image processing methods describe evolution
processes that can be linked to mathematical morphology and level set methods. They
propagate each level set of the image independently and are thus are invariant under
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Figure 3: (a) Left: MR image from Figure l(a). (b) Middle: Filtered with the isotropie
nonlinear diffusion process of Catte et al. [6]. (c) Right: Watershed segmentation with
region merging applied to (b). From [26].

monotone rescalings of the greyvalues (such as histogram equalizations or gamma cor-
rections). For an axiomatic classification of these methods we refer to [1], and related
curve evolutions are derived in [17]. It should be observed that the greyscale invariance
of these methods implies that contrast does not carry any important information. Since
this is not necessarily the case in medical imaging, we do not treat these methods any
further in this paper. More details on recent PDE-based image processing methods in
general can be found in [5, 9, 14, 26].

3 Nonlinear smoothing and segmentation
The prototypical PDEs described in Section 2 lead to adaptive algorithms that filter out
noise and spurious details in homogeneous image regions, but locally adapt to significant
signal transitions so as to preserve the relevant image structure. As a result, many
traditional segmentation schemes like thresholding or employing watersheds become
more robust and hence can be applied successfully in more applications. We illustrate
this with two examples.

Figure 3 demonstrates the use of non linear diffusion filtering as a preprocessing
tool for the watershed algorithm, a classical morphological segmentation method. We
observe that this fully automatie segmentation is able to capture many semantically
correct objects.

Figure 4 shows three-dimensional variational image restoration of CT data combined
with thresholding. It should be mentioned that diffusion filters and variational methods
generalize to arbitrary dimensional data sets in a straightforward manner. This example
demonstrates that image structures can be discriminated from the background even
when a substantial amount of noise is present.
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Figure 4: Three-dimensional variational restoration of a computer tomogram. (a): Slice
of the 3D CT image data. (b),(c): Sections with an object of interest. (d): Pseudo-
3D plot of the section depicted in (c). (e): It is not possible to discriminate object
and background with thresholding: Either parts of the object are lost (threshold too
high) or the result is contaminated with noise (threshold too low). (f)-(h): Variational
restoration exploits homogeneous image structures in 3D and filters out noise while
preserving signal transitions. As a result, thresholding succeeds in this case. From [24].

4 Algorithms
Diffusion filtering and variational image restoration are continuous concepts. Since we
have to apply them to digital images, it is necessary to use discretizations for the partial
differential equations.

For diffusion filtering, a direct way to achieve this is to use finite difference methods.
They replace all derivatives by finite differences and proceed iteratively from time 0
to larger times. In its simplest case each such iteration consists of a convolution of
the image with a small space- and time-dependent mask [27]. However, such so-called
explicit schemes are only stable when small time steps are used. In order to proceed
with larger time steps one can apply slightly more complicated schemes (linear implicit
schemes) that require to solve a linear system of equations in each step. In recent years
quite some efforts have been undertaken in order to find reliable and efficient numerical
schemes for nonlinear diffusion filtering; see e.g. [20, 28]. Nonlinear diffusion filtering
on current PCs or workstations can be achieved in the order of a second in 2D, and in
the order of aminute for typical 3D data sets that arise in medical imaging.
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Figure 5: (a) Left: High resolution slipring CT scan of a femural bone. (b) Right:
Filtered with coherence-enhancing anisotropie diffusion. From [25].

An alternative to finite difference methods are so-called finite element methods. They
are closely linked to variational problems and are therefore considered a natural choice
for variational image restoration. Often they lead to linear systems of equations which
a similar structure as for finite difference methods [24]. Their use is somewhat more
complicated than finite differences, but they offer advantages if one is interested in using
adaptive methods with grid coarsening in slowly varying regions [23].

For both types of methods it is possible to achieve significant speed-ups by means
of parallelizations. For more details on parallelization strategies and a juxtaposition of
finite differences and finite elements we refer to [28].

5 Extensions
PDE-based methods can be designed in such a way that they are optimized for a specific
application. For instance, using somewhat more sophisticated tools for image structure
analysis than a Gaussian-smoothed gradient, it is possible to design anisotropie diffusion
processes that diffuse along parallellines and flowlike structures [25]. Such a a coherence-
enhancing diffusion process is used in Figure 5. This figure depicts a CT scan of a
human bone. Its internal structure consists of tiny elongated bony structural elements,
the trabeculae. Their density and orientation is an important clinical parameter in
orthopedics: for instance, the trabecular structures allow to judge the recovery after
surgical procedures, or to quantify he rate of progression of rheumatism and osteoporosis.
From Figure 5(b) we observe that the anisotropie diffusion filter is capable of enhancing
the trabecular structures in order to ease their subsequent orientation analysis.

Another application area of PDE-based methods are active contour models. They
are very popular in medical imaging since they allow interactive segmentation [13].
Recent results have shown that it is possible to design specific active contour models
(geodesie active contours [4, 12]) that resemble nonlinear diffusion filters. Here the
evolving contour is extracted as a levelline of a diffusion-like image evolution. Methods
of this type offer the advantage that they can handle automatically topological changes
such as splitting and merging of contours. Figure 6 shows an example.

Last but not least it should be mentioned that there exist further medical areas
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Figure 6: (a) Left: MR image from Figure l(a) with user-specified initial contour. (b)
Right: A geodesic active contour model has moved the initial curve to the object.

where PDE-based methods are relevant: related variational approaches can be used for
example for the calculation of displacement fields between subsequent frames in image
sequences or for medical image registration.

6 Conclusions
Recent years have witnessed a fruitful interplay between novel PDE-based image restora-
tion techniques and medical image processing as their main application field. In this
paper we have sketched the basic ideas and interrelations between two important classes
of PDE-based methods (diffusion filtering and variational restoration methods) and
demonstrated their use as preprocessing tools for segmentation methods. On one hand
medical imaging problems have given rise to develop better image processing methods,
while on the other hand progress in PDE-based denoising methods has a direct impact
on medical imaging techniques, e.g. by enabling a reduction of the X-ray dose in CT
image acquisition. We are confident that this fruitful relation between modern imaging
techniques and medical applications is only in its first stage and that much progress is
still possible in the near future.
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