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Abstract

Many differential methods for the recovery of the optie flow field from an image
sequenee ean be expressed in terms of a variational problem where the optie flow
minimizes some energy. Typieally, these energy functionals eonsist of two terms: a
data term, whieh reqires e.g. that a brightness eonstaney assumption holds, and a
regularizer that eneourages global or pieeewise smoothness of the flow field. In this
paper we present a systematie c1assifieation of rotation invariant eonvex regulariz-
ers by exploring their eonneetion to diffusion filters for multiehannel images. This
taxonomy provides a unifying framework for data-driven and flow-driven, isotropie
and anisotropie, as well as spatial and spatio-temporal regularizers. While some of
these teehniques are c1assie methods from the literature, others are derived here
for the first time. We prove that all these methods are well-posed: they posses a
unique solution that depends in a eontinuous way on the initial data. An inter-
esting struetural relation between isotropie and anisotropie flow-driven regular-
izers is identified, and a design eriterion is proposed for eonstructing anisotropie
flow-driven regularizers in a simple and direet way from isotropie ones. Hs use is
illustrated by several examples.

Keywords: optie flow, differential methods, regularization, diffusion filtering,
well-posedness

1998 ACM Computing Classification: 1.4.8, 1.4.3, 1.4.4.

1 Introd uction
Even after two decades of intensive research, robust motion estimation continues to be
a key problem in computer vision. Motion is linked to the not ion of optic flow, the
displacement field of carresponding pixels in subsequent frames of an image sequence.
Optic flow provides information that is important far many applications, ranging from
the estimation of motion parameters for robot navigation to the design of second gen-
eration video coding algorithms. Surveys of the state-of-the-art in motion computation
can be found in papers by Mitiche and Bouthemy [32], and Stiller and Konrad [50]. For
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a performance evaluation of some of the most popular algorithms we refer to Barron et
al. [5] and Galvin et al. [20].

Bertero et al. [6] pointed out that, depending on its formulation, optic flow ca1cula-
tions may be ill-conditioned or even ill-posed. It is therefore common to use implicit or
explicit smoothing steps in order to stabilize or regularize the process.

Implicit smoothing steps appear for instance in the robust calculation of image
derivatives, where one usually applies some amount of spatial or temporal smoothing
(averaging over several frames). It is not rare that these steps are only described as al-
gorithmic details, but indeed they are often very crucial for the quality of the algorithm.

Thus, it would be consequent to make the role of smoothing more explicit by incor-
porating it already in a continuous problem formulation. This way has been pioneered
by Horn and Schunck [25] and improved by Nagel [34] and many others. Approaches of
this type calculate optic flow as the minimizer of an energy functional, which consists
of a data term and a smoothness term. Formulations in terms of energy functionals al-
low a conceptually c1ear formalism without any hidden model assumptions, and several
evaluations have shown that these methods perform well [5, 20].

The data term in the energy functional involves optic flow constraints such as the as-
sumption that corresponding pixels in different frames should reveal the same grey value.
The smoothness term usually requires that the optic flow field should vary smoothly
in space [25]. Such a term may be modified in an image-driven way in order to sup-
press smoothing at or across image boundaries [1, 34]. As an alternative, jlow-driven
modifications have been proposed which reduce smoothing across flow discontinuities
[8, 12, 14, 29, 40, 43, 54]. Most smoothness terms require only spatial smoothness. Spatio-
temporal smoothness terms have been considered to a much smaller extend [7, 33, 36, 56].
Since smoothness terms fill in information from regions where reliable flow estimates ex-
ist to regions where no estimates are possible, they create dense flow fields. In many
applications, this is a desirable quality which distinguishes regularization methods from
other optic flow algorithms. The latter ones create non-dense flow fields, that have to
be postprocessed by interpolation, if 100 % density is required.

Modeling the optic flow recovery problem in terms of continuous energy functionals
offers the advantage of having a formulation that is as independent of the pixel grid
as possible. A correct continuous model can be rotation invariant, and the use of well-
established numerical methods shows how this rotation invariance can be approximated
in a mathematically consistent way.

From both a theoretical and practical point of view, it can be attractive to use energy
functionals that are convex. They have a unique minimum, and this global minimum
can be found in a stable way by using standard techniques from convex optimization,
for instance gradient descent methods. Having a unique minimum allows to use globally
convergent algorithms, where every arbitrary flow initialization leads to the same solu-
tion: the global minimum of the functional. This property is an important quality of
a robust algorithm. Nonconvex energy functionals, on the other hand, may have many
local minima, and it is difficult to find algorithms that are both efficient and converge
to a global minimum. Typical algorithms which converge to a global minimum (such as
simulated annealing [30]) are computationally very expensive, while methods which are
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more efficient (such as graduated non-eonvexity algorithms [9]) may get trapped in a
loeal minimum.
Minimizing eontinuous energy functionals leads in a natural way to partial differential

equations (PDEs): applying gradient descent, for instanee, yields a system of eoupled
diffusion-reaetions equations for the two flow eomponents. The fastly emerging use
of PDE-based image restoration methods [22, 39]' such as nonlinear diffusion filtering
and total variation denoising, has motivated many researehers to apply similar ideas
to estimate optie flow [1, 4, 12, 14, 24, 29, 38, 40, 43, 54]. A systematie framework
that links the diffusion and optie flow paradigms, however, has not been studied so
far. Furthermore, from the framework of diffusion filtering it is also weIl-known that
anisotropie filters with a diffusion tensor have more degrees of freedom than isotropie
ones with sealar-valued diffusivities. These additional degrees of freedom ean be used to
obtain bett er results in speeifie situations [53]. However, similar nonlinear anisotropie
regularizers have not been eonsidered in the optie flow literature so far.

The goal of the present paper is to address these issues. We present a theoretieal
framework for a broad class of regularization methods for optie flow estimation. For
the reasons explained above, we foeus on models that allow a formulation in terms of
eonvex and rotation invariant eontinuous energy funetionals. We eonsider image-driven
and flow-driven models, isotropie and anisotropie ones, as weIl as models with spatial
and spatio-temporal smoothing terms. We prove that all these approaehes are weIl-posed
in the sense of Hadamard: they have a unique solution that depends in a eontinuous
(and therefore predietable) way on the input data.
We shall see that our taxonomy includes not only many existing models, but also

interesting novel ones. In partieular, we will derive novel regularization funetionals for
optie flow estimation that are flow-driven and anisotropie. They are the optie flow ana-
logues of anisotropie diffusion filters with a diffusion tensor. Many of the spatio- temporal
methods have not been proposed before as weIl. With the inereased eomputational pos-
sibilities of modern computers it is likely that they will beeome more important in the
future. In the present paper we also foeus on interesting relations between isotropie and
anisotropie flow-driven methods. They allow us to formulate a general design prineiple
whieh explains how one ean ereate anisotropie optie flow regularizers from isotropie ones.

Our paper is organized as follows. In Seetion 2 we first review and classify existing
image-driven and isotropie flow-driven models, before we derive a novel energy funetional
leading to anisotropie flow driven models. The? we show how one has to modify all
models with a spatial smoothness term in order to obtain methods with spatio-temporal
regularization. A unifying energy functional is derived that ineorporates the previous
models as weIl as novel ones. Its weIl-posedness is established in Section 3. In Section 4
we take advantage of struetural similarities betw~en isotropie and anisotropie approaehes
in order to formulate a design prineiple for anisotropie optie flow regularizers. The paper
is eoncluded with a summary in Seetion 5.
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2 A Framewürk für Cünvex Regularizers

2.1 Spatial regularizers

2.1.1 Basic structure

In order to formalize the optic flow estimation problem, let us consider a real-valued
image sequence f(x, y, B), where (x, y) denotes the location within the image domain
n E IR?, and the time parameter B E [0,T] specifies the frame. The optic flow field
(ul(x,y,B),U2(X,y,B)) describes the displacement between two subsequent frames Band
B + 1, i.e. f(x, y, B) and f(x + Ul(X, y, B), Y + U2(X, y, B), B + 1) should depict the same
image detail. Frequently it is assumed that image objects keep their grey value over
time:

f(x, y, B) - f(x + Ul (x, y, B), y + U2(X, y, B), B + 1) = O. (1)

Such a model assumes that illumination changes do not appear, and that occlusions or
disocclusions do not happen. Numerous generalizations to multiple constraint equations
and/or different "conserved quantities" (replacing intensity) exist; see e.g. [18,51]. How-
ever, since the goal of the present paper is to study different regularizers, we restrict
ourselves to (1). If the spatial and temporal sampling is sufficiently fine, we may replace
(1) by its first order Taylor approximation

(2)

where the subscripts ;1:, y and B denote partial derivatives. This so-called optic flow con-
straint (OFC) forms the basis of many differential methods for estimating the optic flow.
Evidently such a single equation is not sufficient to determine the two unknown func-
tions Ul and U2 uniquely. In order to recover a unique flow field, we need an additional
assumption. Regularization-based optic flow methods use as additional assumption the
requirement that the optic flow field should be smooth (or at least piecewise smooth).
The basic idea is to recover the optic flow as a minimizer of some energy functional of
type

E(Ul' U2) :=!(UXUl + fyU2 + f(})2 + a V(\7 f, \7Ul, \7U2)) dx dy (3)
n

where \7 := (ox,Oy? denotes the spatial nabla operator, and U := (Ul' U2)T. The first
term in the energy functional is a data term requiring that the OFC be fulfilled, while
the second term penalizes deviations from (piecewise) smO'othness. The smoothness term
V(\7 f, \7Ul, \7U2) is called regularizer, and the positive smoothness weight a is the reg-
ularization parameter. One would expect that the specific choice of the regularizer has
a strong influence on the result. Therefore, let us discuss different classes of convex
regularizers next.
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2.1.2 Homogeneous regularization

In 1981 Horn and Schunck [25] pioneered the £leId of regularization methods for optic
flow computations. They used the regularizer

(4)

It is a c1assic result from the calculus of variations [13, 16] that - under mild regularity
conditions - a minimizer (u, v) of some energy functional

E(u, v) := J G(x, y, Ul, U2, \7Ul, \7U2) dx dy
n

satis£les necessarily the so-called Euler-Lagrange equations

(5)

axGulx + ayGuly - GUl
axGu2x + ayGU2y - GU2

with homogeneous Neumann boundary conditions:

0,
o

(6)
(7)

on an,
on an.

(8)
(9)

Hereby, n is a vector normal to the image boundary an.
Applying this framework to the minimization of the Horn and Schunck functional

leads to the PDEs

~Ul - ~J~UxUl + JyU2 + Je)
~U2 - ~JyUxUl + JyU2 + Je)

0,
0,

(10)
(11)

where ~ := axx + ayy denotes the Laplace operator. These equations can be regarded as
the steady state (t -+ (0) of the diffusion-reaction system

~Ul - ~JxUxUl + JyU2 + Je),
~U2 - ~JyUxUl + JyU2 + Je),

(12)
(13)

where t denotes an arti£lcial evolution parameter that should not be mixed up with the
time () of the image sequence. These equations also arise when minimizing the Horn and
Schunck functional using steepest descent. Schnörr [41] has established well-posedness
by showing that this functional has a unique minimizer that depends continuously on
the input data J. Recently, Hinterberger [24] proved similar well-posedness results for a
related model with a different data term.

We observe that the underlying diffusion process in the Horn and Schunck approach
is the linear diffusion equation

(14)

5



with 9 := 1 and i = 1,2. This equation is well-known for its regularizing properties
and has been extensively used in the context of Gaussian scale-space; see [48] and the
references therein. It smoothes, however, in a completely homogeneous way, since its
diffusivity 9 equals 1 everywhere. As a consequence, it also blurs across semantically
important flow discontinuities. This is the reason why the Horn and Schunck approach
creates rather blurry optic flow fields. The regularizers described in the sequel are at-
tempts to overcome this limitation.

2.1.3 Isotropie image-driven regularization

It seems plausible that motion boundaries are a subset of the image boundaries. Thus, a
simple way to prevent smoothing at motion boundaries consists of introducing a weight
function into the Horn and Schunck regularizers that becomes small at image edges.
This modification yields the regularizer

(15)

where 9 is a decreasing, strictly positive function. This regularizer has been proposed
and theoretically analysed by Alvarez et al. [1]. The corresponding diffusion-reaction
equations are given by

div (g(l\7 J12) \7Ul) - ~Jx(JxUl + JyU2 + Jo),
div (g(l\7 J12) \7U2) - ~Jy(JxUl + JyU2 + Jo).

The underlying diffusion process is

(16)
(17)

(i=1,2). (18)

It uses a scalar-valued diffusivity 9 that depends on the image gradient. Such a method
can therefore be c1assified as inhomogeneous, isotropie and image-driven. Isotropie refers
to the fact that a scalar-valued diffusivity guarantees a direction-independent smoothing
behaviour, while inhomogeneous means that this behaviour may be space-deRendent.
Since the diffusivity does not depend on the flow itself, the diffusion process is linear.
For more details on this terminology and diffusion filtering in image processing, we refer
to [53]. Homogeneous regularization arises as a special case of (15) when g(l\7 J12) := 1
is considered.

2.1.4 Anisotropie image-driven regularization

An early anisotropie modification of the Horn and Schunck functional is due to Nagel
[34]; see also [2, 17,35,37,41,42,47]. The basic idea is to reduce smoothing across image
boundaries, while encouraging smoothing along image boundaries. This is achieved by
considering the regularizer

(19)
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D(V j) is a regularized projeetion matrix perpendieular to V I:

(20)

where 1 denotes the unit matrix. This methods leads to the diffusion-reaetion equations

div (D(V j) VU1) - ~lx(JxU1 + lyU2 + 10),
div (D(V j) VU2) - ~ly(JxU1 + lyU2 + le).

(21)
(22)

(23)

(24)

The usage of a diffusion tensor D(V j) instead of a sealar-valued diffusivity allows a
direetion-dependent smoothing behaviour. This method ean therefore be classified as
anisotropie. Sinee the diffusion tensor depends on the image 1but not on the unknown
fiow, it is a purely image-driven proeess that is linear in its diffusion part. Well-posedness
for this model has been established by Sehnörr [41].

The eigenveetors of D are VI := VI, V2 := VI 1.., and the eorresponding eigenvalues
are given by

A2

Al (lVII) = IV112 + 2A2'

IV112 + A2
A2(IV 11) = IV112 + 2A2'

In the interior of objeets we have lVII -+ 0, and therefore Al -+ 1/2 and A2 -+ 1/2. At
ideal edges where lVII -+ 00, we obtain Al -+ 0 and A2 -+ 1. Thus, we have isotropie
behaviour within regions, and at image boundaries the proeess smoothes anisotropieally
along the edge. This behaviour is very similar to edge-enhaneing anisotropie diffusion
filtering [53]. In eontrast to edge-enhaneing anisotropie diffusion, however, Nagel's optie
fiow teehnique is linear. It is interesting to note that only reeently it has been pointed out
that the Nagel method may be regarded as an early predeeessor of anisotropie diffusion
filtering [2].

Homogeneous and isotropie image-driven regularizers are special eases of (19), where
D(V j) := 1 and D(V j) := g(IV 112)1 are chosen.

2.1.5 Isotropie flow-driven regularization

Image-driven regularization methods may ereate oversegmentations for strongly textured
objeets: in this ease we have mueh more image boundaries than motion boundaries. In
order to reduee smoothing only at motion boundaries, one may eonsider using a purely
fiow-driven regularizer. This, however, is at the expense of refraining from quadratie
optimization problems. In earlier work [43, 54]' the authors eonsidered regularizers of
type

(25)

where W(S2) is a differentiable and inereasing function that is eonvex in s, for instanee

7

(0 < c « 1, A > 0). (26)



Regularizer of type (25) lead to the diffusion-reaetion system

div ('lJ'(IVUlI2 + IVU212) VUl) - ~Jx(JxUl + JyU2 + Jo),
div ('lJ'(IVUlI2 + IVU212) VU2) - ~Jy(JxUl + JyU2 + Jo),

(27)
(28)

where 'lJ' denotes the derivative of 'lJ with respeet to its argument. The sealar-valued
diffusivity 'lJ'(IVUlI2 + IVU212) shows that this model is isotropie and fiow-driven. In
general, the diffusion proeess is non linear now. For the speeifie regularizer (26), for
instanee, the diffusivity is given by

(29)

Sinee this nonlinear diffusivity is deereasing in its argument, smoothing at fiow dis-
eontinuities is inhibited. For the speeifie ehoiee 'lJ(S2) := S2, however, homogeneous
regularization with diffusivity 'lJ' (S2) = 1 is reeovered again.

The preeeding diffusion-reaetion system uses a eommon diffusivity for both ehannels.
This avoids that edges are formed at different loeations in eaeh ehannel. The same
eoupling also appears in isotropie nonlinear diffusion filters for veetor-valued images
as eonsidered by Gerig et al. [21]' and Whitaker and Gerig [57]. Nonlinear fiow-driven
regularizers with different diffusivities for eaeh ehannel are diseussed in Seetion 4.

2.1.6 Anisotropie flow-driven regularization

We have seen that there exist isotropie and anisotropie image-driven regularizers as weIl
as isotropie fiow-driven ones. Thus, our taxonomy would be ineomplete without having
diseussed anisotropie fiow-driven regularizers. In the eontext of nonlinear diffusion fil-
tering, anisotropie models with a diffusion tensor instead of a sealar-valued diffusivity
offer advantages for images with noisy edges or interrupted struetures [55].

How ean one eonstruct related optie fiow methods? Let us first have a look at diffusion
filtering of multiehannel images. In the nonlinear anisotropie ease, Weiekert [52, 55] and
Kimmel et al. [26] proposed to filter a multiehannel image by using a joint diffusion
tensor that depends on the gradients of all image ehannels. Our goal is thus to find an
optie fiow regularizer that leads to a eoupled diffusion-reaetion system where the same
fiux-dependent diffusion tensor D(VUl, VU2) is used in eaeh equation.

In order to derive this novel dass of regularizers, we have to introduee some defini-
tions first. As in the previous seetion, we eonsider an inereasing smooth function 'lJ(S2)
that is eonvex in s. Let us assume that A is some symmetrie n x n matrix with or-
thonormal eigenveetors Wl, ... ,Wn and eorresponding eigenvalues O"l, ... ,O"n' Then we may
formally extend the sealar-valued function 'lJ(z) to a matrix-valued function 'lJ(A) by
defining 'lJ(A) as the matrix with eigenveetors Wl"",Wn and eigenvalues W(O"l), ... ,'lJ(O"n):

(30)

This definition ean be motivated from the ease where 'lJ(z) is represented by apower
series L:~=oCk Zk. Then it is easy to see that the eorresponding matrix-valued power
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series l:~o CkAk has the eigenveetors W1, ... ,Wn and eigenvalues W(U1), ... ,W(un). Another
definition that is useful for our eonsiderations below is the traee of a quadratie matrix
A = (aij). It is the sum of its diagonal elements, or - equivalently - the sum of its
eigenvalues:

(31)

With these notations we eonsider the regularizer

(32)

Its argument

(33)

is asymmetrie and positive semidefinite 2 x 2 matrix. Henee, there exist two orthonormal
eigenveetors V1, V2 with eorresponding nonnegative eigenvalues 111, /12. These eigenvalues
speeify the eontrast ofthe veetor-valued image (U1, U2) in the direetions V1 and V2, respee-
tively. This eoneept has been introdueed by Di Zenzo for edge analysis of multiehannel
images [15]. It ean be regarded as a generalization of the strueture tensor [19]' and it is
related to the first fundamental form in differential geometry [28].

Gur result below states that the regularizer (32) leads to the desired nonlinear
anisotropie diffusion-reaetion system.

Proposition 1 (Anisotropie Flow-Driven Regularization)
For the energy Junctional (3) with the regularizer (32), the corresponding steepest des cent
diffusion-reaction system is given by

div (D(\lU1, \lU2) \lud - ~JxUxU1 + JyU2 + Je),
div (D(\lU1, \lU2) \lU2) - ~JyUxU1 + JyU2 + Je),

where the diffusion tensor satisfies

Proof. The Euler-Lagrange equations for minimizing the energy

(34)
(35)

(36)

E(U1,U2) := J (UXU1 + JyU2 + Je)2 + atrW (\lu1\luf + \lu2\luI)) dxdy (37)
n

are given by

8x8u1Jtr w(J)) + 8y8u1y (tr w(J)) - ~JxUxU1 + JyU2 + Je)
8x8u2Jtr w(J)) + 8y8u2vCtrw(J)) - ~JyUxU1 + JyU2 + Je)

9
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In order to simplify the evaluation of the first and second summand in both equations,
we replace (x, y) by (Xl, X2), and denote by ei the unit vector in Xi direction. Together
with the identities

it follows that

w'(J)
tr (abT)

div (a)

(40)
(41)

(42)

:LOXi tr (w' (J) OUkXi J)
t

(40) :LOXitr LW'(fLj)VjvJ(ei~Ur + ~ukef)
j

:LOXitr LW'(fLj) ((vJei)(Vj~Un + (VJ~uk)(Vjef))
j

(41) 2 L OXi L w'(fLj)(ef Vj)(VJ~Uk)
j

(42) 2div (W'(J)~Uk) (k = 1,2). (43)

Plugging this result into the Euler-Lagrange equations concludes the proof. 0

It should be noted that, in general, the eigenvalues W'(fL1) and W'(fL2) of the diffusion
tensor are not equal. Therefore, we have a real anisotropie diffusion process with different
behaviour in different directions. Homogeneous regularization is a special case of the
regularizer (32), if W(S2) := S2.

An interesting similarity between the isotropie regularizer (25) and its anisotropie
counterpart (32) becomes explicit when writing (25) as

(44)

This shows that it is sufficient to exchange the role of the trace operator and the penalty
function W to switch between both regularization techniques. Another structural simi-
larity will be discussed in 8ection 4.

2.2 A unifying framework

Let us now make a synthesis of all previously discussed models. Table 1 gives an overview
of the smoothness terms that we have investigated so far.
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Table 1: Classifieation of regularizers for optie flow models.

anisotropie

2

L \7ui\7uf
i=l

2

L \7uf D(\7 j)\7Ui
i=l

isotropie
2

image-driven 9(1\7 f12
) L l\7uil2
i=l

flow-driven W

One may regard these regularizers as special eases of two more general models. Using
the eompaet notation \7u := (\7Ul, \7u2), the first model has the strueture

(45)

For W(S2) := S2, this model eomprises pure image-driven models, regardless whether they
are isotropie (D(\7 j) := 9(1\7 fI2)1) or anisotropie. Isotropie flow-driven models arise for
D := I. In the general ease, the model may be both image-driven and flow-driven.

The seeond model ean be written as

1:2(\7 f, \7u) := tr W (\7u D(\7 j)\7uT
) . (46)

It eomprises the anisotropie flow-driven ease and its eombinations with image-driven
approaches. Note the large struetural similarities between (45) and (46).

Both models ean be assembled to the regularizer

V(\7f, \7u) := (l-ß) W (tr\7uTD(\7j)\7u) + ßtrw (\7uD(\7j)\7uT) (47)

where the paramter ß E [0, 1] determines the anisotropy. This regularizer is embedded
into the general optie flow functional

E(u) = J (UXUl + fyU2 + f())2 + a V(\7 f, \7u)) dx dy.

n

(48)

2.3 Spatio-temporal regularizers

(49)

All regularizers that we have diseussed so far use only spatial smoothness eonstraints.
Thus, it would be natural to impose some amount of (pieeewise) temporal smoothness
as well. Using our results from the previous seetion it is straightforward to extend the
smoothness eonstraint into the temporal domain. Instead of ealculating the optie flow
(Ul, U2) as the minimizer of the two-dimensional integral (48) for eaeh time frame e, we
now minimize a single three-dimensional integral whose solution is the optie flow for alt
frames e E [0,T]:

E(u):= J (UXu1 + fyU2 + 10)2 + aV(\7ef, \7eu)) dxdyde

nx[O,TJ
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where \70 :=" (ox,Oy, oe? denotes the spatio-temporal nabla operator.
The corresponding diffusion-reaction systems of spatio-temporal energy functionals

have the same structure as the pure spatial ones that we investigated so far. The only
difference is that the spatial nabla operator \7 has to be replaced by its spatio-temporal
analogue \70. Thus, one has to solve 3D diffusion-reaction systems instead of 2D ones.

Not many spatio-temporal regularizers have been studied in the literature so far. To
the best of our knowledge, there have been no attempts to investigate rotation invariant
spatio-temporal models that use homogeneous, isotropie image-driven, or anisotropie
f1.ow-driven regularizers.

Nagel [36] suggested an extension of his anisotropie image-driven smoothness con-
straint, where the diffusion tensor (20) is replaced by

Its eigenvalues are given by

(50)

).2

21\70112 + 3).2'
1\70112+ ).2
21\70112 + 3).2

(51)

(52)

Isotropie f1.ow-driven spatio-temporal regularizers have been studied by the authors in
[56]. They showed that it outperforms a corresponding spatial regularizer at low addi-
tional computing time, if an entire image stack is to be processed.

It appears that the limited memory of previous computer architectures prevented
many researchers from studying approaches with spatio-temporal regularizers, since they
require to keep the entire image stack in the computer memory. On contemporary pes
or workstations, however, this is no longer a problem, if typical stack sizes are used (e.g.
32 frames with 256 x 256 pixels). It is thus likely that spatio-temporal regularizers will
become more important in the future.

3 Well-Posedness Properties
In this section we shall prove that the energy functionals (48) and (49), respectively,
admit a unique solution that continuously depends on the initial data. These favourable
properties are the consequence of embedding the optic f1.owconstraint (2) into a convex
regularization approach.

From the perspective of regularization, Table 1 reveals another useful dassification
in this context: while image~driven models correspond to the dass of quadratic regular-
izers [6]' f1.ow-driven models belong to the more general dass of non-quadratic convex
regularizers. This latter dass has been suggested in [11, 45, 49] for generalizing the
well-known quadratic regularization approaches (cf. [6]) used for early computational
vision.
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3.1 Assumptions

In the following, we do not distinguish between the approaches (48) and (49) since with
n c IRn, our results hold true for arbitrary n. Furthermore, we assume that the function
'lJ(S2), S E IR, is strictly convex with respect to s, and there exist constants Cl, C2 > 0
such that

(53)

We consider only matrices D('1 1) that are symmetrie and positive definite. We define
as the space of admissible optic flow fields the set

(54)

endowed with the scalar product

and its induced norm

IIUII1i := (u, U)~2 .

(55)

(56)

In what follows, (1, u) denotes the action of some linear continuous functional f E 1l*,
i.e. some element of the dual space 1l*, on some vector field u E 1l.

3.2 Convexity

We wish to show that the functional E(u) is strictly convex over 1l. To this end, we may
disregard linear and constant terms in E (u) and consider the functional F (u) defined
by

where

F(u) '- l ((V fT U)2 + aV('1 f, '1u)) dXI'" dXn

E(u)+(b,u)+c (57)

(58)

(59)

(b, u) '- -2l fo('1 fT u) dXI ... dxn,

C '- - l fl dXI ... dxn.

8trict convexity is a crucial property for the existence of a unique global minimizing
optical flow field u of E (u) determined as the root of the equation

F'(u) = b (60)

for any linear functional b E 1l*. We proceed in several steps. First, we consider the
smoothness terms VI (V f, Vu) and V2(V f, Vu) separately. This can be done because

13



the sum of eonvex functions is again eonvex. Then we eonsider all terms together, that
is the functional F (u) ,

The term

(61)

belongs to the class of smoothness terms whieh were eonsidered in earlier work on
isotropie nonlinear diffusion of multichannel images (e.g. [44]). To see this, let

(\7UI)vee (\7u) :=
\7U2

(62)

denote the veetor obtained by staeking the eolumns of \7u one upon the other, and let
I . ID denote the norm indueed by the sealar produet

(vee (\7u), vee (\7v)) D

Then VI ean be rewritten as

,_ vee (\7uf (D(\7 J) 0) vee (\7v)
o D(\7 J)

(63)

W (tr\7uTD(\7J)\7u) = w(lvee (\7u)11),

and the framework in [44] is applieable.

The seeond anisotropie and flow-driven smoothness term

(64)

(65)

is new in the eontext of optieal flow eomputation. Note that by eontrast to term VI, the
function W is matrix-valued. The striet eonvexity of V2 is stated in

Proposition 2 (Matrix- Valued Convexity)
Let W : IR -+ IR be str-ictly convex, A and B two positive semidefinite symmetr-ic matr-ices
with A =1= B, and 7 E (0,1). Then

tr w( (1-7)A + 7B) < (1-7) tr w(A) + 7 tr weB). (66)

Proof. Put C := (1-7)A + 7B. Sinee A, B, C are symmetrie, there are orthonormal
systems of eigenvectors {Ui}, {Vi}, {Wi} and real-valued eigenvalues {CYi}, {ßi}, {'Yi} such
that

(67)
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Expanding the vectors Ui, Vi with respect to the system {Wi} gives

With this we obtain

Ui = I)uf Wj)Wj ,
j

C = (1-7)A+7B

Vi = I)vf Wj)Wj.
j

(68)

(1-7) Lai L(uf Wj)2WjWJ + 7 L ßi L(V; Wj)2WjWJ
j j

L ((1-7) L(ufWj)2ai +7 L(V;Wj?ßi)WjWJ. (69)
j i i

Comparing the coefficients shows that '"fj is a convex combination of {ai} and {ßi}:

(70)

Since W : IR --t IR is strictly convex and 'L-j(UfWj)2 = 'L-j(VfWj)2 = 1 for all i, we
obtain

tr w(C) L wbj)
j

LW ((1-7) L(uf Wj)2ai + 7 L(V; Wj)2ßi)
j i i

< L ((1-7) L(uf wj)2w(ai) + 7 L(V; Wj)2W(ßi))
j i i

(71)

j j

(1-7) trW(A) + 7trW(B)

This concludes the convexity proof.

(72)

o

So far we have shown the convexity of the smoothness term V(V' f, V'u) in (57). To
show that F(u) is strictly convex, we may use the equivalent condition that F'(u) is
strongly monotone [58]:

:J Cm > 0: (F'(u) - F'(v), u - v) ~ cmllu - vll~, Vu, v E H. (73)

Note that the smoothness term fulfills this condition because it is convex, as we have
just shown. Concerning the remaining first term in (57), we have to cope with the small
technical difficulty that the vector field u is multiplied with V'f which may vanish in
homogeneous image regions. In this context, we refer to in [41] where this problem has
been dealt with.
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3.3 Existence, uniqueness, and continuous dependence on the
data

It is a well-established result (see, e.g., [58]) that property (73) together with the Lips-
ehitz eontinuity of the operator F' (which holds true under mild eonditions with respect
to the data V'J, Je, er. [41, 46]) ensure the existenee of a unique and globally minimizing
optieal vector field u that eontinuously depends on the data. To und erstand the latter
property, suppose we are given two image sequenees and eorresponding functionals b1, b2
(cf. (57)) and minimizers U1, U2:

By virtue of (73) we have

cmllu1 - u211~ < (F'(U1)-F'(U2), U1-U2)
< IIF'(U1)-F'(U2)lltl* Ilu1-U21Itl.

Thus,

(74)
(75)

(76)

(77)

This equation states that, for a slight change of the image sequenee data, the eorrespond-
ing optieal flow field eannot arbitrarily jump but gradually ehanges, too. It is therefore
an important robustness property.

4 Extensions
All regularizers that we have diseussed so far ean be motivated from existing nonlinear
diffusion methods for multiehannel images, where a joint diffusivity or diffusion tensor
for all ehannels is used. As one might expeet, this is not the only way to eonstruet useful
optie flow regularizers. In partieular, there exists a more general design prineiple for
anisotropie flow-driven regularizers whieh we will diseuss next.

Our key observation for deriving this prineiple is an interesting relation between
anisotropie flow-driven regularizers and isotropie flow-driven ones: the anisotropie reg-
ularizer tr W(J) ean be expressed by means of the eigenvalues /11, /12 of J as

(78)

while its isotropie counterpart 'lJ (tr J) ean be written as

(79)

This observation motivates us to formulate the following design prineiple for rotationally
invariant anisotropie flow-driven regularizers:
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Design Principle (Rotationally Invariant Anisotropie Regularizers)
Assume that we are given some isotropie regularizer W(l:i I\7UiI2) with a nonquadratie
Junetion W, and a deeomposition oJ its argument

L I\7UiI2= L Pj,
j

(80)

where the Pj are rotationally invariant expressions. Then the regularizer l:j w(Pj) zs
rotationally invariant and anisotropie.

Examples

1. The deeomposion that has been used in (78) and (79) to transit from an isotropie
to an anisotropie model was the traee identity

(81)

where MI and M2are the eigenvalues of J = \7UI\7uf + \7U2 \7uI-

2. Sehnörr [43] proposed the regularizer

with u:= (UI,U2)T, rotu:= U2x - UIy, and shu:= J(U2y - UIx)2 + (UIy +U2x)2.

Applying the design prineiple, one ean derive this expression from the identity [27]

(83)

Using the regularizer (82) in the functional (3) leads to the highly anisotropie
diffusion-reaetion system

8tUI 8x ((W'(div2u) + w'(sh 2u)) UIx + (W'(div2u) - w'(sh 2U)) U2y)

+ 8y ((W'(sh 2U) + w'(rot2u)) UIy + (w'(sh 2U) - w'(rot2u)) U2X)

!;Jx(JxUI + JyU2 + Je), (84)
8tU2 8x ((w' (sh 2U) - W'(rot 2U)) UIy + (w' (sh 2U) +W'(rot 2U)) U2X)

+ 8y ((w'(div2u) - w'(sh 2U)) UIx + (w'(div2u) + w'(sh 2U)) U2y)

!;Jy(JxUI + JyU2 + Je). (85)

Note that now the eoupling between both equations is more eomplieated than in
the previous eases, where a joint diffusivity or a joint diffusion tensor has been
used. We are not aware of similar diffusion filters for multiehannel images. Well-
posedness properties and experimental results for this optie flow method are pre-
sented in [43, 46].

3. Requiring that the Pj in (80) be rotationally invariant ensures the rotation invari-
anee of the anisotropie regularizer. If we dispense with rotation invarianee, the

17



design prineiple ean still be used. As an example, let us study the fiow-driven reg-
ularization methods that are eonsidered in [4, 12, 14, 29]. They use a regularizer
oftype

--I

(86)

Aeeording to our design prineiple, we may regard this regularizer as an anisotropie
version of the isotropie regularizer (25). However, the deeomposition of its ar-
gument into IV'ull2 and IV'u212 is not rotationally invariant. The eorresponding
diffusion-re action system is given by

div (W'(IV'UlI2) V'Ul) - ~Jx(JxUl + JyU2 + Je),
div (W'(IV'U212) V'U2) - ~Jy(JxUl + JyU2 + Je),

(87)
(88)

whieh shows that both systems are eompletely deeoupled in their diffusion terms.
Thus, fiow diseontinuities may be ereated at different loeations for eaeh ehannel.
The same deeoupling appears also for some other PDE-based optie fiow methods
such as [40].

While eaeh of the two diffusion processes is isotropie, the overall proeess reveals
some anisotropy: in general, the two diffusivities W'(IV'UlI2) and W'(IV'U212) are
not identieal. 'Nell-posedness results for this approach with a modified data term
have been established by Aubert et al. [4].

There is also a number of related stoehastie methods that lead to diserete models
whieh are not eonsistent approximations to rotation invariant processes [7, 8, 10,
23,31,33]. Nonconvex regularizers are typieally used in these approaches. Discrete
spatio-temporal versions of the regularizer (86) are investigated in [7, 33].

It is achallenging open quest ion whether there exist more useful rotation invariant
convex regularizers than the ones we have just discussed. This is one of our current
research topies.

5 Summary and Conclusions
The goal of this paper was to derive a diffusion theory far optic fiow functionals. Mini-
mizing optic fiow functionals by steepest descent leads to a set of two coupled diffusion~
reaction systems. Since similar equations appear for diffusion filtering of multi-channel
images, the question arises whether there are optic fiow analogues to the various kinds
of diffusion filters.

We saw that image-driven optic fiow regularizers correspond to linear diffusion filters,
while fiow-driven regularizers create nonlinear diffusion processes. Pure spatial regulariz-
ers ean be expressed as 2D diffusion-re action processes, and spatio-temporal regularizers
may be regarded as generalizations to the 3D case. This taxonomy helped us not only to
dassify existing methods within a unifying framework, but also to identify gaps, where
no models are available in the current literature. We filled these gaps by deriving suit-
able methods with the specified properties, and we proved well-posedness for the dass
of convex diffusion-based optic fiow regularization methods.
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One important novelty along these lines was the derivation of regularizers that ean
be related to anisotropie diffusion filters with a matrix-valued diffusion tensor. This also
enabled us to propose a design prineiple for anisotropie regularizers, and we diseovered an
interesting struetural similarity between isotropie and anisotropie models: it is suffieient
to exchange the role of the traee operator and the penalty funetion in order to switeh
between the two models.

We are eonvineed that these relations are only the starting point for many more
fruitful interactions between the theories of diffusion filtering and variational optie flow
methods. Diffusion filtering has progressed very mueh in reeent years, and so it ap-
pears appealing to ineorporate reeent results from this area into optie flow methods.
Conversely, it is dear that novel optie flow regularizers ean also be regarded as energy
functionals for suitable diffusion filters.

We hope that our systematie taxonomy provides a unifying platform for algorithms
for the entire dass of eonvex variational optie flow methods. Our future plans are to
use such a platform for a detailed performance evaluation of the different methods in
this paper, and for a systematic eomparison of different numerieal algorithms. Another
point on our agenda is an investigation of alternative rotation-invariant deeompositions
that ean be applied to eonstruet useful anisotropie regularizers.
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